Electron Spin Resonance Spectroscopy

Dr. Arjun Kumbhar

Dr. Arjun Kumbhar

What is the ESR?

$E P R=E S R$

E Electron-study of unpaired electron spins, and their interaction with their environment.

S Spin - Electron spin is a quantum mechanical phenomenon. It is represented by m_{s}, one of the 4 quantum numbers: $\mathrm{n}, \mathrm{l}, \mathrm{m}, \mathrm{m}_{\mathrm{s}}$
ms can have one of only 2 values, $+1 / 2$ and $-1 / 2$
In the language of quantum mechanics, this fundamental property of an isolated electron is an angular momentum. It can be described in a classical physics model as if it were a spinning electric charge, so it is called electron spin. However, this is just a mnemonic model, and does not mean that the electron is really a spinning charge.

P Paramagnetic - The general term paramagnetic is used to describe materials that are attracted to a magnetic field. There are two major contributions to paramagnetism: spin and orbital angular momentum. Since the term paramagnetic is more general, and is ESR.
R Resonance - This may be the most important term of the 3 in EPR. The concept of resonance is central to the power of magnetic resonance techniques.

Types of Paramagnetic Substances

Stable paramagnetic Substances- NO,O2,NO2,

Unstable paramagnetic Substances- radical ions And free radicals

Zeeman Energy Level Splitting

Microwave absorption

Electron spin angular Momentum quantum number

Zeeman energy level splitting for an electron in a magnetic field. The energy separation is linearly proportional to magnetic field strength, B. Transitions between the two electron energy levels are stimulated by microwave radiation when $h v=g \beta B$. If the line shape is cue to relaxation, it is Lorentzian.

```
The equation describing the absorption
(or emission) of microwave energy
between two spin states is
\(D E=h v=g \beta H\)
where:
\(\Delta E\) is the energy difference between the
two spin states
\(h\) is Planck's constant
\(v\) is the microwave frequency
\(\beta\) is the Bohr magneton
\(H\) is the applied magnetic field.
```

It is function of electron's environment

Proportionality constant/factor Spectroscopic splitting factor Lande's splitting factor

is characteristic of the radical, and is ≈ 2
Sample calculation for $v=1 \mathrm{GHz}$

Spectra

When phase-sensitive detection is used, the signal is the first derivative of the absorption intensity

Proportionality Factor

How does the spectrometer

 work?

Modulation

ESR spectra of single electron

A - the hyperfine splitting

Splitting of signals

due to interaction
Of spinning electron with adjacent
spinning Magnetic nuclei is called
hyperfine splitting

Sianal splifiting (Multiolicitiy) $=20+1$

Spin quantum number of the nucleus

If single electron interact with n equivalent nuclei of equal spin I
No of lines in esr = ($2 \mathrm{nl}+1$)
If single electron interact with set of
n equivalent nuclei of equal spin of spin lj , m equivalent nuclei of equal spin of spin lj, and p equivalent nuclei of equal spin of $s p i n ~ l j$,

Dr. Arjur No of ถines in esr $=(2 n l j+1)(2 m l j+1)(2 p l j+1)$

EPR of D-atom

EPR of CH3 radical

$$
\begin{aligned}
\text { Multiplicity } & =(2 n \mathrm{l}+1)(2 \mathrm{nl}+1) \\
& =(2 \times 3 \times 1 / 2+1)(2 \times 1 \times 0+1 \\
& =4
\end{aligned}
$$

EPR spectrum of Benzene Radical Anion

Stick diagram -Relative Intensities for I

$$
=1 / 2
$$

N
0
1
2
3
4
5
6

$1: 6: 15: 20: 15: 6$? 0

Relative Intensities for $I=1 / 2$

Relative Intensities for $I=1$

N	Relative Intensities
0	1
1	$1: 1: 1$
2	$1: 2: 3: 2: 1$
3	$1: 3: 6: 7: 6: 3: 1$
4	$1: 4: 10: 16: 19: 16: 10: 4: 1$
5	$1: 6: 21: 40: 80: 116: 141: 116: 80: 40: 21: 6: 1$

Relative Intensities for $I=1$

EPR spectrum of Benzoquinone Radical Anion

EPR spectrum of Naphthalene Radical Anion

$$
\begin{aligned}
\text { Multiplicity } & =(2 n \mathrm{l}+1)(2 \mathrm{nl}+1) \\
& =(2 \times 4 \times 1 / 2+1)(2 \times 4 \times 1 / 2+1 \\
& =25 \mathrm{ml}=+2,+1,0,-1,-2
\end{aligned}
$$

Which nuclei will interact?

- Selection rules same as for NMR
- Every isotope of every element has a ground state nuclear spin quantum number, \boldsymbol{I}
- has value of $n / 2, n$ is an integer
- Isotopes with even atomic number and even mass number have $I=0$, and have no EPR spectra
$-{ }^{12} \mathrm{C},{ }^{28} \mathrm{Si},{ }^{56} \mathrm{Fe}, \ldots$
- Isotopes with odd atomic number and even mass number have n even
$-{ }^{2} \mathrm{H},{ }^{10} \mathrm{~B},{ }^{14} \mathrm{~N}, \ldots$
- Isotopes with odd mass number have \boldsymbol{n} odd
$-{ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F},{ }^{55} \mathrm{Mn}, \ldots$

Describing the energy levels

- Based upon the spin of an electron and its associated magnetic moment
- For a molecule with one unpaired electron - In the presence of a magnetic field, the two electron spin energy levels are:

$$
E=g \mu_{B} B_{0} M_{S}
$$

$g=$ proportionality factor $\mu_{B}=$ Bohr magneton $\boldsymbol{M}_{\mathrm{S}}=$ electron spin $\quad \boldsymbol{B}_{0}=$ Magnetic field quantum number

$$
\text { (+1/2 or }-1 / 2 \text {) }
$$

How will you differentiate the following by ESR spectra

A

C

B

D

Draw and Explain ESR spectra of cycloheptatrienyl radical

Which of the following system will show ESR spectra
1.Benzene 2.Benzene cation 3.Benzene anion 4.Cyclopentadienyl cation

Which of the following system will show ESR spectra

1.H
 2.H2
 3.Na+
 4.CI-
 5.NO2
 6.CO2-

Draw and Predict the type of ESR spectra to be obtained for 2,3dichlorobenzoquinone

Cyclopentadienyl radical shows six lines in esr spectrum.Explain \&

 comment on their intensities
SET-Jan. 2006

Marks-06

Differentiate the ortho\& para-isomer of benzoquinone from esr spectra Of their radicals,viz o/p-benzosemiquinone

Given I (12C) $=0, \mathrm{I}(160)=0 \mathrm{I}(1 \mathrm{H})=1 / 2$

SET-Jan-2009
Marks=06

Multiplicity $=(2 \mathrm{nl}+1)(2 \mathrm{ml}+1)=(2 \times 2 \times 1 / 2+1)(2 \times 2 \times 1 / 2+1)$

$$
=9
$$

The esr spectrum of free radical C3H7 shows 14-lines with the relative intensity ratio 1:1:6:6:15:15:20:20:20:15:15:6:6:1:1 Whether this radical is n-propyl/iso-propyl radical.Explain

Answer- is isopropyl radical

Multiplicity $=(2 n \mathrm{l}+1)(2 \mathrm{ml}+1))(2 \mathrm{pl}+1)$ $=(2 \times 1 \times 1 / 2+1)(2 \times 2 \times 1 / 2+1)(2 \times 3 \times 1 / 2+1)$ $=36$

Hyperfine Interactions

- Example:
- Pyrazine anion

- Electron delocalized over ring
- Exhibits coupling to two equivalent $\mathrm{N}(\boldsymbol{I}=1)$

$$
2 N I+1=2(2)(1)+1=5
$$

- Then couples to four equivalent $\mathrm{H}(\boldsymbol{I}=1 / 2)$

$$
2 N I+1=2(4)(1 / 2)+1=5
$$

- So spectrum should be a quintet with intensities 1:2:3:2:1 and each of those lines should be split into quintets with intensities 1:4:6:4:1

EPR spectrum of pyrazine radical anion

Dec 2012

> 36. The number of lines exhibited by a high resolution EPR spectrum of the species, $\left[\mathrm{Cu}(\text { (ethylenediamine })_{2}\right]^{2^{+}}$is $[\mathrm{Nuclear}$ spin (I) of $\mathrm{Cu}=3 / 2$ and that of $\mathrm{N}=1]$ $\begin{array}{lll}1.12 & \text { 2. } 15 & \text { 3. } 20\end{array}$

Dec 2011

80. In the EPR spectrum of tetragonal Cu (II) complex, when $\mathrm{g} \|_{\|}>\mathrm{g}_{\perp}>\mathrm{g}_{e}$ the unpaired electron resides in the orbital:

Dr. Arjun Kumbhar

June 2012

94. The total numbers of fine and hypertinc EPR lines expected for ociahedral high-spin $\mathrm{Mn}(\mathrm{II})$ complexes are respectively ($\mathrm{I}=5 / 2$ for Mn)
95. 3 and $30 \quad$ 2. 5 and $33 \quad$ 3. 5 and $30 \quad$ 4. 4 and 24
