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Preface/Acknowledgment

The present expanded set of notes initially grew out of an attempt to
flesh out the International Baccalaureate (IB) mathematics “Further
Mathematics” curriculum, all in preparation for my teaching this dur-
ing during the AY 2007–2008 school year. Such a course is offered only
under special circumstances and is typically reserved for those rare stu-
dents who have finished their second year of IB mathematics HL in
their junior year and need a “capstone” mathematics course in their
senior year. During the above school year I had two such IB math-
ematics students. However, feeling that a few more students would
make for a more robust learning environment, I recruited several of my
2006–2007 AP Calculus (BC) students to partake of this rare offering
resulting. The result was one of the most singular experiences I’ve had
in my nearly 40-year teaching career: the brain power represented in
this class of 11 blue-chip students surely rivaled that of any assemblage
of high-school students anywhere and at any time!

After having already finished the first draft of these notes I became
aware that there was already a book in print which gave adequate
coverage of the IB syllabus, namely the Haese and Harris text1 which
covered the four IB Mathematics HL “option topics,” together with a
chapter on the retired option topic on Euclidean geometry. This is a
very worthy text and had I initially known of its existence, I probably
wouldn’t have undertaken the writing of the present notes. However, as
time passed, and I became more aware of the many differences between
mine and the HH text’s views on high-school mathematics, I decided
that there might be some value in trying to codify my own personal
experiences into an advanced mathematics textbook accessible by and
interesting to a relatively advanced high-school student, without being
constrained by the idiosyncracies of the formal IB Further Mathematics
curriculum. This allowed me to freely draw from my experiences first as
a research mathematician and then as an AP/IB teacher to weave some
of my all-time favorite mathematical threads into the general narrative,
thereby giving me (and, I hope, the students) better emotional and

1Peter Blythe, Peter Joseph, Paul Urban, David Martin, Robert Haese, and Michael Haese,
Mathematics for the international student; Mathematics HL (Options), Haese and
Harris Publications, 2005, Adelaide, ISBN 1 876543 33 7
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intellectual rapport with the contents. I can only hope that the readers
(if any) can find some something of value by the reading of my stream-
of-consciousness narrative.

The basic layout of my notes originally was constrained to the five
option themes of IB: geometry, discrete mathematics, abstract alge-
bra, series and ordinary differential equations, and inferential statistics.
However, I have since added a short chapter on inequalities and con-
strained extrema as they amplify and extend themes typically visited
in a standard course in Algebra II. As for the IB option themes, my
organization differs substantially from that of the HH text. Theirs is
one in which the chapters are independent of each other, having very
little articulation among the chapters. This makes their text especially
suitable for the teaching of any given option topic within the context
of IB mathematics HL. Mine, on the other hand, tries to bring out
the strong interdependencies among the chapters. For example, the
HH text places the chapter on abstract algebra (Sets, Relations, and
Groups) before discrete mathematics (Number Theory and Graph The-
ory), whereas I feel that the correct sequence is the other way around.
Much of the motivation for abstract algebra can be found in a variety
of topics from both number theory and graph theory. As a result, the
reader will find that my Abstract Algebra chapter draws heavily from
both of these topics for important examples and motivation.

As another important example, HH places Statistics well before Se-
ries and Differential Equations. This can be done, of course (they did
it!), but there’s something missing in inferential statistics (even at the
elementary level) if there isn’t a healthy reliance on analysis. In my or-
ganization, this chapter (the longest one!) is the very last chapter and
immediately follows the chapter on Series and Differential Equations.
This made more natural, for example, an insertion of a theoretical
subsection wherein the density of two independent continuous random
variables is derived as the convolution of the individual densities. A
second, and perhaps more relevant example involves a short treatment
on the “random harmonic series,” which dovetails very well with the
already-understood discussions on convergence of infinite series. The
cute fact, of course, is that the random harmonic series converges with
probability 1.
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I would like to acknowledge the software used in the preparation of
these notes. First of all, the typesetting itself made use of the indus-
try standard, LATEX, written by Donald Knuth. Next, I made use of
three different graphics resources: Geometer’s Sketchpad, Autograph,
and the statistical workhorse Minitab. Not surprisingly, in the chapter
on Advanced Euclidean Geometry, the vast majority of the graphics
was generated through Geometer’s Sketchpad. I like Autograph as a
general-purpose graphics software and have made rather liberal use of
this throughout these notes, especially in the chapters on series and
differential equations and inferential statistics. Minitab was used pri-
marily in the chapter on Inferential Statistics, and the graphical outputs
greatly enhanced the exposition. Finally, all of the graphics were con-
verted to PDF format via ADOBE R© ACROBAT R© 8 PROFESSIONAL
(version 8.0.0). I owe a great debt to those involved in the production
of the above-mentioned products.

Assuming that I have already posted these notes to the internet, I
would appreciate comments, corrections, and suggestions for improve-
ments from interested colleagues and students alike. The present ver-
sion still contains many rough edges, and I’m soliciting help from the
wider community to help identify improvements.

Naturally, my greatest debt of
gratitude is to the eleven students
(shown to the right) I conscripted
for the class. They are (back row):
Eric Zhang (Harvey Mudd), Jong-
Bin Lim (University of Illinois),
Tiimothy Sun (Columbia Univer-
sity), David Xu (Brown Univer-
sity), Kevin Yeh (UC Berkeley),
Jeremy Liu (University of Vir-
ginia); (front row): Jong-Min Choi (Stanford University), T.J. Young
(Duke University), Nicole Wong (UC Berkeley), Emily Yeh (University
of Chicago), and Jong Fang (Washington University). Besides provid-
ing one of the most stimulating teaching environments I’ve enjoyed over
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my 40-year career, these students pointed out countless errors in this
document’s original draft. To them I owe an un-repayable debt.

My list of acknowledgements would be woefully incomplete without
special mention of my life-long friend and colleague, Professor Robert
Burckel, who over the decades has exerted tremendous influence on how
I view mathematics.

David Surowski
Emeritus Professor of Mathematics
May 25, 2008
Shanghai, China
dbski@math.ksu.edu
http://search.saschina.org/surowski
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Chapter 1

Advanced Euclidean Geometry

1.1 Role of Euclidean Geometry in High-School

Mathematics

If only because in one’s “further” studies of mathematics, the results
(i.e., theorems) of Euclidean geometry appear only infrequently, this
subject has come under frequent scrutiny, especially over the past 50
years, and at various stages its very inclusion in a high-school mathe-
matics curriculum has even been challenged. However, as long as we
continue to regard as important the development of logical, deductive
reasoning in high-school students, then Euclidean geometry provides as
effective a vehicle as any in bringing forth this worthy objective.

The lofty position ascribed to deductive reasoning goes back to at
least the Greeks, with Aristotle having laid down the basic foundations
of such reasoning back in the 4th century B.C. At about this time Greek
geometry started to flourish, and reached its zenith with the 13 books
of Euclid. From this point forward, geometry (and arithmetic) was an
obligatory component of one’s education and served as a paradigm for
deductive reasoning.

A well-known (but not well enough known!) anecdote describes for-
mer U.S. president Abraham Lincoln who, as a member of Congress,
had nearly mastered the first six books of Euclid. By his own admis-
sion this was not a statement of any particular passion for geometry,
but that such mastery gave him a decided edge over his counterparts
is dialects and logical discourse.

Lincoln was not the only U.S. president to have given serious thought

1
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to Euclidean geometry. President James Garfield published a novel
proof in 1876 of the Pythagorean theorem (see Exercise 3 on page 4).

As for the subject itself, it is my personal feeling that the logical
arguments which connect the various theorems of geometry are every
bit as fascinating as the theorems themselves!

So let’s get on with it ... !

1.2 Triangle Geometry

1.2.1 Basic notations

We shall gather together a few notational conventions and be reminded
of a few simple results. Some of the notation is as follows:

A, B, C labels of points

[AB] The line segment joining A and B

AB The length of the segment [AB]

(AB) The line containing A and B

Â The angle at A

CÂB The angle between [CA] and [AB]

4ABC The triangle with vertices A, B, and C

4ABC ∼= 4A′B′C ′ The triangles 4ABC and 4A′B′C ′ are congruent

4ABC ∼ 4A′B′C ′ The triangles 4ABC and 4A′B′C ′ are similar
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1.2.2 The Pythagorean theorem

One of the most fundamen-
tal results is the well-known
Pythagorean Theorem. This
states that a2 + b2 = c2 in a right
triangle with sides a and b and
hypotenuse c. The figure to the
right indicates one of the many
known proofs of this fundamental
result. Indeed, the area of the
“big” square is (a + b)2 and can be
decomposed into the area of the
smaller square plus the areas of the
four congruent triangles. That is,

(a+ b)2 = c2 + 2ab,

which immediately reduces to a2 + b2 = c2.

Next, we recall the equally well-
known result that the sum of the
interior angles of a triangle is 180◦.
The proof is easily inferred from the
diagram to the right.

Exercises

1. Prove Euclid’s Theorem for
Proportional Segments, i.e.,
given the right triangle 4ABC as
indicated, then

h2 = pq, a2 = pc, b2 = qc.

2. Prove that the sum of the interior angles of a quadrilateral ABCD
is 360◦.
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3. In the diagram to the right, 4ABC
is a right triangle, segments [AB]
and [AF ] are perpendicular and
equal in length, and [EF ] is per-
pendicular to [CE]. Set a =
BC, b = AB, c = AB, and de-
duce President Garfield’s proof1 of
the Pythagorean theorem by com-
puting the area of the trapezoid
BCEF .

1.2.3 Similarity

In what follows, we’ll see that many—if not most—of our results shall
rely on the proportionality of sides in similar triangles. A convenient
statement is as follows.

Similarity. Given the similar tri-
angles 4ABC ∼ 4A′BC ′, we have
that

A′B

AB
=

BC ′

BC
=

A′C ′

AC
.

C

A

C'

B

A'

Conversely, if

A′B

AB
=

BC ′

BC
=

A′C ′

AC
,

then triangles 4ABC ∼ 4A′BC ′ are similar.

1James Abram Garfield (1831–1881) published this proof in 1876 in the Journal of Education
(Volume 3 Issue 161) while a member of the House of Representatives. He was assasinated in 1881
by Charles Julius Guiteau. As an aside, notice that Garfield’s diagram also provides a simple proof
of the fact that perpendicular lines in the planes have slopes which are negative reciprocals.
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Proof. Note first that 4AA′C ′
and 4CA′C ′ clearly have the same
areas, which implies that 4ABC ′
and 4CA′B have the same area
(being the previous common area
plus the area of the common trian-
gle 4A′BC ′). Therefore

A′B

AB
=

1
2h · A

′B
1
2h · AB

=
area4A′BC ′

area4ABC ′

=
area4A′BC ′

area4CA′B

=
1
2h
′ ·BC ′

1
2h
′ ·BC

=
BC ′

BC

In an entirely similar fashion one can prove that
A′B

AB
=
A′C ′

AC
.

Conversely, assume that

A′B

AB
=

BC ′

BC
.

In the figure to the right, the point
C ′′ has been located so that the seg-
ment [A′C ′′] is parallel to [AC]. But
then triangles 4ABC and 4A′BC ′′
are similar, and so

BC ′′

BC
=
A′B

AB
=
BC ′

BC
,

C"

C

A

C'

B

A'

i.e., that BC ′′ = BC ′. This clearly implies that C ′ = C ′′, and so [A′C ′]
is parallel to [AC]. From this it immediately follows that triangles
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4ABC and 4A′BC ′ are similar.

Exercises

1. Let 4ABC and 4A′B′C ′ be given with AB̂C = A′B̂′C ′ and
A′B′

AB
=
B′C ′

BC
. Then 4ABC ∼ 4A′B′C ′.

2. In the figure to the right,
AD = rAB, AE = sAC.
Show that

Area4ADE
Area4ABC

= rs.

D

B C

E

A

3. Let 4ABC be a given triangle and let Y, Z be the midpoints of
[AC], [AB], respectively. Show that (XY ) is parallel with (AB).
(This simple result is sometimes called the Midpoint Theorem)

4. In 4ABC, you are given that

AY

Y C
=
CX

XB
=
BX

ZA
=

1

x
,

where x is a positive real number.
Assuming that the area of 4ABC
is 1, compute the area of4XY Z as
a function of x.

Z

Y

X

C

B

A

5. Let ABCD be a quadrilateral and let EFGH be the quadrilateral
formed by connecting the midpoints of the sides of ABCD. Prove
that EFGH is a parallelogram.
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6. In the figure to the right, ABCD is
a parallelogram, and E is a point
on the segment [AD]. The point
F is the intersection of lines (BE)
and (CD). Prove that AB×FB =
CF ×BE.

7. In the figure to the right, tangents
to the circle at B and C meet at the
point A. A point P is located on
the minor arc B̆C and the tangent
to the circle at P meets the lines
(AB) and (AC) at the points D and
E, respectively. Prove that DÔE =
1
2BÔC, where O is the center of the
given circle.

1.2.4 “Sensed” magnitudes; The Ceva and Menelaus theo-
rems

In this subsection it will be convenient to consider the magnitude AB of
the line segment [AB] as “sensed,”2 meaning that we shall regard AB
as being either positive or negative and having absolute value equal to
the usual magnitude of the line segment [AB]. The only requirement
that we place on the signed magnitudes is that if the points A, B, and
C are colinear, then

AB ×BC =

> 0 if
−→
AB and

−→
BC are in the same direction

< 0 if
−→
AB and

−→
BC are in opposite directions.

2IB uses the language “sensed” rather than the more customary “signed.”
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This implies in particular that for signed magnitudes,

AB

BA
= −1.

Before proceeding further, the reader should pay special attention
to the ubiquity of “dropping altitudes” as an auxiliary construction.

Both of the theorems of this subsec-
tion are concerned with the following
configuration: we are given the trian-
gle 4ABC and points X, Y, and Z on
the lines (BC), (AC), and (AB), respec-
tively. Ceva’s Theorem is concerned with
the concurrency of the lines (AX), (BY ),
and (CZ). Menelaus’ Theorem is con-
cerned with the colinearity of the points
X, Y, and Z. Therefore we may regard these theorems as being “dual”
to each other.

In each case, the relevant quantity to consider shall be the product

AZ

ZB
× BX

XC
× CY

Y A

Note that each of the factors above is nonnegative precisely when the
points X, Y, and Z lie on the segments [BC], [AC], and [AB], respec-
tively.

The proof of Ceva’s theorem will be greatly facilitated by the fol-
lowing lemma:
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Lemma. Given the triangle
4ABC, let X be the intersection of
a line through A and meeting (BC).
Let P be any other point on (AX).
Then

area 4APB

area 4APC
=
BX

CX
.

Proof. In the diagram to the
right, altitudes BR and CS have
been constructed. From this, we see
that

area 4APB

area 4APC
=

1
2AP ·BR
1
2AP · CS

=
BR

CS

=
BX

CX
,

where the last equality follows from the obvious similarity
4BRX ∼ 4CSX.

Note that the above proof doesn’t depend on where the line (AP ) in-
tersects (BC), nor does it depend on the position of P relative to the
line (BC), i.e., it can be on either side.

Ceva’s Theorem. Given the triangle 4ABC, lines (usually called
Cevians are drawn from the vertices A, B, and C, with X, Y , and Z,
being the points of intersections with the lines (BC), (AC), and (AB),
respectively. Then (AX), (BY ), and (CZ) are concurrent if and only
if

AZ

ZB
× BX

XC
× CY

Y A
= +1.
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Proof. Assume that the lines in question are concurrent, meeting in
the point P . We then have, applying the above lemma three times,
that

1 =
area4APC

area4BPC
· area4APB

area4APC
· area4BPC

area4BPA

=
AZ

ZB
· BX
XC
· CY
Y A

.

.
To prove the converse we need to
prove that the lines (AX), (BY ),
and (CZ) are concurrent, given
that

AZ

ZB
· BX
XC
· CY
Y Z

= 1.

Let Q = (AX) ∩ (BY ), Z ′ =
(CQ) ∩ (AB). Then (AX), (BY ),
and (CZ ′) are concurrent and so

AZ ′

Z ′B
· BX
XC
· CY
Y Z

= 1,

which forces
AZ ′

Z ′B
=
AZ

ZB
.

This clearly implies that Z = Z ′, proving that the original lines (AX), (BY ),
and (CZ) are concurrent.

Menelaus’ theorem is a dual version of Ceva’s theorem and concerns
not lines (i.e., Cevians) but rather points on the (extended) edges of
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the triangle. When these three points are collinear, the line formed
is called a transversal. The reader can quickly convince herself that
there are two configurations related to 4ABC:

As with Ceva’s theorem, the relevant quantity is the product of the
sensed ratios:

AZ

ZB
· BX
XC
· CY
Y A

;

in this case, however, we see that either one or three of the ratios must
be negative, corresponding to the two figures given above.

Menelaus’ Theorem. Given the triangle 4ABC and given points
X, Y, and Z on the lines (BC), (AC), and (AB), respectively, then
X, Y, and Z are collinear if and only if

AZ

ZB
× BX

XC
× CY

Y A
= −1.

Proof. As indicated above, there are two cases to consider. The first
case is that in which two of the points X, Y, or Z are on the triangle’s
sides, and the second is that in which none of X, Y, or Z are on the
triangle’s sides. The proofs of these cases are formally identical, but
for clarity’s sake we consider them separately.
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Case 1. We assume first that
X, Y, and Z are collinear and drop
altitudes h1, h2, and h3 as indicated
in the figure to the right. Using ob-
vious similar triangles, we get

AZ

ZB
= +

h1

h2
;
BX

XC
= +

h2

h3
;
CY

Y A
= −h3

h1
,

in which case we clearly obtain

AZ

ZB
× BX

XC
× CY

Y A
= −1.

To prove the converse, we may assume that X is on [BC], Z is on
[AB], and that Y is on (AC) with AZ

ZB ·
BX
XC ·

CY
Y A = −1. We let X ′ be the

intersection of (ZY ) with [BC] and infer from the above that

AZ

ZB
· BX

′

X ′C
· CY
Y A

= −1.

It follows that BX
XC = BX ′

X ′C , from which we infer easily that X = X ′, and
so X, Y, and Z are collinear.

Case 2. Again, we drop altitudes from
A, B, and C and use obvious similar tri-
angles, to get

AZ

ZB
= −h1

h2
;
BX

XC
= −h2

h3
;
AY

Y C
= −h1

h3
;

it follows immediately that

AZ

ZB
· BX
XC
· CY
Y A

= −1.

The converse is proved exactly as above.
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1.2.5 Consequences of the Ceva and Menelaus theorems

As one typically learns in an elementary geometry class, there are sev-
eral notions of “center” of a triangle. We shall review them here and
show their relationships to Ceva’s Theorem.

Centroid. In the triangle 4ABC
lines (AX), (BY ), and (CZ)
are drawn so that (AX) bisects
[BC], (BY ) bisects [CA], and
(CZ) bisects [AB] That the lines
(AX), (BY ), and (CZ) are con-
current immediately follows from
Ceva’s Theorem as one has that

AZ

ZB
· BX
XC
· CY
Y Z

= 1× 1× 1 = 1.

The point of concurrency is called the centroid of 4ABC. The three
Cevians in this case are called medians.

Next, note that if we apply the Menelaus’ theorem to the triangle
4ACX and the transversal defined by the points B, Y and the centroid
P , then we have that

1 =
AY

Y C
· CB
BX
· XP
PA
⇒

1 = 1 · 2 · XP
PA
⇒ XP

PA
=

1

2
.

Therefore, we see that the distance of a triangle’s vertex to the centroid
is exactly 1/3 the length of the corresponding median.
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Orthocenter. In the trian-
gle 4ABC lines (AX), (BY ), and
(CZ) are drawn so that (AX) ⊥
(BC), (BY ) ⊥ (CA), and (CZ) ⊥
(AB). Clearly we either have

AZ

ZB
,
BX

XC
,
CY

Y A
> 0

or that exactly one of these ratios
is positive. We have

4ABY ∼ 4ACZ ⇒ AZ

AY
=
CZ

BY
.

Likewise, we have

4ABX ∼ 4CBZ ⇒ BX

BZ
=
AX

CZ
and 4CBY ∼ 4CAX

⇒ CY

CX
=
BY

AX
.

Therefore,

AZ

ZB
· BX
XC
· CY
Y A

=
AZ

AY
· BX
BZ
· CY
CX

=
CZ

BY
· AX
CZ
· BY
AX

= 1.

By Ceva’s theorem the lines (AX), (BY ), and (CZ) are concurrent, and
the point of concurrency is called the orthocenter of 4ABC. (The
line segments [AX], [BY ], and [CZ] are the altitudes of 4ABC.)

Incenter. In the triangle 4ABC lines
(AX), (BY ), and (CZ) are drawn so
that (AX) bisects BÂC, (BY ) bisects
AB̂C, and (CZ) bisects BĈA As we
show below, that the lines (AX), (BY ),
and (CZ) are concurrent; the point of
concurrency is called the incenter of
4ABC. (A very interesting “extremal”
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property of the incenter will be given in
Exercise 12 on page 153.) However, we shall proceed below to give
another proof of this fact, based on Ceva’s Theorem.

Proof that the angle bisectors of 4ABC are concurrent. In
order to accomplish this, we shall first prove the

Angle Bisector Theorem. We
are given the triangle 4ABC with
line segment [BP ] (as indicated to
the right). Then

AB

BC
=
AP

PC
⇔ AB̂P = PB̂C.

Proof (⇐). We drop altitudes
from P to (AB) and (BC); call the
points so determined Z and Y , re-
spectively. Drop an altitude from
B to (AC) and call the resulting
point X. Clearly PZ = PY as
4PZB ∼= 4PY B. Next, we have

4ABX ∼ 4APZ ⇒ AB

AP
=
BX

PZ
=
BX

PY
.

Likewise,

4CBX ∼ 4CPY ⇒ CB

CP
=
BX

PY
.

Therefore,

AB

BC
=
AP ·BX
PY

· PY

CP ·BX
=
AP

CP
.
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(⇒). Here we’re given that AB
BC = AP

PC . Let
P ′ be the point determined by the angle
bisector (BP ′) of AB̂C. Then by what
has already been proved above, we have
AP
BC = AP ′

P ′C . But this implies that

AP

PC
=
AP ′

P ′C
⇒ P = P ′.

Conclusion of the proof that angle bisectors are concurrent.
First of all, it is clear that the relevant ratios are all positive. By the
Angle Bisector Theorem,

AB

BC
=
AY

Y C
,
BC

CA
=
BZ

ZA
,
AB

AC
=
BX

XC
;

therefore,

AZ

BZ
× BX

XC
× CY

Y A
=
CA

BC
× AB

AC
× BC

AB
= 1.

Ceva’s theorem now finishes the job!

Exercises

1. The Angle Bisector Theorem involved the bisection of one of the
given triangle’s interior angles. Now let P be a point on the line
(AC) external to the segment [AC]. Show that the line (BP )
bisects the external angle at B if and only if

AB

BC
=
AP

PC
.

2. You are given the triangle 4ABC. Let X be the point of inter-
section of the bisector of BÂC with [BC] and let Y be the point
of intersection of the bisector of CB̂A with [AC]. Finally, let Z be
the point of intersection of the exterior angle bisector at C with
the line (AB). Show that X, Y, and Z are colinear.3

3What happens if the exterior angle bisector at C is parallel with (AB)?
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3. Given 4ABC and assume that X is on (BC), Y is on (AC) and
Z is on (AB). Assume that the Cevians (AX) (BY ), and (CZ)
are concurrent, meeting at the point P . Show that

PX

AX
+
PY

BY
+
PZ

CZ
= 1.

4. Given the triangle 4ABC with incenter P , prove that there exists
a circle C (called the incircle of 4ABC) with center P which is
inscribed in the triangle 4ABC. The radius r of the incircle is
often called the inradius of 4ABC.

5. Let 4ABC have side lengths a = BC, b = AC, and c = AB,
and let r be the inradius. Show that the area of 4ABC is equal
to r(a+b+c)

2 . (Hint: the incenter partitions the triangle into three
smaller triangles; compute the areas of each of these.)

6. Given the triangle4ABC. Show that the bisector of the internal
angle bisector at A and the bisectors of the external angles at B
and C are concurrent.

7. Given4ABC and points X, Y, and
Z in the plane such that

∠ABZ = ∠CBX,

∠BCX = ∠ACY,

∠BAZ = ∠CAY.

Show that (AX), (BY ), and (CZ)
are concurrent.

Z

Y

X

C

B

A

8. There is another notion of “center” of the triangle4ABC. Namely,
construct the lines l1, l2, and l3 so as to be perpendicular bisectors
of [AB], [BC], and [CA], respectively. After noting that Ceva’s
theorem doesn’t apply to this situation, prove directly that the
lines l1, l2, and l3 are concurrent. The point of concurrency is
called the circumcenter of 4ABC. (Hint: argue that the point
of concurrency of two of the perpendicular bisectors is equidistant
to all three of the vertices.) If P is the circumcenter, then the
common value AP = BP = CP is called the circumradius
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of the triangle 4ABC. (This is because the circumscribed circle
containing A, B, and C will have radius AP .)

9. 4ABC has side lengths AB = 21, AC = 22, and BC = 20.
Points D and E are on sides [AB] and [AC], respectively such
that [DE] ‖ [BC] and [DE] passes through the incenter of4ABC.
Compute DE.

10. Here’s another proof of Ceva’s the-
orem. You are given 4ABC and
concurrent Cevians [AX], [BY ],
and [CZ], meeting at the point P .
Construct the line segments [AN ]
and [CM ], both parallel to the Ce-
vian [BY ]. Use similar triangles to
conclude that

AY

Y C
=
AN

CM
,
CX

XB
=
CM

BP
,
BZ

ZA
=
BP

AN
,

N M

P

Y

XZ

C

B

A

and hence that
AZ

ZB
· BX
XC
· CY
Y A

= 1.

11. Through the vertices of the triangle 4PQR lines are drawn lines
which are parallel to the opposite sides of the triangle. Call the
new triangle4ABC. Prove that these two triangles have the same
centroid.

12. Given the triangle 4ABC, let C be the inscribed circle, as in
Exercise 4, above. Let X, Y, and Z be the points of tangency
of C (on the sides [BC], [AC], [AB], respectively) and show that
the lines (AX), (BY ), and (CZ) are concurrent. The point of
concurrency is called the Gergonne point of the circle C. (This
is very easy once you note that AZ = Y Z, etc.!)

13. In the figure to the right, the dotted
segments represent angle bisectors.
Show that the points P, R, and Q
are colinear.
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14. In the figure to the right, three cir-
cies of the same radius and centers
X, Y and Z are shown intersecting
at points A, B, C, and D, with D
the common point of intersection of
all three circles.
Show that

(a) D is the circumcenter of
4XY Z, and that

(b)D is the orthocenter of4ABC.
(Hint: note that Y ZCD is

a rhombus.)

15. Show that the three medians of a triangle divide the triangle into
six triangle of equal area.

16. Let the triangle 4ABC be given, and let A′ be the midpoint of
[BC], B′ the midpoint of [AC] and let C ′ be the midpoint of [AB].
Prove that

(i) 4A′B′C ′ ∼ 4ABC and that the ratios of the corresponding
sides are 1:2.

(ii) 4A′B′C ′ and 4ABC have the same centroid.

(iii) The four triangles determined within 4ABC by 4A′B′C ′
are all congruent.

(iv) The circumcenter of 4ABC is the orthocenter of 4A′B′C ′.

The triangle 4A′B′C ′ of 4ABC formed above is called the me-
dial triangle of 4ABC.

17. The figure below depicts a hexagram “inscribed” in two lines. Us-
ing the prompts given, show that the lines X, Y, and Z are colin-
ear. This result is usually referred to Pappus’ theorem.
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Step 1. Locate the point G on the lines (AE) and (FB); we shall
analyze the triangle 4GHI as indicated below.4

Step 2. Look at the transversals, applying Menelaus’ theorem to
each:

4Of course, it may be that (AE) and (FB) are parallel. In fact, it may happen that all analogous
choices for pairs of lines are parallel, which would render the present theme invalid. However, while
the present approach uses Menelaus’ theorem, which is based on “metrical” ideas, Pappus’ theorem
is a theorem only about incidence and colinearity, making it really a theorem belonging to “projective
geometry.” As such, if the lines (AE) and (BF ) were parallel, then projectively they would meet
“at infinity;” one could then apply a projective transformation to move this point at infinity to the
finite plane, preserving the colinearity of X, Y , and Z
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[DXB], so
GX

XI

ID

DH

HB

BG
= −1.

[AY F ], so
GA

AI

IY

Y H

HF

FG
= −1.

[CZE] (etc.)

[ABC] (etc.)

[DEF ] (etc)

Step 3. Multiply the above five factorizations of −1, cancelling
out all like terms!

18. This time, let the hexagram be in-
scribed in a circle, as indicated to
the right. By producing edges [AC]
and [FD] to a common point R

and considering the triangle4PQR
prove Pascal’s theorem, namely
that points X, Y , and Z are co-
linear. (Proceed as in the proof
of Pappus’ theorem: consider the
transversals [BXF ], [AYD], and
[CZE], multiplying together the
factorizations of−1 which each pro-
duces.)

19. A straight line meets the sides [PQ], [QR], [RS], and [SP ] of the
quadrilateral PQRS at the points U, V, W, and X, respectively.
Use Menelaus’ theorem to show that

PU

UQ
× QV

V R
× RW

WS
× SX

XP
= 1.
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20. The diagram to the right shows
three circles of different radii with
centers A, B, and C. The points
X, Y , and Z are defined by inter-
sections of the tangents to the cir-
cles as indicated. Prove that X, Y ,
and Z are colinear.

Z

Y

X

A

B

C

21. (The Euler line.) In this exercise you will be guided through the
proof that in the triangle 4ABC, the centroid, circumcenter, and
orthocenter are all colinear. The line so determined is called the
Euler line.

In the figure to the right, let G be the centroid of 4ABC, and

let O be the circumcenter. Locate P on the ray
−→
OG so that GP :

OG = 2 : 1.

(a) Let A′ be the intersection of
(AG) with (BC); show that
4OGA′ ∼ 4PGA. (Hint: re-
call from page 13 that GA :
GA′ = 2 : 1.)

(b) Conclude that (AP ) and (OA′)
are parallel which puts P on the
altitude through vertex A.

(c) Similarly, show that P is also
on the altitudes through ver-
tices B and C, and so P is the
orthocenter of 4ABC.



SECTION 1.2 Triangle Geometry 23

1.2.6 Brief interlude: laws of sines and cosines

In a right triangle 4ABC, where Ĉ
is a right angle, we have the familiar
trigonometric ratios: setting θ =
Â, we have

sin θ =
a

c
, cos θ =

b

c
;

the remaining trigonometric ratios (tan θ, csc θ, sec θ, cot θ) are all
expressable in terms of sin θ and cos θ in the familiar way. Of crucial
importance here is the fact that by similar triangles, these
ratios depend only on θ an not on the particular choices of
side lengths.5

We can extend the definitions of
the trigonometric functions to ar-
bitrary angles using coordinates in
the plane. Thus, if θ is any given
angle relative to the positive x-axis
(whose measure can be anywhere
between −∞ and∞ degrees, and if
(x, y) is any point on the terminal
ray, then we set

sin θ =
y√

x2 + y2
, cos θ =

x√
x2 + y2

.

Notice that on the basis of the above definition, it is obvious that
sin(180−θ) = sin θ and that cos(180−θ) = − cos θ. Equally important
(and obvious!) is the Pythagorean identity: sin2 θ + cos2 θ = 1.

5A fancier way of expressing this is to say that by similar triangles, the trigonometric functions
are well defined.
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Law of Sines. Given triangle
4ABC and sides a, b, and c, as in-
dicated, we have

sinA

a
=

sinB

b
=

sinC

c
.

Proof. We note that

1

2
bc sinA = area4ABC =

1

2
ba sinC,

and so

sinA

a
=

sinC

c
.

A similar argument shows that
sinB

b
is also equal to the above.

Law of Cosines. Given triangle
4ABC and sides a, b, and c, as in-
dicated, we have

c2 = a2 + b2 − 2ab cosC.
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Proof. Referring to the dia-
gram to the right and using the
Pythagorean Theorem, we infer
quickly that

c2 = (b− a cosC)2 + a2 sin2C

= b2 − 2ab cosC + a2 cos2C + a2 sin2C

= a2 + b2 − 2ab cosC,

as required.

Exercises

1. Using the Law of Sines, prove the Angle Bisector Theorem (see
page 15).

2. Prove Heron’s formula. Namely, for the triangle whose side
lengths are a, b, and c, prove that the area is given by

area =
√
s(s− a)(s− b)(s− c),

where s =
a+ b+ c

2
= one-half the perimeter of the triangle.

(Hint: if A is the area, then start with 16A2 = 4b2(c2−c2 cos2A) =
(2bc− 2bc cosA)(2bc + 2bc cosA). Now use the Law of Cosines to
write 2bc cosA in terms of a, b, and c and do a bit more algebra.)

3. In the quadrilateral depicted at the
right, the lengths of the diagonals
are a and b, and meet at an angle θ.
Show that the area of this quadri-
lateral is 1

2ab sin θ. (Hint: compute
the area of each triangle, using the
Law of Sines.)

a

b
θ
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4. In the triangle to the right, show

that c =

√
1 + i+

√
1− i

4
√

2
(where

i2 = −1)

1 1

c

135◦

5. Given 4ABC with C a right angle, let D be the midpoint of [AB]
and show that 4ADC is isosceles with AD = DC.

6. Given 4ABC with BC = a, CA = b, and AB = c. Let D be the
midpoint of [BC] and show that AD = 1

2

»
2(b2 + c2)− a2.

1.2.7 Algebraic results; Stewart’s theorem and Apollonius’
theorem

Stewart’s Theorem. We are
given the triangle 4ABC, together
with the edge BX, as indicated in
the figure to the right. Then

a(p2 + rs) = b2r + c2s.

Proof. We set θ = AB̂C; applying the Law of Cosines to 4AXB
yields

cos θ =
r2 + p2 − c2

2pr
.

Applying the Law of Cosines to the triangle 4BXC gives
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cos θ =
b2 − s2 − p2

2ps
.

Equating the two expressions and noting that a = r+s eventually leads
to the desired result.

Corollary [Apollonius Theo-
rem]. We are given the triangle
4ABC, with sides a, b, and c, to-
gether with the median BX, as in-
dicated in the figure to the right.
Then

b2 + c2 = 2m2 + a2/2.

If b = c (the triangle is isosceles),
then the above reduces to

m2 + (a/2)2 = b2.

This follows instantly from Stewart’s Theorem.

Exercises

1. Assume that the sides of a triangle are 4, 5, and 6.

(a) Compute the area of this triangle.

(b) Show that one of the angles is twice one of the other angles.

2. (The Golden Triangle) You are
given the triangle depicted to the
right with 4ABD ∼ 4BCA Show

that
DC

AD
=

√
5 + 1

2
, the golden

ratio.
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3. Let 4ABC be given with sides a = 11, b = 8, and c = 8. Assume
that D and E are on side [BC] such that [AD], [AE] trisect BÂC.
Show that AD = AE = 6.

4. You are given the equilateral trian-
gle with sides of unit length, de-
picted to the right. Assume also
that AF = BD = CE = r for
some positive r < 1. Compute the
area of the inner equilateral trian-
gle. (Hint: try using similar trian-
gles and Stewart’s theorem to com-
pute AD = BE = CF .)

1.3 Circle Geometry

1.3.1 Inscribed angles

Lemma. If a triangle 4ABC is inscribed in a circle with [AB] being a
diameter, then AĈB is a right angle.

Proof. The diagram to the right
makes this obvious; from 2θ+ 2φ =
180, we get θ + φ = 90◦.

Inscribed Angle Theorem.

The measure of an angle inscribed
in a circle is one-half that of the
inscribed arc.
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Proof. We draw a diameter, as
indicated; from the above lemma,
we see that θ1 + ψ = 90. This
quickly leads to φ1 = 2θ1. Similarly
φ2 = 2θ2, and we’re done.

Before proceeding, we shall find
the following concept useful. We
are given a circle and points A, B,
and P on the circle, as indicated
to the right. We shall say that the
angle AP̂B opens the arc ĂB.
A degenerate instance of this is
when B and P agree, in which
case a tangent occurs. In this case
we shall continue to say that the given angle opens the arc ĂB.

As an immediate corollary to the Inscribed Angle Theorem, we get
the following:

Corollary. Two angles which
open the same are are equal.
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Exercises

1. In the diagram to the right, the arc
ĂB has a measure of 110◦ and the
measure of the angle AĈB is 70◦.
Compute the measure of AD̂B.6

2. Let [AB ] be a diameter of the circle C and assume that C is a
given point. If AĈB is a right angle, then C is on the circle C.

3. Let C be a circle having center
O and diameter d, and let A, B,
and C be points on the circle. If
we set α = BÂC, then sinα =
BC/d. (Hint: note that by the
inscribed angle theorem, BÂC =
PÔC. What is the sine of PÔC?)

4. In the given figure AF = FC and
PE = EC.

(a) Prove that triangle 4FPA is
isosceles.

(b) Prove that AB +BE = EC.

5. A circle is given with center O. The
points E, O, B, D, and E are col-
inear, as are X, A, F, and C. The
lines (XC) and (FD) are tangent
to the circle at the points A and D

respectively. Show that

(a) (AD) bisects BÂC;

(b) (AE) bisects BÂX.
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6. Let 4ABC have circumradius R. Show that

Area4ABC =
R(a cosA+ b cosB + c cosB)

2
,

where a = BC, b = AC, and c = AB. (See exercise 5, page 17 for
the corresponding result for the inscribed circle.)

Circle of Apollonius

Circle of Apollonius. Assume that c 6= 1 is a constant and that
A and B are two given points. Then the locus of points

{
P
∣∣∣ PA
PB

= c

}

is a circle.

Proof. This is actually a very sim-
ple application of the Angle Bisec-
tor Theorem (see also Exercise 1,
page 16). Let P1 and P2 lie on the
line (AB) subject to

AP1

P1B
= c =

AP2

BP2
.

If we let P an arbitrary point also subject to the same condition, then
from the Angle Bisector Theorem we infer that AP̂P1 = P1P̂B and
BP̂P2 = 180− AP̂B.
This instantly implies that P1P̂P2 is a right angle, from which we con-
clude (from Exercise 2, page 30 above) that P sits on the circle with
diameter [P1P2], proving the result.
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1.3.2 Steiner’s theorem and the power of a point

Secant-Tangent Theorem. We
are given the a circle, a tangent line
(PC) and a secant line (PA), where
C is the point of tangency and where
[AB] is a chord of the circle on the
secent (see the figure to the right.
Then

PC2 = PA× PB.

Proof. This is almost trivial;
simply note that PĈA and AB̂C

open the same angle. Therefore,
4PCA ∼ 4PBC, from which the
conclusion follows.

There is also an almost purely algebraic proof of this result.7

The following is immediate.

7If the radius of the circle is r and if the distance from P to the center of the circle is k, then
denoting d the distance along the line segment to the two points of intersection with the circle and
using the Law of Cosines, we have that r2 = k2 + d2 − 2kd cos θ and so d satisfies the quadratic
equation

d2 − 2kd cos θ + k2 − r2 = 0.

The product of the two roots of this equation is k2−d2, which is independent of the indicated angle
θ.

P

d
r

k
θ
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Corollary. (Steiner’s Theo-
rem) We are given the a circle, and
secant lines (PA) and (PC), where
(PA) also intersects the circle at B
and where (PC) also intersects the
circle at D.

PA× PB = PC × PD.

Proof. Note that only the case
in which P is interior to the circle
needs proof. However, since angles
CB̂P and PD̂A open the same are,
they are equal. Therefore, it follows
instantly that 4PDA ∼ 4PBC,
from which the result follows.

The product PA × PB of the distances from the point P to the
points of intersection of the line through P with the given circle is
independent of the line; it is called the power of the point with
respect to the circle. It is customary to use signed magnitudes here,
so that the power of the point with respect to the circle will be negative
precisely when P is inside the circle. Note also that the power of the
point P relative to a given circle C is a function only of the distance
from P to the center of C. (Can you see why?)

The second case of Steiner’s theorem is sometimes called the “Inter-
secting Chords Theorem.”

Exercises

1. In the complex plane, graph the equation |z+ 16| = 4|z+ 1|. How
does this problem relate with any of the above?
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2. Prove the “Explicit Law of Sines,”
namely that if we are given the tri-
angle4ABC with sides a, b, and c,
and if R is the circumradius, then

a

sinA
=

b

sinB
=

c

sinC
= 2R.

Conclude that the perimeter of the
triangle is
a+b+c = 2R(sinA+sinB+sinC).

3. Let a circle be given with center O and radius r. Let P be a given
point, and let d be the distance OP . Let l be a line through P

intersecting the circle at the points A and A′. Show that

(a) If P is inside the circle, then PA× PA′ = r2 − d2.

(b) If P is outside the circle, then PA× PA′ = d2 − r2.

Therefore, if we use sensed magnitudes in defining the power of P
relative to the circle with radius r, then the power of P relative to
this circle is always d2 − r2.

4. Given the circle C and a real number p, describe the locus of all
points P having power p relative to C.

5. Let P be a point and let C be a circle. Let A and A′ be antipodal
points on the circle (i.e., the line segment [AA′] is a diameter of
C). Show that the power of P relative to C is given by the vector

dot product
−→
PA ·

−→
PA′. (Hint: Note that if O is the center of C,

then
−→
PA=

−→
PO +

−→
OA and

−→
PA′=

−→
PO −

−→
OA. Apply exercise 3.)
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6. Prove Van Schooten’s theorem.
Namely, let 4ABC be an equilat-
eral triangle, and let C be the cir-
cumscribed circle. Let M ∈ C
be a point on the shorter arc B̆C.
Show that AM = BM + CM .
(Hint: Construct the point D sub-
ject to AM = DM and show that
4ABM ∼= 4ACD.)

7. The figure to the right shows the
triangle 4ABC inscribed in a cir-
cle. The tangent to the circle at
the vertex A meets the line (BC)
at D, the tangent to the circle at B
meets the line (AC) at E, and the
tangent to the circle at C meets the
line (AB) at F . Show that D, E,
and F are colinear. (Hint: note
that4ACD ∼ 4BAD (why?) and
from this you can conclude that
DB
DC =

(
AB
AC

)2
. How does this help?)

1.3.3 Cyclic quadrilaterals and Ptolemy’s theorem

As we have already seen, any triangle can be incribed in a circle; this
circle will have center at the circumcenter of the given triangle. It is
then natural to ask whether the same can be said for arbitrary polygons.
However, a moment’s though reveals that this is, in general false even
for quadrilaterals. A quadrilateral that can be incribed in a circle is
called a cyclic quadrilateral.
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Theorem.The quadrilateral ABCD is cyclic if and
only if

AB̂C + CD̂A = CÂB +BĈD = 180◦.(1.1)

In other words, both pairs of opposite angles add to
180◦.

Proof. If the quadrilateral is cyclic, the result follows easily from
the Inscribed Angle theorem. (Draw a picture and check it out!) Con-
versely, assume that the condition holds true. We let C be circumscribed
circle for the triangle 4ABC. If D were inside this circle, then clearly
we would have AB̂C+CD̂A > 180◦. If D were outside this circle, then
AB̂C + CD̂A < 180◦, proving the lemma.

The following is even easier:

Theorem. The quadrilateral ABCD is cyclic
if and only if DÂC = DB̂C.

Proof. The indicated angles open the same arc. The converse is also
(relatively) easy.

Simson’s line (Wallace’s line). There is another line that can be natu-
rally associated with a given triangle 4ABC, called Simson’s Line (or
sometimes Wallace’s Line), constructed as follows.

Given the triangle 4ABC, construct the circumcenter C and arbi-
trarily choose a point P on the circle. From P drop perpendiculars
to the lines (BC), (AC), and (AB), calling the points of intersection
X, Y, and Z, as indicated in the figure below.
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Theorem. The points X, Y, and
Z, constructed as above are colin-
ear. The resulting line is called
Simson’s line (or Wallace’s line)
of the triangle 4ABC.

Proof. Referring to the diagram we note that PẐB and P”XB are
both right angles. This implies that XP̂Z + ZB̂X = 180◦ and so the
quadrilateral PXBZ is cyclic. As a result, we conclude that P”XZ =
PB̂Z. Likewise, the smaller quadrilateral PXCY is cyclic and so
PĈA = PĈY = P”XY . Therefore,

P”XZ = PB̂Z

= PB̂A

= PĈA (angles open the same arc)

= PĈY

= P”XY ,

which clearly implies that X, Y , and Z are coliner.

Ptolemy’s Theorem.If the quadri-
lateral ABCD is cyclic, then the
product of the two diagonals is equal
to the sum of the products of the op-
poside side lengths:

AC ·BD = AB · CD + AD ·BC.

When the quadrilateral is not cyclic, then

AC ·BD < AB · CD + AD ·BC.
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Proof. Whether or not the
quadrilateral is cyclic, we can con-
struct the point E so that 4CAD
and 4CEB are similar. This im-
mediately implies that

CE

CA
=
CB

CD
=
BE

DA
,

from which we obtain

BE =
CB ·DA
CD

. (1.2)

Also, it is clear that EĈA = BĈD; since also

CD

CA
=
CB

CE
,

we may infer that 4ECA ∼ 4BCD. Therefore,

EA

BD
=
CA

CD
,

forcing

EA =
CA ·DB
CD

. (1.3)

If it were the case that ABCD were cyclic, then by (1.1) we would
have

CB̂E + AB̂C = CD̂A+ AB̂C = 180◦.

But this clearly implies that A, B, and E are colinear, forcing

EA = AB +BE

Using (1.2) and (1.3) we get

CA ·DB
CD

= AB +
CB ·DA
CD

,
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proving the first part of Ptolemy’s theorem.

Assume, conversely, that ABCD is not cyclic, in which case it follows
that

CB̂E + AB̂C = CD̂A+ AB̂C 6= 180◦.

This implies that the points A, B, and E form a triangle from which
it follows that EA < AB+BE. As above we apply (1.2) and (1.3) and
get

CA ·DB
CD

< AB +
CB ·DA
CD

,

and so

CA ·DB < AB · CD + CB ·DA,

proving the converse.

Corollary. (The Addition Formulas for Sine and Cosine) We
have, for angles α and β, that

sin(α+β) = sinα cos β+sin β cosα; cos(α+β) = cosα cos β−sinα sin β.

Proof. We shall draw a cyclic quadri-
lateral inside a circle having diameter
AC = 1 (as indicated), and leave the de-
tails to the reader. (Note that by Exer-
cise 3 on page 30, we have that BD =
sin(α + β) (see the figure). To obtain
the addition formula for cos, note that
cosα = sin(α + π/2).)
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Exercises

1. [AB] and [AC] are chords of a circle with center O. X and Y are
the midpoints of [AB] and [AC], respectively. Prove that O, X, A,
and Y are concyclic points.

2. Derive the Pythagorean Theorem from Ptolemy’s theorem. (This
is very easy!)

3. Derive Van Schooten’s theorem (see page 35) as a consequence of
Ptolemy’s theorem. (Also very easy!)

4. Use the addition formula for the sine to prove that if ABCD is a
cyclic quadrilateral, then AC ·BD = AB ·DC + AD ·BC.

5. Show that if ABCD is a cyclic quadrilateral with side length
a, b, c, and d, then the area K is given by

K =
√

(s− a)(s− b)(s− c)(s− d),

where s = (a+ b+ c+ d)/2 is the semiperimeter.8

1.4 Internal and External Divisions; the Harmonic

Ratio

The notion of internal and exter-
nal division of a line segment [AB]
is perhaps best motivated by the
familiar picture involving internal
and external bisection of a trian-
gle’s angle (see the figure to the

right). Referring to this figure, we say that the point X divides the
segment [AB] internally and that the point Y divides the segment
[AB] externally. In general, if A, B, and X are colinear points, we

8This result is due to the ancient Indian mathematician Brahmagupta (598–668).



SECTION 1.4 Harmonic Ratio 41

set A;X;B =
AX

XB
(signed magnitudes); if A;X;B > 0 we call this

quantity the internal division of [AB], and if A;X;B < 0 we call
this quantity the external division of [AB]. Finally, we say that the
colinear points A, B, X, and Y are in a harmonic ratio if

A;X;B = −A;Y ;B;

that is to say, when

AX

XB
= −AY

Y B
(signed magnitudes).

It follows immediately from the Angle Bisector Theorem (see page 15)
that when (BX) bisects the interior angle at C in the figure above and
(BY ) bisects the exterior angle at C, then A, B, X, and Y are in har-
monic ratio.

Note that in order for the points A, B, X, and Y be in a harmonic
ratio it is necessary that one of the points X, Y be interior to [AB] and
the other be exterior to [AB]. Thus, if X is interior to [AB] and Y is
exterior to [AB] we see that A, B, X, and Y are in a harmonic ratio
precisely when

Internal division of [AB] by X = −External division of [AB] by Y .

Exercises

1. Let A,B, and C be colinear points with (A;B;C)(B;A;C) = −1.
Show that the golden ratio is the positive factor on the left-hand
side of the above equation.

2. Let A, B, and C be colinear points and let λ = A;B;C. Show
that under the 6=3! permutations of A, B, C, the possible values
of A;B;C are

λ,
1

λ
, −(1 + λ), − 1

1 + λ
, −1 + λ

λ
, − λ

1 + λ
.
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3. Let A, B, X, and Y be colinear points. Define the cross ratio by
setting

[A,B;X, Y ] =
AX

AY
· Y B
XB

(signed magnitudes).

Show that the colinear points A, B, X, and Y are in harmonic
ratio if [A,B;X, Y ] = −1.

4. Show that for colinear points A, B, X, and Y one has

[A,B;X, Y ] = [X, Y ;A,B] = [B,A;Y,X] = [Y,X;B,A].

Conclude from this that under the 4! = 24 permutations ofA, B, X,
and Y , there are at most 6 different values of the cross ratio.

5. Let A, B, X, and Y be colinear points, and set λ = [A,B;X, Y ].
Show that under the 4! permutations of A, B, X, and Y , the pos-
sible values of the cross ratio are

λ,
1

λ
, 1− λ, 1

1− λ
,

λ

λ− 1
,
λ− 1

λ
.

6. If A, B, X, and Y are in a harmonic ratio, how many possible
values are there of the cross ratio [A,B;X, Y ] under permutations?

7. Let A and B be given points.

(a) Show that the locus of points {M |MP = 3MQ} is a circle.

(b) Let X and Y be the points of intersection of (AB) with the cir-
cle described in part (a) above. Show that the points A, B, X,
and Y are in a harmonic ratio.

8. Show that if [A,B;X, Y ] = 1, then either A = B or X = Y .

9. The harmonic mean of two real numbers is a and b is given by
2ab

a+ b
. Assume that the points A, B, X, and Y are in a harmonic
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ratio. Show that AB is the harmonic mean of AX and AY .9

10. The figure to the right depicts two
circles having an orthogonal in-
tersection. (What should this
mean?) Relative to the diagram to
the right (O and O′ are the centers),
show that A, C, B, and D are in a
harmonic ratio.

11. The figure to the right shows a
semicircle with center O and di-
ameter XZ. The segment [PY ]
is perpendicular to [XZ] and the
segment [QY ] is perpendicular to
[OP ]. Show that PQ is the har-
monic mean of XY and Y Z.

O

Q

P

ZYX

1.5 The Nine-Point Circle

One of the most subtle mysteries of Euclidean geometry is the existence
of the so-called “nine-point circle,” that is a circle which passes through
nine very naturally pre-prescribed points.

To appreciate the miracle which this presents, consider first that
arranging for a circle to pass through three noncollinear points is, of
course easy: this is the circumscribed circle of the triangle defined by
these points (and having center at the circumcenter). That a circle will
not, in general pass through four points (even if no three are colinear)

9The harmonic mean occurs in elementary algebra and is how one computes the average rate at
which a given task is accomplished. For example, if I walk to the store at 5 km/hr and walk home
at a faster rate of 10 km/hr, then the average rate of speed which I walk is given by

2× 5× 10

5 + 10
=

20

3
km/hr.
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we need only recall that not all quadrilaterals are cyclic. Yet, as we
see, if the nine points are carefully—but naturally—defined, then such
a circle does exist!

Theorem. Given the triangle 4ABC, construct the following nine
points:

(i) The bases of the three altitudes;

(ii) The midpoints of the three sides;

(iii) The midpoints of the segments join-
ing the orthocenter to each of the
vertices.

Then there is a unique circle passing through these nine points.

Proof. Refer to the picture below, where A, B, and C are the vertices,
and X, Y, and Z are the midpoints. The midpoints referred to in (iii)
above are P, Q, and R. Finally, O is the orthocenter of 4ABC.

C

X

B

Q

ZZ'A
R

O

P
Y'
Y

X'

By the Midpoint Theorem (Exercise 3 on page 6 applied to4ACO, the
line (Y P ) is parallel to (AX ′). Similarly, the line (Y Z) is parallel to
(BC). This implies immediately that ∠PY Z is a right angle. SImilarly,
the Midpoint Theorem applied to 4ABC and to 4CBO implies that
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(XZ) and (AC) are parallel as are (PX) and (BY ′). Therefore, ∠PXZ
is a right angle. By the theorem on page 35 we conclude that the
quadrilateral Y PXZ is cyclic and hence the corresponding points all
lie on a common circle. Likewise, the quadrilateral PXZZ ′ is cyclic
forcing its vertices to lie on a common circle. As three non-collinear
points determine a unique circle (namely the circumscribed circle of
the corresponding triangle—see Exercise 8 on page 17) we have already
that P, X, Y, Z, and Z ′ all lie on a common circle.

In an entirely analogous fashion we can show that the quadrilaterals
Y XQZ and Y XZR are cyclic and so we now have that P, Q, R, X, Y, Z,
and Z ′ all lie on a common circle. Further analysis of cyclic quadrilat-
erals puts Y ′ and Z ′ on this circle, and we’re done!

C

X

B

Q

ZZ'A

R

O

P

Y'
Y

X'

Note, finally, that the nine-point circle of 4ABC lies on this trian-
gle’s Euler line (see page 22).

Exercises.

1. Prove that the center of the nine-point circle is the circumcenter
of 4XY Z.

2. Referring to the above diagram, prove that the center of the nine-
point circle lies at the midpoint of the segment [NO], where N is
the orthocenter of 4ABC.
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3. Given 4ABC, let O be its orthocenter. Let C be the nine-point
circle of 4ABC, and let C ′ be the circumcenter of 4ABC. Show
that C bisects any line segment drawn from O to C ′.

1.6 Mass point geometry

Mass point geometry is a powerful and useful viewpoint particularly
well suited to proving results about ratios—especially of line segments.
This is often the province of the Ceva and Menelaus theorems, but, as
we’ll see, the present approach is both easier and more intuitive.

Before getting to the definitions,
the following problem might help
us fix our ideas. Namely, con-
sider 4ABC with Cevians [AD]
and [CE] as indicated to the right.
Assume that we have ratios BE :
EA = 3 : 4 and CD : DB = 2 : 5.
Compute the ratios EF : FC and
DF : FA.

Both of the above ratios can be computed fairly easily using the con-
verse to Menalaus’ theorem. First consider 4CBE. From the converse
to Menelaus’ theorem, we have, since A, F, and D are colinear, that
(ignoring the minus sign)

1 =
2

5
× 7

4
× EF

FC
,

forcing EF : FC = 10 : 7.

Next consider 4ABD. Since the points E, F, and C are colinear,
we have that (again ignoring the minus sign)

1 =
4

3
× 7

2
× DF

FA
,
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and so DF : FA = 3 : 14.

Intuitively, what’s going on can be viewed in the following very tan-
gible (i.e., physical) way. Namely, if we assign “masses” to the points
of 4ABC, say

A has mass
3

2
; B has mass 2; and C has mass 5,

then the point E is at the center of mass of the weighted line segment

[AB] and has mass
7

2
, and D is at the center of mass of the weighted line

segment [BC] and has mass 7. This suggests that F should be at the
center of mass of both of the weighted line segments [CE] and [AD], and
should have total mass 17

2 . This shows why DF : FA = 3
2 : 7 = 3 : 14

and why EF : FC = 5 : 7
2 = 10 : 7.

We now formalize the above intuition as follows. By a mass point
we mean a pair (n, P )—usually written simply as nP—where n is a
positive number and where P is a point in the plane.10 We define an
addition by the rule: mP + nQ = (m + n)R, where the point R is
on the line segment [PQ], and is at the center of mass inasmuch as
PR : RQ = n : m. We view this as below.

•
mP

•
nQ

•
(m+n)R

n m

It is clear that the above addition is commutative in the sense that
xP + yQ = yQ+ xP . However, what isn’t immediately obvious is that
this addition is associative, i.e., that xP+(yQ+zR) = (xP+yQ)+zR
for positive numbers x, y, and z, and points P, Q, and R. The proof is
easy, but it is precisely where the converse to Menelaus’ theorem comes
in! Thus, let

yQ+ zR = (y + z)S, xP + yQ = (x+ y)T.

Let W be the point of intersection of the Cevians [PS] and [RT ].

10Actually, we can take P to be in higher-dimensional space, if desired!
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Applying the converse to Menelaus’ theorem to the triangle4PQS, we
have, since T, W, and R are colinear, that (ignore the minus sign)

1 =
PT

TQ
× QR

RS
× SW

WP
=
y

x
× y + z

y
× SW

WP
.

This implies that PW : WS = (y + z) : x, which implies that

(x+ y + z)W = xP + (y + z)S = xP + (yQ+ zR).

Similarly, by applying the converse of Menelaus to 4QRT , we have
that (x+ y+ z)W = (x+ y)T + zR = (xP + yQ) + zR, and we’re done,
since we have proved that

xP + (yQ+ ZR) = (x+ y + z)W = (xP + yQ) + zR.

The point of all this is that given mass points xP, yQ, and zR, we
may unambiguously denote the “center of mass” of these points by
writing xP + yQ+ zR.

Let’s return one more time to the example introduced at the begin-
ning of this section. The figure below depicts the relevant information.
Notice that the assigments of masses to A, B, and C are uniquely de-
termined up to a nonzero multiple.
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The point F is located at the center of mass—in particular it is on the
line segments [AD] and [CE]; furthermore its total mass is 17

2 . As a
result, we have that AF : FD = 7 : 3

2 = 14 : 3 and CF : FE = 7
2 : 5 =

14 : 10, in agreement with what was proved above.

We mention in passing that mass point geometry can be used to
prove Ceva’s theorem (and its converse) applied to 4ABC when the
Cevians [AX], [BY ], and [CZ] meet the triangle’s sides [BC], [AC],
and [AB], respectively. If we are given that

AZ

ZB
× BX

XC
× CY

Y A
= 1,

we assign mass ZB to vertex A, mass AZ to vertex B, and mass AZ·BA
XC

to vertex C. Since ZB : AZ·BX
XC = CY

Y A , we see that the center of mass
will lie on the intersection of the three Cevians above. Conversely,
if we’re given the three concurrent Cevians [AX], [BY ], and [CZ],
then assigning masses as above will place the center of mass at the
intersection of the Cevians [AX] and [CZ]. Since the center of mass is
also on the Cevian [BY ], we infer that

CY

Y A
=
ZB ·XC
AZ ·BX

,

and we’re done!

We turn to a few examples, with the hopes of conveying the utility
of this new approach. We emphasize: the problems that follow can
all be solved without mass point geometry; however, the mass point
approach is often simpler and more intuitive!
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Example 1. Show that the medians of 4ABC are concurrent and the
point of concurrency (the centroid) divides each median in a ratio of
2:1.

Solution. We assign mass 1 to each of the points A, B, and C, giving
rise to the following weighted triangle:

The point G, begin the center of mass, is on the intersection of all three
medians—hence they are concurrent. The second statement is equally
obvious as AG : GD = 2 : 1; similarly for the other ratios.

Example 2. In 4ABC, D is the midpoint of [BC] and E is on [AC]
with AE : EC = 1 : 2. Letting G be the intersections of the Cevians
[AD] and [BE], find AG : GD and BG : GE.

Solution. The picture below tells the story:

From the above, one has AG : GD = 1 : 1, and BG : GE = 3 : 1.
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Example 3. Prove that the angle bisectors of 4ABC are concurrent.

Proof. Assume that AB = c, AC = b, BC = a and assign masses
a, b, and c to points A, B, and C, respectively. We have the following
picture:

Note that as a result of the Angle Bisector Theorem (see page 15) each
of the Cevians above are angle bisectors. Since the center of mass is on
each of these Cevians, the result follows.

The above applications have to do with Cevians. The method of
mass point geometry also can be made to apply to transversals, i.e.,
lines through a triangle not passing through any of the vertices. We
shall discuss the necessary modification (i.e., mass spltting) in the
context of the following example.

Solution. The above examples were primarily concerned with com-
puting ratios along particular Cevians. In case a transversal is in-
volved, then the method of “mass splitting” becomes useful. To best
appreciate this, recall that if in the triangle 4ABC we assign mass a
to A, b to B, and c to C, then the center of mass P is located on the
intersection of the three Cevians (as depicted below). However, sup-
pose that we “split” the mass b at B into two components b = b1 + b2,
then the center of mass P will not only lie at the intersection of the
concurrent Cevians, it will also lie on the transversal [XZ]; see below:
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Note that in the above diagram, QP : PR = (b2 + c) : (a+ b1) because
P is the center of mass of [QR].

Example 4. In the figure below, compute EF : FD and BF : FG.

Solution. We shall arrange the masses so that the point F is the
center of mass. So we start by assigning weights to A and B to obtain
a balance [AB] at E: clearly, assigning mass 4 to B and 3 to A will
accomplish this. Next, to balance [AC] at G we need to assign mass
9
7 to C. Finally, to balance [BC] at D, we need another mass of 18

35 at
B, producing a total mass of 4 + 18

35 at B. The point F is now at the
center of mass of the system! See the figure below:
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From the above, it’s easy to compute the desired ratios:

EF : FD = 9
5 : 7 = 9 : 35 and BF : FG = 30

7 : 158
35 = 75 : 79.

Exercises

1. In 4ABC, D is the midpoint of [BC] and E is on [AC] with
AE : EC = 1 : 2. Let G be the intersection of segments [BE] and
[AD] and find AG : GD and BG : GE.

2. In 4ABC, D is on [AB] with AD = 3 and DB = 2. E is on [BC]
iwht BE = 3 and EC = 4. Compute EF : FA.

3. In quadrilateral ABCD, E, F, G, and H are the trisection points
of [AB], [BC], [CD], and DA nearer A, C, C, and A, respectively.
Show that EFGH is a parallogram. (Show that the diagonals
bisect each other.)

4. Let [AD] be an altitude in 4ABC, and assume that ∠B = 45◦

and ∠C = 60◦. Assume that F is on [AC] such that [BF ] bisects
∠B. Let E be the intersection of [AD] and [BF ] and compute
AE : ED and BE : EF .



54 CHAPTER 1 Advanced Euclidean Geometry

5. 11 In triangle ABC, point D is on [BC] with CD = 2 and DB = 5,
point E is on [AC] with CE = 1 and EA = 3, AB = 8, and [AD]
and [BE] intersect at P . Points Q and R lie on [AB] so that [PQ]
is parallel to [CA] and [PR] is parallel to [CB]. Find the ratio of
the area of 4PQR to the area of 4ABC.

6. In 4ABC, let E be on [AC] with AE : EC = 1 : 2, let F be
on [BC] with BF : FC = 2 : 1, and let G be on [EF ] with
EG : GF = 1 : 2. Finally, assume that D is on [AB] with C, D, G
colinear. Find CG : GD and AD : DB.

7. In 4ABC, let E be on [AB] such that AE : EB = 1 : 3, let D be
on [BC] such that BD : DC = 2 : 5, and let F be on [ED] such
that EF : FD = 3 : 4. Finally, let G be on [AC] such that the
segment [BG] passes through F . Find AG : GC and BF : FG.

8. You are given the figure to the right.

(a) Show that BJ : JF = 3 : 4 and
AJ : JE = 6 : 1.

(b) Show that
DK : KL : LC =
EJ : JK : KA =
FL : LJ : JB = 1 : 3 : 3.

(c) Show that the area of4JKL is one-seventh the area of4ABC.

(Hint: start by assigning masses 1 to A, 4 to B and 2 to C.)

9. Generalize the above result by replacing “2” by n. Namely, show
that the area ratio

area4JKL : area4ABC = (n− 1)3 : (n3 − 1).

(This is a special case of Routh’s theorem .)

11This is essentially problem #13 on the 2002 American Invitational Mathematics Exami-
nation (II).



Chapter 2

Discrete Mathematics

2.1 Elementary Number Theory

While probably an oversimplication, “number theory” can be said to
be concerned with the mathematics of the ordinary whole numbers:

0, ±1, ±2, . . . .

We shall, for convenience denote the set of whole numbers by Z.

Notice that the famous Fermat conjecture1 falls into this context,
as it asserts that

For any integer n ≥ 3, the equation

xn + yn = zn

has no solution with x, y, z ∈ Z
with x, y, z 6= 0.

Of course, the assertion is false with n = 1 or 2 as, for instance, 32+42 =
52.

1which was proved by Andrew Wiles in 1995
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2.1.1 The division algorithm

Very early on, students learn the arithmetic of integers, namely, that
of addition, subtraction, multiplication, and division. In particular,
students learn (in about the fifth or sixth grade) that a positive integer
a can be divided into a non-negative integer b, resulting in a quotient
q and a remainder r:

b = qa+ r, 0 ≤ r < a.

For instance, the following division of 508 by 28 should serve as an
ample reminder.

18
28 |508

28
228
224

4

In this case the quotient is 18 and the remainder is 4:

508 = 18 · 28 + 4.

The fact that the above is always possible is actually a theorem:

Theorem. (Division Algorithm) Let a, b ∈ Z, where a > 0, b ≥ 0.
Then there exist unique integers q and r such that

b = qa+ r, where 0 ≤ r < a.

Proof. Let S be the following subset of the set Z of integers:

S = {b− xa | x ∈ Z and b− xa ≥ 0}.
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Now let r be the smallest element of this set; note that r ≥ 0, and let
q be defined so that r = b− qa. Therefore, we already have b = qa+ r.
Notice that if r 6≤ a, then we may set r′ = r − a ≥ 0 and so

r′ = r − a− a = b− qa− a = b− (q + 1) a.

We see, therefore, that r′ ∈ S; since r′ ≥ 0 this contradicts our choice
of r in the first place!

Next, we shall show that the quotient and remainder are unique. There-
fore, assume that

b = qa+ r = q′a+ r′, where 0 ≤ r, r′ < a.

Therefore we conclude that (q − q′) a = r′ − r. Since 0 ≤ r′, r < a we
see that |r′−r| < a and so |(q−q′) a| = |r′−r| < a which clearly forces
q − q′ = 0. But then r′ = r and we’re done!2

In the above, if r = 0, and so b = qa, we say that a divides b and
write a | b.

If a, b ∈ Z and not both are 0, we say that the integer d is the
greatest common divisor of a and b if

(i) d > 0

(ii) d | a and d | b,

(iii) if also d′ | a and d′ | b and if d′ > 0, then d′ ≤ d.

Example. In small examples, it’s easy to compute the greatest com-
mon divisor of integers. For example, the greatest common divisor of
24 and 16 is easily seen to be 4. In examples such as this, the greatest

2The assumption in the theorem that a and b are both non-negative was made only out of
convenience. In general, the division algorithm states that for two integers a, b ∈ Z, with a 6= 0,
there exist unique integers q and r such that

b = qa+ r, where 0 ≤ r < |a|.
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common divisor is typically obtained by factoring the given numbers
into prime factors. However, there is an even more efficient approach,
based on the “Euclidean trick” and on the “Euclidean algorithm.”

Theorem. (The Euclidean Trick) Let a, b ∈ Z, not both zero. Then
the greatest common divisor d of a and b exists. Furthermore, d has
the curious representation as

d = sa+ tb,

for suitable integers s and t.

Proof. Consider the set

S = {xa+ yb | x, y ∈ Z and xa+ yb > 0},

and let d be the smallest integer in S (so d > 0), and let d = sa + tb.
Since the greatest common divisor of |a| and |b| is clearly the same as
the greatest common divisor of a and b, we may as well just assume
that a and b are both positive. Apply the division algorithm and divide
d into both a and b:

a = q1d+ r1, b = q2d+ r2, 0 ≤ r1, r2 < d.

But then r1 = a−q1d = a−q1(sa+ tb) = (1−q1) a−q1tb, we see that if
r1 > 0, then r1 ∈ S, which is impossible since r1 < d, and d was taken
to be the smallest element of S. Therefore, we must have that r1 = 0,
which means that d | a. Similarly, r2 = 0 and so d | b. If d′ were another
positive integer which divides a and b, then a = md′ and b = nd′, and
so d = sa + tb = s(md′) + t(nd′) = (sm + tn) d′ which clearly forces
d′ | d and so d′ ≤ d.

Notation: We shall denote the greatest common divisor of a and b
by gcd(a, b).

Corollary. If d = gcd(a, b) and if d′ is any integer satisfying d′ | a
and d′ | b, then also d′ | d.

Proof. This is easy! There exist integers s and t with sa + tb = d;
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given that d′ divides both a and b, then obviously d′ divides the sum
sa+ tb = d, i.e., d′ | d also.

We shall present the following without a formal proof. The interested
reader should to able to trace through the steps.

Theorem. (The Euclidean Algorithm) Let a and b be integers, and
assume that a > 0. Perform the following divisions:

b = q1a+ r1, 0 ≤ r1 < a.

If r1 = 0 then a | b and so, in fact a = gcd(a, b). If r1 > 0, divide r1 into
a:

a = q2r1 + r2, 0 ≤ r2 < r1.

If r2 = 0 then one shows easily that r1 = gcd(a, b). If r2 > 0, we divide
r2 into r1:

r1 = q3r2 + r3, 0 ≤ r3 < r2.

If r3 = 0, then r2 = gcd(a, b). If r3 > 0, we continue as above, eventu-
ally obtaining gcd(a, b) as the last nonzero remainder in this process.
Furthermore, retracing the steps also gives the “multipliers” s and t

satisfying sa+ tb = gcd(a, b).

Example. To compute gcd(84, 342) we can do this by factoring: 84 =
6 · 14 and 342 = 6 · 57 from which we get gcd(84, 342) = 6. However, if
we apply the Euclidean algorithm, one has

342 = 4 · 84 + 6,

84 = 16 · 6 + 0.

Therefore, again, 6 = gcd(84, 342). However, we immediately see from
the first equation that 6 = 1 · 342 − 4 · 84, so we can take s = 1 and
t = −4.

Let a and b be integers. We say that the positive integer l is the
least common multiple of a and b, if

(i) l is a multiple of both a and b,
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(ii) If l′ is a positive multiple of both a and b then l ≤ l′.

We denote the least common multiple of a and b by lcm(a, b).

Assume that a and b are integers satisfying gcd(a, b) = 1. Then we
say that a and b are relatively prime. We say that the integer p > 1
is prime if the only positive divisors of p are 1 and p itself. Note that
if p is prime and if a is any integer not divisible by p, then clearly p
and a are relatively prime.

Lemma. Assume that a and b are relatively prime integers and that
the integer a | bc for some integer c. Then, in fact, a | c.

Proof. We have that for some integers s, t ∈ Z that sa + tb = 1.
Therefore sac + tbc = c. Since a | bc, we have bc = qa for some integer
q, forcing

c = sac+ tbc = (sc+ tq)a

which says that a | c, as required.

Lemma. Assume that a and b are relatively prime integers, both di-
viding the integer l. Then ab | l.

Proof. We have that l = bc for a suitable integer c. Since a | l we have
that a | bc; apply the above lemma to conclude that a | c, i.e., c = ar for
some integer r. Finally, l = bc = bar which says that ab | l.

Theorem. Given the integers a, b ≥ 0, lcm(a, b) =
ab

gcd(a, b)
.

Proof. Let d = gcd(a, b) and set l =
ab

d
. Clearly l is a multiple of

both a and b. Next, if s and t are integers such that sa+ tb = d, then

s · a
d

+ t · b
d

= 1, proving that a′ =
a

d
and b′ =

b

d
are relatively prime.

From this we may conclude that at least one of the pairs (d, a′) or (d, b′)
is relatively prime. Assume that gcd(d, a′) = 1 and let d′ = gcd(a′, b).
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Then d′ | a′ and d′ | b and so clearly d′ | d. But then d′ divides both a′

and d, forcing d′ | gcd(d, a′), i.e., d′ = 1. That is to say, a′ and b are
relatively prime. Therefore if l′ is any multiple of a and b then l′ is
a multiple of a′ and b; since a′ and b are relatively prime, we have,
by the above lemma, that a′b | l′. In other words, l | l′, proving that
l = lcm(a, b).

Exercises

1. Assume that a and b are integers and that d > 0 is an integer
dividing both a and b. Show that if for some integers s, t ∈ Z we
have d = sa+ tb, d = gcd(a, b).

2. Assume that a and b are integers and that there exist integers
s, t ∈ Z such that sa + tb = 1. Show that a and b are relatively
prime.

3. Find gcd(1900, 399), lcm(1900, 399). Find an explicit representa-
tion
gcd(1900, 399) = 1900s+ 399t, s, t ∈ Z.

4. Find gcd(2100, 399), lcm(2100, 399). Find an explicit representa-
tion
gcd(2100, 399) = 2100s+ 399t, s, t ∈ Z.

5. Assume that n is a positive integer and that a, b ∈ Z with gcd(a, n) =
gcd(b, n) = 1. Prove that gcd(ab, n) = 1.

6. Assume that p is a prime, a and b are integers and that p | ab. Use
the Euclidean trick to show that either p | a or p | b.

7. Assume that a and b are relatively prime and that a | bc for some
integer c. Prove that a | c.

8. Show that for all integers n ≥ 0, 6 |n(n+ 1)(2n+ 1).3

3Of course, this is obvious to those who know the formula:

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
.



62 CHAPTER 2 Discrete Mathematics

9. Let p be a prime and show that for all integers h, 1 ≤ h ≤ p− 1,

p

∣∣∣∣∣
Ñ
p

h

é
. Conclude that for any integers x and y, the numbers

(x+ y)p and xp + yp have the same remainder when divided by p.

10. Show that the converse of Exercise 9 is also true. Namely, if n
is a positive integer such that for all integers h, 1 ≤ h ≤ n − 1,

n

∣∣∣∣∣
Ñ
n

h

é
, then n is prime. (Hint: Assume that n isn’t prime, and

let p be a prime divisor of n. Show that if pr is the highest power
of p dividing n, then pr−1 is the highest power of p dividing

Än
p

ä
.)

11. Assume that n, m are positive integers and k is an exponent such
that n | (mk − 1). Show that for any non-negative integer h,
n | (mhk − 1).

12. Assume that you have two measuring vessels, one with a capacity
of a liters and one of a capacity of b liters. For the sake of speci-
ficity, assume that we have an 8-liter vessel and a 5-liter vessel.
Using these vessels we may dip into a river and measure out cer-
tain amounts of water. For example, if I wish to measure exactly
3 liters of water I could fill the 8-liter vessel, and then from this
fill the 5-liter vessel; what remains in the 8-liter vessel is exactly 3
liters of water.

(a) Using the 8-liter vessel and 5-liter vessel, explain how to mea-
sure out exactly 1 liter of water.

(b) Assume that we return to the general situation, viz., where
we have an a liter vessel and a b-liter vessel. Explain how to
measure out exactly d liters of water, where d = gcd(a, b).

13. Let a and b be integers, both relatively prime to the positive integer
n. Show that ab is also relatively prime to n.

14. Here’s a cute application of the Euclidean Algorithm. Let a and
b be positive integers and let qk, rk, k = 1, 2, . . . , be the sequence
of integers determined as in the Euclidean Algorithm (page 59).
Assume that rm is the first zero remainder. Then4

4The expression given is often called a simple finite continued fraction.
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b

a
= q1 +

1

q2 +
1

q3 +
1

. . . . . .

qm−1 +
1

qm

.

15. For any positive integer n, let Un be the set of all integers relatively
prime to n. Now let m, n be relatively prime positive integers and
show that

Umn = Um ∩ Un.

16. Let n > 1 be an integer and define the so-called Euler φ-function

(or Euler’s totient function) by setting

φ(n) = # of integers m, 1 ≤ m < n which are relatively prime with n.

Now prove the following.

(a) If p is prime, then φ(p) = p− 1.

(b) If p is prime, and if e is a positive integer, then φ(pe) =
pe−1(p− 1).

(c) If m and n are relatively prime, φ(mn) = φ(m)φ(n). (Hint:
Try this line of reasoning. Let 1 ≤ k < mn and let rm, rn be
the remainders of k by dividing bym and n, respectively. Show
that if gcd(k,mn) = 1, then gcd(rm,m) = gcd(rn, n) = 1.
Conversely, assume that we have integers 1 ≤ rm < m and
1 ≤ rn < n with gcd(rm,m) = gcd(rn, n) = 1. Apply the
Euclidean trick to obtain integers s, sm, sn, t, tn, tm satisfying

sm+ tn = 1, smrm + tmm = 1, snrn + tnn = 1.

Let k = smrn + tnrm, and let kmn be the remainder obtained
by dividing k by mn. Show that 1 ≤ kmn < mn and that
gcdkmn,mn) = 1. This sets up a correspondence between the
positive integers less than mn and relatively prime to mn and
the pairs of integers less than m and n and relatively prime to
m and n, respectively.)
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(d) Show that for any positive integer n, φ(n) ≥
»
n/2. (Hint:

prove that for every prime power pe, where e is a positive
integer, φ(pe) ≥ pe/2, unless p = 2 and e = 1. What happens
in this case?)

See the footnote.5

17. Given the positive integer n, and the positive divisor d |n show that
the number of integers k satisfying 1 ≤ k < n with gcd(k, n) = d
is φ

(
n
d

)
. Conclude that

∑
d |n

φ(d) = n,

where the above sum is over the positive divisors of n.

18. Let q and n be positive integers. Show that

# of integers m, 1 ≤ m < qn

which are relatively prime with n
= qφ(n).

19. Suppose that x is a positive integer with x = qn + r, 0 ≤ r < n.
Show that

qφ(n) ≤ # of integers m, 1 ≤ m < x
which are relatively prime with n

≤ (q + 1)φ(n).

20. Conclude from Exercises 18 and 19 that

lim
x→∞

Ñ
# of integers m, 1 ≤ m < x
which are relatively prime with n

é
x

=
φ(n)

n
.

5Euler’s φ-function has an interesting recipe, the proof of which goes somewhat beyond the scope
of these notes (it involves the notion of “inclusion-exclusion”). The formula says that for any integer
n > 1,

φ(n) = n
∏
p |n

Å
1− 1

p

ã
,

where the product is taken over prime divisors p of n. A main ingredient in proving this is the result
of Exercise 17, above. Note that this formula immediately implies that φ(mn) = φ(m)φ(n) when m
and n are relatively prime.
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2.1.2 The linear Diophantine equation ax+ by = c

Suppose that a, b, c are integers and suppose that we wish to find all
possible solutions of the linear Diophantine equation ax + by = c.
First of all we need a condition on a, b, c in order to guarantee the
existence of a solution.

Theorem.The linear Diophantine equation ax+ by = c has a solution
if and only gcd(a, b) | c.

Proof. Set d = gcd(a, b) and assume that c = kd for some integer k.
Apply the Euclidean trick to find integers s and t with sa + tb = d;
multiply through by k and get a(sk) + b(tk) = kd = c. A solution is
therefore x = sk and y = tk. Conversely, assume that ax + by = c.
Then since d | a and d | b, we see that d | (ax+ by), i.e., d|c, proving the
theorem.

As the above indicates, applying the Euclidean algorithm will yield
a solution of the Diophantine equation ax+ by = c. We would like now
to show how to obtain the general solution of this equation, that is to
find a recipe for generating all possible solutions. Let’s start with a fixed
solution (x0, y0) and let (x, y) be another solution. This immediately
implies that ax0 + by0 = c, ax + by = c and so a(x0 − x) = b(y − y0).
Setting d = gcd(a, b) we have

a

d
(x0 − x) =

b

d
(y − y0).

Next, we note that since
a

d
and

b

d
are relatively prime, then by

Exercise 7 on page 61 we have that
a

d
divides y−y0, say y−y0 =

a

d
t for

some integer t. But then
a

d
(x0 − x) =

b

d
· a
d
t, forcing x0 − x =

b

d
t. In

other words, starting with a fixed solution (x0, y0) of the Diophantine
equation ax+ by = c we know that any other solution (x, y) must have
the form
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x = x0 −
b

d
t, y = y0 +

a

d
t, t ∈ Z (2.1)

Finally, we see (by substituting into the equation) that the above ac-
tually is a solution; therefore we have determined all solutions of the
given Diophantine equation. We summarize.

Theorem. Given the linear Diophantine equation ax + by = c where
c is a multiple of d = gcd(a, b), and given a particular solution (x0, y0),
the general solution is given by

x = x0 −
b

d
t, y = y0 +

a

d
t, t ∈ Z.

Example. Consider the Diophantine equation 2x+ 3y = 48.

(i) Find all solutions of this equation.

(ii) Find all positive solutions, i.e., all solutions (x, y) with x, y > 0.

Solution. First of all, a particular solution can be found by simple
inspection: clearly (x, y) = (24, 0) is a solution. Next, since 2 and 3 are
relatively prime we conclude from the above theorem that the general
solution is given by

x = 24− 3t, y = 2t, t ∈ Z.
Next, if we seek only positive solutions then clearly t > 0 and 24−t > 0.
This reduces immediately to 0 < t < 24, which is equivalent with saying
that 1 ≤ t ≤ 23. That is, the positive solutions are described by writing

x = 24− 3t, y = 2t, t ∈ Z, 1 ≤ t ≤ 23.

Exercises

1. Find all integer solutions of the Diophantine equation 4x + 6y =
100. Also, find all positive solutions.
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2. Find all solutions of 15x+ 16y = 900, with x, y ≥ 0.

3. Suppose that someone bought a certain number of 39-cent pens
and a certain number of 69-cent pens, paying $11.37 for the total.
Find the number of 39-cent pens and the number of 69-cent pens
purchased.

4. I recently purchased a number of DVDs at 6Ueach and a number
of DVDs at 7Ueach, paying 249Ufor the total. Find the number of
6UDVDs and the number of 7UDVDs assuming that I purchased
approximately the same number of each.

5. Solve 15x− 24y = 3, x, y ≥ 0.

6. Farmer Jones owes Farmer Brown $10. Both are poor, and neither
has any money, but Farmer Jones has 14 cows valued at $184 each
and Farmer Jones has a large collection of pigs, each valued at
$110. Is there a way for Farmer Jones to pay off his debt?

7. A Pythagorean triple is a triple (a, b, c) of positive integers
such that a2 + b2 = c2. Therefore, (3, 4, 5) is an example of a
Pythagorean triple. So is (6, 8, 10). Call a Pythagorean triple
(a, b, c) primitive if a, b, and c share no common factor greater
than 1. Therefore, (3, 4, 5) is a primitive Pythagorean triple, but
(6, 8, 10) is not.

(a) Assume that s and t are positive integers such that

(i) t < s,

(ii) s and t are relatively prive, and

(iii) one of s, t is odd; the other is even.

Show that if x = 2st, y = s2− t2, z = s2 + t2, then (x, y, z) is
a Pythagorean triple.

(b) Show that every Pythagorean triple occurs as in (a), above.

8. This problem involves a system of Diophantine equations.6 Ed and
Sue bike at equal and constant rates. Similarly, they jog at equal
and constant rates, and they swim at equal and constant rates. Ed

6Essentially Problem #3 from the 2008 American Invitational Mathematics Examination.
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covers 74 kilometers after biking for 2 hours, jogging for 3 hours,
and swimming for 4 hours, while Sue covers 91 kilometers after
jogging for 2 hours, swimming for 3 hours, and biking for 4 hours.
Their biking, jogging, and swimming rates are all whole numbers
in kilometers per hour. Find these rates.

2.1.3 The Chinese remainder theorem

Congruence and The Integers Modulo n. If n is a positive
integer, and if a and b are integers, we say that a is congruent to
b modulo n and write a ≡ b(mod n) if n | (a − b). Next, we write
Zn = {0n, 1n, 2n, . . . , (n − 1)n} with the understanding that if b is any
integer, and if b = qn + r, where 0 ≤ r < n, then bn = rn. Sometimes
we get lazy and just write Zn = {0, 1, 2, . . . , n− 1} without writing the
subscripts if there is no possibility of confusion. As an example, we see
that Z6 = {0, 1, 2, 3, 4, 5} with such further stipulations as 8 = 2, 22 =
4, −5 = 1. The integers modulo n can be added (and multiplied)
pretty much as ordinary integers, we just need to remember to reduce
the answer modulo n.

Example. We can write out the sums and products of integers modulo
6 conveniently in tables:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 2 3 4
5 5 0 1 2 3 4

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

The following story7 conveys the spirit of the Chinese Remainder
Theorem:

7Apparantly due to the Indian mathematician Brahmagupta (598–670).
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An old woman goes to market and a horse steps on her basket
and crushes the eggs. The rider offers to pay for the damages
and asks her how many eggs she had brought. She does not
remember the exact number, but she remembered that when
she had taken them out two at a time, there was one egg left.
The same happened when she picked them out three, four,
five, and six at a time, but when she took them seven at a
time they came out even. What is the smallest number of
eggs she could have had?

The solution of the above is expressed by a system of congruences:
if m is the number of eggs that the old woman had, then

m ≡ 1(mod 2)

m ≡ 1(mod 3)

m ≡ 1(mod 4)

m ≡ 1(mod 5)

m ≡ 1(mod 6)

m ≡ 0(mod 7)

Expressed in terms of integers modulo n for various n, we can express
the above as

m2 = 12; m3 = 13; m4 = 14; m5 = 15; m6 = 16; m7 = 07.

Note first that there is some redundancy in the above problem.
Namely, notice that if m4 = 14, then surely m2 = 12. Indeed,

m4 = 14 =⇒ 4 | (4− 1)

=⇒ 2 | (4− 1)

=⇒ m2 = 12.

In exactly the same way we see that the condition m6 = 16 implies that
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m3 = 13. Therefore, we are really faced with the task of finding the
smallest integer m satisfying

m4 = 14, m5 = 15, m6 = 16, m7 = 07.

The first question that should occur to the reader is “why is there
any solution m to the above?” As we’ll see, this will be the point of
emphasis in the Chinese Remainder Theorem.

Theorem. (Chinese Remainder Theorem) Let a and b be positive
integers, and set d = gcd(a, b). Let x and y be any two integers satifying
xd = yd. Then there is always an integer m such that

ma = xa, mb = yb.

Furthermore, if l = lcm(a, b) then any other solution m′ is congruent
to m modulo l.

Proof. First of all since xd = yd we know that d | (x−y); assume that
x− y = zd, for some integer z. Next, let s and t be integers satisfying
sa+ tb = d, from this we obtain

sza+ tzb = zd = x− y.

From this we see that x − sza = y + tzb; we now take m to be this
common value: m = x − sza = y + tzb from which it is obvious that
ma = xa and mb = yb.

Finally, if m′ is another solution, then we have m′ ≡ m(mod a) and
m′ ≡ m(mod b) and so m′−m is a multiple of both a and b. Therefore
l | (m′ −m) and so m′ ≡ m(mod l) proving the theorem.

We’ll consider a couple of examples.

Example 1. Solve the simultaneous congruences

m ≡ 14(mod 138)

m ≡ 23(mod 855).
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Applying the Euclidean algorithm yields

855 = 6 · 138 + 27

138 = 5 · 27 + 3

27 = 9 · 3 + 0,

and so d = gcd(138, 855) = 3; furthermore the above shows that

3 = 138− 5 · 27 = 138− 5(835− 6 · 138) = 31 · 138− 5 · 855

(and so s = 31 and t = −5). Also, since 14 ≡ 23(mod 3) we conclude
that the above congruences can be solved. Indeed, 14 − 23 = −3 · 3
(so z = −3) and so a solution is m = x − sza = 14 + 31 · 138 ·
3 = 12, 848. Finally, we can prove that 12,848 is actually the least
positive integer solution of the above congruences above, as follows.
To do this, apply the Chinese Remainder Theorem to conclude that
if m′ is any other solution, and if l = lcm(138, 855) = 39, 330, then
m′ ≡ 12, 848(mod 39, 330). This is clearly enough!

Example 2. Find the least positive integer solution of

m ≡ 234(mod 1832)

m ≡ 1099(mod 2417).

This one is technically more involved. However, once one recognizes
that 2417 is a prime number, we see immediately that 2417 and 1832
are relatively prime and so at least we know that a solution exists. Now
comes the tedious part:

2417 = 1 · 1832 + 585

1832 = 3 · 585 + 77

585 = 7 · 77 + 46

77 = 1 · 46 + 31

46 = 1 · 31 + 15

31 = 2 · 15 + 1

15 = 15 · 1 + 0
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Therefore, d = gcd(1832, 2417) = 1; working backwards through the
above yields

157 · 1832− 119 · 2417

(so s = 157 and t = −119). We have 234− 1099 = −865 = z and so a
solution is given by m = x−sza = 234+157 ·865 ·1832 = 248, 794, 994.
Finally, any other solution m′ will be congruent to 248,794,994 modulo
l = lcm(1832, 2417) = 1832 · 2417 = 4, 427, 944. We therefore reduce
248,794,994 modulo l using the division algorithm:

248, 794, 994 = 56 · 4, 427, 944 = 830, 130,

and so the least integer solution is m = 830, 130.

Example 3. In this example we indicate a solution of three congru-
ences. From this, the student should have no difficulty in solving more
than three congruences, including the lead problem in this subsection.
Find the least positive solution of the congruences

m ≡ 1(mod 6)

m ≡ 7(mod 15)

m ≡ 4(mod 19).

First, we have
1 · 15− 2 · 6 = 3

from which we conclude that 3 = gcd(6, 15). Next, we have 7−1 = 2 ·3,
and so

2 · 15− 2 · 2 · 6 = 2 · 3 = 7− 1;

this tells us to set m1 = 1 − 2 · 2 · 6 = 7 − 2 · 15 = −23. We have
already seen that all solutions will be congruent to −23 modulo l1 =
lcm(6, 15) = 30. Therefore, the least positive solution will be m1 = 7
(which could have probably more easily been found just by inspection!).
Note that if m is integer satisfying m ≡ 7(mod 30), then of course we
also have m ≡ 7(mod 6) and m ≡ 7(mod 15), and so m ≡ 1(mod 6)
and m ≡ 7(mod 15). Therefore, we need to find the least positive
integer solution of
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m ≡ 7(mod 30)

m ≡ 4(mod 19).

In this case, 7 · 30− 11 · 19 = 1 and so 3 · 7 · 30− 3 · 11 · 19 = 3 = 7− 4
which tells us to set m = 7 − 3 · 7 · 30 = 4 − 3 · 11 · 19 = −623. Any
other solution will be congruent to -623 modulo 30 · 19 = 570; apply
the division algorithm

−623 = 2 · 570 + 517.

It follows, therefore, that the solution we seek is m = 517.

We conclude this section with a simple corollary to the Chinese Re-
mainder Theorem; see Exercise 16c on page 63.

Corollary to Chinese Remainder Theorem. Let m and n be
relatively prime positive integers, Then φ(mn) = φ(m)φ(n).

Proof. Let a, b be positive integers with 1 ≤ a < m, 1 ≤ b < n, and
gcd(a,m) = gcd(b, n) = 1. By the Chinese Remainder Theorem, there
is a unique integer k, with 1 ≤ k < mn satisfying km = a, kn = b.
Clearly gcd(k,mn) = 1. Conversely, if the positive integer k is given
with 1 ≤ k < mn, and gcd(k,mn) = 1, then setting a = km, b = kn
produces integers satisfying 1 ≤ a < m, 1 ≤ b < n and such that
gcd(a,m) = gcd(b, n) = 1.

Exercises

1. Let n be a positive integer and assume that a1 ≡ b1(mod n) and
that a2 ≡ b2(mod n). Show that a1 + b1 ≡ a2 + b2(mod n) and that
a1b1 ≡ a2b2(mod n).

2. Compute the least positive integer n such that n ≡ 12, 245, 367(mod 11).
(Hint: this is very easy! Don’t try a direct approach.)

3. Compute the least positive integer n such that n ≡ 12, 245, 367(mod 9).

4. Find the least positive integer solution of the congruences
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m ≡ 7(mod 10)

m ≡ 17(mod 26).

5. Find the least positive integer solution of the congruences

m ≡ 7(mod 10)

m ≡ 5(mod 26)

m ≡ 1(mod 12).

6. Solve the problem of the woman and the eggs, given at the begin-
ning of this section.

7. If A and B are sets, one defines the Cartesian product of A and
B by setting

A×B = {(a, b) | a ∈ A and b ∈ B}.

Now suppose that the positive integers m and n are relatively
prime, and define the function

f : Zmn → Zm × Zn by f(xmn) = (xm, xn) ∈ Zm × Zn.

Using the Chinese remainder theorem, show that the function f is
one-to-one and onto.

8. 8 The integer N is written as

N = 102030x05060y

in decimal (base 10) notation, where x and y are missing digits.
Find the values of x and y so that N has the largest possible
value and is also divisible by both 9 and 4. (Hint: note that
N ≡ −1 + x+ y(mod 9) and N ≡ y(mod 4).)

8This is problem #5 on the January 10, 2008 ASMA (American Scholastic Mathematics Associ-
ation) senior division contest.
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2.1.4 Primes and the fundamental theorem of arithmetic

We have already defined a prime as a positive integer p greater than
1 whose only positive divisors are 1 and p itself. The following result
may seem a bit obvious to the naive reader. What I want, though, is
for the reader to understand the nature of the proof.9

Lemma. Any positive integer n > 1 has at least one prime factor.

Proof. Denoting by N the set of positive integers, we define the set

C = {n ∈ N |n > 1 and n has no prime factors }.

Think of C as the set of “criminals;” naturally we would like to show
that C = ∅, i.e., that there are no criminals. If C 6= ∅, then C has a
smallest element in it; call it c0 (the “least criminal”). Since c0 cannot
itself be prime, it must have a non-trivial factorization: c0 = c′0c

′′
0,

where 1 < c′0, c
′′
0 < c0. But then, c′0, c

′′
0 6∈ C and hence aren’t criminals.

In particular, c′0 has a prime factor, which is then a factor of c0. So
c0 wasn’t a criminal in the first place, proving that C = ∅, and we’re
done!

Using the above simple result we can prove the possibly surprising
result that there are, in fact, infinitely many primes. This was known
to Euclid; the proof we give is due to Euclid:

Theorem. There are infinitely many primes.

Proof. (Euclid) Assume, by way of contradiction that there are only
finitely primes; we may list them:

p1, p2, . . . , pn.

Now form the positive integer n = 1 + p1p2 · · · , pn. Note that none of
the primes p1, p2, . . . , pn can divide n. However, because of the above
lemma we know that n must have a prime divisor p 6= p1, p2, . . . , pn.

9I will formalize this method of proof in the next section.
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Therefore the original list of primes did not contain all of the primes.
This contradiction proves the result.

Knowing that there are infinitely many primes, one may ask a slighly
more subtle question, namely whether the infinite series

∑
primes p

(
1

p

)
=

1

2
+

1

3
+

1

5
+ · · ·+ 1

31
+ · · ·

converges or diverges. One can show that this series actually diverges,
which shows that the prime numbers are relatively densely packed
within the set of positive integers.

There are many unsolved conjectures related to prime numbers; we’ll
just state two such here. The first is related to twin primes which
are prime pairs of the form p, p + 2, where both are primes. The first
few twin primes are 3, 5, 5, 7, 11, 13, and so on. The so-called “Twin
Prime” conjecture which states that there are an infinite number of
twin primes. The next is the Goldbach conjecture which states that
any even integer greater than 2 is the sum of two primes. Neither of
these conjectures has been proved.

Using the above method of “criminals”10 one eventually arrives at
the important Fundamental Theorem of Arithmetic:

Theorem. (Fundamental Theorem of Arithmetic) Any positive integer
n > 1 has a unique factorization into primes. In other words

(i) there exist primes p1 < p2 < · · · < pr and exponents e1, e2, . . . , er
such that

n = pe11 p
e2
2 · · · perr .

(ii) The factorization above is unique in that if n = qf11 q
f2
2 · qfss then

s = r, p1 = q1, p2 = q2, . . . , pr = qr and e1 = f1, e2 = f2, . . . , er =
fr.

Now let a and b be positive integers greater than 1. Write
10My surrogate for mathematical induction
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a = pe11 p
e2
2 · · · perr , b = pf11 p

f2
2 · · · pfrr

be the prime factorization of a and b where some of the exponents
might be 0. For each i = 1, 2, . . . , r, let mi = min {ei, fi} and let
Mi = max {ei, fi}. The following should be clear:

gcd(a, b) = pm1
1 pm2

2 · · · pmr
r , lcm(a, b) = pM1

1 pM2
2 · · · pMr

r .

From the above we see that we have two rather different methods
of finding the greatest common divisor and least common multiple of
two positive integers. The first is the Euclidean algorithm, which we
encountered on page 59, and the second is based on the Fundamental
Theorem of Arithmetic above. On the surface it would appear that the
latter method is much easier than the former method—and for small
numbers this is indeed the case. However, once the numbers get large
then the problem of factoring into primes becomes considerably more
difficult than the straightforward Euclidean algorithm.

Exercises

1. Find the prime factorizations of the numbers

(a) 12500

(b) 12345

(c) 24227

2. Find the factorization of the numbers p3(p−1)2(p+ 1)(p2 +p+ 1),
where p = 2, 3, 5, 7.

3. Compute the gcd and lcm of the following pairs of numbers

(a) 2090 and 1911

(b) 20406 and 11999

(c) 210 + 1 and 210 − 1.

4. Show that if p is a prime, then p+1 and p2+p+1 must be relatively
prime. Find integers s and t such that s(p+ 1) + t(p2 + p+ 1) = 1.
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5. Show that there exist unique positive integers x and y satisfying
x2 + 84x+ 2008 = y2. Find these integers.11

6. For each positive integer n, define

H(n) = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

Prove that if n ≥ 2, then H(n) is not
an integer.

9/8/10 9:06 PMIn perfect harmony | plus.maths.org

Page 3 of 6file:///Users/davidsurowski/Desktop/harmonic.webarchive

Missing the cracks

Suppose that . Choose an integer  such that . Then  Consider the
lowest common multiple of . This number will be of the form , where  is an odd
integer. Now multiply both sides of the equation by this number, to get

   

Now, when multiplied out, all the terms on the left will be integers, except one:

   

is not an integer, since  is odd. So the left hand side is not an integer, and hence neither is the right hand side. That means
that  is not an integer.

Record rainfalls

How often are weather records broken? The harmonic series gives the answer.

Suppose we have a list of rainfall figures for a hundred years. How many record-breaking falls of
rain do you expect have taken place over that period? We assume that the rainfall figures are
random, in the sense that the amount of rain in any one year has no influence on the rainfall in
any subsequent year.

The first year was undoubtedly a record year. In the second year, the rain could equally likely
have been more than, or less than, the rainfall of the first year. So there is a probability of 
that the second year was a record year. The expected number of record years in the first two
years of record-keeping is therefore . Go on to the third year. The probability is 1/3 that
the third observation is higher than the first two, so the expected number of record rainfalls in
three years is . Continuing this line of reasoning leads to the conclusion that the
expected number of records in the list of  observations is

   

What was your guess for the number of record rainfalls in a hundred years of keeping rainfall figures? If it was 5, you were
nearly right, for the sum of the first hundred terms of the harmonic series is 5.19.

Even after a record-breaking rainfall, nobody will deny that the record will be broken some time in the future - perhaps in the
very next year. The number of record years in an infinity of observations is clearly infinity. There we have an intuitive reason

(Hint: Let k be the largest integer such that 2k ≤ n, and let M be
the least common multiple of the integers 1, 2, . . . , 2k − 1,
2k + 1, . . . , n. What happens when you multiply H(n) by M?)

7. Here’s an interesting system of “integers” for which the Funda-
mental Theorem of Arithmetic fails. Define the set

Z[
√
−5] = {a+ b

√
−5 | a, b ∈ Z}.

Define primes as on page 60,12 and show that

3 · 7 = (1 + 2
√
−5)(1− 2

√
−5) = (4 +

√
−5)(4−

√
−5)

give three distinct prime factorizations of 21. In otherwords, the
uniqueness aspect of the Fundamental Theorem of Arithmetic fails
to hold in this case.

8. In this exercise we outline another proof that there exist infinitely
many primes. To this end, define the n-th Fermat number Fn,
by setting Fn = 22n + 1, n = 0, 1, 2, . . . ,.

(a) Show that
n−1∏
m=0

= Fn − 2, n = 1, 2, . . . (Induction!)

(b) Conclude from part (a) that the Fermat numbers Fm and Fn
are relatively prime whenever m 6= n.

11Essentially Problem #4 from the 2008 American Invitational Mathematics Examination.
12Actually, in more advanced treatments, one distinguishes between the notion of a “prime” and

the notion of an “irreducible,” with the latter being defined more or less as on page 60 (I’m trying
to avoid a systematic discussion of “units”). On the other hand, a number p is called prime if
whenever p | ab, then p | a or p | b. In the above exercise the numbers given are all irreducibles but,
of course, aren’t prime.
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(c) Conclude from part (b) that there must be infinitely many
primes.

9. Here’s yet another proof that there are infinitely many primes13

We start with the simple observation that for any integer n ≥ 2, n
and n+ 1 share no prime factors. Therefore, the product n(n+ 1)
must contain at least two distinct prime factors. We now generate
a sequence of integers as follows. Let

n1 = 2 · 3
n2 = n1(n1 + 1) = 42

n3 = n2(n2 + 1) = 42 · 43 = 1806
...

What is the minimum number of distinct prime factors contained
in nk?

10. For any positive integer n, let τ(n) be the number of divisors (in-
cluding 1 and n) of n. Thus τ(1) = 1, τ(2) = 2, τ(3) = 2, τ(4) =
3, τ(10) = 4, etc. Give a necessary and sufficient condition for
τ(n) to be odd.

11. Continuation of Exercise 10. For each positive integer n, set

S(n) = τ(1) + τ(2) + · · ·+ τ(n).

Let a be the number of integers n ≤ 2000 for which S(n) is even.
Compute a.14

2.1.5 The Principle of Mathematical Induction

In the previous section we showed that every integer n has at least one
prime factor essentially by dividing the set N into the two subsets: the
set of all integers n which have a prime factor, and set of those which
do not. This latter set was dubbed the set of “criminals” for the sake

13See Filip Saidak, A New Proof of Euclid’s Theorem, Amer. Math. Monthly, Vol. 113,
No. 9, Nov., 2006, 937–938.

14This is a modification of Problem #12 of the American Invitational Mathematics Examination,
2005 (I).
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of color. The proof rested on the fact that this set C of criminals must
have a least element, which meant that any positive integer m which
is less than any element of C cannot be a criminal.

Before formalizing the above, let’s take up an example of a somewhat
different nature. Consider the proposition that, for any n ∈ N, one has

12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Naturally, for each such n, either the above statement is true or
false. This allows us to divide N into two subsets: the subset G (for
“good guys”) of integers n ∈ N for which the above statement is true,
and the set C (for “criminals”) for which the above statement is false.
Obviously

N = G ∪ C, and G ∩ C = ∅.
Also — and this is important — note that 1 ∈ G, i.e., if n = 1, then

the above statement is easily verified to be true. Put differently, 1 is
not a criminal; it’s a good guy!

In order to prove that the above statement is true for all n ∈ N, we
need only show that C = ∅. Thus, let m be the least element of C,
and note that since 1 6∈ C we have that m− 1 ∈ G: that is to say the
above statement is valid with n = m− 1. Watch this:

12 + 22 + 32 + · · ·+m2 = 12 + 22 + 32 + · · · (m− 1)2 +m2

=
(m− 1)m(2(m− 1) + 1)

6
+m2 (This is the key step!)

=
1

6
(2m3 − 3m2 +m+ 6m2) (This is just algebra.)

=
1

6
(m(m2 + 3m+ 1) =

m(m+ 1)(2m+ 1)

6
(A little more algebra.)

Let’s have a look at what just happened. We started with the as-
sumption that the integer m is a criminal, the least criminal in fact,
and then observed in the end that 12 + 22 + 32 + · · ·+n2 = n(n+1)(2n+1)

6 ,
meaning that m is not a criminal. This is clearly a contradiction!
What caused this contradiction is the fact that there was an element in
C, so the only way out of this contradiction is to conclude that C = ∅.
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Therefore every element n ∈ N is in G, which means that the above
statement is true for all positive integers n.

Let’s formalize this a bit. Assume that for each n ∈ N we assign
a property P (n) to this integer, which may be true or false. In the
previous section, the relevant propery was

P (n) : n has at least one prime factor.

In the example just discussed,

P (n) : 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

The point is that once we have a property assigned to each n ∈ N,
we may consider the set G ⊆∈ N of all integers n for which P (n) is
true, and the set (the criminals) of all integers n for which P (n) is false.
In trying to establish that C = ∅, we may streamline our argument via

Principle of Mathematical Induction. Let N denote the set of
positive integers, and assume that for each n ∈ N we have a property
P (n). Assume that

(i) P (a) is true, for some a ∈ N. (This “starts” the induction.)

(ii) Whenever P (m) is true for all a ≤ m < n, (the so-called inductive
hypothesis) then P (n) is also true.

Then P (n) is true for all n ≥ a.

Proof. Let C be the set of all integers ≥ a for which P (n) is false.
We shall prove that C = ∅, which will imply that P (n) is true for all
n ∈ N. By hypothesis (i) above, we see that a 6∈ C; therefore, if we
take n to be the least element of C, then n 6= a. Therefore, for any
positive integer m with a ≤ m < n, P (m) must be true. By hypothesis
(ii) above, we conclude that, in fact, P (n) must be true, which says
that n 6∈ C. This contradiction proves that C = ∅, and the proof is
complete.

At first blush, it doesn’t appear that the above principle accom-
plishes much beyond what we were already able to do. However, it
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does give us a convenient language in which to streamline certain argu-
ments. Namely, when we consider an integer n for which P (m) is true
for all m < n, we typically simply say,

By induction, P (m) is true for all m < n.

Let’s see how to use this language in the above two examples.

Example 1. Any integer n ≥ 2 has at least one prime factor.

Proof. We shall prove this by induction on n ≥ 2. Since 2 is a prime
factor of itself, we see that the induction starts. Next, assume that n is
a given integer. If n is prime then, of course, there’s nothing to prove.
Otherwise, n factors as n = ab, where a and b are positive integers
satisfying 2 ≤ a, b < n. By induction a has a prime factor, and hence
so does n. Therefore, by the principle of mathematical induction we
conclude that every integer n ≥ 2 has a prime factor and the proof is
complete.

Example 2. For any integer n ≥ 1 one has

12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Proof. We prove this by mathematical induction. The above is clearly
true for n = 1, and so the induction starts. Next, let n be a given
integer. By induction we assume that the above recipe is valid for all
positive integers m < n. We compute:

12 + 22 + 32 + · · ·+ n2 = 12 + 22 + 32 + · · ·+ (n− 1)2 + n2

=
n(n− 1)(2n− 1)

6
+ n2 (by induction)

=
n(n+ 1)(2n+ 1)

6

and the proof is complete.

Exercises
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1. Prove the following:

(i) 1 + 3 + 5 + · · ·+ (2n− 1) = n2 (n = 1, 2, . . .)

(ii) 13 + 23 + 33 + · · ·+ n3 = 1
4n

2(n+ 1)2 (n = 1, 2, . . .)

(iii)
1

1 · 3
+

1

3 · 5
+ · · · 1

(2n− 1)(2n+ 1)
=

n

2n+ 1
(n = 1, 2, . . .).

(Do you really need mathematical induction? Try partial frac-
tions!)

(iv) 12 +

(
1

2

)2

+

(
1

3

)2

+ · · ·+
(

1

n

)2

< 2− 1

n
(n = 2, 3, . . .)

2. As in Exercise 6 on page 78 we define, for any positive integer n,

H(n) = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

Show that for any integer m ≥ 0, that H(2m) ≥ m+ 2

2
.

3. Let n be a positive integer.

(a) Prove that if k is an integer with 0 ≤ k ≤ n,

Ñ
n

k

é
=

Ñ
n− 1

k

é
+Ñ

n− 1

k − 1

é
. (This doesn’t require induction.)

(b) Prove that if S is a set with n elements, and if 0 ≤ k ≤ n, then
there are

Än
k

ä
subsets of S with k elements. (Use induction.)

4. Prove that for all n ≥ 1., 13 + 23 + · · ·n3 = (1 + 2 + 3 + · · ·+ n)2.

5. Prove that for all n ≥ 1, and for all x ≥ 0, that (1 + x)n > 1 +nx.
(Is induction really needed?)

6. Prove the classical inequality

1

x1
+

1

x2
+ · · ·+ 1

xn
≥ n2

whenever x1, x2, . . . xn > 0 and x1 + x2 + · · ·xn = 1. (Hint: using
induction, note first that you can arrive at the inequality
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1

x1
+

1

x2
+ · · ·+ 1

xn
+

1

xn+1
≥ n2

1− xn+1
+

1

xn+1
.

Next, you need to argue that because 0 < xn+1 < 1,

n2

1− xn+1
+

1

xn+1
≥ (n+ 1)2;

this is not too difficult. Incidently, when does equality occur in
the above inequality?)

7. Prove that for all integers n ≥ 1, 2
n∑
j=1

sinx cos2j−1 x = sin 2nx.

8. Prove that for all integers n ≥ 0, sinx
n∏
j=0

cos 2jx =
sin
Ä
2n+1x

ä
2n+1

.

9. Prove that for all integers n ≥ 0, that
n∑
j=1

sin(2j−1)x =
1− cos 2nx

2 sinx
.

10. (This is a bit harder.) Prove the partial fraction decomposition

1

x(x+ 1)(x+ 2) · · · (x+ n)
=

1

n!

n∑
k=0

(−1)k
Ñ
n

k

é
1

x+ k
,

where n is a non-negative integer.

11. 15 We shall use mathematical induction to prove that all positive
integers are equal. Let P (n) be the proposition

P (n) :
“If the maximum of two positive
integers is n then the integers are
equal.”

15Due to T.I. Ramsamujh, The Mathematical Gazette, Vol. 72, No. 460 (Jun., 1988), p.
113.
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Clearly P (1) is true. Assuming that P (n) is true, assume that
u and v are positive integers such that the maximum of u and v
is n + 1. Then the maximum of u − 1 and v − 1 is n, forcing
u − 1 = v − 1 by the validity of P (n). Therefore, u = v. What’s
wrong with this argument?

12. If A is a finite subset of real numbers, let π(A) be the prod-
uct of the elements of A. If A = ∅, set π(A) = 1. Let Sn =
{1, 2, 3, . . . , n}, n ≥ 1 and show that

(a)
∑
A⊆Sn

1

π(A)
= n+ 1, and that

(b)
∑
A⊆Sn

(−1)|A|

π(A)
= 0

13. If A is a finite subset of real numbers, let σ(A) be the sum of the
elements of A. Let n ≥ 1, and set Sn = {1, 2, 3, . . . , n}, as above.
Show that

(a)16
∑
A⊆Sn

σ(A)

π(A)
= (n2 + 2n)− (n+ 1)

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
, and

that

(b)
∑
A⊆Sn

(−1)|A|σ(A)

π(A)
= −1

n

2.1.6 Fermat’s and Euler’s theorems

We start with a potentially surprising observation. Namely we consider
integers a not divisible by 7 and consider powers a6, reduced modulo
7. Note that we may, by the division algorithm, write a = 7q + r,
where since a is not divisible by 7, then 1 ≤ r ≤ 6. Therefore, using
the binomial theorem, we get

16This is Problem #2 on the 20th USA Mathematical Olympiad, April 23, 1991. It’s really not
that hard!
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a6 =
6∑

k=0

Ñ
6

k

é
(7q)kr6−k ≡ r6(mod 7).

This reduces matters to only six easily verifiable calculations:

16 ≡ 1(mod 7), 26 ≡ 1(mod 7), 36 ≡ 1(mod 7),

46 ≡ (−3)6 ≡ 1(mod 7), 56 ≡ (−2)6 ≡ 1(mod 7), 66 ≡ (−1)6 ≡ 1(mod 7).

In other words, for any integer a not divisible by 7, we have ap−1 ≡
1(mod 7).

In order to generalize the above result, we shall first make the fol-
lowing observation, namely that if x and y are arbitrary integers, and
if p is a prime number, then using exercise 9 on page 62 we get

(x+ y)p ≡
p∑

k=0

Ñ
p

k

é
xkyp−k

≡ xp + yp(mod p).

That is to say, for any integers x and y and any prime number p, we
have

(x+ y)p ≡ xp + yp(mod p) .

Theorem. (Fermat’s Little Theorem) Let p be a prime number. Then
for all integers a not divisible by p we have

ap−1 ≡ 1(mod p).

Proof. There are a number of proofs of this fact;17 perhaps the most
straightforward is based on the Binomial Theorem together with the

17It is interesting to note that while Fermat first observed this result in a letter in 1640, the first
known complete proof was not given until 1736 by Leonard Euler.
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above observation. Note first that it suffices to assume that a ≥ 1; we
shall argue by induction on a. Note that if a = 1 the result is clearly
valid. Next, assuming that a > 1, then by induction we may assume
that (a− 1)p ≡ (a− 1)(mod p). From this we proceed:

ap ≡ ((a− 1) + 1)p

≡ (a− 1)p + 1p (by the above result)

≡ a− 1 + 1 (by induction)

≡ a (mod p),

which completes the proof.

There is a striking generalization of Fermat’s Little Theorem, as
follows. I won’t prove this here as the most natural proof of this is
within the context of group theory. Anyway, recall the Euler φ-function
(see Exercise 16 on page 63), defined by setting

φ(n) = # of integers m, 1 ≤ m < n which are relatively prime with n.

This obviously says, in particular that if p is prime then φ(p) = p− 1.

Theorem. (Euler’s Theorem) Let n be any positive integer. Then for
any integer a with gcd(a, n) = 1 we have

aφ(n) ≡ 1(mod n).

Note that Euler’s Theorem obviously contains Fermat’s Little Theorem
as a corollary.

Exercises

1. Compute the units digit of (23)987

2. Compute the least positive integer solution of n ≡ 123139(mod 7).

3. Compute the least positive integer solution of n ≡ 506106(mod 11).
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4. Let p be a prime number. The integers a and b are said to be
multiplicative inverses modulo p if ab ≡ 1(mod p). Using the
Euclidean trick, prove that if p doesn’t divide a, then a has a
multiplicative inverse modulo p.

5. Find the multiplicative inverse of 2 modulo 29.

6. Find the multiplicative inverse of 3 modulo 113.

7. Prove Wilson’s Theorem:

(p− 1)! ≡ −1(mod p),

where p is a prime. (Hint; pair each divisor of (p − 1)! with its
inverse modulo p; of course, this requires the result of exercise 4,
above.)

8. The order of the integer a modulo the prime p is the least positive
integer n such that an ≡ 1(mod p). Show that n | p − 1. (Hint:
show that if d = gcd(n, p− 1), then ad ≡ 1(mod p).)

9. As we saw from Fermat’s little theorem, if p is prime and if a
is an integer not divisible by p, then ap−1 ≡ 1 (mod p). What
about the converse? That is, suppose that n is a positive integer
and that for every integer a relatively prime to n we have an−1 ≡
1 (modn). Must n then be prime? Looking for a counter example
takes some time, leading one to (almost) believe this converse.
However, suppose that we were to find a candidate integer n and
found that for every prime divisor p of n, that p − 1 |n − 1.
Show that n satisfies the above.18

10. Here’s a very surprising application of Euler’s Theorem, above.19

Define the sequence a1, a2, . . . , by setting a1 = 2, a2 = 2a1, a3 =
2a2, . . .. Then for any integer n, the sequence a1, a2, . . . , even-
tually becomes constant (mod n). The proof proof proceeds by
induction on n and can be carried out along the following lines.

18Such an integer is called a Carmichael number, the first such being n = 561, which is why
the converse to Fermat’s little theorem can appear true! It is known that there are, in fact, infinitely
many Carmichael numbers, which means that there are infinitely many counter examples to the
converse of Fermat’s little theorem.

19I’m indebted to my student, Nelson Zhang, for pointing out this exercise, commenting also that
this is Problem #3 on the 1991 USA Olympiad contest. The hints given above are the result of our
discussion.
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(a) Since φ(n) < n for all n, we see that the sequence a1, a2, . . . ,
eventually becomes constant modulo φ(n).

(b) Write n = 2rk, where k is an odd integer. Since a1, a2, . . . ,
eventually becomes constant modulo φ(n), it also eventually
becomes constant modulo φ(k).

(c) Conclude from Euler’s Theorem (87) that a1, a2, . . . , eventu-
ally becomes constant modulo k.

(d) Argue that a1, a2, . . . , eventually becomes constant modulo
2r and hence eventually becomes constant modulo n.

2.1.7 Linear congruences

A linear congruence is of the form ax ≡ b(mod n), where a, b, n are
integers, n > 0, and x is regarded as unknown. In order to solve this
equation, we would hope that a would have an inverse modulo n. In
other would if there exists an integer a′ such that a′a ≡ 1(mod n), then
we can solve the above congruence by multiplying through by a′:

x ≡ a′b (mod n).

Next, if a and n are relatively prime, then we can employ the Eu-
clidean trick and write

sa+ tn = 1,

for suitable integers s and t. But this says already that

sa = 1− tn ≡ 1(mod n),

i.e., that a′ = s is the desired inverse of a modulo n.

Example. Solve the congruence 5x ≡ 14(mod 18).

Solution. We employ the Euclidean algorithm:
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18 = 3 · 5 + 3

5 = 1 · 3 + 2

3 = 1 · 2 + 1.

Now work backwards and get

2 · 18− 7 · 5 = 1.

This says that the inverse of 5 modulo 18 is −7. Therefore we see that
the solution of the above is

x ≡ −7 · 14 ≡ (−7)(−4) ≡ 28 ≡ 10(mod 18).

Exercise

1. Solve the linear congruences

(a) 17x ≡ 4(mod 56)

(b) 26x ≡ 7(mod 15)

(c) 18x ≡ 9(mod 55)

2.1.8 Alternative number bases

In writing positive integers, we typically write in base 10, meaning
that the digits represent multiples of powers of 10. For instance, the
integer 2,396 is a compact way of writing the sum

2, 396 = 6 · 100 + 9 · 101 + 3 · 103 + 2 · 102.

In a similar way, decimal numbers, such as 734.865 likewise represent
sums of (possibly negative) powers of 10:

734.865 = 5 · 10−3 + 6 · 10−2 + 8 · 10−1 + 4 · 100 + 3 · 101 + 7 · 102.
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The coefficients are called the (decimal) digits.

Arguably the second-most popular number base is 2, giving binary
numbers (or binary representations of numbers). In this case the
binary digits include only “0” and “1”. As an example, we can convert
a binary number such as 1001101 into its equivalent decimal number
by computing the relevant powers of 2:

1001101 = 1 · 20 + 0 · 21 + 1 · 22 + 1 · 23 + 0 · 24 + 0 · 25 + 1 · 26 = 77.

Another way of expressing this fact is by writing 772 = 1001101, mean-
ing that the binary representation of the decimal number 77 is 1001101.

Example 1. Find the binary representation of the decimal number
93.

Solution. First notice that the highest power of 2 less than or equal
to 93 is 26. Next, the highest power of two less than or equal to 93−26 is
24. Continuing, the highest power of 2 less than or equal to 93−26−24

is 23. Eventually we arrive at 93 = 26 + 24 + 23 + 22 + 1, meaning that
932 = 1011101.

Example 2. Find the binary representation of 11111. Note first that
if n is the number of binary digits required, then after a moment’s
thought one concludes that n− 1 ≤ log2 11111 < n. Since log2 11111 =
ln 11111

ln 2
≈ 13.44, we conclude that 11111 will require 14 binary digits.

That is to say, 11111 = 213 + lower powers of 2. Specifically, one shows
that

11111 = 213 + 211 + 29 + 28 + 26 + 25 + 22 + 2 + 1.

That is to say, 111112 = 10101101100111.

As one would expect, there are b-ary representations for any base.
For example a trinary representation would be a representation base 3,
and the number n of trinary digits needed to represent m would satisfy
n− 1 ≤ log3m ≤ n.
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Example 3. The representation of 11111 in trinary would require 9
trinary digits since log3 11111 ≈ 8.48. Specifically,

11111 = 38 + 2 · 37 + 2 · 34 + 32 + 3 + 2,

which says that 111113 = 12 002 0112.

In computer science numbers are sometimes representation in hex-
adecimal notation (base 16); the “digits” used are 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, A, B, C, D, E, F. Therefore 1716 = 11, 1516 = F, 20616 = CE

Exercises

1. Compute representations of 1435

(a) in binary;

(b) in ternary;

(c) in quarternary (4-ary)

(d) in hexadecimal

2. Compute representations of 10,000

(a) in binary;

(b) in ternary;

(c) in quarternary (4-ary)

(d) in hexadecimal

3. The largest known Mersenne prime20 is the number 243,112,609 − 1.
Compute the number of decimal digits needed to represent this
huge prime number. Compute the number of binary digits (trivial)
and the number of ternary digits needed for its representation.

4. Here’s a bit of a challenge. Represent the decimal .1 (= 1
10) in

binary. What makes this a bit of a challenge is that in binary, the
decimal representation is an infinite repeating decimal (or should
I say “bi-cimal”?). As a hint, note that 102 = 1010. Now do a
long division into 1.21

20As of August, 2008; this is a prime of the form 2p − 1, where p is prime.
21The answer is .0001100.
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2.1.9 Linear recurrence relations

Many, if not most reasonably serious students have heard of the Fi-
bonacci sequence22 the first few terms of which are

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Even one who hasn’t had much exposure to mathematics can easily
guess the successive term in the sequence given the previous two terms
as it is clear that this term is the sum of the previous two terms. Put
more mathematically, if un denotes the n-th term, then one has the
linear difference equation

un+2 = un+1 + un, n = 1, 2, . . . , u0 = 1, u1 = 1.

More elementary sequences come from the familiar arithmetic and
geometric sequences. Arithmetic sequences are generated by differ-
ence equations of the form un+1 = un + d, n = 0, 1, 2, . . ., where d

is a constant. Geometric sequences come from the difference equation
un+1 = kun, n = 0, 1, 2, . . .. The general term for the arithmetic and
geometric sequences can be easily solved for in terms of u0:

Arithmetic: un+1 = un + d, n = 1, 2, . . . =⇒ un = u0 + nd.

Geometric: un+1 = kun, n = 1, 2, . . . =⇒ un = knu0.

The above three difference equations are linear in the sense that
none of the unknown terms un occur to powers other than 1. A very fa-
mous nonlinear recurrence relation is the so-called logistic recurrence
equation (or “Logistic map”), given by a relation of the form

un+1 = k(1− un)un, n = 0, 1, 2, . . . .

22which made a cameo appearance in the movie, The Da Vinci Code.
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For certain values of k, the above sequence can exhibit some very
strange—even chaotic—behavior!

The general homogeneous linear difference equation of order
k has the form

un+k = a1un+k−1 + a2un+k−2 + · · ·+ akun, n = 0, 1, 2, . . .

Of fundamental importance is the associated characteristic polyno-
mial

C(x) = xk − a1x
k−1 − a2x

k−2 − · · · − ak.

The charasteristic equation finds the zeros of the characteristic
polynomial:

xk − a1x
k−1 − a2x

k−2 − · · · − ak = 0.

Given the monic23 polynomial

C(x) = xk − a1x
k−1 − a2x

k−2 − · · · − ak,

with real coefficients, and if u = (un) is a sequence, we shall denote by
C(u) the sequence u′ = (u′n)n≥0 where

u′n = un+k − a1un+k−1 − a2un+k−2 − · · · − akun.

Therefore, the task of solving a linear difference equation is to solve

C(u) = v,

where v = (vn)n≥0 is a given sequence. If v = 0 (the sequence all of
whose terms are 0) we call the difference equation homogeneous. We
shall be primarily concerned with homogeneous difference equations;

23“Monic” simply means that the leading coefficient is 1.
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note, however that the difference equations leading to arithmetic se-
quences (un+1 − un = d, n = 0, 1, 2, . . .) are not homogeneous. We’ll
treat generalizations of the arithmetic sequences in Section 2.1.9, below.

We shall now separate the homogeneous and inhomogeneous cases:24

Homogeneous difference equations

We shall consider a few commonly-occuring cases.

Linear. Given the monic polynomial C(x) we are trying to solve
C(u) = 0 for the unknown sequence u = (u0, u1, u2, . . .). As-
sume that the polynomial is linear: C(x) = x − k, for some real
constant k; thus the difference equation assumes the form

un+1 = kun, n = 0, 1, 2, . . . (2.2)

This says that each successive term is k times the preceding term;
this is the definition of a geometric sequence with ratio k.
Clearly, then the solution is

un = knA, n = 0, 1, 2, . . . (2.3)

where A is an arbitrary constant. The solution given in equation
(2.3) above is called the general solution of the first-order dif-
ference equation (2.2). The particular solution is then obtained
by specifying a particular value for A.

24The reader having studied some linear differential equations will note an obvious parallel!
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Quadratic—distinct factors over the reals. Next, assume that our
polynomial C(x) is quadratic; C(x) = x2 − ax − b, where a, b ∈
R. Thus, we are trying to solve the second-order homogeneous
difference equation

un+2 = aun+1 + bun, n = 0, 1, 2, . . . (2.4)

Assume furthermore that C(x) factors into two distinct real linear
factors:

C(x) = (x− k1)(x− k2), k1 6= k2 ∈ R.

In this case it turns out that we both un = kn1A1, n = 0, 1, 2, . . .
and un = kn2A2, n = 0, 1, 2, . . . , where A1, A2 ∈ R are both so-
lutions of (2.4). This is verified by direct substitution: if un =
kn1A1, n = 0, 1, 2, . . ., then

un+2 − aun+1 − bun = kn+2
1 A1 − akn+1

1 A1 − bkn1A1

= kn1A1(k
2
1 − ak1 − b)

= kn1A1(k1 − k1)(k1 − k2) = 0.

This proves that un = kn1A1, n = 0, 1, 2, . . . is a solution. Likewise,
un = kn2A2, n = 0, 1, 2, . . . is another solution. However, what
might seem surprising is that the sum

un = kn1A1 + kn2A2, n = 0, 1, 2, . . . (2.5)

of these solutions is also a solution of (2.4). Again, this is proved
by a direct substitution:

un+2 − aun+1 − bun

= kn+2
1 A1 + kn+2

2 A2 − a(kn+1
1 A1 + kn+1

2 A2)− b(kn1A1 + kn2A2)

= kn+2
1 A1 − akn+1

1 A1 − bkn1A1 + kn+2
2 A2 − akn+1

2 A2 − bkn2A2

= kn1A1(k
2
1 − ak1 − b) + kn2A2(k

2
2 − ak2 − b)

= kn1A1(k1 − k1)(k1 − k2) + kn1A2(k2 − k1)(k2 − k2) = 0 + 0 = 0.
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Finally, one can show that any solution of (2.4) is of the form given
in (2.5). We won’t belabor these details any further.

Example 1. Solve the second-order linear homogeneous difference
equation

un+2 = un+1 + 2un n = 0, 1, 2, . . .

given that u0 = 0 and u1 = 1.

Solution. Note first that writing down the first few terms of the
sequence is easy:

u2 = u1 + 2u0 = 1 + 0 = 1

u3 = u2 + 2u1 = 1 + 2 = 3

u4 = u3 + 2u2 = 3 + 2 = 5

u5 = u4 + 2u3 = 5 + 6 = 11

and so on. In other words, the first few terms of the sequence look
like

un = 0, 1, 1, 3, 5, 1, . . . .

What we’re trying to find, however, is a recipe for the general term.
Since the characteristic polynomial of this difference equation is
C(x) = x2− x− 2 = (x+ 1)(x− 2), we conclude by equation (2.5)
that the solution must look like

un = A12
n + A2(−1)n, n = 0, 1, 2, . . .

where A1 and A2 are constants. However, since u0 = 0 and u1 = 1
we obtain
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0 = u0 = A12
0 + A2(−1)0 = A1 + A2

1 = u1 = A12
1 + A2(−1)1 = 2A1 − A2

all of which implies that A1 = 1
3 , A2 = −1

3 . The particular solution
of the above linear difference equation is therefore

un =
2n

3
− (−1)n

3
, n = 0, 1, 2, . . .

Quadratic—repeated factor over the reals.

Here we assume that our polynomial C(x) is quadratic with a mul-
tiple factor: C(x) = x2− 2kx− k2 = (x− k)2, where k ∈ R. As in
the above case, one solution has the form un = Akn n = 0, 1, 2, . . ..
However, a second solution has the form un = Bnkn, n = 0, 1, 2, . . ..
We check this by direct substitution:

un+2 − 2kun+1 + k2un = B(n+ 2)kn+2 − 2kB(n+ 1)kn+1 + nBk2kn

= Bkn+2((n+ 2)− 2(n+ 1) + n) = 0.

Likewise, one than then show that the sum of these solutions is a
solution of the second-order homogeneous difference equation:

un = Akn +Bnkn, n = 0, 1, 2, . . . .

Quadratic—irreducible. In this case we consider the second-order lin-
ear homogeneous difference equation whose characteristic equation
is irreducible (over the reals). Thus the discriminant of the charac-
teristic polynomial is negative (and has complex conjugate zeros).
A simple example of such would be the difference equation
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un+2 = −un+1 − un, n = 0, 1, 2, . . . ,

since the characteristic polynomial C(x) = x2 +x+1 is irreducible
over the real numbers.

Assume now that we have the second-order homogeneous linear
difference equation (2.4) has characteristic polynomial with two
complex zeros a+ bi and a− bi, where a, b ∈ R, and b 6= 0. Using
the same argument in as in the previous section, we may conclude
that a complex solution of (2.4) is

un = A(a+ bi)n, n = 0, 1, 2, . . . ,

where A is any real constant. However, since the coefficients in
the equation (2.4) are real one may conclude that the real and
imaginary parts of the above complex solution are also solutions.
Therefore, we would like to find the real and imaginary parts of
the powers (a + bi)n, n ≥ 0. To do this we write the complex
number a+ bi in trigonometric form. We start by writing

a+ bi =
√
a2 + b2

(
a√

a2 + b2
+

bi√
a2 + b2

)
.

Next let θ be the angle represented below:

!!!!!!!!!!!√
a2 + b2

θ
a

b

Therefore, a+ bi = cos θ+ i sin θ, from which one concludes25 that

(a+ bi)n = (cos θ + i sin θ)n = cosnθ + i sinnθ.

25This is usually called DeMoivre’s Theorem, and can be proved by a repeated application of the
addition formulas for sine and cosine.
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That is to say, the real and imaginary parts of (a+ bi)n are cosnθ
and sinnθ, where θ is as above. From this, one finally concludes
that the solution of (2.4) in the present case has the form

un = A cosnθ +B sinnθ, n = 0, 1, 2, . . . ,

where A and B are real constants.

It’s time to come up for air and look at an example.

Example 2. Solve the second-order homogeneous difference equa-
tion

un+2 = −un+1 − un, n = 0, 1, 2, . . . , (2.6)

where u0 = 1, u1 = 1.

Solution. The characteristic polynomial C(x) = x2+x+1 which

has zeros
−1 + i

√
3

2
and

−1− i
√

3

2
. We write the first complex

number in trigonometric form

−1 + i
√

3

2
= cos

2π

3
+ i sin

2π

3
,

from which it follows thatÑ
−1 + i

√
3

2

én
= cos

2πn

3
+ i sin

2πn

3
.

From this it follows that the general solution is given by

un = A cos
2πn

3
+B sin

2πn

3
, n = 0, 1, 2, . . . .
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However, given that u0 = 0, u1 = 1, we get

0 = A

1 = A cos
2π

3
+B sin

2π

3
= −A

2
+

√
3B

2

Therefore A = 0 and B =
2√
3

, forcing the solution to be

un =
2√
3

sin
2πn

3
, n = 0, 1, 2, . . . .

Higher-degree characteristic polynomials.

We won’t treat this case systematically, except to say that upon
factoring the polynomial into irreducible linear and quadratic fac-
tors, then one can proceed as indicated above (see Exercise 14).
Additional complications result with higher-order repeated factors
which we don’t treat here.

Higher-order differences

In Section 2.1.9 we treated only the so-called homogeneous linear
difference equations. An inhomogeneous linear difference equation
has the general form

C(u) = v,

where C(x) is a monic polynomial, v = (vn)n≥0 is a given sequence and
where u = (un)n≥0 is the unknown sequence.

We have already encountered such an example above, in the example
on page 312 giving an arithmetic sequence:

un+1 − un = d, n = 0, 1, 2, . . . .

We won’t treat inhomogeneous linear difference equations in any
detail except for a very special case, namely those having constant
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higher-order differences. The arithmetic sequences have con-
stant first-order differences; if d is this difference then we have un+1 −
un = d, n = 0, 1, 2, . . .. Suppose next that the second-order differences
are constant: this means that the difference of the difference is constant,
written as

(un+2 − un+1)− (un+1 − un) = d, n = 0, 1, 2, . . . .

In other words,

un+2 − 2un+1 + un = d, n = 0, 1, 2, . . . .

Writing more compactly and in terms of the characteristic polynomial,
we have

C( u) = d, n = 0, 1, 2, . . . ,where C(x) = (x− 1)2,

and where d is the constant sequence d, d, . . ..

Constant third-order differences with constant difference d would be
expressed as

((un+3−un+2)−(un+2−un+1))−((un+2−un+1)−(un+1−un)) = d, n = 0, 1, 2, . . . ,

i.e.,

un+3 − 3un+2 + 3un+1 − un = d, n = 0, 1, 2, . . . .

Again, a compact representation of this difference equation is

C( u) = d, n = 0, 1, 2, . . . ,where C(x) = (x− 1)3.

Continuing along these lines we see that a sequence with finite k-th
order differences can be expressed via

C( u) = d, n = 0, 1, 2, . . . ,where C(x) = (x− 1)k. (2.7)
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Such difference equations can be solved in principle; in fact the gen-
eral solution of (2.7) can be expressed as a polynomial. We shall sum-
marize as a theorem below.26

Theorem. A sequence u0, u1, u2, . . . is expressible as a polynomial of
degree k in n if and only if its k-th order differences are constant.

Proof. Assume that the k-th order differences of the sequence
u0, u1, u2, . . . are constant. We shall prove by induction on k that un
is expressible as a polynomial of degree k in n. So assume that k > 1
and that the result is valid whenever we have constant m-th order
differences, where m < n is a positive integer.

We set v0 = u1 − u0, v1 = u2 − u1, v2 = u3 − u2, . . ., then we have a
sequence whose (k− 1)-st order differences are constant. By induction,
we have a representation of the form

vn = bk−1n
k−1 + bk−2n

k−2 + · · ·+ b1n+ b0,

for suitable constants b0, b1, b2, . . . , bk−1.

Next — and this is the relatively difficult part — let a1, a2, . . . , ak
be the unique solution of the linear equations represented in matrix
form:



Ä1
1

ä Ä2
2

ä Ä3
3

ä
· · ·

Äk−1
k−1

ä Äk
k

ä
0

Ä2
1

ä Ä3
2

ä
· · ·

Äk−1
k−2

ä Ä k
k−1

ä
0 0

Ä3
1

ä
· · ·

Äk−1
k−3

ä Ä k
k−2

ä
...

...
...Äk−1

1

ä Äk
2

ä
0 0 0 · · · 0

Äk
1

ä





a1

a2

a3
...
ak


=



b0

b1

b2
...

bk−1


.

Having solved the above, one then verifies that the equation

ak(n+ 1)k + ak−1(n+ 1)k−1 + · · ·+ a1(n+ 1)

= akn
k + ak−1n

k−1 + · · ·+ a1n+ bk−1n
k−1 + bk−2n

k−2 + · · · b1n+ b0.

26As an alternative to using the theorem, note that if a sequence u = (un) has constant k-th
order differences, then, in fact, u satisfies the homogeneous difference equation C(u) = 0, where
C(x) = (x− 1)k+1. One can now proceed along the lines of the “repeated factor” case, given above.
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Finally, we set a0 = u0 and use the fact that un+1 = un + vn to check
that

un = akn
k + ak−1n

k−1 + · · ·+ a1n+ a0,

and we are finished, as we have successfully proved that the terms of

the sequence u0, u1,
..., are expressible as a polynomial of degree k.

As for the converse, we assume that the sequence u0, u1, u2, . . . is be
expressible as a polynomial of degree k in n:

un = akn
k + ak−1n

k−1 + · · ·+ a1n+ a0;

we shall show by induction on k that the k-th order differences are
constant. To this end, let

Note next that the first order differences are

vn = un+1 − un
= (ak(n+ 1)k + ak−1(n+ 1)k−1 + · · ·+ a0)

−(akn
k + ak−1n

k−1 + · · ·+ a0)

= polynomial in n of degree at most k − 1.

By induction, the sequence (vn)n≥0 has constant (k − 1)-st differences.
But then it follows immediately that the sequence (un)n≥0 must have
constant k-th order differences, and we are done!

Example 3. Solve the inhomogeneous linear difference equation

un+2 − 2un+1 + un = 1, n = 0, 1, 2, . . . , u0 = 2, u1 = 4.

Solution. The difference equation says that the second-order differ-
ences are constant and equal to 1; this implies that the sequence must
be quadratic, say

un = an2 + bn+ c, n = 0, 1, 2, . . . .

Note first that we can solve for the leading coefficient a by substituting
the polynomial an2 + bn + c into the above difference and noting that
the linear terms (bn + c) have zero second-order differences and hence
don’t contribute. This gives
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a(n+ 2)2 − 2a(n+ 1)2 + an2 = 1,

which quickly reduces to 2a = 1, so a = 1
2 . Next, we find b and c by

using the initial conditions:

c = 2
1

2
+ b+ c = 4.

This quickly leads to b = 3
2 , c = 2 and so the solution is given by

un = 1
2n

2 + 3
2n+ 2, n = 0, 1, 2, . . . .

Exercises

1. Let (un)n≥0 be an arithmetic sequence. Prove that the sequence
(eun)n≥0 is a geometric sequence.

2. Let (un)n≥0 be a geometric sequence with un > 0 for all n. Prove
that (log un)n≥0 is an arithmetic sequence.

3. Consider the “counting sequence” 1, 2, 3, . . . .

(a) Represent this sequence as the solution of an inhomogeneous
first-order linear difference equation.

(b) Represent this sequence as the solution of a homogeneous
second-order linear difference equation. Find the general so-
lution of this second-order difference equation.

4. Solve the linear difference equation un+1 = −2un, n = 0, 1, 2, . . .,
where u0 = 2

5. Solve the second-order difference equation un+2 = −4un+1+5un, n =
0, 1, 2, . . . where u0 = 1 = u1.

6. Solve the second-order difference equation un+2 = −4un+1−4un, n =
0, 1, 2, . . . where u0 = 1, u1 = 0.
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7. Solve the Fibonacci difference equation un+2 = un+1 + un, n =
0, 1, 2, . . . where u0 = u1 = 1.

8. Let F (n), n = 0, 1, 2, . . . be the Fibonacci numbers. Use your re-
sult from Exercise #7 to compute the number of digits in F (1000000).
(Hint: use log10 and focus on the “dominant term.”)

9. Consider the “generalized Fibonacci sequence,” defined by u0 =
1, u1 = 1, and un+2 = aun+1 + bun, n ≥ 0; here a and b are
positive real constants.

(a) Determine the conditions on a and b so that the generalized
Fibonacci sequence remains bounded.

(b) Determine conditions on a and b so that un → 0 as n→∞.

10. The Lucas numbers are the numbers L(n), n = 0, 1, 2, . . . where
L(0) = 2, L(1) = 1, and where (just like the Fibonacci numbers)
L(n+ 2) = L(n+ 1) +L(n), n ≥ 0. Solve this difference equation,
thereby obtaining an explicit formula for the Lucas numbers.

11. Let F (n), L(n), n ≥ 0 denote the Fibonacci and Lucas numbers,
respectively. Show that for each n ≥ 1, L(n) = F (n+1)+F (n−1).

12. Solve the second-order difference equation un+2 = −4un, n =
0, 1, 2, . . . where u0 = 1 = u1.

13. Solve the second-order difference equation un+2 = 2un+1−2n, n =
0, 1, 2, . . . ,
u0 = 0, u1 = 2.

14. Solve the third-order difference equation un+3 = −3un+2 + un+1 +
un, n = 0, 1, 2, . . . ,
u0 = 1, u1 = 1, u2 = −1.

15. Solve the inhomogeneous linear difference equation

un+2 − 2un+1 + un = 2, n = 0, 1, 2, . . . , u0 = 2, u1 = 6, u2 = 12.
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16. Solve the inhomogeneous linear difference equation

un+3 − 3un+2 + 3un+1 − un = 2, n = 0, 1, 2, . . . ,

u0 = 0, u1 = 4, u2 = 10, u3 = 20.

17. Given the sequence u0, u1, u2, . . ., note that the first few k-th order
differences are

first-order: un − un−1

second-order: (un − un−1)− (un−1 − un−2) = un − 2un−1 + un−2

third-order: ((un−un−1)−(un−1−un−2))−((un−1−un−2)−(un−2−
un−3))
= un − 3un−1 + 3un+2 − un−3

Find a general formula for the k-order differences and prove this
formula.

18. As we have seen, the sequence un = nk has constant k-th order
differences. Therefore,

k∑
l=0

Ñ
k

l

é
(−1)lun−l =

k∑
l=0

Ñ
k

l

é
(−1)l(n− l)k = constant ,

i.e., is independent of n.

(a) Conclude from this that one has the curious combinatorial
identity: if r < k, then

k∑
l=0

Ñ
k

l

é
(−1)llr = 0.

(Hint: Show that for each such r the above expression is the
coefficient of nk−r in the constant polynomial
k∑
l=0

Ñ
k

l

é
(−1)l(n− l)k.)
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(b) Using part (a) show that

k∑
l=0

Ñ
k

l

é
(−1)llk = (−1)kk!

(Hint: this can be shown using induction27.)

(c) Conclude that if C(x) = (x− 1)k, a the solution of C(u) = d,
where d = d, d, . . . is written as

un = ank + lower-degree terms in n,

then a =
d

k!
.

19. Let F1 = 1, F2 = 1, F3 = 2, . . . be the Fibonacci sequence. Show
that one has the curious identity

x

1− x− x2
=

∞∑
k=1

Fkx
k.

27Here’s how:

k∑
l=0

Ç
k

l

å
(−1)llk =

k∑
l=0

ñÇ
k − 1

l

å
+

Ç
k − 1

l − 1

åô
(−1)llk

=
k∑
l=0

Ç
k − 1

l

å
(−1)llk +

k∑
l=0

Ç
k − 1

l − 1

å
(−1)llk

=
k−1∑
l=0

Ç
k − 1

l

å
(−1)llk −

k−1∑
l=0

Ç
k − 1

l

å
(−1)l(l + 1)k

= −
k−1∑
l=0

Ç
k − 1

l

å
(−1)l

k−1∑
m=0

Ç
k

m

å
lm

= −
k−1∑
m=0

k−1∑
l=0

Ç
k

m

åÇ
k − 1

l

å
(−1)llm

= −
k−1∑
m=0

Ç
k

m

å k−1∑
l=0

Ç
k − 1

l

å
(−1)llm

= −
Ç

k

k − 1

å k−1∑
l=0

Ç
k − 1

l

å
(−1)llk−1 (we’ve used (a))

= −k · (−1)k−1(k − 1)! = (−1)kk! (induction)
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(Just do the long multiplication showing that

(1− x− x2)

Ñ
∞∑
k=1

Fkx
k

é
= x. This says that the rational function

x

1− x− x2
is a generating function for the Fibonacci sequence.)

20. A sequence a1, a2, a3, . . . , of real numbers is called a harmonic
sequence if for each n ≥ 1, an+1 is the harmonic mean of an
and an+2 (see Exercise 9 of page 42). Show that a given sequence
a1, a2, . . . is a harmonic sequence if and only if all ai 6= 0 and the

sequence of reciprocals
1

a1
,

1

a2
,

1

a3
is an arithmetic sequence.

2.2 Elementary Graph Theory

In this section we shall consider one of the most important topics in
contemporary discrete mathematics—that of a graph. This concept
has a huge variety of applications and has become especially important
to the relatively new discipline of management science.

Mathematically, a graph is easy enough to define. It consists of a set
V of vertices and a numerical relationship between pairs of vertices
(sort of a “distance” or “cost” function). Namely, between any two
vertices vi and vj is a non-negative real number cij such that it is
always true that cij = cji. If cij 6= 0 we call {vi, vj} an edge. Put
intuitively, the cost of getting from vertex vi to vj is the same as the
cost of getting from vertex vj to vi. In other words, the matrix C = [cij]
is a symmetric matrix, called the adjacency matrix.28 This matrix is
called the adjacency matrix of the graph.

If the costs cij satisfy cii = 0 for all indices i, and cij is always 0 or
1, then we call the graph a simple graph; otherwise we call the graph
a weighted graph. Perhaps the pictures below will clarify this.

28If this matrix isn’t symmetric, then the graph is called a directed graph; we’ll study those
briefly in Subsection 2.2.3.
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Other definitions are as follows. An edge is called a loop if it joins
a vertex to itself (see the above figure). Let vi and vj be vertices in a
graph. We say that vi and vj are adjacent if there is an edge joining
vi and vj (that is if the cost cij > 0). Also,

A walk in a graph is a sequence of linked edges .

A trail in a graph is a sequence of linked edges such that no edge
appears more than one.

A path in a graph is a walk with no repeated vertices.

A circuit in a graph is a trail that begins and ends at the same vertex.

A cycle in a graph is a path which begins and ends at the same vertex.

If any two vertices of a graph can be joined by a path, then the
graph is called connected.

2.2.1 Eulerian trails and circuits

Suppose that a postman is charged with delivering mail to residences
in a given town. In order to accomplish this in an efficient manner he
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would ideally choose a route that would allow him to avoid walking
the same street twice. Thus, if the town is represented by a simple
graph whose edges represent the streets, then the problem is clearly
that of finding a trail in the graph which includes every edge: such a
trail is called an Eulerian trail. If the postman is to begin and end at
the same vertex, then what is sought is an Eulerian circuit. General
problems such as this are called routing problems.

Classic Example. In the ancient
city of Königsberg (Germany) there
were seven bridges, arranged in a
“network” as depicted in the figure
below:

A prize was offered to anyone who could determine a route by which
each of the bridges can be traversed once and then return to the starting
point.

A casual inspection of the above lay-
out of bridges shows that this can be rep-
resented by a graph having four vertices
and seven edges, as in the graph to the
right.

From the above, we see that the ad-
jacency matrix for the seven bridges of
Königsberg with labeling A = 1, B =
2, C = 3, and D = 4 is given by

A =


0 2 2 1
2 0 0 1
2 0 1 0
1 1 1 0


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Definition. The degree of a vertex v in a graph is the number of
edges on this vertex. A loop on a vertex is counted twice in computing
the degree of a vertex.

Notice that if we are given the adjacency matrix, then the sum of
the elements of the i-th row is the degree of the vertex i.

Theorem. Let G be a finite graph with adjacency matrix A. Then the
number of walks of length 2 from vertex vi to vertex vj is the (i, j) entry
of A2. More generally, the number of walks of length k from vertex vi
to vertex vj is the (i, j) entry of Ak.

A moment’s thought is also enough to be convinced of the following
theorem:

Theorem. (Euler’s Theorem) Let G be a graph.

(i) If the graph has any vertices of odd degree, then G cannot contain
an Eulerian circuit.

(ii) If the graph has more than two vertices of odd degree, then G
cannot contain an Eulerian trail.

As a result of Euler’s theorem, we see that the bridges of Königsberg
problem has no solution!

Example 1. The picture to the right
depicts a graph G below with exactly two
vertices of odd degree, one at vertex A
and one at vertex B. The reader should
have no difficulty in concluding that G
has no Eulerian circuits but does have an
Eulerian trail from A to B (or from B to
A).

Notice that if we add the degrees of all the vertices in a graph, then
every edge get counted twice; this already proves the following.
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Theorem. (Euler’s Degree Theorem) The sum of the degrees of the
vertices equals twice the number of edges in the graph.

As a result, one has

Corollary. The number of vertices of odd degree must be an even
number.

The above results are negative in the sense that they tell us when
it’s impossible to construct Eulerian circuits or Eulerian trails. We
shall give an algorithm which allows us to find an Eulerian circuit in a
graph all of whose degrees are even.

Fleury’s algorithm for finding an Eulerian circuit

Assume that we are given the graph G all of whose vertex degrees are
even. In tracing a trail in G, after having traveled along an edge E, we
shall remove this edge (we have “burned our bridges behind us”).

Step 1. Pick a vertex X.

Step 2. Move from X to an adjacent vertex Y along the edge E

unless removing E disconnectes the graph. (There may be several
choices. Also, if there is only one choice, you need to take this
choice!)

Step n. Return finally to X.

The above algorithm is depicted in the following sequence. The
dotted edges represent the removed edges.
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Exercises

1. Sketch a graph whose adjacency matrix is

A =



0 1 2 1 0 1
1 0 0 1 2 0
2 0 2 0 1 1
1 1 0 0 2 2
0 2 1 2 0 1
1 0 1 2 1 2


How many paths of length 2 are there from vertex v2 to vertex v4?

2. The following floor plan shows the ground level of a new home. Is it
possible to enter the house through the front door and exit through
the rear door, going through each internal doorway exactly once?
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Model this problem with a suitable graph and give a reason for
your answer.

3. Consider the graph G having adjacency matrix

A =



0 1 1 1 1
1 0 0 2 1
1 0 0 2 1
1 2 2 0 1
1 1 1 1 0


(a) Draw the graph.

(b) Explain why G has an Eulerian circuit.

(c) Find one.

4. The map to the right illustrates a
portion of a postal carrier’s delivery
route. The dots indicate mailboxes
into which mail must be delivered.
Find a suitable graph to represent
the carrier’s route. Is there an Eu-
lerian circuit? Is there an Eulerian
trail?
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5. We consider the following family of simple graphs On, n = 1, 2, . . .,
defined as follows.

Vertices: The set of vertices is the set {±1,±2, . . . ,±n}.

Edges: The vertex i is adjacent to the vertex j precisely when
|i| 6= |j|.

(a) Draw the graphs O1, O2, O3.

(b) What is the degree of every vertex in On?

(c) Is there an Eulerian circuit in On, n > 1?

6. We consider the family of graphs Cn, n = 1, 2, . . . defined as fol-
lows.

Vertices: The set of vertices is the set of binary sequences
v = (ε1, ε2, . . . , εn), where each εi = 0 or 1.

Edges: The vertex v is adjacent to the vertex w precisely when
the binary sequences defining v and w differ in exactly one
place.

The graph C3 is indicated to the right.

(a) What is the degree of each vertex in Cn, n ≥ 1?

(b) How many paths are there from the vertex (0, 0, . . . , 0) to the
vertex (1, 1, . . . , 1)?
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7. Does the graph to the right have an
Eulerian circuit? If so, find it.

2.2.2 Hamiltonian cycles and optimization

In the previous subsection we were largely concerned with the problem
of moving around a graph in such a way that each edge is traversed
exactly once. The present subsection is concerned with the “dual”
problem, namely that of moving around a graph in such a way that
each vertex is visited exactly once. Such a walk is called a Hamil-
tonian path. If we return to the original vertex, the walk is called
a Hamiltonian cycle. The following figure depicts a graph and a
Hamiltonian cycle in the graph:

Curiously, unlike the question of the existence of Eulerian circuits,
there is no definitive simple criterion for the existence of Hamiltonian
cycles. Known results typically involve a lower bound on the degree of
each vertex.29 See the exercises below for a few additional examples.

29For example, a 1952 theorem of Paul Dirac says that a graph with n vertices has a Hamiltonian
cycle provided that each vertex has degree ≥ n/2. /Oystein Ore generalized this result to graphs
(with n ≥ 3 vertices) such that for each pair of non-adjacent vertices the sum of their degrees is ≥ n.
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Of more significance than just finding a Hamiltonian cycle in a simple
graph is that of finding a Hamiltonian cycle of least total weight
in a weighted graph. Such is the nature of the traveling salesman
problem. We start with a simple example.

Example 1. A salesman needs
to visit five cities in the American
Midwest: Chicago, Gary, Joliet,
Merriville, and Highland. The cost
of travel between the cities is de-
picted in the graph to the right.30

We display the costs in tabular form. It will be convenient to use
the letters A, B, C, D, and E to represent the cities. Notice that since
the matrix of entries is symmetric, there is no need to fill in all of the
entries.

A = Chicago B = Gary C = Merriville D = Highland E = Joliet
Chicago * $185 $119 $152 $133
Gary * $121 $150 $200
Merriville * $174 $120
Highland * $199
Joliet *

Assuming that the salesman will begin and end his trip in Chicago,
what it the optimal, i.e., cheapest route for him to take? That is,
which Hamilton cycle will afford the least total weight?

In order to answer this question, a few observations are in order.
First of all, a complete graph is one in which every pair of distinct
vertices are joined by an edge. Thus, the above graph is a (weighted)
complete graph. Next, it is obvious that in a complete graph with n
vertices, there are exactly (n − 1)! Hamiltonian cycles starting from a
given vertex. In the present example there are 4! = 24 Hamiltonian

30The numbers are taken from Example 2, page 201 of Excursions in Modern Mathematics, Fourth
Edition, by Peter Tannenbaum and Robert Arnold.
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cycles.
In order to find the Hamiltonian cycle of minimal weight, we shall

resort to the Brute-Force Method, that is we shall form a complete
list of the Hamiltonian cycles and their weights, choosing the one of
minimal weight as the solution of our problem. There is one final sim-
plification, namely, if the complete graph with vertices {v1, v2, . . . , vn}
is weighted, then the weight of the Hamiltonian cycle (v1, v2, . . . , vn, v1)
clearly has the same weight as the “reverse cycle” (v1, vn, vn−1, . . . , v2, v1).
Therefore the Brute Force Method will require us to compare the weights
of 1

2(n− 1)! Hamiltonian cycles.
We now list the weights of the Hamiltonian cycles in the above graph,

highlighting the cycle of minimal weight.

cycle weight reverse cycle

ABCDEA 185 + 121 + 174 + 199 + 133 = $812 AEDCBA
ABCEDA 185 + 121 + 120 + 199 + 152 = $777 ADECBA
ABDCEA 185 + 150 + 174 + 120 + 133 = $762 AECDBA
ABDECA 185 + 150 + 199 + 120 + 119 = $773 ACEDBA
ABECDA 185 + 200 + 120 + 174 + 152 = $831 ADCEBA
ABEDCA 185 + 200 + 199 + 174 + 119 = $877 ACDEBA
ACBDEA 119 + 121 + 150 + 199 + 133 = $722 AEDBCA
ACBEDA 119 + 121 + 200 + 199 + 152 = $791 ADEBCA

ADBCEA 152 + 150 + 121 + 120 + 133 = $676 AECBDA

ADBECA 152 + 150 + 200 + 120 + 119 = $741 ACEBDA
AEBCDA 133 + 200 + 121 + 174 + 152 = $780 ADCBEA
AEBDCA 133 + 200 + 150 + 174 + 119 = $776 ACDBEA

As a result of the above computations we see that the minimal cost is
for the salesman to visit the cities in the order

Chicago −→ Highland −→ Gary −→ Merriville −→ Joliet −→ Chicago,

which results in a total cost of $676. In the next subsection we shall con-
sider a few algorithms which can be used to determine “good” Hamil-
tonian cycles if not the optimal Hamiltonian cycle.

The above is an example of the Traveling Salesman Problem—
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often abbreviated TSP—and is one of fundamental importance in Man-
agement Science. It is also related to the so-called P = NP problem
(one of the Millennium problems)31 in that a general good (i.e., effi-
cient) solution of TSP would in fact prove that P = NP.

Exercises

1. Two of the three graphs below have a Hamiltonian cycle. Deter-
mine which two and in each case find a Hamiltonian cycle.

2. Find a Hamiltonian cycle of mini-
mal weight in the graph to the right.

3. Let G be a complete graph having six vertices. Suppose that we
label each edge with either a 0 or a 1. Prove that in this graph
there must exist either

(a) three vertices among whose edges are all labeled “0,” or

(b) three vertices among whose edges are all labeled “1.”32

31See www.claymath.org/millinnium.
32This is an elementary example of “Ramsey Theory.” In general, the Ramsey number of a

complete graph with n vertices is the maximum number k such an arbitrary labeling of the edges
(with 0s and1s) of the graph will result in a subgraph with k vertices having all the edge labels 0 or
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TSP: The nearest-neighbor algorithm

As indicated above, the brute-force method will always find the optimal
solution, but the amount of computing time required may be astronom-
ical (which is hardly optimal!). In this and the following sections we
shall consider two very simple algorithms which don’t necessarily find
the optimal solution but they are known to quickly find “good” solu-
tions.

The Nearest-Neighbor algorithm starts with a vertex in the
weighted graph, and then proceeds to move to the “nearest neighbor”
without prematurely returning to a previous vertex.

Example. In attempting to construct the cheapest route starting from
and returning to Chicago, we proceed as follows

1. Move from Chicago to Merriville; the cost of $119 is the cheapest
among all costs involving travel from Chicago.

2. Move from Merriville to Joliet $120; this is the cheapest cost (other
than $119, which puts us back in Chicago).

3. Move from Joliet to Highland at a cost of $199.

4. Move from Highland to Gary at a cost of $150.

5. Return to Chicago at a cost of $185.

The total cost of the above Hamiltonian route is $773, which while not
optimal was an easy route to obtain.

Exercises

1. Consider the weighted graph with vertices A, B, C, D, and E,
having weights assigned as follows

all the edge labels 1. The Ramsey number of the complete graph with six vertices is 3. In fact, one
way the above problem is often described is as follows:

Show that among six people
there must be either three mutual
friends or three mutual strangers.
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A B C D E

A * 20 23 19 17
B * 20 25 18
C * 24 19
D * 23
E *

Use the Nearest-Neighbor algo-
rithm to find a Hamiltonian cycle
starting at vertex A. What is the
total weight of this Hamiltonian cy-
cle?

2. Use the Nearest-Neighbor algorithm to find a Hamiltonian cycle
starting at vertex A. What is the resulting total weight of this
cycle?

A B C D E F

A * 4.7 5.1 3.6 1.1 0.8
B * 0.6 8.2 5.7 5.2
C * 8.1 5.9 5.6
D * 3.2 3.1
E * 1.5
F *

3. There is a variation of the Nearest-Neighbor Algorithm which in-
creases the computation time by a factor of the number of ver-
tices of the weighted graph. This might seem stiff, but this added
time pales by comparison with the time required to carry out the
Brute-Force method. Namely, for each vertex of the weighted
graph compute the Hamiltonian cycle constructed by the Nearest-
Neighbor Algorithm, and then take the Hamiltonian cycle of least
total weight. This is called the Repetitive Nearest-Neighbor
algorithm. Do this for the above weighted graph consisting of
travel among the given five Midwestern cities.

TSP: The cheapest-link algorithm

There is a alternative algorithm—the Cheapest-Link algorithm which
efficiently computes a relatively cheap Hamiltonian cycle in a weighted
graph. This is easy to describe, as follows.

In the weighted graph start by choosing the edge of minimal weight
(the “cheapest link”). Next choose the next cheapest link, and so on.
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As with the Nearest-Neighbor algorithm, we do not select any edges
which would prematurely result in a cycle. Also, we need to avoid any
edges which will result in more than two edges from a given vertex.

Example. We consider this algorithm on the Midwestern Cities graph.

1. Choose the {Chicago, Merriville} link as this is the cheapest among
all links.

2. Choose the {Merriville, Joliet} link; this is the second cheapest at
$120.

3. The third cheapest link is the {Gary, Merriville} link at $121;
however, choosing this link will result in three edges issuing from
Merriville. The fourth cheapest link is the {Chicago, Joliet} link
at $133. However, this is also impossible as a premature cycle is
formed. We settle for the {Gary, Highland} link at $150.

4. We choose the {Chicago, Highland} link at $152.

5. The only remaining choice given the constraints is the {Gary,
Joliet} link at $200.

The above algorithm produces the Hamiltonian cycle

Chicago −→ Merriville −→ Joliet −→ Gary −→ Highland −→ Chicago,

at a total (non-optimal) cost of $741.

The algorithm above are what are called greedy algorithms as at
each stage they seek the optimal (i.e., cheapest) choice.

Exercises

1. Apply the Cheapest-Link algorithm to the graph indicated in the
table in Exercise 1 on page 121.

2. Apply the Cheapest-Link algorithm to the graph indicated in the
table in Exercise 2 on page 122.
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2.2.3 Networks and spanning trees

In this subsection we consider a problem similar to TSP but different
in the sense that efficient and optimal solutions are possible. The basic
idea is this: suppose, for example, that we have the weighted graph

• •

•

c3

c1 c2

A B

C

We need for these three points to be “networked,” i.e., in communi-
cation with each other, but without any redundancy. In other words,
we don’t need all three of the edges in the above graph because if A
is networked with B, and B is networked with C then A is networked
with C: there is a “transitivity” of networking. Therefore, the above
idealized networking problem would be optimized by discarding the re-
dundant (and most expensive) edge so that the sum of the remaining
edge weights becomes a minimum.

Let us flesh out the above with a somewhat more detailed problem.

Example 1. Assume that we have
cities A, B, C, D, and E and that
they can be networked according to
the costs depicted in the weighted
graph to the right.

What we are looking for is a network which will result in the the cities
being interconnected but without any redundancy. Also, we are looking
to do this with the least possible cost. The first condition simply states
that we are looking for a “subgraph” of the above graph containing all
of the vertices but without having any cycles in it. Such is called a
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spanning tree of the graph.33 The second says that we are looking
for a minimal-weight spanning tree.

Before continuing with the above example, a few comments are in
order. First of all, a given graph is called a tree if it is connected, has
no multiple edges, and contains no cycles. Therefore, in particular, a
tree is a simple graph. We shall prove a couple of results about trees.

Lemma. Let G be a tree, and let E be an edge in G. Then the removal
of E results in a disconnected graph.

Proof. Let E be on the vertices v and w. If the removal of E doesn’t
disconnect G then there is a path from v to w without using the edge
E. Since we can get from v to w via E, we clearly have a cycle in the
graph G. Therefore, the removal of E must result in disconnecting G.

Theorem. Let G be a finite simple connected graph containing n
vertices. Then G is a tree if and only if G has n− 1 edges.

Proof. Assume that G is a finite tree and fix a vertex v in G. For
any vertex w in G denote by d(v, w) (the distance from v to w) the
length of the shortest path from v to w. Since G only has finitely many
vertices, there must exist a vertex v′ of maximal distance from v.

Claim: v′ has only one edge on it, i.e., v′ is an end in the tree G.
Assume that d(v, v′) = d and let

v = v0, v1, v2, . . . , vd = v′

33It is easy to see that any connected finite graph contains a spanning tree. Indeed, suppose that
the tree T is a subgroup of the connected graph G having a maximal number of vertices. If these
aren’t all of the vertices of G, then by the connectivity of G one of the vertices of the tree must be
adjacent to a new vertex in G. Adding this vertex (and the corresponding edge) creates a larger
tree inside G, a contradiction. (Even if the graph has an infinite number of vertices, there still must
exist a spanning tree. The proof, however, uses what’s called Zorn’s Lemma and is outside the
scope of these notes.)
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be a path from v to v′, where each
{vi−1, vi} is an edge in G. Assume
that v′ is adjacent to another vertex
v′′. If a minimal length path from
v to v′′ must travel through v′, then
v′′ must be of greater distance from
v than is v′. This can’t happen and
so there must be a path from v to v′′

which doesn’t pass through v′. But
with {v′, v′′} being an edge, then we
see that it is possible to construct a
cycle through v′, which is a contra-
diction.

We now may remove the vertex v′ and the unique edge e on v from
the graph G; what results is clearly a tree with n − 1 vertices. Using
induction, we may conclude that this tree must have n− 1− 1 = n− 2
edges. If we replace the removed vertex and edge, we arrive at the
conclusion that G itself must have n− 1 edges.

Conversely, assume that G is a connected graph with n vertices and
n− 1 edges.

Claim: The graph G must contain an end vertex v. If not then each
vertex of G must sit on at least two edges, and so

# edges in G = 1
2

∑
vertices v

in G

(# edges on v) ≥ n,

which is a contradiction. Therefore, G must contain an end vertex v.

We now remove the end vertex v and the single edge containing v
from the graph G. This results in a connected graph G′ consisting of
n− 1 vertices and n− 2 edges. Again using mathematical induction we
conclude that G′ must, in fact, be a tree. But then adding v and the
single edge to G will certainly produce a tree, and we’re done.
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Example 1, continued. We
shall return to the above exam-
ple only long enough to indicate a
minimal-weight spanning tree. In
the next subsection we shall indi-
cate an efficient method to derive
this optimal solution.

Exercises

1. Construct (by drawing) a spanning tree in each of the graphs de-
picted below.

2. Can you give a simple example of a graph which has no Hamilto-
nian cycle?

3. Indicate a Hamiltonian cycle in the
graph to the right (if one exists).
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Kruskal’s algorithm

Kruskal’s algorithm is the same in spirit as the Cheapest-Link
algorithm for finding minimal-weight Hamiltonian cycles. However,
the surprising difference is that whereas the Cheapest Link algorithm
doesn’t always find the minimal-weight Hamiltonian cycle, Kruskal’s al-
gorithm will always find the minimal-weight spanning tree in a weighted
graph.

The algorithm is implemented by selecting in turn the edges of min-
imal weight—and hence is a greedy algorithm—disregarding any choice
that creates a circuit in the graph. The algorithm ends when a spanning
tree is obtained.

We indicate in steps how
the minimal-weight span-
ning tree for the exam-
ple on page 127 was ob-
tained (notice that we
couldn’t choose the edge
with weight 2.5, as this
would create a cycle:
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Exercises

1. Find a minimal spanning tree for
the graph on the right.

2. The table to the right gives a de-
scribes a graph. An asterisk (*) in-
dicates an edge of infinite weight.
Use Kruskal’s algorithm to find a
minimal-weight spanning tree.

A B C D E F G

A * 5 8 7 * * *

B * 5 * 4 5 *

C * 2 2 * 3

D * * * 2

E * 3 1

F * 3

G *

3. (Efficient upper and lower bounds for Hamiltonian cy-
cles of minimal weight) In this exercise we show how to obtain
reasonable upper and lower bounds for the minimal weight of a
Hamiltonian cycle in a weighted graph G.

(a) (Lower bound) Notice that if we remove an edge from a
Hamiltonian cycle we get a spanning tree. Therefore do this:

i. Delete a vertex v and all the edges incident with v from
the graph, call the resulting graph Gv.

ii. Use Kruskal’s algorithm to find a minimal spanning tree
for Gv. Let the total weight of this tree be Wv.

iii. Replace the vertex v and two of the cheapest edges on v.

Show that Wv+W ≤ total weight of a minimal-weight Hamil-
tonian cycle, where W denotes the sum of the weights of the
two edges found in (iii), above. Thus we have efficiently ob-
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tained a lower bound for the total weight of a minimal-weight
Hamiltonian cycle.

(b) (Upper bound) Use one of the efficient methods above (Nearest-
neighbor or cheapest-link algorithm) to find a Hamiltonian
cycle. The weight is then an upper bound.

Prim’s algorithm

Like Kruskal’s algorithm, Prim’s algorithm is an efficient method
for finding a minimal-weight spanning tree in a weighted graph. We
describe this as follows. Assume that the given weighted graph is G.
For convenience, we shall initially regard all of the vertices and edges
in G as colored black.

Step 1. Pick an initial vertex v1. Color this vertex red.

Step 2. Find a vertex v2 of minimal distance (weight) to v1. Color
the vertex v2 and the edge {v1, v2} red.

Step 3. Choose a new vertex v3 of minimal distance to either v1 or
v2. Color the new vertex v3 and the corresponding minimal-length
edge red.

Step n. Repeated application of the above will determine a red sub-
tree of G with vertices v1, v2, . . . , vn−1. Find a black edge of mini-
mal weight on one of the above n−1 vertices. Color this edge and
the new vertex vn which it determines red.

Conclusion. Continue until all vertices in G have been colored red;
the resulting red graph is a minimal-weight spanning tree.

Exercises

1. Use Prim’s algorithm to find minimal spanning trees in the first
two exercises on page 129.
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2. Use Prim’s algorithm to find a minimal spanning tree in the graph
below:

3. Use the methods of Exercise 3 on page 129 to find upper and lower
bounds on the weight of a Hamiltonian cycle in the above graph.

Weighted directed graphs; Dijkstra’s algorithm

In many applications of graph theory, one notices that the cost of mov-
ing from vertex v1 to the vertex v2 might be different from the cost of
moving from v2 to the vertex v1.

34 Such a graph is called a weighted
directed graph. Of interest in this setting is to find the minimal
weight (cost) in getting from an initial vertex—call it v0—to some other
vertex v.35

Below is depicted a weighted directed graph:

34For example the price of a airline ticket from Shanghai to Beijing is typically (slightly) less than
the price of a ticket from Beijing to Shanghai.

35This is sometimes called the minimal connector problem.
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Of course, a weighted graph can be thought of as being directed
where the weights are the same in both directions.

Dijkstra’s algorithm36 constructs in a graphG a directed tree start-
ing from the vertex v0 such that the minimal-weight path from v0 to
any other vertex v can be found by moving from v0 to v along this
tree. The description of the algorithm proceeds as follows. We shall
assume, for convenience that all directed edges are initially drawn as
“dotted directed edges.” Also, each vertex shall initially carry a tem-
porary label, to be replaced eventually with a permanent label (which
will represent the minimal distance from the initial vertex v0. (Caution:
the temporary labels can change during the algorithm!)

We’ll use the graph to the right
to illustrate Dijkstra’s algorithm.

k -5

7
1 6

2

4 8

k?

kv0 k-

k? k?k - k-

We now itemize the steps in Dijkstra’s algorithm.

36There are a couple of really nice applets demonstrating Dijkstra’s algorithm:
http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html
http://www-b2.is.tokushima-u.ac.jp/ ikeda/suuri/dijkstra/Dijkstra.shtml
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Step 1. Find the vertices v
in G such that (v0, v) is a
directed edge. Temporarily
mark these vertices with their
weighted distrances from v0.

m -
5

7

1 6

2

4 8

5

7m?

mv0 m-

m? m?m - m-

Step 2. Fill in the edge con-
necting v0 to the vertex v of
minimal distance from v0; the
temporary label at v1 is now
a permanent label.

m -
5

7

1 6

2

4 8

5

7m?

mv0 m-

m? m?m - m-

Step 3. Find all new vertices
connected to v1; temporarily
mark these vertices with their
distances from v0 through v1.

m -
5

7

1 6

2

4 8

5

7 9

7

m?

mv0 m-

m? m?m - m-

Step 4. Select a vertex v2 having
a minimal weight label; color
in the directed edge and make
the label permanent. (Note
that in the event that there is
more than one vertex of mini-
mal distance, the choice is ar-
bitrary.)

m -
5

7

1 6

2

4 8

5

7 9

7

m?

mv0 m-

m? m?m - m-
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Step 5. Find all new vertices
connected to v2; mark these
with their distances from v0

(along solid directed edges)
and through v2. If such a ver-
tex already has a temporary
label, overwrite this label if
the distance through v2 is less
than the existing label. (This
is where a label can change!
If there are no new vertices,
go to the next step.)

m -
5

7

1 6

2

4 8

5

7 8

7

m?

mv0 m-

m? m?m - m-

Step 6 and beyond. Choose
the vertex having the minimal
temporary label. Color in the
directed edge and make the
label permanent. Keep re-
peating this process until all
vertices have permanent la-
bels; The darkened directed
edges determine a directed
tree through which minimal
weight paths are determined.

m -
5

7

1 6

2

4 8

5

7 8

7

m?

mv0 m-

m? m?m - m-
m -

5

7

1 6

2

4 8

5

7 8

7

14m?

mv0 m-

m? ����?m - -

Exercise.

1. Use Dijkstra’s algorithm to find a minimal-weight path from vertex
A to vertex J in the graph on page 131.

2.2.4 Planar graphs

Two graphs G1 and G2 are isomorphic if there is a function

f : vertices of G1 −→ vertices of G2
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such that {f(v1), f(w1)} is an edge of G2 exactly when {v1, w1} is an
edge of G1. In other words, two graphs are isomorphic exactly when
one is simply a redrawing of the other. A moment’s thought reveals
that the two graphs depicted below are isomorphic.

Assume that G1 and G2 are graphs and that

f : vertices of G1 −→ vertices of G2

determines an isomorphism between these graphs. If v1 is a vertex of
G1, and if v2 = f(v1), it should be instantly clear that v1 and v2 have
the same degree. However, this condition isn’t sufficient; see Exercise
1 on page 141.

There are two important families of graphs that warrant special con-
sideration. The first is the family of complete graphs K1, K2, K3, . . .
(see also page 118). The graph Kn is the simple graph (see page 109)
having n vertices and such that every vertex is adjacent to every other
vertex.
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The next important family involves
the so-called bipartite graphs.
The simple graph G is called bi-
partite if its set V of vertices can
be partitioned into two disjoint sub-
sets V = V1∪V2 where there are no
edges among the vertices of V1 and
there are no edges among the ver-
tices of V2.

The complete bipartite graph Km,n, where m and n are positive
integers, is the bipartite graph with vertices V = V1 ∪V2, |V1| = m and
|V2| = n and where every vertex of V1 is adjacent with every vertex of
V2 (and vice versa).

We turn now to the main topic of this section, that of planar
graphs.37 These are the graphs which can be “faithfully” drawn in
the plane. By “faithful” we mean that the edges drawn between ver-
tices will have no crossings in the plane. As a simple example, we
consider below two versions of the graph of the cube: the first is how
we usually imagine it in three-dimensional space, and the second is how
we could draw it in the plane.

Example 1. The complete graphs K1, K2, K3, K4 are obviously pla-
nar graphs. However, we shall see below that K5 is not planar; in fact,
none of the complete graphs Kn, n ≥ 5 is planar. Also, the complete
bipartite graph K3,3 is also not planar (try it!). (We’ll prove below that
K3,3 is not planar.)

37The topic of Planar graphs falls into the general category of “topological graph theory.”
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There are two fundamental theorems which give criteria for a graph
to be planar. They’re relatively deep results, so we won’t give proofs
here. The first result makes use of the notion of “homeomorphism” of
graphs. Namely, two graphs are homeomorphic if one can be obtained
from the other simply by adding vertices along existing edges. However,
no new edges can be added!

Theorem. (Kuratowski’s Theorem) A finite graph G is planar if and
only if G has no subgraph homeomorphic to the complete graph K5

on five vertices or the complete bipartite graph K3,3.

From Kuratowski’s theorem we can deduce that the Petersen graph is
not planar. Indeed, the sequence below shows that the Petersen graph
has a subgraph which is homeomorphic with the complete bipartite
graph K3,3.
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The next planarity condition is somewhat more useful but slightly
more technical. First of all, a graph H is called a minor of the graph
G if H is isomorphic to a graph that can be obtained by a number of
edge contractions on a subgraph of G. Look at the so-called Petersen
graph; it contains K5 as a minor:

Theorem. (Wagner’s Theorem) A finite graph G is planar if and only
if it does not have K5 or K3,3 as a minor.

As a result, we see that the Petersen graph is not planar.
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Euler’s formula and consequences

Once a planar graph has been drawn in the plane, it not only de-
termines vertices and edges, it also determines faces. These are the
2-dimensional regions (exactly one of which is unbounded) which are
bounded by the edges of the graph. The plane, together with a graph
faithfully drawn in it is called a planar map. Thus, a planar map has
the vertices and edges of the “embedded” graph G, it also has faces.

Example 2. We look at the cube
graph drawn in the plane. Notice
that there are 6 naturally defined
regions, or faces.

Example 3. Here is a more irreg-
ular planar graph with the faces in-
dicated. Also, we have computed

#vertices−#edges + #faces = 2;

this is a fundamental result.

If we compute #vertices − #edges + #faces for the planar map in
Example 2 above, we also get 2. There must be something going on
here! We start by defining the Euler characteristic of the planar map
M by setting

χ(M) = #vertices−#edges + #faces.

The surprising fact is that the number always produced by the above
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is 2:

Theorem. (Euler’s Formula) If M be a connected planar map, then
χ(M) = 2.

Proof. Let T be a maximal spanning tree inside G; the existence
of T was proved in the footnote on page 125. Note that since T has
no cycles, there can only be one face: f = 1. Next, we know by the
theorem on page 125 that v = e+ 1. Therefore, we know already that
χ(T ) = v − e + f = 1 + 1 = 2. Next, we start adding the edges of G
to the tree T , noting that each additional edge divides an existing face
in two. Therefore the expression v − e + f doesn’t change as e and f

have both increased by 1, proving the result.38

Corollary. For the simple planar map M , we have e ≤ 3v − 6.

Proof. We may assume that M has at least three edges, for otherwise
the underlying graph is a tree, where the result is easy. This easily
implies that each face—including the infinite face—will be bounded by
at least three edges. Next, notice that an edge will bound either a
single face or two faces. If the edge e bounds a single face, then the
largest connected subgraph containing e and whose edges also bound a
single face is—after a moment’s thought—seen to be a tree. Removing
all edges of this tree and all vertices sitting on edges bounding a single
face will result in removing the same number of vertices as edges. On
the map M ′ which remains every edge bounds exactly two faces. Also,
the number f of faces of M ′ is the same as the number of faces of
the original map M . Let v′, e′ be the number of vertices and edges,
respectively, of M ′. Since every face of M ′ is bounded by at least three
edges, and since every edge bounds exactly two faces of M ′ we infer
that 3f ≤ 2e′. Therefore,

2 = v′ − e′ + f ≤ v′ − e′ + 2e′/3 = v′ − e′/3,

38In the most general setting, the Euler characteristic of a graph is a function of where it’s
faithfully drawn. For example, it turns out that the Euler characteristic of a graph faithfully drawn
on the surface of a doughnut (a “torus”) is always 0. See also the footnote on page 196.



SECTION 2.2 Elementary Graph Theory 141

From which it follows that e′ ≤ 3v′ − 6. However, e′ = e − k and
v′ = v − k for some fixed non-negative integer k from which we infer
that e ≤ 3v − 6.

Example 4. From the above result, we see immediately that the
complete graph K5 is not planar as it has

Ä5
2

ä
= 10 edges which is

greater than 3v − 6 = 9.

If we have a planar bipartite graph, then the above result can be
strengthened:

Corollary. Let M be a simple planar map with no triangles. Then
we have e ≤ 2v − 4.

Proof. As in the above proof, that each edge bounds two faces and
that each face—including the infinite face—will be bounded by at least
four edges (there are no triangles). This implies that 4f ≤ 2e. There-
fore,

2 = v − e + f ≤ v − e + e/2 = v − e/2,

and so e ≤ 2v − 4 in this case.

Example 5. From the above result, we see immediately that the
complete bipartite graph K3,3 is not planar. Being bipartite, it cannot
have any triangles (see Exercise 5), furthermore, it has 9 edges which
is greater than 2v − 4 = 8.

Exercises

1. Show that even though the degree of each vertex in both graphs
below is 3, these graphs are not isomorphic.
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2. Here’s a slightly more sophisticated problem. Define the graphs G1

and G2, as follows. Start by letting n be a fixed positive integer.

Vertices of G1: These are the subsets of {1, 2, . . . , n}.
Edges of G1: {A, B} is an edge of G1 exactly when

|A ∩B| = max{|A| − 1, |B| − 1}.

(Notice that this says that either A ⊆ B and |B| = |A|+ 1 or
that B ⊆ A and that |A| = |B|+ 1.)

Vertices ofG2: These are the binary sequences v = (ε1, ε2, . . . , εn),
where each εi = 0 or 1.

Edges of G2: {v, w} is an edge of G2 precisely when the binary
sequences defining v and w differ in exactly one place. (This
is the graph defined in Exercise 6 on page 116.)

Show that the graphs G1 and G2 are isomorphic.

3. Assume that a graph G can be “faithfully” drawn on the surface
of a sphere. Must this graph be planar?

4. Consider the “grid graph,” constructed as follows. Let m and n
be positive integers and in the coordinate plane mark the points
having integer coordinates (k, l) such that 0 ≤ k ≤ m and 0 ≤ n ≤
m. These are the vertices of the graph G. The edges in this graph
connect the vertices separated by Euclidean distance 1. Show that
this graph is bipartite.
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5. Prove that any cycle in a bipartite graph must have even length.
Conversely, if every cycle in a graph has even length, show that
the graph must be bipartite.

6. How many edges are there in the complete bipartite graph Km,n?

7. Let G be a finite simple graph (see page 109) of n vertices in which
every vertex has degree k. Find a simple formula in terms for the
number of edges in terms of n and k.

8. Let G be a planar graph. Prove that G must contain a vertex
whose degree is at most 5.

9. Use the result of Exercise 8 to show that any planar graph can be
6-colored. That is to say, if G is a planar graph then using only
six colors we can color the vertices of G in such a way that no two
adjacent vertices have the same color.39

10. Prove that none of the complete graphs Kn, n ≥ 5 is planar.

11. Let G be a planar graph and let M be the map it determines by an
embedding in the plane. We define the dual graph G∗ (relative
to the map M) as follows. The vertices of G∗ are the faces of M .
Next, for each edge of G we draw an edge between the two faces
bounded by this edge. (If this edge bounds a single face, then
a loop is created.) Show (by drawing a picture) that even when
every edge bounds two faces, then the dual graph might not be a
simple graph even when G is a simple graph.

12. Let G be a planar graph, embedded in the plane, resulting in the
map M . Let G∗ be the dual graph relative to M . Let T be a
spanning tree in G and consider the subgraph T ∗ of G∗ to have all
the vertices of G∗ (i.e., all the faces of M) and to have those edges
which corresponding to edges in G but not in T .

39Of course, the above result isn’t “best possible.” It was shown in 1976 by K. Apple and W.
Haken that any planar map can 4-colored. For a nice online account, together with a sketch
of a new proof (1997) by N. Robertson, D.P. Sanders, P.D. Seymour, and R. Thomas, see
http://www.math.gatech.edu/∼thomas/FC/fourcolor.html. Both of the above-mentioned proofs are
computer aided.

It is not too difficult to prove that a planar graph can be 5-colored; see M. Aigner and G.M.
Ziegler, Proofs from the Book, Third Edition, Springer, 2004, pages 200-201.
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(a) Show that T ∗ is a spanning tree in G∗.

(b) Conclude that v = eT + 1 and f = eT ∗ + 1, where eT is the
number of edges in T and eT ∗ is the number of edges in T ∗.

(c) Conclude that eT + eT ∗ = e (the number of edges in G).

(d) Conclude that v + f = (eT + 1) + (eT ∗ + 1) = e + 2, thereby
giving another proof of Euler’s theorem.



Chapter 3

Inequalities and Constrained
Extrema

3.1 A Representative Example

The thrust of this chapter can probably be summarized through the
following very simple example. Starting with the very simple observa-
tion that for real numbers x and y, 0 ≤ (x− y)2. Expanding the right
hand side and rearranging gives the following inequality:

2xy ≤ x2 + y2,

again valid for all x, y ∈ R. Furthermore, it is clear that equality ob-
tains precisely when x = y. We often refer to the as an unconditional
inequality, to be contrasted from inequalities which are true only for
certain values of the variable(s). This is of course, analogous to the
distinction between “equations” and “identities” which students often
encounter.1

We can recast the above problem as follows.

1By way of reminder, the equality x2 − x − 6 = 0 admits a solution, viz., x = −2, 3, whereas
the equality x(x− 2) = x2 − 2 is always true (by the distributive law), and hence is an identity.

145
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Problem. Given that x2 + y2 = 4,
find the maximum value of 2xy.

Solution. If we are thinking in
terms of the above-mentioned in-
equality 2xy ≤ x2 + y2, with equality
if and only if x = y, then we see im-
mediately that the maximum value of
2xy must be x2 + y2 = 4. However, it
is instructive to understand this prob-
lem in the context of the graph to the
right, where the “constraint curve” is
the graph of x2 + y2 = 4 and we’re trying to find the largest value of
the constant c for which the graph 2xy = c meets the constraint curve.

From the above figure, it is clear that where 2xy obtains its maxi-
mum value will occur at a point where the graph is tangent to the circle
with equation x2 + y2 = 4. As a result, this suggest that the solution
can also be obtained using the methodology of differential calculus (in-
deed, it can!), but in this chapter we wish to stress purely algebraic
techniques.

We can vary the problem slightly and ask to find the maximum value
of xy given the same constraint x2 + y2 = 4. However, the maximum
of xy is clearly 1/2 the maximum of 2xy and so the maximum value of
xy is 2.

In an entirely similar fashion we see that the minimum value of 2xy
given x2 + y2 = 4 must be −2. This can be seen from the above figure.
Even more elementary would be to apply the inequality 0 ≤ (x+y)2 ⇒
−2xy ≤ x2 + y2.
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-4

-2

2

4

x +y =c xy=2

xx

2 2

x

yAs a final variation on the above
theme, note can that can interchange
the roles of constraint and “objective
function” and ask for the extreme val-
ues of x2 + y2 given the constraint
xy = 2. The relevant figure is given
to the right. Notice that there is no
maximum of x2+y2, but that the min-
imum value is clearly x2 + y2 = 4,
again occurring at the points of tan-
gency.

Exercises.

1. Find the maximum of the function xy given the elliptical constraint
4x2 + y2 = 6. Draw the constraint graph and the “level curves”
whose equations are xy=constant.

2. Given that xy = −5, find the maximum value of the objective
function x2 + 3y2.

3. Given that xy = 10, find the maximum value of the objective
function x+ y.

4. Suppose that x and y are positive numbers with

x+ y = 1. Compute the minimum value of

(
1 +

1

x

) (
1 +

1

y

)
.

3.2 Classical Unconditional Inequalities

Until further notice, we shall assume that the quantities x1, x2, . . . , xn
are all positive. Define

Arithmetic Mean:

AM(x1, x2, . . . , xn) =
x1 + x2 + · · ·+ xn

n
;

Geometric Mean:

GM(x1, x2, . . . , xn) = n
√
x1x2 · · ·xn;
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Harmonic Mean:

HM(x1, x2, . . . , xn) =
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

;

Quadratic Mean:2

QM(x1, x2, . . . , xn) =

Ã
x2

1 + x2
2 + · · ·+ x2

n

n
.

Note that if a1, a2, . . . is an arithmetic sequence, then an is the
arithmetic mean of an−1 and an+1. Likewise if a1, a2, . . . is a geometric
sequence (and all an > 0), then an is the geometric mean of an−1 and
an+1.

A harmonic sequence is by definition the reciprocal of nonzero
terms in an arithmetic sequence. Thus, the sequences

1,
1

2
,

1

3
, . . . , and

2

3
,

2

5
,

2

7
, . . .

are harmonic sequences. In general, if a1, a2, . . . is a harmonic sequence,
then an is the harmonic mean of an−1 and an+1.

One of our aims in this section is to prove the classical inequalities

HM ≤ GM ≤ AM ≤ QM.

Before doing this in general (which will require mathematical induc-
tion), it’s instructive first to verify the above in case n = 2.

Indeed, starting with 0 ≤ (
√
x − √y)2 we expand and simplify the

result as

2
√
xy ≤ x+ y ⇒ GM(x1, x2) ≤ AM(x1, x2).

Having proved this, note next that

HM(x1, x2) =

(
AM

(
1

x1
+

1

x2

))−1

;

2Sometimes called the root mean square
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since we have already shown that GM(x, y) ≤ AM(x, y) for x, y ≥ 0,
we now have

HM(x1, x2) =

(
AM

(
1

x1
+

1

x2

))−1

≤
(

GM

(
1

x1
,

1

x2

))−1

= GM(x1, x2).

Finally, note that since 2x1x2 ≤ x2
1+x2

2 (as proved in the above section),

(x1 + x2)
2 = x2

1 + 2(x1x2) + x2
2 ≤ 2(x2

1 + x2
2).

Divide both sides of the above inequality by 4, take square roots and
infer that AM(x1, x2) ≤ QM(x1, x2).

For a geometric argument showing HM ≤ GM ≤ AM, see Exercise 1,
below.

We turn next to proofs of the above inequalities in the general case.

AM(x1, . . . , xn) ≤ QM(x1, . . . , xn): This is equivalent with saying that

(x1 + · · ·+ xn)
2

n2
≤ x2

1 + · · ·+ x2
n

n
,

which is equivalent with proving that

(x1 + · · ·+ xn)
2 ≤ n(x2

1 + · · ·+ x2
n).

By induction, we may assume that

(x1 + · · ·+ xn−1)
2 ≤ (n− 1)(x2

1 + · · ·+ x2
n−1).

Furthermore, note that for any real numbers x, y, we have 0 ≤ (x−y)2 =
x2 +y2−2xy ⇒ 2xy ≤ x2 +y2. Armed with this, we proceed, as follows:

(x1 + · · ·+ xn)
2 = (x1 + · · ·+ xn−1)

2 + 2xn(x1 + · · ·+ xn−1) + x2
n

≤ (n− 1)(x2
1 + · · ·+ x2

n−1)

+(x2
1 + x2

n) + · · ·+ (x2
n−1 + x2

n) + x2
n

= n(x2
1 + · · ·+ x2

n),

which proves that AM ≤ QM. Notice that since, for any x1, x2, . . . , xn,

x1 + x2 + · · ·+ xn ≤ |x1|+ |x2|+ · · ·+ |xn|,
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then we see that AM(x1, . . . , xn) ≤ QM(x1, . . . , xn) is true without the
assumption that all xi are positive.

GM(x1, . . . , xn) ≤ AM(x1, . . . , xn): Let C = n
√
x1x2 · · ·xn. If all xi = C,

then

n
√
x1x2 · · · xn = C =

x1 + · · ·+ xn
n

,

and we’re done in this case. Therefore, we may assume that at least
one of the xis is less than C and that one is greater than C. Without
loss of generality, assume that x1 > C and that C > x2. Therefore,

(x1 − C)(C − x2) > 0 and so x1x2 < C(x1 + x2) − C2 ⇒ x1 + x2

C
>Çx1

C

åÇx2

C

å
+ 1. From this, we conclude

x1 + x2 + · · ·+ xn
C

>
(x1x2)/C + x3 + · · ·+ xn

C
+ 1

≥ (n− 1) n−1
√

(x1x2 · · ·xn)/Cn + 1 (using induction)

= (n− 1) + 1 = n.

That is to say, in this case we have

x1 + x2 + · · ·+ xn
n

> C = n
√
x1x2 · · · xn,

concluding the proof that GM ≤ AM. (For a much easier proof, see
Exercise 2 on page 160.)

HM(x1, . . . , xn) ≤ GM(x1, . . . , xn): From the above we get

1
x1

+ 1
x2

+ · · ·+ 1
x3

n
≥ n

Ã
1

x1

1

x2
· · · 1

xn
;

take reciprocals of both sides and infer that HM ≤ GM.

A generalization of AM ≤ QM is embodied in the very classical
Cauchy-Schwarz inequality. We state this as a theorem.

Theorem 1. (Cauchy-Schwarz Inequality) Given
x1, x2, . . . , xn, y1, y2, . . . , yn ∈ R, one has

(x1y1 + x2y2 + · · ·+ xnyn)
2 ≤ (x2

1 + x2
2 + · · ·+ x2

n)(y
2
1 + y2

2 + · · ·+ y2
n).
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Proof. We define a quadratic function of x:

Q(x) = (xx1 − y1)
2 + · · · (xxn − yn)2

= (x2
1 + · · ·+ x2

n)x
2 − 2(x1y1 + · · ·xnyn)x+ (y2

1 + · · ·+ y2
n).

Since Q(x) ≥ 0, we see that the discriminant must be ≤ 0:

4(x1y1 + · · ·+ xnyn)
2 − 4(x2

1 + · · ·+ x2
n)(y

2
1 + · · ·+ y2

n) ≤ 0,

so we’re done! Pretty slick, eh?3 See Exercise 4, below.

Exercises.

1. The diagram to the right depicts
a semicircle with center O and di-
ameter XZ. If we write XZ =
a + b, identify AM(a, b), GM(a, b),
and HM(a, b) as lengths of segments
in the diagram.

O

Q

P

ZYX

2. Suppose that a1, a2, a3, . . . is a sequence of non-negative terms
such that for each index i > 1, ai = QM(ai−1, ai+1). Show that
a2

1, a
2
2, a

2
3, . . . is an arithmetic sequence.

3. Show that if a, b > 0 then

a+ b

2
≤ 2

3

Ñ
a2 + ab+ b2

a+ b

é
.

4. Show how AM ≤ QM is a direct consequence of the Cauchy-
Schwarz inequality.

5. State a necessary and sufficient condition for AM(x1, . . . , xn) =
QM(x1, . . . , xn).

3The Cauchy-Schwarz inequality can be generalized to complex numbers where it reads:

|x1y1 + x2y2 + · · ·+ xnyn|2 ≤ (|x1|2 + |x2|2 + · · ·+ |xn|2)(|y1|2 + |y2|2 + · · ·+ |yn|2).
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6. Find the maximum value of the objective function x+ y+ z given
that x2 + y2 + z2 = 4. (Hint: use AM(x, y, z) ≤ QM(x, y, z).) Can
you describe this situation geometrically?

7. Find the maximum value of the objective function x2 + y2 + z2

given that x+ y + z = 6.

8. Suppose that x and y are positive numbers with

x+ y = 1. Show that
1

x
+

1

y
≥ 4.

9. Suppose that x and y are positive numbers with

x+y = 1. Compute the minimum value of

(
1 +

1

x

) (
1 +

1

y

)
. (This

was already given as Exercise 4 on page 147. However, doesn’t it
really belong in this section? Can you relate it to Exercise 8,
above?)

10. Assume that x1, x2, . . . , xn > 0 and that x1 + · · ·+ xn = 1. Prove
that

1

x1
+ · · ·+ 1

xn
≥ n2.

(Hint: don’t use mathematical induction!)

11. Let n ≥ 2, x, y > 0. Show that

2
n−1∑
k=1

xkyn−k ≤ (n− 1)(xn + yn).

(This is somewhat involved; try arguing along the following lines.

(i) Let P (x, y) = (n − 1)(xn + yn) − 2
n−1∑
k=1

xkyn−k; note that

P (y, y) = 0 (i.e., x = y is a zero of P (x, y) regarded as a
polynomial in x).

(ii) Show that
d

dx
P (x, y)

∣∣∣∣∣
x=y

= 0. Why does this show that

P (x, y) has at least a double zero at x = y?

(iii) Use Descartes Rule of Signs to argue that P (x, y) has, for
x, y > 0 only a double zero at x = y.
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(iv) Show that this implies that P (x, y) ≥ 0 when x, y > 0 with
equality if and only if x = y.)

12. You are given 4ABC and an in-
terior point P with distances x to
[BC], y to [AC] and z to [AB] as
indicated. Let a = BC, b = AC,
and c = AB.

(a) Find the point P which mini-
mizes the objective function

F =
a

x
+
b

y
+
c

z
.

x
y
z P

C

B

A

(Hint: note that ax+by+cz is proportional to the area of4ABC.
If need be, refer back to Exercise 5 on page 17.4)

(b) Conclude from part (a) that the inradius r of4ABC (see page
17) is given by r = 2A/P , where A and P are the area and
perimeter, respectively, of 4ABC.

The next few exercises will introduce a geometrical notion of the mean
of two positive numbers. To do this, fix a positive number n 6= 1 (which
need not be an integer), and draw the graph of y = xn for non-negative
x. For positive real numbers a 6= b, locate the points P = P (a, an) and
Q = Q(b, bn) on the graph. Draw the tangents to the graph at these
points; the x-coordinate of the point of intersection of these tangents
shall be denoted Sn(a, b) and can be regarded as a type of mean of a
and b. (If a = b, set Sn(a, b) = a.) See the figure below:

4It turns out that P must be the incenter of 4ABC.



154 CHAPTER 3 Inequalities

x

y

y=xn .

.
.
.

Q=Q(b,b )n

P=P(a,a )n (S (a,b),0)n

Equation 1: y=x²

12. Show that if a, b > 0, then

(a) S−1(a, b) = HM(a, b);

(b) S1/2(a, b) = GM(a, b);

(c) S2(a, b) = AM(a, b).

13. Show that

Sn(a, b) =
(n− 1)(an − bn)
n(an−1 − bn−1)

, (a 6= b).

14. Show that if 2 ≤ m ≤ n are integers, and if a, b > 0 are real
numbers, then Sm(a, b) ≤ Sn(a, b). (Hint: this can be carried out
in a way similar to the solution of Exercise 11.

(a) First note that

(m− 1)(am − bm)

m(am−1 − bm−1)
≤ (n− 1)(an − bn)

n(an−1 − bn−1)

if an only if

n(m−1)(am−bm)(an−1−bn−1) ≤ m(n−1)(an−bn)(am−1−bm−1).

(b) Next, define the polynomial

P (a, b) = m(n−1)(an−bn)(am−1−bm−1)−n(m−1)(am−bm)(an−1−bn−1);
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the objective is to show that P (a, b) ≥ 0 when a, b,m, n are as
given above. Regard the above as a polynomial in a and use
Descartes Rule of Signs to conclude that (counting multiplic-
ities) P (a, b) has at most four positive real zeros.

(c) Note that a = b is a zero of P (a, b), i.e., that P (b, b) = 0.
Next, show that

d

da
P (a, b)

∣∣∣∣∣
a=b

=
d2

da2
P (a, b)

∣∣∣∣∣
a=b

=
d3

da3
P (a, b)

∣∣∣∣∣
a=b

= 0.

(d) Use the above to conclude that P (a, b) ≥ 0 with equality if
and only if a = b (or m = n).

3.3 Jensen’s Inequality

If P and Q are points in the coordinate plane, then it’s easy to see
that the set of points of the form X = X(t) = (1 − t)P + tQ, 0 ≤
t ≤ 1 is precisely the line segment joining P and Q. We shall call
such a point a convex combination of P and Q. More generally,
if P1, P2, . . . , Pn are points in the plane, and if t1, t2, . . . , tn are non-
negative real numbers satisfying t1 + t2 + · · ·+ tn = 1, then the point

X = X(t) = t1P1 + t2P2 + · · ·+ tnPn

is a convex combination of P1, P2, . . . , Pn. This set is precisely smallest
convex polygon in the plane containing the points P1, P2, . . . , Pn. Such
a polygon is depicted below:
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5 10
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P6

P3 P4P2

P1

Next, recall from elementary differential calculus that a twice-differentiable
function f is concave down on an interval [a, b] if f ′′(x) ≤ 0 for all
x ∈ [a, b]. Geometrically, this means that if a ≤ c ≤ d ≤ b then the
convex combination of the points P = P (c, f(c)) and Q = Q(d, f(d))
lies on or below the graph of y = f(x). Put more explicitly, this says
that when a ≤ c ≤ d ≤ b, and when 0 ≤ t ≤ 1,

f((1− t)c+ td) ≥ (1− t)f(c) + tf(d).

Lemma 1. (Jensen’s Inequality) Assume that the twice-differentiable
function f is concave down on the interval [a, b] and assume that
x1, x2, . . . , xn ∈ [a, b]. If t1, t2, . . . , tn are non-negative real numbers
with t1 + t2 + · · ·+ tn = 1, then

f(t1x1 + t2x2 + · · ·+ tnxn) ≥ t1f(x1) + t2f(x2) + · · ·+ tnf(xn).

Proof. We shall argue by induction on n with the result already being
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true for n = 2. We may assume that 0 ≤ tn < 1; set

x0 =
t1x1 + · · ·+ tn−1xn−1

1− tn
;

note that x0 ∈ [a, b]. We have

f(t1x1 + t2x2 + · · ·+ tnxn) = f((1− tn)x0 + tnxn)

≥ (1− tn)f(x0) + tnf(xn) (by induction)

≥ (1− tn)
(

t1
1− tn

· f(x1) + · · ·+ tn−1

1− tn
· f(xn−1)

)
+ tnf(xn) (induction again)

= t1f(x1) + t2f(x2) + · · ·+ tnf(xn),

and we’re finished.

3.4 The Hölder Inequality

Extending the notion of quadratic mean, we can define, for any real
number p ≥ 1 the “p-mean” of positive real numbers x1, . . . , xn:

pM(x1, x2, . . . , xn) =
p

Ã
xp1 + xp2 + · · ·+ xpn

n
.

We shall show that if 1 ≤ p ≤ q that for positive real numbers x1, . . . , xn
one has

pM(x1, x2, . . . , xn) ≤ qM(x1, x2, . . . , xn).

The proof is not too difficult—a useful preparatory result is Young’s
inequality, below.

Lemma 2. (Young’s Inequality) Given real numbers 0 ≤ a, b and

0 < p, q such that
1

p
+

1

q
= 1, one has

ab ≤ ap

p
+
bq

q
,

with equality if and only if ap = bq.
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y = ln x

x

y

P

Q
Proof. The proof involves a ge-
ometrical fact about the graph of
the function y = lnx, namely
that for any two points P, Q
on the graph, the straight line
segment on the graph is com-
pletely below the graph.5 Thus,
let P = P (ap, ln(ap)) and Q =
Q(bq, ln(bq)) be two points on the
graph of y = lnx. For any value
of the parameter t, 0 ≤ t ≤ 1, the
point X = X(tbq + (1− t)aq, t ln(bq) + (1− t) ln(ap)) is a point on the
line seqment PQ. Since the graph of y = ln x lies entirely above the
line segment PQ, we conclude that

ln(tbq + (1− t)ap) ≥ t ln(bq) + (1− t) ln(ap) = tq ln b+ (1− t)p ln a.

Now set t = 1/q and infer that

ln

(
bq

q
+
ap

p

)
≥ ln b+ ln a = ln(ab).

Exponentiating both sides yields the desired result, namely that

bq

q
+
ap

p
≥ ab.

Theorem 2. (Hölder’s Inequality) Given real numbers x1, . . . , xn, y1, . . . , yn,

and given non-negative real numbers p and q such that
1

p
+

1

q
= 1 then

n∑
i=1

|xiyi| ≤
Ñ

n∑
i=1

|xi|p
é1/pÑ n∑

j=1

|yj|q
é1/q

Proof. Let

A =

Ñ
n∑
i=1

|xi|p
é1/p

, B =

Ñ
n∑
i=1

|yi|q
é1/q

5Another way to say this is, of course, that the graph of y = lnx is concave down.
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We may assume that both A, B 6= 0, else the theorem is clearly
true. Therefore by using Young’s inequality, we see that for each
i = 1, 2, . . . , n, that

|xi|
A
· |yi|
B
≤ |xi|

p

pAp
+
|yi|q

qB
.

Therefore,

1

AB

n∑
i=1

|xiyi| ≤
n∑
i=1

Ñ
|xi|p

pAp
+
|yi|q

qB

é
=

1

p
+

1

q
= 1.

This implies that

n∑
i=1

|xiyi| ≤ AB =

Ñ
n∑
i=1

|xi|p
é1/pÑ n∑

j=1

|yj|q
é1/q

,

and we’re done.

Note that if we set all yi = 1 then we get

n∑
i=1

|xi| ≤ n1/q

Ñ
n∑
i=1

|xi|p
é1/p

= n1−1/p

Ñ
n∑
i=1

|xi|p
é1/p

,

and so

1

n

n∑
i=1

|xi| ≤
Ñ

n∑
i=1

|xi|p/n
é1/p

for any p > 1. This proves that

AM(|x1|, |x2|, . . . , |xn|) ≤ pM(|x1|, |x2|, . . . , |xn|)

whenever p > 1.

Finally, assume that 0 < p < q and assume that x1, x2, . . . , xn are
non-negative. We shall show that

pM(x1, x2, . . . , xn) ≤ qM(x1, x2, . . . , xn).
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Indeed, from the above, we have by setting r =
q

p
> 1 that

n∑
i=1

xi
p/n = AM(xp1, x

p
2, . . . , x

p
n)

≤ rM(xp1, x
p
2, . . . , x

p
n)

=

Ñ
n∑
i=1

(xpi )
q/p/n

ép/q
=

Ñ
n∑
i=1

xqi/n

ép/q
.

Taking the p-th roots of both sides yields what we were after, viz.,

pM(x1, x2, . . . , xn) =

Ñ
n∑
i=1

xi
p/n

é1/p

≤
Ñ

n∑
i=1

xqi/n

é1/q

= qM(x1, x2, . . . , xn).

Exercises.

1. Show how Young’s inequality proves that GM(x1, x2) ≤ AM(x1, x2),
where x1, x2 ≥ 0.

2. Use Jensen’s inequality and the fact that the graph of y = lnx is
concave down to obtain a simple proof that

AM(x1, x2, . . . , xn) ≥ GM(x1, x2, . . . , xn),

where x1, x2, . . . , xn ≥ 0.

3. Use Jensen’s inequality to prove that given interior angles A, B,
and C of a triangle then

sinA+ sinB + sinC ≤ 3
√

2/2.

Conclude that for a triangle 4ABC inscribed in a circle of radius
R, the maximum perimeter occurs for an equilateral triangle. (See
Exercise 2 on page 34.)

4. Given 4ABC with area K and side lengths a, b, and c, show that

ab+ ac+ bc ≥ 4
√

3K.

Under what circumstances does equality obtain? (Hint: note that
6K = ab sinC + ac sinB + bc sinA; use Cauchy-Schwarz together
with Exercise 3, above.)
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3.5 The Discriminant of a Quadratic

The discriminant of a quadratic polynomial, while finding itself in
(mostly trivial) discussions in a typical high-school Algebra II course,
nonetheless is a highly underused and too narrowly understood concept.
This and the next two sections will attempt to provide meaningful ap-
plications of the discriminant, as well as put it in its proper algebraic
perspective. Before proceeding, let me remind the reader that a possi-
bly surprising application of the discriminant has already occurred in
the proof of the Cauchy-Schwarz inequality (page 150).

Given the quadratic polynomial f(x) = ax2 + bx+ c, a, b, c ∈ R, the
discriminant is defined by the familiar recipe:

D = b2 − 4ac.

This expression is typically introduced as a by-product of the quadratic
formula expressing the two roots α, β of the equation f(x) = 0 as

α, β =
−b±

√
b2 − 4ac

2a
=
−b±

√
D

2a
.

From the above, the following simple trichotomy emerges.

D > 0 ⇐⇒ f(x) = 0 has two distinct real roots;

D < 0 ⇐⇒ f(x) = 0 has two imaginary conjugate roots;

D = 0 ⇐⇒ f(x) = 0 has a double real root.

Note that if f(x) = ax2 + bx + c with a > 0, then the condition
D ≤ 0 implies the unconditional inequality f(x) ≥ 0.
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The D = 0 case is the one we
shall find to have many applica-
tions, especially to constrained ex-
trema problems. Indeed, assuming
this to be the case, and denoting α
as the double root of f(x) = 0, then
we have f(x) = a(x− α)2 and that
the graph of y = f(x) appears as
depicted to the right.

-

6y

x

y = f(x)

x = α

The geometrical implication of the double real root is that the graph
of y = f(x) not only has an x-intercept at x = α, it is tangent to the
x-axis at this point. We shall find this observation extremely useful, as
it provides application to a wealth of constrained extrema problems.

The first example is rather pedestrian, but it will serve to introduce
the relevant methodology.

Example 1. Find the minimum value of the quadratic function
f(x) = 2a2 − 12x+ 23.

Solution. If we denote this minimum
by m, then the graph of y = m will
be tangent to the graph of y = f(x)
where this minimum occurs. This
says that in solving the quadratic
equation f(x) = m, there must be
a double root, i.e., the discriminant
of the quadratic 2x2−12x+ 23−m
must vanish. The geometry of this
situation is depicted to the right.

-

6y

x

y = f(x)

D < 0

D = 0

D > 0
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Solving for the discriminant in terms of m, we quickly obtain

0 = b2 − 4ac

= (−12)2 − 4 · 2 · (23−m)

= 144− 8(23−m)

= 144− 184 + 8m = −40 + 8m

and so one obtains the minimum value of m = 5. Of course, this is
not the “usual” way students are taught to find the extreme values
of a quadratic function: they use the method of “completing the
square” (another useful technique).

Example 2. Here’s an ostensibly harder problem. Find the minimum

value of the function g(x) = x +
1

x
, x > 0. Before going further,

note that the ideas of Section 3.1 apply very naturally: from

0 ≤
Ñ
√
x− 1√

x

é2

= x+
1

x
− 2

we see immediately that x +
1

x
≥ 2 with equality precisely when

x = 1. That is the say, the minimum value of the objective function

x+
1

x
is 2.

Solution. Denoting this minimum by
m, then the graph of y = m will
again be tangent to the graph of
y = g(x) where this minimum oc-

curs. Here, the equation is x+
1

x
=

m, which quickly transforms to the
quadratic equation x2−mx+1 = 0.
For tangency to occur, one must
have that the discriminant of
x2 −mx+ 1 vanishes.

-

6y

x

y = x+
1

x

D < 0

D = 0

D > 0
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We have

0 = b2 = 4ac

= m2 − 4

which immediately gives m = ±2. Only the value m = 2 is rele-
vant here (as we assumed that x > 0) and this is the sought-after
minimum value of g. (The extraneous value m = −2 can easily be

seen to be the maximum value of x+
1

x
, x < 0.)

Example 3. Find the equations of
the two straight lines which pass
through the point P (0, 5) and are
both tangent to the graph of
y = 4− x2.

-
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Solution. If we write a line with equation ` : y = 5 +mx, where the
slope is to be determined, then we are solving 4− x2 = 5 +mx so
that a double root occurs (i.e., tangency). Clearly, there should
result two values of m for this to happen. Again, the discrimi-
nant is a very good tool. Write the quadratic equation having the
multiple root as x2 +mx+ 1 = 0, and so

0 = b2 − 4ac

= m2 − 4⇒ m = ±2.

Therefore, the two lines are given by equations

y = 5 + 2x and y = 5− 2x.

(The two points of tangency are at the points with coordinates
(±1, 3).)
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Example 4. Given that x2 + 2y2 = 6, find the maximum value of
x+ y.

Solution. This problem appears quite a bit different (and more dif-
ficult) than the preceding examples, but it’s not, and it fits in very
well to the present discussion.6 This problem is very geometrical
in nature, as the “constraint equation” x2 + 2y2 = 6 is an ellipse
and the graphs of x+ y = c (c = constant) are parallel lines (with
slope −1). We seek that value of c which gives the maximum value
of x+ y. See the graphic below:

−6 −4 −2 2 4 6

−4
−3
−2
−1

1
2
3
4

x

y

D>0

D=0

D<0x  +2y  =62 2

parallel lines
x+y=c

Equation 1: x²+2y²=6
Equation 2: x+y=−2
Equation 3: x+y=4.5
Equation 4: x+y=aClearly the maximum value of x + y will occur where this line is

tangent to the ellipse. There will be two points of tangency, one
in the third quadrant (where a minimum value of x+y will occur)
and one in the first quadrant (where the maximum value of x+ y
occurs). Next, if we solve x + y = c for y and substitute this into
x2 +2y=6, then a quadratic equation in x will result. For tangency
to occur, one must have that the discriminant is 0. From y = c−x,
obtain

x2 + 2(c− x)2 − 6 = 0 =⇒ 3x2 − 4cx+ 2c2 − 6 = 0.

This leads to

0 = D = 16c2 − 12(2c2 − 6) = −8c2 + 72 =⇒ c = ±3.

6Problems of this sort are often not considered until such courses as Calculus III, where the
method of Lagrange multipliers is applied.
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Therefore, the maximum value of x + y is 3 (and the minimum
value of x+ y is −3).

Exercises.

1. Given that x+ y = 1, x, y > 0, find the minimum value of
1

x
+

1

y
.

2. Given that
1

x
+

1

y
= 1, x, y > 0, prove that x+ y ≥ 4.

(Exercises 1 and 2 can be solved very simply by multiplying to-

gether
1

x
+

1

y
and x+ y and using the result of Example 2.)

3. Find the distance from the origin to the line with equation
x+ 3y = 6.

4. Given that
x

y
+ y = 1 find the minimum value of

x+ y, x, y > 0.

5. Find the largest value of a so that the parabola with equation
y = a− x2 is tangent to the circle with graph x2 + y2 = 4. Go on
to argue that this value of a is the maximum of the function x2 +y
given that x2 + y2 = 4.

6. Let f(x) = ax2 + bx+ c, and so the derivative is f ′(x) = 2ax+ b.
Denote by R(f) the determinant

R(f) = det


a b c
2a b 0
0 2a b

 .
Show that R(f) = −aD(f), where D = D(f) is the discriminant
of f(x).
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x

y

P(a,0)

R

Q(b,0)
.

.

.
x + y  = r2 2 2

Equation 1: x²+y²=6
7. Above is depicted the circle whose equation is x2 + y2 = r2, as

well as the tangent line to this circle at the point R. The point
P = P (a, 0) is the intersection of this tangent line with the x-axis
and the point Q = Q(b, 0) as the same x-coordinate as the point
R.

(a) Using a discriminant argument show that if m is the slope of
the tangent line, then

m2 =
r2

a2 − r2
.

Use this to show that b = r2/a.

(b) Using the Secant-Tangent Theorem (see page 32), give another
proof of the fact that b = r2/a. Which is easier?

3.6 The Discriminant of a Cubic

The the quadratic f(x) = ax2 + bx + c has associated with it the
discriminant D = b2 − 4ac, which in turn elucidates the nature of the
zeros of f(x). In turn, this information gives very helpful information
about tangency which in turn can be applied to constrained extrema
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problems. This raises at least a couple of questions. The immediate
question raised here would be whether higher-degree polynomials also
have discriminants. We’ll see that this is the case and will consider the
case of cubic polynomials in this section. In the following section we’ll
introduce the discriminant for arbitrary polynomials. The notion of the
determinant of a matrix will play a central role here.

For the quadratic polynomial f(x) = ax2+bx+c having zeros x1, x2,
we define the “new” quantity

∆ = a2det

 1 x1

1 x2

2

= a2(x2 − x1)
2.

At first blush, it doesn’t appear that ∆ has anything to do with the
discriminant D. However, once we have designated the zeros of f as
being x1 and x2, then the Factor Theorem dictates that

f(x) = a(x− x1)(x− x2).

Since also f(x) = ax2 + bx + c we conclude by expanding the above
that

b = −a(x1 + x2), and c = ax1x2.

Now watch this:

∆ = a2(x2 − x1)
2

= a2(x2
1 + x2

2 − 2x1x2)

= a2[(x1 + x2)
2 − 4x1x2]

= [−a(x1 + x2)]
2 − 4a(ax1x2)

= b2 − 4ac = D.

In other words, ∆ and D are the same:

D = ∆ .

Therefore, D and ∆ will satisfy the same trichotomy rule. But let’s try
to develop the trichotomy rule directly in terms of ∆ instead of D.
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Case (i): ∆ > 0. That is to say, (x2 − x1)
2 > 0 and so certainly the

zeros x1 and x2 are distinct. Furthermore, if they were not real,
then they would have to be complex conjugates of one another and
this would force (think about it!) (x2−x1)

2 < 0 (as x2−x1 would
be purely imaginary). Therefore

∆ > 0 =⇒ Q has two distinct real zeros.

Case (ii): ∆ = 0. This is clear in that one immediately has that
x1 = x2. That is to say

∆ = 0 =⇒ Q has a double zero.

Case (iii): ∆ < 0. Since (x2 − x1)
2 < 0 we certainly cannot have both

x1 and x2 real. Therefore, they’re both complex (non-real) as they
are complex conjugate. Therefore

∆ < 0 =⇒ Q has two complex (non-real) zeros.

That is to say, D and ∆ satisfy the same trichotomy law!

Whereas the definition of D does not suggest a generalization to
higher-degree polynomials, the definition of ∆ can be easily generalized.
We consider first a natural generalization to the cubic polynomial

P (x) = ax3 + bx2 + cx+ d, a, b, c, d ∈ R, a 6= 0.

By the Fundamental Theorem of Algebra, we know that (counting
multiplicities), P (x) has three zeros; we shall denote them by x1, x2,

and x3. They may be real or complex, but we do know that one of
these zeros must be real.

We set

∆ = a4det


1 x1 x2

1

1 x2 x2
2

1 x3 x2
3



2

.
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With a bit of effort, this determinant can be expanded. It’s easier to
first compute the determinant of the matrix


1 x1 x2

1

1 x2 x2
2

1 x3 x2
3


and then square the result. One has, after a bit of computation, the
highly structured answer

det


1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

 = (x3 − x2)(x3 − x1)(x2 − x1),

(this is generalized in the next section) which implies that

∆ = a4(x3 − x2)
2(x3 − x1)

2(x2 − x1)
2.

This is all well and good, but two questions immediately arise:

• How does one compute ∆ without knowing the zeros of P? Also,
and perhaps more importantly,

• what is ∆ trying to tell us?

Let’s start with the second bullet point and work out the trichotomy
law dictated by ∆.

If P (x) has three distinct real zeros, then it’s obvious that ∆ > 0.
If not all of the zeros are real, then P (x) has one real zero (say x1) and
a complex-conjugate pair of non-real zeros (x2 and x3). In this case
(x2 − x1), (x3 − x1) would be a complex conjugate pair, forcing 0 <
(x2−x1)(x3−x1) ∈ R and so certainly that 0 < (x2−x1)

2(x3−x1)
2 ∈ R.

Furthermore, (x3 − x2) is purely imaginary and so (x3 − x2)
2 < 0, all

forcing ∆ < 0. Therefore, we see immediately that

∆ > 0 =⇒ P (x) has three distinct real zeros

and that
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∆ < 0 =⇒ P (x) has one real zero and two non-real complex zeros.

This is all rounded out by the obvious statement that

∆ = 0 =⇒ P (x) has a multiple zero and all zeros are real.

Of course, none of the above is worth much unless we have a method
of computing ∆. The trick is to proceed as in the quadratic case and
compute ∆ in terms of the coefficients of P (x). We start with the
observation that

P (x) = a(x− x1)(x− x2)(x− x3),

all of which implies that (by expanding)

b = −a(x1 + x2 + x3), c = a(x1x2 + x1x3 + x2x3), d = −ax1x2x3.

We set

σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3, σ3 = x1x2x3,

and call them the elementary symmetric polynomials (in x1, x2, x3).
On the other hand, by expanding out ∆, one has that (after quite a bit
of very hard work!)

∆ = a4(x3 − x2)
2(x3 − x1)

2(x2 − x1)
2

= a4(−4σ3
1σ3 + σ2

1σ
2
2 + 18σ1σ2σ3 − 4σ3

2 − 27σ2
3)

= −4b3d+ b2c2 + 18abcd− 4ac3 − 27a2d2

giving a surprisingly complicated homogeneous polynomial in the co-
efficient a, b, c, and d. (See Exercise 6 below for a more more direct
method for computing ∆.)

We’ll close this section with a representative example. Keep in mind
that just as in the case of the quadratic, when the discriminant of a
cubic is 0, then the graph of this cubic is tangent to the x-axis at the
multiple zero.
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Example. Compute the minimum value of the function

f(x) =
1

x2
+ x, x > 0.

Solution. The minimum value will occur where the line y = c is
tangent to the graph of y = f(x). We may write the equation
f(x) = c in the form of a cubic polynomial in x:

x3 − cx2 + 1 = 0.

As the tangent indicates a multiple zero, we must have ∆ = 0. As
a = 1, b = −c, c = 0, d = 1, we get the equation 4c3 − 27 = 0,

which implies that the minimum value is given by c =
3
3
√

4
(which

can be verified by standard calculus techniques).

Now try these:

Exercises.

1. Compute the minimum of the function

h(x) =
1

x
+ x2, x > 0.

2. Compute the minimum of 2y − x given that
x3 − x2y + 1 = 0.

3. Compute the maximum value of y + x2 given that
x3 − xy + 2 = 0.
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1 2 3

2

4

6

x

y

x  −xy+2=03

y+x  =c2
level curves

Equation 1: y=2/x+x²
Equation 2: y=c−x²
Equation 3: y=2.1−x²
Equation 4: y=4.2−x^2

4. Compute the maximum value of xy, given that
x2 + y = 4.

5. The polynomial S(x1, x2, x3) = x3
1+x

3
2+x

3
3 is symmetric in x1, x2, x3

and can be expanded in the elementary symmetric polynomials

σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3, σ3 = x1x2x3.

Watch this:

x3
1 + x3

2 + x3
3 = (x1 + x2 + x3)

3

− 3x2
1(x2 + x3)− 3x2

2(x1 + x3)− 3x2
3(x1 + x2)− 6x1x2x3

= (x1 + x2 + x3)
3 − 3(x1 + x2 + x3)(x1x2 + x1x3 + x2x3)

+ 3x1x2x3

= σ3
1 − 2σ1σ2 + 3σ3.

Now try to write the symmetric polynomial x4
1 + x4

2 + x4
3 as a

polynomial in σ1, σ2, σ3.

6. Let f(x) = ax3 + bx2 + cx + d, and so the derivative is f ′(x) =
3ax2 + 2bx+c. Denote by R(f) the determinant
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R(f) = det



a b c d 0
0 a b c d
3a 2b c 0 0
0 3a 2b c 0
0 0 3a 2b c


.

Show that R(f) = −aD(f), where D = D(f) is the discriminant
of f(x). (This is the generalization of the result of Exercise 6 to
cubic polynomials.)

3.7 The Discriminant (Optional Discussion)

In this section I’ll give a couple of equivalent definitions of the discrim-
inant of a polynomial of arbitrary degree. Not all proofs will be given,
but an indication of what’s involved will be outlined. To this end, let
there be given the polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

where an 6= 0 and where all coefficients are real. Denoting by x1, x1, . . . , xn
the zeros of f(x) (which may include several complex-conjugate pairs
of imaginary zeros), we know that (by the Factor Theorem)

f(x) = an(x− x1)(x− x2) · · · (x− xn).

In analogy with the above work, we define the discriminant of f(x)
by setting

∆ = ∆(f) = a2n−2
n det



1 x1 x2
1 · · · xn−1

n

1 x2 x2
2 · · · xn−1

2
...

...

1 xn x2
n · · · xn−1

n



2

.

The above involves the determinant of the so-called Vandermonde
matrix,
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V = det



1 x1 x2
1 · · · xn−1

n

1 x2 x2
2 · · · xn−1

2
...

...

1 xn x2
n · · · xn−1

n


which makes frequent appearances throughout mathematics. Its deter-
minant is given in the next theorem.

Theorem 3. detV =
∏
i<j

(xj − xi).

Proof. We argue by induction on n. Setting ∆ = detV , we start by
subtracting row 1 from rows 2, 3, . . . , n, which quickly produces

∆ = det


x2 − x1 x2

2 − x2
1 · · · xn−1

2 − xn−1
1

x3 − x1 x2
3 − x2

1 · · · xn−1
3 − xn−1

1
...

... . . . ...
xn − x1 x2

n − x2
1 · · · xn−1

n − xn−1
1

 .

Next, in each row we factor out the common factor of xi − x1, i =
2, 4, . . . , n, which leads to

∆ = (x2 − x1)(x3 − x1) · · · (xn − x1)×

det


1 x2 + x1 x2

2 + x2x1 + x2
1 · · · xn−2

2 + xn−3
2 x1 + · · ·+ xn−2

1

1 x3 + x1 x2
3 + x2x1 + x2

1 · · · xn−2
3 + xn−3

3 x1 + · · ·+ xn−2
1

...
...

... . . . ...
1 xn + x1 x2

n + xnx1 + x2
1 · · · xn−2

n + xn−3
n x1 + · · ·+ xn−2

1

 .

Next, if we subtract x1 times column n − 2 from column n − 1, then
subtract x1 times column n − 3 from column n − 2, and so on, we’ll
eventually reach

∆ = (x2 − x1)(x3 − x1) · · · (xn − x1) × det


1 x2 x2

2 · · · xn−2
2

1 x3 x2
3 · · · xn−2

3
...

...
... . . . ...

1 xn x2
n · · · xn−2

n


= (x2 − x1)(x3 − x1) · · · (xn − x1)×

∏
j>i≥2

(xj − xi) =
∏
j>i

(xj − xi),



176 CHAPTER 3 Inequalities

From the above, we see that

∆ = ∆(f) = a2n−2
n

∏
1≤i<j≤n

(xj − xi)2.

The difficulty with the above expression is that its computation ap-
pears to require the zeros of f(x). However, this is a symmetric poly-
nomial in the “variables” x1, x2, . . . , xn and hence7 can be written as
a polynomial in the elementary symmetric polynomials

σ1 = x1 + x2 + · · ·+ σn

σ2 = x1x2 + x1x3 + · · · =
∑
i<j

xixj

σ3 =
∑

i<j<k

xixjxk

...

σn = x1x2 · · · xn
This was carried out for the quadratic polynomial f(x) = ax2+bx+c on
page 168; the result for the cubic polynomial f(x) = ax3 + bx2 + cx+ d
was given on page 171. Carrying this out for higher degree polynomials
is quite difficult in practice (see, e.g., Exercise 5, above). The next
two subsections will lead to a more direct (but still computationally
very complex) method for computing the discriminant of an arbitrary
polynomial.

3.7.1 The resultant of f(x) and g(x)

Let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0, and g(x) = bmx
m +

bm−1x
m−1 + · · · + b1x + b0 be polynomials having real coefficients of

degrees n and m, respectively. Define the (n+m)× (n+m) Sylvester
matrix relative to f(x) and g(x), S(f, g) by setting

7This follows from the so-called Fundamental Theorem on Symmetric Polynomials.
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S(f, g) =



an an−1 an−2 · · · 0 0 0
0 an an−1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · a1 a0 0
0 0 0 · · · a2 a1 a0

bm bm−1 bm−2 · · · 0 0 0
0 bm bm−1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · b1 b0 0
0 0 0 · · · b2 b1 b0



.

The resultant R(f, g) of f(x) and g(x) is the determinant of the
corresponding Sylvester matrix:

R(f, g) = det S(f, g).

For example, if f(x) = a2x
2+a1x+a0 and g(x) = b3x

3+b2x
2+b1x+b0,

then

S(f, g) = det



a2 a1 a0 0 0
0 a2 a1 a0 0
0 0 a2 a1 a0

b3 b2 b1 b0 0
0 b3 b2 b1 b0


.

Note that the resultant of two polynomials clearly remains unchanged
upon field extension.

We aim to list a few simple—albeit technical—results about the
resultant. The first is reasonably straightforward and is proved by just
keeping track of the sign changes introduced by swapping rows in a
determinant.

Lemma 2.

R(f, g) = (−1)mnR(g, f)

where deg f = n and deg g = m.
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Next, write

f(x) = an(x
n+a′n−1x

n−1+· · ·+a′1x+a′0), a
′
i = ai/an, i = 0, 1, . . . , n−1;

similarly, write

g(x) = bm(xm+b′m−1x
m−1+· · ·+b′1x+b′0), b

′
j = bj/bm, j = 0, 1, . . . , n−1;

It follows easily thatR(f, g) = amn b
n
mR(f/an, g/bm), which reduces com-

putations to resultants of monic polynomials.

Theorem 4.. Let f(x), g(x), and h(x) be polynomials with real coef-
ficients. Then

R(fg, h) = R(f, h)R(g, h).

Proof. From the above, it suffices to assume that all polynomials are
monic (have leading coefficient 1). Furthermore, by the Fundamen-
tal Theorem of Algebra f(x) splits into linear factors, and so it is
sufficient to prove that the above result is true when f(x) = x + a is
linear. Here, we let

g(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0, and

h(x) = xm + bm−1x
m−2 + · · ·+ b1x+ b0.

First of all, one obviously has that

R(x+ a, h) = det

 S(x+ a, h(x)) Z
0n,m+1 In


where Z is the (m+ 1)× n matrix

Z =


0 · · · 0 0
...

...
...

...
0 · · · 0 0

−an−1 · · · −a1 −a0

 .

Next, it is equally clear that
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R(g, h) = det



1 an−1 · · · a1 a0 0 · · · 0
0
0
... S(g, h)
...
0


.

Finally, one checks that

 S(x+ a, h(x)) Z
0n,m+1 In

×



1 an−1 · · · a1 a0 0 · · · 0
0
0
... S(g, h)
...
0


= S((x+ a)g(x), h(x)),

and we’re done.

Since R(x− a, x− b) = a− b, we immediately obtain the following:

Corollary 1. Let f(x), g(x) be polynomials with real coefficients,
and have leading coefficients an and bm, respectively. Assume f(x) has
zeros α1, . . . , αn, and that g(x) has zeros β1, . . . , βm. Then

R(f, g) = amn b
n
m

n∏
i=1

m∏
j=1

(αi − βj).

Corollary 2. R(f, g) = 0 if and only if f(x) and g(x) have a common
zero.

The following corollary will be quite important in the next section.

Corollary 3. Let f(x), g(x) be polynomials with real coefficients,
and have leading coefficients an and bm, respectively. Assume f(x) has
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zeros α1, . . . , αn. Then

R(f, g) = amn
n∏
i=1

g(αi).

Proof. Let g(x) have zeros β1, . . . , βm. Since

g(x) = bm(x− β1) · · · (x− βm),

we see that g(αi) = bm(αi − β1) · · · (αi − βm). From this, the result
follows instantly.

3.7.2 The discriminant as a resultant

As already given above, the discriminant of the polynomial f(x) =
anx

n+ lower-degree terms and having zeros x1, x2, . . . , xn is given by

∆(f) = a2n−2
n det



1 x1 x2
1 · · · xn−1

n

1 x2 x2
2 · · · xn−1

2
...

...

1 xn x2
n · · · xn−1

n



2

= a2n−2
n

∏
i<j

(xj − xi)2.

We relate the above to the resultant as follows. Let f(x) = anx
n

+ lower-degree terms, where an 6= 0, and let α1, . . . , αn be the zeros
of f(x). Then, using Corollary 3 above, and letting f ′ = f ′(x) be the
derivative of f , we have that

R(f, f ′) = an−1
n

n∏
i=1

f ′(αi).

Next, we have f(x) = an(x− α) · · · (x− α); applying the product rule
for differentiation leads quickly to

f ′(x) = an
n∑
i=1

(x− α1) · · ·¤�(x− αi) · · · (x− αn),
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where the convention is that the factor under the ” is omitted. From
the above, we see immediately that

f ′(αi) = an
∏
j 6=i

(αi − αj),

and so

R(f, f ′) = an−1
n

n∏
i=1

f ′(αi) = a2n−1
n

n∏
i=1

∏
j 6=i

(αi − αj) = a2n−1
n

∏
j 6=i

(αi − αj).

Finally, one checks that∏
j 6=i

(αi − αj) = (−1)n(n−1)/2 ∏
1≤i<j≤n

(αj − αi)2,

which gives the following relationship between the result of f(x) and
f ′(x) and the discriminant:

Theorem 5. Given the polynomial f(x) with real coefficients, one has
that

R(f, f ′) = (−1)n(n−1)/2an∆(f).

If we return to the case of the quadratic f(x) = ax2 + bx+ c, then

R(f, f ′) = R(ax2 + bx+ c, 2ax+ b)

= det


a b c
2a b 0
0 2a b


= −(ab2 − 4a2c) = −a(b2 − 4ac).

Since for n = 2 we have (−1)n(n−1)/2 = −1, we see that, indeed,
R(f, f ′) = (−1)n(n−1)/2a∆(f) in this familiar case.

Note, finally, that as a result of the representation of ∆(f) in terms
of R(f, f ′) we see that ∆(f) is a homogeneous polynomial of degree
2n− 2 in the coefficients a0, a1, . . . , an.
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3.7.3 A special class of trinomials

We shall start this discussion with a specific example. Let f(x) =
a3x

3 + a2x
2 + a1x + a0 and let g(x) = b2x

2 + b1x + b0 and form the
Sylvester matrix

S(f, g) =



a3 a2 a1 a0 0
0 a3 a2 a1 a0

b2 b1 b0 0 0
0 b2 b1 b0 0
0 0 b2 b1 b0


.

Next assume that in the above, we actually have a3 = a2 = 0, and that
b2 6= 0. Then the determinant of the above is given by

detS(f, g) = det



b2 0 0 0 0
0 b2 0 0 0
0 0 a1 a0 0
0 0 0 a1 a0

0 0 b2 b1 b0


= b2

2R(a1x+ a0, b2x
2 + b1x+ b0).

In general, assume that

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

and that

g(x) = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0, bm 6= 0.

If we have ak 6= 0 and that ak+1 = ak+2 = · · · = an = 0, then one
patterns an argument based on the above to arrive at the conclusion:

Lemma 3. With hypotheses as above,

detS(f, g) = (−1)m(n−k)bn−km R(f, g).

Assume now that we are given polynomials f(x) = anx
n+ lower,

and g(x) = bmx
m+ lower. The Sylvester matrix S(f, g) has in rows 1

through m the coefficients of f(x) and in rows m + 1 through m + n
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it has the coefficients of g(x). Note that adding a multiple a of row
m + n to the first m rows of S(f, g) will produce the Sylvester matrix
S(f + ag, g), whose determinant is unchanged. If m < n, then adding
a times row m + n − 1 to each of the first m rows of S(f, g) will
produce the Sylvester matrix S(f +axg, g) with the same determinant:
detS(f + axg, g)detS(f, g). More generally, we see that as long as
k ≤ n −m, then for any constant a, detS(f + axkg, g) = detS(f, g).
This easily implies the following very useful fact:

Theorem 6. Given the polynomials f(x), g(x) with real coefficients
of degrees n ≥ m (respectively), then for any polynomial h(x) of degree
≤ n−m, detS(f + gh, g) = detS(f, g).

Now consider the monic trinomial of the form f(x) = xn + ax + b
where a, b are real numbers. Applying Theorem 3, we see that

∆(f) = (−1)n(n−1)/2R(f, f ′)

= (−1)n(n−1)/2detS(xn + ax+ b, nxn−1 + a)

= (−1)n(n−1)/2detS((a− a/n)x+ b, nxn−1 + a) (Theorem 3)

= (−1)n(n−1)/2(−1)(n−1)2nn−1R((a− a/n)x+ b, nxn−1 + a)

= (−1)n(n−1)/2(−1)(n−1)2nn−1(a− a/n)n−1(n(−1)n−1(b/(a− a/n))n−1 + a)

(Corollary 3)

= (−1)n(n−1)/2(−1)n−1((−1)n−1nnbn−1 + an(n− 1)n−1)

= (−1)n(n−1)/2(nnbn−1 + (−1)n−1(n− 1)n−1an).

Example. Let f(x) =
3

x
+ x3, x > 0 and find the minimum value

of f(x). While such a problem is typically the province of differential
calculus, we can use a discriminant argument to obtain the solution.
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y=3/x+x

y=1/x

3
y=x3

y=m

We let m be the minimum value of f(x) and note that the graph of

y = m must be tangent to the graph of y =
3

x
+ x3. This is equivalent

to saying that the solution of 3+x4 = mx is a multiple root, forcing the
discriminant of the quartic polynomial q(x) = x4 −mx+ 3 to be zero.
That is to say, we need to find that value of m making the discriminant
equal to 0. From the above, we have that

0 = ∆(q) = 4433 − 33m4 = 0⇒ m = 4.

In other words, the minimum value of q(x) on the interval (0,∞) is 4.
(The reader should check that the same result is obtained via differential
calculus.)



Chapter 4

Abstract Algebra

While an oversimplification, abstract algebra grew out of an attempt
to solve and otherwise understand polynomial equations (or systems of
polynomial equations). A relative high point can be found in the early
nineteenth century with E. Galois’ proof that polynomial equations
of degree at least 5 need not be solvable by the “usual” processes of
addition, subtraction, multiplication, division, and extraction of roots
as applied to the polynomial’s coefficients. What’s remarkable is not so
much the result itself but rather the methods employed. This marked
the beginning of a new enterprise, now called group theory which soon
took on a life of itself, quite apart from playing a role in polynomial
equations.

The language and level of abstraction in group theory quickly be-
gan to spread, leading to the somewhat larger discipline of abstract
algebra. We’ll attempt to give the serious student a meaningful intro-
duction in this chapter.

4.1 Basics of Set Theory

In this section we shall consider some elementary concepts related to
sets and their elements, assuming that at a certain level, the students
have encountered the notions. In particular we wish to review (not
necessarily in this order)

• Element containment (∈)

• Containment relationships between sets (⊆, ⊇, ⊂, (same as
(),⊃, (same as )))

185
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• Operations on subsets of a given set: intersection (∩), union,
(∪), difference (−), and symmetric difference (+) of two sub-
sets of a given set

• Set-theoretic constructions: power set (2S), and Cartesian prod-
uct (S × T )

• Mappings (i.e., functions) between sets

• Relations and equivalence relations on sets

Looks scary, doesn’t it? Don’t worry, it’s all very natural....

Before we launch into these topics, let’s get really crazy for a mo-
ment. What we’re going to talk about is naive set theory. As opposed
to what, you might ask? Well, here’s the point. When talking about
sets, we typically use the language,

“the set of all . . . ”

Don’t we often talk like this? Haven’t you heard me say, “consider the
set of all integers,” or “the set of all real numbers”? Maybe I’ve even
asked you to think about the “set of all differentiable functions defined
on the whole real line.” Surely none of this can possibly cause any
difficulties! But what if we decide to consider something really huge,
like the “set of all sets”? Despite the fact that this set is really big,
it shouldn’t be a problem, should it? The only immediately peculiar
aspect of this set—let’s call it B (for “big”)—is that not only B ⊆ B
(which is true for all sets), but also that B ∈ B. Since the set {1} 6∈ {1},
we see that for a given set A, it may or may not happen that A ∈ A.
This leads us to consider, as did Bertrand Russell, the set of all sets
which don’t contain themselves as an element; in symbols we would
write this as

R = {S | S 6∈ S}.

This set R seems strange, but is it really a problem? Well, let’s take a
closer look, asking the question, is R ∈ R? By looking at the definition,
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we see that R ∈ R if any only if R 6∈ R ! This is impossible! This is a
paradox, often called Russell’s paradox (or Russell’s Antinomy).

Conclusion: Naive set theory leads to paradoxes! So what do we do?
There are basically two choices: we could be much more careful and do
axiomatic set theory, a highly formalized approach to set theory (I
don’t care for the theory, myself!) but one that is free of such paradoxes.
A more sensible approach for us is simply to continue to engage in naive
set theory, trying to avoid sets that seem unreasonably large and hope
for the best!

4.1.1 Elementary relationships

When dealing with sets naively, we shall assume that the statement “x
in an element of the set A” makes sense and shall symbolically denote
this statment by writing x ∈ A. Thus, if Z denotes the set of integers,
we can write such statements as 3 ∈ Z, −11 ∈ Z, and so on. Likewise,
π is not an integer so we’ll express this by writing π 6∈ Z.

In the vast majority of our considerations we shall be considering
sets in a given “context,” i.e., as subsets of a given set. Thus, when I
speak of the set of integers, I am usually referring to a particular subset
of the real numbers. The point here is that while we might not really
know what a real number is (and therefore we don’t really “understand”
the set of real numbers), we probably have a better understanding of
the particular subset consisting of integers (whole numbers). Anyway,
if we denote by R the set of all real numbers and write Z for the subset
of of integers, then we can say that

Z = {x ∈ R | x is a whole number}.

Since Z is a subset of R we have the familiar notation Z ⊆ R; if
we wish to emphasize that they’re different sets (or that Z is properly
contained in R), we write Z ⊂ R (some authors1 write Z ( R). Like-
wise, if we let C be the set of all complex numbers, and consider also
the set Q of all rational numbers, then we obviously have

1like me, but the former seems more customary in the high-school context.
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Z ⊆ Q ⊆ R ⊆ C.

As a more geometrical sort of example, let us consider the set R3 of
all points in Cartesian 3-dimensional space. There are certain naturally
defined subsets of R3, the lines and the planes. Thus, if Π is a plane
in R3, and if L is a line contained in Π, then of course we may write
either L ⊂ Π ⊂ R3 or L ⊆ Π ⊆ R3. Note, of course, that R3 has far
more subsets that just the subsets of lines and planes!

One more example might be instructive here. First of all, if A is a
finite set, we shall denote by |A| the number of elements in A. We often
call |A| the cardinality or order of the set A. Now consider the finite
set S = {1, 2, 3, . . . , 8} (and so |S| = 8) and ask how many subsets
(including S and the empty set ∅) are contained in S. As you might
remember, there are 28 such subsets, and this can be shown in at least
two ways. The most direct way of seeing this is to form subsets of S
by the following process:

1 2 3 4 5 6 7 8
yes

or no
yes

or no
yes

or no
yes

or no
yes

or no
yes

or no
yes

or no
yes

or no

where in the above table, a subset if formed by a sequence of yes’s or
no’s according as to whether or not the corresponding element is in
the subset. Therefore, the subset {3, 6, 7, 8} would correspond to the
sequence

(no, no, yes, no, no, yes, yes, yes).

This makes it already clear that since for each element there are two
choices (“yes” or “no”), then there must be

2× 2× 2× 2× 2× 2× 2× 2 = 28

possibilities in all.

Another way to count the subsets of the above set is to do this:
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Number of subsets

= number of subsets of size 0

+ number of subsets of size 1

+ number of subsets of size 2

+ number of subsets of size 3

+ number of subsets of size 4

+ number of subsets of size 5

+ number of subsets of size 6

+ number of subsets of size 7

+ number of subsets of size 8

=
Ä8
0

ä
+
Ä8
1

ä
+
Ä8
2

ä
+
Ä8
3

ä
+
Ä8
4

ä
+
Ä8
5

ä
+
Ä8
6

ä
+
Ä8
7

ä
+
Ä8
8

ä
=

8∑
k=0

Ñ
8

k

é
= (1 + 1)8 = 28,

where we have applied the Binomial Theorem.

In general, if A is any set, we denote by 2A the set of all subsets of
A, often called the power set of A. (Many authors denote this set by
P(A).) We’ll have more to say about the power set later. At any rate,
we showed above that if S = {1, 2, 3, . . . , 8}, then |2S| = 28. The
obvious generalization is this:

Theorem. Let A be a finite set with cardinality n. The 2A has cardi-
nality 2n. Symbolically,

∣∣∣∣∣2A
∣∣∣∣∣ = 2|A|.

Exercises

1. Let p be a prime number and define the following subset of the
rational numbers Q:

Q(p) =
ßr
s
∈ Q | the fraction

r

s
is in lowest terms, and p doesn’t evenly divide s

™
.
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Determine which of the following real numbers are in Q(2):

π,
2

3
,

10

2
, cos(π/4), 12,

3

4
, 12π,

π

3
.

2. True or false: Z ⊆ Q(p) for any prime number p.

3. Consider the set S = {1, 2, 3, . . . , 10}. Define the sets

A = {subsets T ⊆ S | |T | = 2}
B = {subsets T ⊆ S | |T | = 2, and if x, y ∈ T then |x− y| ≥ 2}

Compute |A| and |B|.

4. Given the real number x, denote by [x] the largest integer n not
exceeding x. Therefore, we have, for example, that [4.3] = 4, [π] =

3, [e] = 2, [−π] = −4, and

[
10

3

]
= 3. Define the set A of integers

by setting

A =


 12

100

 ,
 22

100

 ,
 32

100

 , . . . ,
992

100

 ,
1002

100


and compute |A|.

4.1.2 Elementary operations on subsets of a given set

Let A and B be subsets of some bigger set U (sometimes called the
universal set; note that U shall just determine a context for the en-
suing constructions). We have the familiar union and intersection,
respectively, of these subsets:

A ∪B = {u ∈ U | u ∈ A or u ∈ B}, and

A ∩B = {u ∈ U | u ∈ A and u ∈ B}.
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I’m sure that you’re reasonably comfortable with these notions. Two
other important construction are the difference and complement,
respectively:

A−B = {u ∈ U | u ∈ A but u 6∈ B}, and

A′ = {u ∈ U | u 6∈ A} = U − A.

Relationships and operations regarding subsets are often symbolically
represented through the familiar Venn diagram. For example, in the
Venn diagram below, the student should have no difficulty in coloring
in any one of the subsets A∪B, A∩B, A−B, B−A, A′ (or any others
that might come to mind!)

Venn diagrams can be useful in identifying properties of the above
operations. One very typical example of such relationships and their
Venn diagram proofs are the De Morgan Laws: for subsets A and B
of a universal set U , one has

(A ∪B)′ = A′ ∩B′ and (A ∩B)′ = A′ ∪B′ .

You can convince yourself of these facts by coloring in the Venn
diagrams:
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Actually, though, the De Morgan Laws are hardly surprising. If A
represents “it will rain on Monday,” and B represents “it will rain on
Tuesday,” then “it will not rain on Monday or Tuesday” is represented
by (A ∪ B)′, which is obviously the same as “it won’t rain on Monday
and it won’t rain on Tuesday,” represented mathematically by A′ ∩B′.

A more formal proof might run along the following lines. In proving
that for two sets S = T , it is often convenient to prove that S ⊆ T and
that T ⊆ S.

Theorem. For subsets A and B of a given set U, (A ∪B)′ = A′ ∩B′.

Proof. Let x ∈ (A ∪ B)′. Then x is not in A ∪ B, which means that
x is not in A and that x is not in B, i.e., x ∈ A′ ∩ B′. This proves
that (A ∪ B)′ ⊆ A′ ∩ B′. Conversely, if x ∈ A′ ∩ B′, then x is not in
A and that x is not in B, and so x is not in A ∪B. But this says that
x ∈ (A ∪ B)′, proving that (A ∪ B)′ ⊆ A′ ∩ B′. It follows, therefore,
that (A ∪B)′ = A′ ∩B′.

There are two other important results related to unions and inter-
sections, both of which are somewhat less obvious than the De Morgan
laws. Let’s summarize these results as a theorem:

Theorem. Let A, B, and C be subsets of some universal set U . Then
we have two “distributive laws:”

A∩(B∪C) = (A∩B)∪(A∩C), and A∪(B∩C) = (A∪B)∩(A∪C).
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Proof. As you might expect the above can be easily demonstrated
through Venn diagrams (see Exercise 1 below). Here, I’ll give a formal
proof of the first result (viz., that “intersection distributes over union”).
Let x ∈ A ∩ (B ∪ C) and so x ∈ A and x ∈ B ∪ C. From this
we see that either x ∈ A and x ∈ B or that x ∈ A and x ∈ C,
which means, of course, that x ∈ (A ∩ B) ∪ (A ∩ C), proving that
A∩(B∪C) ⊆ (A∩B)∪(A∩C). Conversely, if x ∈ (A∩B)∪(A∩C), then
x ∈ A∩B or x ∈ A∩C. In either case x ∈ A, but also x ∈ B∪C, which
means that x ∈ A∩(B∪C), proving that A∩(B∪C) ⊆ (A∩B)∪(A∩C).
It follows that A∩ (B∪C) = (A∩B)∪ (A∩C). The motivated student
will have no difficulty in likewise providing a formal proof of the second
distributive law.

Exercises

1. Give Venn diagram proofs of the distributive laws:

A∩(B∪C) = (A∩B)∪(A∩C), and A∪(B∩C) = (A∪B)∩(A∪C).

2. Show that if A, B ⊆ U , then A−B = A ∩B′.

3. Use a Venn diagram argument to show that if A, B, C ⊆ U , then

A−(B∪C) = (A−B)∩(A−C) and A−(B∩C) = (A−B)∪(A−C).

4. Show that if A, B ⊆ U , and if A and B are finite subsets, then
|A ∪B| = |A|+ |B| − |A ∩B|.
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5. Show that if A, B, and C ⊆ U , and if A, B, and C are finite
subsets, then

|A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C|.

6. Try to generalize Exercise 5 above.2

7. (Compare with Exercise 3 of Subsection 4.1.1) Consider the set
S = {1, 2, 3, . . . , 10}, and define the sets

T = {ordered pairs (X, Y ) of subsets X, Y ⊆ S, with |X|, |Y | =
2 and X ∩ Y = ∅}

T ′ = {subsets {X, Y } ⊆ 2S | |X|, |Y | = 2 and X ∩ Y = ∅}

Compute |T | and |T ′|.

8. In this problem the universal set is the real line R. Find A ∪
B, A ∩ B, A− B, B − A, and (A ∪ B)′, where A = ]− 10, 5] and
B = [−4, π].

9. In this problem the universal set is the Cartesian plane R2 =
{(x, y) | x, y ∈ R}. Define the subsets

A = {(x, y) | x2 + y2 < 1} and B = {(x, y) | y ≥ x2}.

Sketch the following sets as subsets of R2: A ∪ B, A ∩ B, A −
B, B − A, and (A ∪B)′.

10. Let A, B ⊆ U and define the symmetric difference of A and B
by setting

A+B = (A ∪B)− (A ∩B).

Using Venn diagram arguments, show the distributive laws

A+B = (A−B) ∪ (B − A)

2This is the classical principle of Inclusion-Exclusion.
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A ∩ (B + C) = (A ∩B) + (A ∩ C), where A, B, C ⊆ U

A+ (B ∩ C) = (A+B) ∩ (A+ C), where A, B, C ⊆ U .

11. Let p be a fixed prime and let Q(p) be the set defined in Exercise 1
of Subsection 4.1.1. Interpret and prove the statement that

⋂
all primes p

Q(p) = Z.

12. Interpret and prove the statements

(i)
∞⋂
n=1

(
[0, 1

n ]
)

= {0}

(ii)
∞⋂
n=1

(
]0, 1

n ]
)

= ∅

4.1.3 Elementary constructions—new sets from old

We have already encountered an elementary construction on a given
set: that of the power set. That is, if S is a set, then 2S is the set
of all subsets of the set S. Furthermore, we saw in the theorem on
page 189 that if S is a finite set containing n elements, then the power
set 2S contains 2n elements (which motivates the notation in the first
place!). Next, let A and B be sets. We form the Cartesian product
A× B to be the set of all ordered pairs of elements (a, b) formed by
elements of A and B, respectively. More formally,

A×B = {(a, b) | a ∈ A and b ∈ B}.

From the above, we see that we can regard the Cartesian plane R2

as the Cartesian product of the real line R with itself: R2 = R × R.
Similarly, Cartesian 3-space R3 is just R×R×R.

Here are a couple of constructions to think about. Perhaps you
can see how a right circular cylinder of height h and radius r can be
regarded as S × [0, h], where S is a circle of radius h. Next, can you
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see how the product S × S of two circles could be identified with the
torus (the surface of a doughnut)?3

Finally, it should be obvious that if A and B are finite sets |A×B| =
|A| · |B|.

Exercises

1. Let n be a positive integer and let S = {1, 2, . . . , n}. Define the
subset T ⊆ S × S by T = {(a, b) ∈ S × S | |a− b| = 1}. Compute
|T | as a function of n.

2. Let n be a positive integer and let S be as above. Define the subset
Z ⊆ S×S×S by Z = {(a, b, c) ∈ S×S×S | a, b, c are all distinct}.
Compute |Z| as a function of n.

3. Let X and Y be sets, and let C, D ⊆ Y . Prove that X×(C∪D) =
(X × C) ∪ (X ×D).

4. Let X and Y be sets, let A, B ⊆ X and let C, D ⊆ Y . Is it always
true that

(A ∪B)× (C ∪D) = (A× C) ∪ (B ×D)?

5. Let T and T ′ be the sets defined in Exercise 7 of Subsection 4.1.2.
Which of the following statements are true:

T ∈ S × S, T ⊆ S × S, T ∈ 2S, T ⊆ 2S

T ′ ∈ S × S, T ′ ⊆ S × S, T ′ ∈ 2S, T ′ ⊆ 2S

3Here’s a parametrization of the torus which you might find interesting. Let R and r be positive
real numbers with r < R. The following parametric equations describe a torus of outer radius r+R
and inner radius R− r:

x = (R+ r cosφ) cos θ
y = (r + r cosφ) sin θ
z = r sinφ.
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4.1.4 Mappings between sets

Let A and B be sets. A mapping from A to B is simply a function

from A to B; we often express this by writing f : A → B or A
f→ B.

Let’s give some examples (some very familiar):

• f : R → R is given by f(x) = x2 − x+ 1, x ∈ R

• f : R → C is given by f(x) = (x− 1) + ix2, x ∈ R

• Let Z+ ⊆ Z be the set of positive integers and define g : Z2 → R
by g(m) = cos(2π/n), n ∈ Z+

• h : R×R → R is given by f(x, y) = x− y, x, y ∈ R.

• γ : R×R → R is given by γ(x, y) = x2 + y2

• q : Z→ Z is given by q(n) = 1
2(n2 + n), n ∈ Z

• µ : Z+ → {−1, 0, 1} is given by

µ(n) =


1 if n is the product of an even number of distinct primes

−1 if n is the product of an odd number of distinct primes

0 if n is not the product of distinct primes

Thus, for example, µ(1) = 0. Also, µ(6) = 1, as 6 = 2 · 3, the
product of two distinct primes. Likewise, µ(5) = µ(30) = −1, and
µ(18) = 0.

• h : R×R → C is given by h(x, y) = x+ iy, x, y ∈ R

• σ : {1, 2, 3, 4, 5, 6} → {1, 2, 3, 4, 5, 6} is represented by

σ :


1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
2 5 3 4 1 6


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If f : A → B is a mapping we call A the domain of f and call B
the codomain of f . The range of f is the subset {f(a) | a ∈ A} ⊆ B.

Some definitions. Let A and B be sets and let f : A → B. We say
that

f is one-to-one (or is injective) if whenever x, y ∈ A, x 6= y then
f(x) 6= f(y). (This is equivalent with saying that f(x) = f(y) ⇒
x = y, where x, y ∈ A.)

f is onto (or is surjective) if for any z ∈ B there is an element x ∈ A
such that f(x) = z. Put differently, f is onto if the range of r is
all of B.

f is bijective if f is both one-to-one and onto.

The following definition is extremely useful. Let A and B be sets
and let f : A → B be a mapping. Let b ∈ B; the fibre of f over b,
written f−1(b) is the set

f−1(b) = {a ∈ A | f(a) = b} ⊆ A.

Please do not confuse fibres with anything having to do with
the inverse function f−1, as this might not exist! Note that if
b ∈ B then the fibre over b might be the empty set. However, if we
know that f : A→ B is onto, then the fibre over each element of B is
nonempty. If, in fact, for each b ∈ B the fibre f−1(b) over b consists of
a single element, then we are guaranteed that f is a bijection.

Finally, a mapping f : A→ A from a set into itself is called a permu-
tation if it is a bijection. It should be clear that if |A| = n, then there
are n! bijections on A.

Exercises

1. Let f : R → R be a quadratic function. Therefore, there are real
constants a, b, c ∈ R with a 6= 0 such that f(x) = ax2 + bx+ c for
all x ∈ R. Prove that f cannot be either injective or surjective.
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2. Suppose that f : R → R is a cubic function such that f ′(x) 6= 0
for all x ∈ R. Give an intuitive argument (I’m not asking for a
formal proof) that f must be bijective.

3. Define f : R×R → R by setting f(x, y) = x− y. Show that f is
onto but is not one-to-one.

4. Define f : R×R → R by setting f(x, y) = x2 + y. Show that f
is onto but is not one-to-one.

5. Let f : C → C be a quadratic function. Therefore, there are
complex constants a, b, c ∈ C with a 6= 0 such that f(x) = ax2 +
bx + c for all x ∈ C. Prove that f is onto but not one-to-one.
(Compare with Exercise 1, above.)

6. For the mapping given in Exercise 3, above, show that the fibre
over each point in R is a line in R×R.

7. What are the fibres of the mapping in Exercise 4?

8. (A guided exercise) Let A be a set and let 2A be its power set.
Let’s show that there cannot exist any surjective function
f : A→ 2A. A good way to proceed is to argue by contra-
diction, which means that we’ll assume that, in fact, a surjective
function exists and then reach a contradiction! So let’s assume that
f : A→ 2A is surjective. Note first that for any element a ∈ A, it
may or may not happen that a ∈ f(a) (this is important!). Now
consider the following strange subset of A:

A0 = {a ∈ A | a 6∈ f(a)} ∈ 2A.

Is A0 = f(a0) for some element a0 ∈ A? Think about it! This
contradiction has the same flavor as Russell’s paradox!
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4.1.5 Relations and equivalence relations

Let S be a set. A relation R on S is simply a subset of S×S. Nothing
more, nothing less. If (x, y) ∈ R ⊆ S × S, then we typically write xRy
and say that x is related to y. A few examples might clarify this.

(i) Let R be the relation “<” on the set R of real numbers. Therefore,
R = {(x, y) ∈ R×R | x < y}.

(ii) Fix a positive integer m and recall that if a ∈ Z then m|a means
that a is a multiple of m. Now let R be the relation on the set Z
of integers defined by

aRb⇔ m|(a− b).

Note that we already met this relation in Section 2.1.3.

This relation is, as we have seen, customarily denoted “mod m”
and read “congruence modulo m.” Thus if m = 7, then we can say
that 1 ≡ 15 (mod 7)” where we read this as “1 is congruent to 15
modulo 7.”

Note, in particular, that if m = 7 then the integers which are
congruent modulo 7 to −1 are precisely those of the form −1 +
7k, k = 0, ±1, ±2, . . ..

(iii) Let S = {1, 2, 3, 4, 5, 6}. We may express a relation R on S by
specifying a matrix P containing 0s and 1s and where the rows
and columns are labeled by the elements of S in the order 1, 2,
3, 4, 5, and 6 and where a “1” in row i and column j designates
that iRj. More specifically, let’s consider the relation defined as
by the matrix:
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

1 0 1 0 1 0
0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 1 0 0
1 0 1 0 1 0
0 0 0 0 0 1


.

In this example we see that sRs for all s ∈ S. You should have no
trouble in writing down all the correct relational expressions xRy.

(iv) Here’s one of my favorite examples. Let T5 be the set of all 2-
element subsets of {1, 2, 3, 4, 5} and define the relation R on T5

by stipulating that A1RA2 ⇔ A1 ∩A2 = ∅. Can you compute |R |
in this example (see Exercise 3, below)? Can you reformulate this
in terms of an appropriate graph, having T5 as its set of vertices?

(v) Define the relation R on the real line R by stipulating that xRy ⇔
x− y ∈ Z. What are the elements related to π?

Let R be a relation on a set S. We say that R is an equivalence
relation if the following three properties hold:

R is reflexive: sRs for any s ∈ S;

R is symmetric: s1Rs2 ⇔ s2Rs1, s1, s2 ∈ S;

R is transitive: s1Rs2 and s2Rs3 ⇒ s1Rs3, s1, s2, s3 ∈ S.

Of the five examples given above, the relations (ii), (iii), and (v)
are equivalence relations. The relation given in (i) is neither reflexive
(since x < x is false for all real numbers) nor is it symmetric (1 < 2
but 2 6< 1). This relation is, however transitive (easy to check!). The
analysis of the remaining cases are left to the exercises.

Example (iii) is a bit different from the others, which warrant a few
extra words. Two (almost) obvious facts are the following: Since the
matrix has all 1s down the diagonal, this already proves the reflexivity
of the relation. Next, the matrix is symmetric which proves that the
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relation is symmetric. How about the transitivity? This involves a
more work, but a bit of thought reveals the following. If P denotes the
above matrix, and if P 2 has nonzero entries in exactly the same places
as P , then the relation is also transitive.

Let S be a set and let R be an equivalence relation on S. For any
element s ∈ S we denote by [s] the set

[s] = {s′ ∈ S | sRs′} ⊆ S,

and call this set the equivalence class in S containing s ∈ S. Note
that if s1Rs2 then [s1] = [s2] because s1 and s2 are equivalent to exactly
the same elements of S.

Proposition. Let R be an equivalence relation on the set S and let [s]
and [s′] be two equivalence classes in S. Then either [s] = [s′], in which
case sRs′ or [s] ∩ [s′] = ∅, where then s 6Rs′.

Proof. Assume that [s] ∩ [s′] 6= ∅, say that there is some element
t ∈ [s] ∩ [s′]. Therefore sRt and s′Rt which implies by symmetry that
sRt and tRs′. Using transitivity, we see that sRs′ which means that
s, s′ are equivalent to exactly the same elements of S. From this it
follows that [s] = [s′]. The only other possibility is that [s]∩ [s′] = ∅ in
which case one obviously has s 6Rs′.

As a result of the above proposition we see that an equivalence re-
lation R on a set S partitions the set into disjoint equivalence classes.
In light of this, let’s take a look at a few examples.

(i) Consider the equivalence relation “≡ (mod 7)” on the set Z of
integers. We have the following decomposition of Z into exactly 7
equivalence classes:

[0] = {. . . ,−14, −7, 0, 7, 14, . . .}
[1] = {. . . ,−13, −6, 1, 8, 15, . . .}
[2] = {. . . ,−12, −5, 2, 9, 16, . . .}
[3] = {. . . ,−11, −4, 3, 10, 14, . . .}
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[4] = {. . . ,−10, −3, 4, 11, 14, . . .}
[5] = {. . . ,−9, −2, 5, 7, 12, . . .}
[6] = {. . . ,−8, −1, 6, 7, 13, . . .}

(ii) Let R be the relation on R given by xRy =⇒ x − y ∈ Q. This
is easily shown to be an equivalence relation, as follows. First
xRx as x − x = 0 ∈ Q. Next, if xRy, then x − y ∈ Q and so
y − x = −(x − y) ∈ Q, i.e., yRx. Finally, assume that xRy and
that yRz. Then x−y, y−z ∈ Q and so x−z = (x−y)+(y−z) ∈ Q
and so xRz. Note that the equivalence class containing the real
number x is {x+ r | r ∈ Q}.

(iii) Define the function f : R2 → R by setting f(x, y) = x−y. Define
an equivalence relation onR2 by stipulating that (x1, y1)R(x2, y2)⇔
f(x1, y1) = f(x2, y2). Note that this is the same as saying that
x1 − y1 = x2 − y2. Thus, the equivalence classes are nothing more
than the fibres of the mapping f . We can visualize these equiva-
lence classes by noting that the above condition can be expressed

as
y2 − y1

x2 − x1
= 1, which says that the equivalence classes are pre-

cisely the various lines of slope 1 in the Cartesian plane R2.

One final definition is appropriate here. Let S be a set and let R be
an equivalence relation on S. The quotient set of S by R is the set of
equivalence classes in S. In symbols, this is

S/R = {[a] | a ∈ S}.

We shall conclude this subsection with a particularly important quo-
tient set. Let n ∈ Z+ and let R be the relation “≡ (mod n).” One
usually writes Zn for the corresponding quotient set. That is,

Zn = {[m] | m ∈ Z} = {[0], [1], [2], . . . , [n− 1]}.4

4It’s important that the IB examination authors do not use the brackets in writing the elements
of Zn; they simply write Zn = {0, 1, 2, . . . , n− 1}. While logically incorrect, this really shouldn’t
cause too much confusion.
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Exercises

1. Let S = {1, 2, 3, 4}. How many relations are there on S?

2. Let m ∈ Z+ and show that “≡ (mod m)” is an equivalence rela-
tion on Z. How many distinct equivalence classes mod m are there
in Z?

3. Let T5 be the set of all 2-element subsets of {1, 2, 3, 4, 5} and say
define the relation R on T5 by stipulating that A1RA2 ⇔ A1∩A2 =
∅. Compute |R|. Which of the three properties of an equivalence
relation does R satisfy?

4. Let f : S → T be a mapping and define a relation on S by stip-
ulating that sRs′ ⇔ f(s) = f(s′). (Note that this is says that
sRs′ ⇔ s and s′ are in the same fibre of f .) Show that R is an
equivalence relation.

5. Define the following relation on the Cartesian 3-spaceR3: PRQ⇔
P and Q are the same distance from the origin. Prove that R is an
equivalence relation on R3 and determine the equivalence classes
in R3.

6. Suppose that we try to define a function f : Z4 → Z by setting
f([n]) = n− 2. What’s wrong with this definition?

7. Suppose that we try to define a function g : Z4 → {±1, ±i} by
setting g([n]) = in. Does this function suffer the same difficulty as
that in Exercise 6?

8. Suppose that we try to define function τ : Z → Z4 by setting
τ(n) = [n − 2]. Does this function suffer the same difficulty as
that in Exercise 6? What’s going on here?

9. Let R be the relation on the real line given by xRy ⇔ x− y ∈ Z,
and denote by the R/R the corresponding quotient set.5 Suppose
that we try to define p : R/R → C by setting p([x]) = cos 2πx +
i sin 2πx. Does this definition make sense?

5Most authors denote this quotient set by R/Z.
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10. We saw on page 141 that the complete graph K5 cannot be planar,
i.e., cannot be drawn in the plane. Let’s see if we can draw it
elsewhere. Start by letting

C = {(x, y) ∈ R2 |x2 + y2 ≤ 1};

therefore, C is just the “disk” in the plane with radius 1. We
define an equivalence relation R on C by specifying that a point
(x, y) on the boundary of C (so x2 + y2 = 1) is equivalent with
its “antipodal” point (−x,−y). Points on the interior of C are
equivalent only with themselves. We call the quotient set C/R the
real projective plane, often written RP2. (Recall that C/R is
just the set of equivalence classes.)

Explain how the drawing to the
right can be interpreted as a draw-
ing of K5 in the real projective
plane. Also, compute the Euler
characteristic v−e+f for this draw-
ing.

11. Here’s another construction of RP2, the real projective plane; see
Exercise 10, above. Namely, take the unit sphere S2 ⊆ R3, de-
fined by S2 = {(x, y, z) ∈ {R3 | x2 + y2 + z2 = 1}. We define a
“geometry” on S2 by defining points to be the usual points on
the sphere and defining lines to be “great circles,” i.e., circles on
the sphere which form the shortest path between any two distinct
points on such a circle. Notice, therefore, that the equator on the
earth (approximately a sphere) is a great circle; so are the latitude
lines. With this definition of lines and points we see that Euclid’s
parallel postulate6 is violated as distinct parallel lines simply don’t
exist: any pair of distinct lines must meet in exactly two points.

6viz., that through any line `1 and any point P not on `1 there is a unique line `2 through the
point P and not intersecting `1.
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Form an equivalence relation R on S2 by declaring any point on the
sphere to be equivalent with its “antipode.” (Thus on the earth,
the north and south poles would be equivalent.) The quotient set
S2/R is often called the real projective plane and denoted RP2.

(a) Give at least a heuristic argument that the constructions of
RP2 given in this and Exercise 10 are equivalent.

(b) Show that on RP2 that any pair of distinct points determine
a unique line and that any pair of distinct lines intersect in a
unique point.7

4.2 Basics of Group Theory

4.2.1 Motivation—graph automorphisms

We shall start this discussion with one of my favorite questions, namely
which of the following graphs is more “symmetrical?”

While this question might not quite make sense at the outset, it is
my intention to have the reader rely mostly on intuition. Incidently,

7This says that the real projective plane has a “point-line duality” not enjoyed by the usual
Euclidean plane.
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I have asked this question many times and to many people—some
mathematicians—and often, if not usually, I get the wrong intuitive
response! Without pursuing the details any further, suffice it to say for
now that group theory is the “algebraitization” of symmetry. Put less
obtusely, groups give us a way of “quantifying” symmetry: the larger
the group (which is something we can often compute!) the greater the
symmetry. This is hardly a novel view of group theory. Indeed the
prominent mathematician of the late 19-th and early 20-th century Fe-
lix Klein regarded all of geometry as nothing more than the study of
properties invariant under groups.

Apart from quantifying symmetry, groups can give us a more ex-
plicit way to separate types of symmetry. As we’ll see shortly, the two
geometrical figures below both have four-fold symmetry (that is, they
have groups of order 4), but the nature of the symmetry is different
(the groups are not isomorphic).

Anyway, let’s return briefly to the question raised above, namely
that of the relative symmetry of the two diagrams above. Given a
graph G we now consider the set of all permutations σ of the set of
vertices of G such that

vertices a and b form an edge of G⇔ σ(a) and σ(b) form an edge of G.

A permutation satisfying the above is called an automorphism of
the graph G, and the set of all such automorphisms is often denoted
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Aut(G). The most important facts related to graph automorphisms is
the following:

Proposition. The composition of two graph automorphisms is a graph
automorphism. Also the inverse of a graph automorphism is a graph
automorphism.

Proof. This is quite simple. Let σ and τ be two graph automorphisms,
and let v and w be vertices of the graph. Then σ ◦ τ(v) and σ ◦ τ(w)
form an edge ⇔ τ(v) and τ(w) form an edge ⇔ v and w form an
edge. Next, let σ be a graph automorphism. Since σ is a permutation,
it is bijective and so the inverse function σ−1 exists. Thus we need to
show that vertices v and w form an edge ⇔ σ−1(v) and σ−1(w) forms
an edge. If v and w form an edge, this says that σ(σ−1(v)), σ(σ−1(w))
form an edge. But since σ is an automorphism, we see that σ−1(v) and
σ−1(w) form and edge. In other words,

v and w form an edge ⇒ σ−1(v) and σ−1(w) form an edge.

Conversely, assume that σ−1(v) and σ−1(w) form an edge. Then since
σ is an automorphism, we may apply σ to conclude that the vertices
σ(σ−1(v)), σ(σ−1(w)) form an edge. But this says that v and w form
an edge, i.e.,

σ−1(v) and σ−1(w) form an edge⇒ v and w form an edge,

which proves that σ−1 is a graph automorphism.

The above fact will turn out to be hugely important!

Exercises

1. Consider the graph shown below.
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(i) Give an automorphism σ which takes vertex 1 to vertex 2 by
completing the following:

σ :


1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
2


Compute the inverse of this automorphism.

(ii) Give an automorphism τ which maps vertex 1 to 3 and fixes
vertex 5 (that is τ(5) = 5).

τ :


1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
3 5


Compute the inverse of this automorphism.

2. Consider the graph shown below.
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(i) Give an automorphism σ which takes vertex 1 to vertex 2 by
completing the following:

σ :


1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
2



Compute the inverse of this automorphism.

(ii) Give an automorphism τ which maps vertex 1 to 3 and fixes
vertex 5 (that is τ(5) = 5).

τ :


1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
3 5



Compute the inverse of this automorphism.

4.2.2 Abstract algebra—the concept of a binary operation

Intuitively, a binary operation on a set S is a rule for “multiplying”
elements of S together to form new elements.
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Definition of Binary Operation on a Set. A binary operation
on a non-empty set S is a mapping ∗ : S × S → S.

No more, no less! We usually write s ∗ s′ in place of the more formal
∗(s, s′).

We have a wealth of examples available; we’ll review just a few of
them here.

• The familiar operations + and · are binary operations on our fa-
vorite number systems: Z, Q, R, C.

• Note that if S is the set of irrational numbers then neither + nor
· defines a binary operation on S. (Why not?)

• Note that subtraction − defines a binary operation on R.

• Let Matn(R) denote the n×n matrices with real coefficients. Then
both + (matrix addition) and · (matrix multiplication) define bi-
nary operations on Matn(R).

• Let S be any set and let F(S) = {functions : S → S}. Then
function composition ◦ defines a binary operation on F(S). (This
is a particularly important example.)

• Let Vect3(R) denote the vectors in 3-space. Then the vector
cross product× is a binary operation on Vect3(R). Note that the
scalar product · does not define a binary operation on Vect3(R).

• Let A be a set and let 2A be its power set. The operations ∩, ∪,
and + (symmetric difference) are all important binary operations
on 2A.

• Let S be a set and let Sym(S) be the set of all permutations on
S. Then function composition ◦ defines a binary operation on
Sym(S). We really should prove this. Thus let σ, τ : S → S

be permutations; thus they are one-to-one and onto. We need to
show that σ ◦ τ : S → S is also one-to-one and onto.

σ ◦ τ is one-to-one: Assume that s, s′ ∈ S and that σ ◦ τ(s) =
σ ◦ τ(s′). Since σ is one-to-one, we conclude that τ(s) = τ(s′).
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Since τ is one-to-one, we conclude that s = s′, which proves
that σ ◦ τ is also one-to-one.

σ ◦ τ is onto: We need to prove that for any s ∈ S there exists
some s′ ∈ S such that σ ◦ τ(s′) = s. However, since σ is onto,
there must exist some element s′′ ∈ S such that σ(s′′) = s.
But since τ is onto there exists some element s′ ∈ S such that
τ(s′) = s′′. Therefore, it follows that σ ◦ τ(s′) = σ(τ(s′)) =
σ(s′′) = s, proving that σ ◦ τ is onto.

Before looking further for examples, I’d like to amplify the issue of
“closure,” as it will given many additional examples of binary opera-
tions.

Definition of Closure. Let S be a set, let ∗ be a binary operation
on S, and let ∅ 6= T ⊆ S. We say that T is closed under the binary
operation ∗ if t ∗ t′ ∈ T whenever t, t′ ∈ T. In this case it is then
follows that ∗ also defines a binary operation on T . Where the above
IB remark is misleading is that we don’t speak of a binary operation as
being closed, we speak of a subset being closed under the given binary
operation!

More examples . . .

• Let R be the real numbers. Then Z and Q are both closed under
both addition and multiplication.

• Note that the negative real numbers are not closed under multi-
plication.

• Let Z[
√

5] = {a + b
√

5 | a, b ∈ Z}. Then Z[
√

5] is easily checked
to be closed under both addition + and multiplicaton · of com-
plex numbers. (Addition is easy. For multiplication, note that if
a, b, c, d ∈ Z, then

(a+ b
√

5) · (c+ d
√

5) = (ac+ 5bd) + (ad+ bc)
√

5.
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Note that the above example depends heavily on the fact that Z
is closed under both addition and multiplication.)

• Let GLn(R) ⊆ Matn(R) denote the matrices of determinant 6= 0,
and let GL+

n (R) ⊆ Matn(R) denote the matrices of positive deter-
minant. Then both of these sets are closed under multiplication;
neither of these sets are closed under addition.

• The subset {0, ±i, ±j, ±k} ⊆ Vect3(R) is closed under vector
cross product ×. The subset {0, i, j, k} ⊆ Vect3(R) is not. (Why
not?)

• The subset {−1, 0, 1} ⊆ Z is closed under multiplication but not
under addition.

• Let X be a set and let Sym(X) denote the set of permutations.
Fix an element x ∈ X and let Symx(X) ⊆ Sym(S) be the subset
of all permutations which fix the element s. That is to say,

Symx(X) = {σ ∈ Sym(X) | σ(x) = x}.

Then Symx(X) is closed under function composition ◦ (Exercise 5).

We have two more extremely important binary operations, namely
addition and subtraction on Zn, the integers modulo n. These
operations are defined by setting

[a] + [b] = [a+ b], and [a] · [b] = [a · b], a, b ∈ Z.8

We shall sometimes drop the [·] notation; as long as the context is
clear, this shouldn’t cause any confusion.

8A somewhat subtle issue related to this “definition” is whether it makes sense. The problem is
that the same equivalence class can have many names: for example if we are considering congruence
modulo 5, we have [3] = [8] = [−2], and so on. Likewise [4] = [−1] = [14]. Note that [3] + [4] = [7] =
[2]. Since [3] = [−2] and since [4] = [14], adding [−2] and [14] should give the same result. But they
do: [−2]+[14] = [12] = [2]. Here how a proof that this definition of addition really makes sense (i.e.,
that it is well defined) would run. Let [a] = [a′] and [b] = [b′]. Then a′ = a+ 5k for some integer
k and b′ = b + 5l for some integer l. Therefore [a′] + [b′] = [a + 5k] + [b + 5l] = [a + b + 5k + 5l] =
[a + b] = [a] + [b]. Similar comments show that multiplication likewise makes sense. Finally this
generalizes immediately to Zn, for any positive integer n.
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We display addition and multiplication on the integers modulo 5
in the following obvious tables:

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Exercises

1. Denote by 2Z ⊆ Z the even integers. Is 2Z closed under addition?
Under multiplication?

2. Is the set of odd integers closed under either addition or multipli-
cation?

3. On the set Z of integers define the binary operation ∗ by setting
x ∗ y = x + 2y ∈ Z. Is the set of even integers closed under ∗? Is
the set of odd integers closed under ∗?

4. Let U2(R) ⊆ Mat2(R) be defined by setting

U2(R) =


 1 x

0 1


∣∣∣∣∣ x ∈ R

 .

Is U2(R) closed under matrix addition? Under matrix multiplica-
tion?

5. Let X be a set and let Sym(X) be the set of permutations of X.
Fix an element x ∈ X and show that Symx(X) is closed under
function composition “◦.”

6. Let A be a set and let A ⊆ 2A be the subset of the power set
consisting of all finite subsets of even cardinality. Show that if
|A| ≥ 3, then A is not closed under either ∩ or ∪ but it is closed
under +. (Why do we need to assume that |A| ≥ 3?)
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7. Are the non-zero elements {1, 2, 3, 4, 5} in Z6 closed under mul-
tiplication?

8. Are the non-zero elements of Zp, where p is a prime number, closed
under multiplication?

9. For any positive integer n, set Nn = {1, 2, . . . , n}, and let P(Nn)
be the power set of Nn (see page 189). Show that for any integer
N with 0 ≤ N ≤ 2n there exists subsets A, B ⊆ P(Nn) such that

(a) |A| = |B| = N ,

(b) A is closed under ∩, and

(c) B is closed under ∪.

(Hint: Use induction, together with the De Morgan laws.)

4.2.3 Properties of binary operations

Ordinary addition and multiplication enjoy very desirable properties,
most notably, associativity and commutativity. Matrix multiplication
is also associative (though proving this takes a little work), but not
commutative. The vector cross product of vectors in 3-space is neither
associative nor is it commutative. (The cross product is “anticommu-
tative” in the sense that for vectors u and v, u × v = −v × u. The
nonassociativity is called for in Exercise 2, below.) This motivates the
following general definition: let S be a set with a binary operation ∗.
We recall that

∗ is associative if s1 ∗ (s2 ∗ s3) = (s1 ∗ s2) ∗ s3, for all s1, s2, s3 ∈ S;

∗ is commutative if s1 ∗ s2 = s2 ∗ s1, for all s1, s2 ∈ S.

Next, we say that e is an identity with respect to the binary oper-
ation ∗ if

e ∗ s = s ∗ e = s for all s ∈ S.
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If the binary operation has an identity e, then this identity is unique.
Indeed, if e′ were another identity, then we would have

e =︸ ︷︷ ︸
because e′

is an identity

e ∗ e′ =︸ ︷︷ ︸
because e
is an identity

e′.

(Cute, huh?)

Finally, assume that the binary operation ∗ is associative and has
an identity element e. The element s′ ∈ S is said to be an inverse of
s ∈ S relative to ∗ if s′ ∗ s = s ∗ s′ = e. Note that if s has an inverse,
then this inverse is unique. Indeed, suppose that s′ and s′′ are both
inverses of s. Watch this:

s′ = s′ ∗ e = s′ ∗ (s ∗ s′′) = (s′ ∗ s) ∗ s′′︸ ︷︷ ︸
note how associativity is used

= e ∗ s′′ = s′′.

Exercises

1. In each case below, a binary operation ∗ is given on the set Z of
integers. Determine whether the operation is associative, commu-
tative, and whether an identity exists.

(a) x ∗ y = x+ xy

(b) x ∗ y = x

(c) x ∗ y = 4x+ 5y

(d) x ∗ y = x+ xy + y

(e) x ∗ y = x2 − y2

2. Give an example of three vectors u, v, and w in 3-space such that
u× (v ×w) 6= (u× v)×w.

3. Let A be a set and let 2A be it power set. Determine whether the
operations ∩, ∪, and + are associative, commutative, and whether
an identity element exists for the operation.
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4. Let A be a nonempty set. For any non-empty set B ⊆ A find the
inverse of B with respect to symmetic difference +.

5. Let Matn(R) be the n×n matrices with real coefficients and define
the binary operation ∗ by setting

A ∗B = AB −BA,

where A, B ∈ Matn(R). Is ∗ associative? Commutative? Is there
an identity?

6. Let S be a set and let F(S) be the set of all functions f : S → S. Is
composition “◦” associative? Commutative? Is there an identity?

7. Let S be a set and consider the set F(S,R) of all real-valued func-
tions f : S → R. Define addition + and multiplication “·” on
F(S,R) by the rules

(f + g)(s) = f(s) + g(s), (f · g)(s) = f(s) · g(s), s ∈ R.

Are these operations associative? Commutative? What about
identities? What about inverses?

4.2.4 The concept of a group

Let (G, ∗) be a set together with a binary operation. We say that (G, ∗)
is a group if the following three properties hold:

∗ is associative: that is g1∗(g2∗g3) = (g1∗g2)∗g3 for all g1, g2, g3 ∈ G;

G has an identity: that is, there exists an element e ∈ G such that
e ∗ g = g ∗ e = e, for all g ∈ G;

Existence of inverses: that is, for every g ∈ G, there exists an
element g′ ∈ G with the property that g′ ∗ g = g ∗ g′ = e.
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We have already noted on page 216 that the identity element and
inverses are unique. This says that in denoting the inverse of an ele-
ment g ∈ G we may use, for example, the notation g−1 to denote this
inverse, knowing that we are unambiguously referring to a unique ele-
ment. However, inverses (and identities) aren’t always denoted in this
way. If we use the symbol + for our binary operation, it’s more cus-
tomary to write “0” for the identity and to write −a for the inverse of
the element a. Finally it’s worth mentioning that in certain contexts,
the binary operation is simply denoted by “juxtaposition,” writing, for
example xy in place of x ∗ y. This happens, for instance, in denot-
ing multiplication of complex numbers, polynomials, matrices, and is
even used to denote the binary operation in an abstract group when no
confusion is likely to result.

We shall now survey some very important examples of groups.

1. (The symmetric group) Let X be a set and let (Sym(X), ◦)
be the set of all bijections on X, with function composition as
the binary operation. At the risk of being redundant, we shall
carefully show that (Sym(X), ◦) is a group.

◦ is associative: let σ1, σ2, σ3 ∈ Sym(X), and let x ∈ X. Then to
show that σ1 ◦ (σ2 ◦ σ3) = (σ1 ◦ σ2) ◦ σ3 we need to show that
they are the same permutations on X, i.e., we must show that
for all x ∈ X, σ1 ◦ (σ2 ◦ σ3)(x) = (σ1 ◦ σ2) ◦ σ3(x). But

σ1 ◦ (σ2 ◦ σ3)(x) = σ1((σ2 ◦ σ3)(x)) = σ1(σ2(σ3(x))),

whereas

(σ1 ◦ σ2) ◦ σ3(x) = (σ1 ◦ σ2)(σ3(x)) = σ1(σ2(σ3(x))),

which is the same thing! Thus we have proved that ◦ is asso-
ciative.

Existence of identity: Let e : X → X be the function e(x) = x, for
all x ∈ X. Then clearly e is a permutation, i.e., e ∈ Sym(X).
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Furthermore, for all σ ∈ Sym(X), and for all x ∈ X, we have
e ◦ σ(x) = e(σ(x)) = σ(x), and σ ◦ e(x) = σ(e(x)) = σ(x),
which proves that e ◦ σ = σ ◦ e = σ.

Existence of inverses: Let σ ∈ Sym(X) and let σ−1 : X → X
denote its inverse function. Therefore σ−1(x) = y means pre-
cisely that σ(y) = x from which it follows that σ−1 is a permu-
tation (i.e., σ−1 ∈ Sym(X)) and (σ−1◦σ)(x) = x = (σ◦σ−1)(x)
for all x ∈ X, which says that σ−1 ◦ σ = e = σ ◦ σ−1.

I firmly believe that the vast majority of practicing group theorests
consider the symmetric groups the most important of all groups!

2. (The General Linear Group) Let R be the real number, let n
be a positive integer, and let (GLn(R), ·) be the set of all n × n
matrices with coefficients in R and having non-zero determinant,
and where · denotes matrix multiplication. (However, we have
already noted above that we’ll often use juxtaposition to denote
matrix multiplication.) Since matrix multiplication is associative,
since the identity matrix has determinant 1 ( 6= 0), and since the
inverse of any matrix of non-zero determinant exists (and also has
non-zero determinant) we conclude that (GLn(R), ·) is a group.
We remark here that we could substitute the coefficients R with
other systems of coefficients, such as C or Q. (We’ll look at another
important example in Exercise 4 on page 223.)

3. (C,+), (R,+), (Q,+), (Z,+) are all groups.

4. Let C∗ = C − {0} (similarly can denote R∗, Q∗,Z∗, etc.); then
(C∗, ·) is a group. Likewise, so are (R∗, ·) and (Q∗, ·) but not
(Z∗, ·).

5. Let Zn denote the integers modulo n. Then (Zn,+) is a group
with identity [0] (again, we’ll often just denote 0); the inverse of
[x] is just [−x].

6. Let (G, ◦) be the set of automorphisms of some graph. If X is the
set of vertices of this graph, then G ⊆ Sym(X); by the proposition
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on page 208, we see that G is closed under ◦. Since we already
know that ◦ is associative on Sym(X) it certainly continues to be
associative for G. Next, the identity permutation of the vertices
of the graph is clearly a graph automorphism. Finally, the same
proposition on page 208 shows that each element g ∈ G has as
inverse, proving that G is a group.

7. There is one other group that is well worth mentioning, and is
a multiplicative version of (Zn,+). We start by writing Z∗n =
{1, 2, 3, . . . , n − 1} (note, again, that we have dispensed with
writing the brackets ([·])). We would like to consider whether this
is a group relative to multiplication. Consider, for example, the
special case n = 10. Note that despite the fact that 2, 5 ∈ Z∗10

we have 2 · 5 = 0 6∈ Z∗10. In other words Z∗10 is not closed under
multiplication and, hence, certainly cannot compose a group.

The problem here is pretty simple. If the integer n is not a prime
number, say, n = n1n2, where 1 < n1, n2 < n then it’s clear that
while n1, n2 ∈ Z∗n we have n1n2 = 0 6∈ Z∗n. This says already that
(Z∗n, ·) is not a group. Thus, in order for (Z∗n, ·) to have any chance
at all of being a group, we must have that n = p, some prime
number. Next, we shall show that if p is prime, then Z∗p is closed
under multiplication. This is easy, if a, b ∈ Zp*, then neither a nor
b is divisible by p. But then ab is not divisible by p which means
that ab 6= 0 and so, in fact, ab ∈ Z∗p, proving that Z∗p is closed
under multiplication.

Next, note that since multiplication is associative in Zp, and since
Z∗p ⊆ Zp we have that multiplication is associative in Z∗p. Clearly
1 ∈ Z∗p and is the multiplicative identity. It remains only to show
that every element of Z∗p has a multiplicative inverse. There are a
number of ways to do this; perhaps the following argument is the
most elementary. Fix an element a ∈ Z∗p and consider the elements

1 · a, 2 · a, 3 · a, . . . , (p− 1) · a ∈ Z∗p.
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If any two of these elements are the same, say a′a = a′′a, for
distinct elements a′ and a′′, then (a′ − a′′)a = 0. But this would
say that p |(a′− a′′)a; since p is prime, and since p 6 | a, this implies
that p |(a′−a′′). But 1 ≤ a′, a′′ < p and so this is impossible unless
a′ = a′′, contradicting our assumption that they were distinct in
the first place! Finally, since we now know that the elements in
the above list are all distinct, there are exactly p−1 such elements,
which proves already that

{1 · a, 2 · a, 3 · a, . . . , (p− 1) · a} = Z∗p.

In particular, it follows that 1 ∈ {1 · a, 2 · a, 3 · a, . . . , (p− 1) · a},
and so a′a = 1 for some a′ ∈ Z∗p, proving that a′ = a−1. In short,
we have proved that (Z∗p, ·) is a group.

The multiplication table for a (finite) group (G, ∗) is just a table
listing all possible products.9 We give the multiplication table for the
group (Z∗7, ·) below:

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

On the basis of the above table, we find, for instance that 4−1 = 2 and
that 3−1 = 5. Even more importantly, is this: if we let x = 3, we get

x0 = 1, x1 = 3, x2 = 2, x3 = 6, x4 = 4, x5 = 5, x6 = 1,

which says that every element of Z∗7 can be expressed as some
power of the single element 3. This is both important and more

9The multiplication table for a group is often called the Cayley table after the English mathe-
matician Arthur Cayley (1821–1895).
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subtle than it looks, and shall be the topic of the next subsection.

A group (G, ∗) is called Abelian10 if the operation ∗ is commutative.
Granted, it would make good sense to call such groups “commutative,”
but we enjoy naming concepts after influencial mathematicians. In the
above list of groups you should be able to separate the Abelian groups
from the non-Abelian ones.

Exercises

1. Consider the two graphs given at the beginning of this section;
here they are again:

Write down the elements of the corresponding automorphism groups,
and then give the corresponding Cayley tables.

2. In the group (Z17, ·), find 2−1 and 5−1. Find any elements x such
that x2 = 1.

3. Let X = {1, 2, 3} and consider the group Sym(X) of permutations
on X. Define the following two permutations:

σ =


1 2 3
↓ ↓ ↓
2 3 1

 τ =


1 2 3
↓ ↓ ↓
1 3 2



10after the Norwegian mathematics Niels Henrik Abel (1802–1829)
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(i) Show that the six elements e, σ, σ2, τ, στ, σ2τ comprise all of
the elements of this group.

(ii) Show that σ3 = τ 2 = e and that τσ = σ2τ .

(iii) From the above, complete the multiplication table:

◦ e σ σ2 τ στ σ2τ

e e σ σ2 τ στ σ2τ
σ σ σ2

σ2 σ2 τ
τ τ σ
στ στ e
σ2τ σ2τ

4. Let G be the set of all 2×2 matrices with coefficients in Z2 with de-
terminant 6= 0. Assuming that multiplication is associative, show
that G is a group of order 6. Next, set

A =

 0 1
1 1

 , B =

 1 0
1 1

 .

Show that A3 = B2 =

 1 0
0 1

 (the identity of G), and that

BAB = A−1.

5. Let (G, ∗) be a group such that for every g ∈ G, g2 = e. Prove
that G must be an Abelian group.

6. Let Z3 be the integers modulo 3 and consider the set U of matrices
with entries in Z3, defined by setting

U =




1 a c

0 1 b
0 0 1


∣∣∣∣∣∣∣ a, b, c ∈ Z3

 .

(a) Show that U is a group relative to ordinary matrix multipli-
cation.

(b) Show that |U | = 27.
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(c) Show that for every element x ∈ U, x3 = e, where e is the
identity of U .

(d) Show that U is not abelian.

7. Let (G, ∗) be a group such that |G| ≤ 4. Prove that G must be
abelian.

8. Let (G, ∗) be a group such that for all a, b ∈ G we have (ab)2 =
a2b2. Prove that G must be Abelian. Find elements a, b ∈ Sym(X)
in Exercise 3 above such that (ab)2 6= a2b2.

9. Let A be a set. Show that (2A,+) is an Abelian group, but that
if |A| ≥ 2 then (2A,∩) and (2A,∪) are not groups at all.

10. Here’s another proof of the fact that if p is prime, then every
element a ∈ Z∗p has an inverse. Given that a, p are relatively
prime, then by the Euclidean trick (page 58) there exist integers s
and t with sa+ tp = 1. Now what?

4.2.5 Cyclic groups

At the end of the previous subsection we observed that the multiplica-
tive group (Z∗7, ·) has every element representable as a power of the
element 3. This is a very special property, which we formalize as fol-
lows.

Definition of Cyclic Group. Let (G, ∗) be a group. If there exists an
element g ∈ G such that every element is a power (possibly negative)
of x, then (G, ∗) is called a cyclic group, and the element x is called
a generator of G. Note that a cyclic group is necessarily Abelian. To
see this, assume that the group G is cyclic with generator x and that
g, g′ ∈ G. Then g = xm and g′ = xn for suitable powers m, n, and so

gg′ = xm ∗ xn = xm+n = xn+m = xnxm = g′g,
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proving that G is abelian.

Let’s look at a few examples.

1. The infinite additive group (Z,+) is cyclic, with generator 1. Note,
however, in this context, we wouldn’t write 1n for powers of 1 as
this notation is suggestive of multiplication and 1n = 1. Rather,
in this additive setting we write

n1 = 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n terms

.

As any integer can be written as a positive or negative multiple
(“multiple” is the additive version of “power”), we conclude that
(Z,+) is an (infinite) cyclic group.

2. If n is a positive integer, then the additive group (Zn,+) is cyclic.
Notice here that we don’t really need any negative multiples of 1
to obtain all of Zn. One easy way to see this is that −1 = (n− 1)1
and so if [a] ∈ Zn, then −[a] = a(n− 1)1.

3. If p is prime, then the multiplicative group (Z∗p, ·) is cyclic. While
not a deep fact, this is not easy to show using only what we’ve
learned up to this point.11 As examples, note that Z∗5 is cyclic,
with generator 2, as 21 = 2, 22 = 4, 23 = 8 = 3, and 24 = 16 = 1.
Next, Z∗7 is cyclic, with generator 3, as

31 = 3, 32 = 9 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1.

Note, however, that while 2 is a generator of Z∗5, it is not a gener-
ator of Z∗7.

Related to the above is the following famous unsolved conjec-
ture: that the congruence class of the integer “2” a generator of

11Most proofs proceed along the following lines. One argues that if Z∗p is not cyclic, then there will

have to exist a proper divisor k of p− 1 such that every element x of Z∗p satisfies xk = 1. However,
this can be interpreted as a polynomial equation of degree k which has (p− 1) > k solutions. Since
(Zp,+, ·) can be shown to be a “field,” one obtains a contradiction.
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Z∗p for infinitely many primes p. This is often called the Artin
Conjecture, and the answer is “yes” if one knows that the so-
called Generalized Riemann Hypothesis is true! Try checking
this out for the first few primes, noting (as above) that 2 is not a
generator for Z∗7.

4. Let n be a positive integer and consider the set of complex numbers

Cn = {e2πki/n = cos 2πk/n+i sin 2πk/n | k = 0, 1, 2, . . . , n−1} ⊆ C.

If we set ζ = e2π/n, then e2πki/n = ζk. Since also ζn = 1 and
ζ−1 = ζn−1 we see that not only is Cn closed under multiplication,
it is in fact, a cyclic group.

We hasten to warn the reader that in a cyclic group the generator is
almost never unique. Indeed, the inverse of any generator is certainly
also a generator, but there can be even more. For example, it is easy
to check that every non-identity element of the additive cyclic (Z5,+)
is a generator. This follows by noting that 1 is a generator and that

1 = 3 · 2 = 2 · 3 = 4 · 4.

On the other hand, we showed above that 3 is a generator of the cyclic
group Z∗7, and since 3−1 = 5 (because 3 · 5 = 1), we see that 5 is also
a generator. However, these can be shown to be the only generators of
Z∗7. In general, if G is a cyclic group of order n, then the number of
generators of G is φ(n), where, as usual, φ is the Euler φ-function; see
Exercise 6, below.

In fact, we’ll see in the next section that if (G, ∗) is a group of prime
order p, then not only is G cyclic, every non-identity element of G is a
generator.

We shall conclude this section with a useful definition. Let (G, ∗) be
a group, and let g ∈ G. The order of g is the least positive integer n
such that gn = e. We denote this integer by o(g). If no such integer ex-
ists, we say that g has infinite order, and write o(g) =∞. Therefore,
for example, in the group Z∗7, we have
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o(1) = 1, o(2) = 3, o(3) = 6, o(4) = 3, o(5) = 6, o(6) = 2.

Note that if the element g has order n, then

{gk | k ∈ Z} = {e, g, g2, · · · , gn−1}

and all of the elements of {e, g, g2, · · · , gn−1} are distinct. To see
this, note that when we divide any integer k by n we may produce a
quotient q and a remainder r, where 0 ≤ r ≤ n − 1. In other words
we may express k = qn + r, which implies that gk = gqn+r = gqngr =
(gn)qgr = egr = gr. Therefore we already conclude that {gk | k ∈ Z} =
{e, g, g2, · · · , gn−1}. Next, if e, g, g2, · · · , gn−1 aren’t all distinct, then
there must exist integers k < m, 0 ≤ k < m ≤ n−1 such that gk = gm.
But then e = gmg−k = gm−k. But clearly 0 < m − k ≤ n − 1 which
contradicts the definition of the order of g. This proves our assertion.

Note that in general, o(g) = 1 precisely when g = e, the identity
element of G. Also, if G is a finite group with n elements, and if G
has an element g of order n, then G is cyclic and g is a generator of G
(Exercise 4).

Exercises

1. The two groups you computed in Exercise 1 of Subsection 4.2.4
both have order 4: one is cyclic and one is not. Which one is
cyclic? What are the generators of this group?

2. Let G be a group and let g be an element of finite order n. Show
that if gm = e then m must be a multiple of n, i.e., n|m.

3. Assume that G is a group and that g ∈ G is an element of finite
order n. Assume that k is a positive integer which is relatively
prime to n (see page 60). Show that the element gk also has order
n.
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4. Let G be a finite group of order n, and assume that G has a
element g of order n. Show that G is a cyclic group and that g is
a generator.

5. Let G be a finite cyclic group of order n and assume that x is
a generator of G. Show that |G| = o(x), i.e., the order of the
group G is the same as the order of the element x.

6. Let G be a cyclic group of order n. Show that the number of
generators of G is φ(n). (Hint: let x ∈ G be a fixed generator;
therefore, any element of G is of the form xk for some integer
k, 0 ≤ k ≤ n − 1. Show that xk is also a generator if and only if
k and n are relatively prime.)

4.2.6 Subgroups

Most important groups actually appear as “subgroups” of larger groups;
we shall try to get a glimpse of how such a relationship can be exploited.

Definition. Let (G, ∗) be a group and let H ⊆ G be a subset of G.
We say that H is a subgroup of G if

(i) H is closed under the operation ∗, and

(ii) (H, ∗) is also a group.

Interestingly enough, the condition (i) above (closure) is almost
enough to guarantee that a subset H ⊆ G is actually a subgroup.
There are two very useful and simple criteria each of which guarantee
that a given subset is actually a subgroup.

Proposition. Let (G, ∗) be a group and let H ⊆ G be a non-empty
subset.

(a) If for any pair of elements h, h′ ∈ H, h−1h′ ∈ H, then H is a
subgroup of G.
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(b) If |H| <∞ and H is closed under ∗, then H is a subgroup of G.

Proof. Notice first that we don’t have to check the associativity of ∗,
as this is already inherited from the “parent” group G. Now assume
condition (a). Since H is non-empty, we may choose an element h ∈ H.
By condition (a), we know that e = h−1h ∈ H, and so H contains the
identity element of G (which is therefore also the identity element of
H). Next, given h ∈ H we appeal again to condition (a) to obtain
(since e ∈ H) h−1 = h−1 ∗ e ∈ H. It follows that H is a subgroup of G.

Next, assume condition (b), and let h ∈ H. Since H is closed un-
der ∗, we conclude that all of the products h, h2, h3, . . . are all in H.
Since H is a finite set, it is impossible for all of these elements to be
distinct, meaning that there must be powers m < n with hm = hn.
This implies that e = hn−m ∈ H, forcing H to contain the identity of
G. Furthermore, the same equation above shows that e = hn−m−1 ∗ h,
where n−m−1 ≥ 0. Therefore, hn−m−1 ∈ H and e = hn−m−1∗h implies
that h−1 = hn−m−1 ∈ H. Therefore, we have shown that H contains
both the identity and the inverses of all of its elements, forcing H again
to be a subgroup of G.

I can’t overestate how useful the above result is!

One very easy way to obtain a subgroup of a given group (G, ∗) is
start with an element x ∈ G and form the set H = {xk | k ∈ Z}; that
is, H contains all the positive and negative powers of x. Clearly H
satisfies condition (a) of the above proposition since xm, xn ∈ H ⇒
x−mxn = xm−n ∈ H. Therefore H is a subgroup of G; as H is cyclic,
we say that H is the cyclic subgroup of G generated by x. This
cyclic subgroup generated by x is often denoted 〈x〉.

Exercises

1. Let G be a group, and let H1 and H2 be subgroups. Prove that
the intersection H1 ∩H2 is also a subgroup of G.

2. Let G be a group, and let H1 and H2 be subgroups. Prove that
unless H1 ⊆ H2 or H2 ⊆ H1, then H1∪H2 is not a subgroup of G.
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3. Show that the even integers 2Z is a subgroup of the additive group
of the integers (Z,+). In fact, show that if n is any positive integer,
then the set nZ of multiples of n is a subgroup of (Z,+).

4. Show that any subgroup H of the additive group (Z,+) of the
integers must be cyclic.

5. Show that any subgroup H 6= {0} of the additive group (C,+) of
complex numbers must be infinite.

6. Consider the group G = GL2(R) of 2 × 2 matrices of non-zero
determinant. Find an element (i.e., a matrix) A of finite order
and an element B of infinite order. Conclude that G has both
finite and infinite subgroups.

7. Let X = {1, 2, 3, 4} and set G = Sym(X), the group of permuta-
tions of X. Find all of the elements in G having order 2. Find all
of the elements of G having order 3. Find all of the elements of G
having order 4.

8. Let (G, ∗) be a cyclic group and let H ⊆ G, H 6= {e} be a sub-
group. Show that H is also cyclic. (This is not entirely trivial!
Here’s a hint as to how to proceed. Let G have generator x and
let n be the smallest positive integer such that xn ∈ H. Show
that, in fact, xn is a generator of H.)

9. Consider the set R+ of positive real numbers and note that (R+, ·)
is a group, where “·” denotes ordinary multiplication. Show that
R+ has elements of finite order as well as elements of infinite order
and hence has both finite and infinite subgroups.

10. Consider a graph with set X of vertices, and let G be the auto-
morphism group of this graph. Now fix a vertex x ∈ X and set
Gx = {σ ∈ G | σ(x) = x}. Prove that Gx is a subgroup of G, often
called the stabilizer in G of the vertex x.

11. Find the orders of each of the elements in the cyclic group (Z12,+).

12. Let p be a prime number and let Zp be the integers modulo three
and consider the group GL2(Zp) of matrices having entries in Z3

and all having nonzero determinant.
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(a) Show that GL2(Zp) is a group.

(b) Show that there are p(p+ 1)(p− 1)2 elements in this group.12

(c) Let B be the set of upper triangular matrices inside GL2(Zp).
Therefore,

B =


 a b

0 c


∣∣∣∣∣ ac 6= 0

 ⊆ GL2(Zp).

Show that B is a subgroup of GL2(Zp), and show that |B | =
p(p− 1)2.

(d) Define U ⊆ B to consist of matrices with 1s on the diagonal.
Show that U is a subgroup of B and consists of p elements.

4.2.7 Lagrange’s theorem

In this subsection we shall show a potentially surprising fact, namely
that if H is a subgroup of the finite group G, then the order |H| evenly
divides the order |G| ofG. This severly restricts the nature of subgroups
of G.

The fundamental idea rests on an equivalence relation in the given
group, relative to a subgroup. This relationship is very similar to
the congruence relation ( mod n) on the additive group Z of integers.
Thus, let (G, ∗) be a group and let H ⊆ G be a subgroup. Define a
relation on G, denoted ( mod H) defined by stipulating that

g ≡ g′ ( mod H) ⇔ g−1g′ ∈ H.

This is easy to show is an equivalence relation:

12This takes a little work. However, notice that a matrix of the form

 a b
c d

 will have nonzero

determinant precisely when not both a and b are 0 and when the “vector” (c, d) is not a multiple
of the “vector” (a, b). This implies that there are p2 − 1 possibilities for the first row of the matrix
and p2 − p possibilities for the second row. Now put this together!
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reflexivity: g ≡ g( mod H) since g−1g = e ∈ H.

symmetry: If g ≡ g′( mod H) then g−1g′ ∈ H, and so g′−1g =
(g−1g′)−1 ∈ H. Therefore, also g′ ≡ g( mod H)

transitivity: If g ≡ g′( mod H) and g′ ≡ g′′( mod H), then g−1g′,
g′−1g′′ ∈ H. But then g−1g′′ = g−1g′g′−1g′′ ∈ H, proving that also
g ≡ g′′( mod H).

Pretty easy, eh?

As a result we see that G is partitioned into mutually disjoint equiva-
lence classes. Next we shall actually determine what these equivalence
classes look like. Thus let g ∈ G and let [g] be the equivalence class
(relative to the above equivalence relation) containing g.

We Claim: [g] = gH = {gh | h ∈ H}.

Proof of Claim: Note first that an element of gH looks like gh, for
some h ∈ H. Since g−1(gh) = h ∈ H we see that g ≡ gh ( mod H),
i.e., gh ∈ [g]. This proves that gH ⊆ [g]. Conversely, assume that
g ≡ g′( mod H), i.e., that g ≡ g′( mod H), which says that g−1g′ ∈ H.
But then g−1g′ = h for some g′ = gh ∈ gH. This proves that [g] ⊆ gH

and so [g] = gH.

Next we would like to show that H is a finite subgroup of G then the
elements of each equivalence class gH, g ∈ G have the same number of
elements. In fact, we shall show that |gH| = |H|, for each g ∈ G. To
prove this we shall define a mapping f : H → gH and show that it is
a bijection. Namely, we define f(h) = gh, h ∈ H.

f is one-to-one: If h, h′ ∈ H and if f(h) = f(h′), then gh = gh′. We
now multiply each side by g−1 and get h = g−1gh = g−1gh′ = h′.
Thus f is one-to-one.

f is onto: If gh ∈ gH, then gh = f(h) and so f is onto.

It follows, therefore, that |gH| = |H| for each element g ∈ G. If G
is also a finite group, this says that G is partitioned into sets, each of
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which has cardinality |H|. If G is partitioned into k such sets, then
obviously |G| = k|H|, which proves that |H| is a divisor of the group
order G.

We summarize the above in the following theorem.

Lagrange’s Theorem. Let G be a finite group and let H be a sub-
group of G. Then |H|

∣∣∣|G|.
If G is a finite group and g ∈ G, then we have seen that o(g) is the

order of the subgroup 〈g〉 that it generates. Therefore,

Corollary. If G is a finite group and g ∈ G, then o(g)
∣∣∣|G|.

t t

t t

4

1

3

2Example. Consider the graph given to
the right, with four vertices, and let G
be the automorphism group of this graph.
Notice that if X = {1, 2, 3, 4}, then G is
a subgroup of Sym(X), the group of per-
mutations of of the four vertices. There-
fore, we infer immediately that |G| is a
divisor of 4! = 24.

Note that two very obvious automorphisms of this graph are the
permutations

σ :


1 2 3 4
↓ ↓ ↓ ↓
2 3 4 1

 , τ :


1 2 3 4
↓ ↓ ↓ ↓
2 1 4 3


Next, note that σ has order 4 and τ has order 2. Finally, note that
τστ = σ3 (= σ−1). Let C = 〈σ〉 and set D = 〈τ〉 be the cyclic
subgroups generated by σ and τ . Note that since τ 6∈ C, we conclude
that |G| > 4 = |C|; since by Langrange’s Theorem we must have
|C|

∣∣∣|G|, we must have that |G| is a multiple of 4 and is strictly larger
than 4. Therefore |G| ≥ 8. Also since G is a subgroup of Sym(X), we
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see that |G|
∣∣∣24. But there are plenty of permutations of the vertices

1, 2, 3, and 4 which are not graph automorphisms (find one!), and so
|G| < 24.

On the other hand, note that the powers e, σ, σ2, σ3 give four au-
tomorphisms of the graph, and the elements τ, στ, σ2τ, σ3τ give four
more. Furthermore, since τστ = σ3 we can show that the set
{e, σ, σ2, σ3, τ, στ, σ2τ, σ3τ} is closed under multiplication and hence
is a subgroup of G. Therefore 8

∣∣∣|G| and so it follows that |G| = 8 and
the above set is all of G:

G = {e, σ, σ2, σ3, τ, στ, σ2τ, σ3τ}.

Below is the multiplication table for G (you can fill in the missing
elements). Notice that G has quite a few subgroups—you should be
able to find them all (Exercise 3).

◦ e σ σ2 σ3 τ στ σ2τ σ3τ

e e σ σ2 σ3 τ στ σ2τ σ3τ
σ σ σ2 σ3 e

σ2 σ2 σ3 e σ
σ3 σ3 e σ σ3

τ τ
στ στ

σ2τ
σ3τ

Exercises

1. Use the corollary on page 233 to give another proof of Fermat’s
Little Theorem; see page 86.

2. Suppose that G is a finite group of prime order p. Prove that G
must be cyclic.

3. Refer to the multiplication table above for the group G of symme-
tries of the square and list all of the subgroups.
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4. Let G be a group, let H be a subgroup, and recall the equivalence
relation ( mod H) defined by

g ≡ g′ ( mod H) ⇔ g−1g′ ∈ H.

The equivalence classes in G relative to this equivalence relation
are called the (left) cosets of H in G. Are the cosets also sub-
groups of G? Why or why not?

5. Let G be the group of Exercise 3 and let K be the cyclic subgroup
generated by στ . Compute the left cosets of K in G.

6. Let G be the group of Exercise 3 and let L be the subgroup
{e, τ, σ2, σ2τ}. Compute the left cosets of L in G.

7. Here we shall give yet another proof of the infinitude of primes.
Define, for each prime p the corresponding Mersenne number by
setting Mp = 2p − 1 (these are often primes themselves). Assume
by contradiction that there are only finitely many primes and let
p be the largest prime. Let q be a prime divisor of Mp = 2p − 1.
Then we have, in the multiplicative group Z∗q of nonzero integers
modulo q, that 2p ≡ 1(mod q). This says, by exercise 2 on page 227
that p is the order of 2 in the group Z∗q. Apply Lagrange’s theorem
to obtain p | (q − 1), proving in particular that q is a larger prime
than p, a contradiction.

4.2.8 Homomorphisms and isomorphisms

What is the difference between the additive group (Z6,+) and the mul-
tiplicative group (Z∗7, ·)? After all, they are both cyclic: (Z6,+) has
generator 1 (actially, [1]), and (Z∗7, ·) has generater 3 ([3]). So wouldn’t
it be more sensible to regard these two groups as algebraically the same,
the only differences being purely cosmetic? Indeed, doesn’t any cyclic
group of order 6 look like {e, x, x2, x3, x4, x5, x6}?
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Here’s a much less obvious example. Consider the two infinite groups
(R,+) and (R+, ·). At first blush these would seem quite different.
Yet, if we consider the mapping f : R → R+ given by f(x) = ex (the
exponential function) then f is not only a bijection (having inverse ln)
but this mapping actually matches up the two binary operations:

f(x+ y) = ex+y = ex · ey = f(x) · f(y).

Notice that the inverse mapping g(x) = lnx, does the same, but in the
reverse order:

g(x · y) = ln(x · y) = lnx+ ln y = g(x) + g(y).

The point of the above is that through the mappings f and its inverse
g we see that group structure of (R+, ·) is faithfully represented by the
group structure of (R+, ·), i.e., the two groups are “isomorphic.” We
shall formalize this concept below.

Definition of Homomorphism: Let (G, ∗) and (H, ?) be groups, and
let f : G → H be a mapping. We say that f is a homomorphism
if for all g, g′ ∈ G we have f(g ∗ g′) = f(g) ? f(g′). In other words,
in finding the image of the product of elements g, g′ ∈ G, it doesn’t
matter whether you first compute the product g ∗ g′ in G and then
apply f or to first apply f to g and g′ and then compute the product
f(g) ? f(g′) in H.

Of course, we now see that the exponential mapping from (R,+) to
(R+, ·) is a homomorphism.

Here’s another example. Recall the group GL2(R) of 2× 2 matrices
having real coefficients and non-zero determinants. Since we know that
det(A · B) = det(A) · det(B) we see that det : GL2(R) → R∗ is a
homomorphism, where R∗ denotes the multiplicative group of non-zero
real numbers.

Definition of Isomorphism: If f : G → H is a homomorphism of
groups (G, ∗) and (H, ?), we say that f is an isomorphism if f is
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bijective. Note that in this case, the inverse mapping f−1 : H → G is
also a homomorphism. The argument is as follows: if h, h′ ∈ H then
watch this:

f(f−1(h) ∗ f−1(h′)) = f(f−1(h)) ? ff−1(h′))

(
since f is a homo-
morphism

)

= h ? h′

Ü
since f and f−1

are inverse func-
tions

ê
= f(f−1(h ? h′)) (same reason!)

However, since f is one-to-one, we infer from the above that

f−1(h) ∗ f−1(h′) = f−1(h ? h′),

i.e., that f−1 is a homomorphism.

Before going any further, a few comments about homomorphisms
are needed here. Namely, let G1 and G2 be groups (we don’t need
to emphasize the operations here), and assume that e1 and e2 are the
identity elements of G1 and G2, respectively Assume that f : G1 → G2

is a homomorphism. Then,

f(e1) = e2. This is because f(e1)
2 = f(e1)f(e1) = f(e1e1) = f(e1).

Now multiply both sides by f(e1)
−1 and get f(e1) = e2.

If x ∈ G1, then f(x−1) = f(x)−1. Note that by what we just proved,
e2 = f(e1) = f(xx−1) = f(x)f(x−1). Now multiply both sides by
f(x)−1 and get f(x)−1 = f(x)−1e2 =
f(x)−1(f(x)f(x−1)) = (f(x)f(x)−1)f(x−1) = e2f(x−1) = f(x−1).

Theorem. Let (G, ∗) and (H, ?) be cyclic groups of the same order n.
Then (G, ∗) and (H, ?) are isomorphic.

Proof. Let G have generator x and let H have generator y. Define
the mapping f : G→ H by setting f(xk) = xk, k = 0, 1, 2, . . . , n− 1.
Note that f is obviously onto. But since |G| = |H| = n it is obvious
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that f is also one-to-one. (Is this obvious?) Finally, let xk, xl ∈ G;
if k + l ≤ n − 1, then f(xkxl) = f(xk+l) = yk+l = ykyl = f(xk)f(xl).
However, if k + l ≥ n, then we need to divide n into k + l and get a
remainder r, where 0 ≤ r ≤ n − 1, say k + l = qn + r, where q is the
quotient and r is the remainder. We therefore have that

f(xkxl) = f(xk+l)

= f(xqn+r)

= f(xqnxr)

= f(eGx
r) (since xqn = eG, the identity of G)

= f(xr)

= yr (by definition of f)

= eHy
r (where eH is the identity of H)

= yqnyr (since yqn = eH)

= yqn+r

= yk+l

= ykyl.

Exercises

1. Let f : G1 → G2 be a homomorphism of groups, and let H1 ⊆ G1

be a subgroup of G1. Prove that the image, f(H1) ⊆ G2 is a
subgroup of G2.

2. (A little harder) Let f : G1 → G2 be a homomorphism of groups,
and let H2 ⊆ G2 be a subgroup of G2. Set f−1(H2) = {g1 ∈
G1 | f(g1) ∈ H2}. Prove that f−1(H2) is a subgroup of G1.

3. Let GL2(R) be the group of 2 × 2 matrices with real coefficients
and determinant not 0, and let S be a nonsingular matrix. Define
the mapping f : GL2(R) → GL2(R) by setting f(A) = SAS−1.
Prove that f is an isomorphism of GL2(R) onto itself.

4. Again, let GL2(R) be the group of 2× 2 matrices with real coeffi-
cients and determinant not 0. Show that the determinant defines
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a homomorphism of GL2(R) into the multiplicative group of non-
zero real numbers.

5. (Really the same as Exercise 3) Let G be any group and fix an
element x ∈ G. Prove that the mapping f : G → G defined by
setting f(g) = xgx−1 is an isomorphism of G onto itself.

6. Let A be an Abelian group and let f : A → B be a surjective
homomorphism, where B is also a group. Prove that B is also
Abelian.

7. Let f : G → H be a homomorphism of groups and set K = {g ∈
G | f(g) = eH}, where eH is the identity of H. Prove that K is a
subgroup of G.13

8. Let X = {1, 2, 3, . . . , n}, where n is a positive integer. Recall that
we have the group (2X ,+), where, as usual, 2X is the power set of
X and + is symmetric difference (see page 194). Define f : 2X →
{−1, 1} (where {±1} is a group with respect to multiplication) by
setting

f(A) =

+1 if |A| is even

−1 if |A| is odd.

Prove that f is a homomorphism.

9. Let G be a group and define f : G→ G by setting f(g) = g−1.

(a) Show that f is a bijection.

(b) Under what circumstances is f a homomorphism?

10. Prove that the automorphism groups of the graphs on page 207
(each having four vertices) are not isomorphic.

11. Let R be the additive group of real numbers and assume that
f : R→ R is a function which satisfies f(x− y) = f(x)− f(y), for
0 < x, y ∈ R. Prove that f : R→ R is a homomorphism.

13This subgroup of G is usually called the kernel of the homomorphism f .
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12. Let R be the additive group of real numbers and assume that
f : R→ R is a function which satisfies the peculiar property that
f(x2 − y2) = xf(x)− yf(y) for all x, y ∈ R.

(a) Prove that f : R→ R is a homomorphism, and that

(b) there exists a real number c ∈ R such that f(x) = cx, x ∈ R.

The result of Exercise 12 is strictly stronger that that of Exer-
cise 11. Indeed the condition of Exercise 12 shows that the homo-
morphism is continuous and of a special form. We’ll return to
this briefly in Chapter 5; see Exercise 6 on page 252.

13. Let G be a group and let C∗ denote the multiplicative group of
complex numbers. By a (linear) character we mean a homomor-
phism χ : G → C∗, i.e., χ(g1g2) = χ(g1)χ(g2) for all g1, g2 ∈ G.

(a) Prove that if χ : G → C∗ is a character, then χ(g−1) = χ(g)
(complex conjugate) for all g ∈ G.

Now assume that G is finite and that χ : G → C∗ is a character
such that for at least one g ∈ G, χ(g) 6= 1. Prove that

(b)
∑
g∈G

χ(g) = 0.

(c) Let χ1, χ2 : G → C∗ be distinct characters and prove that∑
g∈G

χ1(g)χ2(g) = 0.

(d) Fix the positive integer n and show that for any integer k =
0, 1, 2, . . . , n− 1 the mapping χk : Zn → C∗ given by χk(a) =
cos(2πka/n) + i sin(2πka/n) is a character. Show that any
character of Zn must be of the form χk, 0 ≤ k < n, as above.

4.2.9 Return to the motivation

We return to the two graphs having six vertices each on page 206, and
make a simple observation about their automorphism groups. Namely,
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for any two vertices, call them x1 and x2, there is always an automor-
phism σ which carries one to the other. This is certainly a property of
the graph—such graphs are called vertex-transitive graphs. A simple
example of a non vertex-transitive graph is as follows:
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Graph A

Since vertex 1 is contained in three
edges, and since vertex 2 is contained
in only two, it is obviously impossible
to construct an automorphism which
will map vertex 1 to vertex 2.
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Graph B

The graph to the right doesn’t
have the same deficiency as the
above graph, and yet a moment’s
thought will reveal that there
cannot exist an automorphism
which carries vertex 1 to vertex
2.

The following result is fundamental to the computation of the order
of the automorphism group of a vertex-transitive graph.14 Its usefulness
is that it reduces the computation of the size of the automorphism group
of a vertex-transitive graph to the computation of a stabilizer (which
is often much easier).

Theorem. Let G be the automorphism group of a vertex-transitive
graph having vertex set X. Fix x ∈ X and let Gx be the stabilizer in
G of x. Then |G| = |X| · |Gx|.

Proof. Let H be the stabilizer in G of the fixed vertex x: H = {σ ∈
G | σ(x) = x}. Recall the equivalence relation on G introducted in
Subsection 4.2.7, namely

14I have used this result many times in my own research!
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σ ≡ σ′ (modH) ⇐⇒ σ−1σ′ ∈ H.

Recall also from Subsection 4.2.7 that the equivalence classes each have
order |H|; if we can count the number of equivalence classes in G, we’ll
be done! Now define a mapping f : G → X by the rule f(σ) =
σ(x). Since the graph is vertex-transitive, we see that this mapping is
surjective. Note that

f(σ) = f(σ′) ⇔ σ(x) = σ′(x)

⇔ σ−1σ(x) = x

⇔ σ−1σ ∈ H
⇔ σ ≡ σ′ (modH).

In other words, there are exactly as many equivalence classes mod H

as there are vertices of X! This proves the theorem.

We turn now to the computation of the size of the automorphism
groups of the two graphs introduced at the begining of this section. In
order to compute the order of a stabilizer, we re-draw the graph from
the “point of view” of a particular vertex. Thus, consider the following
graphs, where the second emphasizes the role of the vertex 1:
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If H is the stabilizer of the vertex 1, then surely H must permute the
three vertices 2, 4, 6 and must permute the vertices 3 and 5. Further-
more, it is easy to see that any permutation of 2, 4, 6 and of 3, 5 will
determine an automorphism of the graph which fixes vertex 1. Since
there are 6 = 3! permutations of 2, 4, and 6, and since there are 2
permutations of 3 and 5, we conclude that there are exactly 6× 2 = 12
automorphisms which fix the vertex 1. Therefore the full automorphism
has order 6× 12 = 72.

We turn now to the second graph considered in our introduction;
again we draw two versions:

If H is the stabilizer of the vertex 1, then H must permute the three
vertices 3, 4, 5 and must permute the vertices 2 and 6. However,
in this case, there are some restrictions. Note that H must actually
fix the vertex 4 (because there’s an edge joining 3 and 5). Thus an
automorphism τ ∈ H can only either fix the vertices 3 and 5 or can
transpose them: τ(3) = 5, τ(5) = 3. However, once we know what τ
does to {3, 4, 5} we can determine its effect on 2 and 6. If τ fixes 3 and
5, then it’s easy to see that τ also fixes 2 and 6 (verify this!). Likewise,
if τ transposes 3 and 5, then τ also transposes 2 and 6, meaning that
there are only two elements in H, e and the element

τ =


1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
1 6 5 4 3 2

 .
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From the above we conclude that the automorphism group of this graph
has 6×2 = 12 elements, meaning that the first graph is six times more
symmetrical than the second!

Exercises

1. Compute |G|, where G is the automorphism group of Graph A,
above. Is G abelian?

2. Compute |G|, where G is the automorphism group of Graph B,
above. Is G abelian?

3. Find an element of order 6 in the stabilizer of vertex 1 of Graph
C, above.

4. As a challenge, compute the order of the automorphism group of
the Petersen graph.15

15The answer is 120=5!. Indeed, the automorphism group is isomorphic with the symmetric group
S5. Here’s a possible approach. Construct the graph Γ whose vertices are the 2-element subsets of
{1, 2, 3, 4, 5} and where we stipulate that A and B are adjacent precisely when A ∩ B = ∅. One
shows first that this graph is actually isomorphic with the Petersen graph. (Just draw a picture!)
Next, if we let S5 operate on the elements of {1, 2, 3, 4, 5} in the natural way, then S5 actually acts
as a group of automorphisms of Γ.



Chapter 5

Series and Differential Equations

The methods and results of this chapter pave the road to the students’
more serious study of “mathematical analysis,” that branch of mathe-
matics which includes calculus and differential equations. It is assumed
that the student has had a backgroud in calculus at least equivalent
with that represented either in IB mathemtics HL year 2 or AP Cal-
culus (AB). The key ideas revolving around limits will be reviewed,
leading to substantial coverage of series and differential equations.

5.1 Quick Survey of Limits

As quickly becomes obvious to even the causual learner, the study of
calculus rests in a fundamental way on the notion of limit. Thus, a
reasonable starting point in this somewhat more “advanced” study is
to be reminded of the notion of the “limit of a function as x approaches
a (either of which might be ±∞).”

5.1.1 Basic definitions

Definition. Let f be a function defined in a neighborhood of the real
number a (except possibly at x = a). We say that the limit of f(x) is
L as x approaches a, and write

lim
x→a f(x) = L,

if for any real number ε > 0, there is another real number δ > 0 (which
in general depends on ε) such that whenever 0 < |x − a| < δ then

245
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|f(x)− L| < ε.

Notice that in the above definition we stipulate 0 < |x− a| < δ rather
than just saying |x− a| < δ because we really don’t care what happens
when x = a.

In defining limits involving∞ only slight modifications are necessary.

Definition.

Limits at ∞. Let f be a function defined for all x > N . We say that
We say that the limit of f(x) is L as x approaches∞, and write

lim
x→∞ f(x) = L,

if for any real number ε > 0, there is another real number K
(which in general depends on ε) such that whenever x > K then
|f(x)− L| < ε.

In an entirely similarly way, we may define lim
x→−∞

f(x) = L.

Limits of∞. Let f be a function defined in a neighborhood of the real
number a. We say that the limit of f(x) is L as x approaches ∞,
and write

lim
x→a f(x) = ∞,

if for any real number N , there is another real number δ > 0 (which
in general depends on N) such that whenever 0 < |x−a| < δ then
|f(x)| > N .

Similarly, one defines

lim
x→a f(x) = −∞, lim

x→∞ f(x) = ∞,

and so on.

Occasionally, we need to consider one-sided limits, defined as fol-
lows.
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Definition. Let f be a function defined on an interval of the form
a < x < b. We say that the limit of f(x) is L as x approaches a
from the right, and write

lim
x→a+

f(x) = L,

if for any real number ε > 0, there is another real number δ > 0 (which
in general depends on ε) such that whenever 0 < x − a < δ then
|f(x)− L| < ε.

Similarly, one defines lim
x→a−

f(x) = L.

Limits behave in a very reasonable manner, as indicated in the fol-
lowing theorem.

Theorem. Let f and g be functions defined in a punctured neighbor-
hood of a.1 Assume that

lim
x→a f(x) = L, lim

x→a g(x) = M.

Then,

lim
x→a(f(x) + g(x)) = L+M, and lim

x→a f(x)g(x) = LM.

Proof. Assume that δ > 0 has been chosen so as to guarantee that
whenever 0 < |x− a| < δ, then

|f(x)− L| < ε

2
, and |g(x)−M | < ε

2
.

Then,

|f(x) + g(x)− (L+M)| < |f(x)− L|+ |g(x)−M | < ε

2
+
ε

2
= ε,

proving that lim
x→a(f(x) + g(x)) = L+M.

1A “punctured” neighborhood of the real number a is simply a subset of the form {x ∈ R | 0 <
|x− a| < d, for some positive real number d.
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Next, assume that 1 > ε > 0, and let δ > 0 be a real number such
that whenever 0 < |x− a| < δ,

|f(x)− L| < ε

3
,

ε

3|M |
, |g(x)−M | < ε

3
,

ε

3|L|
.

(If either of L, M = 0, ignore the corresponding fraction ε
3|L| ,

ε
3|M |)

|f(x)g(x)− LM | = |(f(x)− L)(g(x)−M) + (f(x)− L)M

+(g(x)−M)L|
≤ |(f(x)− L)(g(x)−M)|+ |(f(x)− L)M |

+|(g(x)−M)L|

<
ε2

9
+
ε

3
+
ε

3

<
ε

3
+
ε

3
+
ε

3
= ε,

proving that lim
x→a f(x)g(x) = LM.2

As indicated above, in computing lim
x→a f(x) we are not concerned

with f(a); in fact a need not even be in the domain of f . However, in
defining continuity at a point, we require more:

Definition. Let f be defined in a neighborhood of a. We say that f
is continuous at x = a if

lim
x→a f(x) = f(a)

As a simply corollary of the above theorem we may conclude that
polynomial functions are everywhere continuous.

The student will recall that the derivative of a function is defined
in terms of a limit. We recall this important concept here.

2Note that in the above proof we have repeatedly used the so-called “triangle inequality,” which
states that for real numbers a, b ∈ R, |a + b| ≤ |a| + |b|. A moment’s thought reveals that this is
pretty obvious!
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Definition. Let f be a function defined in a neighborhood of a. If

lim
x→a

f(x)− f(a)

x− a
= L,

we say that f is differentiable at x = a and write f ′(a) = L, calling
f ′(a) the derivative of f at a.

In mathematical analysis we often encounter the notion of a se-
quence, which is nothing more than a function

f : {0, 1, 2, . . .} −→ R.

It is customary to write the individual terms of a sequence
f(0), f(1), f(2), . . . as subscripted quantities, say, as a0, a1, a2, . . ..

Sequences may or may not have limits.

Definition. Let (an)n≥0 be a sequence. We say that the limit of the
sequence is the real number L ∈ R and write lim

n→∞ an = L, if given
ε > 0 there exists a real number N such that whenever n > N then
|an − L| < ε.

We shall begin a systematic study of sequences (and “series”) in the
next section.

Finally, we would like to give one more example of a limiting process:
that associated with the “Riemann integral.” Here we have a function
f defined on the closed interval [a, b], and a partition P of the interval
into n subintervals

P : a = x0 < x1 < x2 < · · · < xn = b.

On each subinterval [xi−1, xi] let

Mi = max
xi−1<x<xi

f(x), mi = min
xi−1<x<xi

f(x).

The upper Riemann sum relative to the above partition is the
sum
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U(f ;P ) =
n∑
i=i

Mi(xi − xi−1),

and the lower Riemann sum relative to the above partition is the
sum

L(f ;P ) =
n∑
i=i

mi(xi − xi−1).

Before continuing, we need two more fundamental concepts, the
least upper bound and greatest lower bound of a set of real num-
bers. Namely, if A ⊆ R, we set

LUB(A) = min
d
{d ≥ a | a ∈ A},GLB(A) = max

d
{d ≤ a | a ∈ A}.

Finally, we define the sets

U(f) = {U(f ;P ) |P is a partition of [a, b]},
L(f) = {L(f ;P ) |P is a partition of [a, b]}.

Definition. If LUB(L(f)) and GLB(U(f)) both exist, and if
LUB(L(f)) = GLB(U(f)), we say that f is Riemann integrable
over [a, b] and call the common value the Riemann integral of f
over the interval [a, b].

Example. Consider the function f(x) = x3, 0 ≤ x ≤ 2, and con-
sider the partition of [0, 2] into n equally-spaced subintervals. Thus, if
P : 0 = x0 < x1 < · · · xn = 2 is this partitiion, then xi = 2i

n , i =
0, 1, 2, . . . , n. Since f is increasing over this interval, we see that the
maximim of f over each subinterval occurs at the right endpoint and
that the minimum occurs at the left endpoint. It follows, therefore,
that

U(f ;P ) =
n∑
i=1

(
2i

n

)3

· 2
n

=
16

n4

n∑
i=1

i3, L(f ;P ) =
n−1∑
i=0

(
2i

n

)3

· 2
n

=
16

n4

n−1∑
i=0

i3.
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Next, one knows that
n∑
i=1

i3 = 1
4n

2(n+ 1)2; therefore,

U(f ;P ) =
4n2(n+ 1)2

n4
, L(f ;P ) =

4n2(n− 1)2

n4
.

Finally, we note that for any partition P ′ of [0, 2] 0 < L(f ;P ′) <
U(f ;P ′) < 16, and so it is clear that GLB(U(f)) and LUB(L(f)) both
exist and that GLB(U(f)) ≥ LUB(L(f)). Finally, for the partition P
above we have

L(f ;P ) ≤ LUB(L(f)) ≤ GLB(U(f)) ≤ U(f ;P ).

Therefore, we have

4 = lim
n→∞L(f ;P ) ≤ LUB(L(f)) ≤ GLB(U(f)) ≤ lim

n→∞L(f ;P ) = 4,

and so it follows that

∫ 2

0
x3 dx = 4.

For completeness’ sake, we present the following fundamental result
without proof.

Theorem. (Fundamental Theorem of Calculus) Assume that we are
given the function f defined on the interval [a, b]. If there exists a
differentiable function F also defined on [a, b] and such that F ′(x) =
f(x) for all x ∈ [a, b], then f is Riemann integral on [a, b] and that

∫ b
a
f(x) dx = F (b)− F (a).

Exercises

1. Let f and g be functions such that

(a) f is defined in a punctured neighborhood of a,
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(b) limx→a f(x) = L,

(c) g is defined in a punctured neighborhood of L, and

(d) limx→L g(x) = M.

Show that lim
x→a g(f(x)) = M.

2. Show that if a ≥ 0, then lim
x→a
√
x =
√
a.

3. Show that if a ∈ R, then lim
x→a

√
1 + x2 =

√
1 + a2.

4. Prove that the sequence 1, 0, 1, 0, . . . does not have a limit.

5. Let f : D → R be a real-valued function, where D (the domain)
is some subset of R. Prove that f is continuous at a ∈ D if and
only if for every sequence a1, a2, . . . , which converges to a, then
lim
n→∞ f(an) = f(a).

6. Here we revisit Exercises 11 and 12 on page 239.

(a) Let f : R → R be a differentiable homomorphism, i.e., f is
differentiable and satisfies f(x+y) = f(x)+f(y) for all x, y ∈
R. Prove that there exists c ∈ R such that f(x) = cx, x ∈ R.
(This is easy!)

(b) Let f : R → R be a continuous homomorphism, and prove
that the same conclusion of part (a) holds. (Hint: you want to
prove that for all a, x ∈ R, f(ax) = af(x). This guarantees
that f(x) = xf(1).)3

7. Define f(x) =
…
x+

√
x+
√
x+ · · ·, x ≥ 0. Clearly f(x) = 0. Is

f continuous at x = 0? (Hint: note that if we set y = f(x), then
y =
√
x+ y, and so y2 = x + y. Using the quadratic formula you

can solve for y in terms of x.)

8. Recall Euler’s φ-function φ, given on page 63. Define the set A of
real numbers

A =

φ(n)

n
| n ∈ N

 .
3It may surprise you to learn that “most” homomorphisms R → R are not continuous. However,

the discontinuous homomorphisms are essentially impossible to write down. (Their existence involves
a bit of advanced mathematics: using a “Hamel basis” for the real numbers, one can easily write
down discontinuous homomorphisms R → R.)
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Show that LUB(A) = 1 and GLB(A) = 0.4

9. (The irrationality of π.) This exercise will guide you through a
proof of the irrationality of π and follows roughly the proof of Ivan
Niven5. Assume, by way of contradiction, that we may express

π =
a

b
, where a and b are positive integers. For each integer n ≥ 1

define the function

fn(x) =
xn(a− bx)n

n!
.

Using the assumption that π =
a

b
, show that

(a) fn(0) = 0, fn(π) = 0;

(b) fn(x− π) = fn(x);

(c) f (i)
n (0) is an integer for all i ≥ 0;

(d) f (i)
n (π) is an integer for all i ≥ 0 (use (b)).

Next, define the new functions

Fn(x) = f(x)− f (2)(x) + f (4)(x)− · · ·+ (−1)nf (2n)(x)

4Showing that LUB(A) = 1 is pretty easy: define P =
¶
φ(p)
p | p is prime

©
and show that

LUB(P ) = 1. Showing that GLB(A) = 0 is a bit trickier. Try this: let p1 = 2, p2 = 3, p3 = 5, · · · ,
and so pk is the k-th prime. Note that

φ(p1p2 · · · pr)
p1p2 · · · pr

=

Å
1− 1

p1

ãÅ
1− 1

p2

ã
· · ·
Å

1− 1

pr

ã
.

The trick is to show that
φ(p1p2 · · · pr)
p1p2 · · · pr

→ 0 as r → ∞. Next, one has the “harmonic series”

(see page 265)
∞∑
n=1

1

n
, which is shown on page 265 to be infinite. However, from the Fundamental

Theorem of Arithmetic (see page 76), one has

∞∑
n=1

1

n
=

Å
1 +

1

2
+

1

22
+ · · ·

ãÅ
1 +

1

3
+

1

32
· · ·
ãÅ

1 +
1

5
+

1

52
· · ·
ã
· · ·

=

Å
1− 1

2

ã−1 Å
1− 1

3

ã−1 Å
1− 1

5

ã−1
· · ·

From this one concludes that, as stated above,
φ(p1p2 · · · pr)
p1p2 · · · pr

→ 0 as r →∞.

5Bull. Amer. Math. Soc. Volume 53, Number 6 (1947), 509.
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=
n∑
i=0

(−1)if (2i)(x), n ≥ 1,

and show that

(e) Fn(0) and Fn(π) are both integers;

(f) F ′′n (x) + Fn(x) = f(x) (note that if i > 2n, then f (i)
n (x) = 0);

(g)
d

dx
[F ′n(x) sinx− Fn(x) cosx] = f(x) sinx;

(h)
∫ π

0
fn(x) sinx dx is an integer for all n ≥ 1.

Finally, show that

(i) fn(x) sinx > 0 when 0 < x < π;

(j) fn(x) sinx <
πnan

n!
when 0 < x < π;

Conclude from (j) that

(k)
∫ π

0
fn(x) sinx dx <

πn+1an

n!
for all n ≥ 1.

Why are (h) and (k) incompatible? (Note that lim
n→∞

πn+1an

n!
= 0.)

5.1.2 Improper integrals

There are two type of improper intergrals of concern to us.

(I.) Those having at least one infinite limit of integration, such as

∫ ∞
a
f(x) dx or

∫ ∞
−∞

f(x) dx.

(II.) Those for which the integrand becomes unbounded within the
interval over which the integral is computed. Examples of these
include

∫ 1

0

dx

xp
, (p > 0),

∫ 3

1

dx

x− 2
.
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The definitions of these improper integrals are in terms of limits.
For example

∫ ∞
0
f(x) dx = lim

b→∞

∫ b
a
f(x) dx∫ ∞

−∞
f(x) dx = lim

a→−∞

∫ 0

a
f(x) dx+ lim

b→∞

∫ b
0
f(x) dx.

Likewise, for example,

∫ 1

0

dx

xp
= lim

a→0+

∫ 1

a

dx

xp
,

∫ 3

1

dx

x− 2
= lim

a→2−

∫ a
1

dx

x− 2
+ lim

b→2+

∫ 3

b

dx

x− 2
.

Relative to the above definition, the following is easy.

Theorem. We have

∫ ∞
1

dx

xp
=


1

p− 1
if p > 1

∞ if p ≤ 1.
.

Proof. We have, if p 6= 1, that

∫ ∞
1

dx

xp
= lim

a→∞
x1−p

1− p

∣∣∣∣∣
a

1
= lim

a→∞

Ñ
a1−p

1− p
− 1

1− p

é
=


1

p− 1
if p > 1

∞ if p < 1.

If p = 1, then

∫ ∞
1

dx

x
= lim

a→∞ lnx

∣∣∣∣∣
a

1
= lim

a→∞ ln a = ∞.

Example. Compute the improper integral
∫ ∞

2

dx

x lnp x
, where p > 1.
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This is a fairly simple integration: using the substitution (u = lnx) one
first computes the indefinite integral

∫ dx

x lnp x
=

1

(1− p)x lnp x
.

Therefore,

∫ ∞
2

dx

x lnp x
= lim

a→∞

Ñ
1

(1− p)x lnp x

é ∣∣∣∣∣
a

2
=

1

2(1− p) lnp 2
.

Exercises

1. For each improper integral below, compute its value (which might
be ±∞) or determine that the integral does not exist.

(a)
∫ ∞

2

dx√
x− 2

(b)
∫ 1

−1

dx√
1− x2

(c)
∫ ∞

2

dx√
x2 − 4

(d)
∫ 1

0
lnx dx

2. Let k ≥ 1 and p > 1 and prove that
∫ ∞

1
sink

(
2π

xp

)
dx <∞. (Hint:

note that if xp > 4 then sink
(

2π

xp

)
≤ sin

(
2π

xp

)
<

2π

xp
.)

3. Compute

lim
x→∞

∫ ∞
0
e−t cos(xt) dt.

4. Let A, B be constants, A > 0. Show that

∫ ∞
0
e−At sinBt dt =

B

A2 +B2
.

5. Define the function

Π(x) =

1 if |x| ≤ 1
2 ,

0 otherwise.
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Now let f be a continuous function defined for all real numbers
and compute

lim
T→0

1

T

∫ ∞
−∞

Π
Çx− a

T

å
f(x) dx

in terms of f and a.

6. (The (real) Laplace transform) Let f = f(x) be a function
defined for x ≥ 0. Define a new function F = F (s), called the

Laplace transform of f by setting F (s) =
∫ ∞

0
e−sxf(x) dx, where

s ≥ 0. Now let f be the function defined by

f(x) =

1 if 0 ≤ x ≤ 1

0 if x > 1.

Compute the Laplace transform F = F (s) explicitly as a function
of s.

7. Let f(x) = sin 2πx, x ≥ 0. Compute the Laplace transform F =
F (s) explicitly as a function of s. (You’ll need to do integration
by parts twice!)

5.1.3 Indeterminate forms and l’Hôpital’s rule

Most interesting limits—such as those defining the derivative—are “in-

determinate” in the sense that they are of the form lim
x→a

f(x)

g(x)
where the

numerator and denominator both tend to 0 (or to ∞). Students learn
to compute the derivatives of trigonometric functions only after they
have been shown that the limit

lim
x→0

sinx

x
= 1.
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At the same time, you’ll no doubt remem-
ber that the computation of this limit
was geometrical in nature and involved
an analysis of the diagram to the right.

The above limit is called a 0/0 indeterminate form because the
limits of both the numerator and denominator are 0.

You’ve seen many others; here are two more:

lim
x→3

2x2 − 7x+ 3

x− 3
and lim

x→1

x5 − 1

x− 1
.

Note that in both cases the limits of the numerator and denominator
are both 0. Thus, these limits, too, are 0/0 indeterminate forms.

While the above limits can be computed using purely algebraic meth-
ods, there is an alternative—and often quicker—method that can be
used when algebra is combined with a little differential calculus.

In general, a 0/0 indeterminate form is a limit of the form lim
x→a

f(x)
g(x)

where both lim
x→a f(x) = 0 and lim

x→a g(x) = 0. Assume, in addition, that
f and g are both differentiable and that f ′ and g′ are both continuous
at x = a (a very reasonable assumption, indeed!). Then we have

lim
x→a

f(x)

g(x)
= lim

x→a

Å
f(x)
x−a

ãÅ
g(x)
x−a

ã
=

lim
x→a

Å
f(x)
x−a

ã
lim
x→a

Å
g(x)
x−a

ã
=

f ′(a)

g′(a)

=
lim
x→a f

′(x)

lim
x→a g

′(x)
. (by continuity of the derivatives)
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This result we summarize as

l’Hôpital’s Rule. Let f and g be functions differentiable on some
interval containing x = a, and assume that f ′ and g′ are continuous at
x = a. Then

lim
x→a

f(x)

g(x)
=

lim
x→a f

′(x)

lim
x→a g

′(x)
.

As a simple illustration, watch this:

lim
x→3

2x2 − 7x+ 3

x− 3
=

lim
x→3

4x− 7

lim
x→3

1
= 5,

which agrees with the answer obtained algebraically.

In a similar manner, one defines ∞/∞ indeterminate forms; these
are treated as above, namely by differentiating numerator and denom-
inator:

l’Hôpital’s Rule (∞/∞). Let f and g be functions differentiable on
some interval containing x = a, that lim

x→a f(x) = ±∞ = lim
x→a g(x), and

assume that f ′ and g′ are continuous at x = a. Then

lim
x→a

f(x)

g(x)
=

lim
x→a f

′(x)

lim
x→a g

′(x)
.

There are other indeterminate forms as well: 0 · ∞, 1∞, and ∞0.
These can be treated as indicated in the examples below.

Example 1. Compute lim
x→0+

x2 lnx. Note that this is a 0 · ∞ indeter-

minate form. It can easily be converted to an ∞∞ indeterminate form
and handled as above:

lim
x→0+

x2 lnx = lim
x→0+

lnx

(1/x2)
l’H= lim

x→0+

1/x

−2/x3
= lim

x→0+

−x2

2
= 0.
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Other indeterminate forms can be treated as in the following exam-
ples.

Example 2. Compute lim
x→∞

(
1− 4

x

)x
. Here, if we set L equal to this

limit (if it exists!), then we have, by continuity of the logarithm, that

lnL = ln lim
x→∞

(
1− 4

x

)x

= lim
x→∞ ln

(
1− 4

x

)x

= lim
x→∞x ln

(
1− 4

x

)

= lim
x→∞

ln
(
1− 4

x

)
1/x

l’H= lim
x→∞

4/
(
x2

(
1− 4

x

))
−1/x2

= lim
x→∞

−4(
1− 4

x

) = −4

This says that lnL = −4 which implies that L = e−4.

Example 3. This time, try lim
θ→(π/2)−

(cos θ)cos θ. The same trick applied

above works here as well. Setting L to be this limit, we have

lnL = ln lim
θ→(π/2)−

(cos θ)cos θ

= lim
θ→(π/2)−

ln(cos θ)cos θ

= lim
θ→(π/2)−

cos θ ln cos θ

= lim
θ→(π/2)−

ln cos θ

1/ cos θ

l’H= lim
θ→(π/2)−

tan θ

sec θ tan θ
= 0.

It follows that lim
θ→(π/2)−

(cos θ)cos θ = 1.
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Exercises

1. Using l’Hôpital’s rule if necessary, compute the limits indicated
below:

(a) lim
x→1

x3 − 1

4x3 − x− 3

(b) lim
x→1

cos(πx/2)
3
»

(x− 1)2

(c) lim
x→∞

2x2 − 5x

x3 − x+ 10

(d) lim
θ→0

sin 3θ

sin 4θ

(e) lim
θ→0

sin θ2

θ

(f) lim
θ→π/2

1− sin θ

1 + cos 2θ

(g) lim
x→∞

ln(x+ 1)

log2 x

(h) lim
x→0+

(lnx − ln sinx) (Hint:

you need to convert this

“∞ − ∞” indeterminate
form to one of the forms dis-
cussed above!)

(i) lim
x→∞(ln 2x− ln(x+ 1)).

(j) lim
x→∞

(
1 +

4

x

)x

(k) lim
x→∞

Ç
1 +

a

x

åx
(l) lim

x→1
x1/(x−1)

(m) lim
x→∞x

3e−x

(n) lim
x→0+

xae−x, a > 0

(o) lim
x→0+

lnx ln(1− x)

(p) lim
x→1−

lnx ln(1 − x) (Are (o)

and (p) really different?)

2. Compute
∫ ∞

0
xe−2x dx.

3. Let n be a non-negative integer. Using mathematical induction,

show that
∫ ∞

0
xne−x dx = n!.

4. (The (real) Gamma function) Let z > 0 and define Γ(z) =∫ ∞
0
xz−1e−x dx. Show that

(a) Γ(n) = (n− 1)! for any positive integer n;

(b) Γ(z) exists (i.e., the improper integral converges) for all z > 0.

5. (Convolution) Given functions f and g defined for all x ∈ R, the
convolution of f and g is defined by

f ∗ g(x) =
∫ ∞
−∞

f(t)g(x− t) dt,
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provided the improper integral exists. Assuming that f ∗ g(x)
exists for all x, show that “∗” is commutative, i.e., that

f ∗ g(x) = g ∗ f(x), for all x.

We shall meet the convolution again in our study of statistics
(page 370).

6. Let a > 0 be a constant, and set

f(x) =

e
−at if x ≥ 0

0 if x < 0.

Show that if g(x) is defined for all x ∈ R, then

f ∗ g(x) = e−ax
∫ x
−∞

g(t)eat dx

provided the improper integral exists.

Now compute f ∗ g(x), where g is as above and where

(a) f(x) = sin bx, where b > 0 is a constant.

(b) f(x) = x2.

(c) f(x) =

1 if x ≥ 0

0 if x < 0.

(d) f(x) =

sin bx if x ≥ 0

0 if x < 0
where b > 0 is a constant.

7. (Convolution and the Low-Pass Filter) In electrical engineering
one frequently has occasion to study the RC low-pass filter, whose
schematic diagram is shown below. This is a “series” circuit with
a resistor having resistance R Ω (“ohms”) and a capacitor with
capacitance C F (“Farads”). An input voltage of x(t) volts is
applied at the input terminals and the voltage y(t) volts is observed
at the output. The variable t represents time, measured in seconds.
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An important theorem of
electrical engineering is that
if the input voltage is x(t),
then the output voltage is y =
x∗h(t), where h (the “impulse
response”) is given explicitly
by

x(t) y(t)

h(t) =


1
τ e
−t/τ if t ≥ 0

0 if t < 0,

and where τ = RC.

Now assume that R = 1000 Ω and that C = 2µF (= 2 × 10−6

Farads). Let

x(t) =

sin 2πft if t ≥ 0

0 if t < 0

where f > 0 is the frequency of the signal (in “hertz” (Hz) or units
of (sec)−1). In each case below, compute and graph the output
voltage y(t) as a function of time:

(a) f = 100 Hz

(b) f = 2 kHz, or 2000 Hz

(c) f = 100 kHz

8. (For the courageous student!6) Consider the function

f(t) =

sin(1/t), if t 6= 0

5 if t = 0,

and set F (x) =
∫ x
−1
f(t) dt. Show that F ′(0) = 0. (Hint: try

carrying out the following steps:

6I am indebted to Robert Burckel for suggesting this problem.
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(a) If G(x) =
∫ x
0
f(t) dt, then F ′(0) = G′(0).

(b) Show that G is an odd function, i.e., G(−x) = −G(x).

(c) Use integration by parts to show that if 0 < y < x, then

∫ x
y
f(t) dt =

∫ x
y

t2 sin(1/t) dt

t2

= x2 cos(1/x)− y2 cos(1/y) +
∫ x
y

2t dt ≤ 3x2.

(d) Using part (c), show that for all x, |G(x)| ≤ 3x2.

(e) Conclude from part (d) that G′(0) = 0.)

5.2 Numerical Series

Way back in Algebra II you learned that certain infinite series not
only made sense, you could actually compute them. The primary (if not
the only!) examples you learned were the infinite geometric series;
one such example might have been

3 +
3

4
+

3

16
+

3

64
+ · · · =

∞∑
n=0

3

4n
.

Furthemore, you even learned how to compute such infinite geometric
series; in the above example since the first term is a = 3 and since
the ratio is r = 1

4 , you quickly compute the sum:

3 +
3

4
+

3

16
+

3

64
+ · · · =

∞∑
n=0

3

4n
=

a

1− r
=

3

1− 1
4

= 4 .

Perhaps unfortunately, most infinite series are not geometric but
rather come in a variety of forms. I’ll give two below; they seem similar
but really exhibit very different behaviors:

Series 1: 1 +
1

2
+

1

3
+

1

4
+ · · ·
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Series 2: 1 +
1

22
+

1

32
+

1

42
+ · · · .

To see how the above two series differ, we shall consider the above
diagrams. The picture on the left shows that the area represented by
the sum 1 + 1

2 + 1
3 + · · · is greater than the area under the curve with

equation y = 1/x from 1 to ∞. Since this area is

∫ ∞
1

dx

x
= lnx

∣∣∣∣∣
∞

1
=∞,

we see that the infinite series 1 + 1
2 + 1

3 + · · · must diverge (to infin-
ity). This divergent series is often called the harmonic series. (This
terminology is justified by Exercise 20 on page 109.) Likewise, we see
that the series 1 + 1

22 + 1
32 + · · · can be represented by an area that

is ≤ 1 +
∫ ∞

1

dx

x2
= 1 − 1

x

∣∣∣∣∣
∞

1
= 2, which shows that this series cannot

diverge to ∞ and so converges to some number.7

5.2.1 Convergence/divergence of non-negative term series

Series 2 in the above discussion illustrates an important principle of
the real numbers. Namely, if a0, a1, a2, . . . is a sequence of real num-
bers such that

(i) a0 ≤ a1 ≤ a2 ≤ . . ., and

(ii) there is an upper bound M for each element of the sequence,
i.e., an ≤M for each n = 0, 1, 2, . . .,

7It turns out that this series converges to
π2

6
; this is not particularly easy to show.
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then the sequence converges to some limit L (which we might not be
able to compute!): lim

n→∞ an = L.

-�

6

?

M

r r r
r r r r r

(n, an)

r r

Figure 1

So what do sequences have to do with infinite series? Well, this

is simple: if each term an in the infinite series
∞∑
n=0

an is non-negative,

then the sequence of partial sums satisfies

a0 ≤ a0 + a1 ≤ a0 + a1 + a2 ≤ · · · ≤
k∑

n=0
an ≤ · · · .

Furthermore, if we can establish that for some M each partial sum

Sk =
k∑

n=0
an satisfies Sk ≤M then we have a limit, say, lim

k→∞
Sk = L, in

which case we write

∞∑
n=0

an = L.

In order to test a given infinite series
∞∑
n=0

an of non-negative terms for

convergence, we need to keep in mind the following three basic facts.

Fact 1: In order for
∞∑
n=0

an to converge it must happen that lim
n→∞ an =

0. (Think about this: if the individual terms of the series don’t get
small, there’s no hope that the series can converge. Furthermore,
this fact remains true even when not all of the terms of the series
are non-negative.)
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Fact 2: If Fact 1 is true, we still need to show that there is some

number M such that
k∑

n=0
an ≤M for all k.

Fact 3: Even when we have verified Facts 1 and 2, we still might
not (and usually won’t) know the actual limit of the infinite series
∞∑
n=0

an.

Warning about Fact 1: the requirement that lim
n→∞ an = 0 is a

necessary but not sufficient condition for convergence. Indeed, in

the above we saw that the series
∞∑
n=1

1

n
diverges but that

∞∑
n=1

1

n2
con-

verges.

Exercises

1. Apply Fact 1 above to determine those series which definitely will
not converge.

(a)
∞∑
n=0

n

n+ 1

(b)
∞∑
n=0

(−1)n

n

(c)
∞∑
n=2

lnn

n

(d)
∞∑
n=0

n

(lnn)2

(e)
∞∑
n=1

sinn

n

(f)
∞∑
n=0

(−1)n sinn

(g)
∞∑
n=2

(−1)nn2

2n

(h)
∞∑
n=0

n!

2n

(i)
∞∑
n=2

lnn

ln(n2 + 1)

2. Occassionally an infinite series can be computed by using a partial

fraction decomposition. For example, note that
1

n(n+ 1)
=

1

n
−

1

n+ 1
and so

∞∑
n=1

1

n(n+ 1)
=

∑
n=1

(
1

n
− 1

n+ 1

)

=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · · = 1.

Such a series is called a “telescoping series” because of all the
internal cancellations. Use the above idea to compute
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(a)
∞∑
n=0

1

4n2 − 1
(b)

∞∑
n=0

3

9n2 − 3n− 2

3. Consider the series

Σ =
∑{

1

n

∣∣∣∣∣ the integer n doesn’t contain the digit 0

}
.

Therefore, the series Σ contains reciprocals of integers, except that,
for example, 10 is thrown out, as is 20, as is 100, 101, etc. No 0s
are allowed! Determine whether this series converges. (Hint:

Σ = 1 +
1

2
+ · · ·+ 1

9

+
1

11
+

1

12
+ · · ·+ 1

19
+

1

21
+ · · ·+ 1

99

+
1

111
+

1

112
+ · · ·+ 1

999
+ · · ·

< 9 +
92

10
+

93

100
+ · · · .)

4. (Formal definition of e) Consider the sequence an =

(
1 +

1

n

)n
, n =

1, 2, . . . .

(a) Use the binomial theorem to show that an < an+1, n =
1, 2, . . .. (Note that in the expansions of an and an+1, the
latter has one additional term. Moreover, the terms of an can
be made to correspond to terms of an+1 with each of the terms
of the latter being larger.)

(b) Show that, for each positive n, an < 1+1+
1

2!
+

1

3!
+· · ·+ 1

n!
< 3.

(c) Conclude that lim
n→∞

(
1 +

1

n

)n
exists. The limit is the familiar

natural exponential base, e, and is often taken as the formal
definition.

(d) Show that for any real number x, lim
n→∞

Ç
1 +

x

n

ån
= ex. (Hint:

note that lim
n→∞

Ç
1 +

x

n

ån
= lim

m→∞

(
1 +

1

m

)mx
.)
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5. Prove that the limit lim
n→∞

Ñ
n∑
k=1

1

k
− lnn

é
exists; its limit is called

Euler’s constant8 and is denoted γ (≈ 0.577). To prove this just

draw a picture, observing that the sequence 1
2 <

n∑
k=1

1

k
− lnn < 1

for all n and that the sequence an =
n∑
k=1

1

k
− lnn is an decreasing

sequence.9

5.2.2 Tests for convergence of non-negative term series

In this subsection we’ll gather together a few handy tests for conver-
gence (or divergence). They are pretty intuitive, but still require prac-
tice.

The Limit Comparison Test

(i) Let
∞∑
n=0

an be a convergent series of positve terms and let
∞∑
n=0

bn

be a second series of positive terms. If for some R, 0 ≤ R <∞

lim
n→∞

bn
an

= R,

then
∞∑
n=0

bn also converges. (This is reasonable as it says that

8or sometimes the Euler-Mascheroni constant
9Drawing a picture shows that

1 +
1

2
+

1

3
+ · · ·+ 1

n− 1
− lnn ≥ 1

4
+

1

2

Å
1

2
− 1

3

ã
+

1

2

Å
1

3
− 1

4

ã
+ · · ·+ 1

2

Å
1

n− 1
− 1

n

ã
=

1

2
− 1

2n
.

Therefore,

1 +
1

2
+

1

3
+ · · ·+ 1

n
− lnn ≥ 1

2
+

1

2n
>

1

2
.

Next, that the sequence is decreasing follows from the simple observation that for all n > 0,
1

n+ 1
< ln

Å
n+ 1

n

ã
.

Finally, I’d like to mention in passing that, unlike the famous mathematical constants π and e
(which are not only irrational but actually transcendental), it is not even known whether γ is rational
or irrational.
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asymptotically the series
∞∑
n=0

bn is no larger than R times the con-

vergent series
∞∑
n=0

an.)

(ii) Let
∞∑
n=0

an be a divergent series of positve terms and let
∞∑
n=0

bn be

a second series of positive terms. If for some R, 0 < R ≤ ∞

lim
n→∞

bn
an

= R,

then
∞∑
n=0

bn also diverges. (This is reasonable as it says that

asymptotically the series
∞∑
n=0

bn is at least R times the divergent

series
∞∑
n=0

an.)

Let’s look at a few examples! Before going into these examples, note
that we may use the facts that

∞∑
n=1

1

n
diverges and

∞∑
n=1

1

n2
converges.

Example 1. The series
∞∑
n=2

1

2n2 − n+ 2
converges. We test this against

the convergent series
∞∑
n=2

1

n2
. Indeed,

lim
n→∞

(
1

2n2 − n+ 2

)
(

1

n2

) =
1

2
,

(after some work), proving convergence.

Example 2. The series
∞∑
n=0

1√
n+ 1

diverges, as
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lim
n→∞

(
1√
n+ 1

)
(

1

n

) =∞,

showing that the terms of the series
∞∑
n=0

1√
n+ 1

are asymptotically

much bigger than the terms of the already divergent series
∞∑
n=1

1

n
. There-

fore, by the Limit Comparison Test,
∞∑
n=0

1√
n+ 1

diverges.

Example 3. The series
∞∑
n=1

n2 + 2n+ 3

n9/2
converges. We compare it

with the convergent series
∞∑
n=1

1

n2
:

lim
n→∞

Ñ
n2 + 2n+ 3

n9/2

é
(

1

n2

) = lim
n→∞

n2 + 2n+ 3

n7/2
= 0,

proving convergence.

Example 4. The series
∞∑
n=2

1

(lnn)2
diverges. Watch this:
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lim
n→∞

1

(lnn)2(
1

n

) = lim
n→∞

n

(lnn)2

= lim
x→∞

x

(lnx)2

l’Hôpital
= lim

x→∞

d
dxx

d
dx(lnx)2

= lim
x→∞

x

(2 lnx)

l’Hôpital
= lim

x→∞

d
dxx

d
dx(2 lnx)

= lim
x→∞

x

2
=∞.

This says that, asymptotically, the series
∞∑
n=2

1

(lnn)2
is infinitely larger

than the divergent harmonic series
∞∑
n=2

1

n
implying divergence.

The next test will provide us with a rich assortment of series to test
with. (So far, we’ve only been testing against the convergent series
∞∑
n=1

1

n2
and the divergent series

∞∑
n=1

1

n
.)

The p-Series Test . Let p be a real number. Then

∞∑
n=1

1

np

converges if p > 1

diverges if p ≤ 1.

The p-series test is sometimes called the p-test for short; the proof

of the above is simple; just as we proved that
∞∑
n=1

1

n2
converged by

comparing it with
∫ ∞

1

dx

x2
(which converges) and that

∞∑
n=1

1

n
diverged by

comparing with
∫ ∞
1

dx

x2
(which diverges), we see that

∞∑
n=0

1

np
will have
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the same behavior as the improper integral
∫ ∞

1

dx

xp
. But, where p 6= 1,

we have

∫ ∞
1

dx

xp
=

x1−p

1− p

∣∣∣∣∣
∞

1
=


1
p−1 if p > 1

∞ if p < 1.

We already know that
∞∑
n=1

1

n
diverges, so we’re done!

The p-Test works very well in conjunction with the Limit Com-
parison Test. The following two examples might help.

Example 5.
∞∑
n=1

n2 + 2n+ 3

n7/2
converges. We compare it with the series

∞∑
n=1

1

n3/2
, which, by the p-test converges:

lim
n→∞

Ñ
n2 + 2n+ 3

n7/2

é
(

1

n3/2

) = lim
n→∞

n2 + 2n+ 3

n2
= 1,

proving convergence.

Example 6.
∞∑
n=1

n2 + 2n+ 3

n7/3
diverges. We compare it with the series

∞∑
n=1

1
3
√
n

, which, by the p-test diverges:

lim
n→∞

Ñ
n2 + 2n+ 3

n7/3

é
Ñ

1
3
√
n

é = lim
n→∞

n2 + 2n+ 3

n2
= 1,

proving divergence.

There is one more very useful test, one which works particularly
well with expressions containing exponentials and/or factorials. This
method is based on the fact that if |r| < 1, then the infinite geometric
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series a + ar + ar2 + · · · converges (to
a

1− r
). In this test we do not

need to assume that the series consists only of non-negative terms.

The Ratio Test Let
∞∑
n=0

an be an infinite series. Assume that

lim
n→∞

an+1

an
= R.

Then

(i) if |R| < 1, then
∞∑
n=0

an converges;

(ii) if |R| > 1, then
∞∑
n=0

an diverges;

(iii) if |R| = 1, then this test is inconclusive.

The reasoning behind the above is simple. First of all, in case (i) we

see that
∞∑
n=0

an is asymptotically a geometric series with ratio |R| < 1

and hence converges (but we still probably won’t know what the series

converges to). In case (ii) then
∞∑
n=0

an will diverge since asymptotically

each term is R times the previous one, which certainly implies that

lim
n→∞ an 6= 0, preventing convergence. Note that in the two cases

∞∑
n=1

1

n

and
∞∑
n=1

1

n2
we have lim

n→∞
an+1

an
= 1,10 which is why this case is inclusive.

We turn again to some examples.

Example 7. Consider the series
∞∑
n=1

(n+ 1)3

n!
. We have

10Indeed, we have in the first case

lim
n→∞

an+1

an
= lim
n→∞

Ä
1

n+1

ä(
1
n

) = lim
n→∞

n

n+ 1
= 1,

in the first case, and that

lim
n→∞

an+1

an
= lim
n→∞

Ä
1

(n+1)2

ä(
1
n2

) = lim
n→∞

n

n+ 1
= 1,

in the second case, despite the fact that the first series diverges and the second series converges.
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lim
n→∞

an+1

an
= lim

n→∞

Å
(n+2)3

(n+1)!

ãÅ
(n+1)3

n!

ã
= lim

n→∞
(n+ 2)3

(n+ 1)(n+ 1)3
= 0.

Therefore,
∞∑
n=1

(n+ 1)3

n!
converges.

Example 8. Consider the series
∞∑
n=1

n2

3n
. We have

lim
n→∞

an+1

an
= lim

n→∞

Å
(n+1)2

3n+1

ã
(
n2

3n

)
= lim

n→∞
(n+ 1)2

3n2
=

1

3
< 1.

It follows, therefore, that
∞∑
n=1

n2

3n
also converges.

Example 9. Consider the series
∞∑
n=1

n!

2n
. We have

lim
n→∞

an+1

an
= lim

n→∞

Å
(n+1)!
2n+1

ã
(
n!
2n

)
= lim

n→∞
n+ 1

2
=∞,

which certainly proves divergence.

Exercises

1. Test each of the series below for convergence.

(a)
∞∑
n=1

n+ 2

n2 + 10n
(b)

∞∑
n=0

n2 − n+ 2

n4 + n2 + 1



276 CHAPTER 5 Series and Differential Equations

(c)
∞∑
n=1

n2

√
n7 + 2n

(d)
∞∑
n=0

n2 + 2n

3n

(e)
∞∑
n=0

(n+ 1)3n

n!

(f)
∞∑
n=1

2n

nn

(g)
∞∑
n=1

n!

nn

(h)
∞∑
n=1

1(
1 + 1

n

)n
2. As we have already seen, the series

∞∑
n=1

1

n2
, converges. In fact, it is

known that
∞∑
n=1

1

n2
=
π2

6
; a sketch of Euler’s proof is given on page

228 of the Haese-Harris textbook.11 Using this fact, argue that

∞∑
n=0

1

(2n+ 1)2
=
π2

8
.

3. Prove the sinusoidal p-series test, namely that

∞∑
n=1

sin

(
2π

np

)converges if p > 1,

diverges if p ≤ 1.

(Of course, the 2π can be replaced by any constant. Exercise 2 on
page 256 is, of course, relevant here!)

4. Recall Euler’s φ-function φ (see page 63). Determine the behavior

of the series
∞∑
n=1

1

nφ(n)
. (See Exercise 16d on page 64.)

5. How about
∞∑
n=1

φ(n)

n2
?

6. Let F0, F1, F2, . . . be the terms of the Fibonacci sequence (see

page 93). Show that
∞∑
n=0

Fn
2n

converges and compute this sum ex-

plicitly. (Hint: you’ll probably need to work through Exercise 7
on page 106 first.)

11Peter Blythe, Peter Joseph, Paul Urban, David Martin, Robert Haese, and Michael Haese,
Mathematics for the international student; Mathematics HL (Options), Haese and
Harris Publications, 2005, Adelaide, ISBN 1 876543 33 7
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7. As in the above sequence, Let F0, F1, F2, . . . be the terms of the

Fibonacci sequence. Show that
∞∑
k=0

1

Fk
< α, where α =

1 +
√

5

2
(the golden ratio). (Hint: show that if k ≥ 2, then Fk > αk−1.
and then use the ratio test.)12

8. Consider the generalized Fibonacci sequence (see Exercise 9 on
page 106) defined by u0 = u1 = 1 and un+2 = un+1 + un. Show

that if a, b are such that un → 0 as n→∞, then
∞∑
n=0

un converges

and compute this sum in terms of a and b.

5.2.3 Conditional and absolute convergence; alternating se-
ries

In this subsection we shall consider series of the form
∞∑
n=0

an where

the individual terms an are not necessarily non-negative. We shall

first make the following useful definition. An infinite series
∞∑
n=0

an is

called absolutely convergent if the series
∞∑
n=0
| an| converges. This is

important because of the following result.

Theorem. If the series
∞∑
n=0

an is absolutely convergent, then it is con-

vergent.

Proof. Note that we clearly have

0 ≤ an + |an| ≤ 2|an|, n = 0, 1, 2, . . . .

Since
∞∑
n=0

2|an| converges, so does
∞∑
n=0

(an+ |an|); call the limit L. There-

fore,
∞∑
n=0

an = L−
∞∑
n=0
|an|, proving that

∞∑
n=0

an converges, as well.

12The above says, of course, that the infinite series of the reciprocals of the Fibonacci numbers
converges. Its value is known to be an irrational number ≈ 3.35988566...
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We consider a couple of simple illustrations of the above theorem.

Example 1. The series
∞∑
n=1

(−1)n

n2
will converge by the above theorem,

together with the p-Test.

Example 2. The series
∞∑
n=0

(−1)n

n
does not converge absolutely; how-

ever, we’ll see below that this series does converge.

An infinite series
∞∑
n=0

an which converges but is not absolutely con-

vergent is called conditionally convergent. There are plenty of con-
ditionally convergent series, as guaranteed by the following theorem.

Theorem. (Alternating Series Test) Let a0 ≥ a1 ≥ a2 ≥ · · · ≥ 0

and satisfy lim
n→∞ an = 0. Then the “alternating series”

∞∑
n=0

(−1)nan

converges.13

We’ll conclude this section with two illustrations of the Alternating
Series Test.

Example 3. We know that the harmonic series
∞∑
n=1

1

n
diverges; how-

ever, since the terms of this series decrease and tend to zero, the Al-

ternating Series Test guarantees that
∞∑
n=1

(−1)n−1

n
converges. We’ll

show later on that this actually converges to ln 2 (see page 302).

Example 4. The series
∞∑
n=0

n

n2 + 1
can be shown to diverge by applying

the Limit Comparison Test with a comparison with the harmonic

13The proof of this is pretty simple. First of all, note that the “even” partial sums satisfy

(a0 − a1) ≤ (a0 − a1) + (a2 − a3) ≤ (a0 − a1) + (a2 − a3) + (a4 − a5) ≤ · · · ,

so it suffices to show that these are all bounded by some number (see Figure 1, page 266). However,
note that

a0 − ((a1 − a2) + (a3 − a4) + (a5 − a6) + · · ·+ (a2n−3 − a2n−2)︸ ︷︷ ︸
This is positive!

)− a2n−1 ≤ a0,

so we’re done.
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series (do this!). However, the terms decrease and tend to zero and so

by the Alternating Series Test
∞∑
n=0

(−1)nn

n2 + 1
converges.

Exercises

1. Test each of the series below for convergence.

(a)
∞∑
n=1

(−1)n
n+ 2

n2 + 10n

(b)
∞∑
n=2

(−1)n

lnn

(c)
∞∑
n=1

(−1)n
lnn

ln(n3 + 1)

(d)
∞∑
n=1

(
1

n
− 1

n2

)

(e)
∞∑
n=2

(−1)n
ln lnn

lnn

(f)
∞∑
n=1

(−1)n(
1 + 1

n

)n
(g)

∞∑
n=1

(−1)n√
n+
√
n+ 1

(h)
∞∑
n=1

(−2)n

n!

2. Determine whether each of the series above converges condition-
ally, converges absolutely or diverges.

3. Prove that the series the improper integral
∫ ∞
−∞

sinx

x
dx converges.14

4. Prove that the improper integral
∫ ∞

0
cosx2 dx converges.15 (Hint:

try the substitution u = x2 and see if you can apply the Alternating
Series Test.)

5. Consider the infinite series
∞∑
n=0

εn
2n

, where each εn is ±1. Show that

any real number x, −2 ≤ x ≤ 2 can be represented by such a
series by considering the steps below:

(a) Write Σ =
∞∑
n=0

εn
2n

= Σ+ − Σ−, where Σ+ is the sum of the

positive terms in Σ and where Σ− is −(negative terms in Σ).

14In fact, it converges to π.

15This can be shown to converge to
1

2

…
π

2
.
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(See the footnote.16) By thinking in terms of binary decimal
representations (See, e.g., Exercise 4 on page 92) argue that
any real number y with |y| ≤ 2 can be represented in the form
Σ+.

(b) If Σ+ = y, show that Σ+ − Σ− = 2(y − 1).

(c) Conclude that any number x between −2 and 2 can be repre-

sented as Σ+−Σ− and hence as the infinite series
∞∑
n=0

εn
2n

. (This

result is not true if the series is replaced by, say, one of the

form
∞∑
n=0

εn
3n

. While the values of such a series would always

lie between −3
2 and 3

2 , and despite the fact that uncountably
many such numbers would occur, the set of such numbers is
still very small.17

5.2.4 The Dirichlet test for convergence (optional discussion)

There is a very convenient test which can be thought of as a gener-
alization of the alternating series test and often applies very nicely to
testing for conditional convergence. For example, we may wish to test

the series
∞∑
n=1

cosn

n
for convergence. It is not clear whether this series

is absolutely convergent18, nor is it an alternating series, so none of the
methods presented thus far apply.

Let us first consider the following very useful lemma.

Lemma. Let (an) and (bn) be two sequences and set sn =
n∑
k=1

ak. Then

one has

16There is an important result being used here, namely that if
∑
un is an absolutely convergent

series, then its sum is unaffected by any rearrangement of its terms.
17The smallness of this set is best expressed by saying that it has “measure zero.” Alternatively, if

we were to select a real number randomly from the interval
[
− 3

2 ,
3
2

]
, then the probability of selecting

a number of the form
∞∑
n=0

εn
3n

is zero. Finally, if instead of allowing the numerators εn to be ±1 we

insisted that they be either 0 or 2, then what results is the so-called Cantor Ternary Set (which
also has measure zero).

18It’s not, but this takes some work to show.
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n∑
k=1

akbk = snbn+1 +
n∑
k=1

sk(bk − bk+1).

Proof. Setting s0 = 0 we obviously have ak = sn− sk−1, k ≥ 1. From
this, one has

n∑
k=1

akbk =
n∑
k=1

(sk − sk−1)bk

=
n∑
k=1

skbk −
n∑
k=1

sk−1bk

= snbn+1 +
n∑
k=1

sk(bk − bk+1).

Dirichlet’s Theorem for Convergence. Let (an) and (bn) be

two sequences of real numbers. If the partial sums

∣∣∣∣∣ n∑
k=1

an

∣∣∣∣∣ are all

bounded by some constant M , and if

b1 > b2 > b3 > · · · ≥ 0 with lim
n→∞ bn = 0,

then the series
∞∑
k=1

akbk converges.

Proof. Setting sn =
n∑
k=1

an and rn =
n∑
k=1

akbk we have from the above

lemma that

rn − rm = snbn+1 − smbm+1 +
n∑

k=m+1

sk(bk − bk+1),

where n ≥ m are positive indices. Taking absolute values and applying
the Triangle inequality provides

|rn − rm| ≤ |sn|bn+1 + |sm|bm+1 +
n∑

k=m+1

|sk|(bk − bk+1)

≤ Mbn+1 +Mbm+1 +M
n∑

k=m+1

(bk − bk+1)

= 2Mbm+1.
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Since bk → 0 as k → ∞, we conclude that (rn) is a Cauchy sequence
of real numbers, hence converges.

As a corollary to the above, let’s consider the convergence of the

sequence alluded to above, viz.,
∞∑
n=1

cosn

n
. To do this, we start with the

fact that for all integers k,

2 sin(1/2) cos k = sin(k + 1/2)− sin(k − 1/2).

Therefore,

∣∣∣2 sin(1/2)

∣∣∣∣∣ ·
∣∣∣∣∣ n∑
k=1

cos k

∣∣∣∣∣ =

∣∣∣∣∣ n∑
k=1

(sin(k + 1/2)− sin(k − 1/2))

∣∣∣∣∣
=

∣∣∣∣∣ sin(n+ 1/2)− sin(1/2)

∣∣∣∣∣
≤ 2.

Since sin(1/2) 6= 0 we already see that
n∑
k=1

cos k is bounded, and Dirich-

let’s theorem applies, proving the convergence of
∞∑
n=1

cosn

n
.

Exercises

1. Strenghten the result proved above by proving that the series
∞∑
n=1

cosnx

np
converges whenever p > 0, and x is not an integral

multiple of 2π.

2. Prove that
∞∑
n=1

sinnx

np
converges whenever p > 0.

5.3 The Concept of a Power Series

Let us return to the familiar geometric series, with ratio r satisfying
|r| < 1.
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a+ ar + ar2 + · · · =
a

1− r
.

Let’s make a minor cosmetic change: rather than writing r in the
above sum, we shall write x:

a+ ax+ ax2 + · · · =
a

1− x
, |x| < 1.

In other words, if we set

f(x) = a+ ax+ ax2 + · · · =
∞∑
n=0

axn and set g(x) =
a

1− x
,

then the following facts emerge:

(a) The domain of f is −1 < x < 1, and the domain of g is x 6= 1.

(b) f(x) = g(x) for all x in the interval −1 < x < 1.

We say, therefore, that
∞∑
n=0

axn is the power series representation

of g(x), valid on the interval −1 < x < 1.

So what is a power series anyway? Well, it’s just an expression of
the form

∞∑
n=0

anx
n,

where a0, a1, a2, . . . are just real constants. For any particular value of
x this infinite sum may or may not converge; we’ll have plenty to
say about issues of convergence.
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5.3.1 Radius and interval of convergence

Our primary tool in determining the convergence properies of a power

series
∞∑
n=0

anx
n will be the Ratio Test. Recall that the series

∞∑
n=0
|anxn|

will converge if

1 > lim
n→∞

|an+1x
n+1|

|anxn|

= |x| lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣,
which means that

∞∑
n=0

anx
n is absolutely convergent for all x satisfying |x| < lim

n→∞

∣∣∣∣∣ anan+1

∣∣∣∣∣ .

The quantity R = lim
n→∞

∣∣∣∣∣ anan+1

∣∣∣∣∣ is sometimes called the radius of con-

vergence of the power series
∞∑
n=0

anx
n. Again, as long as −R < x < R,

we are guaranteed that
∞∑
n=0

anx
n is absolutely convergent and hence

convergent.

A few simple examples should be instructive.

Example 1. The power series
∞∑
n=0

(−1)nxn

2n+ 1
has radius of convergence

R = lim
n→∞

∣∣∣∣∣ anan+1

∣∣∣∣∣ = lim
n→∞

(
n

2n+1

)
(
n+1
2n+3

) = lim
n→∞

n(2n+ 3)

(n+ 1)(2n+ 1)
= 1.

This means that the above power series has radius of convergence 1 and
so the series is absolutely convergent for −1 < x < 1.

Example 2. The power series
∞∑
n=0

nxn

2n
has radius of convergence
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R = lim
n→∞

∣∣∣∣∣ anan+1

∣∣∣∣∣ = lim
n→∞

(
n
2n

)
(
n+1
2n+1

) = lim
n→∞

2n

n+ 1
= 2,

so in this case the radius of convergence is 2, which guarantees that the
power series converges for all x satisfying −2 < x < 2.

Example 3. Consider the power series
∞∑
n=0

(−1)nxn

n!
. In this case the

radius of convergence is similarly computed:

R = lim
n→∞

∣∣∣∣∣ anan+1

∣∣∣∣∣ = lim
n→∞

(
1
n!

)Å
1

(n+1)!

ã = lim
n→∞n+ 1 = ∞.

This infinite radius of convergence means that the power series
∞∑
n=0

(−1)nxn

n!
actually converges for all real numbers x.

Example 4. We consider here the series
∞∑
n=0

(x+ 2)n

n2n
, which has radius

of convergence

R = lim
n→∞

(n+ 1)2n+1

n2n
= 2.

This means that the series will converge where |x + 2| < 2, i.e., where
−4 < x < 0.

Example 5. Here we consider the power series
∞∑
n=0

nx2n

2n
. The radius

of convergence is

R = lim
n→∞

n

2n
· 2n+1

2(n+ 1)
= 2.

But this is a power series in x2 and so will converge if x2 < 2. This
gives convergence on the interval −

√
2 < x <

√
2.
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In the examples above we computed intervals within which we are
guaranteed convergence of the power series. Next, note that for values
of x outside the radius of convergence we cannot have convergence,
for then the limit of the ratios will be greater than 1, preventing the
individual terms from approaching 0. This raises the question of con-
vergence at the endpoints. We shall investigate this in the examples
already considered above.

Example 6. We have seen that the power series
∞∑
n=0

(−1)nxn

2n+ 1
has

radius of convergence R = 1 meaning that this series will converge in
the interval −1 < x < 1. What if x = −1? What if x = 1? Well,
we can take these up separately, using the methods of the previous two
subsections. If x = −1, we have the series

∞∑
n=0

(−1)n(−1)n

2n+ 1
=

∞∑
n=0

1

2n+ 1
,

which diverges (use the Limit Comparison Test against the har-
monic series). If x = 1, then the series becomes

∞∑
n=0

(−1)n

2n+ 1
,

which converges by the Alternating Series Test. We therefore know
the full story and can state the interval of convergence:

∞∑
n=0

(−1)nxn

2n+ 1
has interval of convergence − 1 < x ≤ 1.

Example 7. We saw that the power series
∞∑
n=0

nxn

2n
has radius of con-

vergence r = 2. What about the behavior of the series when x = ±2.
If x = −2 we have the series

∞∑
n=0

n(−2)n

2n
=

∞∑
n=0

(−1)nn which diverges,

whereas when x = 2, we have
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∞∑
n=0

n2n

2n
=

∞∑
n=0

n which also diverges.

Therefore,

∞∑
n=0

nxn

2n
has interval of convergence − 2 < x < 2.

Example 8. The power series
∞∑
n=0

(−1)nxn

n!
has infinite radius of con-

vergence so there are no endpoints to check.

Before closing this section, we should mention that not all power se-

ries are of the form
∞∑
n=0

anx
n; they may appear in a “translated format,”

say, one like
∞∑
n=0

an(x − a)n, where a is a constant. For example, con-

sider the series in Example 4, on page 285. What would the interval of
convergence look here? We already saw that this series was guaranteed
to converge on the interval −4 < x < 0. If x = −4, then this series
is the convergent alternating harmonic series. If x = 0, then the series
becomes the divergent harmonic series. Summarizing, the interval of
convergence is −4 ≤ x < 0.

Exercises

1. Determine the radius of convergence of each of the power series
below:

(a)
∞∑
n=0

nxn

n+ 1

(b)
∞∑
n=0

nxn

2n

(c)
∞∑
n=0

(−1)nx2n

n2 + 1

(d)
∞∑
n=0

(−1)nx2n

3n

(e)
∞∑
n=0

(x+ 2)n

2n

(f)
∞∑
n=0

(−1)n(x+ 2)n

2n

(g)
∞∑
n=0

(2x)n

n!

(h)
∞∑
n=1

xn(
1 + 1

n

)n
(i)

∞∑
n=1

n lnnxn

2n
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2. Determine the interval convergence of each of the power series
below:

(a)
∞∑
n=0

nxn

n+ 1

(b)
∞∑
n=0

nxn

2n

(c)
∞∑
n=1

xn

n2n

(d)
∞∑
n=0

(−1)n(x− 2)2n

3n

(e)
∞∑
n=1

(−1)n(x+ 2)n

n2n

(f)
∞∑
n=0

(−1)n(x+ 2)n

2n

(g)
∞∑
n=0

(2x)n

n!

(h)
∞∑
n=2

(−1)nxn

n lnn2n

(i)
∞∑
n=1

(−1)nn lnnxn

2n

(j)
∞∑
n=0

(3x− 2)n

2n

5.4 Polynomial Approximations; Maclaurin and Tay-

lor Expansions

Way back in our study of the linearization of a function we saw that
it was occassionally convenient and useful to approximate a function by
one of its tangent lines. More precisely, if f is a differentiable function,
and if a is a value in its domain, then we have the approximation

f ′(a) ≈ f(x)− f(a)

x− a
, which results in

f(x) ≈ f(a) + f ′(a)(x− a) for x near a.

A graph of this situation should help remind the student of how good
(or bad) such an approximation might be:
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Notice that as long as x does not move too far away from the point a,
then the above approximation is pretty good.

Let’s take a second look at the above. Note that in approximating
a function f by a linear function L near the point a, then

(i) The graph of L will pass through the point (a, f(a)), i.e., L(a) =
f(a), and

(ii) The slope of the line y = L(x) will be the same as the derivative
of f at x = a, i.e., L′(a) = f ′(a).

That is the say, the “best” linear function L to use in approximating f
near a is one whose 0-th and first derivatives at x = a are the same as
for f :

L(a) = f(a) and L′(a) = f ′(a).

So what if instead of using a straight line to approximate f we were
to use a quadratic function Q? What, then, would be the natural
requirements? Well, in analogy with what was said above we would
require f and Q to have the same first three derivatives (0-th, first, and
second) at x = a:

Q(a) = f(a), Q′(a) = f ′(a), and Q′′(a) = f ′′(a).
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Such a quadratic function is actually very easy to build: the result
would be that

Q(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2.

(The reader should pause here to verify that the above quadratic func-
tion really does have the same first three derivatives as f at x = a.)

This “second-order” approximation is depicted here. Notice the im-
provement over the linear approximation.

In general, we may approximate a function with a polynomial Pn(x)
of degree n by insisting that this polynomial have all of its first n + 1
derivatives at x = a equal those of f :

Pn(a) = f(a), P ′n(a) = f ′(a), P ′′n (a) = f ′′(a), · · · , P (n)
n (a) = f (n)(a),

where, in general, f (k)(x) denotes the k-th derivative of f at x. It is
easy to see that the following gives a recipe for Pn(x):

Pn(x) = f(a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)+

f ′′′(a)

3!
(x−a)3+· · ·+f (n)(a)(x−a)n
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=
n∑
k=0

f (k)(a)

n!
(x− a)k.

We expect, then, to have a pretty good approximation

f(x) ≈
n∑
k=0

f (k)(a)

n!
(x− a)k.

The polynomial Pn(x) =
n∑
k=0

f (k)(a)

n!
(x − a)k is called the Taylor

polynomial of degree n for f at x = a. If a = 0, the above polyno-
mial becomes

f(x) ≈
n∑
k=0

f (k)(a)

n!
xk

and is usually called the Maclaurin polynomial of degree n for f .

What if, instead of stopping at a degree n polynomial, we continued
the process indefinitely to obtain a power series? This is possible and
we obtain

∞∑
k=0

f (k)(a)

n!
(x− a)k Taylor series for f at x = a, and

∞∑
k=0

f (k)(a)

n!
xk Maclaurin series for f.

Warning. It is very tempting to assume that the Taylor series for a
function f will actually converge to f(x) on its interval of convergence,
that is,

f(x) =
∞∑
k=0

f (k)(a)

n!
(x− a)k.
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For most of the functions we’ve considered here, this is true, but the
general result can fail.19 As a result, we shall adopt the notation

f(x) ∼
∞∑
k=0

f (k)(a)

n!
(x− a)k

to mean that f(x) is represented by the power series
∞∑
k=0

f (k)(a)

n!
(x−

a)k; in Subsection 3.2 we’ll worry about whether “∼” can be replaced
with “=”. First, however, we shall delve into some computations.

5.4.1 Computations and tricks

In this subsection we’ll give some computations of some Taylor and
Maclaurin series, and provide some interesting shortcuts along the way.

Example 1. Let f(x) = sin x and find its Maclaurin series expansion.
This is simple as the derivatives (at x = 0) are easy to compute

f (0)(x) = sin 0 = 0, f ′(0) = cos 0 = 1, f ′′(0) = − sin 0 = 0,

f ′′′(0) = − cos 0 = −1, f (4)(0) = sin 0 = 0,

and the pattern repeats all over again. This immediately gives the
Maclaurin series for sinx:

sinx ∼ x− x3

3!
+
x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

19As an example, consider the function f defined by setting

f(x) =

®
e−1/x

2

if x 6= 0

0 if x = 0.

One can show that all derivatives of f vanish at x = 0 and so cannot equal its Maclaurin series in
any interval about x = 0.
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Example 2. (A handy trick) If we wish to compute the Maclaurin
series for cosx, we could certainly follow the same procedure as for the
sinx in the above example. However, since cosx = d

dx sinx, we can
likewise obtain the Maclaurin series for the cosx by differentiating that
for the sinx, this yields the series

cosx ∼ d

dx

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
=
∞∑
n=0

(−1)n
x2n

(2n)!
.

Example 3. We we wanted to compute the Maclaurin series for sinx2,
then computing the higher-order derivatives of sinx2 would be ex-
tremely tedious! A more sensible alternative would be to simply replace
x by x2 in the Maclaurin series for sinx:

sinx2 ∼ x2 − x6

3!
+
x10

5!
− x14

7!
+ · · · =

∞∑
n=0

(−1)n
x4n+2

(2n+ 1)!
.

Example 4. (A handy trick) Since ln(1+x) =
∫ dx

1 + x
we may start

with the geometric series

1− x+ x2 − · · · =
∞∑
n=0

(−1)nxn =
1

1 + x
,

and then integrate each term to obtain the Maclaurin series for ln(1 +
x) :

ln(1 + x) ∼ x− x2

2
+
x3

3
− · · · =

∞∑
n=0

(−1)n
∫
xn dx =

∞∑
n=0

xn+1

n+ 1
.

(Note that there is no constant occuring in the above integrations since
when x = 0, ln(1 + x) = ln 1 = 0.)

Example 5. Since
dn

dxn
ex = ex = 1 at x = 0, we immediately have the

Maclaurin series expansion for ex:

ex ∼ 1 + x+
x2

2!
+
x3

3!
+ · · · =

∞∑
n=0

xn

n!
.
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Example 6. (A handy trick) In the above series we may substitute
−x2 for x and get the Maclaurin series for e−x

2

:

e−x
2 ∼ 1− x2 +

x4

2!
− x6

3!
+ · · · =

∞∑
n=0

(−1)n
x2n

n!
.

Note how easy this is compared to having to calculate dn

dxn (e−x
2

) (where
the chain and product rules very much complicate things!).

Example 7. (A handy trick) Let’s find the Maclaurin series expan-

sion of the function f(x) =
sinx

x
. In this case, we certainly wouldn’t

want to compute successive derivatives of the quotient
sinx

x
. However,

remembering the Maclaurin series expansion of sinx and then dividing
by x will accomplish the same thing much more easily; the resulting
series is

sinx

x
∼ 1− x2

3!
+
x4

5!
− · · · =

∞∑
n=0

(−1)n
x2n

(2n+ 1)!
.

Example 8. The Taylor series expansion of cosx about x =
π

2
.

We have, where f(x) = cosx, that f
(
π
2

)
= cos

(
π
2

)
= 0, f ′

(
π
2

)
=

− sin
(
π
2

)
= −1, f ′′

(
π
2

)
= − cos

(
π
2

)
= 0, f ′′′

(
π
2

)
= sin

(
π
2

)
= 1, after

which point the cycle repeats. Therefore, the Taylor series is

cosx ∼ −
(
x− π

2

)
+

(
x− π

2

)3

3!
−
(
x− π

2

)5

5!
+ · · · =

∞∑
n=1

(−1)n
(
x− π

2

)2n−1

(2n− 1)!
.

Example 9. (A handy trick) We know that

1 + x+ x2 + x3 + · · · =
∑
n=0

xn =
1

1− x
valid for |x| < 1.

we can get further valid sums by differentiating the above:

1 + 2x+ 3x2 + 4x3 + · · · =
∞∑
n=0

(n+ 1)xn

=
d

dx

(
1

1− x

)
=

1

(1− x)2
, valid for |x| < 1.
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Further valid sums can be obtained by differentiating.

Exercises

1. Find the Maclaurin series expansion for each of the functions be-
low:

(a)
1

1− x2

(b)
2x

1− 2x2

(c)
1

(1− x)2

(d)
1

(1− x2)2

(e) x2 sinx

(f) sin2 x (Hint: Use a double-
angle identity.)

(g)
1

(1− x)3

(h) ln(1 + x2)

(i) tan−1 4x

(j) xex
2

2. Find the Maclaurin series expansion for the rational function

f(x) =
x+ 1

x2 + x+ 1
. (Don’t try to do this directly; use an appro-

priate trick.)

3. Sum the following series:

(a)
∞∑
n=0

(x+ 1)n

(b)
∞∑
n=1

n(x+ 1)n

(c)
∞∑
n=0

(−1)nxn

(n+ 1)!

(d)
∞∑
n=1

(−1)n+1xn

n

(e)
∞∑
n=1

(−1)n+1x2n

n

(f)
∞∑
n=1

n2xn

4. Sum the following numerical series:

(a)
∞∑
n=0

(−1)nπ2n+1

(2n+ 1)!

(b)
∞∑
n=1

(−1)n+1(e− 1)n

n

(c)
∞∑
n=0

(−1)n(ln 2)n

(n+ 1)!

(d)
∞∑
n=1

(−1)n+1

n22n

(e)
∞∑
n=1

n2

3n
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5. Consider the function defined by setting f(x) = ln(1 + sinx).

(a) Determine the Maclaurin series expansion for f(x) through
the x4 term.

(b) Using (a) determine the Maclaurin series expansion for the
function g(x) = ln(1− sinx).

(c) Using (a) and (b), determine the Maclaurin series expansion
for ln secx.

6. Consider the following integral

I =
∫ 1

0

(∫ 1

0

dy

1− xy

)
dx.

(a) Using integration by parts, show that the internal integral is

equal to
− ln(1− x)

x
.

(b) Determine the Maclaurin series expansion for this.

(c) Use a term-by-term integration to show that

I =
∞∑
n=1

1

n2
,

(which, as mentioned on page 276 is = π2

6 . See the footnote.20)

7. Here’s a self-contained proof that
∞∑
n=1

=
π2

6
. (See the footnote.21)

Step 1. To show that for any positive integer m,

m∑
k=1

cot2 kπ

2m+ 1
=
m(2m− 1)

3
.

To complete step 1, carry out the following arguments.

20Using the variable change u = 1
2 (y + x), v = 1

2 (y − x), one can show in the above “double

integral” is equal to π2

6 , giving an alternative proof to that alluded in HH, Exercise 15, page 228.
Showing that the double integral has the correct value requires some work!

21This is distilled from I. Papadimitriou, A Simple Proof of the Formula
∞∑
k=1

1
k2 = π2

6 . Amer.

Math. Monthly 80, 424–425, 1973.
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(i) By equating the imaginary parts of DeMoivre’s formula

cosnθ + i sinnθ = (cos θ + i sin θ)n = sinn θ(cot θ + i)n,

obtain the identity

sinnθ = sinn θ


Ñ
n

1

é
cotn−1 θ −

Ñ
n

3

é
cotn−3 θ +

Ñ
n

5

é
cotn−5 θ − · · ·

 .
(ii) Let n = 2m+ 1 and express the above as

sin(2m+ 1)θ = sin2m+1 θPm(cot2 θ), 0 < θ <
π

2
,

where Pm(x) is the polynomial of degree m given by

Pm(x) =

Ñ
2m+ 1

1

é
xm−

Ñ
2m+ 1

3

é
xm−1+

Ñ
2m+ 1

5

é
xm−2−· · · .

(iii) Conclude that the real numbers

xk = cot2
(

kπ

2m+ 1

)
, 1 ≤ k ≤ m,

are zeros of Pm(x), and that they are all distinct.
Therefore, x1, x2, . . . , xm comprise all of the zeros of Pm(x).

(iv) Conclude from part (iii) that

m∑
k=1

cot2
(

kπ

2m+ 1

)
=

m∑
k=1

xk =

Ñ
2m+ 1

3

é¬Ñ2m+ 1

1

é
=
m(2m− 1)

3
,

proving the claim of Step 1.

Step 2. Starting with the familiar inequality sinx < x < tanx
for 0 < x < π/2, show that

cot2 x <
1

x2
< 1 + cot2 x, 0 < x <

π

2
.

Step 3. Put x =
kπ

2m+ 1
, where k and m are positive integers

and 1 ≤ k ≤ m, and infer that

m∑
k=1

cot2
(

kπ

2m+ 1

)
<

(2m+ 1)2

π2

m∑
k=1

1

k2
< m+

m∑
k=1

cot2
(

kπ

2m+ 1

)
.



298 CHAPTER 5 Series and Differential Equations

Step 4. Use step 1 to write the above as

m(2m− 1)

3
<

(2m+ 1)2

π2

m∑
k=1

1

k2
< m+

m(2m− 1)

3
.

Step 5. Multiply the inequality of step 4 through by
π2

4m2
and let

m→∞. What do you get?

5.4.2 Error analysis and Taylor’s theorem

In this final subsection we wish to address two important questions:

Question A: If Pn(x) is the Maclaurin (or Taylor) polynomial of
degree n for the function f(x), how good is the approximation
f(x) ≈ Pn(x)? More precisely, how large can the error
|f(x)− Pn(x)| be?

Question B: When can we say that the Maclaurin or Taylor series of
f(x) actually converges to f(x)?

The answers to these questions are highly related.

The answer to both of these questions is actually contained in Tay-
lor’s Theorem with Remainder. Before stating this theorem, I
want to indicate that this theorem is really just a generalization of the
Mean Value Theorem, which I’ll state below as a reminder.

Mean Value Theorem. Let f be a differentiable function on some
open interval I. If a and x are both in I, then there exists a real number
c between a and x such that

f(x)− f(a)

x− a
= f ′(c).

Put differently, there exists a number c between a and x such that

f(x) = f(a) + f ′(c)(x− a) .
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Having been reminded of the Mean Value Theorem, perhaps now
Taylor’s Theorem with Remainder won’t seem so strange. Here it
is.

Taylor’s Theorem with Remainder. Let f be an infinitely-differentiable
function on an open interval I. If a and x are in I, and if n is a non-
negative integer, then there exists a real number c between a and x
such that

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·

· · ·+ f (n)(a)

n!
(x− a)n +

f (n+1)(c)

(n+ 1)!
(x− a)n+1

︸ ︷︷ ︸
this is the remainder

.

Proof.22 We start by proving that, for all n ≥ 0

f(x) = f(a)+f ′(a)(x−a)+
f ′′(a)

2!
+· · ·+f

(n)(a)

n!
(x−1)n+

∫ x
a

f (n+1)(t)

n!
(x−t)n dt.

Note that since ∫ x
a
f ′(t) dt = f(x)− f(a),

then a simple rearrangement gives

f(x) = f(a) +
∫ x
a
f ′(t) dt,

which is the above statement when n = 0. We take now as our induction
hypothesis, that

f(x) = f(a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+· · ·+f

(n−1)(a)

(n− 1)!
(x−a)n+

∫ x
a

f (n)(t)

(n− 1)!
(x−t)n−1 dt

is true.
We evaluate the integral using integration by parts with the substi-

tution
22Very few textbooks at this level provide a proof; however, since the two main ingredients are

induction and integration by parts, I felt that giving the proof would be instructive reading for the
serious student.
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u = f (n)(t) dv =
(x− t)(n−1)

(n− 1)!
dt.

du = f (n+1)(t) dt v = −(x− t)n

n!

From the above, one obtains

∫ x
a

f (n)(t)

(n− 1)!
(x− t)(n−1) dt = −f (n)(t)

(x− t)n

n!

∣∣∣∣∣
x

a
+
∫ x
a

f (n+1)(t)

n!
(x− t)n dt

=
f (n)(a)

n!
(x− a)n +

∫ x
a

f (n+1)(t)

n!
(x− t)n dt

Plugging this into the induction hypothesis shows that the original
statement is correct for all n.

Next, note that if F = F (t) is a continuous function of t, then one
has that ∫ b

a
F (t) dt = F (c)(b− a)

for some number c between a and b. (Indeed F (c) is the average value
of F on the interval [a, b].) Using the substitution u = (x− t)(n+1), and
applying the above observation, we have

(n+ 1)
∫ x
a
F (t)(x− t)n dt =

∫ (x−a)(n+1)

0
F (x− n+1

√
u) du

= F (x− n+1
√
α)(x− a)n+1,

where α is between 0 and (x − a)(n+1). If we set c = x − n+1
√
α we see

that c is between a and x and that

(n+ 1)
∫ x
a
F (t)(x− t)n dt = F (c)(x− a)(n+1).

Now set F (t) =
f (n+1)(t)

n!
and apply the above to infer that

∫ x
a

f (n+1)(t)

n!
(x− t)n dt =

f (n+1)(c)

(n+ 1)!
(x− a)n+1.

This completes the proof.



SECTION 5.4 Polynomial Approximations 301

The above remainder (i.e., error term) is called the Lagrange form
of the error.

We’ll conclude this subsection with some examples.

Example 1. As a warm-up, let’s prove that the Maclaurin series for
cosx actually converges to f(x) = cos x for all x. We have, by Taylor’s
Theorem with Remainder, that

cosx = 1− x2

2!
+
x4

4!
− · · · ± x2n

(2n!)
+
f (2n+1)(c)

(2n+ 1)!
x2n+1,

for some real number c between 0 and x. Since all derivatives of cosx

are ± sinx or ± cosx, we see that

∣∣∣∣∣f (2n+1)(c)

∣∣∣∣∣ ≤ 1. This means that for

fixed x, if we let n→∞, then the remainder

f (2n+1)(c)

(2n+ 1)!
x2n+1 → 0,

proving that

cosx = 1− x2

2!
+
x4

4!
− · · · =

∞∑
n=0

(−1)n
x2n

(2n)!
.

Example 2. Here’s a similar example. By Taylor’s Theorem with
Remainder, we have for f(x) = ln(1 + x), that

ln(1 + x) = x− x2

2
+
x3

3
− · · · ± xn

n
+
f (n+1)(c)

(n+ 1)!
xn+1,

for some real number c between 0 and x. It is easy to verify that the
Maclaurin series for ln(1+x) has interval of convergence −1 < x ≤ 1, so

we need to insist that x is in this interval. Since f (n+1)(c) =
n!

(1 + c)n+1
,

we see that the error term satisfies

∣∣∣∣∣f
(n+1)(c)

(n+ 1)!
xn+1

∣∣∣∣∣ =

∣∣∣∣∣ n!xn+1

(1 + c)n+1(n+ 1)!

∣∣∣∣∣ =

∣∣∣∣∣ xn+1

(1 + c)n+1(n+ 1)

∣∣∣∣∣
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In this case, as long as −1
2 ≤ x ≤ 1, then we are guaranteed that∣∣∣∣∣ xn+1

(1 + c)n+1

∣∣∣∣∣ ≤ 1. Therefore, as n → ∞ we have

∣∣∣∣∣ xn+1

(1+c)n+1(n+1)

∣∣∣∣∣ → 0.

Therefore, we at least know that for if −1
2 ≤ x ≤ 1,

ln(1 + x) = x− x2

2
+
x3

3
− · · · =

∞∑
n=1

(−1)n−1x
n

n
.

In particular, this proves the fact anticipated on page 278, viz., that

ln(2) = 1− 1

2
+

1

3
− · · · =

∞∑
n=1

(−1)n−1 1

n
.

Example 3. One easily computes that the first two terms of the

Maclaurin series expansion of
√

1 + x is 1 +
x

2
. Let’s give an upper

bound on the error

∣∣∣∣∣√1 + x−
Ç

1 +
x

2

å ∣∣∣∣∣
when |x| < 0.01. By Taylor’s Theorem with Remainder, we know

that the absolute value of the error is given by

∣∣∣∣∣f ′′(c)x
2

2

∣∣∣∣∣, where c is

between 0 and x, and where f(x) =
√

1 + x. Since f ′′(c) =
−1

4(1 + c)3/2
,

and since c is between 0 and x, we see that 1 + c ≥ .99 and so

∣∣∣∣∣f ′′(c)
∣∣∣∣∣ =

1

4(1 + c)3/2
≤ 1

4× .993/2
≤ .254.

This means that the error in the above approximation is no more than

∣∣∣∣∣f ′′(c)x
2

2

∣∣∣∣∣ ≤ .254× (0.01)2

2
< .000013.

Another way of viewing this result is that, accurate to four decimal

places,
√

1 + x = 1 +
x

2
whenever |x| < 0.01.

Exercises

1. Show that for all x, ex =
∞∑
n=0

xn

n!
.
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2. Assume that you have a function f satisfying f(0) = 5 and for
n ≥ 1 f (n)(0) = (n−1)!

2n .

(a) Write out P3(x), the third-degree Maclaurin polynomial ap-
proximation of f(x).

(b) Write out the Maclaurin series for f(x), including the general
term.

(c) Use P3(x) to approximate f(1
2).

(d) Assuming that f (4)(c) ≤ 1
4 for all c satisfying 0 < c < 1

2 , show
that
|f(1

2)− P3(
1
2)| < 10−3.

3. The function f has derivatives of all orders for all real numbers x.
Assume f(2) = −3, f ′(2) = 5, f ′′(2) = 3, and f ′′′(2) = −8.

(a) Write the third-degree Taylor polynomial for f about x = 2
and use it to approximate f(1.5).

(b) The fourth derivative of f satisfies the inequality |f (4)(x)| ≤ 3
for all x in the closed interval [1.5, 2]. Use the Lagrange error
bound on the approximation to f(1.5) found in part (a) to
explain why f(1.5) 6= −5.

(c) Write the fourth-degree Taylor polynomial, P (x), for g(x) =
f(x2 + 2) about x = 0. Use P to explain why g must have a
relative minimum at x = 0.

4. Let f be a function having derivatives of all orders for all real
numbers. The third-degree Taylor polynomial for f about x = 2
is given by

P3(x) = 7− 9(x− 2)2 − 3(x− 2)3.

(a) Find f(2) and f ′′(2).

(b) Is there enough information given to determine whether f has
a critical point at x = 2? If not, explain why not. If so, deter-
mine whether f(2) is a relative maximum, a relative minimum,
or neither, and justify your answer.
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(c) The fourth derivative of f satisfies the inequality
∣∣∣f (4)(x)

∣∣∣ ≤ 6
for all x in the closed interval [0, 2]. Use the Lagrange er-
ror bound on the approximation to f(0) found in part (c) to
explain why f(0) is negative.

5. (a) Using mathematical induction, together with l’Hôpital’s rule,

prove that lim
x→∞

Pn(x)

ex
= 0 where Pn(x) is a polynomial of

degree n. Conclude that for any polynomial of degree n,

lim
x→±∞

Pn(x)

ex2
= 0.

(b) Show that lim
x→0

P ( 1
x)

e
1
x2

= 0, where P is a polynomial. (Let y = 1
x ,

and note that as x→ 0, y → ±∞.)
(c) Let f(x) = e−

1
x2 , x 6= 0 and show by induction that

f (n)(x) = Qn

(
1
x

)
e−

1
x2 , where Qn is some polynomial (though

not necessarily of degree n).

(d) Conclude from parts (b) and (c) that

lim
x→0

dn

dxn

Å
e−1/x2

ã
= 0

for all n ≥ 0.

(e) What does all of this say about the Maclaurin series for e−1/x2?

5.5 Differential Equations

In this section we shall primarily consider first-order ordinary23 dif-
ferential equations (ODE), that is, differential equations of the form
y′ = F (x, y). If the function F is linear in y, then the ODE is called
a linear ordinary differential equation. A linear differential equation
is therefore expressible in the form y′ = p(x)y + q(x), where p and q

are functions defined on some common domain. In solving an ODE,
we expect that an arbitrary constant will come as the result of an inte-
gration and would be determined by specifying an initial value of the

23to be distinguished from “partial” differential equations.
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solution y = y(x). This results in the initial value problem of the
form

y′ = p(x)y + q(x), y(a) = y0.

A good example of a commonly-encountered nonlinear ODE is the
so-called logistic differential equation,

y′ = ky(1− y), y(0) = y0.

5.5.1 Slope fields

A good way of getting a preliminary feel for differential equations is
through their slope fields. That is, given the differential equation
(not necessarily linear) in the form y′ = F (x, y) we notice first that
the slope at the point (x, y) of the solution curve y = y(x) is given by
F (x, y). Thus, we can represent this by drawing at (x, y) a short line
segment of slope F (x, y). If we do this at enough points, then a visual
image appears, called the slope field of the ODE. Some examples
will clarify this; we shall be using the graphics software Autograph to
generate slope fields.

Example 1. Consider the ODE y′ = y−x. The slope field is indicated
below:
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From the above slope field it appears that there might be a linear
solution of the form y = mx + b. We can check this by substituting
into the differential equation:

m =
d

dx
(mx+ b) = mx+ b− x,

which immediately implies that m = 1 and b = m = 1.

Example 2. The logistic differential equation y′ = 3y(1 − y) has
slope field given to the right. What we should be able to see from this
picture is that if we have an initial condition of the form y(0) = y0 > 0,
then the solution y = y(x) will satisfy lim

x→∞ y = 1.

Exercises

1. For each of the slope fields given below, sketch a solution curve
y = y(x) passing through the initial point (x0, y0).
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2. Show that y = Ke2x − 1
4(2x + 1) is a solution of the linear ODE

y′ = 2y + x for any value of the constant K.

3. Find a first-order linear ODE having y = x2 + 1 as a solution.
(There are many answers.)

4. In each case below, verify that the linear ODE has the given func-
tion as a solution.

(a) xy′ + y = 3x2, y = x2.

(b) y′ + 2xy = 0, y = e−x
2

.

(c) 2x2y′′ + 3xy′ − y = 0, y =
√
x, x > 0.

5. Consider the n-th order linear ODE with constant coefficients:

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + y = 0. (5.1)

Assume that the associated characteristic polynomial
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C(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

has a real zero α, i.e., that C(α) = 0. Show that a solution of the
ODE (5.1) is y = eαx.

5.5.2 Separable and homogeneous first-order ODE

Most students having had a first exposure to differential and integral
calculus will have studied separable first-order differential equations.
These are of the form

dy

dx
= f(x)g(y)

whose solution is derived by an integration:

∫ dy

g(y)
=

∫
f(x) dx.

Example 1. Solve the differential equation
dy

dx
= −2yx.

Solution. From

∫ dy

y
= −

∫
2x dx.

we obtain

ln |y| = −x2 + C,

where C is an arbitrary constant. Taking the natural exponential of
both sides results in |y| = e−x

2+C = eCe−x
2

. However, if we define
K = eC , and if we allow K to take on negative values, then there is no
longer any need to write |y|; we have, therefore the general solution

y = Ke−x
2

,
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which describes a rapidly-
decreasing exponential func-
tion of x. The slope field, to-
gether with the particular so-
lution with the initial condi-
tion y(0) = 2 is indicated to
the right.

Some first-order ODE are not separable as they stand, but through
a change of variables can be transformed into a separable ODE. Such
is the case of ODE of the form

dy

dx
= F

Çy
x

å
, (5.2)

for some function F . A change of independent variable

v =
y

x

will accomplish this. To see this, we note that

y = vx,
dy

dx
= x

dv

dx
+ v;

with respect to x and v the ODE (5.2) becomes

x
dv

dx
+ v = F (v).

The variables x and v separate easily, resulting in the ODE

1

F (v)− v
dv

dx
=

1

x
,

which can be solved in principle as above.

Example 2. The first-order ODE
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2x2dy

dx
= x2 + y2

can be reduced to the form (5.2) by dividing both sides by 2x2:

dy

dx
=

x2 + y2

2x2
=

1

2

ñ
1 +

Çy
x

åô
.

Setting v = y
x as above reduces the above ODE to

x
dv

dx
+ v =

1

2
(1 + v2);

that is,

2x
dv

dx
= v2 − 2v + 1.

After separating the variables, we arrive at the equation

∫ 2 dv

(v − 1)2
=

∫ dx

x
.

Integrating and simplifying yields

v = 1− 2

ln |x|+ 2C
.

Replace v by y/x, set c = 2C and arrive at the final general solution

y = x− 2x

ln |x|+ c
.

We define a function F (x, y) to be homogeneous of degree k if
for all real numbers t such that (tx, ty) is in the domain of F we have
F (tx, ty) = tkF (x, y). Therefore, the function F (x, y) = x2 + y2 is
homogeneous of degree 2, whereas the function F (x, y) =

√
x/y is

homogeneous of degree −1
2 .

A first-order homogeneous ODE is of the form

M(x, y)
dy

dx
+N(x, y) = 0,



SECTION 5.5 Differential Equations 311

where M(x, y) and N(x, y) are both homogeneous of the same degree.
These are important since they can always be reduced to the form (5.2).
Indeed, suppose that M and N are both homogeneous of degree k.
Then we work as follows:

dy

dx
= −N(x, y)

M(x, y)

= −x
kN(1, y/x)

xkM(1, y/x)

= −N(1, y/x)

M(1, y/x)
= F

Çy
x

å
which is of the form (5.2), as claimed. Note that Example 2 above is
an example of a homogeneous first-order ODE.

Exercises

In the following problems, find both the general solution as well as
the particular solution satisfying the initial condition.

1. y′ = 2xy2, y(0) = −1

2. yy′ = 2x, y(0) = 1

3. 3y2y′ = (1 + y2) cosx, y(0) = 1

4. 2y′ = y(y − 2), y(0) = 1

5. xyy′ = 2y2 − x2, y(1) = 1

6. y′ =
y

x
− 3

Çy
x

å4/3

, y(2) = 1

7. 3xy2y′ = 4y3 − x3, y(2) = 0
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5.5.3 Linear first-order ODE; integrating factors

In this subsection we shall consider the general first-order linear ODE:

y′ + p(x)y = q(x). (5.3)

As we’ll see momentarily, these are, in principle, very easy to solve.
The trick is to multiply both sides of (5.3) by the integrating factor

µ(x) = e
∫
p(x)dx.

Notice first that µ(x) satisfies µ′(x) = p(x)µ(x). Therefore if we multi-
ply (5.3) through by µ(x) we infer that

d

dx
(µ(x)y) = µ(x)y′ + p(x)µ(x)y = µ(x) q(x),

from which we may conclude that

µ(x) y =
∫
µ(x) q(x)dx.

Example 1. Find the general solution of the first-order ODE

(x+ 1) y′ − y = x, x > −1.

First of all, in order to put this into the general form (5.3) we must
divide everything by x+ 1:

y′ − 1

x+ 1
y =

x

x+ 1
.

This implies that an integrating factor is

µ(x) = e −
∫

dx
x+1 =

1

x+ 1
.

Multiply through by µ(x) and get
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y

x+ 1
=

∫ x dx

(x+ 1)2

=
∫ (x+ 1− 1) dx

(x+ 1)2

=
∫ Ñ 1

x+ 1
− 1

(x+ 1)2

é
dx

= ln(x+ 1) +
1

x+ 1
+ C

It follows, therefore, that

y = (x+ 1) ln(x+ 1) + c(x+ 1),

where c is an arbitrary constant.

Exercises

1. Solve the following first-order ODE.

(a) xy′ + 2y = 2x2, y(1) = 0

(b) 2x2y′ + 4xy = e−x, y(2) = 1.

(c) xy′ + (x− 2)y = 3x3e−x, y(1) = 0

(d) y′ lnx+
y

x
= x, y(1) = 0

(e) y′ + (cotx)y = 3 sin x cosx, y(0) = 1

(f) x(x+ 1)y′ − y = 2x2(x+ 1), y(2) = 0

2. The first-order Bernoulli ODE are of the form

y′ + p(x)y = q(x)yn,

where n is any number other than 1. Show that the substitution
u = y1−n brings the above Bernoulli equation into the first-order
linear ODE

1

1− n
u′ + p(x)u = q(x).
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3. Solve the Bernoulli ODE

(a) y′ +
3

x
y = x2y2, x > 0

(b) 2y′ +
1

x+ 1
y + 2(x2 − 1) y3 = 0

5.5.4 Euler’s method

In this final subsection we shall discuss a rather intuitive numerical
approach to solving a first-order ODE of the form y′ = F (x, y), y0 =
y(x0). What we do here is to specify a step size, say h, and proceed to
approximate y(x1), y(x2), y(x3), . . . , where x1 = x0 + h, x2 = x1 + h =
x0 + 2h, and so on.

The idea is that we use the first-order approximation

y(x1) ≈ y(x0) + y′(x0)(x1 − x0) = y(x0) + y′(x0)h.

Notice that y′(x0) = F (x0, y0); we set y1 = y(x0) + F (x0, y0)h, giving
the approximation y(x1) ≈ y1. We continue:

y(x2) ≈ y(x1) + y′(x1)(x2 − x1) (first-order approximation)

≈ y1 + y′(x1)h (since y(x1) ≈ y1)

≈ y1 + F (x1, y1)h (since F (x1, y(x1)) ≈ F (x1, y1)).

Continuing in this fashion, we see that the approximation y(xn+1) ≈
yn+1 at the new point x = xn+1 is computed from the previous approx-
imation y(xn) ≈ yn at the point xn via

y(xn+1) ≈ yn+1 = yn + F (xn, yn)h.

Example 1. Approximate the solution of the ODE y′ = x + y −
1, y(0) = 1 on the interval [0, 2] using step size h = 0.2; note that
F (x, y) = x+ y − 1:
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We can tabulate the results:

n xn yn = yn−1 n xn yn = yn−1

+F (xn−1, yn−1) +F (xn−1, yn−1)h

0 0 1 6 1.2 1.788
1 .2 1 7 1.4 2.1832
2 .4 1.04 8 1.6 2.6998
3 .6 1.128 9 1.8 3.3598
4 .8 1.2736 10 2.0 4.1917
5 1.0 1.4883

The figure below compares the exact solution with the approxima-
tions generated above.

Exercises

1. Give the exact solution of y′ = x+ y− 1, y(0) = 1. Tabulate these
exact values against their approximations in the table below:
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n xn yn = yn−1 + F (xn−1, yn−1)h y(xn)

0 0 1
1 .2 1
2 .4 1.04
3 .6 1.128
4 .8 1.2736
5 1.0 1.4883
6 1.2 1.788
7 1.4 2.1832
8 1.6 2.6998
9 1.8 3.3598
10 2.0 4.1917

2. Use the Euler method with h = 0.1 to find approximate values for
the solution of the initial-value problem over the interval [1, 2]

xy′ + y = 3x2, y(1) = −2.

Then solve exactly and compare against the approximations.

3. Do the same over the interval [0, 1], (h = 0.1) for

y′ = 2xy +
1

y
, y(0) = 1.



Chapter 6

Inferential Statistics

We shall assume that the student has had some previous exposure to
elementary probability theory; here we’ll just gather together some rec-
ollections.

The most important notion is that of a random variable; while
we won’t give a formal definition here we can still convey enough of its
root meaning to engage in useful discussions. Suppose that we are to
perform an experiment whose outcome is a numerical value X. That
X is a variable follows from the fact that repeated experiments are
unlikely to produce the same value of X each time. For example, if we
are to toss a coin and let

X =

1 if heads,

0 if tails,

then we have a random variable. Notice that this variable X does not
have a value until after the experiment has been performed!

The above is a good example of a discrete random variable in
that there are only two possible values of X: X = 0 and X = 1. By
contrast, consider the experiment in which I throw at dart at a two-
dimensional target and let X measure the distance of the dart to the
center (bull’s eye). Here, X is still random (it depends on the throw),
but can take on a whole continuum of values. Thus, in this case we call
X a continuous random variable.

317
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6.1 Discrete Random Variables

Let’s start with an example which is probably familiar to everyone. We
take a pair of fair dice and throw them, letting X be the sum of the
dots showing. Of course, X is random as it depends on the outcome
of the experiment. Furthermore X is discrete: it can only take on the
integer values between 2 and 12. Finally, using elementary means it is
possible to compute the probability that X assumes any one of these
values. If we denote by P (X = x) the probability that X assumes the
value x, 2 ≤ x ≤ 12 can be computed and tabulated as below:

x 2 3 4 5 6 7 8 9 10 11 12

P (X = x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

The table above summarizes the distribution of the discrete ran-
dom variable X. That is, it summarizes the individual probabilities
P (X = x), where x takes on any one of the allowable values. Further-
more, using the above distribution, we can compute probabilities of the
form P (x1 ≤ X ≤ x2); for example

P (2 ≤ X ≤ 5) = P (X = 2)+P (X = 3)+P (X = 4)+P (X = 5) =
1

36
+

2

36
+

3

36
+

4

36
=

10

36
.

It is reasonably clear that if X is an arbitrary discrete random vari-
able whose possible outcomes are x1, x2, x3, . . .,

∞∑
i=1

P (X = xi) = 1.

This of fundamental importance!

6.1.1 Mean, variance, and their properties

We define the mean µX (or expectation E(X))1 of the discrete ran-
dom variable X by setting

1Some authors use the notation 〈X〉 for the mean of the discrete random variable X.
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µX = E(X) =
∑
xiP (X = xi),

where the sum is over all possible values xi which the random variableX
can assume. As we’ll see, the above is often an infinite series! This value
can be interpreted as the average value of X over many observations of
X. (We’ll give a slightly more precise formulation of this in section ??.)
For example, if X is the random variable associated with the above dice
game, then

E(X) = 2× 1

36
+ 3× 2

36
+ 4× 3

36
+ 5× 5

36
+ 6× 5

36
+ 7× 6

36

+ 8× 5

36
+ 9× 4

36
+ 10× 3

36
+ 11× 2

36
+ 12× 1

36
≈ 7.14.

Let X and Y be two discrete random variables; we wish to consider
the mean E(X + Y ) of the sum X + Y . While it’s probably intuitively
plausible, if not downright obvious, that E(X + Y ) = E(X) + E(Y ),
this still deserves a proof.2

So we assume that X and Y are discrete random variables having
means E(X) = µX and E(Y ) = µY , respectively. Of fundamental
importance to the ensuing analysis is that for any value x, then the
probabilities P (X = x) can be expressed in terms of conditional prob-
abilities3 on Y :

P (X = x) =
∞∑
j=1

P (X = x |Y = yj)P (Y = yj). (6.1)

Likewise, the probabilities P (Y = y) can be similarly expressed in
terms of conditional probabilities on X:

2Elementary textbooks typically only prove this under the simplifying assumption that X and Y
are independent.

3Here, we have assumed that the students have already had some exposure to conditional proba-
bilities. Recall that for any two events A and B the probability of A conditioned on B is given
by

P (A |B) =
P (A and B)

P (B)
.
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P (Y = y) =
∞∑
j=1

P (Y = y |X = xi)P (X = xi). (6.2)

Having noted this, we now proceed:

µX+Y =
∞∑
i=1

∞∑
j=1

(xi + yj)P (X = xi and Y = yj)

=
∞∑
i=1

∞∑
j=1

xiP (X = xi and Y = yj)

+
∞∑
i=1

∞∑
j=1

yjP (X = xi and Y = yj)

=
∞∑
i=1

∞∑
j=1

xiP (X = xi |Y = yj)P (Y = yj)

+
∞∑
i=1

∞∑
j=1

yjP (Y = yj |X = xi)P (X = xi)

=
∞∑
i=1

xi
∞∑
j=1

P (X = xi |Y = yj)P (Y = yj)

+
∞∑
j=1

yj
∞∑
i=1

P (Y = yj |X = xi)P (X = xi)

=
∞∑
i=1

xiP (X = xi) +
∞∑
j=1

yiP (Y = yi) by (6.1) and (6.2)

= µX + µY ,

proving that

E(X + Y ) = E(X) + E(Y ). (6.3)

Next, note that if X is a random variable and if a and b are constants,
then it’s clear that E(aX) = aE(X); from this we immediately infer
(since b can be regarded itself as a random variable with mean b) that

E(aX + b) = aE(X) + b.
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Next, we define the variance σ2 (or Var(X)) of the random variable
X having mean µ by setting σ2 = E((X − µ)2). The standard de-
viation σ is the non-negative square root of the variance. The mean
and variance of a random variable are examples of parameters of a
random variable.

We shall derive an alternate—and frequently useful—expression for
the variance of the random variable X with mean µ. Namely, note that

Var(X) = E((X − µ)2)

= E(X2 − 2µX + µ2)

= E(X2)− 2µE(X) + µ2 (by (6.3))

= E(X2)− µ2. (6.4)

We turn now to the variance of the discrete random variable X+Y .
In this case, however, we require that X and Y are independent. This
means that for all values x and y we have

P (X = x and Y = y) = P (X = x)P (Y = y).4

In order to derive a useful formula for Var(X + Y ), we need the result
that given X and Y are independent, then E(XY ) = E(X)E(Y ); see
Exercise 1, below. Using (6.4), we have

Var(X + Y ) = E((X + Y )2)− µ2
X+Y

= E((X + Y )2)− (µX + µY )2

= E(X2 + 2XY + Y 2)− (µX + µY )2

= E(X2) + E(2XY ) + E(Y 2)− (µ2
X + 2µXµY + µ2

Y )

= E(X2)− µ2
X + 2E(X)E(Y )− 2µXµY + E(Y 2)− µ2

Y

= Var(X) + Var(Y ). (6.5)

4An equivalent—and somewhat more intuitive—expression can be given in terms of conditional
probabilities. Namely, two events A and B are equivalent precisely when P (A |B) = P (A). In terms
of discrete random variables X and Y , this translates into P (X = x |Y = y) = P (X = x) for any
possible values x of X and y of Y .
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As you might expect, the above formula is false in general (i.e., when
X and Y not independent); see Exercise 1, below. Using (6.5), we see
immediately that if X is a discrete random variable, and if Y = aX+b,
where a and b are real numbers, then we may regard b as a (constant)
random variable, certainly independent of the random variable aX.
Therefore,

Var(Y ) = Var(aX + b) = Var(aX) + Var(b) = a2Var(X),

where we have used the easily-proved facts that Var(aX) = a2Var(X)
and where the variance of a constant random variable is zero (see Ex-
ercises 5 and 6, below).

We conclude this section with a brief summary of properties of mean
and variance for discrete random variables.5

• If X is a random variable, and if a, b are real numbers, then
E(aX + b) = aE(X) + b.

• If X is a random variable, and if a, b are real numbers, then
Var(aX + b) = a2Var(X).

• If X and Y are random variables, then
E(X + Y ) = E(X) + E(Y ).

• If X and Y are independent random variables, then
E(XY ) = E(X)E(Y ).

• If X and Y are independent random variables, then
Var(X + Y ) = Var(X) + Var(Y ).

6.1.2 Weak law of large numbers (optional discussion)

In order to get a better feel for the meaning of the variance, we include
the following two lemmas:

5These same properties are also true for continuous random variables!



SECTION 6.1 Discrete Random Variables 323

Lemma. (Markov’s Inequality) Let X be a non-negative discrete ran-
dom variable. Then for any number d > 0, we have

P (X ≥ d) ≤ 1
d E(X).

Proof. We define a new random variable Y by setting

Y =

d if X ≥ d

0 otherwise.
.

Since Y ≤ X, it follows that E(X) ≥ E(Y ). Also note that Y has two
possible values: 0 and d; furthermore,

E(Y ) = dP (Y = d) = dP (X ≥ d).

Since E(X) ≥ E(Y ) = dP (X ≥ d), the result following immediately.

Lemma. (Chebyshev’s Inequality) Let X be a discrete random variable
with mean µ and variance σ2. Then for any d > 0 we have

P (|X − µ| ≥ d) ≤ σ2

d2
.

Proof. Define the random variable Y = (X − µ)2; it follows that
E(Y ) = σ2. Applying Markov’s inequality to Y we have

P (|X − µ| ≥ d) = P (Y ≥ d2) ≤ 1
d2E(Y ) =

σ2

d2
,

as required.

We now assume that X1, X2, . . . , Xn are random variables with the
same mean µ; we denote the average of these random variables thus:

X =
X1 +X2 + · · ·+Xn

n
.
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From what we’ve proved about the mean, we see already that E(X) =
µ. In case the random variablesX1, X2, . . . , have the same distribution,
the Weak Law of Large Numbers says a bit more:

Lemma. (The Weak Law of Large Numbers) Assume thatX1, X2,
. . . , Xn, . . . , is an infinite sequence of identically distributed random
variables with mean µ (and having finite variance σ2). Then for each
ε > 0

lim
n→∞P

(∣∣∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣∣∣ > ε

)
= 0.

Proof. We set Sn = X1 +X2 + · · ·+Xn, and so An = Sn/n has mean
µ and variance σ2/n. By Chebyshev’s Inequality we have

P
Ç∣∣∣∣∣An − µ

∣∣∣∣∣ ≥ ε
å
≤ σ2

nε2
.

Since ε > 0 is fixed, the result is now obvious.

Notice that an equivalent formulation of the Weak Law of Large
Numbers is the statement that for all ε > 0 we have that

lim
n→∞P

(∣∣∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣∣∣ ≤ ε

)
= 1.

As you might expect, there is also a Strong Law of Large Numbers
which is naively obtained by interchanging the limit and probability P ;
see the footnote.6

Exercises

1. Prove that if X and Y are discrete independent random variables,
then E(XY ) = E(X)E(Y ). Is this result still true if X and Y are
not independent?

6That is to say, if X1, X2, . . . , Xn, . . . , is an infinite sequence of identically distributed random
variables with mean µ, then

P

Å
X1 +X2 + · · ·+Xn

n
→ µ

ã
= 1.

There is no requirement of finiteness of the variances.
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2. Suppose that we draw two cards in succession, and without re-
placement, from a standard 52-card deck. Define the random vari-
ables X1 and X2 by setting

X1 =

1 if the first card drawn is red

0 if the first card drawn is black;

similarly,

X2 =

1 if the second card drawn is red

0 if the second card drawn is black.

(a) Are X1 and X2 independent random variables?

(b) Compute P (X1 = 1).

(c) Compute P (X2 = 1).

3. Suppose that we have two dice and let D1 be the result of rolling
die 1 and D2 the result of rolling die two. Show that the random
variables D1 +D2 and D1 are not independent. (This seems pretty
obvious, right?)

4. We continue the assumptions of the above exercise and define the
new random variable T by setting

T =

1 if D1 +D2 = 7

0 if D1 +D2 6= 7.

Show that T and D1 are independent random variables. (This
takes a bit of work.)

5. Let X be a discrete random variable and let a be a real number.
Prove that Var(aX) = a2Var(X).

6. Let X be a constant-valued random variable. Prove that Var(X) =
0. (This is very intuitive, right?)

7. John and Eric are to play the following game with a fair coin.
John begins by tossing the coin; if the result is heads, he wins and
the game is over. If the result is tails, he hands the coin over to
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Eric, who then tosses the coin. If the result is heads, Eric wins;
otherwise he returns the coin to John. They keep playing until
someone wins by tossing a head.

(a) What is the probability that Eric wins on his first toss?

(b) What is the probability that John wins the game?

(c) What is the proability that Eric wins the game?

8. Let n be a fixed positive integer. Show that for a randomly-selected
positive integer x, the probability that x and n are relatively prime

is
φ(n)

n
. (Hint: see Exercise 20 on page 64.)

9. Consider the following game. Toss a fair coin, until the first head
is reached. The payoff is simply 2n dollars, where n is the number
of tosses needed until the first head is reached. Therefore, the
payoffs are

No. of tosses 1 2 3 · · · n · · ·

Payoff $2 $4 $8 · · · $2n · · ·

How much would you be willing to pay this game? $10? $20? Ask
a friend; how much would she be willing to play this game? Note
that the expected value of this game is infinite!7

6.1.3 The random harmonic series (optional discussion)

We close this section with an interesting example from analysis. We

saw on page 265 the harmonic series
∞∑
n=1

1

n
diverges and on page 278

we saw that the alternating harmonic series
∞∑
n=1

(−1)n−1

n
converges (to

ln 2; see page 302). Suppose now that ε1, ε2, . . . is a random sequence
of +1s and −1s, where we regard each εk as a random variable with
P (εk = 1) = P (εk = −1) = 1/2. Therefore each εk has mean 0 and

variance 1. What is the probability that
∞∑
n=1

εn
n

converges?

7Thus, we have a paradox, often called the St. Petersburg paradox.
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We can give an intuitive idea of how one can analyze this question,

as follows. We start by setting Xk =
εk
k2/3

, k = 1, 2, . . . , and note that

E(Xk) = 0 and Var(Xk) =
1

k4/3
. Now set

Sn =
n∑
k=1

Xk =
n∑
k=1

εk
k2/3

.

It follows immediately that Sn has mean 0 and (finite) variance
n∑
k=1

1

k4/3
< 4. (See footnote8)

Under these circumstances it follows that the above infinite sum
n∑
k=1

Xk

actually converges with probability 1.9 Furthermore, the same argu-
ments can be applied to show that as long as p > 1/2, then the random

series
∞∑
n=1

εn
np

also converges with probability 1.

We turn now to some relatively commonly-encountered discrete ran-
dom variables, the geometric, the binomial, the negative binomial,
the hypergeometric, and the Poisson random variables.

6.1.4 The geometric distribution

Consider the following game (experiment). We start with a coin whose
probability of heads is p; therefore the probability of tails is 1− p. The
game we play is to keep tossing the coin until a head is obtained. The
random variable X is the number of trials until the game ends. The
distribution for X as follows:

x 1 2 3 · · · n

P (X = x) p p(1− p) p(1− p)2 · · · p(1− p)n−1

Therefore, the expectation of X is given by the infinite sum:

8Note that
n∑
k=1

1

k4/3
<
∞∑
k=1

1

k4/3
< 1 +

∫ ∞
1

x−4/3 dx = 4.

9This can be inferred from the Kolmogorov Three-Series Theorem, see, e.g., Theorem 22.8
of P. Billingsley, Probability and Measure, 2nd ed. John Wiley & Sons, New York, 1986.
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E(X) =
∞∑
n=1

nP (X = n) =
∞∑
n=1

np(1− p)n−1 = p
∞∑
n=1

n(1− p)n−1.

Note that

∞∑
n=1

n(1− p)n−1 =
d

dx
(1 + x+ x2 + · · · )

∣∣∣∣∣
x=1−p

=
d

dx

(
1

1− x

) ∣∣∣∣∣
x=1−p

=
1

(1− x)2

∣∣∣∣∣
x=1−p

=
1

p2
,

which implies that the mean of the geometric random variable X is
given by

E(X) = p
∞∑
n=1

n(p− 1)n−1 =
1

p
.

Notice that the smaller p becomes, the longer the game is expected to
last.

Next, we turn to the variance of X. By Equation 6.4 we have

Var(X) = E(X2)− 1

p2

=
∞∑
n=1

n2P (X = n)− 1

p2

= p
∞∑
n=1

n2(1− p)n−1 − 1

p2
.
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Next,

∞∑
n=1

n2(1− p)n−1 =
∞∑
n=1

n(n− 1)(1− p)n−1 +
∞∑
n=1

n(1− p)n−1

= (1− p)
∞∑
n=1

n(n− 1)(1− p)n−2 +
∞∑
n=1

n(1− p)n−1

= (1− p) d2

dx2
(1 + x+ x2 + · · · )

∣∣∣∣∣
x=1−p

+
1

p2

= (1− p) d2

dx2

(
1

1− x

) ∣∣∣∣∣
x=1−p

+
1

p2

=
2(1− p)

p3
+

1

p2
=

2− p
p3

Therefore,

Var(X) =
2− p
p2
− 1

p2
=

1− p
p2

6.1.5 The binomial distribution

In this situation we perform n independent trials, where each trial has
two outcomes—call them success and failure. We shall let p be the
probability of success on any trial, so that the probability of failure on
any trial is 1−p. The random variableX is the total number of successes
out of the n trials. This implies, of course, that the distribution of X
is summarized by writing

P (X = k) =

Ñ
n

k

é
pk(1− p)n−k.

The mean and variance of X are very easily computed once we realize
that X can be expressed as a sum of n independent Bernoulli random
variables. The Bernoulli random variable B is what models the tossing
of a coin: it has outcomes 0 and 1 with probabilities 1 − p and p,
respectively. Very simple calculations shows that

E(B) = p and Var(B) = p(1− p).
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Next, if X is the binomial random variable with success probability p,
then we may write

X = B1 +B2 + · · ·+Bn,

where each Bi is a Bernoulli random variable. It follows easily from
what we already proved above that

E(X) = E(B1) + E(B2) + · · ·E(Bn) = np,

and

Var(X) = Var(B1) + Var(B2) + · · ·+ Var(Bn) = np(1− p).

6.1.6 Generalizations of the geometric distribution

Generalization 1: The negative binomial distribution

Suppose that we are going to perform a number X of Bernoulli trials,
each with success probability p, stopping after exactly r successes have
occurred. Then it is clear that

P (X = x) =

Ñ
x− 1

r − 1

é
pr(1− p)x−r.

In order to compute the mean and variance of X note that X is easily
seen to be the sum of geometric random variablesG1, G2, . . . , Gr, where
the success probability of each is p:

X = G1 +G2 + · · ·+Gr.

Using the results of (6.1.4) we have, for each i = 1, 2, . . . , r, that

E(Gi) =
1

p
, Var(Gi) =

1− p
p2

.

It follows, therefore, that the mean and variance of the negative bino-
mial random variable X are given by



SECTION 6.1 Discrete Random Variables 331

E(X) =
r

p
, Var(X) =

r(1− p)
p2

.

The name “inverse binomial” would perhaps be more apt, as the
following direct comparison with the binomial distribution reveals:

Binomial Random Variable Negative Binomial Random Variable
X Y

number of successes number of trials
in n trials needed for r successes

E(X) = np, Var(X) = np(1− p) E(Y ) =
r

p
, Var(Y ) =

r(1− p)
p2

Generalization 2: The coupon problem

Suppose that in every cereal box there is a “prize,” and that there are,
in all, three possible prizes. Assume that in a randomly purchased
box of cereal the probability of winning any one of the prizes is the
same, namely 1/3. How many boxes of cereal would you expect to buy
in order to have won all three prizes? It turns out that the natural
analysis is to use a sum of geometric random variables.

We start by defining three independent random variables X1, X2,
and X3, as follows. X1 is the number of trials to get the first new prize;
note that X1 is really not random, as the only possible value of X1

is 1. Nonetheless, we may regard X1 as a geometric random variable
with probability p = 1. X2 is the number of trials (boxes) needed to
purchase in order to get the second new prize, after the first prize is
already won. Clearly X2 is also a geometric random variable, this time
with p = 2/3. Finally, X3 is the number of boxes needed to purchase to
get the third (last) new prize after we already have two distinct prizes,
and so X3 is geometric with p = 1/3. Therefore, if X is the number of
boxes purchased before collecting the complete set of three prizes, then
X = X1 +X2 +X3, which represents X as a sum of geometric random
variables.

From the above, computing E(X) is now routine:
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E(X) = E(X1+X2+X3) = E(X1)+E(X2)+E(X3) = 1+
3

2
+3 =

11

2
.

The generalization of the above problem to that of finding the ex-
pected number of boxes needed to purchase before collecting all of n
different prizes should now be routine! The answer in this case is

E(X) = 1 +
n

n− 1
+

n

n− 2
+ · · ·+ n

2
+ n = n

n∑
k=1

1

k
.

Generalization 3: Fixed sequences of binary outcomes

In section 6.1.4 we considered the experiment in which a coin is repeat-
edly tossed with the random variable X measuring the number of times
before the first occurrence of a head. In the present section we modify
this to ask such questions such as:

• what is the expected number of trials before obtaining two heads
in a row?, or

• what is the expected number of trials before seeing the sequence
HT?

What makes the above questions interesting is that on any two tosses
of a fair coin, whereas the probability of obtaining the sequences HH
and HT are the same, the expected waiting times before seeing these
sequences differ. The methods employed here can, in principle, be
applied to the study of any pre-determined sequence of “heads” and
“tails.”
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In order to appreciate the method em-
ployed, let’s again consider the geo-
metric distribution. That is, assume
that the probability of flipping a head
(H) is p, and that X measures the
number of trials before observing the
first head. We may writeX = B+(1−
B)(1 + Y ), where B is the Bernoulli
random variable with P (B = 1) = p
and P (B = 0) = 1 − p, and where
Y and X have the same distribution.
(See the tree diagram to the right.)

•HHH
HHT

(B = 0 and we start
the experiment over
again with one trial
already having been
performed.)

��
�
��
H

(B = 1 and the game
is over)

1− p

p

It follows, therefore that

E(X) = E(B + (1−B)(1 + Y ))

= E(B) + E(1−B)E(1 + Y ) (since B and Y are independent)

= p+ (1− p)(1 + E(X))

= 1 + (1− p)E(X).

Solving for E(X) quickly yields the correct result, viz., E(X) = 1/p.

The above method quickly generalizes to sequences. Let’s consider
tossing a coin with P (heads) = p, stopping after two consecutive heads
are obtained. Letting X be the number of trials, Y have the same dis-
tribution as X and letting B1 and B2 be independent Bernoulli random
variables, we may set

X = B1 +B2 +B1(1−B2)(2 + Y ) + (1−B1)(1 + Y ). (6.6)
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•H
HHH

HHT
(B1 = 0 and we start the experiment over again
with one trial already having been performed.)

��
�
�� HHH

HH
T

(B1 = 1, B2 = 0 and we start the experiment
over again with two trials already having been
performed.)

�
��

��

H

H (B1 = B2 = 1 and the game is over)

1− p

p

1− p

p

Computing the expectation of both sides of (6.6) quickly yields

E(X) = 2p2 + p(1− p)(2 + E(X)) + (1− p)(1 + E(X)),

from which it follows that

E(X) =
1 + p

p2
.

Note that if the coin is fair, then the expected waiting time before
seeing two heads in a row is 6.

Similar analyses can be applied to computing the expected wait-
ing time before seeing the sequence HT (and similar) sequences, see
Exercises 8, 9, and 10 on page 341.

6.1.7 The hypergeometric distribution

This distribution is modeled by a box containing N marbles, of which
n of these are of a particular type (“successful” marbles) and so there
are N − n “unsuccessful” marbles. If we draw k marbles without re-
placement, and if X is the random variable which measures the number
of successful marbles drawn, then X has distribution given by

P (X = m) =

Än
m

äÄN−n
k−m

äÄN
k

ä , m = 0, 1, 2, . . . ,max {n, k}.

From the above it follows that the mean of X is given by the sum
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E(X) =
max {n,k}∑
m=0

m
Än
m

äÄN−n
k−m

äÄN
k

ä .

We can calculate the above using simple differential calculus. We
note first that

[
d

dx
(x+ 1)n

]
(x+ 1)N−n = n(x+ 1)N−1 =

n

N

d

dx
(x+ 1)N .

Now watch this:

N∑
k=0

(
n∑

m=0

m

(
k

m

)(
N − n
k −m

))
xk =

n∑
m=0

m

(
n

m

)
xm ·

N−n∑
p=0

(
N − n
p

)
xp

Ç
this takes
some thought!

å
=

ñ
x
d

dx
(x+ 1)n

ô
(x+ 1)N−n

=
xn

N

d

dx
(x+ 1)N

=
n

N

N∑
k=0

k

(
N

k

)
xk;

equating the coefficients of xk yields

n∑
m=0

m

Ñ
n

m

éÑ
N − n
k −m

é
=
nk

N

Ñ
N

k

é
.

This immediately implies that the mean of the hypergeometric distri-
bution is given by

E(X) =
nk

N
.

Turning to the variance, we have

E(X2) =
n∑

m=0

m2
Än
m

äÄN−n
k−m

äÄN
k

ä .

Next, we observe that
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x2

 d2

dx2
(x+ 1)n

 (x+ 1)N−n = n(n− 1)x2(x+ 1)N−2

= x2 n(n− 1)

N(N − 1)

d2

dx2
(x+ 1)N .

Next comes the hard part (especially the first equality):

N∑
k=0

(
n∑

m=0

m(m− 1)

(
n

m

)(
N − n
k −m

))
=

n∑
m=0

(m− 1)

(
n

m

)
xm ·

N−n∑
p=0

(
N − n
p

)
xp

=

ñ
x2

d2

dx2
(x+ 1)n

ô
(x+ 1)N−n

= x2
n(n− 1)

N(N − 1)

d2

dx2
(x+ 1)N

=
n(n− 1)

N(N − 1)

N∑
k=0

k(k − 1)

(
N

k

)
xk.

Just as we did at a similar juncture when computing E(X), we equate
the coefficients of xk, which yields the equality

n∑
m=0

m(m− 1)

Ñ
n

m

éÑ
N − n
k −m

é
=

n(n− 1)k(k − 1)

N(N − 1)

Ñ
N

k

é
.

The left-hand sum separates into two sums; solving for the first sum
gives

n∑
m=0

m2

Ñ
n

m

éÑ
N − n
k −m

é
=

n(n− 1)k(k − 1)

N(N − 1)

Ñ
N

k

é
+

n∑
m=0

m

Ñ
n

m

éÑ
N − n
k −m

é
=

n(n− 1)k(k − 1)

N(N − 1)

Ñ
N

k

é
+
nk

N

Ñ
N

k

é
,

which implies that

E(X2) =
n(n− 1)k(k − 1)

N(N − 1)
+
nk

N
.

Finally, from this we obtain the variance of the hypergeometric distri-
bution:
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Var(X) = E(X2)− E(X)2

=
n(n− 1)k(k − 1)

N(N − 1)
+
nk

N
−
(
nk

N

)2

=
nk(N − n)(N − k)

N 2(N − 1)
.

6.1.8 The Poisson distribution

The Poisson random variable can be thought of as the limit of a
binomial random variable in the following sense. First of all, assume
that Y is the binomial random variable which measures the number of
successes in n trials and where the probability of each trial is p. As
we saw above, the mean of this random variable is µY = np. Now,
rather than limiting the number of trials, we take the limit as n→∞
but holding fixed the mean µ = µY . We call the resulting random
variable the Poisson random variable with mean µ. If we denote
this by X, then the distribution of X is computed as follows:

P (X = k) = lim
n→∞

Ñ
n

k

é
pk(1− p)n−k

= lim
n→∞

Ñ
n

k

éÇµ
n

åk Ç
1− µ

n

ån−k
(since µ = np)

= lim
n→∞

n(n− 1) · · · (n− k + 1)

k!

Çµ
n

åk Ç
1− µ

n

ån−k
= lim

n→∞
n(n− 1) · · · (n− k + 1)

nk

Ñ
µk

k!

éÇ
1− µ

n

ån−k
=

Ñ
µk

k!

é
lim
n→∞

Ç
1− µ

n

ån−k Ç
since lim

n→∞

n(n− 1) · · · (n− k + 1)

nk
= 1

å
=

Ñ
µk

k!

é
lim
n→∞

Ç
1− µ

n

ån Ç
1− µ

n

å−k
=

Ñ
µk

k!

é
lim
n→∞

Ç
1− µ

n

ån
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Next, note that the limit above is a 1∞ indeterminate form; taking the
natural log and applying l’Hôpital’s rule, we have

lim
n→∞

Ç
1− µ

n

ån
= e−µ, (6.7)

and so it follows that

P (X = k) =
e−µµk

k!
.

This gives the distribution of the Poisson random variable!

The Poisson distribution is often used to model events over time
(or space). One typical application is to model traffic accidents (per
year) at a particular intersection of two streets. For example, if our
traffic data suggests that there are roughly 2.3 accidents/year at this
intersection, then we can compute the probability that in a given year
there will be less than 2 accidents or more than 4 accidents. These
translate into the respective probabilities P (X ≤ 1) and P (X ≥ 5).
Specifically,

P (X ≤ 1) = P (X = 0) + P (X = 1)

=
e−2.32.30

0!
+
e−2.32.31

1!
= e−2.3(1 + 2.3) = 3.3e−2.3 ≈ .331.

In the same vein,

P (X ≥ 5) = 1− P (X ≤ 4)

= 1−
Ç
e−2.32.30

0!
+
e−2.32.31

1!
+
e−2.32.32

2!
+
e−2.32.33

3!
+
e−2.32.34

4!

å
= 1− e−2.3

Ç
1 + 2.3 +

2.32

2!
+

2.33

3!
+

2.34

4!

å
≈ 0.081.
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We expect that the mean of the Poisson random variable is µ; how-
ever, a direct proof is possible as soon as we remember the Maclaurin
series expansion for ex (see Exercise 1 on page 302). We have that

E(X) =
∞∑
k=0

kP (X = k)

=
∞∑
k=0

k
e−µµk

k!

=
∞∑
k=0

e−µµk+1

k!

= µe−µ
∞∑
k=0

µk

k!
= µe−µeµ = µ,

as expected.

Similarly,

Var(X) = E(X2)− µ2

=
∞∑
k=0

k2P (X = k)− µ2

=
∞∑
k=0

k2e
−µµk

k!
− µ2

= e−µ
∞∑
k=0

k
µk+1

k!
− µ2

= µe−µ
∞∑
k=0

(k + 1)
µk

k!
− µ2

= µe−µ
∞∑
k=0

k
µk

k!
+ µe−µ

∞∑
k=0

µk

k!
− µ2

= µ2e−µ
∞∑
k=0

µk

k!
+ µ− µ2

= µ2 + µ− µ2 = µ.

That is to say, Var(X) = µ = E(X).
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Exercises

1. Suppose that you are going to toss a fair coin 200 times. Therefore,
you know that the expected number of heads obtained is 100, and
the variance is 50. If X is the actual number of heads, what does
Chebyshev’s Inequality say about the probability that X deviates
from the mean of 50 by more than 15?

2. Suppose that you are playing an arcade game in which the prob-
ability of winning is p = .2.

(a) If you play 100 times, how many games do you expect to win?

(b) If you play 100 times, what is the probability that you will
win more than 30 games?

(c) If you play until you win exactly 20 games, how many games
will you expect to play?

(d) If you stop after winning 20 games, what is the probability
that this happens no later than on the 90-th game?

3. Prove that the sum of two independent binomial random variables
with the same success probability p is also binomial with success
probability p.

4. Prove that the result of Exercise 3 is correct if “ binomial” is
replaced with “negative binomial.”

5. Prove that the sum of two independent Poisson random variables
is also Poisson.

6. Suppose that N men check their hats before dinner. However,
the clerk then randomly permutes these hats before returning the
hats to the N men. What is the expected number of men who
will receive their own hats? (This is actually easier than it looks:
let Bi be the Bernoulli random variable which is 1 if the man
receives his own hat and 0 otherwise. While B1, B2, . . . , BN are
not independent (why not?), the expectation of the sum is still the
sum of the expectations.)
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7. My motorcycle has a really lousy starter; under normal conditions
my motorcycle will start with probability 1/3 when I try to start it.
Given that I need to recharge my battery after every 200 attempts
at starting my motorcycle, compute the probability that I will have
to recharge my battery after one month. (Assume that I need to
start my motorcycle twice each day.)

8. On page 334 we saw that if we toss a fair coin in succession, the
expected waiting time before seeing two heads in a row is 6. Now
play the same game, stopping after the sequence HT occurs. Show
that expected length of this game is 4. Does this seem intuitive?

9. Do the same as in the above problem, comparing the waiting times
before seeing the sequences THH versus THT . Are the waiting
times the same?

10. (A bit harder) Show that on tossing a coin whose probability of
heads is p the expected waiting time before seeing k heads in a

row is
1− pk

(1− p)pk
.

11. As we have seen the binomial distribution is the result of witness-
ing one of two results, often referred to as success and failure. The
multinomial distribution is where there is a finite number of
outcomes, O1, O2, . . . , Ok. For example we may consider the out-
comes to be your final grade in this class: A, B, C, D, or F. Suppose
that on any given trial the probability that outcome Oi results is
pi, i = 1, 2, . . . , k Naturally, we must have that p1+p2+· · ·+pk = 1.
Again, to continue my example, we might assume that my grades
are assigned according to a more-or-less traditional distribution:

A: 10%
B: 20%
C: 40%
D: 20%
F: 10%

If we perform n trials, and we denote

by Xi the number of times we witness outcome Oi, then the proba-
bilities in question are of the form P (X1 = x1, X2 = x2, . . . , Xk =
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xk), where x1 + x2 + · · · + xk = n. A little thought reveals that
these probabilities are given by

P (X1 = x1, X2 = x2, . . . , Xk = xk) =

Ñ
n

x1, x2, . . . , xk

é
px11 p

x2
2 · · · pxkk ,

where

Ñ
n

x1, x2, . . . , xk

é
is the multinomial coefficientÑ
n

x1, x2, . . . , xk

é
=

n!

x1!x2! · · ·xk!
.

So, suppose that my grading distribution is as follows, and that I
have 20 students. Compute the following probabilities:

(a) P (3 As, 6 Bs, 8 Cs, 2 Ds, and 1 F)

(b) P (3 or 4 As, 5 or 6 Bs, 8 Cs, 2 Ds, and 1 F)

(c) P (everyone passes (D or better)

(d) P (at most 5 people get As)

12. (Gambler’s Ruin) Suppose that we have two players, player A and
player B and that players A and B have between them N dollars.
Players A and B now begin their game where player A tosses a fair
coin, winning $1 from B whenever she tosses a head and losing and
losing $1 (and giving it to B) whenever she tosses a tail. Holding
N fixed, let pi = P (A bankrupts B |A started with i dollars). (It
is clear that p0 = 0 and that pN = 1.)

(a) Let Ei be the event that A bankrupts B, given that A started
with i dollars; then P (Ei) = pi. Now argue that

pi = P (Ei |A wins the first game )P (A wins the first game )

+P (Ei |B wins the first game )P (B wins the first game )

=
1

2
pi+1 +

1

2
pi−1.

(b) From the above, obtain pi = ip1, i = 1, 2, . . . , N .
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(c) That is, if A starts with a dollars and b starts with b dollars,

then the probability that A bankrupts B is
a

a+ b
.

The point of the above is that if A plays against someone with a lot
of capital—like a casino—then the probability that A eventually
goes bankrupt is very close to zero, even if the game is fair! This
is known as gambler’s ruin.

13. Generalize the results of Exercise 12 to the case when the proba-
bility of tossing head is p. That is, compute the probability that A
bankrupts B, given that A starts with a dollars and B has N − a
dollars.

14. (An open-ended question) Note that the Poisson distribution with
mean 2 and the geometric distribution with p = .5 both have the
same mean and variance. How do these distributions compare to
each other? Try drawing histograms of both. Note that the same
can be said for the Poisson distribution with mean 2k and the
negative binomial (p = .5, stopping at the k-th success).

15. Suppose we have a large urn containing 350 white balls and 650
blue balls. We select (without replacement) 20 balls from this
urn. What is the probability that exactly 5 are white? Does this
experiment differ significantly from an appropriately-chosen model
based on the binomial distribution? What would the appropriate
binomial approximation be?

16. Suppose that we have a large urn containing 1000 balls, exactly
50 of which are white (the rest are blue). Select 20 balls. Without
knowing whether the selection was with or without replacement,
estimate

(a) the expected number of white balls in the sample;

(b) the probability that you selected at most 2 white balls (using
a Poisson model);

(c) the probability that you selected at most 2 white balls (using
a hypergeometric model);
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(d) the probability that you selected at most 2 white balls (using
a binomial model).

17. Let X be the random variable associated with the coupon problem
(see page 331), where n is the number of prizes involved. Compute
the variance of X.

18. Consider the following Minitab-generated histogram of 200 trials,
where one stops after winning all of m = 5 prizes.

mean = 10.96
StDev = 4.82

(a) Is the sample mean close to the theoretical mean obtained
above?

(b) How close does this histogram appear to that of a Poisson
distribution (with the theoretical mean)?

(c) The TI code below will simulate playing the above game N
times where M is the total number of prizes. The result of
playing the N games is stored in list variable L3. Have fun
with it!
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PROGRAM: PRIZES
:Input “NO OF PRIZES: ”, M
:Input “NO OF TRIALS: ”, N
:0→ A
:For(I,1,N)
:For(L,1,M)
:0→ L2(L)
:End
1→ B
:For(J,1,M)
:B*L2(J)→ B
:End
:0→ C

:While B< 1
:C+1→ C
:randInt(1,M)→D
:L2(D)+1→ L2(D)
:1→ B
:For(J,1,M)
:B*L2(J)→B
:End
:End
:C→ L3(I)
:End
:Stop

19. Let X be the binomial random variable with success probability p
and where X measures the number of successes in n trials. Define
the new random variable Y by setting Y = 2X − n. Show that
Y = y, −n ≤ y ≤ n can be interpreted as the total earnings after
n games, where in each game we win $1 with each success and we
lose $1 with each failure. Compute the mean and variance of Y .

20. Continuing with the random variable Y given above, let T be
the random variable which measures the number of trials needed
to first observe Y = 1. In other words, T is the number of trials
needed in order to first observe one’s cumulative earnings reach $1.
Therefore P (T = 1) = p, P (T = 2) = 0, P (T = 3) = p2(1 − p).
Show that P (T = 2k + 1) = C(k)pk+1(1 − p)k, where C(k) =

1

k + 1

Ñ
2k

k

é
, n = 0, 1, 2, . . . , are the Catalan numbers.

21. We continue the thread of Exercise 20, above. Show that if p =
1/2—so the game is fair—then the expected time to first earn $1
is infinite! We’ll outline two approaches here: a short (clever?)
approach and a more direct approach.

(a) Let E be the expected waiting time and use a tree diagram as
on page 333 to show that E = 1

2 + 1
2(2E + 1), which implies
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that E must be infinite.

(b) Here we’ll give a nuts and bolts direct approach.10 Note first
that the expectation E is given by

E =
∞∑
k=0

(2k + 1)C(k)

22k+1
, where C(k) =

1

k + 1

Ñ
2k

k

é
, k = 0, 1, 2, . . . .

(i) Show that C(k) =
2 · 6 · 10 · · · (4k − 2)

(k + 1)!
, k ≥ 1 (This is a

simple induction).11

(ii) Conclude that C(k) =
1

k + 1

k∏
m=1

(
4− 2

m

)
.

(iii) Conclude that C(k)2−(2k−1) =
2

k + 1

k∏
m=1

(
1− 1

2m

)
.

(iv) Using the fact that lnx > x−1, show that ln
(
1− 1

2m

)
>

− 1
m , m = 1, 2, . . .

(v) Conclude that

k∏
l=1

(
1− 1

2l

)
= e

ln
k∏
l=1

(1− 1
2l)

= e

k∑
l=1

ln(1− 1
2l)

> e
−

k∑
l=1

1
l

> e−(1+lnn) =
1

ne
(see Exercise 5 on page 269)

(vi) Finish the proof that E =∞ by showing that the series
for E is asymptotically a multiple of the divergent har-
monic series.

22. Here are two more simple problems where Catalan numbers ap-
pear.

10I am indebted to my lifelong friend and colleague Robert Burckel for fleshing out most of the
details.

11This still makes sense if k = 0 for then the numerator is the “empty product,” and hence is 1.
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(a) Suppose that we wish to move along
a square grid (a 6 × 6 grid is
shown to the right) where we start
from the extreme northwest vertex
(A) and move toward the extreme
southeast vertex (B) in such a way
that we always move “toward” the
objective, i.e., each move is either
to the right (east) or down (south).
A moment’s thought reveals that there are

Ä12
6

ä
such paths.

What is the probability that a random path from A to B

will always be above or on the diagonal drawn from A to
B? (Answer: For the grid to the right the probability is
C(6)/

Ä12
6

ä
= 1/7.) This result generalizes in the obvious way

to n× n grids.

(b) Suppose this time that we have 2n people, each wishing to
purchase a $10 theater ticket. Exactly n of these people has
only a $10 bill, and the remaining n people has only a $20
bill. The person selling tickets at the ticket window has no
change. What is the probability that a random lineup of these
2n people will allow the ticket seller to make change from the
incoming receipts? (This means, for instance, that the first
person buying a ticket cannot be one of the people having
only a $20 bill.)

23. Suppose that we have a room with n politicians and that they
are going to use the following “democratic” method for selecting
a leader. They will distribute n identical coins, each having the
probability of heads being p. The n politicians each toss their
respective coins in unison; if a politician’s coin comes up heads,
and if all of the others come up tails, then this politician becomes
the leader. Otherwise, they all toss their coins again, repeating
until a leader has been chosen.

(a) Show that the probability of a leader being chosen in a given
round is np(1− p)n−1.
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(b) Show that the maximum probability for a leader to be chosen
in a given round occurs when p = 1/n.

(c) Show that if n >> 0, and if p = 1/n, then the probability that
a leader is chosen in a given round is ≈ 1/e. (See Equation 6.7,
page 338.)

24. Suppose that in a certain location, the average annual rainfall is
regarded as a continuous random variable, and that the rainfalls
from year to year are independent of each other. Prove that in n
years the expected number of record rainfall years is given by the

harmonic series 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

6.2 Continuous Random Variables

Your TI graphing calculator has a random-number generator. It’s called
rand; find it! Invoking this produces a random number. Invoking this
again produces another. And so on. What’s important here is that
rand represents a continuous (or nearly so!) random variable.

Let’s look a bit closer at the output of rand. Note first that the
random numbers generated are real numbers between 0 and 1. Next,
note that the random numbers are independent, meaning that the
value of one occurence of rand has no influence on any other occurence
of rand.12

A somewhat more subtle observation is that rand is a uniformly
distributed random variable. What does this mean? Does it mean
that, for example

P (rand = .0214) = P (rand = 1/π)?

You will probably convince yourselves that this is not the meaning, as
it is almost surely true that both sides of the above are 0, regardless of

12Of course, this isn’t the technical definition of “independence.” A slighly more formal definition
of independence of random variables X and Y is that

P (a ≤ X ≤ b and c ≤ Y ≤ d) = P (a ≤ X ≤ b)P (c ≤ Y ≤ d).
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the meaning of uniformity! What uniformity means is that for any two
numbers x1 and x2 and any small number ε satisfying x1 ± ε, x2 ± ε ∈
[0, 1]

P (x1 − ε ≤ rand ≤ x1 + ε) = P (x2 − ε ≤ rand ≤ x2 + ε).

A much simpler description of the above is through the so-called
density function for the random variable rand. This has the graph
given below:

-

6

1

1

t

y = f(t)

The way to interpret this—and any other density curve y = f(x)—
is that the probability of finding a value of the corresponding random
variable X between the values a and b is simply the area under the
density curve from a to b:

P (a ≤ X ≤ b) =
∫ b
a
f(x) dx.

For the uniform distribution this means simply that, for example,
P (rand ≤ 2/3) = 2/3, that P (rand > .25) = .75, P (.05 ≤ rand < .6) =
.55, and so on.

Let’s consider another continuous random variable, defined in terms
of its density function. Namely, let X be the random variable whose
density function y = fx(t) is as given below:
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-

6

�
�
�
�
�
�
�
�
�
�
��

1
t

y y = fx(t) = 2t

Two important observations are in order.

(a) For any observation x of X, 0 ≤ x ≤ 1.

(b)
∫ 1

0
f(x) dx = 1

(See Exercise 1, below.)

We see that the above density curve has quite a bit of “skew” to it;
in particular it’s clear that a random measurement of X is much more
likely to produce a value greater than .5 than less than .5.

6.2.1 The normal distribution

The normal density function has the general form

f(x) =
1√
2πσ

e−
1
2(

x−µ
σ )

2

where µ and σ are constants, or parameters13 of the distribution. The
graph is indicated below for µ = 1 and σ = 2:

13We’ll have much more to say about parameters of a distribution. In fact, much of our statistical
study will revolve around the parameters.
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In this case the normal random variable X can assume any real value.
Furthermore, it is true—but not entirely trivial to show by elementary
means—that

1√
2πσ

∫ ∞
−∞

e−
1
2(

x−µ
σ )

2

dx = 1,

which by now we should recognize as being a basic property of any
density function.

Example. Our graphing calculators allow for sampling from normal
distributions, via the randNorm(µ, σ, n), where n is the number of in-
dependent samples taken. The calculator operation

randNorm(1, 2, 200)→ L1

amounts to selecting 200 samples from a normally-distributed popula-
tion having µ = 1 and σ = 2. The same can be done in Autograph; the
results of such a sample are indicated below:

6.2.2 Densities and simulations

In the above we had quite a bit to say about density functions and about
sampling from the uniform and normal distributions. We’ll continue
this theme here.

Let’s begin with the following question. Suppose that X is the uni-
form random number generator on our TI calculators: X = rand. Let’s
define a new random variable by setting Y =

√
X =

√
rand. What
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does the underlying density curve look like? Is it still uniform as in the
case of X? Probably not, but let’s take a closer look. Before getting
too heavily into the mathematics let’s start by collecting 200 samples of√

rand and drawing a histogram. This will give us a general idea of what
the underlying density curve might look like. Collecting the samples is
easy:

√
rand(200)→ L1

puts 200 samples from this distribution into the TI list variable L1.
Likewise, this sampling is easily done using more advanced softwares
as Autograph or Minitab. Below is an Autograph-produced histogram
of these 200 samples.

We would suspect on the basis of this histogram that the underlying
density curve is not uniform but has considerable skew. Intuitively,
we could have seen this simply by noting that for any real number x
satisfying 0 < x < 1 then x <

√
x; this is what creates the histogram’s

to skew to the left.

Can we make this more precise? Yes, and it’s not too difficult. If we
set X = rand, Y =

√
rand, we have that for any value of t, 0 ≤ t ≤ 1,

P (Y ≤ t) = P (
√
X ≤ t) = P (X ≤ t2) = t2

(since X is uniformly distributed on [0, 1].) In other words, if fY is the
density function for Y , then it follows that

∫ t
0
fY (x) dx = P (Y ≤ t) = t2;
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differentiating both sides with respect to t and applying the Fundamen-
tal Theorem of Calculus, we get

fY (t) = 2t .

Of course, this is the density function given a few pages earlier. In
summary, the square root of the uniform random-number generator
has a linear density function given by f(t) = 2t.

Assume, more generally, that we wish to transform data from the
random-number generator X = rand so as to produce a new random
variable Y having a given distribution function fY . If we denote this
transformation by Y = g(X), we have

∫ t
−∞

fY (x)dx = P (Y ≤ t) = P (g(X) ≤ t) = P (X ≤ g−1(t)) = g−1(t),

which determines g−1 and hence the transformation g.

Exercises

1. If X is the random variable having the triangular density curve
depicted on page 349, compute

(a) P (X ≤ 1/3)

(b) P (X ≥ 2/3)

(c) P (1/3 ≤ X ≤ 2/3)

(d) P (X > .5)

2. Suppose that you perform an experiment where you invoke the
random-number generator twice and let Z be the sum of the two
random numbers.

(a) Compute P (.5 ≤ Z ≤ 1.65) theoretically.



354 CHAPTER 6 Inferential Statistics

(b) Estimate P (.5 ≤ Z ≤ 1.65) through a simulation, using the
TI code as follows. (I would suggest taking N ≥ 100 trials in
this simulation.)

PROGRAM: SIMUL1
:0→ C
:INPUT “N: ”, N
:For(I,1,N)
:rand + rand→ Z
:C + (.5 ≤ Z)(Z ≤ 1.65)→ C
:END
:DISP “PROB: ”, C/N
:STOP

The quantity C/N is the estimated probability!

(c) Construct a histogram for 100 observations of the random
variable Z. Try the following code (using, say, N = 100):

PROGRAM: SIMUL2
:INPUT “N: ”, N
:{0} → L1

:For(I,1,N)
:rand + rand→ L1(I)
:END

Once you’ve done the above, you then use your graphing cal-
culator to graph the histogram of the list variable L1. (You’ll
need to decide on sensible window settings.)

3. Let B and C be uniform random variables on the interval [−1, 1].
(Therefore B and C are independent occurrences of 2 rand − 1.)
Compute

(a) the probability that the quadratic x2 + Bx + C = 0 has two
distinct real roots;

(b) the probability that the quadratic x2+Bx+C = 0 has a single
multiple root;
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(c) the probability that the quadratic x2 + Bx + C = 0 has two
real roots.

4. Do the same as above where you take 200 samples from a normal
distribution having µ = 0 and σ = 1. Create a histogram and
draw the corresponding normal density curve simultaneously on
your TI calculators.14

5. Define the random variable by setting Z = rand2.

(a) Determine the density function for Z. Before you start, why
do you expect the density curve to be skewed to the right?

(b) Collect 200 samples of Z and draw the corresponding his-
togram.

(c) How well does your histogram in (b) conform with the density
function you derived in (a)?

6. Consider the density function g defined by setting

g(t) =

 4t+ 2 if − 1
2 ≤ t ≤ 0

−4t+ 2 if 0 ≤ t ≤ 1
2

-

6

�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A

1/2
t

y = g(t)

(a) Show that Y = 1
2X1 + 1

2X2 − 1
2 , where X1 = rand, X2 = rand,

X1 and X2 are independent. (Hint: just draw a picture in the
X1X2-plane to compute P (a ≤ Y ≤ b).)

14In drawing your histogram, you will need to make note of the widths of the histogram bars in
order to get a good match between the histogram and the normal density curve. For example, if you
use histogram bars each of width .5, then with 200 samples the total area under the histogram will
be .5× 200 = 100. Therefore, in superimposing the normal density curve you’ll need to multiply by
100 to get total area of 100. (Use Y1 = 100 ∗ normalpdf(X, 0, 1).)
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(b) Write a TI program to generate 200 samples of Y .

(c) Graph the histogram generated in (b) simultaneously with the
density curve for Y .

7. Let Z = rand2 as in Exercise 5. Show that the density function for
Z is given by

f(x) =


1

2
√
x

if 0 < x ≤ 1,

0 otherwise.

8. We have seen that the density function for the normally-distributed
random variable X having mean 0 and standard deviation 1 is

f(x) =
1√
2π
e−x

2/2.

The χ2 random variable with one degree of freedom is the
random variable X2 (whence the notation!). Using the ideas de-
veloped above, show that the density function for X2 is given by

g(x) =
1√
2π

x−1/2e−x/2.

(More generally, the χ2 distribution with n degrees of free-
dom is the distribution of the sum of n independent χ2 random
variables with one degree of freedom.)15

Below are the graphs of χ2 with one and with four degrees of
freedom.

15The density function for the χ2 distribution with n degrees of freedom turns out to be

g(x) =
xn/2−1e−x/2

2n/2Γ( n2 )
,

where Γ(n2 ) =
(
n
2 − 1

)
! is n is even. If n = 2k + 1 is odd, then

Γ
(n

2

)
= Γ

Å
k +

1

2

ã
=

Å
k − 1

2

ãÅ
k − 3

2

ã
· · · 3

2
· 1

2
·
√
π.
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6

x

y

χ2 distribution with four degrees of freedom

χ2 distribution with one degree of freedom

9. (The Maxwell-Boltzmann density function) The Maxwell-
Boltzmann distribution comes from a random variable of the form

Y =
√
X2

1 +X2
2 +X2

3 ,

where X1, X2, X3 are independent normal random variables with
mean 0 and variance a2. Given that the density of the χ2-random
variable with three degrees of freedom, show that the density of Y
is given by

fY (t) =

Ã
2

π

Ñ
t2e−t

2/(2a2)

a3

é
.

This distribution is that of the speeds of individual molecules in
ideal gases.16

10. Using integration by parts, show thatE(χ2) = 1 and that Var(χ2) =
2 where χ2 has one degree of freedom. Conclude that the expected
value of the χ2 random variable with n degrees of freedom is n
and the variance is 2n. We’ll have much more to say about the χ2

distribution and its application in Section 6.6.

11. Here’s a lovely exercise.17 Circles of radius 1 are constructed in the
plane so that one has center (2 rand, 0) and the other has center
(2 rand, 1). Compute the probability that these randomly-drawn

16It turns out that the the standard distribution a is given by a =
kT

m
, where T is the temperature

(in degrees Kelvin), m is the molecular mass, and k is the Boltzmann constant

k = 1.3806603× 10−23m2 · kg/s2 ·K.

17This is essentially problem #21 on the 2008 AMC (American Mathematics Competitions) contest
12 B.
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circles intersect. (Hint: let X1 and X2 be independent instances of
rand and note that it suffices to compute P (4(X1−X2)

2 +1 ≤ 4).)

12. Let X be a random variable with density function f(x), non-zero
on the interval a ≤ x ≤ b. Compute the density function of cX+d,
where c and d are constants with a > 0, in terms of f .

13. Define the random variable Z = rand, and so 0 ≤ Z ≤ 1.

(a) Determine the density function of Y = 10Z .

(b) Notice that the random variable Y satisfies 1 ≤ Y ≤ 10. Show
that the probability that a random sample of Y has first digit
1 (i.e., satisfies 1 ≤ Y < 2) is log10 2 ≈ 30.1%. (This result is
a simplified version of the so-called Benford’s Law.)

(c) Data arising from “natural” sources often satisfy the property
that their logarithms are roughly uniformly distributed. One
statement of Benford’s Law is that—contrary to intuition—
roughly 30% of the data will have first digit 1. We formal-
ize this as follows. Suppose that we a random variable 1 ≤
Y ≤ 10n, where n is any positive integer, and assume that
Z = log10 Y is uniformly distributed. Show that the proba-
bility that a random sample of Y has digit d, 1 ≤ d ≤ 0 is

log10

(
1 +

1

d

)
.

6.2.3 The exponential distribution

The exponential random variable is best thought of as a continuous
analog of the geometric random variable. This rather glib statement
requires a bit of explanation.

Recall that if X is a geometric random variable with probability
p, then P (X = k) is the probability that our process (or game) will
terminate after k independent trials. An immediate consequence of this
fact is that the conditional probabilities P (X = k + 1 |X ≥ k) = p,
and hence is independent of k. In other words, if we have managed
to survive k trials, then the probability of dying on the k + 1-st trial
depends only on the parameter p and not on k. Similarly, we see that
P (X = k+ τ |X ≥ k) will depend only on p and the integer τ , but not
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on k. This says that during the game we don’t “age”; our probability
of dying at the next stage doesn’t increase with age (k).

We now turn this process into a continuous process, where we can
die at any time t ≥ 0 and not just at integer times. We want the process
to enjoy essentially the same condition as the geometric, namely that
if X now denotes the present random variable, then the conditional
probability P (X = t + τ |X ≥ t) should depend on τ but not on t.
In analogy with the above, this conditional probability represents the
probability of living to time t + τ , given that we have already lived t
units of time.

We let f represent the density function of X; the above requirement
says that

∫ t+τ
t

f(s) ds∫ ∞
t
f(s) ds

= function of τ alone . (∗)

We denote by F an antiderivative of f satisfying F (∞) = 0.18 There-
fore,

1 =
∫ ∞

0
f(s) ds = F (s)

∣∣∣∣∣
∞

0
= −F (0),

and so F (0) = −1.

Next, we can write (*) in the form

F (t+ τ)− F (t)

−F (t)
= g(τ),

for some function g. This implies that the quotient
F (t+ τ)

F (t)
doesn’t

depend on t. Therefore, the derivative with respect to t of this quotient
is 0:

F ′(t+ τ)F (t)− F (t+ τ)F ′(t)

F (t)2
= 0,

forcing

18Since

∫ ∞
0

f(s) ds = 1, we see that F cannot be unbounded at ∞.
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F ′(t+ τ)F (t) = F (t+ τ)F ′(t).

But this can be written as

d

dt
lnF (t+ τ) =

d

dt
lnF (t),

forcing

F (t+ τ) = −F (t)F (τ),

for all t and τ . Finally, if we differentiate both sides of the above with
respect to t and then set t = 0, we arrive at

F ′(τ) = −F ′(0)F (τ),

which, after setting λ = F ′(0), easily implies that F (t) = −e−λt for
all t ≥ 0. Since f is the derivative of F , we conclude finally, that the
density function of the exponential distribution must have the form

f(t) = λe−λt, t ≥ 0.

Very easy integrations show that

E(X) =
1

λ
and Var(X) =

1

λ2
.

The exponential distribution is often used in reliability engineering
to describe units having a constant failure rate (i.e., age independent).
Other applications include

• modeling the time to failure of an item (like a light bulb; see
Exercise 2, below). The parameter λ is often called the failure
rate;

• modeling the time to the next telephone call;

• distance between roadkill on a given highway;
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• number of days between accidents at a given intersection.

Exercises

1. Prove the assertions made above concerning the exponential ran-
dom variable X with density f(t) = λe−λt, t ≥ 0, viz., that
E(X) = 1/λ and that Var(X) = 1/λ2.

2. Suppose that the useful life T of a light bulb produced by a partic-
ular company is given by the density function f(t) = 0.01e−0.01t,
where t is measured in hours. Therefore, the probability that this
light bulb fails somewhere between times t1 and t2 is given by the

integral P (t1 ≤ T ≤ t2) =
∫ t2
t1
f(t) dt.

(a) The probability that the bulb will not burn out before t hours
is a function of t and is often referred to as the reliability of
the bulb.

(b) For which value of t is the reliability of the bulb equal to 1/2.
Interpret this value of t.

3. Suppose that your small company had a single secretary and that
she determined that one a given day, the measured time elapsed
between 30 consecutive received telephone calls was (in minutes)

6.8, 0.63, 5.3, 3.8, 3.5, 7.2, 16.0. 5.5, 7.2, 1.1, 1.4, 1.8, 0.28, 1.2,
1.6, 5.4, 5.4, 3.1, 1.3, 3.7, 7.5, 3.0, 0.03, 0.64, 1.5, 6.9, 0.01, 4.7,
1.4, 5.0.

Assuming that this particular day was a typical day, use these data
to estimate the mean wait time between phone calls. Assuming
that the incoming phone calls roughly follow an exponential dis-
tribution with your estimated mean, compute the probability that
after a given call your secretary will receive another call within
two minutes.

4. Under the same assumptions as in the above exercise, roughly how
long will it take for the tenth call during the day will be taken by
your secretary?
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5. You have determined that along a stretch of highway, you see on
average one dead animal on the road every 2.1 km. Assuming an
exponential distribution with this mean, what is the probability
that after seeing the last road kill you will drive 8 km before seeing
the next one.

6. (Harder question) Assume, as in the above problem that you see on
average one dead animal every 2.1 km along the above-mentioned
highway. What is the probability that you will drive at least 10
km before seeing the next two dead animals? (Hint: Let X1 be
the distance required to spot the first roadkill, and let X2 be the
distance required to spot the second roadkill. You’re trying to
compute P (X1 +X2 ≥ 10); try looking ahead to page 370.)

7. We can simulate the exponential distribution on a TI-series calcu-
lator, as follows. We wish to determine the transforming function
g such that when applied to rand results in the exponential ran-
dom variable Y with density function fY (t) = λe−λt. Next, from
page 353 we see that, in fact

∫ t
0
fY (x) dx =

∫ t
0
λe−λx dx = g−1(t).

That is to say, 1− e−λt = g−1(t).

(a) Show that this gives the transforming function g(x) =
−1

λ
ln(1−

x).

(b) On your TI calculators, extract 100 random samples of the
exponential distribution with λ = .5 (so µ = 2) via the com-
mand

−1

.5
ln(1− rand(100))→ L1.

This will place 100 samples into the list variable L1.

(c) Draw a histogram of these 100 samples—does this look right?

8. (This is an extended exercise.) Continuing on the theme in Exer-
cise 7, we can similarly use the TI calculator to generate samples
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of a geometric random variable. Just as we were able above to
transform rand into an exponential random variable, we shall (ap-
proximately) transform the TI random integer variable “randInt”
into a geometric random variable.

First of all, the random integer generator has three inputs and has
the form randInt(nmin, nmax, N). The output consists of a se-
quence of N randomly and uniformly distributed integers between
nmin and nmax. We shall, for convenience, take nmin = 1 and
set n = nmax. We let Y be the geometric random variable (with
parameter p), and let X be a randomly-generated uniformly dis-
tributed integer 1 ≤ X ≤ n. The goal is to find a function g such
that Y = g(X). This will allow us to use the TI calculator to
generate samples of a geometric random variable (and therefore of
a negative binomial random variable).

Note first that

P (Y ≤ k) = p+p(1−p)+p(1−p)2+· · ·+p(1−p)k−1 = 1−(1−p)k, k ≥ 0

and that

P (X ≤ h) =
h

n
, 1 ≤ h ≤ n.

At this point we see a potential problem in transforming from the
uniform variable to the geometric: the geometric random variable
has an infinite number of possible outcomes (with decreasing prob-
abilities) and the uniform random variable is an integer between 1
and n. Therefore, we would hope not to lose too much information
by allowing n to be reasonably large (n ≈ 25 seems pretty good).
At any rate, we proceed in analogy with the analysis on page 353:
assuming that Y = g(X) we have
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1− (1− p)k = P (Y ≤ k)

= P (g(X) ≤ k)

= P (X ≤ g−1(k))

=
g−1(k)

n

Solving for g we get

g(h) =
ln(1− h

n)

ln(1− p)
.

However, we immediately see that if h = n = nmax we see that
g(h) is undefined (and the TI will generate an error whenever
h = n). This makes mathematical sense as there is no value of
k for which P (Y ≤ k) = 1. One remedy is to let the value of n
in the above expression for g be slightly larger than nmax. Of
course, having done this, the transformed values will no longer be
integers, so we’ll need to round to the nearest integer. On the TI
calculator the value int(x+ .5) will have the effect of rounding to
the nearest integer.

Now do this: Generate 100 samples of the geometric random
variable with parameter p = .25 using the command

ln
Å
1− randInt(1,30,100)

30.01

ã
ln(1− .25)

→ L1

followed by the command

int(L1 + .5)→ L1.

This will store 100 randomly-generated integer samples in the list
variable L1. You should check to see if they appear to follow
the geometric distribution with parameter p = .25. (Start by
comparing the mean of your data with the theoretical mean of the
geometric random variable!)
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9. Let X be an exponential random variable with failure rate λ, and
let Y = X1/α, α > 0. Using the idea developed on page 353, com-
pute the density function for Y . This gives the so-called Weibull
distribution.

6.3 Parameters and Statistics

Suppose that we have a continuous random variable X having density
function fX . Associated with this random variable are a few parame-
ters, the mean (and also the median and the mode) and the vari-
ance of X. In analogy with discrete random variables they are defined
as follows.

Mean of X. We set

E(X) = µX =
∫ ∞
−∞

xfX(x) dx.

Median of X. This is just the half-way point of the distribution,
that is, if m is the median, we have P (X ≤ m) = 1

2 = P (X ≥ m).
In terms of the density function, this is just the value m for which

∫ m
−∞

fX(x) dx =
1

2
.

Mode of X. This is just the value of x at which the density function
assumes its maximum. (Note, then, that the mode might not be
unique: a distribution might be “bimodal” or even “multimodal.”)

The mean, median, and mode measure “central tendency.”

Variance of X. We set

Var(X) = σ2
X = E((X − µX)2).

As we shall see below,
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Var(X) =
∫ ∞
−∞

(x− µX)2fX(x) dx.

(though most texts gloss over this point).

The positive square root σX of Var(X) is called the standard devia-
tion of X.

6.3.1 Some theory

If we adapt the arguments beginning on page 319 to continuous random
variables, we can give a heuristic argument that the expectation of the
sum of two continuous random variables is the sum of the expectations.
The basic idea is that there is a joint density function fXY which gives
probabilities such as

P (a ≤ X ≤ b and c ≤ Y ≤ d) =
∫ b
a

∫ d
c
fXY (x, y) dxdy.

These can be represented in terms of conditional probabilities in the
usual way: fXY (x, y) = fX(x|y)fY (y); furthermore, one has

fX(x) =
∫ ∞
−∞

fX(x|y) dy.

Accepting all of this stuff, one proceeds exactly as on pages 319–320:

µX+Y =
∫ ∞
−∞

∫ ∞
−∞

(x+ y)fXY (x, y) dx dy

=
∫ ∞
−∞

∫ ∞
−∞

xfXY (x, y) dx dx+
∫ ∞
−∞

∫ ∞
−∞

yfXY (x, y) dx dy

=
∫ ∞
−∞

∫ ∞
−∞

xfX(x|y)fY (y) dy dx+
∫ ∞
−∞

∫ ∞
−∞

yfY (y|x)fX(x) dx dy

=
∫ ∞
−∞

xfX(x) dx+
∫ ∞
−∞

yfY (y) dy

= µX + µY .

A similar argument, together with mathematical induction can be
used to show that
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E(X1 +X2 + · · ·+Xk) = E(X1) + E(X2) + · · ·+ E(Xk) .

If the random variables X and Y are independent, then we may write
the density function fXY (x, y) as a product: fXY (x, y) = fX(x)fY (y),
from which it follows immediately that

E(XY ) = E(X)E(Y ), where X and Y are independent.

In particular, this shows the following very important result. Assume
that we are to take n independent samples from a given population
having mean µ. If X denotes the average of these samples, then X is a
itself a random variable and

X =
X1 +X2 + · · ·+Xn

n
,

where X1, X2, . . . , Xn are independent random variables from this pop-
ulation. We have, therefore, that

E(X) =
E(X1) + E(X2) + · · ·+ E(Xn)

n
= µ.

We now turn our attention to variance. However, a couple of pre-
liminary observations are in order. First of all, let X be a continuous
random variable, let a be a real constant, and set Y = X + a. We
wish first to compare the density functions fY and fX . Perhaps it’s
already obvious that fY (x) = fX(x − a), but a formal proof might be
instructive. We have

∫ t
−∞

fY (x) dx = P (Y ≤ t) = P (X+a ≤ t) = P (X ≤ t−a) =
∫ t−a
−∞

fX(x) dx.

But a simple change of variable shows that



368 CHAPTER 6 Inferential Statistics

∫ t−a
−∞

fX(x) dx =
∫ t
−∞

fX(x− a) dx.

In other words, for all real numbers t, we have

∫ t
−∞

fY (x) dx =
∫ t
−∞

fX(x− a) dx.

This implies (e.g., by the Fundamental Theorem of Calculus) that

fX+a(x) = fX(x− a) (∗)

for all x ∈ R.

Next, we would like to compute the density function for the random
variable Y = X2 in terms of that of X. To do this, note that

∫ t
0
fX2(x) dx = P (X2 < t) = P (−

√
t < X <

√
t) =

∫ √t
−
√
t
f(x) dx.

An application of the Fundamental Theorem of Calculus gives

fX2(x) =
1

2
√
x

(
fX(
√
x)− fX(−

√
x)
)
. (∗∗)

Using equations (*) and (**), we can compute the variance of the con-
tinuous random variable X having mean µ, as follows. We have

Var(X) = E((X − µ)2)

=
∫ ∞

0
xf(X−µ)2(x) dx

by (**)

=
1

2

∫ ∞
0

√
xfX−µ(

√
x) dx − 1

2

∫ ∞
0

√
x fX−µ(−

√
x) dx

(u=
√
x)

=
∫ ∞

0
u2fX−µ(u) du+

∫ 0

−∞
u2fX−µ(u) du =

∫ ∞
−∞

u2fX−µ(u) du

by (*)

=
∫ ∞
−∞

u2fX(u+ µ) du

=
∫ ∞
−∞

(u− µ)2fX(u) du,

=
∫ ∞
−∞

(x− µ)2fX(x) dx.
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This proves the assertion made on page 365. Next, we have

E(X2) =
∫ ∞

0
xfX2(x) dx

=
1

2

∫ ∞
0

√
xfX(x) dx − 1

2

∫ ∞
0

√
x fX(−

√
x) dx

=
∫ ∞
−∞

u2fX(u) dx

=
∫ ∞
−∞

x2fX(x) dx

Finally,

Var(X) =
∫ ∞
−∞

(x− µ)2fX(x) dx

=
∫ ∞
−∞

(x2 − 2xµ+ µ2)fX(x) dx

=
∫ ∞
−∞

x2fX(x) dx− 2µ
∫ ∞
−∞

xfX(x) dx+ µ2
∫ ∞
−∞

fX(x) dx

= E(X2)− µ2,

exactly as for discrete random variables (page 321).

We need one final theoretical result concerning variance. Assume
that we take two independent measurements X and Y from a given
population both having mean µ. What is the variance of X + Y ? This
will require the two results sketched on page 366, namely

(i) that E(X + Y ) = E(X) + E(Y ), whether or not X and Y , and

(ii) that if X and Y are independent, then E(XY ) = E(X)E(Y ).

Using these two facts, we can proceed as follows:

Var(X + Y ) = E((X + Y − 2µ)2)

= E(X2 + Y 2 + 2XY − 4µX − 4µY + 4µ2)

= E(X2) + E(Y 2) + 2µ2 − 4µ2 − 4µ2 + 4µ2

= E(X2)− µ2 + E(Y 2)− µ2 = Var(X) + Var(Y ).
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Convolution and the sum of independent random variables. Assume that
X and Y are independent random variables with density functions fX
and fY , respectively. We shall determine the distribution of X + Y in
terms of fX andfY .

To do this we observe that

fX+Y (t) =
d

dt
P (X + Y ≤ t)

=
d

dt
P (Y ≤ t−X)

=
d

dt

∫ ∞
−∞

∫ t−x
−∞

fX(x)fY (y) dy dx

=
∫ ∞
−∞

fX(x)fY (t− x) dx.

The last expression above is called the convolution of the density
functions.19 We write this more simply as

fX+Y (t) = fX ∗ fY (t),

where for any real-valued20 functions f and g, the convolution is defined
by setting

f ∗ g(t) =
∞∫
−∞

f(x)g(t− x)dx.

From the above we can easily compute the distribution of the differ-
ence X − Y of the independent random variables X and Y . Note first
that the distribution of −Y is clearly the function f−Y (t) = fY (−t), t ∈
R. This implies that the distribution of fX−Y is given by

fX−Y (t) = fX ∗f−Y (t) =
∞∫
−∞

fX(x)f−Y (t−x)dx =
∞∫
−∞

fX(x)fY (x− t)dx.

19Of course, the notion of convolution was already introduced in Exercise 5 on page 261.
20Actually, there are additional hypotheses required to guarantee the existence of the convolution

product.
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Next, continuing to assume that X an Y are independent random
variables, we proceed to compute E(X + Y ). We have

E(X + Y ) =
∫ ∞
−∞

x(fX ∗ fY )(x) dx

=
∫ ∞
−∞

x
∫ ∞
−∞

fX(t)fY (x− t) dt dx

=
∫ ∞
−∞

fX(t)
∫ ∞
−∞

xfY (x− t) dt dx

=
∫ ∞
−∞

fX(t)
∫ ∞
−∞

(t+ x)fY (x) dx dt

=
∫ ∞
−∞

fX(t)(t+ E(Y )) dt

= E(X) + E(Y ).

Exercises

1. Compute the mean and the variance of the random variable rand.
(Recall that rand has density function

f(x) =

1 if 0 ≤ x ≤ 1,

0 otherwise.)

2. Compute the mean and the variance of the random variable
√

rand.
(Recall that

√
rand has density function

f(x) =

2x if 0 ≤ x ≤ 1,

0 otherwise.)

3. Compute the mean and the variance of the random variable rand2.
(See Exercise 7 on page 356.)

4. Compute the mean and the variance of the random variable having
density function given in Exercise 6 on page 355.
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5. In Exercise 6 on page 362 you were asked essentially to investigate
the distribution of X1 + X2 where X1 and X2 were independent
exponential random variables, each with mean µ = 1/λ. Given
that the density function of each is f(x) = λe−λx and given that the
sum has as density the convolution of f with itself (see page 370),
compute this density.

6. In Exercise 8 on page 356 we showed that the density function
for the χ2 random variable with one degree of freedom is f(x) =

1√
2π

x−1/2e−x/2. Using the fact that the χ2 with two degrees of

freedom is the sum of independent χ2 random variables with one
degree of freedom, and given that the density function for the
sum of independent random variables is the convolution of the two
corresponding density functions, compute the density function for
the χ2 random variable with two degrees of freedom. (See the
footnote on page 356.)

7. Let f be an even real-valued function such that
∫ ∞
−∞

f(x)dx exists.

Show that f ∗ f is also an even real-valued function.

8. Consider the function defined by setting

f(x) =

x
2 if − 1 ≤ x ≤ 1,

0 otherwise.

(a) Show that

f ∗ f(x) =


∫ x+1

−1
y2(x− y)2 dy if − 1 ≤ x ≤ 0,∫ 1

x−1
y2(x− y)2 dy if 0 ≤ x ≤ 1.
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(b) Conclude that f ∗ f is not
differentiable at x = 0.

(c) Show that the graph of
f ∗ f is as depicted to the
right.

(d) Also, compute
∫ ∞
−∞

f ∗ f(x)dx, and compare with
∫ ∞
−∞

f(x)dx.

Does this make sense? Can you formulate a general statement?

6.3.2 Statistics: sample mean and variance

In all of the above discussions, we have either been dealing with ran-
dom variables whose distributions are known, and hence its mean and
variance can (in principle) be computed, or we have been deriving the-
oretical aspects of the mean and variance of a random variable. While
interesting and important, these are intellectual luxuries that usually
don’t present themselves in the real world. If, for example, I was
charged with the analysis of the mean number of on-the-job injuries
in a company in a given year, I would be tempted to model this with
a Poisson distribution. Even if this were a good assumption, I proba-
bly wouldn’t know the mean of this distribution. Arriving at a “good”
estimate of the mean and determining whether the Poisson model is a
“good” model are both statistical questions.

Estimation of a random variable’s mean will be the main focus of the
remainder of the present chapter, with a final section on the “goodness
of fit” of a model.

We turn now to statistics. First of all, any particular values (out-
comes) of a random variable or random variables are collectively known
as data. A statistic is any function of the data. Two particularly
important statistics are as follows. A sample (of size n) from a distri-
bution with random variable X is a set of n independent measurements
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x1, x2, . . . , xn of this random variable. Associated with this sample are

The sample mean: this is defined by setting

x =
x1 + x2 + · · ·+ xn

n
.

The basic reason for considering the sample mean is the follow-
ing. Suppose that we have taken the samples x1, x2, . . . , xn from
a population whose mean is µ. Would we expect that x ≈ µ?
Fortunately, the answer is in agreement with our intuition; that
we really do expect that the sample mean to approximate the
theoretical (or population) mean. The reason, simply is that if we
form the random variable

X =
X1 +X2 · · ·+Xn

n
,

then it is clear that E(X) = µ. (Indeed, we already noted this
fact back on page 324.) That is to say, when we take n indepen-
dent samples from a population, then we “expect” to get back the
theoretical mean µ. Another way to state this is to say that x is
an unbiased estimate of the population mean µ.

Next, notice that since X1, X2, · · · , Xn are independent, we have
that

Var(X) = Var

(
X1 +X2 + · · ·+Xn

n

)

=
1

n2
Var(X1 +X2 + · · ·+Xn)

=
1

n2
(Var(X1) + Var(X2) + · · ·+ Var(Xn))

=
σ2

n
.



SECTION 6.3 Parameters and Statistics 375

This shows why it’s best to take “large” samples: the “sampling
statistic” X has variance which tends to zero as the sample size
tends to infinity.

The sample variance: this is defined by setting

s2
x =

1

n− 1

n∑
i=1

(xi − x)2.

The sample standard deviation sx =
»
s2
x.

If X1, X2, . . . , Xn represent independent random variables having the
same distribution, then setting

S2
x =

1

n− 1

n∑
i=1

(Xi −X)2

is a random variable. Once the sample has been taken, this random
variable has taken on a value, Sx = sx and is, of course, no longer
random. The relationship between Sx and sx is the same as the rela-
tionship between X (random variable before collecting the sample) and
x (the computed average of the sample).

You might wonder why we divide by n − 1 rather than n, which
perhaps seems more intuitive. The reason, ultimately, is that

E(S2
x) = E

Ñ
1

n− 1

n∑
i=1

(Xi −X)2

é
= σ2.

A sketch of a proof is given in the footnote.21 (We remark in passing
that many authors do define the sample variance as above, except that

21First of all, note that, by definition

E((Xi − µ)2) = σ2,

from which it follows that

E

(
n∑
i=1

(Xi − µ)2

)
= nσ2.

Now watch this:
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the sum is divided by n instead of n − 1. While the resulting statis-
tic is a biased estimate of the population variance, it does enjoy the
property of being what’s called a maximum-likelihood estimate of
the population variance. A fuller treatment of this can be found in any
reasonably advanced statistics textbook.)

Naturally, if we take a sample of size n from a population having
mean µ and variance σ2, we would expect that the sample mean and
variance would at least approximate µ and σ2, respectively. In practice,
however, given a population we rarely know the population mean and
variance; use use the statistics x and s2

x in order to estimate them (or
to make hypotheses about them).

n∑
i=1

(Xi − µ)2 =
n∑
i=1

[
(X1 −X) + (X − µ)

]2
=

n∑
i=1

[
(Xi −X)2 + 2(Xi −X)(X − µ) + (X − µ)2

]
=

n∑
i=1

(Xi −X)2 + n(X − µ)2 ( since
∑

(Xi −X) = 0.)

Next, since E(X) = µ, we have E
(
n(X − µ)2

)
= nE

(
(X − µ)2

)
= nVar(X) = σ2. Therefore, we

take the expectation of the above random variables:

nσ2 = E

(
n∑
i=1

(Xi − µ)2

)

= E

(
n∑
i=1

(Xi −X)2 + n(X − µ)2

)

= E

(
n∑
i=1

(Xi −X)2

)
+ E

(
n(X − µ)2

)
= E

(
n∑
i=1

(Xi −X)2

)
+ σ2

from which we see that

E

(
n∑
i=1

(Xi −X)2

)
= (n− 1)σ2.

Therefore, we finally arrive at the desired conclusion:

E

(
1

n− 1

n∑
i=1

(Xi −X)2

)
= σ2.
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6.3.3 The distribution of X and the Central Limit Theorem

The result of this section is key to all of sampling theory. As we might
guess, one of the most important statistics we’re apt to encounter is
the mean x of n independent samples taken from some population.
Underlying this is the random variable X with parameters

E(X) = µ, and Var(X) =
σ2

n
.

Let’s start by getting our hands dirty.

Simulation 1. Let’s take 100 samples of the mean (where each mean
is computed from 5 observations) from the uniform distribution having
density function

f(x) =

1 if 0 ≤ x ≤ 1,

0 otherwise.

We display the corresponding histogram:

Simulation 2. Here, let’s take 100 samples of the mean (where each
mean is computed from 50 observations) from the uniform distribution
above. The resulting histogram is as below.
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There are two important observations to make here. First of all, even
though we haven’t sampled from a normal distribution, the sample
means appear to be somewhat normally distributed (more so in the
n = 50 case). Next, notice that the range of the samples of the mean
for n = 50 is much less than for n = 5. This is because the standard
deviations for these two sample means are respectively σ√

5
and σ√

50
,

where σ is the standard deviation of the given uniform distribution.22

Simulation 3. Let’s take 100 samples of the mean (where each mean
is computed from 5 observations) from the distribution having density
function

f(x) =

2x if 0 ≤ x ≤ 1,

0 otherwise.

(Recall that this is the density function for
√

rand.) We display the
corresponding histogram.

22The variance of this distribution was to be computed in Exercise 1 on page 371; the result is
σ2 = 1

12 .
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Simulation 4. Let’s take 100 samples of the mean (where each mean
is computed from 50 observations) from distribution having the same
density function as above.

We display the corresponding histogram.

Again, note the tendency toward a normal distribution with a rela-
tively narrow spread (small standard distribution).

The above is codified in the “Central Limit Theorem:”

Central Limit Theorem. The sample mean X taken from n samples
of a distribution with mean µ and variance σ2 has a distribution which
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as n → ∞ becomes arbitrarily close to the normal distribution with

mean µ and variance
σ2

n
.

Perhaps a better way to state the Central Limit Theorem is as fol-
lows. If Z is the normal random variable with mean 0 and variance 1,
then for any real number z,

lim
n→∞P

Ñ
X − µ
σ/
√
n
< z

é
= P (Z < z).

6.4 Confidence Intervals for the Mean of a Popu-

lation

A major role of statistics is to provide reasonable methods by which
we can make inferences about the parameters of a population. This
is important as we typically never know the parameters of a given
population.23 When giving an estimate of the mean of a population, one
often gives an interval estimate, together with a level of confidence.
So, for example, I might collect a sample from a population and measure
that the mean x is 24.56. Reporting this estimate by itself is not terribly
useful, as it is highly unlikely that this estimate coincides with the
population mean. So the natural question is “how far off can this
estimate be?” Again, not knowing the population mean, this question is
impossible to answer. In practice what is done is to report a confidence
interval together with a confidence level. Therefore, in continuing
the above hypothetical example, I might report that

“The 95% confidence interval for the mean is 24.56 ± 2.11.”

or that

“The mean falls within 24.56 ± 2.11 with 95% confidence.”

23In fact we almost never even know the population’s underlying distribution. However, thanks
to the Central Limit Theorem, as long as we take large enough samples, we can be assured of being
“pretty close” to a normal distribution.
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A very common misconception is that the above two statements
mean that the population mean lies within the above reported inter-
val with probability 95%. However, this is meaningless: either the
population mean does or doesn’t lie in the above interval; there is no
randomness associated with the interval reported! As we’ll see, the
randomness is associated with the process of arriving at the interval
itself. If 100 statisticians go out and compute 95% confidence intervals
for the mean, then roughly 95 of the computed confidence intervals will
actually contain the true population mean. Unfortunately, we won’t
know which ones actually contain the true mean!

6.4.1 Confidence intervals for the mean; known population
variance

While it is highly unreasonable to assume that we would know the
variance of a population but not know the mean, the ensuing discussion
will help to serve as a basis for more practical (and realistic) methods
to follow. Therefore, we assume that we wish to estimate the mean µ of
a population whose variance σ2 is known. It follows then, that if X is
the random variable representing the mean of n independently-selected
samples, then

• the variance of X is
σ2

n
, and

• (if n is “large”)24 the random variable X is approximately normally
distributed.

In the ensuing discussion, we shall assume either that we are sam-
pling from an (approximately) normal population or that n is relatively
large. In either case, X will be (approximately) normally distributed.
We have that

E(X) = µ, and Var(X) =
σ2

n
;

24A typical benchmark is to use sample sizes of n ≥ 30 in order for the normality assumption to
be reasonable. On the other hand, if we know—or can assume—that we are sampling from a normal
population in the first place, then X will be normally distributed for any n.
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therefore the random variable Z = X−µ
σ/
√
n

is normally distributed with
mean 0 and standard deviation 1. The values z ≈ ±1.96 are the values
such that a normally-distributed random variable Z with mean 0 and
variance 1 will satisfy P (−1.96 ≤ Z ≤ 1.96) = 0.95; see figure below

In other words, we have

P (−1.96 ≤ X − µ
σ/
√
n
≤ 1.96) = 0.95.

We may rearrange this and write

P (X − 1.96
σ√
n
≤ µ ≤ X + 1.96

σ√
n

).

Once we have calculated the mean x of n independent samples, we

obtain a specific interval

x− 1.96
σ√
n
, x− 1.96

σ√
n

 which we call the

95% confidence interval for the mean µ of the given population.
Again, it’s important to realize that once the sample has been taken
and x has been calculated, there’s nothing random at all about the
above confidence interval: it’s not correct that it contains the true
mean µ with probability 95%, it either does or it doesn’t!

Of course, there’s nothing really special about the confidence level
95%—it’s just a traditionally used one. Other confidence levels fre-
quently used are 90% and 99%, but, of course, any confidence level
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could be used. To form a 90% confidence interval from a measured
mean x, we would replace the number 1.96 used above with the value
of z for which random samples from a normal population with mean 0
and standard deviation 1 would lie between ±z 99% of the time. Here,
it turns out that z ≈ 2.58:

In general, the (1 − α) × 100% confidence interval for the mean is
obtained by determining the value zα/2 such that a normally-distributed
random variable Z of mean 0 and standard deviation 1 will satisfy

P (−zα/2 ≤ Z ≤ zα/2) = 1− α.

Below are tabulated some of the more traditional values:

Confidence Relevant
Level z-value

(1−α) α zα/2
0.90 0.10 1.645
0.95 0.05 1.960
0.98 0.02 2.326
0.99 0.01 2.576

In summary, the (1− α)× 100% confidence interval for the mean is
formed from the sample mean x by constructing
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x− zα/2 σ√
n
, x+ zα/2

σ√
n

 .

Furthermore, we expect that (1 − α) × 100 percent of the intervals so
constructed will contain the true population mean.

Note, finally, that as the confidence level rises, the width of the
confidence interval also increases. This is obvious for the wider the
interval, the more confident we should be that it will “capture” the
true population mean!

Exercises

1. Suppose that we are going to sample the random variable X =
4 × rand. Is this a normal random variable? What is the mean
and variance of X? Suppose that we instead sample X, where
X = 4×rand and X is computed by taking 50 independent samples
and forming the average. Is X close to being normally distributed?
To help in answering this question, write the simple TI code into
your calculator

PROGRAM: NORMCHECK
:{0} → L1

:For(I,1,100)
:4*rand(50)→ L2

:mean(L2)→ L1(I)
:END

A moment’s thought reveals that this program collects 100 samples
of X, where each mean is computed from 50 samples each and
putting the result into list variable L1. Finally draw a histograms
of these 100 samples of the mean; does it look normal? This
little experiment is tantamount to sending out 100 statisticians
and having each collecting 50 independent samples and computing
the mean. The statisticians all return to combine their results into
a single histogram.
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2. Suppose that you go out and collect 50 samples of the random
variable 4 × rand and compute the mean x. Compute the 95%
confidence interval so obtained. Does it contain the true mean µ?
(See Exercise 1, above.)

3. We can build on Exercise 2, as follows. The following simple TI
code can be used to count how many out of 100 95% confidence
intervals for the mean µ of the random variable 4*rand will actually
contain the true mean (= 2):

PROGRAM: CONFINT
:0→ C

:For(I,1,100)
:4*rand(50)→ L1

:mean(L1)→M

:M − .32→ L

:M + .32→ U
:C + (L ≤ 2)(2 ≤ U)→ C

:END
:Disp C
:Stop

(a) What is the number .32?

(b) What is C trying to compute?

(c) Run this a few times and explain what’s going on.

6.4.2 Confidence intervals for the mean; unknown variance

In this section we shall develop a method for finding confidence intervals
for the mean µ of a population when we don’t already know the variance
σ2 of the population. In the last section our method was based on the

fact that the statistic
X − µ
σ

was approximately normally distributed.

In the present section, since we don’t know σ, we shall replace σ2 with
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its unbiased estimate s2
x, the sample variance. We recall from

page 375 that s2
x is defined in terms of the sample by setting

s2
x =

1

n− 1

n∑
i=1

(xi − x)2.

Again, this is unbiased because the expected value of this statistics is
the population variance σ2 (see the footnote on page 375.

We now consider the statistic T =
X − µ
Sx/
√
n

which takes on the value

t =
x− µ
sx/
√
n

from a sample of size n. Of course, we don’t know µ,

but at least we can talk about the distribution of this statistic in two
important situations, viz.,

• The sample size is small but the underlying population being sam-
pled from is approximately normal; or

• The sample size is large (n ≥ 30).

In either of the above two situations, T is called the t statistic and
has what is called the t distribution with mean 0, variance 1 and
having n− 1 degrees of freedom. If n is large, then T has close to a
normal distribution with mean 0 and variance 1. However, even when
n is large, one usually uses the t distribution.25

Below are the density functions for the t distribution with 2 and 10
degrees of freedom (DF). As the number of degrees of freedom tends
to infinity, the density curve approaches the normal curve with mean 0
and variance 1.

25Before electronic calculators were as prevalent as they are today, using the t statistic was not
altogether convenient as the t distribution changes slightly with each increased degree of freedom.
Thus, when n ≥ 30 one typically regarded T as normal and used the methods of the previous section
to compute confidence intervals. However, the t distribution with any number of degrees of freedom
is now readily available on such calculators as those in the TI series, making unnecessary using the
normal approximation (and introducing additional error into the analyses).
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The philosophy behind the confidence intervals where σ is unknown
is pretty much the same as in the previous section. We first choose a
desired level of confidence (1− α)× 100% and then choose the appro-
priate level tα/2 which contains α× 100% of the population in the two
tails of the distribution. Of course, which t distribution we choose is
dependent on the size of the sample we take; as mentioned above, the
degrees of freedom is equal to n− 1, where n is the sample size. These
levels are tabulated in any statistics book; as a sample we show how
they are typically displayed (a more complete table is given at the end
of this chapter):

Degrees of
Freedom t.050 t.025 t.005

...
...

...
...

10 1.812 2.228 3.169
11 1.796 2.201 3.106
12 1.782 2.179 3.055
13 1.771 2.160 3.012
...

...
...

...

Once we have collected the sample of size n and have computed the
average x of the sample, the (1−α)×100% confidence interval becomes

x− tα/2 sx√
n
, x+ tα/2

sx√
n

 .
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Exercise

1. As we have already seen it’s possible to use your TI calculators to
generate examples (simulations) of your own, as follows. Try the
following.

(a) On your TI, invoke randNorm(10.3, 2.4, 5) → L1. What does
this command do?26

(b) Next, use your TI calculator to compute a 95% confidence
interval for the mean. (Use TInterval and run the Data option)

(c) Did this interval capture the true mean?

(d) If you were to perform this experiment 100 times, how many
times would you expect the computed confidence interval to
capture the true mean?

(e) Here’s a code that will construct the above confidence interval
and compute the number of times it captures the true mean.
Run it and report on your findings. (The run time for this
program on a TI-83 is about four minutes.)

26It generates a (small) sample of size 5 taken from a normal population with mean 10.3 and
standard deviation 2.4.
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PROGRAM: CONFINT1
:0→ C
:Input ”POP MEAN ”, M
:Input ”POP STD ”, S
:Input ”NO OF EXPER ”, N
:5→ K
:For(I,1,100)
:randNorm(M,S,K)→ L1

:mean(L1)→ X
:(K/(K-1))(mean(L2

1)− X2)→ V
:2.776

»
V/K→ Q

:X−Q→ L
:X + Q→ U
:C + (L ≤ 2)(2 ≤ U)→ C
:END
:Disp C
:Stop

(f) In the above program, change the commands as follows

Input ”POP MEAN ”, M to 1/3→ M
randNorm(M,S,K)→ L1 to rand(K)2 → L1

Input ”POP STD ”, S to anything (it’s now irrelevant)

Notice that this time we are taking small samples from a
highly non-normal population (rand2). Are we still capturing
the true mean (= 1/3) roughly 95% of the time?

6.4.3 Confidence interval for a population proportion

Professional pollsters love to estimate proportions: in any political race
and at virtually any time, they will take samples from the voting pop-
ulation to determine whether they prefer candidate A or candidate B.
Of course, what the pollsters are trying to determine is the overall
preference—as a proportion—of the entire population. I seem to re-
member reading sometime during the 2004 U.S. presidential campaign
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that a Gallop Poll survey of 10,000 voters led to the prediction that
51% of the American voters preferred Kerry over Bush with a sam-
pling error of ±3% and a confidence level of 95%. What this means, of
course, is the essence of confidence intervals for proportions.

The methods of this section are based on the assumption that large
enough samples from an even larger binomial population are taken so
that the test statistic—the sample proportion—can assumed to be nor-
mally distributed. Thus, we are going to be sampling from a very large
binomial population, i.e., one with exactly two types A and B. If the
population size is N , then the population proportion p can be then
defined to be fraction of those of type A to N . When sampling from
this population, we need for the population size to be rather large com-
pared with the sample size. In practice, the sampling is typically done
without replacement which strictly speaking would lead to a hypergeo-
metric distribution. However, if the population size is much larger than
the sample size, then the samples can be regarded as independent of
each other, whether or not the sampling is done without replacement.
Once a sample of size n has been taken, the sample proportion p̂ is
the statistic measuring the ratio of type A selected to the sample size
n.

Assume, then, that we have a large population where p is the pro-
portion of type A members. Each time we randomly select a member
of this population, we have sampled a Bernoulli random variable B
whose mean is p and whose variance is p(1− p). By the Central Limit
Theorem, when n is large, the sum B1 +B2 + · · ·+Bn of n independent
Bernoulli random variables, each having mean p and variance p(1− p)
has approximately a normal distribution with mean np and variance
np(1− p). The random variable

P̂ =
B1 +B2 + · · ·+Bn

n

is therefore approxmately normally distributed (when n is large) and
has mean p and variance p(1−p)

n .
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If b1, b2, . . . , bn are the observed outcomes, i.e.,

bi =

1 if type A is observed;

0 if type B is observed,

then the relevant test statistic is

p̂ =
b1 + b2 + · · ·+ bn

n
.

Notice that since we don’t know p (we’re tying to estimate it), we
know neither the mean nor the variance of the test statistic. With
a large enough sample, P̂ will be approximately normally distributed

with mean p and variance p(1 − p). Therefore
P̂ − p»

p(1− p)/n
will be

approximately normal with mean 0 and variance 1. The problem with
the above is all of the occurrences of the unknown p. The remedy is to

approximate the variance
p(1− p)

n
by the sample variance based on p̂:

p̂(1− p̂)
n

. Therefore, we may regard

Z =
P̂ − p√

P̂ (1− P̂ )/n

as being approximately normally distributed with mean 0 and variance
1. Having this we now build our (1 − α) × 100% confidence intervals
based on the values zα/2 taken from normal distribution with mean 0
and variance 1. That is to say, the (1− α)× 100% confidence interval
for the population proportion p is

p̂− zα/2
Ã
p̂(1− p̂)

n
, x+ zα/2

Ã
p̂(1− p̂)

n

 .

Caution: If we are trying to estimate a population parameter which
we know to be either very close to 0 or very close to 1, the method
above performs rather poorly unless the sample size is very large.
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The reason is the highly skewed nature of a binomial population with
parameter p very close to either 0 or 1, meaning that the Central Limit
Theorem will need much larger samples before the distribution starts
to become acceptably normal. A proposed modification27 is to replace

p̂ in the above interval by the new statistic p∗ =
x+ 2

n+ 4
, where x is the

measured number of type A members in the sample and n is the sample

size. Also, the sample standard deviation

Ã
p̂(1− p̂)

n
is replaced by

the expression

Ã
p∗(1− p∗)
n+ 4

. The resulting confidence interval performs

better for the the full range of possibilities for p, even when n is small!

Rule of Thumb: Since the methods of this section rely on the test

statistics
P̂ − p√

P̂ (1− P̂ )/n
being approximately normally distributed, any

sort of guidance which will help us assess this assumption will be help-
ful. One typically used one is that if the approximate assumption of
normality is satisfied, then p̂ ± three sample standard deviations should
both lie in the interval (0, 1). Failure of this to happen indicates that
the sample size is not yet large enough to counteract the skewness in the
binomial distribution. That is to say, we may assume that the methods
of this section are valid provided that

0 < p̂± 3

Ã
p̂(1− p̂)

n
< 1.

6.4.4 Sample size and margin of error

In the above discussions we have seen the our confidence intervals had
the form

Estimate ± Margin of Error

at a given confidence level. We have also seen that decreasing the
27See Agresti, A., and Coull, B.A., Approximate is better than ‘exact’ for interval estimation of

binomial proportions, The American Statistician, Vol. 52, N. 2, May 1998, pp. 119–126.
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margin of error also decreases the confidence level. A natural question
to ask is whether we can decrease the margin of error without at the
same time sacrificing confidence? The answer is yes: by increasing the
sample size. We flesh this out in the following example.

Example. Suppose that we are interested in the average cost µ of a
new house in the United States in 1966, and that a random selection
of the cost of 50 homes revealed the 95% confidence interval

$20, 116 ≤ µ ≤ $30, 614,

along with the sample mean x ≈ $25, 365, and estimate σ ≈ sx =
$18, 469. If we use this as an estimate of the population standard
deviation σ, then we see that a (1 − α) × 100% confidence interval
becomes

x− zα/2
σ√
n
≤ µ ≤ x+ zα/2

σ√
n
.

We see also that the margin of error associated with the above estimate
is one-half the width of the above interval, viz., $5,249.

Question: Suppose that we wish to take a new sample of new houses
and obtain a confidence interval for µ with the same level of confidence
(95%) but with a margin of error of at most $3, 000?

Solution. This is easy, for we wish to choose n to make the margin
of error no more than $3, 000:

z.025
σ√
n
≤ $3, 000.

Using z.025 = 1.96 and σ ≈ $18, 469 we quickly arrive at

n ≥
(

1.96× 18, 469

3, 000

)2

≈ 146.

That is to say, if we take a sample of at least 146 data, then we will have
narrowed to margin of error to no more than $3, 000 without sacrificing
any confidence.
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We can similarly determine sample sizes needed to a given bound on
the margin of error in the case of confidence intervals for proportions,
as follows. In this case the margin of error for a confidence interval

with confidence (1 − α) × 100% is zα/2

Ã
p̂(1− p̂)

n
, where, as usual, p̂

is the sampled population proportion. A very useful approximation is
obtained by noting that since 0 ≤ p̂ ≤ 1, then 0 ≤ p̂(1 − p̂) ≤ 1

4 .
Therefore, if we wish for the margin of error to be less than a given
bound B, all we need is a sample size of at least

n ≥
Çzα/2

2B

å2

,

because regardless of the sampled value p̂ we see that

zα/2
2B

≥
zα/2

»
p̂(1− p̂)
B

.

Exercises

1. Assume that we need to estimate the mean diameter of a very
critical bolt being manufactured at a given plant. Previous studies
show that the machining process results in a standard deviation
of approximately 0.012 mm. Estimate the sample size necessary
to compute a 99% confidence interval for the mean bolt diameter
with a margin of error of no more than 0.003 mm.

2. Assume that a polling agency wishes to survey the voting public to
estimate the percentage of voters which prefer candidate A. What
they seek is a sampling error of no more than .02% at a confidence
level of 98%. Find a minimum sample size which will guarantee
this level of confidence and precision.

6.5 Hypothesis Testing of Means and Proportions

Suppose we encounter the claim by a manufacturer that the precision
bolts of Exercise 1 above have a mean of 8.1 mm and that we are
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to test the accuracy of this claim. This claim can be regarded as a
hypothesis and it is up to us as statisticians to decide whether or
not to reject this hypothesis. The above hypothesis is usually called
the null hypothesis and is an assertion about the mean µ about the
population of manufactured bolts. This is often written

H0 : µ = 8.1.

We have no a priori reason to believe otherwise, unless, of course, we
can find a significant reason to reject this hypothesis. In hypothesis
testing, one typically doesn’t accept a null hypothesis, one usually
rejects (or doesn’t reject) it on the basis of statistical evidence.

We can see there are four different outcomes regarding the hypothesis
and its rejection. A type I error occurs when a true null hypothesis
is rejected, and a type II error occurs when we fail to reject a false
null hypothesis. These possibilities are outlined in the table below.

Reject H0

Do not reject H0

H0 is true H0 is false

Type I error Correct decision

Correct decision Type II error

Perhaps a useful comparison can be made with the U.S. system of
criminal justice. In a court of law a defendent is presumed inno-
cent (the null hypothesis), unless proved guilty (“beyond a shadow of
doubt”). Convicting an innocent person is then tantamount to making
a type I error. Failing to convict an guilty person is a type II error.
Furthermore, the language used is strikingly similar to that used in
statistics: the defendent is never found “innocent,” rather, he is merely
found “not guilty.”

It is typical to define the following conditional probabilities:

α = P (rejecting H0 | H0 is true),

β = P (not rejecting H0 | H0 is false).

Notice that as α becomes smaller, β becomes larger, and vice versa.



396 CHAPTER 6 Inferential Statistics

Again, in the U.S. judicial justice system, it is assumed (or at least
hoped ) that α is very small, which means that β can be large (too
large for many people’s comfort).

Let’s move now to a simple, but relatively concrete example. Assume
that a sample of 60 bolts was gathered from the manufacturing plant
whose claim was that the bolts they produce have a mean diameter of
8.1 mm. Suppose that you knew that the standard deviation of the
bolts was σ = 0.04 mm. (As usual, it’s unreasonable to assume that
you would know this in advance!) The result of the sample of 60 bolts
is that x = 8.117. This doesn’t look so bad; what should you do?

We proceed by checking how significantly this number is away from
the mean, as following. First, notice that the test statistic (a random
variable!)

Z =
X − µ
σ/
√

60
,

where µ represents the hypothesized mean, will be approximately nor-
mally distributed with mean 0 and variance 1. The observed value of
this test statistic is then

z =
x− µ
σ/
√

60
≈ 3.29.

Whoa! Look at this number; it’s over three standard deviations
away from the mean of Z and hence is way out in the right-hand tail of
the normal distribution.28 The probability for us to have gotten such
a large number under the correct assumption that H0 : µ = 8.1 were
true is very small (roughly .1%). This suggests strongly that we reject
this null hypothesis!

28The probability P (|Z| ≥ 3.29) of measuring a value this far from the mean is often called the
P -value of the outcome of our measurement, and the smaller the P -value, the more significance we
attribute to the result. In this particular case, P (|Z| ≥ 3.29) ≈ 0.001, which means that before
taking our sample and measuring the sample mean, the probability that we would have gotten
something this far from the true mean is roughly one-tenth of one percent!
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Continuing the above example, assume more realistically that we
didn’t know in advance the variance of the population of bolts, but
that in the sample of 60 bolts we measure a sample standard deviation
of sx = .043. In this case sample statistic

T =
X − µ
Sx/
√

60

has the t distribution with 59 degrees of freedom (hence is very approx-
imately normal). The observed value of this sample statistic is

t =
x− µ
sx/
√

60
≈ 3.06.

As above, obtaining this result would be extremely unlikely if the hy-
pothesis H0 : µ = 8.1 were true.

Having treated the above two examples informally, we shall, in the
subsequent sections give a slightly more formal treatment. As we did
with confidence intervals, we divide the treatment into the cases of
known and unknown variances, taking them up individually in the next
two sections.

Exercises

1. In leaving for school on an overcast April morning you make a
judgement on the null hypothesis: The weather will remain dry.
The following choices itemize the results of making type I and type
II errors. Exactly one is true; which one?

(A)
Type I error: get drenched
Type II error: needlessly carry around an umbrella

(B)
Type I error: needlessly carry around an umbrella
Type II error: get drenched

(C)
Type I error: carry an umbrella, and it rains
Type II error: carry no umbrella, but weather remains dry

(D)
Type I error: get drenched
Type II error: carry no umbrella, but weather remains dry
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(E)
Type I error: get drenched
Type II error: carry an umbrella, and it rains

2. Mr. Surowski’s grading policies have come under attack by the
Central Administration as well as by the Board of Directors of
SAS. To analyze the situation, a null hypothesis together with an
alternative hypothesis have been formulated:

H0 : Mr. Surowski’s grading policies are fair
Ha: Mr. Surowski plays favorites in awarding grades.

The Board of Directors finds no irregularities, and therefore takes
no actions against him, but the rumors among the students is that
it is advantageous for Mr. Surowski’s students to regularly give
him chocolate-covered expresso coffee beans. If the rumors are
true, has an error been made? If so, which type of error?

3. An assembly-line machine produces precision bolts designed to
have a mean diameter of 8.1 mm. Each morning the first 50 bear-
ings produced are pulled and measured. If their mean diameter
is under 7.8 mm or over 8.4 mm, the machinery is stopped and
the foreman is called on to make adjustments before production is
resumed. The quality control procedure may be viewed as a hy-
pothesis test with the null hypothesis H0 : µ = 8.1. The engineer
is asked to make adjustments when the null hypothesis is rejected.
In test terminology, what would be the result of a Type II error
(choose one)?

(A) A warranted halt in production to adjust the machinery

(B) An unnecessary stoppage of the production process

(C) Continued production of wrong size bolts

(D) Continued production of proper size bolts

(E) Continued production of bolts that randomly are the right or
wrong size
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6.5.1 Hypothesis testing of the mean; known variance

Throughout this and the next section, the null hypothesis will have the
form H0 : µ = µ0. However, in the course of rejecting this hypothesis,
we shall consider one- and two-sided alternative hypotheses. The
one-sided alternatives have the form Ha : µ < µ0 or Ha : µ > µ0. The
two-sided alternatives have the form Ha : µ 6= µ0.

A one-sided alternative is appropriate in cases where the null hy-
pothesis is H0 : µ = µ0 but that anything ≤ µ0 is acceptable (or
that anything ≥ µ0 is acceptable). This leads to two possible sets of
hypotheses:

H0 : µ = µ0, Ha : µ < µ0,

or

H0 : µ = µ0, Ha : µ > µ0.

Example 1. Suppose that a manufacturer of a mosquito repellant
claims that the product remains effective for (at least) six hours. In
this case, anything greater than or equal to six hours is acceptable and
so the appropriate hypotheses are

H0 : µ = 6, Ha : µ < 6,

Therefore, a one-sided alternative is being used here.

Example 2. In the example of precision bolts discussed above, large
deviations on either side of the mean are unacceptable. Therefore, a
two-sided alternative is appropriate:

H0 : µ = µ0, Ha : µ 6= µ0,

Next, one decides on a criterion by which H0 is to be rejected; that
is to say, on decides on the probability α of making a Type I error.
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(Remember, the smaller this error becomes, the larger the probability
β becomes of making a Type II error.) The most typical rejection level
is α = 5%. As mentioned above, the test statistic becomes

X − µ
σ/
√
n
.

This is normally distributed with mean 0 and variance 1. The 5%
rejection region is dependent upon the alternative hypothesis. It’s
easiest just to draw these:

H0 : µ = µ0, Ha : µ 6= µ0.

H0 : µ = µ0, Ha : µ < µ0.

H0 : µ = µ0, Ha : µ > µ0.



SECTION 6.5 Hypothesis Testing 401

6.5.2 Hypothesis testing of the mean; unknown variance

In this setting, the formulation of the null and alternative hypotheses
don’t change. What changes is the test statistic:

T =
X − µ
Sx
√
n
.

This has the t-distribution with n − 1 degrees of freedom in either of
the two cases itemized on page 386, namely either when we’re sampling
from an approximately normal population or when the sample size is
reasonably large. As in the previous section, the rejection regions at
the α level of significance are determined on the basis of the alternative
hypothesis. Furthermore, unless one implements the test automatically
(as on a TI calculator), in finding the boundary of the rejection region
one needs to consider the number of degrees of freedom of the t statistic.

6.5.3 Hypothesis testing of a proportion

If we encounter the claim that at least 55% percent of the American
voting public prefer candidate A over candidate B, then a reasonable
set of hypotheses to test is
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H0 : p = .55, Ha : p < .55.

The test statistic would then be

Z =
P̂ − p√

P̂ (1− P̂ )/n
,

which is n is large enough is approximately normally distributed. There-
fore testing the hypothesis at the (1− α)% level of significance can be
handled in the usual fashion.

6.5.4 Matched pairs

One of the most frequent uses of statistics comes in evaluating the effect
of one or more treatments on a set of subjects. For example, people
often consider the effects of listening to Mozart while performing an
intellectual task (such as a test). In the same vein, one may wish to
compare the effects of two insect repellants.

To effect such comparisons, there are two basic—but rather different—
experimental designs which could be employed. The first would be to
divide a group of subjects into two distinct groups and apply the dif-
ferent “treatments” to the two groups. For example, we may divide
the group of students taking a given test into groups A and B, where
group A listens to Mozart while taking the test, whereas those in group
B do not. Another approach to comparing treatments is to successively
apply the treatments to the same members of a given group; this design
is often called a matched-pairs design. In comparing the effects of
listening of Mozart, we could take the same group of students and allow
them to listen to Mozart while taking one test and then at another time
have them take a similar test without listening to Mozart.

In such situations, we would find ourselves comparing µ1 versus µ2,
where µ1, µ2 represent means associated with treatments 1 and 2. The
sensible null hypothesis would be expressed as H0 : µ1 = µ2 and the
alternative will be either one or two sided, depending on the situation.

Without delving into the pros and cons of the above two designs,
suffice it to say that the statistics used are different. The first design
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represents taking two independent samples; we won’t go into the appro-
priate statistic for evaluating H0. On the other hand, the matched-pairs
design is easier; all one needs to do is to compute the difference of the
two effects. If X is the random variable representing the difference, and
if µX is the mean of X, then we are simply evaluating H0 : µX = 0
against an appropriately-chosen alternative. The methods of the above
sections apply immediately.

Exercises

1. The TI calculator command randNorm(0, 1) generates a random
number from a normal distribution with mean 0 and variance 1.
Do you believe this? The command

randNorm(0, 1, 100) −→ L1

will put 100 independent samples of this distribution into the list
variable L1. Test the hypothesis µ = 0 at the 99% significance
level.

2. 29 Sarah cycles to work and she believes that the mean time taken
to complete her journey is 30 minutes. To test her belief, she
records the times (in minutes) taken to complete her journey over
a 10-day period as follows:

30.1 32.3 33.6 29.8 28.9 30.6 31.1 30.2 32.1 29.4

Test Sarah’s belief, at the 5% significance level.

3. Suppose it is claimed that 80% of all SAS graduating seniors go
on to attend American Universities. Set up null and alternative
hypotheses for testing this claim.

4. Suppose instead it is claimed that at least 80% of all SAS gradu-
ating seniors go on to attend American Universities. Set up null
and alternative hypotheses for testing this claim.

29From IB Mathematics HL Examination, May 2006, Paper 3 (Statistics and Probability), #3.
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5. Suppose that a coin is tossed 320 times, with the total number of
“heads” being 140. At the 5% level, should the null hypothesis
that the coin is fair be rejected?

6. A candidate claims that he has the support of at least 54% of the
voting public. A random survey of 1000 voters reveals that among
those sampled, this candidate only had the support of 51%. How
would you report these results?

7. Ten healthy subjects had their diastolic blood pressures measured
before and after a certain treatment. Evaluate the null hypothesis
that there was no change against the alternative that the blood
pressure was lowered as a result of the treatment. Use a 95%
significance level.

Systolic Blood Pressure

Before Treatment 83 89 86 91 84 91 88 90 86 90

After Treatment 77 83 85 92 85 86 91 88 88 83

8. A growing number of employers are trying to hold down the costs
that they pay for medical insurance for their employees. As part of
this effort, many medical insurance companies are now requiring
clients to use generic-brand medicines when filling prescriptions.
An independent consumer advocacy group wanted to determine
if there was a difference, in milligrams, in the amount of active
ingredient between a certain “name” brand drug and its generic
counterpart. Pharmacies may store drugs under different condi-
tions. Therefore, the consumer group randomly selected ten differ-
ent pharmacies in a large city and filled two prescriptions at each
of these pharmacies, one of the “name” brand and the other for
the generic brand of the same drug. The consumer group’s labora-
tory then tested a randomly selected pill from each prescription to
determine the amount of active ingredient in the pill. The results
are given in the table below.
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Active Ingredient
(in milligrams)

Pharmacy 1 2 3 4 5 6 7 8 9 10

Name brand 245 244 240 250 243 246 246 246 247 250

Generic brand 246 240 235 237 243 239 241 238 238 234

Based on the above data, what should be the consumer group’s
laboratory report about the difference in the active ingredient in
the two brands of pills? Give appropriate statistical evidence to
support your response.

6.6 χ2 and Goodness of Fit

Perhaps an oversimplification, the χ2 statistic gives us a means for
measuring the discrepancy between how we feel something ought to
behave versus how it actually appears to behave. In order to flesh
out this very cryptic characterization, suppose we have a die which we
believe to be fair, and roll it 200 times, with the outcomes as follows:

Outcome 1 2 3 4 5 6

No. of occurrences 33 40 39 28 36 24

Does this appear to be the way a fair die should behave? Is there a
statistic appropriate for us to measure whether its descrepancy from
“fairness” is significant?

Notice that the underlying null hypothesis would be that the die is
fair, expressed in the form

H0 : p1 =
1

6
, p2 =

1

6
, p3 =

1

6
, p4 =

1

6
, p5 =

1

6
, p6 =

1

6
,

(where the probabilities have the obvious definitions) versus the alter-
native

Ha : at least one of the proportions exceeds
1

6
.

The appropriate test statistic, sometimes called the χ2 statistic, is
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given by

χ2 =
∑ (ni − E(ni))

2

E(ni)
,

where the sum is over each of the k possible outcomes (in this case, k =
6), where ni is the number of times we observe outcome i, and where
E(ni) is the expected number of times we would observe the outcome
under the null hypothesis. Thus, in the present case, we would have
E(ni) = 200/6, i = 1, 2, . . . , 6, and n1 = 33, n2 = 40, . . . , n6 = 24. Of
course, just because we have denoted this sum by χ2 doesn’t already
guarantee that it has a χ2 distribution. Checking that it really does
would again take us into much deeper waters. However, if we consider
the simplest of all cases, namely when there are only two categories,
then we can argue that the distribution of the above statistic really is
approximately χ2 (and with one degree of freedom).

When there are only two categories, then of course we’re really doing
a binomial experiment. Assume, then, that we make n measure-
ments (or “trials”) and that the probability of observing a outcome
falling into category 1 is p. This would imply that if n1 is the num-
ber of observations in category 1, then E(n1) = np. Likewise, the if
n2 is the number of observations in category 2, then n2 = n − n1 and
E(n2) = n(1− p).

In this case, our sum takes on the appearance

χ2 =
(n1 − E(n1))

2

E(n1)
+

(n2 − E(n2))
2

E(n2)
=

(n1 − np)2

np
+

(n2 − n(1− p))2

n(1− p)

=
(n1 − np)2

np
+

(n− n1 − n(1− p))2

n(1− p)

=
(n1 − np)2

np
+

(n1 − np)2

n(1− p)

=
(n1 − np)2

np(1− p)

However, we may regard n1 as the observed value of a binomial random
variable N1 with mean np and standard deviation

»
np (1− p); further-

more, if n is large enough, then N1 is approximately normal. Therefore
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Z =
N1 − np»
np (1− p)

is approximately normally distributed with mean 0 and standard devi-
ation 1. This means that

Z2 =
(N1 − np)2

np (1− p)

has approximately the χ2 distribution with one degree of freedom, com-
pleting the argument in this very special case.

Example 1. Let’s flesh out the above in a very simple hypothesis-
testing context. That is, suppose that someone hands you a coin and
tells you that it is a fair coin. This leads you to test the hypotheses

H0 : p = 1/2 against the alternative Ha : p 6= 1/2,

where p is the probability that the coins lands on heads on any given
toss.

To test this you might then toss the coin 100 times. Under the null
hypothesis, we would have E(nH) = 50, where nH is the number of
heads (the random variable in this situation) observed in 100 tosses.
Assume that as a result of these 100 tosses, we get nH = 60, and so
nT = 40, where, obviously, nT is the number of tails. We plug into the
above χ2 statistic, obtaining

χ2 =
(60− 50)2

50
+

(40− 50)2

50
= 2 + 2 = 4.

So what is the P -value of this result? As usual, this is the probability
P (χ2 ≥ 4) which is the area under the χ2-density curve for x ≥ 4:
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(The above calculation can be done on your TI-83, using 1−χ2cdf(0, 4, 1).
The third argument, 1, is just the number of degrees of freedom.)

Since the P -value is .0455, one sees that there is a fair amount of
significance that can be attached to this outcome. We would—at the
5% level of significance—reject H0 and say that the coin is not fair.

Example 2. Let’s return to the case of the allegedly fair die and the
results of the 200 tosses. The χ2 test results in the value:

χ2 =
∑ (ni − E(ni))

2

E(ni)

=
(33− 200

6 )2

200/6
+

(40− 200
6 )2

200/6
+

(39− 200
6 )2

200/6

+
(28− 200

6 )2

200/6
+

(36− 200
6 )2

200/6
+

(24− 200
6 )2

200/6
≈ 5.98.

The P -value corresponding to this measured value is P (χ2
5 ≥ 5.98) ≈

0.308. (We sometimes write χ2
n for the χ2 random variable with n de-

grees of freedom.) This is really not small enough (not “significant
enough) for us to reject the null hypothesis of the fairness of the die.
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In general, experiments of the above type are called multinomial
experiments , which generalize in a natural way the familiar bino-
mial experiments. A multinomial experiment results in a number of
occurrences in each of possibly many categories; the binomial experi-
ment results in a number of occurrences in each of only two categories.
The result of a multinomial experiment is typically summarized in a
one-way table, the table on page 405 being a good example. The χ2

test used to test the null hypothesis regarding the individual category
probabilities is often referred to as a test for homogeneity.

The TI-83 calculators are quite adept at a variety of tests of hy-
potheses; however, they don’t have a built-in code to test homogeneity
hypotheses.30 (They do, however, have a built-in code to test for in-
dependence, which we’ll consider below.) At any rate, here’s a simple
code which will test for homogeneity. Preparatory to running this pro-
gram, one puts into list variable L1 the observed counts and into list
variable L2 the expected counts. For the problem of the putative fair
die, the entries 33, 40, 39, 28, 36, 24 are placed in L1 and the entry
200/6 = 33.333 is placed into the first six entries of L2.

The following simple code will finish the job:

30This was remedied on the TI-84s.
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PROGRAM: CHISQ
: Input “ DF ”, N
: 0→ S
: For(I, 1, N + 1)
:S + (L1(I)− L2(I))2/(L2(I))→ S
: End
: 1− χ2cdf(0, S,N)→ P
: Disp “CHISQ:”, S
: Disp “P-VALUE”, P

Running the above program (using the fact that there are 5 degrees
of freedom) results in the output:

CHISQ : 5.98
P− VALUE : .308

Example 3.31 Suppose that before a documentary was aired on pub-
lic television, it had been determined that 7% of the viewing public
favored legalization of marijuana, 18% favored decriminalization (but
not legalization), 65% favored the existing laws, and 10% had no opin-
ion. After the documentary was aired, a random sample of 500 viewers
revealed the following opinions, summarized in the following one-way
table:

Distribution of Opinions About Marijuana Possession

Legalization Decriminalization Existing Laws No Opinion

39 99 336 26

Running the above TI code yielded the following output:

CHISQ: 13.24945005
P-VALUE: .0041270649

This tells us that there is a significant departure from the pre-existing
proportions, suggesting that the documentary had a significant effect

31This example comes from Statistics, Ninth edition, James T. McClave and Terry Sinich,
Prentice Hall, 2003, page 710. (This is the text we use for our AP Statistics course.)
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on the viewers!

6.6.1 χ2 tests of independence; two-way tables

Students who have attended my classes will probably have heard me
make a number of rather cavalier—sometimes even reckless—statements.
One that I’ve often made, despite having only anecdotal evidence, is
that among students having been exposed to both algebra and geome-
try, girls prefer algebra and boys prefer algebra. Now suppose that we
go out and put this to a test, taking a survey of 300 students which
results in the following two-way contingency table32:

Gender
Male Female Totals

Subject Preference
Prefers Algebra
Prefers Geometry

69
78

86
67

155
145

Totals 147 153 300

Inherent in the above table are two categorical random variables
X=gender and Y= subject preference. We’re trying to assess the inde-
pendence of the two variables, which would form our null hypothesis,
versus the alternative that there is a gender dependency on the subject
preference.

In order to make the above more precise, assume, for the sake of
argument that we knew the exact distributions of X and Y , say that

P (X = male) = p, and P (Y prefers algebra) = q.

If X and Y are really independent, then we have equations such as

P (X = male and Y prefers algebra) = P (X = male) · P (Y prefers algebra)

= pq.

Given this, we would expect that among the 300 students sampled,
roughly 300pq would be males and prefer algebra. Given that the actual

32These numbers are hypothetical—I just made them up!
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number in this category was found to be 69, then the contribution to
the χ2 statistic would be

(69− 300pq)2

300pq
.

Likewise, there would be three other contributions to the χ2 statistic,
one for each “cell” in the above table.

However, it’s unlikely that we know the parameters of either X or
Y , so we use the data in the table to estimate these quantities. Clearly,
the most reasonable estimate of p is p̂ = 147

300 and the most reasonable
estimate for q is q̂ = 155

300 . This says that the estimated expected count of
those in the Male/Algebra category becomes E(n11) = 300× 147

300×
155
300 =

147·155
300 . This makes the corresponding to the χ2 statistic

(n11 − E(n11))
2

E(n11)
=

(69− 147·155
300 )2(

147·155
300

) .

The full χ2 statistic in this example is

χ2 =
(n11 − E(n11))

2

E(n11)
+

(n12 − E(n12))
2

E(n12)
+

(n21 − E(n21))
2

E(n21)
+

(n22 − E(n22))
2

E(n22)

=
(69− 147·155

300
)2Ä

147·155
300

ä +
(86− 153·155

300
)2Ä

153·155
300

ä +
(78− 147·145

300
)2Ä

147·145
300

ä +
(67− 153·145

300
)2Ä

153·145
300

ä
≈ 2.58.

We mention finally, that the above χ2 has only 1 degree of freedom: this
is the number of rows minus 1 times the number of columns minus 1.
The P -value associated with the above result is P (χ2

1 ≥ 2.58) = 0.108.
Note this this result puts us in somewhat murky waters, it’s small
(significant) but perhaps not small enough to reject the null hypothesis
of independence. Maybe another survey is called for!

In general, given a two-way contingency table, we wish to assess
whether the random variables defined by the rows and the columns
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are independent. If the table has r rows and c columns, then we shall
denote the entries of the table by nij, where 1 ≤ i ≤ r and 1 ≤ j ≤ c.
The entries nij are often referred to as the cell counts. The sum of
all the cell counts is the total number n in the sample. We denote by
C1, C2, . . . , Cc the column sums and by R1, R2, . . . , Rr the row sums.
Then in analogy with the above example, the contribution to the χ2

statistic from the (i, j) table cell is (nij − RiCj
n )2/RiCjn , as under the null

hypothesis of independence of the random variables defined by the rows
and the columns, the fraction RiCj

n represents the expected cell count.
The complete χ2 statistic is given by the sum of the above contributions:

χ2 =
∑
i,j

(nij − RiCj
n )2Å

RiCj
n

ã ,

and has (r − 1)(c− 1) degrees of freedom.

Example 3. It is often contended that one’s physical health is depen-
dent upon one’s material wealth, which we’ll simply equate with one’s
salary. So suppose that a survey of 895 male adults resulted in the
following contingency table:

Salary (in thousands U.S.$)

Health 15–29 30–39 40–59 ≥ 60 Totals

Fair 52 35 76 63 226
Good 89 83 78 82 332
Excellent 88 83 85 81 337

Totals 229 201 239 226 895

One computes χ2
6 = 13.840. Since P (χ2

6 ≥ 13.840) = 0.031, one infers a
significant deviation from what one would expect if the variables really
were independent. Therefore, we reject the independence assumption.
Of course, we still can’t say any more about the “nature” of the de-
pendency of the salary variable and the health variable. More detailed
analyses would require further samples and further studies!

We mention finally that the above can be handled relatively easily
by the TI calculator χ2 test. This test requires a single matrix input, A,
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where, in this case, A would be the cell counts in the above contingency
table. The TI-calculator will automatically generate from the matrix
A a secondary matrix B consisting of the expected counts. Invoking
the χ2 test using the matrix

A =


52 35 76 63
89 83 78 82
88 83 85 81


results in the output

χ2-Test

χ2 = 13.83966079

P=.0314794347

df=6.

Exercises

1. The TI command randInt(0,9) will randomly generate an integer
(a “digit”) between 0 and 9. Having nothing better to do, we
invoke this command 200 times, resulting in the table:

digit 0 1 2 3 4 5 6 7 8 9

frequency 17 21 15 19 25 27 19 23 18 17

We suspect that the command randInt ought to generate random
digits uniformly, leading to the null hypothesis

H0 : pi =
1

10
, i = 0, 1, 2, . . . , 9,

where pi is the probability of generating digit i, i = 0, 1, 2, . . . , 9.
Test this hypothesis against its negation at the 5% significance
level.

2. 33 Eggs at a farm are sold in boxes of six. Each egg is either brown
or white. The owner believes that the number of brown eggs in a

33Adapted from IB Mathematics HL Examination, Nov 2003, Paper 2 (Statistics), #6 (iv).
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box can be modeled by a binomial distribution. He examines 100
boxes an obtains the following data:

Number of brown eggs in a box Frequency

0 10

1 29

2 31

3 18

4 8

5 3

6 1

(a) Estimate the percentage p of brown eggs in the population of
all eggs.

(b) How well does the binomial distribution with parameter p
model the above data? Test at the 5% level.

3. Suppose you take six coins and toss them simultaneously 100, lead-
ing to the data below:

Number of heads
obtained

Frequency Expected under H0

0 0

1 4

2 13

3 34

4 30

5 15

6 4

Suppose that I tell you that of these six coins, five are fair and
one has two heads. Test this as a null hypothesis at the 5% level.
(Start by filling in the expected counts under the appropriate null
hypothesis.)

4. Here’s a more extended exercise. In Exercise 18 on page 344 it
was suggested that the histogram representing the number of trials
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needed for each of 200 people to obtain all of five different prizes
bears a resemblance with the Poisson distribution. Use the TI
code given in part (c) to generate your own data, and then use a
χ2 test to compare the goodness of a Poisson fit. (Note that the
mean waiting time for five prizes is µ = 137

12 .)

5. People often contend that divorce rates are, in some sense, related
to one’s religious affiliation. Suppose that a survey resulted in
the following data, exhibited in the following two-way contingency
table:

Religious Affiliation
A B C None Totals

Marital History
Divorced
Never Divorced

21
78

32
90

15
34

32
90

100
292

Totals 99 122 49 122 392

Formulate an appropriate null hypothesis and test this at the 5%
level.

6. (Here’s a cute one!)34 The two-way contingency table below com-
pares the level of education of a sample of Kansas pig farmers with
the sizes of their farms, measured in number of pigs. Formulate
and test an appropriate null hypothesis at the 5% level.

Education Level
No College College Totals

Farm Size

<1,000 pigs
1,000–2,000 pigs
2,001–5,000 pigs

>5,000 pigs

42
27
22
27

53
42
20
29

95
69
42
56

Totals 118 144 262

34Adapted from Statistics, Ninth edition, James T. McClave and Terry Sinich, Prentice Hall,
2003, page 726, problem #13.26.



Probability

p

t*

p

C

df .25 .20 .15 .10 .05 .025 .02 .01 .005 .0025 .001 .0005

1 1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6
2 0.816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31.60
3 0.765 0.978 1.250 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.21 12.92
4 0.741 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869
6 0.718 0.906 1.134 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208 5.959
7 0.711 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587
11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318
13 0.694 0.870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221
14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140
15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 4.073
16 0.690 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965
18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.611 3.922
19 0.688 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883
20 0.687 0.860 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850
21 0.686 0.859 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527 3.819
22 0.686 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3.792
23 0.685 0.858 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485 3.768
24 0.685 0.857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725
26 0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707
27 0.684 0.855 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690
28 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674
29 0.683 0.854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659
30 0.683 0.854 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646
40 0.681 0.851 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551
50 0.679 0.849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496
60 0.679 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460
80 0.678 0.846 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416

100 0.677 0.845 1.042 1.290 1.660 1.984 2.081 2.364 2.626 2.871 3.174 3.390
1000 0.675 0.842 1.037 1.282 1.646 1.962 2.056 2.330 2.581 2.813 3.098 3.300

0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291

50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%

z

TABLE C

583

t

�

� �

�

distribution critical values

Table entry for and is
the critical value with
probability lying to its right
and probability lying between

and .

p C
t

p
C

t t

Upper tail probability

Confidence level

�



Index

abelian, 222
absolute convergence, 277
abstract algebra, 185
addition

of mass points, 47
addition formulas, 39
adjacency matrix, 109
alternate number bases, 90
alternating series test, 278
alternative hypothesis, 399
altitude, 14
Angle Bisector Theorem, 15
Apollonius Theorem, 27
arithmetic mean, 147
arithmetic sequence, 93
Artin conjecture, 226
associative, 47

binary operation, 215
axiomatic set theory, 187

Benford’s Law, 358
Bernoulli differential equation, 313
Bernoulli random variable, 390
bijective, 198
binary operation, 210
binary representation, 91
binomial random variable, 329

distribution, 329
binomial theorem, 189
bipartite graph, 136

complete, 136

brute-force method, 119

Cantor Ternary Set, 280
cardinality

of a set, 188
Carmichael number, 88
Cartesian product, 186

of sets, 195
Catalan numbers, 345
Cauchy-Schwarz inequality, 150
Cayley table, 221
cell counts, 413
Central Limit Theorem, 377, 379
central tendency, 365
centroid, 13
Ceva’s Theorem, 9
Cevian, 9
character, 240
characteristic equation, 94
characteristic polynomial, 94, 307
cheapest-link algorithm, 122
Chebyshev’s inequality, 323
χ2 distribution, 356
χ2 random variable, 356
χ2 statistic, 405
Chinese remainder theorem, 68, 70
circle of Apollonius, 31
circuit

in a graph, 110
circumcenter, 17
circumradius, 17, 31, 34

418
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closure, 212

commutative, 47

binary operation, 215

complement

of a set, 191

complete graph, 118, 135

concurrency, 8

conditional convergence, 278

conditional probability, 319

confidence interval, 382

for mean, 380, 385

for proportion, 389

confidence level, 380

connected graph, 110

containment, 185

continuous function, 248

continuous random variable, 317,
348

mean, 365

median, 365

mode, 365

standard deviation , 366

variance, 365

convergence

absolute, 277

conditional, 278

Dirichlet test, 281

of a sequence, 266

convex combination, 155

convolution, 261, 370

cosets, 235

cosine

addition formula, 39

law of, 24

coupon problem, 331

criminals, 75

cross ratio, 42
cycle

in a graph, 110
cyclic group, 224
cyclic quadrilateral, 35

Da Vince code, 93
De Morgan laws, 191
degree

of a vertex, 112
DeMoivre’s theorem, 99
density function, 349
derivative

of a function, 248
difference

of sets, 191
of subsets, 186

difference equation
Fibonacci, 106
homogeneous, 94
second order, 96

differentiable
function, 249

differential equation, 304
Bernoulli, 313
linear, 304
separable, 308

Dijkstra’s algorithm, 132
Dirichlet’s test for convergence, 281
discrete random variable, 317
discriminant, 161, 174
distribution, 318
distributions

binomial, 329
exponential, 358
geometric, 327
hypergeometric, 334
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negative binomial, 330
distributive laws, 192
divides, 57
division algorithm, 56
dual graph, 143

e

formal definition, 268
edge, 109
elementary symmetric polynomials,

176
elements

of a set, 185
equivalence class, 202
equivalence relation, 201
equivalence relations, 186
Euclid’s Theorem, 3
Euclidean algorithm, 59
Euclidean trick, 58
Euler φ-function, 63
Euler characteristic, 139
Euler line, 22
Euler’s constant, 269
Euler’s constant γ, 269
Euler’s degree theorem, 112
Euler’s formula, 140
Euler’s method, 314
Euler’s theorem, 87, 112
Euler’s totient function, 63
Euler-Mascheroni constant, 269
Eulerian circuit, 111
Eulerian trail, 111
expectation, 318
explicit law of sines, 34
exponential distribution

mean, 360
variance, 360

external division, 41

failure rate, 360

Fermat conjecture, 55

Fermat number, 78

Fermat’s Little Theorem, 86

Fibonacci difference equation, 106

Fibonacci sequence, 93, 106, 276

generalized, 106

fibre

of a mapping, 198

fundamental theorem of arithmetic,
76

fundamental theorem of calculus,
251

gambler’s ruin, 343

Gamma function, 261

general linear group, 219

generalized Fibonacci sequence, 106

generalized Riemann hypothesis, 226

generating function, 109

geometric

sequence, 93

geometric distribution

generalizations, 330

geometric mean, 147

geometric random variable, 327

distribution, 327

mean, 328

variance, 329

geometric sequence, 93

Gergonne point, 18

golden ratio, 27, 41, 277

golden triangle, 27

graph, 109

bipartite, 136
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complete, 118, 135
connected, 110
homeomorphism, 137
minor, 138
planar, 136
simple, 109, 135
weighted, 109

graph automorphism, 208
graphs

isomorphic, 134
greatest common divisor, 57
greatest lower bound, 250
greedy algorithm, 128
group, 217

abelian, 222
cyclic, 224

group theory, 185

Hölder’s inequality, 158
Hamiltonian cycle, 117
harmonic mean, 42, 148
harmonic ratio, 41
harmonic sequence, 109, 148
harmonic series, 265, 348

random, 326
Heron’s formula, 25
higher-order differences

constant, 102
histogram, 354
homeomorphic

graphs, 137
homeomorphism of graphs, 137
homogeneous

differential equation, 310
function, 310

homogeneous difference equation,
94

homomorphism

of groups, 236

hypergeometric random variable, 334

distribution, 334

mean, 335

variance, 336

hypothesis, 395

alternative, 399

identity, 215

improper integrals, 254

incenter, 14

incircle, 17

independent, 348

indeterminate form, 257

inductive hypothesis, 81

inequality

Cauchy-Schwarz, 150

Hölder’s, 158

unconditional, 145

Young’s, 157

infinite order, 226

infinite series, 264

initial value problem, 305

injective, 198

inscribed angle theorem, 28

integrating factor, 312

internal division, 41

intersecting chords theorem, 33

intersection, 186

of sets, 190

irrationality of π, 253

isomorphic graphs, 134

isomorphism

of groups, 236

Königsberg, 111
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Kruskal’s algorithm, 128

Kuratowski’s theorem, 137

l’Hôpital’s rule, 259

Lagrange form of the error, 301

Lagrange’s theorem, 233

Laplace transform, 257

law of cosines, 24

law of sines, 23

explicit, 34

least common multiple, 59

least upper bound, 250

level of confidence, 380

limit

of a function, 245

of a sequence, 249

one-sided, 246

limit comparison test, 269

linear congruences, 89

linear difference equation, 93

general homogeneous, 94

linear Diophantine equation, 65

linear recurrence relations, 93

lines

concurrent, 8

logistic differential equation, 305

logistic map, 93

logistic recurrence equation, 93

loop

of a graph, 110

low-pass filter, 262

lower Riemann sum, 250

Lucas numbers, 106

Maclaurin polynomial, 291

Maclaurin series, 291

mappings, 186

margin of error, 392
Markov’s inequality, 323
mass point, 47
mass point addition, 47
mass point geometry, 46
mass splitting, 51
matched-pairs design, 402
maximum-likelihood estimate, 376
Maxwell-Boltzmann density func-

tion, 357
Maxwell-Boltzmann distribution, 357
mean, 318

arithmetic, 147
confidence interval, 380
geometric, 147
harmonic, 148
quadratic, 148

mean value theorem, 298
medial triangle, 19
medians, 13
Menelaus’ Theorem, 11
Mersenne number, 235
Mersenne prime, 92
Midpoint Theorem, 6
minimal-weight spanning tree, 125
minor of a graph, 138
multinomial distribution, 341
multinomial experiment, 409

nearest-neighbor algorithm, 121
negative binomial, 330
nine-point circle, 43
normal distribution, 350
null hypothesis, 395
number bases

alternate, 90
number theory, 55
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one-to-one, 198
one-way table, 409
onto, 198
opens, 29
operations

on subsets, 186
order

infinite, 226
of a set, 188
of an element, 226

orthocenter, 14
orthogonal intersection, 43

p-series test, 272
P=NP, 120
Pappus’ theorem, 19
parameters, 321, 350
partition

of an interval, 249
Pascal’s theorem, 21
path

in a graph, 110
permutation, 198
Petersen graph, 138
planar graph, 136
Poisson random variable, 337

distribution, 337, 339
variance, 339

polynomials
elementary symmetric, 176

power of a point, 33
power series, 283

radius of convergence, 284
power set, 186, 189
Prim’s algorithm, 130
prime, 60, 75

relatively, 60

probability

conditional, 319

projective plane, 205

proper containment, 187

proportional segments

Euclid’s Theorem, 3

Ptolemy’s theorem, 37

Pythagorean identity, 23

Pythagorean theorem, 3

Garfield’s proof, 4

Pythagorean triple, 67

primitive, 67

quadratic mean, 148

quotient set, 203

radius of convergence, 284

Ramsey number, 120

Ramsey theory, 120

rand, 348

density function, 349

random harmonic series, 326

random variable, 317

Bernoulli, 329, 390

binomial, 327, 329

continuous, 317, 348

mean, 365

median, 365

mode, 365

standard deviation, 366

variance, 365

discrete, 317

expectation, 318

mean, 318

standard deviation, 321

variance, 321

exponential, 358
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geometric, 327
hypergeometric, 327, 334
negative binomial, 327
normal, 351
Poisson, 327, 337
standard deviation, 321
uniformly distributed, 348
variance, 321

random variables
discrete

independent, 321
independent, 348
negative binomial, 330

ratio test, 274
real projective plane, 205
recurrence relations

linear, 93
reflexive

relation, 201
rejection region, 400
relation, 200
relations

on sets, 186
relatively prime, 60
reliability, 361
Riemann integral, 249, 250
root mean square, 148
Routh’s theorem, 54
routing problems, 111
Russell’s antinomy, 187
Russell’s paradox, 187

sample mean, 374
expectation, 374
unbiased estimate, 374

sample standard deviation, 375
sample variance, 375, 386

unbiased estimate, 375

secant-tangent theorem, 32

segment

external division, 41

internal division, 41

sensed magnitudes, 7

separable differential equation, 308

sequence, 249

arithmetic, 93

harmonic, 148

sets, 185

signed magnitudes, 7, 33

significant, 395

similar triangles, 4

simple graph, 109, 135

Simson’s line, 36

simulation, 354

simultaneous congruences, 70

sine

addition formula, 39

law of, 23

sinusoidal p-series test, 276

slope field, 305

spanning tree, 125

minimal-weight, 125

St. Petersburg paradox, 326

stabilizer, 230

standard deviation, 321

statistics, 373

Steiner’s Theorem, 32

Stewart’s Theorem, 26

Strong Law of Large Numbers, 324

subgroup, 228

surjective, 198

symmetric

relation, 201
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symmetric difference, 186, 211
symmetric group, 218

t distribution, 386
t statistic, 386
Taylor series, 291
Taylor’s theorem with remainder,

299
test for homogeneity, 409
test statistic, 396
torus, 140, 196
trail

in a graph, 110
transitive

relation, 201
transversal, 11, 51
traveling salesman problem, 118
treatment, 402
tree, 125
triangle

altitude, 14
centroid, 13
circumcenter, 17
circumradius, 17, 31, 34
orthocenter, 14

triangle inequality, 248
two way contingency table, 411
type I error, 395

unbiased estimate, 374, 386
unconditional inequality, 145
uniformly distributed, 348
union, 186

of sets, 190
universal set, 190
upper Riemann sum, 249

Van Schooten’s theorem, 35

Vandermonde matrix, 174
variance, 321
Venn diagram, 191
vertex, 109

of a graph, 109
vertex-transitive graph, 241

Wagner’s theorem, 138
walk

in a graph, 110
Wallace’s line, 36
Weak Law of Large Numbers, 324
Weibull distribution, 365
weighted directed graph, 131
weighted graph, 109

Young’s inequality, 157

Zorn’s Lemma, 125
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