

Shell
Programming

Software Tools

Shells

● A shell can be used in one of two
ways:
● A command interpreter, used

interactively
● A programming language, to write shell

scripts (your own custom commands)

Shell Scripts

● A shell script is just a file containing shell commands,
but with a few extras:
● The first line of a shell script should be a comment of the

following form:
#!/bin/sh

for a Bourne shell script. Bourne shell scripts are the most
common, since C Shell scripts have buggy features.

● A shell script must be readable and executable.
chmod u+rx scriptname

● As with any command, a shell script has to be “in your path”
to be executed.
– If “.” is not in your PATH, you must specify “./scriptname” instead

of just “scriptname”

Shell Script Example

● Here is a “hello world” shell script:
$ ls -l

-rwxr-xr-x 1 horner 48 Feb 19 11:50 hello*

$ cat hello

#!/bin/sh
comment lines start with the # character

echo "Hello world"

$ hello

Hello world

$

● The echo command functions like a print
command in shell scripts.

Shell Variables

● The user variable name can be any sequence of
letters, digits, and the underscore character, but the
first character must be a letter.

● To assign a value to a variable:
number=25

name="Bill Gates"

● There cannot be any space before or after the “=“
● Internally, all values are stored as strings.

Shell Variables

● To use a variable,
precede the name
with a “$”:

$ cat test1

#!/bin/sh

number=25

name="Bill Gates"

echo "$number $name"

$ test1

25 Bill Gates

$

User Input

● Use the read command to get and
store input from the user.
$ cat test2

#!/bin/sh
echo "Enter name: "
read name
echo "How many girlfriends do you have? " read number
echo "$name has $number girlfriends!"
$ test2
Enter name:
Bill Gates
How many girlfriends do you have?
too many
Bill Gates has too many girlfriends!

User Input
● read reads one line of input from the keyboard and assigns it to one

or more user-supplied variables.
$ cat test3
#!/bin/sh

echo "Enter name and how many girlfriends:"
read name number
echo "$name has $number girlfriends!"
$ test3
Enter name and how many girlfriends:
Bill Gates 63
Bill has Gates 63 girlfriends!
$ test3
Enter name and how many girlfriends:
BillG 63
BillG has 63 girlfriends!
$ test3
Enter name and how many girlfriends:
Bill
Bill has girlfriends!

● Leftover input words are all assigned to the last variable.

$

● Use a backslash before $ if you
really want to print the dollar sign:

$ cat test4
#!/bin/sh
echo "Enter amount: "
read cost
echo "The total is: \$$cost"
$ test4
Enter amount:
18.50
The total is $18.50

$

● You can also use single quotes
for printing dollar signs.

● Single quotes turn off the special
meaning of all enclosed dollar signs:
$ cat test5
#!/bin/sh

echo "Enter amount: "
read cost
echo ‘The total is: $’ "$cost"
$ test5
Enter amount:
18.50
The total is $ 18.50

expr

● Shell programming is not good at numerical
computation, it is good at text processing.

● However, the expr command allows simple integer
calculations.

● Here is an interactive Bourne shell example:
$ i=1
$ expr $i + 1
2

● To assign the result of an expr command to another
shell variable, surround it with backquotes:
$ i=1
$ i=`expr $i + 1`

$ echo "$i"
2

expr

● The * character normally means “all the
files in the current directory”, so you need a
“\” to use it for multiplication:
$ i=2
$ i=`expr $i * 3`
$ echo $i
6

● expr also allows you to group
expressions, but the “(“ and “)” characters
also need to be preceded by backslashes:
$ i=2
$ echo `expr 5 + \($i * 3 \)`
11

expr Example

$ cat test6
#!/bin/sh

echo "Enter height of rectangle: "
read height
echo "Enter width of rectangle: "
read width
area=`expr $height * $width`
echo "The area of the rectangle is $area"
$ test6
Enter height of rectangle:
10
Enter width of rectangle:
5
The area of the ractangle is 50
$ test6
Enter height of rectangle:
10.1
Enter width of rectangle:
5.1
expr: non-numeric argument

Does not work for floats!

Backquotes:
Command Substitution

● A command or pipeline surrounded by backquotes
causes the shell to:
● Run the command/pipeline
● Substitute the output of the command/pipeline

for everything inside the quotes
● You can use backquotes anywhere:
$ whoami
gates
$ cat test7

#!/bin/sh
user=`whoami`
numusers=`who | wc -l`
echo "Hi $user! There are $numusers users logged on."
$ test7
Hi gates! There are 6 users logged on.

Control Flow

● The shell allows several control flow
statements:
● if
● while
● for

if

● The if statement works mostly as expected:
$ whoami
clinton
$ cat test7

#!/bin/sh
user=`whoami`
if [$user = "clinton"]
then
echo "Hi Bill!"
fi
$ test7
Hi Bill!

● However, the spaces before and after the
square brackets [] are required.

if then else

● The if then else statement is
similar:

$ cat test7

#!/bin/sh
user=`whoami`
if [$user = "clinton"]
then

echo "Hi Bill!"
else

echo "Hi $user!"
fi
$ test7
Hi horner!

if elif else

● You can also handle a list of cases:
$ cat test8

#!/bin/sh
users=`who | wc -l`
if [$users -ge 4]
then
echo "Heavy load"
elif [$users -gt 1]
then
echo "Medium load"
else
echo "Just me!"
fi
$ test8
Heavy load!

Boolean Expressions

● Relational operators:
-eq, -ne, -gt, -ge, -lt, -le

● File operators:
-f file True if file exists and is not a directory
-d file True if file exists and is a directory
-s file True if file exists and has a size > 0

● String operators:
-z string True if the length of string is zero
-n string True if the length of string is nonzero
s1 = s2 True if s1 and s2 are the same
s1 != s2 True if s1 and s2 are different
s1 True if s1 is not the null string

File Operator Example

$ cat test9

#!/bin/sh
if [-f letter1]
then

echo "We have found the evidence!"
cat letter1

else
echo "Keep looking!"

fi
$ test9
We have found the evidence!
How much would it cost to buy Apple Computer?
Best,
Bill

And, Or, Not

● You can combine and negate expressions
with:
-a And
-o Or
! Not

$ cat test10

#!/bin/sh
if [`who | grep gates | wc -l` -ge 1 -a `whoami` != “gates"]

then
echo "Bill is loading down the machine!"

else
echo "All is well!"

fi
$ test10
Bill is loading down the machine!

while

● The while statement loops indefinitely,
while the condition is true, such as a user-
controlled condition:
$ cat test11
#!/bin/sh
resp="no"

 while [$resp != "yes"]

do
echo "Wakeup [yes/no]?"

read resp
done
$ test11
Wakeup [yes/no]?
no
Wakeup [yes/no]?
y
Wakeup [yes/no]?
yes
$

while

● while can also do normal incrementing
loops:
$ cat fac

#!/bin/sh
echo "Enter number: "
read n
fac=1
i=1

 while [$i -le $n]

do
fac=`expr $fac * $i`
i=`expr $i + 1`

done
echo "The factorial of $n is $fac"
$ fac
Enter number:
5
The factorial of 5 is 120

break

● The break command works like in C++,
breaking out of the innermost loop :
$ cat test12
#!/bin/sh
while [1]
do
echo "Wakeup [yes/no]?"

read resp
if [$resp = "yes"]
then
break
fi
done
$ test12
Wakeup [yes/no]?
no
Wakeup [yes/no]?
y
Wakeup [yes/no]?
yes
$

	Slide 1
	Shells
	Shell Scripts
	Shell Script Example
	Shell Variables
	Slide 6
	User Input
	Slide 8
	$
	Slide 10
	expr
	Slide 12
	expr Example
	Backquotes: Command Substitution
	Control Flow
	if
	if then else
	if elif else
	Boolean Expressions
	File Operator Example
	And, Or, Not
	while
	Slide 23
	break

