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In Additive Number Theory we study subsets of integers
and their behavior under addition.
Definition: A+ B:={a+blac AbecB}.

Example:

A ={7,13,15,22};
B ={2,12};
then, A+ B ={9,15,17,19,24,25 27,34}.
There are two types of problems in this subject:
Direct Problem: Here we start with two sets A & B, and

try to deduce information of A + B. Or, start with a set A
and determine the structure of
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Introduction

@ Inverse Problems: Here we start with h-fold sum hA and
try to deduce information about the underlying set A.

@ Example of Direct Problems:

Goldbach conjecture: If P is the set of all prime numbers,
then P + P is the set of all even integers.

@ Waring Problem: k > 0 positive integer and
A = {0k 1K 2k 3k} = Set of all k-th powers.
Then there exists a positive integer s such that
SAK(= Ak + AL + ..o + Ax) contains all positive integers.

s times

Or,
sAr =N
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@ Definition: |A| := number of element of A.

Let A & B be two finite subset of real numbers. Then,

Al +|B|—1<|A+B]|

A={a; <az <as.... <ar};
B ={b; < b, <bs...... < bs}.

— a;t+bi<a+by<a;+by<.... < aj + bg
<a2+bs<a3+bs< ....... <ar+bs
— |A+B|>r+s—-1=|A|+|B|-1.
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Lower Bound on Sumset

@ Boundis sharp: example:

Take A={1,2,3,...10};
B ={1,2,3,..20}.
Then, A+B=1{2,3,4,..... ,30}.
— |A+B|=29=10+20-1=|A|+|B| - 1.

@ Exercise: Equality holds iff both A and B are in arithmetic
progression of same difference.

Recall: Arithmetic progression
={a,a+d,a+2d,..... ,a+(m—1)d}
@ 3-term in Arithmetic Progression
:={a,b,cla+c =2b}.
@ k-term Arithmetic progression
={a,a+d,a+2d,........ ,a+(k—1)d}.
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Erd6s conjecture on arithmetic progressions

@ One of the several conjectures of Erdds is the following
one:

conjecture 1 (Erdos)

If A CN, and E% diverges then, A contains k—term arithmetic
acA
progression for any given positive integer k.

@ In particular it contains 3-term arithmetic progression.
@ This conjecture is still open.
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Erd6s conjecture on arithmetic progressions

@ A special case of this conjecture was proved by
and . They proved that:

Theorem 2 (Green-Tao theorem:)

Set of primes contains arbitrary long arithmetic progression.

@ Note that ( > %) diverges. So Green-Tao theorem
p prime
clearly supports Erdés’ Conjecture.
@ we will prove the divergence of ( 3 %) at the end of the
p prime
lecture.

@ The list of work for which Terrence Tao got Fields
Medel(2006) includes this one.
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Weaker Statement (Erdos-Turan conjecture/

Szemerédi theorem)

@ The following theorem is an weaker statement of Erdds’
Conjecture. It was known as Erdds-Turan conjecture.

Theorem 3

Let 0 > 0 and k be an positive integer. Then we can find an
positive integer No(k, ¢) such that, If

N > NO(k75);
AC{1,2,3,......N} with |A] > 6N,

then A contains k—term arithmetic progression.

@ k =1,2 are trivial.
@ For k = 3, it was proved by
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Szemerédi theorem

@ For general k, it has been proved by
@ His proof uses deep combinatorial techniques.

) gave another proof of Szemerédi's theorem
using ergodic theory. It is known as Furstenberg’s multiple
recurrence theorem.

@ As a consequence of Furstenberg’s theorem over Z, we
get a little stronger version of Szemerédi theorem.

) also gave another proof using Harmonic analysis.
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@ {0,1,3,4,9,10,12,13,27,28,30,31};

@ {0,1,3,4,9,10,12,13,27, 28,30, 31, 36};

@ {0,1,3,4,9,10,12,13, 27,28, 30,31, 36,37};

@ {0,1,3,4,9,10,12,13,27,28, 30,31, 36,37, 39};

@ {0,1,3,4,9,10,12,13, 27,28, 30,31, 36,37, 39, 40};
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@ {0,1,3,4,9,10,12,13, 27,28, 30,31, 36,37, 39, 40, 81, 82}

@ Check upto N = 3¥, for some large positive integer k.
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@ Call Ay =
{0,1,3,4,9,10,12,13, 27,28, 30,31, 36,37,39,40,81,82, ....... }
@ Recall: Base 3 representation:
N = [rlk_1....11fo]3s <= N = 3 4n 1314+ .. +3r1 +10.
@ Denote rgrg_1.....r1ro by [n]s
@ Observation:

@ If 2 occurs as a digit in [n]s, then n ¢ Ao;
@ Otherwise n € Ay.

@ Converse of this is also true:

Theorem 4

If A C NU O, with the conditions:
@ If 2 occurs in [n]s, then n ¢ N;

o If 2 does not occur in [n]s, then n € A.

Then A has no 3-term AP.
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Condition for a set not having 3-term AP

@ Letn,m,q € Awithn+m = 2q.
)
Let [n]z = akakx_18k_2.....a180
[m]3 = bkbk—lbk—z ..... bibg
[C]]g = CkCk—-1Ck—2..... C1Co
with a;, bj,c; € {0,1} Vi.

@ — There is no carry over in the summation or doubling.

® — @& + b; = 2¢;, with a;, bj, ¢; € {0,1}.

@ — a;=b; =c.

@ — n=m=q

@ — No nontrivial 3-term AP.
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Cardinality of set with no 3-term AP

@ set of all k—digit nonnegetive integers = [0, 3% — 1].

@ Number of such k—digit numbers with all digits € {0,1} is
=2k,

@ Let AC{0,1,2,3,...... ,N1} with 3k=1 < N < 3k, Without
loss of generality let us assume that N = 3. This extra
assumption does not effect the result.

o = k=124
@ Also |A| = 2k,
°

= log|A| =klog2
~ logN
~ log3

log 2
log 2
= log N g3

log 2
= |A| = NTg3,
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Generalization from base 3 to (2d + 1) [Behrend]

Given N, large, choose d such that N ~ (2d + 1)k — 1, with
k ~[,/logN].

Recall: ~ means equality upto multiple of a constant.

— log(2d + 1) ~ 9N | /logN.

vn € [0, N], write n in the base (2d + 1).

Define a set A’ C [0, N] in the following way:

o If all the digits < d;thenn e A’
o If atleast one digit > d; thenn ¢ A’.

Let us proceed as base 3 case and try to see if A’ has
3-term AP or not.

Letn,m,q € A/, withn +m = 2q.
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Generalization from base 3 to (2d + 1) [Behrend]

o let

[N2d+r1 = ak@k_1.--e-.. a;ag;
[m]2d+1 = bkbk—l ....... b]_bo;

[Q]Zd-l,-l = CkCr—1.vveeet C1Co;

with a;, bj,c; € {0,1,2, ..... ,d}.
@ Similarly no carry over the summation = a; + b; = 2¢;.
@ But that does not prove a; = b; = ¢j, as

aj,bj,ci €{0,1,2,.....,d}, withd > 2.

@ So A'is not the right candidate. We need to modify the set
A
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Generalization from base 3 to (2d + 1) [Behrend]

@ Define an equivalence relation «~ on A’ by

N = [XkXk—1-----X1Xo0]2d 11 & M = [YkYk—1------Y1Yo]2d +1
iff,
X2 4 X124 oo F X124+ %02 = Y2+ Vi12 + e + Y12 + Y02

@ Each equivalence class corresponds to a sphere in [0, d]*.

@ A := Set of elements of A’ which belongs to the same
equivalence class maximum number of element. More
preciously:

@ Consider all equivalence classes of A'.

@ Choose one of the class which contain maximum number of
element.

o Take set of all the elements of that class as A.

@ In short A is a maximal sphere in A’.
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@ So A a maximal set satisfying following three properties:
e AcC{1,2,3,....,N} with N ~ 3¥,
@ Vn= [akak_l ..... a1a0]2d+1 cA 0<ag <d Vi
@ Vn= [akak_l ..... a1a0]2d+1 €A, ak2+ak_12+ ..... +a12+a02
is constant.



Generalization from base 3 to (2d + 1) [Behrend]

@ So A a maximal set satisfying following three properties:
e AcC{1,2,3,....,N} with N ~ 3¥,
@ Vn= [akak_l ..... a1a0]2d+1 cA 0<ag <d Vi
@ Vn= [akak_l ..... a1a0]2d+1 €A, ak2+ak_12+ ..... +a12+a02
is constant.

The set A, defined above, has no 3-element AP.




Generalization from base 3 to (2d + 1) [Behrend]

@ So A a maximal set satisfying following three properties:
e AcC{1,2,3,....,N} with N ~ 3¥,
@ Vn= [akak_l ..... a1a0]2d+1 cA 0<ag <d Vi
@ Vn= [akak_l ..... a1a0]2d+1 €A, ak2+ak_12+ ..... +a12+a02
is constant.

The set A, defined above, has no 3-element AP.

@ Proof: If notthen, n,m,q € A, with n +m = 2q.

n = [akak_1....-a180]2d +1
m= [bkbk—l ..... b1b0]2d+1
gq= [Cka_]_ ..... C1Co]2d+1.
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Generalization from base 3 to (2d + 1) [Behrend]

o —
ag + bg = 2¢g
a; +by =2¢
a, + by, =2c,

@ — ( is the mid-point of m and n. Also all of them are on
the same sphere.

@ Not possible unless, n = m = q.
@ A does not contain any non-trivial 3-term AP.
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Generalization from base 3 to (2d + 1) [Behrend]

O A= (d+1)¢ > (d+ Lk = Z N

@ What is the total number of distinct spheres in A'?

@ Number of distinct ag2 + a;2 + ....... + a2 are
< (k +1)d? < 2kd?,

°

|A'|
2kd2

N+1
— 4ke2logd
> Ne °VION -k ~ [/logN]}

C is some positive constant.

= |A| >




Improved Size of A

log 2
@ Note: Ne—¢VioaN > N3, for large N.

o
Nefcq/logN
= log 2

N g3
To prove: f(n) > 1.

Or, log(f(N)) > 0.

F(N)

Or, logN(1 — :2%2) —c+y/logN > 0.

Or, \/logN(y/logN(1 — :g%g) —c)>0.

Which is true If N is large.



Improved Size of A

log 2
@ Note: Ne—¢VioaN > N3, for large N.

o
Nefcq/logN
= log 2

N g3
To prove: f(n) > 1.

Or, log(f(N)) > 0.

£(N)

Or, logN(1 — :2%2) —c+y/logN > 0.

Or, v/logN(4/logN(1 — :g%g) —c)>0.

Which is true If N is large.
@ So 's result gives larger set A with no 3-term AP.
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Sum Free Sets

@ Ais called sum-free if the equation x +y = z has no
solution with x,y,z € A.
@ o Setof odd integers.
o Sets of the type {[§]+1,[}] +2,......,N}, for some positive
integer N.
@ Fermat's Last Theorem:Ay :=all k-th powers of positive
integers with k > 2. Then Ay is sum free.

@ Proved by

@ Number of sum-free subsets of {1,2, ...... ,N}is < C2%. 1t
was known as Cameron-Erdos conjecture and is proved by
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Divergence of ( > 1)

p prime

@ Euler product formula:

(=Y == ] a-p)*

n>1 p prime

@ But 3 I diverges. = lim((s) diverges.
n>1 s—1

@ — limlog( J] (1-pS)~?)diverges.

s—1 p prime
o = (X 5)+( X ) diverges.
p prime p primep

@ But convergence of the second term in the summation
— (Y 1)diverges.
p prime
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@ Let 7(x) denotes number of primes upto x, that is:

(X) = Z 1.

p<x
p prime
Theorem 6 ( )
m(X) ~ fogx
@ Weaker form of PNT was proved by . His

theorem states:

Theorem 7 (Chebyshev)

ogx < m(X) < g&%: for some positive constant ¢y, C;.

@ He proved this using elementary methods.



Thanks!




