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Definition: A + B := {a + b|a ∈ A,b ∈ B}.
Example:

A = {7,13,15,22};
B = {2,12};

then, A + B = {9,15,17,19,24,25,27,34}.
There are two types of problems in this subject:
Direct Problem: Here we start with two sets A & B, and
try to deduce information of A + B. Or, start with a set A
and determine the structure of

hA := A + A + ......... + A
︸ ︷︷ ︸

h times
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Introduction

Inverse Problems: Here we start with h-fold sum hA and
try to deduce information about the underlying set A.

Example of Direct Problems:

Goldbach conjecture: If P is the set of all prime numbers,
then P + P is the set of all even integers.

Waring Problem: k > 0 positive integer and
Ak = {0k ,1k ,2k ,3k , .....} = Set of all k-th powers.
Then there exists a positive integer s such that
sAk (= Ak + Ak + ....... + Ak

︸ ︷︷ ︸

s times

) contains all positive integers.

Or,
sAk = N

.
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Definition: |A| := number of element of A.

Theorem 1

Let A & B be two finite subset of real numbers. Then,

|A|+ |B| − 1 ≤ |A + B|.

Proof.

A = {a1 < a2 < a3...... < ar};
B = {b1 < b2 < b3...... < bs}.

=⇒ a1 + b1 < a1 + b2 < a1 + b3 < ....... < a1 + bs

< a2 + bs < a3 + bs < ....... < ar + bs.

=⇒ |A + B| ≥ r + s − 1 = |A|+ |B| − 1.
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Lower Bound on Sumset

Bound is sharp: example:

Take A = {1,2,3, ....10};
B = {1,2,3, ...20}.

Then, A + B = {2,3,4, .......,30}.
=⇒ |A + B| = 29 = 10 + 20 − 1 = |A|+ |B| − 1.

Exercise: Equality holds iff both A and B are in arithmetic
progression of same difference.

Recall: Arithmetic progression
:={a,a + d ,a + 2d , ..........,a + (m − 1)d}
3-term in Arithmetic Progression
:= {a,b, c|a + c = 2b}.
k-term Arithmetic progression
:= {a,a + d ,a + 2d , .........,a + (k − 1)d}.
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Erdős conjecture on arithmetic progressions

One of the several conjectures of Erdős is the following
one:

conjecture 1 (Erdős)

If A ⊆ N, and
∑

a∈A

1
a diverges then, A contains k−term arithmetic

progression for any given positive integer k.

In particular it contains 3-term arithmetic progression.

This conjecture is still open.
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A special case of this conjecture was proved by Ben Green
and Terrence Tao. They proved that:

Theorem 2 (Green–Tao theorem:)

Set of primes contains arbitrary long arithmetic progression.

Note that (
∑

p prime

1
p ) diverges. So Green-Tao theorem

clearly supports Erdős’ Conjecture.
we will prove the divergence of (

∑

p prime

1
p ) at the end of the

lecture.

The list of work for which Terrence Tao got Fields
Medel(2006) includes this one.
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Weaker Statement (Erdős-Turan conjecture/
Szemerédi theorem)

The following theorem is an weaker statement of Erdős’
Conjecture. It was known as Erdős-Turan conjecture.

Theorem 3

Let δ > 0 and k be an positive integer. Then we can find an
positive integer N0(k , δ) such that, If

N ≥ N0(k , δ);

A ⊆ {1,2,3, .........,N} with |A| ≥ δN,

then A contains k−term arithmetic progression.

k = 1,2 are trivial.

For k = 3, it was proved by Klaus Roth.
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His proof uses deep combinatorial techniques.

Furstenberg gave another proof of Szemerédi’s theorem
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Szemerédi theorem

For general k , it has been proved by Endre Szemerédi.

His proof uses deep combinatorial techniques.

Furstenberg gave another proof of Szemerédi’s theorem
using ergodic theory. It is known as Furstenberg’s multiple
recurrence theorem.

As a consequence of Furstenberg’s theorem over Z, we
get a little stronger version of Szemerédi theorem.

Gowers also gave another proof using Harmonic analysis.
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Algorithm to find Large set with 3-term AP

Felix A. Behrend gave an algorithm to find large sets
containing 3−term AP. Before going to his result we will
give some motivation about his result.
Greedy Algorithm:
Aim: Construct a set of natural numbers/ nonnegative
integers which satisfies some given conditions.

Algorithm: Start with a minimum possible element.for
example: 0 or 1(say).
Step 1: If {0} satisfies, take S = {0}. Otherwise S = φ.
Step 2: If S ∪ {1} satisfies the conditions then include 1 in
S. Otherwise keep it as it is.
Step 3: If S ∪ {2} satisfies the condition then include 2 in
S. Otherwise keep it as it is.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Ultimately it may look like S = {0,3,4,7,12,22,24,41, .....}
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Aim: To produce a set A ⊆ [0,N], having no three term AP
and as big as possible.

Start with Greedy algorithm:

{0};

{0,1};

{0,1,3};

{0,1,3,4};
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{0,1,3,4,9,10,12,13,27,28};

{0,1,3,4,9,10,12,13,27,28,30};
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{0,1,3,4,9,10,12,13,27,28,30,31};

{0,1,3,4,9,10,12,13,27,28,30,31,36};

{0,1,3,4,9,10,12,13,27,28,30,31,36,37};
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Check upto N = 3k , for some large positive integer k .
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Algorithm to find Large set with 3-term AP

Call A0 =
{0,1,3,4,9,10,12,13,27,28,30,31,36,37,39,40,81,82, .......}
Recall: Base 3 representation:
n = [rk rk−1....r1r0]3 ⇐⇒ n = rk 3k + rk−13k−1 + ....+3r1 + r0.

Denote rk rk−1.....r1r0 by [n]3

Observation:
If 2 occurs as a digit in [n]3, then n /∈ A0;
Otherwise n ∈ A0.

Converse of this is also true:

Theorem 4

If A ⊆ N ∪ 0, with the conditions:

If 2 occurs in [n]3, then n /∈ N ;

If 2 does not occur in [n]3, then n ∈ A.

Then A has no 3-term AP.
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Condition for a set not having 3-term AP

Let n,m,q ∈ A with n + m = 2q.

Let [n]3 = akak−1ak−2.....a1a0

[m]3 = bkbk−1bk−2.....b1b0

[q]3 = ckck−1ck−2.....c1c0

with ai ,bi , ci ∈ {0,1} ∀i .

=⇒ There is no carry over in the summation or doubling.

=⇒ ai + bi = 2ci , with ai ,bi , ci ∈ {0,1}.

=⇒ ai = bi = ci .

=⇒ n = m = q

=⇒ No nontrivial 3-term AP.
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Cardinality of set with no 3-term AP

set of all k−digit nonnegetive integers = [0,3k − 1].
Number of such k−digit numbers with all digits ∈ {0,1} is
=2k .
Let A ⊆ {0,1,2,3, .......,N} with 3k−1 < N ≤ 3k . Without
loss of generality let us assume that N = 3k . This extra
assumption does not effect the result.
=⇒ k = log N

log 3 .

Also |A| = 2k .

=⇒ log |A| = k log 2

=
log N
log 3

log 2

= log N
log 2
log 3

=⇒ |A| = N
log 2
log 3 .
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Given N, large, choose d such that N ∼ (2d + 1)k − 1, with
k ∼ [

√

log N].
Recall: ∼ means equality upto multiple of a constant.

=⇒ log(2d + 1) ∼ log N
k ∼

√

log N.

∀n ∈ [0,N], write n in the base (2d + 1).

Define a set A′ ⊆ [0,N] in the following way:
If all the digits ≤ d ; then n ∈ A′.
If atleast one digit > d ; then n /∈ A′.

Let us proceed as base 3 case and try to see if A′ has
3-term AP or not.

Let n,m,q ∈ A′, with n + m = 2q.
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Generalization from base 3 to (2d + 1) [Behrend]

let

[n]2d+1 = akak−1.......a1a0;

[m]2d+1 = bkbk−1.......b1b0;

[q]2d+1 = ck ck−1.......c1c0;

with ai ,bi , ci ∈ {0,1,2, .....,d}.

Similarly no carry over the summation =⇒ ai + bi = 2ci .

But that does not prove ai = bi = ci , as
ai ,bi , ci ∈ {0,1,2, ....,d}, with d ≥ 2.

So A′is not the right candidate. We need to modify the set
A′.
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Generalization from base 3 to (2d + 1) [Behrend]

Define an equivalence relation ! on A′ by

n = [xk xk−1......x1x0]2d+1 ! m = [yk yk−1.......y1y0]2d+1

iff,

x2
k + xk−1

2 + .....+ x1
2 + x0

2 = yk
2 + yk−1

2 + .....+ y1
2 + y0

2.

Each equivalence class corresponds to a sphere in [0,d ]k .
A := Set of elements of A′ which belongs to the same
equivalence class maximum number of element. More
preciously:

Consider all equivalence classes of A′.
Choose one of the class which contain maximum number of
element.
Take set of all the elements of that class as A.

In short A is a maximal sphere in A′.
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So A a maximal set satisfying following three properties:
A ⊂ {1, 2, 3, ......,N} with N ∼ 3k .
∀n = [ak ak−1.....a1a0]2d+1 ∈ A, 0 ≤ ai ≤ d ∀i.
∀n = [ak ak−1.....a1a0]2d+1 ∈ A, ak

2+ak−1
2+ .....+a1

2+a0
2

is constant.

Theorem 5

The set A, defined above, has no 3-element AP.

Proof: If not then, n,m,q ∈ A, with n + m = 2q.

n = [akak−1.....a1a0]2d+1

m = [bkbk−1.....b1b0]2d+1

q = [ck ck−1.....c1c0]2d+1.
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=⇒

a0 + b0 = 2c0

a1 + b1 = 2c1

a2 + b2 = 2c2

−−−−−−−−
−−−−−−−−

ak−1 + bk−1 = 2ck−1

ak + bk = 2ck

=⇒ q is the mid-point of m and n. Also all of them are on
the same sphere.

Not possible unless, n = m = q.

A does not contain any non-trivial 3-term AP.



Generalization from base 3 to (2d + 1) [Behrend]

|A′| = (d + 1)k ≥ (d + 1
2)

k = (2d+1)k

2k = N+1
2k



Generalization from base 3 to (2d + 1) [Behrend]

|A′| = (d + 1)k ≥ (d + 1
2)

k = (2d+1)k

2k = N+1
2k

What is the total number of distinct spheres in A′?



Generalization from base 3 to (2d + 1) [Behrend]

|A′| = (d + 1)k ≥ (d + 1
2)

k = (2d+1)k

2k = N+1
2k

What is the total number of distinct spheres in A′?

Number of distinct a0
2 + a1

2 + ....... + ak
2 are

≤ (k + 1)d2 ≤ 2kd2.



Generalization from base 3 to (2d + 1) [Behrend]

|A′| = (d + 1)k ≥ (d + 1
2)

k = (2d+1)k

2k = N+1
2k

What is the total number of distinct spheres in A′?

Number of distinct a0
2 + a1

2 + ....... + ak
2 are

≤ (k + 1)d2 ≤ 2kd2.

=⇒ |A| ≥ |A′|
2kd2

≥ N + 1
4ke2 log d

≥ Ne−c
√

log N . {∵ k ∼ [
√

log N]}
c is some positive constant.
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log N ≥ N
log 2
log 3 , for large N.

f (N) =
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√
log N

N
log 2
log 3

To prove: f (n) ≥ 1.

Or, log(f (N)) ≥ 0.

Or, log N(1 − log 2
log 3

)− c
√

log N ≥ 0.

Or,
√

log N(
√

log N(1 − log 2
log 3

)− c) ≥ 0.

Which is true If N is large.

So Behrend’s result gives larger set A with no 3-term AP.
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Sum Free Sets

A is called sum-free if the equation x + y = z has no
solution with x , y , z ∈ A.

Set of odd integers.
Sets of the type {[N

2 ] + 1, [N
2 ] + 2, ......,N}, for some positive

integer N.

Fermat’s Last Theorem:Ak :=all k-th powers of positive
integers with k > 2. Then Ak is sum free.

Proved by Andrew Wiles.

Number of sum-free subsets of {1,2, ......,N} is ≤ C2
N
2 . It

was known as Cameron-Erdos conjecture and is proved by
Ben Green.
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Divergence of (
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p prime

1
p)

Euler product formula:

ζ(s) =
∑

n≥1

1
ns =

∏

p prime

(1 − ps)−1

But
∑

n≥1

1
n diverges. =⇒ lim

s→1
ζ(s) diverges.

=⇒ lim
s→1

log(
∏

p prime
(1 − ps)−1) diverges.

=⇒ (
∑

p prime

1
p ) + (

∑

p prime

1
p2 ) diverges.

But convergence of the second term in the summation
=⇒ (

∑

p prime

1
p ) diverges.
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Prime number theorem(PNT)

Let π(x) denotes number of primes upto x , that is:

π(x) =
∑

p≤x
p prime

1.

Theorem 6 (PNT)

π(x) ∼ x
log x

Weaker form of PNT was proved by Chebyshev. His
theorem states:

Theorem 7 (Chebyshev)
c1x
log x ≤ π(x) ≤ c2x

log x ; for some positive constant c1, c2.

He proved this using elementary methods.



Thanks!


