

	

	

	

	

	

	

	

	

Python
The	Ultimate	Beginner’s	Guide!

	
	
	
	
	
	

Andrew	Johansen

	Copyright	2016	by	Andrew	Johansen	-	All	rights	reserved.

	

This	document	is	geared	towards	providing	exact	and	reliable	information	in	regards	to	the
topic	 and	 issue	 covered.	 The	 publication	 is	 sold	with	 the	 idea	 that	 the	 publisher	 is	 not
required	 to	 render	 accounting,	 officially	 permitted,	 or	 otherwise,	 qualified	 services.	 If
advice	is	necessary,	 legal	or	professional,	a	practiced	individual	 in	 the	profession	should
be	ordered.

	

-	 From	 a	 Declaration	 of	 Principles	 which	 was	 accepted	 and	 approved	 equally	 by	 a
Committee	 of	 the	 American	 Bar	 Association	 and	 a	 Committee	 of	 Publishers	 and
Associations.

	

In	no	way	is	it	legal	to	reproduce,	duplicate,	or	transmit	any	part	of	this	document	in	either
electronic	means	or	in	printed	format.	Recording	of	this	publication	is	strictly	prohibited
and	any	storage	of	this	document	is	not	allowed	unless	with	written	permission	from	the
publisher.	All	rights	reserved.

	

The	information	provided	herein	is	stated	to	be	truthful	and	consistent,	in	that	any	liability,
in	terms	of	inattention	or	otherwise,	by	any	usage	or	abuse	of	any	policies,	processes,	or
directions	contained	within	is	 the	solitary	and	utter	responsibility	of	 the	recipient	reader.
Under	 no	 circumstances	 will	 any	 legal	 responsibility	 or	 blame	 be	 held	 against	 the
publisher	 for	 any	 reparation,	 damages,	 or	monetary	 loss	 due	 to	 the	 information	 herein,
either	directly	or	indirectly.

	

Respective	authors	own	all	copyrights	not	held	by	the	publisher.

	

The	information	herein	is	offered	for	informational	purposes	solely,	and	is	universal	as	so.
The	presentation	of	the	information	is	without	contract	or	any	type	of	guarantee	assurance.

	

The	trademarks	that	are	used	are	without	any	consent,	and	the	publication	of	the	trademark
is	 without	 permission	 or	 backing	 by	 the	 trademark	 owner.	 All	 trademarks	 and	 brands
within	 this	 book	 are	 for	 clarifying	 purposes	 only	 and	 are	 the	 owned	 by	 the	 owners
themselves,	not	affiliated	with	this	document.

Table	of	Contents
	
Introduction

Chapter	1														Getting	Acquainted	with	Python

Chapter	2														Installing	Python

Chapter	3														Interacting	with	Python

Chapter	4														Python	Syntax

Chapter	5														Variables	and	Data	Types

Chapter	6														Basic	Operators

Chapter	7														Built-in	Functions

Chapter	8														Conditional	Statements

Chapter	9														Loops

Chapter	10														User-Defined	Functions

Chapter	11														Introduction	to	Classes	and	Object-Oriented	Programming

Conclusion

Introduction
	

	
I	want	to	thank	you	and	congratulate	you	for	purchasing	this	book…

	

“Python:	The	Ultimate	Beginner’s	Guide!”

	

This	book	contains	proven	steps	and	strategies	on	learning	Python	Programming	quickly
and	easily.

Python	is	a	powerful	and	flexible	programming	language.	It	uses	concise	and	easy-to-learn
syntax	 which	 enables	 programmers	 to	 write	 more	 codes	 and	 develop	 more	 complex
programs	in	a	much	shorter	time.

Python:	The	Ultimate	Beginner’s	Guide	provides	all	essential	programming	concepts	and
information	you	need	to	start	developing	your	own	Python	program.	The	book	provides	a
comprehensive	walk-through	of	Python	programming	 in	a	clear,	 straightforward	manner
that	beginners	will	 appreciate.	 Important	 concepts	 are	 introduced	 through	a	 step-by-step
discussion	and	reinforced	by	relevant	examples	and	illustrations.	You	can	use	this	book	as
a	guide	to	help	you	explore,	harness,	and	gain	appreciation	of	the	capabilities	and	features
of	Python.

Thanks	again	for	purchasing	this	book,	I	hope	you	enjoy	it!

	

Chapter	1																												Getting	Acquainted	with	Python

	

Python	 is	 an	 open	 source,	 high-level	 programming	 language	 developed	 by	 Guido	 van
Rossum	in	the	late	1980s	and	presently	administered	by	Python	Software	Foundation.		It
came	from	the	ABC	language	that	he	helped	create	early	on	in	his	career.

Python	is	a	powerful	language	that	you	can	use	to	create	games,	write	GUIs,	and	develop
web	applications.

It	is	a	high-level	language.	Reading	and	writing	codes	in	Python	is	much	like	reading	and
writing	 regular	 English	 statements.	 Because	 they	 are	 not	 written	 in	 machine-readable
language,	Python	programs	need	to	be	processed	before	machines	can	run	them.

Python	 is	 an	 interpreted	 language.	 This	 means	 that	 every	 time	 a	 program	 is	 run,	 its
interpreter	runs	through	the	code	and	translates	it	into	machine-readable	byte	code.

Python	 is	 an	 object-oriented	 language	 that	 allows	 users	 to	 manage	 and	 control	 data
structures	 or	 objects	 to	 create	 and	 run	 programs.	 Everything	 in	 Python	 is,	 in	 fact,	 first
class.	 All	 objects,	 data	 types,	 functions,	 methods,	 and	 classes	 take	 equal	 position	 in
Python.

Programming	languages	are	created	to	satisfy	the	needs	of	programmers	and	users	for	an
effective	 tool	 to	develop	applications	 that	 impact	 lives,	 lifestyles,	 economy,	and	 society.
They	 help	make	 lives	 better	 by	 increasing	 productivity,	 enhancing	 communication,	 and
improving	 efficiency.	 Languages	 die	 and	 become	 obsolete	 when	 they	 fail	 to	 live	 up	 to
expectations	 and	 are	 replaced	 and	 superseded	 by	 languages	 that	 are	 more	 powerful.
Python	 is	 a	 programming	 language	 that	 has	 stood	 the	 test	 of	 time	 and	 has	 remained
relevant	across	industries	and	businesses	and	among	programmers,	and	individual	users.	It
is	 a	 living,	 thriving,	 and	 highly	 useful	 language	 that	 is	 highly	 recommended	 as	 a	 first
programming	language	for	those	who	want	to	dive	into	and	experience	programming.

	

	

Advantages	of	Using	Python

	

Here	 are	 reasons	why	 you	would	 prefer	 to	 learn	 and	 use	 Python	 over	 other	 high	 level
languages:

	

	

Readability

	

	

Python	programs	use	clear,	simple,	and	concise	instructions	that	are	easy	to	read	even	by
those	who	have	no	substantial	programming	background.	Programs	written	in	Python	are,
therefore,	easier	to	maintain,	debug,	or	enhance.

	

	

Higher	productivity

	

Codes	used	in	Python	are	considerably	shorter,	simpler,	and	less	verbose	than	other	high-
level	 programming	 languages	 such	 as	 Java	 and	 C++.	 In	 addition,	 it	 has	 well-designed
built-in	features	and	standard	library	as	well	as	access	to	third	party	modules	and	source
libraries.	These	features	make	programming	in	Python	more	efficient.

	

	

Less	learning	time

	

Python	 is	 relatively	 easy	 to	 learn.	Many	 find	Python	 a	 good	 first	 language	 for	 learning
programming	because	it	uses	simple	syntax	and	shorter	codes.

	

	

Runs	across	different	platforms

	

Python	works	on	Windows,	Linux/UNIX,	Mac	OS	X,	other	operating	systems	and	small-
form	devices.	 It	 also	 runs	on	microcontrollers	used	 in	appliances,	 toys,	 remote	controls,
embedded	devices,	and	other	similar	devices.

	
	

Chapter	2																												Installing	Python

	

Installing	Python	in	Windows

	

To	 install	 Python,	 you	 must	 first	 download	 the	 installation	 package	 of	 your	 preferred
version	from	this	link:

https://www.python.org/downloads/

	

On	this	page,	you	will	be	asked	to	choose	between	the	two	latest	versions	for	Python	2	and
3:	Python	3.5.1	and	Python	2.7.11.	Alternatively,	if	you	are	looking	for	a	specific	release,
you	can	scroll	down	the	page	to	find	download	links	for	earlier	versions.

	

	

	

	

You	would	normally	opt	to	download	the	latest	version,	which	is	Python	3.5.1.	This	was
released	on	December	7,	2015.	However,	you	may	opt	for	the	latest	version	of	Python	2,
2.7.11.	Your	 preferences	will	 usually	 depend	 on	which	 version	will	 be	most	 usable	 for
your	project.	While	Python	3	is	the	present	and	future	of	the	language,	issues	such	as	third
party	utility	or	compatibility	may	require	you	to	download	Python	2.

	

	

	

Installing	Python	in	Mac

https://www.python.org/downloads/

	

If	you’re	using	a	Mac,	you	can	download	the	installation	package	from	this	link:

	

https://www.python.org/downloads/mac-osx/

	

Running	the	Installation	file:

Once	you’re	finished	with	the	download,	you	can	proceed	to	installation	by	clicking	on	the
downloaded	.exe	file.	Standard	installation	will	include	IDLE,	pip,	and	documentation.

	

https://www.python.org/downloads/mac-osx/

Chapter	3																												Interacting	with	Python

	

Python	is	a	flexible	and	dynamic	language	that	you	can	use	in	different	ways.	You	can	use
it	interactively	when	you	simply	want	to	test	a	code	or	a	statement	on	a	line-by-line	basis
or	when	you’re	 exploring	 its	 features.	You	 can	use	 it	 in	 script	mode	when	you	want	 to
interpret	an	entire	file	of	statements	or	application	program.

To	use	Python	interactively,	you	can	use	either	the	Command	Line	window	or	the	IDLE
Development	Environment.

	

Command	Line	Interaction

The	command	line	is	the	most	straightforward	way	to	work	with	Python.	You	can	easily
visualize	how	Python	works	as	 it	 responds	 to	every	completed	command	entered	on	 the
>>>	 prompt.	 It	 may	 not	 be	 the	 most	 preferred	 interaction	 with	 Python,	 but	 it	 is	 the
simplest	way	to	explore	how	Python	works.

	

	

Starting	Python

	

There	 are	 different	ways	 to	 access	 Python’s	 command	 line	 depending	 on	 the	 operating
system	installed	on	your	machine:

	

																If	you’re	using	Windows,	you	can	start	the	Python	command	line	by	clicking	on
its	icon	or	menu	item	on	the	Start	menu.

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	You	may	also	go	to	the	folder	containing	the	shortcut	or	the	installed	files	and
click	on	the	Python	command	line.

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	If	you’re	using	GNU/Linux,	UNIX,	and	Mac	OS	systems,	you	have	to	run	the
Terminal	Tool	and	enter	the	Python	command	to	start	your	session.

	

We	 use	 commands	 to	 tell	 the	 computer	 what	 to	 do.	 When	 you	 want	 Python	 to	 do
something	for	you,	you	have	to	instruct	it	by	entering	commands	that	it	 is	familiar	with.
Python	will	 then	 translate	 these	 commands	 to	 instructions	 that	 your	 computer	or	device
can	understand	and	execute.

	

To	see	how	Python	works,	you	can	use	the	print	command	to	print	the	universal	program
“Hello,	World!”

	

1.														Open	Python’s	command	line.

	

2.														At	the	>>>prompt,	type	the	following:

	

print(“Hello,	World!”)

	

3.														Press	enter	to	tell	Python	that	you’re	done	with	your	command.	Very	quickly,	the
command	line	window	will	display	Hello,	World!	on	the	following	line:

	

	

	

	

Python	responded	correctly	because	you	gave	it	a	command	in	a	format	that	it	requires.	To
see	how	it	responds	when	you	ask	it	to	print	the	same	string	using	a	wrong	syntax	for	the
print	command,	type	and	enter	the	following	command	on	the	Python	command	prompt:

	

Print(“Hello,	World!”)

	

	

This	is	how	Python	will	respond:

	

Syntax	error:	invalid	syntax

	

	

You’ll	get	syntax	error	messages	whenever	you	enter	invalid	or	incomplete	statements.	In
this	 case,	 you	 typed	 print	 with	 a	 capital	 letter	 which	 is	 a	 big	 no	 to	 a	 case-sensitive
language	like	Python.

	

If	you’re	just	using	Python	interactively,	you	can	do	away	with	the	print	command	entirely
by	just	typing	your	statement	within	quotes	such	as	“Hello,	World!”

	

	

Exiting	Python

	

To	exit	from	Python,	you	can	type	any	of	these	commands:

	

quit()

exit()

Control-Z	then	press	enter

	

	

	

IDLE:	Python’s	Integrated	Development	Environment	(IDE)

	

	

The	 IDLE	 (Integrated	 Development	 and	 Learning	 Environment)	 tool	 is	 included	 in
Python’s	 installation	 package	 but	 you	 can	 choose	 to	 download	more	 sophisticated	 third
party	IDEs.

	

The	IDLE	tool	offers	a	more	efficient	platform	to	write	your	code	and	work	interactively

with	Python.	You	can	access	IDLE	on	the	same	folder	where	you	found	the	command	line
icon	or	on	the	start	menu.	As	soon	as	you	click	on	the	IDLE	icon,	it	will	take	you	to	the
Python	Shell	window.

	

	

The	Python	Shell	Window

	

The	 Python	 Shell	Window	 has	 dropdown	menus	 and	 a	 >>>prompt	 that	 you	 have	 seen
earlier	 in	 the	 command	 line	 window.	 Here	 you	 can	 type	 and	 enter	 statements	 or
expressions	for	evaluation	in	the	same	way	that	you	used	the	command	line	earlier.	This
time	however,	IDLE’s	editing	menu	allows	you	to	scroll	back	to	your	previous	commands,
cut,	 copy,	 and	 paste	 previous	 statements	 and	make	modifications.	 IDLE	 is	 quite	 a	 leap
from	the	command	line	interaction.

	

The	 Python	 Shell	 window	 has	 the	 following	 menu	 items:	 File,	 Edit,	 Shell,	 Debug,
Options,	Windows,	and	Help.

	

	

	

	

	

	

The	 Shell	 and	 Debug	menus	 provide	 capabilities	 you	would	 find	 useful	 when	 creating
larger	programs.

	

The	Shell	menu	allows	you	 to	 restart	 the	shell	or	search	 the	shell’s	 log	 to	 find	 the	most
recent	reset.	

	

The	Debug	Menu	has	useful	menu	 items	 for	 tracing	 the	 source	 file	of	an	exception	and
highlighting	 the	 erring	 line.	 The	Debugger	 option	will	 usher	 in	 an	 interactive	 debugger
window	that	will	allow	you	to	step	through	the	running	program.	The	Stack	Viewer	option
displays	the	current	Python	stack	through	a	new	window.

	

The	 Options	 window	 allows	 you	 to	 configure	 IDLE	 to	 suit	 your	 Python	 working
preferences.

	

The	Help	option	opens	Python	Help	and	documentation.

	

	

	

	

The	File	Window

	

The	 items	 on	 the	 File	 menu	 allows	 you	 to	 create	 a	 new	 file,	 open	 an	 old	 file,	 open	 a
module,	and/or	save	your	session.	When	you	click	on	the	‘New	File’	option,	you	will	be
taken	to	a	new	window,	a	simple	and	standard	text	editor	where	you	can	type	or	edit	your
code.	Initially,	this	file	window	is	named	‘untitled’	but	its	name	will	soon	change	as	you
save	your	code.

	

The	File	window’s	menu	bar	varies	only	slightly	with	the	Shell	Window.	It	doesn’t	have
the	 ‘Shell’	 and	 ‘Debug’	 menu	 found	 in	 the	 Shell	 Window	 but	 it	 introduces	 two	 new
menus:	 the	Run	 and	 the	 Format	menu.	When	 you	 choose	 to	Run	 your	 code	 on	 the	 file
window,	you	can	see	the	output	on	the	Shell	Window.

	

	

	

The	Script	Mode

	

When	working	in	script	mode,	you	won’t	automatically	see	results	the	way	you	would	in
interactive	 mood.	 To	 see	 an	 output	 from	 a	 script,	 you’ll	 have	 to	 run	 the	 script	 and/or
invoke	the	print()	function	within	your	code.

	

Chapter	4																												Python	Syntax

	

Python	 syntax	 refers	 to	 the	 set	 of	 rules	 that	 defines	 how	 human	 users	 and	 the	 system
should	write	and	interpret	a	Python	program.	If	you	want	to	write	and	run	your	program	in
Python,	you	must	familiarize	yourself	with	its	syntax.

	

Keywords

Python	 keywords	 are	 reserved	 words	 in	 Python	 that	 should	 not	 be	 used	 as	 variable,
constant,	 function	name,	or	 identifier	 in	your	 code.	Take	note	of	 these	keywords	 if	 you
don’t	want	to	run	into	errors	when	you	execute	your	program:

	

and																																																								assert

break																																																								class

continue																																										def

del																																																								elif

else																																																								except

exec																																																								finally

for																																																								from

global																																																								if

import																																										in

is																																																								lambda

not																																																								or

pass																																																								print

raise																																																								return

try																																																								while

with																																																								yield

	

	

Python	Identifiers

	

A	Python	Identifier	is	a	name	given	to	a	function,	class,	variable,	module,	or	other	objects
that	you’ll	be	using	in	your	Python	program.	Any	entity	you’ll	be	using	in	Python	should
be	appropriately	named	or	identified	as	they	will	form	part	of	your	program.

	

Here	are	Python	naming	conventions	that	you	should	be	aware	of:

	

An	identifier	can	be	a	combination	of	uppercase	letters,	lowercase	letters,	underscores,
and	 digits	 (0-9).	 Hence,	 the	 following	 are	 valid	 identifiers:	 myClass,	 my_variable,
var_1,	and	print_hello_world.	

	

Special	characters	such	as	%,	@,	and	$	are	not	allowed	within	identifiers.
An	 identifier	 should	 not	 begin	 with	 a	 number.	 Hence,	 2variable	 is	 not	 valid,	 but
variable2	is	acceptable.

	

Python	 is	 a	 case-sensitive	 language	 and	 this	 behavior	 extends	 to	 identifiers.	 Thus,
Labor	and	labor	are	two	distinct	identifiers	in	Python.

	

You	cannot	use	Python	keywords	as	identifiers.

	

Class	identifiers	begin	with	an	uppercase	letter,	but	the	rest	of	the	identifiers	begin	in
lowercase.

	

You	can	use	underscores	to	separate	multiple	words	in	your	identifier.

	

You	should	always	choose	identifiers	 that	will	make	sense	 to	you	even	after	a	 long	gap.
Hence,	while	 it	 is	easy	 to	 set	your	variable	 to	c	=	2,	you	might	 find	 it	more	helpful	 for
future	reference	if	you	use	a	longer	but	more	relevant	variable	name	such	as	count	=	2.

	

	

Using	Quotations

	

Python	allows	 the	use	of	quotation	marks	 to	 indicate	 string	 literals.	You	can	use	 single,
double,	 or	 triple	 quotes	 but	 you	must	 start	 and	 end	 the	 string	with	 the	 same	 type.	You
would	use	the	triple	quotes	when	your	string	runs	across	several	lines.

	

	

Python	Statements

	

Statements	are	instructions	that	a	Python	interpreter	can	execute.	When	you	assign	a	value
to	 a	 variable,	 say	 my_variable	 =	 “dog”,	 you’re	 making	 an	 assignment	 statement.	 An
assignment	statement	may	also	be	as	short	as	c	=	3.	There	are	other	kinds	of	statements	in
Python,	like	if	statements,	while	statements,	for	statements,	etc.

	

	

Multi-line	statements

	

A	statement	may	span	over	 several	 lines.	To	break	a	 long	statement	over	multiple	 lines,
you	can	wrap	the	expression	inside	parentheses,	braces,	and	brackets.	This	is	the	preferred
style	for	handling	multi-line	expressions.	Another	way	to	wrap	multiple	lines	is	by	using	a
backslash	(\)	at	the	end	of	every	line	to	indicate	line	continuation.		

	

	

	

	

	

Indentation

	

While	most	programming	languages	such	as	Java,	C,	and	C++	use	braces	to	denote	blocks
of	code,	Python	programs	are	structured	through	indentation.	In	Python,	blocks	of	codes
are	defined	by	 indentation	not	as	a	matter	of	 style	or	preference	but	as	a	 rigid	 language
requirement.	This	principle	makes	Python	codes	more	readable	and	understandable.

	

A	block	of	code	can	be	easily	identified	when	you	look	at	a	Python	program	as	they	start
on	 the	 same	 distance	 to	 the	 right.	 If	 it	 has	 to	 be	more	 deeply	 nestled,	 you	 can	 simply
indent	 another	 block	 further	 to	 the	 right.	 For	 example,	 here	 is	 a	 segment	 of	 a	 program
defining	car_rental_cost:

	

def	car_rental_cost(days):

cost	=	35	*	days

if	days	>=	8:

																												cost	-=	70

														elif	days	>=	3:

																												cost	-=	20

														return	cost

	

You	have	to	make	sure	that	 the	indent	space	is	consistent	within	a	block.	When	you	use
IDLE	and	other	IDEs	to	input	your	codes,	Python	intuitively	provides	indentation	on	the
subsequent	 line	 when	 you	 enter	 a	 statement	 that	 requires	 indentation.	 Indentation,	 by
convention,	is	equivalent	to	4	spaces	to	the	right.

	

	

Comments

	

When	 writing	 a	 program,	 you’ll	 find	 it	 helpful	 to	 put	 some	 notes	 within	 your	 code	 to
describe	what	it	does.	A	comment	is	very	handy	when	you	have	to	review	or	revisit	your
program.	It	will	also	help	another	programmer	who	might	need	to	go	over	the	source	code.
You	can	write	comments	within	your	program	by	starting	the	line	with	a	hash	(#)	symbol.
A	 hash	 symbol	 tells	 the	 Python	 interpreter	 to	 ignore	 the	 comment	 when	 running	 your
code.	

	

For	 multi-line	 comments,	 you	 can	 use	 a	 hash	 symbol	 at	 the	 beginning	 of	 each	 line.
Alternatively,	you	can	also	wrap	multi-line	comment	with	triple	quotes.

	

	

Chapter	5																												Variables	and	Data	Types

	

	

Variables

	

A	variable	is	like	a	container	that	stores	values	that	you	can	access	or	change.	It	is	a	way
of	pointing	to	a	memory	location	used	by	a	program.	You	can	use	variables	to	instruct	the
computer	to	save	or	retrieve	data	to	and	from	this	memory	location.

	

Python	 differs	 significantly	 from	 languages	 such	 as	 Java,	 C,	 or	 C++	when	 it	 comes	 to
dealing	with	variables.	Other	languages	declare	and	bind	a	variable	to	a	specific	data	type.
This	means	that	it	can	only	store	a	unique	data	type.	Hence,	if	a	variable	is	of	integer	type,
you	can	only	save	integers	in	that	variable	when	running	your	program.

	

Python	is	a	lot	more	flexible	when	it	comes	to	handling	variables.	If	you	need	a	variable,
you’ll	 just	 think	of	a	name	and	declare	 it	by	assigning	a	value.	 If	you	need	 to,	you	can
change	the	value	and	data	type	that	the	variable	stores	during	program	execution.

	

To	illustrate	these	features:

	

	

In	Python,	you	declare	a	variable	by	giving	it	a	value:

	

my_variable	=	10

	

Take	 note	 that	when	 you	 are	 declaring	 a	 variable,	 you	 are	 not	 stating	 that	 the	 variable
my_variable	 is	equal	 to	10.	What	 the	statement	actually	means	 is	“my_variable	 is	set	 to
10”.

	

To	increase	the	value	of	the	variable,	you	can	enter	this	statement	on	the	command	line:

	

>>>my_variable	=	my_variable	+	3

	

	

To	 see	 how	 Python	 responded	 to	 your	 statement,	 invoke	 the	 print	 command	 with	 this
statement:

	

>>>print(my_variable)

	

You’ll	see	this	result	on	the	next	line:

	

13

	

To	 use	 my_variable	 to	 store	 a	 literal	 string	 “yellow”,	 you’ll	 simply	 set	 the	 variable	 to
“yellow”:

	

>>>my_variable	=	“yellow”

	

To	see	what’s	currently	store	in	my_variable,	use	the	print	command:

	

>>>print(my_variable)

	

On	the	next	line,	you’ll	see:

	

yellow

	

	

Data	Types

	

	

Python	handles	several	data	types	to	facilitate	the	needs	of	programmers	and	application
developers	 for	workable	data.	These	 include	 strings,	numbers,	Booleans,	 lists,	 date,	 and
time.

	

	

Strings

	

	

A	 string	 is	 a	 sequence	 of	 Unicode	 characters	 that	 may	 be	 a	 combination	 of	 letters,
numbers,	and	special	symbols.	To	define	a	string	in	Python,	you	can	enclose	the	string	in
matching	single	or	double	quotes:

	

>>>string1	=	“I	am	enclosed	in	single	quotes.”

>>>string2	=	“I	am	enclosed	in	double	quotes.”

	

If	a	literal	string	enclosed	in	single	quotes	contains	a	single	quote,	you’ll	have	to	place	a
backslash	(\)	before	the	single	quote	within	the	string	to	escape	the	character.	For	example:

	

>>>	string3	=	‘It	doesn't	look	good	at	all.’

	

To	print	string3:

	

>>>	print(string3)

It	doesn’t	look	good	at	all.

	

	

Of	course,	you	wouldn’t	have	to	do	this	if	you	used	double	quotes	to	enclose	the	string:

	

>>>string3	=	“It	doesn’t	seem	nice”

	

Similarly,	you’ll	have	to	place	a	backslash	before	a	double	quote	if	your	string	is	enclosed
in	double	quotes:

	

>>>txt	=	“He	said:	\“You	should	get	the	same	results	no	matter	how	you	choose	to	enclose
a	string.\””

	

>>>	print(txt)

He	said:	“You	should	get	the	same	results	no	matter	how	you	choose	to	enclose	a	string.”

Strings	may	be	indexed	or	subscripted.	In	Python,	indexing	starts	from	0	(zero)	instead	of
1.	Hence,	a	string’s	first	character	has	a	zero	index.

	

To	illustrate	how	string	indexing	works	in	Python,	define	the	string	“Hello	Python”	on	the
command	line:

	

>>>s	=	“Hello	Python”

	

	

This	is	how	Python	would	index	the	string:

	

	

-12 -11 -10 -9 -8 -6 -6 -5 -4 -3 -2 -1

H e l l o 	 P y t h o n

0 1 2 3 4 5 6 7 8 9 10 11

	

To	 access	 the	 first	 character	 on	 the	 string	 you	 just	 created,	 type	 and	 enter	 the	 variable
name	s	and	the	index	0	within	square	brackets	like	this:

	

>>>s[0]

	

You’ll	get	this	output:

‘H’

	

	

Accessing	the	first	character	is	easy	because	you	know	that	its	index	number	is	zero.	You
do	not	have	this	advantage	when	you	want	to	access	the	last	character	on	the	string.

	

To	access	the	last	character,	you	can	use	this	expression:

	

>>>s[len(s)-1]

	

	

You’ll	get	the	output:

	

‘n’

	

The	 expression	 introduces	 you	 to	 the	 len	 function.	 There	 is	 actually	 an	 easier	 way	 to
access	the	last	item	on	the	string:

	

>>>s[-1]

‘n’

	

To	access	the	penultimate	character:

	

>>>s[-2]

‘o’

	

Besides	indexing,	you	can	use	other	functions	and	mathematical	operators	on	a	string.

	

	

Concatenating	Strings

	

Strings	 can	 be	 added	 together	 with	 plus	 (+)	 operator.	 To	 concatenate	 the	 string	 “Hello
Python”:

	

>>> 	“Hello”	+	“Python”

‘HelloPython’

	

	

Repeating	Strings

	

You	can	easily	repeat	strings	or	its	concatenation	with	the	*	operator.	For	example:

	

Entering	“**^**”	*	5	will	yield:

	

‘**^****^****^****^****^**’

	

You’ll	get	the	same	result	with	this:

	

>>>s	=	“**^**”

>>>s	*	5

‘**^****^****^****^****^**’

	

	

Getting	the	Size	of	Strings

	

You	can	get	the	size	of	a	string	with	the	len()	function.	For	example,	to	get	the	size	of	the
string	“World”:

	

>>>len(“World”)

5

	

	

Slicing	Strings

	

You	can	create	substrings	with	the	slicing	notation.	You	can	do	this	by	placing	two	indices
(separated	 by	 a	 colon)	 within	 square	 brackets.	 The	 first	 index	 marks	 the	 start	 of	 the
substring	while	 the	 second	 index	 indicates	 the	 index	 number	 of	 the	 first	 character	 you
don’t	want	to	include	in	the	substring.

	

For	example:

	

>>>“Program”[3:5]

	

will	result	in:

‘gr’

	

>>>“Program”[3:6]

	

will	yield:

	

‘gra’

	

Another	 way	 of	 doing	 this	 is	 by	 storing	 “Program”	 to	 a	 variable	 and	manipulating	 the
variable	to	produce	the	desired	result:

	

>>>p	=	“Program”

>>>p	[3:6]

‘gra’

	

	

If	you	want	the	substring	to	start	from	a	character	to	the	end	of	the	original	string,	you	can
just	omit	the	second	index.	For	example:

	

>>>p	=	“Program”

>>>p	[4:]

‘ram’

	

	

Conversely,	 if	 you	 want	 your	 substring	 to	 start	 from	 the	 first	 character	 of	 the	 original
string,	you	can	omit	the	first	index	and	write	the	last	index	to	be	included	on	the	substring.
For	example:

	

>>>p	=	“Program”

>>>p	[:4]

‘Prog’

	

	

The	lower()	and	upper()	function

	

If	you	have	a	string	like	“Grand	River”	and	you	have	decided	that	you	need	your	data	to
be	all	in	lower	case,	you	can	use	the	lower()	function	to	print	the	string	in	lower	case.

	

Example:

	

>>>c	=	“Grand	River”

>>>print	(c.lower())

grand	river

	

	

Supposing	you	need	you	string	to	be	all	capitalized,	you	can	invoke	the	upper()	 function
to	print	the	string	in	uppercase.

	

	

Example:

	

>>>print	(c.upper())

GRAND	RIVER

	

	

The	str()	method

	

The	str()	function	makes	strings	out	of	non-strings	character.	This	allows	programmers	to
print	non-string	characters	as	 if	 they	are	string	characters.	This	 is	very	handy	when	you
want,	for	instance,	to	print	an	integer	along	with	strings.

	

Example:

	

>>>pi	=3.1416

>>>str(pi)

‘3.1416’

	

>>>print(“This	my	favorite	number:	”	+	str(pi))

This	my	favorite	number:	3.1416

	

	

	

Numbers

	

	

Numeric	Data	Types

	

One	of	the	many	conveniences	of	using	Python	is	that	you	don’t	really	have	to	declare	a
numeric	value	to	distinguish	its	 type.	Python	can	readily	tell	one	data	type	from	another
when	you	write	and	run	your	statement.	It	has	four	built-in	numeric	data	types.	Python	3
supports	three	types:	integer,	floating-point	numbers,	and	complex	numbers.	Long	integers
(‘long’)	no	longer	form	a	separate	group	of	integers	but	are	included	in	the	‘int’	or	integer
category.

	

	

1.	 Integer	(int)

	

Integers	 are	whole	 numbers	without	 decimal	 point.	They	 can	be	 positive	 or	 negative	 as
long	as	they	don’t	contain	a	decimal	point	that	would	make	a	number	a	floating	number,	a
distinct	numeric	type.	Integers	have	unlimited	size	in	Python	3.

	

The	following	numbers	and	literals	are	recognized	by	Python:

	

	

Regular	integers													

	

Examples:														793,	-254,	4

	

	

Octal	literals	(base	8)

	

To	indicate	an	octal	number,	you	will	use	the	prefix	0o	or	0O	(zero	followed	by	either	a
lowercase	or	uppercase	letter	‘o’).

	

Example:

	

>>>a	=	0O7

>>>print(a)

7

	

	

Hexadecimal	literals	(base	16)

	

To	indicate	hexadecimal	literals,	you	will	use	the	prefix	‘0X’	or	‘0x”	(zero	and	uppercase
or	lowercase	letter	‘x’).

	

Example:

	

>>>hex_lit	=	0xA0C

>>>print(hex_lit)

2572

	

	

Binary	literals	(base	2)

	

To	 signify	 binary	 literals,	 you’ll	 use	 the	 prefix	 ‘0B’	 or	 ‘0b’	 (zero	 and	 uppercase	 or
lowercase	‘b’).

	

	

Example:

	

>>>	c	=	0b1100

>>>	print(c)

12

	

	

Converting	Integers	to	their	String	Representation

	

Earlier,	 you	 have	 seen	 how	 the	 print	 command	 converted	 literals	 to	 their	 equivalent	 in
integers.	Python	makes	 it	 possible	 for	you	 to	work	 the	other	way	around	by	 converting

integers	to	their	literal	representation.	To	convert	an	integer	into	its	string	representation,
you	can	use	the	functions	hex(),	bin(),	and	oct().

	

	

Examples:

	

To	convert	the	integer	7	to	its	octal	literal,	type	and	enter	oct(7)	on	the	command	prompt.
You’ll	get	the	output	‘0o7’:

	

>>>oct(7)

‘0o7’

	

Here	is	what	happens	when	you	convert	the	integer	2572	to	a	hexadecimal	literal:

	

>>>hex(2572)

‘0xa0c’

	

Finally,	see	what	happens	when	you	use	the	bin()	function	to	convert	the	integer	12	to	its
binary	string:

	

>>>bin(12)

‘0b1100’

	

	

You	can	store	the	result	to	a	variable	by	defining	a	variable	with	the	hex(),	bin(),	and	oct()
functions:

	

	

For	example:

	

>>>x	=	hex(2572)

>>>x

‘0xa0c’

	

To	 see	 the	 object	 type	 created	 and	 stored	 in	 the	 variable	 x,	 you	 can	 use	 and	 enter	 the
command	type():

	

>>>type(x)

	

You	should	get	this	result:

	

<class	‘str’>

	

	

2.	 Floating-point	numbers

	

Also	known	as	floats,	floating-point	numbers	signify	real	numbers.	Floats	are	written	with
a	decimal	point	that	segregates	the	integer	from	the	fractional	numbers.	They	may	also	be
written	in	scientific	notation	where	the	uppercase	or	lowercase	letter	‘e’	signifies	the	10th
power:

	

>>>6.2e3

6200.0

	

>>>6.2e2

620

	

	

3.	 Complex	numbers

	

Complex	numbers	are	pairs	of	real	and	imaginary	numbers.	They	take	the	form	‘a	+	bJ’
where	‘a’	is	a	float	and	the	real	part	of	the	complex	number.	On	the	other	side	is	bJ	where
‘b’	is	a	float	and	J	or	its	lowercase	indicates	the	square	root	of	an	imaginary	number,	-1.
This	makes	‘b’	the	imaginary	part	of	the	complex	number.

Here	are	examples	of	complex	numbers	at	work:

	

>>>a	=	2	+	5j

>>>b	=	4	–	2j

>>>c	=	a	+	b

>>>print(c)

(6	+	3j)

	

Complex	numbers	are	not	extensively	used	in	Python	programming.

	

	

Conversion	of	Number	Type

	

You	can	expect	Python	to	convert	expressions	with	mixed	types	of	numbers	to	a	common
type	 to	 facilitate	 evaluation.	 In	 some	 situations,	 however,	 you	may	have	 to	 convert	 one
number	 type	 to	 another	 explicitly,	 like	 when	 the	 conversion	 is	 required	 by	 a	 function
parameter.	You	can	type	the	following	expressions	to	convert	a	number	to	another	type:

	

To	convert	x	to	a	float:			>>>float(x)

	

	

Example:

	

>>>float(12)

12.0

	

	

To	convert	x	to	a	plain	integer:	int(x)

	

>>>int(12)

12

	

	

To	convert	x	to	a	complex	number:	type	complex(x)

	

>>>complex(12)

(12+0j)

	

	

	

Date	and	Time

	

Most	 applications	 require	 date	 and	 time	 information	 to	 make	 it	 work	 efficiently	 and
effectively.		In	Python,	you	can	use	the	function	datetime.now()	to	retrieve	the	current	date
and	 time.	The	command	datetime.now()	calls	on	a	built-in	Python	code	which	gives	 the
current	date	and	time.

	

To	get	the	date	and	time	from	Python,	encode	the	following	on	the	command	prompt:

	

>>>	from	datetime	import	datetime

>>>	datetime.now()

datetime.datetime(2016,	3,	10,	2,	16,	19,	962429)

	

The	date	and	time	in	this	format	is	almost	unintelligible	and	you	might	want	to	get	a	result
that	 is	more	 readable.	One	way	 to	do	 this	 is	 by	using	 ‘strftime’	 from	Python’s	 standard
library.

	

Try	entering	these	commands	and	see	if	you’ll	get	the	format	you	like.

	

>>>from	time	import	strftime

>>>	strftime(“%Y-%m-%d	%H:%M:%S”)

‘2016-03-10	02:20:03’

	

	

Boolean	Data	Type

	

Comparisons	 in	Python	can	only	generate	one	of	 two	possible	 responses:	True	or	False.
These	data	types	are	called	booleans.

	

To	illustrate,	you	can	create	several	variables	to	store	Boolean	values	and	print	the	result:

	

bool_1	=	4	==	2*3

bool_2	=	10	<	2	*	2**3

bool_3	=	8	>	2	*	4	+	1

print(bool_1)

print(bool_2)

print(bool_3)

	

	

The	Python	Shell	will	display	these	results:

	

False

True

False

	

	

Lists

	

A	 list	 is	 a	 data	 type	 that	 can	 be	 used	 to	 store	 any	 type	 and	 number	 of	 variables	 and
information.

	

You	can	define	and	assign	items	to	a	list	with	the	expression:

	

my_list	=	[item_1,	item_2,	item_3]

	

	

Python	also	allows	creation	of	an	empty	list:

	

my_list	=	[]

	

	

To	illustrate,	let’s	create	a	list	of	colors:

	

colors	=	[“red”,	“orange”,	“yellow”,	“green”,	“indigo”,	“white”]

	

	

Since	this	is	an	indexed	list,	the	first	item	on	colors	has	zero	as	its	index.

	

To	access	the	first	item	on	the	list,	you	can	print	the	color	with	the	command:

>>>	print(colors[0])

red

	

To	print	the	color	name	of	the	third	color	on	the	list,	you	can	enter:

	

>>>	print(colors[4])

indigo

	

To	see	how	many	colors	are	on	the	list,	you	can	use	the	len()	function:

	

>>>	len(colors)

6

	

There	are	only	six	colors	on	your	list	but	you	want	to	have	all	seven	colors	of	the	rainbow
in	 your	 list.	 To	 see	what	 colors	 are	 on	 the	 list,	 you	 can	 use	 the	 print	 to	 see	what	 color
might	be	missing:

	

>>>	print(colors)

[‘red’,	‘orange’,	‘yellow’,	‘green’,	‘indigo’,	‘white’]

	

It	appears	that	the	colors	list	doesn’t	just	lack	one	color	name.	It	also	has	one	member	that
should	not	have	been	included	–	‘white’.	To	remove	‘white’	from	the	list,	you	can	use	the
remove()	method:

	

>>>	colors.remove(“white”)

	

You	can	view	the	updated	list	with	the	print	command:

	

>>>	print(colors)

[‘red’,	‘orange’,	‘yellow’,	‘green’,	‘indigo’]

	

The	list	is	still	short	of	2	colors	–	violet	and	blue.

	

To	add	violet	to	your	colors	list,	you	can	use	the	append	command:

	

>>>	colors.append(“violet”)

	

Let’s	check	out	the	updated	list	with	the	print	command:

	

>>>	print(colors)

[‘red’,	‘orange’,	‘yellow’,	‘green’,	‘indigo’,	‘violet’]

	

The	color	‘violet’	was	added	to	the	end	of	the	list.	Now,	you	only	need	to	add	one	more
color	-	blue.	Let’s	say	you	want	to	have	‘blue’	inserted	between	‘green’	and	‘indigo’.

	

You	can	use	Python’s	insert()method	with	the	syntax:

list.insert(index,	obj)

	

The	parameters	are	index	and	object.	Index	refers	to	the	position	where	you	want	the	new
item	to	be	located.	The	object	is	the	item	you	want	to	insert.

	

Applying	the	syntax	to	the	above	example,	you’ll	have	the	command:

	

>>>	colors.insert(4,	“blue”)

	

To	see	the	new	list:

	

>>>	print(colors)

[‘red’,	‘orange’,	‘yellow’,	‘green’,	‘blue’,	‘indigo’,	‘violet’]

	

	

Slicing	lists

	

You	can	also	slice	lists	in	the	same	way	that	you	slice	strings.

	

For	 example,	 if	 you	 only	want	 to	 display	 the	 colors	 ‘green’,	 ‘blue’,	 and	 ‘indigo’,	 with
index	of	3,	4,	5	respectively,	you	can	use	this	command:

	

>>>	colors[3:6]

[‘green’,	‘blue’,	‘indigo’]

	

	

	

Dictionary

	

A	dictionary	 is	 like	a	 list	but	 instead	of	 looking	up	an	 index	 to	access	values,	you’ll	be
using	 a	 unique	 key,	 which	 can	 be	 a	 number,	 string,	 or	 tuple.	 Dictionary	 values	 can	 be
anything	but	 the	keys	must	be	an	immutable	data	 type.	A	colon	separates	a	key	from	its
value	and	all	are	enclosed	in	curly	braces.	Here	is	the	dictionary	structure:

	

d	=	{key_1	:	a,	key_2	:	2,	key_3	:	ab}

	

An	empty	dictionary	will	have	this	format:

	

d	=	{}

	

A	dictionary	can	be	a	very	useful	tool	for	storing	and	manipulating	key-value	pairs	such	as
those	used	in	phone	books,	directory,	menu,	or	log-in	data.	You	can	add,	modify,	or	delete
existing	entries	within	the	dictionary.

	

To	see	how	dictionaries	actually	work,	you	can	create	a	dictionary	named	menu	with	dish
and	prices	pairs:

	

menu	=	{“spam”	:	12.50,	“carbonara”	:	20,	“salad”	:	15	}

To	 see	 how	 many	 key-value	 pairs	 are	 stored	 in	 the	 dictionary,	 you	 can	 use	 the	 len()
function:

	

>>>len(menu)

3

	

	

To	print	the	current	entries	in	the	menu	dictionary:

	

>>>	print(menu)

{‘salad’:	15,	‘carbonara’:	20,	‘spam’:	12.5}

	

	

To	add	another	entry	in	the	menu	dictionary,	you	can	use	this	format:

	

d[key_4	:	b]

	

Applying	this	structure	to	the	menu	dictionary,	you	can	add	the	dish-price	entry	of	cake	:	6
with:

	

menu[“cake”]	=	6

	

To	see	the	updated	menu,	use	the	print	command:

	

>>>	print(menu)

{‘spam’:	12.5,	‘cake’:	6,	‘carbonara’:	20,	‘salad’:	15}

	

Assuming	you	no	longer	want	to	include	spam	in	your	menu,	you	can	easily	do	so	with	the
del	command:

	

>>>	del	menu[“spam”]

	

To	see	the	modified	list	after	deleting	spam:

	

{‘cake’:	6,	‘carbonara’:	20,	‘salad’:	15}

	

You	might	want	 to	change	 the	values	 in	any	of	 the	keys	at	one	point.	For	 instance,	you
need	to	change	the	price	of	carbonara	from	20	to	22.	To	do	that,	you’ll	just	assign	a	new
value	to	the	key	with	this	command:

	

>>>	menu[“carbonara”]	=	22

	

You	can	use	the	print	command	once	more	to	see	the	updated	menu:

	

>>>	print(menu)

{‘cake’:	6,	‘carbonara’:	22,	‘salad’:	15}

	

If	you	want	to	remove	all	entries	in	the	dictionary,	you	can	use	the	function

	

dict.clear()

	

To	clear	all	entries	in	the	menu:

	

>>>dict.clear(menu)	

	

Use	the	print	command	to	see	what	happened	to	the	menu	dictionary:

	

>>>	print(menu)

{}

	

The	 Python	 Shell	 displayed	 an	 empty	 dictionary	 with	 the	 clear	 command.	 Now	 that	 it
contains	no	data	at	all,	you	might	decide	to	delete	the	dictionary.	You	can	do	so	with	the
del	command:

	

del	dict

	

To	delete	the	menu	dictionary:

	

del	menu

	

To	see	what	happened,	use	the	print	command.

	

>>>	print(menu)

Traceback	(most	recent	call	last):

		File	“<pyshell#19>”,	line	1,	in	<module>

print(menu)

NameError:	name	‘menu’	is	not	defined

	

You	got	an	error	message	because	menu	no	longer	exists.

	

	

	

	

Chapter	6																												Python	Basic	Operators
	

Python	operators	allow	programmers	to	manipulate	data	or	operands.	Here	are	the	types	of
operators	supported	by	Python:

	

Arithmetic	Operators
Assignment	Operators
Relational	or	Comparison	Operators
Logical	Operators
Identity	Operators
Bitwise	Operators
Membership	Operators

	

	

Arithmetic	Operators

	

Python	does	a	good	job	of	processing	mathematical	expressions	with	its	basic	arithmetic

operators.		You	can	easily	make	programs	to	automate	tasks	such	as	computing	tax,	tips,
discounts,	or	rent.		

	

+ Addition adds	the	value	of	the	left	and	right	operands

- Subtraction
subtracts	the	value	of	the	right	operand	from	the
value	of	the	left	operand

* Multiplication multiplies	the	value	of	the	left	and	right	operand

/ Division
divides	the	value	of	the	left	operand	by	the	right
operand

** Exponent performs	exponential	calculation

% Modulus
returns	the	remainder	after	dividing	the	left	operand
with	the	right	operand

//
Floor
Division

division	of	operands	where	the	solution	is	a	quotient
left	after	removing	decimal	numbers

	

	

Addition,	 subtraction,	multiplication,	 and	 division	 are	 the	most	 basic	 operators	 and	 are
invoked	by	entering	the	following	expressions:

	

Addition:

	

>>>1	+	3

4

	

Subtraction:

	

>>>10	–	4

6

	

Multiplication:

>>>4	*	2

8

	

Division:

>>>10	/	2

5.o

	

	

Exponent

	

Exponential	calculation	is	invoked	by	raising	the	first	number	to	the	power	defined	by	the
number	after	the	**	operator:

	

>>>2**3														2	raised	to	the	power	of	3

8

	

Modulus

	

The	modulus	operator	gives	the	remainder	after	performing	division:

	

>>>17	%	5

2

	

	

Floor	Division

	

Floor	division,	on	the	other	hand,	returns	the	quotient	after	removing	fractional	numbers:

	

>>>17	//	5

3

	

	

	

Using	Basic	Operators	to	Compute	Sales	Tax,	Tip,	and	Total	Bill

	

To	put	your	knowledge	of	variables,	data	types,	and	operators	to	good	use,	you	can	design
a	simple	program	that	will	compute	the	sales	tax	and	tip	on	a	restaurant	meal.

	

Meal	cost																																												$65.50

Sales	tax	rate																																													6.6%

Tip																																																								20%	of	meal	+	tax

	

First,	set	up	a	variable	meal	to	store	the	food	cost:

	

meal	=	65.50

	

Next,	 set	 up	 the	 tax	 and	 tip	 variable.	 Assign	 both	 variables	 the	 decimal	 value	 of	 the
percentages	given.	You	can	do	this	by	using	100	as	divisor.

	

tax	=	6.6	/	100

tip	=	20	/	100

	

Your	tip	is	based	on	meal	cost	and	the	added	sales	tax	so	you	need	to	get	the	total	amount
of	the	meal	and	the	sales	tax.	One	way	to	do	this	is	by	simply	creating	a	new	variable	to
store	the	total	cost	of	the	meal	and	tax.	Another	way	is	by	reassigning	the	variable	meal	so
that	it	stores	both	values:

	

meal	=	meal	+	meal	*	tax

	

Now	that	you	have	reassigned	meal	to	take	care	of	the	meal	cost	and	tax,	you’re	ready	to
compute	 for	 the	 tip.	This	 time,	you	can	 set	 a	new	variable	 to	 store	 the	value	of	 the	 tip,
meal,	and	tax.	You	can	use	the	variable	total	to	hold	all	values:

	

total	=	meal	*	tip

	

	

Here’s	your	code	to	compute	for	the	total	bill	amount:

	

meal	=	65.50

tax	=	6.6	/	100

tip	=	20	/	100

meal	=	meal	+	meal	*	tax

total	=	meal	+	meal	*	tip

	

If	you’re	using	the	file	editor	in	IDLE,	you	can	save	the	file	in	a	filename	of	your	choice
and	Python	automatically	 appends	 the	 .py	extension.	As	you	may	have	noticed,	 the	 file
editor	will	always	prompt	you	to	save	your	file	before	it	does	anything	about	your	code.
Just	 like	 when	 naming	 other	 data	 files	 and	 types,	 you	 should	 use	 a	 filename	 that’s
descriptive	of	the	file.	In	this	case,	a	filename	like	BillCalculator	should	do	the	trick.

	

To	get	the	total	amount,	go	to	the	Python	Shell	and	type	total:

>>>total

83.78760000000001

	

Now	you	have	the	bill	amount:	83.78760000000001

	

If	you’re	using	the	line	command	window,	you	can	simply	enter	the	above	code	on	a	per
line	basis.

	

This	simple	program	shows	how	straightforward	Python	programming	is	and	how	useful	it
could	be	in	automating	tasks.	Next	time	you	eat	out,	you	can	reuse	the	program	by	simply
changing	the	figures	on	your	bill	calculator.	Think	forward	and	visualize	how	convenient
it	 could	be	 if	 you	 could	put	 your	 code	 in	 a	 bigger	 program	 that	will	 simply	 ask	you	 to
input	the	bill	amount	instead	of	accessing	the	original	code.	You	can	do	that	with	Python.

	

	

Assignment	Operators

	

These	operators	are	useful	when	assigning	values	to	variables:

	

Operators Function

= assigns	the	value	of	the	right	operand	to	the	left	operand

+=	add	and
adds	the	value	of	the	right	and	left	operand	and	assigns	the
total	to	the	left	operand

-=	subtract
and

deducts	the	value	of	the	right	operand	from	the	value	of	the
left	operand	and	assigns	the	new	value	to	the	left	operand

*=	multiply
and

multiplies	the	left	and	right	operand	and	assigns	the	product
to	the	left	operand

/=	divide
and

divides	the	left	operand	with	the	value	of	the	right	operand
and	assigns	the	quotient	to	the	left	operand

**=
exponent

performs	exponential	operation	on	the	left	operand	and
assigns	the	result	to	the	left	operand

//=	floor
division	and

performs	floor	division	on	the	left	operand	and	assigns	the
result	to	the	left	operand

	

	

=	Operator

	

You	have	seen	this	operator	at	work	in	previous	chapters	when	you	have	assigned	different
values	to	variables.	Examples:

	

a	=	c

a	=	b	+	c

a	=	8

a	=	8	+	6

s	=	“I	love	Python.”
	

	

+=	add	and

	

The	‘add	and’	(+=)	operator	is	simply	another	way	to	express	x	=	x	+	a	so	that	you’ll	end
up	with	the	statement	x	+=	a.

	

-=	subtract	and

	

The	‘subtract	and’	(-=)	operator	is	equivalent	to	the	expression	x	=	x	–	a	and	is	expressed
with	the	statement	x-=a

	

*=	multiply	and

	

The	 ‘multiply	 and’	 (*=)	 operator	 is	 the	 equivalent	 of	 the	 statement	 x	 =	 x	 *	 a	 and	 is
expressed	with	x*=a.

	

/=	divide	and

	

The	‘divide	and’	(/=)	operator	 is	 like	saying	x	=	x/a	and	is	expressed	with	the	statement
x/=a.

	

%=	modulus	and

	

The	‘modulus	and’	 (%=)	operator	 is	another	way	 to	say	x	=	x	%	a	where	you’ll	end	up
instead	with	the	expression	x%=a.

	

//=	floor	division	and

	

The	‘floor	division	and’	is	equivalent	to	the	expression	x	=	x//a	and	takes	the	form	x//=a.

	

	

Relational	or	Comparison	Operators

	

	

Relational	operators	evaluate	values	on	 the	 left	and	right	side	of	 the	operator	and	return
the	relation	as	either	True	or	False.

	

Here	are	the	relational	operators	in	Python:

	

Operator Meaning

== is	equal	to

< is	less	than

> is	greater	than

<= is	less	than	or	equal	to

>= is	greater	than	or	equal	to

!= is	not	equal	to

	

	

Examples:

	

>>>	8	==	6+2

True

	

>>>	6	!=	6

False

	

>>>	-1	>	0

False

	

>>>	7	>=	5

True

	

	

Logical	Operators

	

	

Python	supports	3	logical	operators:

	

or	

and

not

	

x	or	y														If	the	first	argument,	x,	is	false,	then	it	evaluates	the	second
argument,	y.	Else,	it	evaluates	x.

	

x	and	y														If	x	is	false,	then	it	evaluates	x.	Else,	if	x	is	true,	it	evaluates	y.

	

not	x																												If	x	is	false,	then	it	returns	True.	If	x	is	true,	it	returns	False.

	

	

Examples:

	

>>>	(8>9)	and	(2<9)

False

	

>>>	(2>1)	and	(2>9)

False

	

>>>	(2==2)	or	(9<20)

True

	

>>>	(3!=3)	or	(9>20)

False

	

	

>>>	not	(8	>	2)

False

	

>>>	not	(2	>	10)

True

	

	

	

Precedence	of	Python	Operators

	

Python	operators	are	evaluated	according	to	a	set	order	or	priority:

	

	 Description Operators

1 Exponentiation **

2
Ccomplement,	unary	plus,
and	minus

~,	+,	-

3
Multiplication,	division,
modulo,	and	floor	division

*,	/,		%,		//

4 addition	and	subtraction +	-

5 Right	and	left	bitwise	shift >>,	<<

6 Bitwise	‘AND’ &

7
Regular	`OR’	and	Bitwise
exclusive	‘OR’

|,	^

8 Comparison	operators <=	<	>	>=

9 Equality	operators ==	!=

10 Assignment	operators =,	+=,	-=,	*-,	/=,	%=	//=	**=

11 Identity	operators is,	is	not

12 Membership	operators in,	not	in

13 Logical	operators or,	and,	not

	

	

	

Chapter	7																												Python’s	Built-in	Functions

	

	

Functions	provide	efficiency	and	structure	to	a	programming	language.	Python	has	many
useful	built-in	functions	to	make	programming	easier,	faster,	and	more	powerful.

	

	

The	input()	Function

	

Programs	 usually	 require	 input	 that	 can	 come	 from	 different	 sources:	 keyboard,	mouse
clicks,	 database,	 another	 computer’s	 storage,	 or	 the	 internet.	 Since	 the	 keyboard	 is	 the
most	 common	way	 to	 gather	 input,	 Python	 provided	 its	 users	 the	 input()	 function.	This
function	has	an	optional	parameter	called	the	prompt	string.

	

Once	the	input	function	is	called,	the	prompt	string	will	be	displayed	on	the	screen	and	the
program	flow	stops	until	 the	user	has	entered	an	input.	The	input	is	 then	interpreted	and
the	input()	function	returns	the	user’s	input	as	a	string.

	

To	illustrate,	here	is	a	sample	program	that	collects	keyboard	input	for	name	and	age:

	

name	=	input(“May	I	know	your	name?	“)

print(“It’s	a	pleasure	to	meet	you	”	+	name	+	“!”)

age	=	input(“Your	age,	please?	“)

print(“So,	you’re	”	+	age	+	”	years	old,	”	+	name	+	“!”)

	

Before	you	save	the	code,	take	a	close	look	at	the	string	to	be	printed	on	the	second	line.
You’ll	notice	that	there	is	a	blank	space	after	‘you’	and	before	the	double	quote.	This	space
ensures	 that	 there	 will	 be	 a	 space	 between	 ‘you’	 and	 the	 ‘name’	 input	 when	 the	 print
command	 is	 executed.	 The	 same	 convention	 can	 be	 seen	 on	 the	 4th	 line	 with	 the	 print
command	where	‘you’re’	is	separated	by	a	single	space	from	the	‘age’	input	and	‘old’	is
separated	by	a	space	from	the	‘name’	input.

	

Save	the	code	as	info_input.py	and	run	it.

	

	

	

	

	

	

	

The	Python	Shell	will	display	the	string	on	the	first	line:

	

	

May	I	know	your	name?

	

A	response	is	needed	at	this	point	and	the	program	stops	executing	until	a	keyword	input
is	obtained.	Let’s	type	and	enter	the	name	Jeff	to	see	what	happens:

	

It’s	a	pleasure	to	meet	you	Jeff!

Your	age,	please?

	

The	program	has	now	proceeded	to	the	next	input	function	and	is	waiting	for	the	keyboard
input.	Let’s	enter	22	as	Jeff’s	age	and	see	what	the	program	does	next:

	

So,	you’re	22	years	old,	Jeff!

	

The	 program	 printed	 the	 last	 string	 on	 the	 program	 after	 a	 keyboard	 response	 was
obtained.	Here	is	the	entire	output	on	the	Python	Shell:

	

May	I	know	your	name?	Jeff

It’s	a	pleasure	to	meet	you	Jeff!

Your	age,	please?	22

So,	you’re	22	years	old,	Jeff!

	

	

	

	

The	range()	function

	

Python	has	a	more	efficient	way	to	handle	a	series	of	numbers	and	arithmetic	progressions
and	this	 is	by	using	one	its	built-in	functions:	range().	The	range	function	is	particularly
useful	in	‘for	loops’.

	

Here	is	an	example	of	the	range()	function:

	

>>>	range(5)

range(0,	5)

	

The	expression	range(5)	above	generates	an	iterator	that	progresses	integers	from	zero	and
ends	with	4	(5-1).	To	show	the	list	of	numbers,	you	can	use	the	command	list(range(n)):

	

>>>list(range(5))

[0,	1,	2,	3,	4]

	

	

You	can	exercise	more	control	over	the	list	output	by	calling	the	range()	function	with	two
arguments:

	

range	(begin,	end)

	

	

Example:

	

>>>	range(5,	9)

range(5,	9)

	

To	show	the	list:

	

>>>	list	(range(5,	9))

[5,	6,	7,	8]

	

The	above	examples	of	range()	demonstrated	an	increment	of	1.	You	can	change	the	way
Python	 increments	 the	 number	 by	 introducing	 a	 third	 argument,	 the	 ‘step’.	 It	 can	 be	 a
negative	or	positive	number,	but	never	zero.

	

Here	is	the	format:

	

range(begin,	end,	step)

	

Example:

	

>>>	range(10,	71,	5)

range(10,	71,	5)

	

Invoking	list,	we’ll	see	this	sequence	of	numbers:

	

>>>	list	(range(10,	71,	5))

[10,	15,	20,	25,	30,	35,	40,	45,	50,	55,	60,	65,	70]

	

	

	

The	print()	Function

	

Python	3	turned	print	from	a	statement	into	a	function.	Hence,	you	must	always	enclose
your	print	parameters	within	the	round	parentheses.

	

Examples:

	

print(“This	is	Python	3	print	function)

print(s)

print(5)

	

The	print()	function	can	print	any	number	of	values	within	the	parentheses;	they	must	be
separated	by	commas.	For	example:

	

a	=	3.14

b	=	“age”

c	=	32

	

print(“a	=	“,	a,	b,	c)

	

	

The	result:

	

a	=		3.14	age	32

	

The	Python	shell	displayed	values	with	blank	spaces	between	them.

abs()

	

	

The	abs()	function	returns	the	absolute	value	of	a	single	number.	It	takes	an	integer	or	float
number	as	argument	and	always	returns	a	positive	value.

	

Examples:

	

>>>	abs(-10)

10

	

>>>	abs(5)

10

	

When	complex	numbers	are	used	as	argument,	the	abs()	function	returns	its	magnitude:

	

>>>	abs(3	+	4j)

5.0

	

	

max()

	

The	max()	function	takes	two	or	more	arguments	and	returns	the	largest	one.	

	

Examples:

	

>>>	max(9,	12,	6,	15)

15

	

>>>	max(-2,	-7,	-35,	-4)

-2

	

	

min()

	

The	min()	function	takes	two	or	more	arguments	and	returns	the	smallest	item.

	

Examples:

	

	

>>>	min(23,	-109,	5,	2)

-109

	

>>>	min(7,	26,	0,	4)

0

	

	

type()

	

The	type()	function	returns	the	data	type	of	the	given	argument.

	

Examples:

	

>>>	type(“This	is	a	string”)

<class	‘str’>

	

>>>	type(12)

<class	‘int’>

	

>>>	type(2	+3j)

<class	‘complex’>

	

>>>	type(215.65)

<class	‘float’>

	
	

len()

	

The	len()	function	returns	the	length	of	an	object	or	the	number	of	items	in	a	list	given	as
argument.

	

Examples:

	

>>>	len(“pneumonoultramicroscopicsilicovolcanoconiosi”)

44

	

	

>>>	s	=	(“winter”,	“spring”,	“summer”,	“fall”)

>>>	len(s)

4

	

	

	

	

Here	is	a	list	of	Phyton’s	built-in	functions:

	

abs() all() any()

ascii() bin() bool()

bytearray() bytes() callable()

chr() classmethod() compile()

complex() delattr() dict()

dir() divmod() enumerate()

eval() exec() filter()

float() format() frozenset()

getattr() globals() hasattr()

hash() help() hex()

id() __import__() input()

int() isinstance() issubclass()

iter() len() list()

locals() map() max()

memoryview() min() next()

object() oct() open()

ord() pow() print()

property() range() repr()

reversed() round() set()

setattr() slice() sorted()

staticmethod() str() sum()

super() tuple() type()

vars() zip() 	

	

	

	

	

	

	

	

Chapter	8																												Conditional	Statements

	

	

Conditional	statements	are	common	among	programming	languages	and	they	are	used	to
perform	actions	or	calculations	based	on	whether	a	condition	is	evaluated	as	true	or	false.
If-then-else	 statements	 or	 conditional	 expressions	 are	 essential	 features	 of	 programming
languages	and	they	make	programs	more	useful	to	users.

	

The	if-then-else	statement	in	Python	has	the	following	basic	structure:

	

if	condition1:

block1_statement

elif	condition2:

block2_statament

else:

block3_statement

	

	

This	structure	will	be	evaluated	as:

	

If	 condition1	 is	 True,	 Python	 will	 execute	 block1_statement.	 If	 condition1	 is	 False,
condition2	will	be	executed.	If	condition2	is	evaluated	as	True,	block2_statement	will	be
executed.	If	condition2	turns	out	to	be	False,	Python	will	execute	block3_statement.

	

To	illustrate,	here	is	an	if-then-else	statement	built	within	the	function	‘your_choice’:

	

def	your_choice(answer):

if	answer	>	5:

print(“You	are	overaged.”)

elif	answer	<=	5	and	answer	>1:

print(“Welcome	to	the	Toddler’s	Club!”)

else:

print(“You	are	too	young	for	Toddler’s	Club.”)

	

print(your_choice(6))

print(your_choice(3))

print(your_choice(1))

print(your_choice(0))

	

You	will	get	this	output	on	the	Python	Shell:

	

You	are	overaged.

None

Welcome	to	the	Toddler’s	Club!

None

You	are	too	young	for	Toddler’s	Club.

None

You	are	too	young	for	Toddler’s	Club.

None

	

Conditional	constructs	may	branch	out	 to	multiple	‘elif’	branches	but	can	only	have	one
‘else’	branch	at	the	end.	Using	the	same	code	block,	another	elif	statement	may	be	inserted
to	provide	for	privileged	member	of	the	Toddler’s	club:	2	year-old	kids.

	

def	your_choice(answer):

if	answer	>	5:

				print(“You	are	overaged.”)

elif	answer	<=	5	and	answer	>2:

print(“Welcome	to	the	Toddler’s	Club!”)

elif	answer	==	2:

print(“Welcome!	You	are	a	star	member	of	the	Toddler’s	Club!”)

else:

print(“You	are	too	young	for	Toddler’s	Club.”)

	

print(your_choice(6))

print(your_choice(3))

print(your_choice(1))

print(your_choice(0))

print(your_choice(2))

	

	

You	are	overaged.

None

Welcome	to	the	Toddler’s	Club!

None

You	are	too	young	for	Toddler’s	Club.

None

You	are	too	young	for	Toddler’s	Club.

None

Welcome!	You	are	a	star	member	of	the	Toddler’s	Club!

None

	

	

Chapter	9																												Loops

	
A	 loop	 is	 a	 programming	 construct	 that	 enables	 repetitive	 processing	 of	 a	 sequence	 of
statements.	Python	provides	two	types	of	loops	to	its	users:	the	‘for	loop’	and	the	‘while
loop’.	The	‘for’	and	‘while’	loops	are	iteration	statements	that	allow	a	block	of	code	(the
body	of	the	loop)	to	be	repeated	a	number	of	times.

	

	

The	For	Loop

	

Python	implements	an	iterator-based	‘for	loop’.	It	is	a	type	of	‘for	loop’	that	iterates	over	a
list	of	items	through	an	explicit	or	implicit	iterator.

	

The	loop	is	introduced	by	the	keyword	‘for’	which	is	followed	by	a	random	variable	name
which	will	contain	the	values	supplied	by	the	object.

	

This	is	the	syntax	of	Python’s	‘for	loop’:

	

for	variable	in	list:

statements

else:

statements

	

	

Here	is	an	example	of	a	‘for	loop’	in	Python:

	

pizza	 =	 [“New	York	 Style	 Pizza”,	 “Pan	 Pizza”,	 “Thin	 n	 Crispy	 Pizza”,	 “Stuffed	 Crust
Pizza”]

for	choice	in	pizza:

if	choice	==	“Pan	Pizza”:

print(“Please	pay	$16.	Thank	you!”)

print(“Delicious,	cheesy	”	+	choice)

else:

print(“Cheesy	pan	pizza	is	my	all-time	favorite!”)

print(“Finally,	I’m	full!”)

	

	

Run	this	and	you’ll	get	the	following	output	on	Python	Shell:

	

Delicious,	cheesy	New	York	Style	Pizza

Please	pay	$16.	Thank	you!

Delicious,	cheesy	Pan	Pizza

Delicious,	cheesy	Thin	n	Crispy	Pizza

Delicious,	cheesy	Stuffed	Crust	Pizza

Cheesy	pan	pizza	is	my	all-time	favorite!

Finally,	I’m	full!

	

	

Using	a	break	statement

	

A	 Python	 break	 statement	 ends	 the	 present	 loop	 and	 instructs	 the	 interpreter	 to	 starts
executing	the	next	statement	after	the	loop.	It	can	be	used	in	both	‘for’	and	‘while’	loops.
Besides	 leading	 the	 program	 to	 the	 statement	 after	 the	 loop,	 a	 break	 statement	 also
prevents	the	execution	of	the	‘else’	statement.

	

To	 illustrate,	 a	 break	 statement	 may	 be	 placed	 right	 after	 the	 print	 function	 of	 the	 ‘if
statement’:

	

pizza	 =	 [“New	York	 Style	 Pizza”,	 “Pan	 Pizza”,	 “Thin	 n	 Crispy	 Pizza”,	 “Stuffed	 Crust
Pizza”]

for	choice	in	pizza:

if	choice	==	“Pan	Pizza”:

print(“Please	pay	$16.	Thank	you!”)

break

print(“Delicious,	cheezy	”	+	choice)

else:

print(“Cheezy	pan	pizza	is	my	all-time	favorite!”)

print(“Finally,	I’m	full!”)

	

	

The	Python	Shell	will	now	show:

	

Delicious,	cheezy	New	York	Style	Pizza

Please	pay	$16.	Thank	you!

Finally,	I’m	full!

	

	

Using	Continue	Statement

	

The	continue	statement	brings	back	program	control	to	the	start	of	the	loop.	You	can	use	it
for	both	‘for’	and	‘while’	loops.

	

To	illustrate,	the	continue	statement	may	be	placed	right	after	the	print	function	of	the	‘for
loop’	to	replace	the	break	statement:

	

	

pizza	 =	 [“New	York	 Style	 Pizza”,	 “Pan	 Pizza”,	 “Thin	 n	 Crispy	 Pizza”,	 “Stuffed	 Crust
Pizza”]

for	choice	in	pizza:

if	choice	==	“Pan	Pizza”:

print(“Please	pay	$16.	Thank	you!”)

continue

print(“Delicious,	cheesy	”	+	choice)

else:

print(“Cheesy	pan	pizza	is	my	all-time	favorite!”)

print(“Finally,	I’m	full!”)

	

	

The	output	will	be:

	

Delicious,	cheesy	New	York	Style	Pizza

Please	pay	$16.	Thank	you!

Delicious,	cheesy	Thin	n	Crispy	Pizza

Delicious,	cheesy	Stuffed	Crust	Pizza

Cheesy	pan	pizza	is	my	all-time	favorite!

Finally,	I’m	full!

	

	

Using	the	range()	Function	with	the	for	Loop

	

The	range()	function	can	be	combined	with	the	‘for	loop’	to	supply	the	numbers	required
by	 the	 loop.	 In	 the	 following	 example,	 the	 range(1,	 x+1)	provided	 the	numbers	1	 to	50
needed	by	the	‘for	loop’	to	add	the	sum	of	1	until	50:

	

x	=	50

	

total	=	0

for	number	in	range(1,	x+1):

total	=	total	+	number

	

print(“Sum	of	1	until	%d:	%d”	%	(x,	total))

	

	

The	Python	Shell	will	display:

	

l.py

Sum	of	1	until	50:	1275

	

	

The	While	Loop

	

A	Python	‘while	loop’	repeatedly	carries	out	a	target	statement	while	the	condition	is	true.

The	 loop	 iterates	as	 long	as	 the	defined	condition	 is	 true.	When	 it	ceases	 to	be	 true	and
becomes	false,	control	passes	to	the	first	line	after	the	loop.	

	

The	‘while	loop’	has	the	following	syntax:

	

while	condition

statement

	

statement

	

Here	is	a	simple	‘while	loop’:

	

counter	=	0

while	(counter	<	10):

print(‘The	count	is:’	,	counter)

counter	=	counter	+	1

	

print(“Done!”)

	

If	you	run	the	code,	you	should	see	this	output:

	

l.py

The	count	is:	0

The	count	is:	1

The	count	is:	2

The	count	is:	3

The	count	is:	4

The	count	is:	5

The	count	is:	6

The	count	is:	7

The	count	is:	8

The	count	is:	9

Done!

	

	

Using	Pass	Statement

	

The	 pass	 statement	 tells	 the	 Python	 interpreter	 to	 ‘do	 nothing’.	 The	 interpreter	 simply
continues	with	the	program’s	execution	whenever	the	pass	statement	is	encountered.	This
attribute	makes	it	a	good	placeholder	whenever	Python	syntactically	requires	a	line	but	the
program	 itself	 does	 not	 require	 action.	 It	 can	 be	 very	 useful	 when	 you’re	 creating	 a
program	and	you	need	to	focus	on	specific	areas	of	your	code,	but	you	still	want	to	reserve
some	loops	or	test	run	the	incomplete	code.

	

Here	is	how	you	would	use	a	pass	statement	to	fill	gaps	within	a	code:

	

def	function_name(x):

pass

	

	

	

Chapter	10														User-Defined	Functions
	

	

A	 function	 is	 a	 set	 of	 statements	 that	 perform	 a	 specific	 task,	 a	 common	 structuring
element	that	allows	you	to	use	a	piece	of	code	repeatedly	in	different	parts	of	a	program.
The	 use	 of	 functions	 improve	 a	 program’s	 clarity	 and	 comprehensibility	 and	 makes
programming	more	 efficient	 by	 reducing	 code	 duplication	 and	 breaking	 down	 complex
tasks	 	 into	more	manageable	 pieces.	 Functions	 are	 also	 known	 as	 routines,	 subroutines,
methods,	procedures,	or	subprograms.

	

They	can	be	passed	as	arguments,	assigned	to	variables,	or	stored	in	collections.

	

	

A	user-defined	Python	function	is	created	or	defined	by	the	def	statement	and	follows	the
syntax:

	

def	function_name(parameter	list):

function	body/statements

	

The	 indented	 statements	make	 up	 the	 body	 of	 the	 function	 and	 are	 executed	when	 the
function	 is	called.	Once	 the	function	 is	called,	parameters	 inside	round	brackets	become
arguments.

	

Function	bodies	can	have	more	than	one	return	statement	which	may	be	placed	anywhere
within	the	function	block.	Return	statements	end	the	function	call	and	return	the	value	of
the	expression	after	the	return	keyword.	A	return	statement	with	no	expression	returns	the
special	value	 ‘None’.	 In	 the	absence	of	 a	 return	 statement	within	 the	 function	body,	 the
end	of	the	function	is	indicated	by	the	return	of	the	value	‘None’.

	

The	 docstring	 is	 an	 optional	 statement	 after	 the	 function	 title	 which	 explains	 what	 the
function	 does.	While	 it	 is	 not	mandatory,	 documenting	 your	 code	with	 a	 docstring	 is	 a
good	programming	practice.

	

	

Here	is	a	simple	function	that	prints	I	love	Pizza!

	

def	love_pizza():

print	“I	love	Pizza!”

	

	

	

Here	is	a	function	with	a	parameter	and	return	keyword:

	

def	absolute_value(number):

	

if	number	>=	0:

return	number

else:

return	-number

	

print(absolute_value(3))

print(absolute_value(-5))

	

In	the	above	example,	number	is	the	parameter	of	the	function	absolute_value.	It	acts	as	a
variable	name	and	holds	the	value	of	a	passed	in	argument.	

	

Here	is	the	output	when	the	above	code	is	run:

	

3

5

	

	

Following	is	a	function	with	an	if-then-else	statement.

	

def	shutdown(yn):

if	yn.lower()	==	“y”:

return(“Closing	files	and	shutting	down”)

elif	yn.lower()	==	(“n”):

return(“Shutdown	cancelled”)

else:

return(“Please	check	your	response.”)

	

print(shutdown(“y”))

print(shutdown(“n”))

print(shutdown(“x”))

	

	

Python	Shell	will	display:

	

Closing	files	and	shutting	down

Shutdown	cancelled

Please	check	your	response.

	

	

Function	can	take	more	than	one	parameter	and	use	them	for	computations:

	

def	calculator(x,	y):

return	x	*	y	+	2

	

print(calculator(2,6))

print(calculator(3,7))

	

Run	the	code	and	you’ll	get	the	output:

14

23

	

	

	

Functions	can	call	other	functions

	

Functions	can	perform	different	types	of	actions	such	as	do	simple	calculations	and	print
text.	They	can	also	call	another	function.

	

For	example:

	

def	members_total(n):

return	n	*	3

	

def	org_total(m):

return	members_total(m)	+	5

	

To	see	what	you	code	does,	enter	the	following	print	commands:

	

print(org_total(2))

print(org_total(5))

print(org_total(10))

	

You’ll	get	these	results:

11

20

35

	

	

Scope	and	lifetime	of	a	local	variable

	

A	 variable’s	 scope	 refers	 to	 a	 program’s	 sections	where	 it	 is	 recognized.	 Variables	 and
parameters	defined	within	a	function	have	a	local	scope	and	are	not	visible	from	outside	of
the	function.	On	the	other	hand,	a	variable’s	lifetime	refers	to	its	period	of	existence	in	the
memory.	 Its	 lifetime	 coincides	 with	 the	 execution	 of	 a	 function	 which	 ends	 when	 you
return	from	the	function.	A	variable’s	value	is	discarded	once	the	return	is	reached	and	a
function	won’t	be	able	to	recall	a	variable’s	value	from	its	previous	value.

	

	

Chapter	11														Classes	and	Object-Oriented
Programming

	

Python	is	an	object-oriented	programming	language,	which	means	that	it	manipulates	and
works	with	data	structures	called	objects.	Objects	can	be	anything	that	could	be	named	in
Python	 –	 integers,	 functions,	 floats,	 strings,	 classes,	 methods,	 etc.	 These	 objects	 have
equal	status	in	Python.	They	can	be	used	anywhere	an	object	is	required.	You	can	assign
them	 to	 variables,	 lists,	 or	 dictionaries.	 They	 can	 also	 be	 passed	 as	 arguments.	 Every
Python	object	 is	 a	 class.	A	class	 is	 simply	a	way	of	organizing,	managing,	 and	creating
objects	with	the	same	attributes	and	methods.

In	 Python,	 you	 can	 define	 your	 own	 classes,	 inherit	 from	 your	 own	 defined	 classes	 or
built-in	classes,	and	instantiate	the	defined	classes.

	

	

Class	Syntax

To	define	a	class,	you	can	use	‘class’,	a	reserved	keyword,	followed	by	the	classname	and
a	colon.	By	convention,	all	classes	start	in	uppercase.	For	example:

	

class	Students:

pass

	

To	create	a	class	that	takes	an	object:

	

class	Students(object)

	

	

	

The	__init__()	method

	

Immediately	 after	 creating	 an	 instance	 of	 the	 class,	 you	 have	 to	 call	 the	 __init__()
function.	This	function	initializes	the	objects	it	creates.	It	takes	at	least	the	argument	‘self’,
a	Python	convention,	which	gives	identity	to	the	object	being	created.

	

	

Examples:

	

class	Students:

def	__init__(self)	:

	

	

class	Employees(object):

def	__init__(self,	name,	rate,	hours)	:

A	function	used	in	a	class	is	called	a	method.	Hence,	the	__init__()	function	is	a	method
when	it	is	used	to	initialize	classes.

	

	

Instance	Variables

	

When	 you	 add	 more	 arguments	 to	 the	 def_init_()	 besides	 the	 self,	 you’ll	 need	 to	 add
instance	 variables	 so	 that	 any	 instance	 object	 of	 the	 class	 will	 be	 associated	 with	 the
instance	you	create.		

	

For	example:

	

class	Employees(object):

def	__init__(self,	name,	rate,	hours)	:

name.self	=	name

rate.self	=	rate

hours.self	=hours

	

In	the	above	example,	name.self,	rate.self,	and	hours.self	are	the	instance	variables.

	

When	you	create	instances	of	the	class	Employees,	each	member	will	have	access	to	the
variables	which	were	initialized	through	the	__init__	method.	To	illustrate,	you	can	create
or	‘instantiate’	new	members	of	the	class	Employees:

	

	

staff	=	Employees(“Wayne”,	20,	8)

supervisor	=	Employees(“Dwight”,	35,	8)

manager	=	Employees(“Melinda”,	100,	8)

	

	

You	can	then	use	the	print	command	to	see	how	the	instance	variables	interacted	with	the
members	of	the	class	Employees:

	

print(staff.name,	staff.rate,	staff.hours)

print(supervisor.name,	supervisor.rate,	supervisor.hours)

print(manager.name,	manager.rate,	manager.hours)

	

The	Python	Shell	will	display	this	output:

	

Wayne	20	8

Dwight	35	8

Melinda	100	8

	

Here	is	how	the	entire	code	was	written	on	the	editor/file	window:

	

File	window:	employees.py

	

Here’s	the	output:

	

	

	

	

	

Inheritance

	

Inheritance	is	a	Python	process	that	allows	one	class	to	take	on	the	methods	and	attributes
of	 another.	 This	 feature	 allows	 users	 to	 create	 more	 complicated	 classes	 that	 inherit
methods	 or	 variables	 from	 their	 parent	 or	 base	 classes	 and	 makes	 programming	 more
efficient.

	

This	is	the	syntax	for	defining	a	class	that	inherits	all	variables	and	function	from	a	parent
class:

	

class	ChildClass(ParentClass):

	

To	illustrate,	you	can	create	a	new	class,	Resigned,	 that	will	 inherit	from	the	Employees
class	and	take	an	additional	variable,	status:

	

class	Employees(object):

def	__init__(self,	name,	rate,	hours):

self.name	=	name

self.rate	=	rate

self.hours	=	hours

	

staff	=	Employees(“Wayne”,	20,	8)

supervisor	=	Employees(“Dwight”,	35,	8)

manager	=	Employees(“Melinda”,	100,	8)

	

print(staff.name,	staff.rate,	staff.hours)

print(supervisor.name,	supervisor.rate,	supervisor.hours)

print(manager.name,	manager.rate,	manager.hours)

	

class	Resigned(Employees):

def	__init__	(self,	name,	rate,	hours,	status):

self.name	=	name

self.rate	=	rate

self.hours	=	hours

self.status	=	status

	

exemp_1	=	Resigned(“Dorothy”,	32,	8,	“retired”)

exemp_2	=	Resigned(“Malcolm”,	48,	8,	“resigned”)

	

print(exemp_1.name,	exemp_1.rate,	exemp_1.hours,	exemp_1.status)

print(exemp_2.name,	exemp_2.rate,	exemp_2.hours,	exemp_2.status)

	

Here	is	the	output	on	the	Python	Shell	when	the	code	is	executed;

	

	

	

	

	

	

Conclusion
	

Congratulations	for	finishing	this	book,	I	hope	it	was	able	to	equip	you	with	the	essential
skills	and	fundamental	knowledge	to	explore	and	harness	the	powerful	features	of	Python
as	a	programming	 language.	By	 the	 time	you	 finished	 reading	 the	book,	 I	 am	confident
that	you	will	be	prepared	to	put	your	basic	programming	knowledge	to	practical	everyday
uses.

The	 next	 step	 is	 to	 take	 up	 advanced	 Python	 programming	 courses	 that	 will	 help	 you
create	more	complex	programs	such	as	games,	web	applications,	and	productivity	tools.

Finally,	 if	you	enjoyed	this	book,	please	take	the	time	to	share	your	thoughts	and	post	a
positive	review	on	Amazon.		It’d	be	greatly	appreciated!

Thank	you	and	good	luck!
	

	Chapter 1 Getting Acquainted with Python
	Chapter 2 Installing Python
	Chapter 3 Interacting with Python
	Chapter 4 Python Syntax
	Chapter 5 Variables and Data Types
	Chapter 6 Python Basic Operators
	Chapter 7 Python’s Built-in Functions
	Chapter 8 Conditional Statements
	Chapter 9 Loops
	Chapter 10 User-Defined Functions
	Chapter 11 Classes and Object-Oriented Programming

