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INTRODUCTION

In this book we present some basic concepts and results from algebraic topology. We
do this in the frame of differential topology. One of the central tools of algebraic topology
are the homology groups. These are abelian groups associated to topological spaces which
measure certain aspects of the complexity of a space.

The idea of homology was introduced by Poincaré in 1895. The way Poincaré in-
troduced homology in this paper is the model for our approach. Since some basics of
differential topology were not far enough developed, certain difficulties with Poincaré’s
approach occurred and three years later lead him to a new way of looking at homol-
ogy which instead of differential topology uses objects from combinatorics, in particular
simplices. This approach was very successful and up to now most books on algebraic
topology follow it. The idea of the original concept came up then and there but more
on an advanced level (for another geometric approach to (co)homology see [B-R-S]). We
hope it is useful to present Poincaré’s original idea in an elementary textbook.

As in other papers dealing with homology along Poincaré’s original lines [Po] the cen-
tral object replacing the simplices in the common presentation are certain stratified spaces.
These are topological spaces which are decomposed as a disjoint union of smooth man-
ifolds, called strata. We will derive this decomposition from another structure. Namely
we use the language of differential spaces [Si] by distinguishing on a topological space
S a certain algebra of functions C, which will play the role of smooth functions if S is
a smooth manifold in the ordinary sense. The properties of this algebra will provide a
decomposition of S into smooth manifolds, the strata.

We call our objects stratifolds. It turns out that basic concepts from differential
topology like Sard’s theorem, partition of unity, transversality generalize to stratifolds
and this allows a definition of homology groups based on stratifolds. It is rather easy
and intuitive to derive the basic properties of homology groups in the world of stratifolds.
These properties allow computation of homology groups and straight forward construc-
tions of important homology classes like for example the fundamental class of a closed
smooth oriented manifold or more generally of a compact stratifold. We also define co-
homology groups but only for smooth manifolds. Again certain important cohomology
classes occur very naturally in this description, in particular the characteristic classes of
smooth vector bundles over smooth oriented manifolds. Another useful aspect of this
approach is that one of the most fundamental results, namely Poincaré duality, is almost
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ii INTRODUCTION

a triviality.

From (co)homology groups one can derive important invariants like the Euler char-
acteristic and the signature. These invariants play a significant role in some of the most
spectacular results in differential topology. As a highlight we present Milnor’s exotic 7-
spheres (using a result of Thom which we do not prove in this book).

We mentioned above that Poincaré left his original approach and defined homology
in a combinatorial way. It is natural to ask whether the definition in this book based
on stratifolds is equivalent to the common combinatorial definition of singular homology.
Both constructions satisfy the basic axioms of a homology theory and this implies, that
for a large class of spaces, for example all spaces which are homotopy equivalent to a
CW -complex, both theories are equivalent. There is also an axiomatic characterization of
cohomology for smooth manifolds which implies that our cohomology groups are equiva-
lent to ordinary singular cohomology. All this is explained in §20. It was a surprise to the
author to find out that for more general spaces than those which are homotopy equiva-
lent to CW -complexes, our homology theory is different from ordinary singular homology.
This difference occurs already for rather simple spaces like one-point compactifications of
smooth manifolds!

This indicates what the main themes of this book are. Readers should be familiar
with the basic notion of point set topology and of differential topology. We would like to
stress that one can start reading the book if one only knows the definition of a topological
space and some basic examples and methods for creating topological spaces, and concepts
like Hausdorff and compact spaces. From differential topology one only needs to know the
definition of smooth manifolds and some basic examples and concepts like regular values
and Sard’s theorem. The author has given introductory courses to algebraic topology
which start with the presentation of these prerequisites from point set and differential
topology and then proceed with chapter 1 of this book. Additional information like ori-
entation of manifolds or vector bundles or later on transversality was explained when it
was needed. Thus the book can serve as basis for a combined introduction to differential
and algebraic topology. It also allows a quick presentation of (co)homology in a course
about differential geometry.

I presented the material in this book in courses at Mainz and Heidelberg University.
I would like to thank the students and the assistants in these courses for their interest
and one or the other suggestion for improvements. Thanks to Anna Grinberg for not
only drawing the pictures but also for careful reading of earlier versions and for several
stimulating discussions. Also many thanks to Daniel Müllner and Martin Olbermann
for reading the final version and suggesting several improvements. I had several fruitful
discussions with Gerd Laures, Wilhelm Singhof, Stephan Stolz, and Peter Teichner about
the fundamental concepts. Theodor Bröcker and Don Zagier have read a previous version
of the book and suggested numerous improvements. The book was carefully refereed and
I obtained from the referees valuable suggestions for improvements. I would like to thank
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these colleagues for their generous help. Finally I would like to thank Dorothea Heukäufer
and Ursula Jagtiani for the careful typing.





Contents

INTRODUCTION i

Chapter 1. Smooth manifolds revisited 1
1. A word about structures 1
2. Differential spaces 1
3. Smooth manifolds revisited 3

Chapter 2. Stratifolds 7
1. Stratifolds 7
2. Local retracts 9
3. Examples 10
4. Properties of smooth maps 14
5. Consequences of Sard’s Theorem 16

Chapter 3. Stratifolds with boundary: c-stratifolds 19

Chapter 4. Z/2-homology 25
1. Motivation of homology 25
2. Z/2-oriented stratifolds 26
3. Regular stratifolds 28
4. Z/2-homology 29

Chapter 5. The Mayer-Vietoris sequence and homology groups of spheres 35
1. The Mayer-Vietoris sequence 35
2. Reduced homology groups and homology of spheres 40

Chapter 6. Brouwer’s fixed point theorem, separation and invariance of dimension 43
1. Brouwer’s fixed point theorem 43
2. A separation theorem 44
3. Invariance of dimension 44

Chapter 7. Z/2-homology of some important spaces and the Euler characteristic 47
1. The fundamental class 47
2. Z/2-homology of projective spaces 48
3. Betti numbers and the Euler characteristic 49

Chapter 8. Integral homology and the mapping degree 53
1. Integral homology groups 53
2. The degree 56
3. Integral homology groups of projective spaces 58

v



vi CONTENTS

4. A comparison between integral and Z/2-homology 59

Chapter 9. A comparison theorem for homology theories and CW -complexes 63
1. The axioms of a homology theory 63
2. Comparison of homology theories 64
3. CW -complexes 66
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CHAPTER 1

Smooth manifolds revisited

Prerequisites: We assume that the reader is familiar with some basic notation of point set topology and differentiable

manifolds. Actually rather little is needed for the beginning of this book. For example, it is sufficient to know ([Jä], ch. 1

and 3) as background from point set topology. For the first chapters, all we need to know from differential topology is the

definition of smooth (= C∞) manifolds (without boundary) and smooth (= C∞) maps (see for example ([Hi] chapt. I.1

and I.4) or the corresponding chapters in [B-J] ). In later chapters, where more background is required, the reader can find

this in the cited literature.

1. A word about structures

Most definitions or concepts in modern mathematics are of the following type: A
mathematical object is a set together with additional information called structure. For
example a group is a set G together with a map G × G → G, the multiplication, or a
topological space is a set X together with certain subsets, the open subsets. Often the
set is already equipped with a structure of one sort and one adds another structure, for
example a vector space is an abelian group together with the second structure given by
scalar multiplication, or a smooth manifold is a topological space together with a smooth
atlas. Given such a structure one defines certain classes of ”allowed” maps (often called
morphisms) which respect this structure in a certain sense, for example group homomor-
phisms or continuous maps. The real numbers R admit many different structures, they
are a group, a field, a vector space, a metric space, a topological space, a smooth manifold
.... The ”allowed” maps from a set with a structure, which also the reals have, to R, are
of central importance.

In this section we will define a structure on a topological space by specifying certain
maps to the reals. This is done in such a way that the allowed maps are the maps
specifying the structure. In other words we give the allowed maps (morphisms) and this
way we define a structure. For example we will define a smooth manifold M by specifying
the C∞-maps to R. This stresses the central role of the allowed maps to R, which in
many areas of mathematics, in particular in analysis, play a central role.

2. Differential spaces

We introduce the language of differential spaces [Si], which are topological spaces to-
gether with a distinguished set of continuous functions fulfilling certain properties. To
formulate these properties the following notion is useful: If X is a topological space, we
denote the continuous functions from X to R by C0(X).

1



2 1. SMOOTH MANIFOLDS REVISITED

Definition: A subset C ⊂ C0(X) is called an algebra if for f, g ∈ C the sum f + g ,
the product fg and all constant functions are in C.

The concept of an algebra, a vector space which at the same time is a ring fulfilling
the obvious axioms, is more general, but here we only need algebras which are contained
in C0(X).

For example, C0(X) itself is an algebra. The set of the constant functions is also an
algebra. Or if U ⊂ Rk is an open subset, we denote the set of function f : U −→ R,
where all partial derivatives of all orders exist, by C∞(U). This is an algebra in C0(U).
More generally, if M is a k-dimensional smooth manifold we consider C∞(M), the set of
smooth functions on M , which is an algebra in C0(M).

The property of a continuous function can be decided locally, i. e. a function
f : X −→ R is continuous if and only if for all x ∈ X there is an open neighbourhood U
and f |U is continuous. The following is an equivalent—more complicated looking— for-
mulation where we don’t need to know what it means for f |U to be continuous. A function
f : X → R is continuous if and only if for each x ∈ X there is an open neighbourhood U
and a continuous function g such that f |U = g|U . Since this formulation makes sense for
an arbitrary set of functions C, we define:

Definition: Let C be a set of functions f : X → R. We say that C is locally de-
tectable if a function f : X −→ R is contained in C if and only if for all x ∈ X there is
an open neighbourhood U of x and g ∈ C such that f |U = g|U .

For those familiar with the language of sheaves it is obvious that (X,C) is in this
language equivalent to a ringed space.

As mentioned above, the set of continuous functions C0(X) is locally detectable. Sim-
ilarly, if M is a smooth manifold, then C∞(M) is locally detectable.

We can now define differential spaces.

Definition: A differential space is a pair (X,C), where X is a topological space
and C ⊂ C0(X) is an algebra of continuous functions such that

(1) C is locally detectable,
(2) for all f1, . . . , fk ∈ C and g : Rk −→ R a smooth function, the function x 7→

g(f1(x), . . . , fk(x)) is in C.

We have already discussed the use of the first condition above, and the second condi-
tion is obviously desirable in order to construct new elements of C by composition with
smooth maps.
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The considerations above show that if M is a k-dimensional smooth manifold, then
(M,C∞(M)) is a differential space. This is the fundamental class of examples which will
be the model for our generalization to stratifolds in the next chapter.

From a differential space (X,C), one can often construct new differential spaces. For
example, if Y ⊂ X is a subspace, we define C(Y ) to contain those functions f : Y −→ R

such that for all x ∈ Y , there is a g : X −→ R in C such that f |V = g|V for some open
neighbourhood V of x in Y . The reader should check that (Y,C(Y )) is a differential space.

There is another algebra associated to a subspace Y in X, namely the restriction of all
elements in C to Y . Later we will consider differential spaces with additional properties
which guarantee that C(Y ) is equal to the restriction of elements in C to Y , if Y is a
closed subspace.

For the generalization to stratifolds it is useful to note that one can define smooth
manifolds in the language of differential spaces.

To prepare this, we need a way to compare differential spaces.

Definition: Let (X,C) and (X ′,C′) be differential spaces. A homeomorphism f :
X −→ X ′ is called isomorphism if for each g ∈ C′ and h ∈ C, we have gf ∈ C and
hf−1 ∈ C′.

The slogan is: Composition with f stays in C and with f−1 stays in C′. Obviously the
identity map is an isomorphism from (X,C) to (X,C). If f : X → X ′ and f ′ : X ′ → X ′′

are isomorphisms then f ′f : X → X ′′ is an isomorphism. If f is an isomorphism then f−1

is an isomorphism.

For example, if X and X ′ are open subspaces of Rk equipped with the algebras of
smooth functions, then an isomorphism f is the same as a diffeomorphism from X to
X ′, a bijective map such that the map and its inverse are smooth (= C∞) maps. This
equivalence is due to the fact that a map g from an open subset U of Rk to an open
subset V of Rn is smooth if and only if all coordinate functions are smooth. (For a similar
discussion, see the end of this chapter.)

3. Smooth manifolds revisited

We recall that if (X,C) is a differential space and U an open subspace, the algebra
C(U) is defined as the continuous maps f : U → R such that for each x ∈ U there is an
open neighbourhood V ⊂ U of x and g ∈ C such that g|V = f |V . We remind the reader
that (U,C(U)) is a differential space.

Definition: A k-dimensional smooth manifold is a differential space (M,C) where
M is a Hausdorff space with a countable basis of its topology, such that for each x ∈ M



4 1. SMOOTH MANIFOLDS REVISITED

there is an open neighbourhood U ⊆M and an open subset V ⊂ Rk and an isomorphism

ϕ : (V, C∞(V )) → (U,C(U)).

The slogan is: A k-dimensional smooth manifold is a differential space which is locally
isomorphic to Rk.

To justify this definition of this well known mathematical object, we have to show
that it is equivalent to the definition based on a maximal smooth atlas. Starting from
the definition above, we consider all isomorphisms ϕ : (V, C∞(V )) → (U,C(U)) from the
definition above and note that their coordinate changes ϕ−1ϕ′ : (ϕ′)−1(U ∩ U ′) → V ∩ V ′

are smooth maps and so the maps ϕ : V → U give a maximal smooth atlas on M . In
turn if a smooth atlas ϕ : V → U ⊂M is given, then we define C as the continuous func-
tions f : M → R such that for all ϕ in the smooth atlas we have fϕ : V → R is in C∞(V ).

We want to introduce the important concept of germs of functions. Let C be a set of
functions from X to R. We define an equivalence relation on C by setting f equivalent to
g if and only if there is an open neighbourhood V of x such that f |V = g|V . We call the
equivalence class represented by f the germ of f at x and denote the equivalence class
by [f ]x. We denote the set of germs of functions at x by Cx. This definition of germs
is different from the standard one which only considers equivalence classes of functions
defined on some open neighbourhood of x. For differential spaces these sets of equiva-
lence classes are the same, since if f : U → R is defined on some open neighbourhood
of x, then there is a g ∈ C such that on some smaller neighbourhood V we have f |V = g|V .

To prepare the definition of stratifolds in the next chapter, we recall the definition of
the tangent space at a point x ∈ M in terms of derivations. Let (X,C) be a differential
space. For a point x ∈ X, we consider the germ Cx of functions near x. If f ∈ C and
g ∈ C are representatives of germs near x, then the sum f + g and the product f · g
represent well defined germs denoted [f ]x + [g]x ∈ Cx and [f ]x · [g]x ∈ Cx.

Definition: Let (X,C) be a differential space. A derivation at x ∈ X is a map from
the germs Cx of functions near x

α : Cx −→ R

such that

α([f ]x + [g]x) = α([f ]x) + α([g]x),

α([f ]x · [g]x) = α([f ]x) · g(x) + f(x) · α([g]x),

and

α([c]x · [f ]x) = c · α([f ]x)

for all f, g ∈ C and [c]x the germ of a constant function which maps all y ∈M to c ∈ R.
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If U ⊂ Rk is an open set and v ∈ Rk, the Leibniz rule says that for x ∈ U , the map

αv : C∞
x −→ R

[f ]x 7−→ Dfx(v)

is a derivation. Thus the derivative in the direction of v is a derivation which justifies the
name.

If α and β are derivations, then α+β mapping [f ]x to α([f ]x)+β([f ]x) are derivations,
and if t ∈ R then tα mapping [f ]x to tα([f ]x) is a derivation. Thus the derivations at
x ∈ X form a vector space.

Definition: Let (X,C) be a differential space and x ∈ X. The vector space of deriva-
tions at x is called the tangent space of X at x and denoted by TxX.

This notation is justified by the fact that if M is a k-dimensional smooth manifold,
which we interpret as a differential space (M,C∞(M)), then the definition above is one of
the equivalent definitions of the tangent space ([B-J], p. 14). In particular, dimTxX = k.

We have already defined isomorphisms between differential spaces. We also want to in-
troduce morphisms. If the differential spaces are smooth manifolds, then the morphisms
will be the smooth maps. To generalize the definition of smooth maps to differential
spaces, we reformulate the definition of smooth maps.

If M is an m-dimensional smooth manifold and U is an open subset of Rk then a map
f : M −→ U is a smooth map if and only if all components fi : M −→ R are in C∞(M)
for 1 ≤ i ≤ k. If we don’t want to use components we can equivalently formulate that
f is smooth if and only if for all ρ ∈ C∞(U) we have ρf ∈ C∞(M). This is the logic
behind the following definition. Let (X,C) be a differential space and (X ′,C′) another
differential space. Then we define a morphism f from (X,C) to (X ′,C′) as a continuous
map f : X −→ X ′ such that for all ρ ∈ C′ we have ρf ∈ C. We denote the set of
morphisms by C(X,X ′). The following properties are obvious from the definition:

(1) id : (X,C) −→ (X,C) is a morphism,
(2) if f : (X,C) −→ (X ′,C′) and g : (X ′,C′) −→ (X”,C”) are morphisms, then

gf : (X,C) −→ (X”,C”) is a morphism,
(3) all elements of C are morphisms from X to R,
(4) the isomorphisms (as defined above) are the morphisms f : (X,C) −→ (X ′,C′)

such that there is a morphism g : (X ′,C′) −→ (X,C) with gf = idX and
fg = idX′ .

(5) Let f : (X,C) → (X ′,C′) be a morphism. Then we define for each x ∈ X the
differential

dfx : TxX → Tf(x)X
′
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which maps the derivation α to α′ where α′ assigns to [g]f(x) ∈ C′
x′ the value

α([gf ]x).



CHAPTER 2

Stratifolds

Prerequisites: The main new ingredient is Sard’s Theorem (see for example [B-J], chapt. 6 or [Hi], chapt. 3.1). It is

enough to know the statement of this important result.

1. Stratifolds

We will define a stratifold as a differential space with certain properties. The main
consequence of these properties is that there will be a natural decomposition of a differen-
tial space into subspaces (which in the end should be smooth manifolds). We begin with
the definition of this decomposition.

Let (S,C) be a differential space. We define the subspace Si := {x ∈ S| dimTxS = i}.

By construction S =
◦∪Si, i. e. S is the disjoint union of the subsets Si. In chapter 1

we introduced the differential spaces (Si,C(Si)) given by the subspace Si together with
the induced algebra. Our first condition is that this differential space is a smooth manifold:

1a) We require that (Si,C(Si)) is a smooth manifold (as defined in chapter 1).

Once this condition is fulfilled we write C∞(Si) instead of C(Si). This smooth struc-
ture on Si has the property that any smooth function can locally be extended to an
element of C. We want to strengthen this property by requiring that in a certain sense
such an extension is unique. To formulate this we note that for points x ∈ Si, we have two
sorts of germs of functions, namely Cx, the germ of functions near x on S, and C∞(Si)x,
the germ of smooth functions near x on Si, and our second condition requires that these
germs are equal. More precisely, condition 1b is:

1b) Restriction defines for all x ∈ Si, a bijection

Cx

∼=−→ C∞(Si)x

[f ]x −→ [f |Si ]x.

Here the only new input is the injectivity, the surjectivity follows from the definition. As
a consequence, the tangent space of S at x is isomorphic to the tangent space of Si at x.
In particular we conclude that

dimSi = i.

7



8 2. STRATIFOLDS

Conditions 1a and 1b give the most important properties of a stratifold. In addition
we impose some other conditions which are common in similar contexts. To formulate
them we introduce the following notation.

We call Si the i-stratum of S. In other concepts of spaces which are decomposed
as smooth manifolds, the connected components of Si are called the strata but we pre-
fer to collect the i-dimensional strata into a single stratum. We call ∪i≤rS

i =: Σr the
r − skeleton of S.

Definition: A k-dimensional stratifold is a differential space (S,C), where S is a locally
compact (meaning each point is contained in a compact neighbourhood) Hausdorff space
with countable basis, the skeleta Σi are closed subspaces. In addition we assume:

(1) the conditions 1a) and 1b) are fulfilled, i.e. restriction gives a smooth structure
on Si and for each x ∈ Si restriction gives an isomorphism

i∗ : Cx

∼=→ C∞(Si)x,

(2) dim TxS ≤ k for all x ∈ S, i. e. all tangent spaces have dimension ≤ k,
(3) for each x ∈ S and open neighbourhood U ∈ S there is a function ρ ∈ C such

that ρ(x) 6= 0 and supp ρ ⊆ U (such a function is called a bump function).

We recall that the support of a function f : X → R is supp f := {x| f(x) 6= 0}, the
closure of the points where f is non-trivial.

In our definition of a stratifold, the dimension k is always a finite number. One could
easily define infinite dimensional stratifolds where the only difference is that in condition
2., we would require that dimTxS is finite for all x ∈ S. Infinite dimensional stratifolds
will play no role in this book.

Let me comment on these conditions. The most important condition is the first which
we have already explained above. In particular, we recall that the smooth structure on
Si is determined by C which gives us a stratification of S, a decomposition into smooth
manifolds Si of dimension i. The second condition says that the dimension of all non-
empty strata is less or equal to k. We don’t assume that Sk 6= ∅ which, at the first glance,
might look strange, but even in the definition of a k-dimensional manifold M , it is not
required that M 6= ∅.

The third condition will be used later to show the existence of a partition of unity, an
important tool to construct elements of C. To do this, we will also use the topological
conditions that the space is locally compact, Hausdorff, and has a countable basis. The
other topological conditions on the skeleta and strata are common in similar contexts.
For example, they guarantee that the top stratum Sk is open in S, a useful and natural
property. Here we note that the requirement that the skeleta are closed is equivalent to
the statement that for each j > i we require Si ∩ Sj = ∅. This topological condition
roughly says that if we “walk” in Si to a limit point outside Si, then this point sits in Sr
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for r < i. These conditions are common in similar contexts such as CW -complexes.

We have chosen the letter Σj for the j-skeleton since Σk−1 is the singular set of S in
the sense that S−Σk−1 = Sk is a smooth k-dimensional manifold. Thus if Σk−1 = ∅, then
S is a smooth manifold.

We call our objects stratifolds since, while on the one hand they are stratified spaces,
on the other hand – although stratifolds are much more general than smooth manifolds
– they are in a certain sense very close to smooth manifolds. As we will see, many of
the fundamental tools of differential topology are available for stratifolds. In this respect
smooth manifolds and stratifolds are not very different and deserve a similar name.

Remark: It’s a nice property of smooth manifolds that once an algebra in C0(M) for
a locally compact Hausdorff space M with countable basis is given, the question, whether
M is a smooth manifold is a local question. The same is true for stratifolds, since the
conditions 1 - 3 are again local.

2. Local retracts

To obtain a better feeling for the central condition 1, we give an alternative description.
If (S,C) is a stratifold and x ∈ Si, we will construct an open neighborhood Ux of x in S
and a morphism rx : Ux → Ux ∩ Si such that rx|Ux∩Si = idUx∩Si. (Here we consider Ux as
differential space with the induced structure on an open subset as described in chapter
1.) Such a map is called a retract from Ux to Vx := Ux ∩ Si. If one has a local retract
r : Ux → Ux ∩ Si =: Vx, we can use it to extend a smooth map g : Vx → R to a map on
Ux by gr. Thus composition with r gives a map

C∞(Si)x −→ Cx

mapping [h] to [hr], where we represent h by a map whose domain is contained in Vx.
This gives an inverse of the isomorphism in condition 1 given by restriction.

To construct a retract we choose an open neighborhoodW of x in Si such thatW is the
domain of a chart ϕ : W −→ Ri (we want that imϕ = Ri and we achieve this by starting
with an arbitrary chart, which contains one whose image is an open ball which we identify
with Ri by an appropriate diffeomorphism). Now we consider the coordinate functions
ϕj : W −→ R of ϕ and consider for each x ∈W the germ represented by ϕj . By condition
1 there is an open neighbourhood Wj,x of x in S and an extension ϕ̂j,x of ϕj|Wj,x

∩Si. We
denote the intersection ∩j=1,...iWj,x by Wx and obtain a morphism ϕ̂x : Wx −→ Ri such
that y 7→ (ϕ̂1,x(y), . . . , ϕ̂i,x(y)). For y ∈Wx ∩ Si we have ϕ̂x(y) = ϕ(y). Next we define

r : Wx −→ Si

z 7→ ϕ−1ϕ̂x(z).

For y ∈Wx ∩ Si we have r(y) = y. Finally we define Ux := r−1(Wx ∩ Si) and

rx := r|Ux
: Ux → Ux ∩ Si = Wx ∩ Si =: Vx
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is the desired retract.

We summarize these considerations.

Proposition 2.1. (Local retracts) Let (S,C) be a stratifold. Then for x ∈ Si there is
an open neighborhood U of x in S and V of x in Si and a morphism

r : U → V

such that U ∩ Si = V and r|V = id. Such a morphism is called a local retract near x.

If r : U → V is a local retract near x, then r induces an isomorphism

C∞(Si)x → Cx,

[h] 7→ [hr]

the inverse of i∗ : Cx → C∞(Si)x.

The germ of local retracts near x is unique, i.e. if r′ : U ′ → V ′ is another local retract
near x, then there is a U ′′ ⊂ U ∩ U ′ such that r|′′U = r′|′′U .

The last statement follows since ϕjr|U ′′
j

= ϕjr
′|U ′′

j
for an appropriate open neighbour-

hood U ′′
j , and since ϕ is injective, we conclude for U ′′ := ∩U ′′

j the statement.

Note, that one can use the local retracts to characterize elements of C, namely a
continuous function f : S → R is in C if and only if its restriction to all strata is smooth
and it commutes with appropriate local retracts. This implies that if f : S → R is a
nowhere zero morphism then 1/f is in C.

3. Examples

The first class of examples is given by the smooth k-dimensional manifolds. These
are the k-dimensional stratifolds with Si = ∅ for i < k. It is clear that such a stratifold
gives a smooth manifold and in turn a k-dimensional manifold gives a stratifold. All con-
ditions are obvious (for the existence of a bump function see ([B-J], p. 66) or ([Hi], p. 41)).

Example 1: The most fundamental non-manifold example is the cone over a manifold.

We define the open cone over a topological space Y as Y × [0, 1)/(Y × {0}) =:
◦

CY . (We

call it the open cone and give the notation
◦

CY to distinguish it from the (closed) cone
CY := Y × [0, 1]/(Y × {0}).) We call the point Y × {0}/Y ×{0} the top of the cone and
abbreviate this as pt.
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Let M be a k-dimensional compact smooth manifold. We consider the open cone over

M and define an algebra making it a stratifold. We define the algebra C ⊂ C0(
◦

CM)

consisting of all functions in C0(
◦

CM) which are constant on some open neighbourhood U
of the top of the cone and whose restriction to M × (0, 1) is in C∞(M × (0, 1)). We want

to show that (
◦

CM,C) is a (k + 1)-dimensional stratifold. It is clear from the definition
of C that C is a locally detectable algebra, and that condition 2. in the definition of
differential spaces is fulfilled.

So far we have seen that the open cone (
◦

CM,C) is a differential space. We now check

that the conditions of a stratifold are satisfied. Obviously,
◦

CM is a Hausdorff space with

a countable basis and, since M is compact,
◦

CM is locally compact. The other topological
properties of a stratifold are clear. We continue with the description of the stratification.
For x 6= pt, the top of the cone, since Cx is the set of germs of smooth functions on

M × (0, 1) near x, Tx(
◦

CM) = Tx(M × (0, 1)) which implies that dimTx(
◦

CM) = k + 1.
For x = pt, the top of the cone, Cx consists of simply the germs of constant functions.
Since 1 is the constant function mapping all points to 1, we see for each derivation α, we
have α(1 · 1) = α(1) · 1 + 1 · α(1) implying α(1) = 0. But since α([c] · 1) = c · α(1), we

conclude that Tpt(
◦

CM) = 0 and dimTpt(
◦

CM) = 0. Thus we have two non-empty strata:

M × (0, 1) and the top of the cone.

The conditions 1 and 2 are obviously fulfilled. It remains to show the existence of
bump functions. Near points x 6= pt the existence of a bump function follows from the

existence of a bump function in M × (0, 1) which we extend by 0 to
◦

CM . Near pt we
first note that any open neighbourhood of pt contains an open neighbourhood of the
form M × [0, ǫ)/(M × {0}) for an appropriate ǫ > 0. Then we choose a smooth function
η : [0, 1) → [0,∞) which is 1 near 0 and 0 for t ≥ ǫ (for the construction of such a function
see ([B-J], p. 65)). With the help of η, we can now define the bump function

ρ([x, t]) := η(t)

which completes the proof that (
◦

CM,C) is a (k + 1)-dimensional stratifold. It has two
non-empty strata: Sk+1 = M × (0, 1) and S0 = pt.

Example 2: Let M be a non-compact m-dimensional manifold. The one-point com-
pactification of M is the space M+ consisting of M and an additional point +. The
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topology is given by defining open sets as the open sets of M together with the com-
plements of compact subsets of M . The latter give the open neighbourhoods of +. The
one-point compactification is a compact Hausdorff space (and so it has a countable basis).
(For more information see e. g. [Sch].)

On M+, we define the algebra C as the continuous functions which are constant on
some open neighbourhood of + and smooth on M . Then (M+,C) is an m-dimensional
stratifold. All conditions except 3. are obvious. For the existence of a bump function near
+ (near all other points use a bump function of M and extend it by 0 to +), let U be an
open neighbourhood of +. By definition of the topology, M −U =: A is a compact subset

of M . Then one constructs another compact subset B ⊂ M with A ⊂
◦

B (how?), and,

starting from B instead of A, a third compact subset C ⊂ M with B ⊂
◦

C. Then B and

M −
◦

C are disjoint closed subsets of M and there is a smooth function ρ : M → (0,∞)
such that ρ|B = 0 and ρ|

M−
◦
C

= 1. We extend ρ to M+ by mapping + to 1 to obtain a

bump function on M near +.

Thus we have given the one point compactification of a smooth non-compact m-
dimensional manifold M the structure of a stratifold S = M+, with non-empty strata
Sm = M and S0 = +.

Example 3: The most natural examples of manifolds with singularities occur in al-
gebraic geometry as algebraic varieties, i.e. zero sets of a family of polynomials. There
is a natural but not completely easy way to impose the structure of a stratifold on an
algebraic variety (this proceeds in two steps, namely, one first shows that a variety is a
Whitney stratified space and then one uses the retracts constructed for Whitney stratified
spaces to obtain the structure of a stratifold, where the algebra consists of those functions
commuting with appropriate representatives of the retracts). Here we only give a few
simple examples. Consider S := {(x, y) ∈ R2|xy = 0}. We define C as the functions on S
which are smooth outside 0 and constant in some open neighbourhood of 0. It is easy to
show that (S,C) is a 1-dimensional stratifold with S1 = S− (0, 0) and S0 = (0, 0).

.x y=0

Example 4: In the same spirit we consider S := {(x, y, z) ∈ R3|x2+y2 = z2}. Again
we define C as the functions on S which are smooth outside 0 and constant in some open
neighbourhood of 0. This gives a 2-dimensional stratifold (S,C), where S2 = S − (0, 0)
and S0 = (0, 0).
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x  + y  − z   = 02 2 2T

Example 5: Let (S,C) be a k-dimensional stratifold and U ⊂ S an open subset.
Then (U,C(U)) is a k-dimensional stratifold. We suggest that the reader verifies this to
become acquainted with stratifolds.

Example 6: Let (S,C) and (S′,C′) be stratifolds of dimension k and l. Then we
define a stratifold with underlying topological space S×S′. To do this we use the local re-
tracts (Proposition 2.1). We define C(S×S′) as those continuous functions f : S×S′ −→ R

which are smooth on all products Si × Sj and such that for each (x, y) ∈ Si × (S′)j there
are local retracts rx : Ux −→ Si ∩ Ux and ry : Uy −→ (S′)j ∩ Uy and we require that
f |Ux×Uy

= f(rx × ry). In short, we define C(S × S′) as those continuous maps which
commute with the product of appropriate local retracts onto Si and (S′)j . The detailed
argument that (S × S′,C(S× S′)) is a (k + l)-dimensional stratifold is a bit lengthy and
not relevant for further reading and for that reason we provide it in Appendix A. Both
projections are morphisms.

In particular, if (S′,C′) is a smooth m-dimensional manifold M , then we have the
product stratifold (S ×M,C(S ×M)).

Example 7: Combining example 6 with the method for constructing example 1, we
construct the open cone over a compact stratifold (S,C). The underlying space is again
◦

CS. We consider the algebra C ⊂ C0(
◦

CS) consisting of all functions in C0(
◦

CS) which are
constant on some open neighbourhood U of the top of the cone pt and whose restriction
to S× (0, 1) is in C(S× (0, 1)). By arguments similar to those used, for example, on the

cone over a compact manifold, one shows that (
◦

CS,C) is a (k+1)-dimensional stratifold.

Example 8: If (S,C) and (S′,C′) are k-dimensional stratifolds, we define the topo-
logical sum whose underlying topological space is the disjoint union S + S′ (which is by
definition S × {0} ∪ S′ × {1}) and whose algebra is given by those functions whose re-
striction to S is in C and to S′ is in C′. It is obvious that this is a k-dimensional stratifold.

Example 9: The following construction allows an inductive construction of strati-
folds. We will not use it in this book (so the reader can skip it), but it provides a rich
class of stratifolds. Let (S,C) be an n-dimensional stratifold and W a k-dimensional
smooth manifold together with a collar c : ∂W × [0, ǫ) → W . We assume that k > n.
Let f : ∂W → S be a morphism, which we call attaching map. We further assume that
the attaching map f is proper, which in our context is equivalent to requiring that the
preimages of compact sets are compact. Then we define a new space S′ by gluing W to



14 2. STRATIFOLDS

S via f :
S′ := W ∪f S.

On this space, we consider the algebra C′ consisting of those functions g : S′ → R whose

restriction to S is in C, whose restriction to
◦

W is smooth, and such that for some δ < ǫ
we have gc(x, t) = gf(x) for all x ∈ ∂W and t < δ. We leave it to the reader to check that
(S′,C′) is a k-dimensional stratifold. If S consists of a single point, we obtain a stratifold
whose underlying space is W/∂W , the space obtained by collapsing ∂W to a point. If W
is compact and we apply this construction, then the result agrees with the stratifold from

example 2 for
◦

W . Specializing further to W := M × [0, 1), where M is a closed manifold,
we obtain the stratifold from example 1, the open cone over M .

Applying this construction inductively to a finite sequence of i-dimensional smooth
manifolds Wi with compact boundary equipped with collars and morphisms fi : ∂Wi →
Si−1, where Si−1 is inductively constructed from (W0, f0), ... , (Wi−1, fi−1), we obtain
a rich class of stratifolds. Most stratifolds occurring in ”nature“ are of this type. This
construction is very similar to the definition of CW -complexes. There we inductively
attach cells (= closed balls), whereas here we attach arbitrary manifolds. Thus on the
one hand it is more general, but on the other hand more special, since we require that
the attaching maps are morphisms.

In this context it is sometimes useful to remember the data in this construction: the
collars and the attaching maps. More precisely we pass from the collars to equivalence
classes of collars called germs of collars, where two collars are equivalent if they agree
on some small neighbourhoos of the boundary. Stratifolds constructed inductively by at-
taching manifolds together with the data (germs of collars and attaching maps) are called
parametrized stratifolds or p-stratifolds.

From now on, we often omit the algebra C from the notation of a stratifold
and write S instead of (S,C) (unless we want to make the dependence on
C visible). This is in analogy to smooth manifolds where the single letter M is used
instead of adding the maximal atlas or, equivalently, the algebra of smooth functions to
the notation.

4. Properties of smooth maps

In analogy to maps from a smooth manifold to a smooth manifold, we call the mor-
phisms f from a stratifold S to a smooth manifold smooth maps.

We now prove some elementary properties of smooth maps.

Proposition 2.2. Let S be a stratifold and fi : S → R be a family of smooth maps
such that supp fj is a locally finite family of subsets of S. Then

∑
fi is a smooth map.

Proof: The local finiteness implies that for each x ∈ S, there is a neighbourhood U of
x such that supp fi ∩ U = ∅ for all but finitely many i1, ..., ik. Then it is clear that
∑
fi|U = fi1 |U + ...+ fik |U . Since fi1 + ...+ fik is smooth, we conclude from the fact that
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the algebra of smooth functions on S is locally detectable, that the map is smooth.
q.e.d.

We will now construct an important tool from differential topology, namely the exis-
tence of subordinated partitions of unity. This will make the role of the bump functions
clear.

Recall that a partition of unity is a family of functions ρi : S → R≥0 such that their
supports form a locally finite covering of S and

∑
ρi = 1. It is called subordinated to

some covering of S, if for each i the support supp ρi is contained in one of the covering sets.

Proposition 2.3. Let S be a stratifold with an open covering. Then there is a sub-
ordinated partition of unity of smooth functions (called smooth partition of unity).

Proof: The argument is similar to that for smooth manifolds ([B-J], p. 66). We choose

a sequence of compact subspaces Ai ⊂ S such that Ai ⊂
◦

Ai+1 and ∪Ai = S. Such a
sequence exists since S is locally compact and has a countable basis ([Sch], p. 81). For

each x ∈ Ai+1 −
◦

Ai we choose U from our covering such that x ∈ U and take a smooth

bump function ρi
x : S → R≥0 with supp ρi

x ⊂ (
◦

Ai+2 − Ai−1) ∩ U . Since Ai+1 −
◦

Ai is

compact, there is a finite number of points xν such that (ρi
xν

)−1(0,∞) covers Ai+1 −
◦

Ai.
From Proposition 2.2 we know that s :=

∑

i,ν ρ
i
xν

is a smooth function and ρi
xν
/s is the

desired subordinated partition of unity.
q.e.d.

As a consequence, we note that S is a paracompact space.

To demonstrate the use of this result, we give the following standard application.

Proposition 2.4. Let A ⊂ S be a closed subset of a stratifold S, U an open neighbour-
hood of A and f : U → R a smooth function. Then there is a smooth function g : S → R

such that g|A = f |A.

Proof: The subsets U and S − A form an open covering of S. Consider a subordinated
partition of unity ρi : S → R≥0. Then we define for x ∈ U

g(x) :=
∑

supp ρi⊂U

ρi(x)f(x),

where for x /∈ U we define g(x) = 0.
q.e.d.

Another useful consequence is that if Y is a subspace of S then C(Y ) is equal to the
restriction of elements of C to Y .
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Proposition 2.5. Let Y be a closed subspace of S. Then C(Y ) is equal to the re-
striction of elements of C to Y .

Proof: By definition f : Y → R is in C(Y ) if and only if for each y ∈ Y there is gY ∈ C
and an open neighbourhood Uy of X in S such that f |Uy∩Y = g|Uy∩Y . Since Y is closed,
the subsets Uy for y ∈ Y and S − Y form an open covering of S. Let ρi : S → R be a
subordinated partition of unity of smooth functions. Then for each i there is an y(i) such
that supp ρi ⊂ Uy(i) or supp ρi ⊆ S− Y . We consider the smooth function

F :=
∑

supp ρi⊂Uy(i)

ρigy(i)

For z ∈ Y we have

F (z) =
∑

supp ρi⊂Uy(i)

ρi(z)gy(i)(z) =
∑

i

ρi(z)f(z) = f(z).

Here we have used that for z ∈ Y if supp ρi ⊂ Uy(i), then supp ρi ⊂ S−Y and so ρi(z) = 0
and that if ρi(z) 6= 0, then gy(i)(z) = f(z).
q.e.d.

5. Consequences of Sard’s Theorem

One of the most useful fundamental results in differential topology is Sard’s Theorem
([B-J], p. 58, [Hi], p. 69) which implies that the regular values of a smooth map are
dense (Brown’s Theorem). As an immediate consequence of Sard’s theorem for manifolds,
we obtain a generalization of Brown’s Theorem to stratifolds.

We recall that if f : M → N is a smooth map between smooth manifolds, then x ∈ N
is called a regular value of f if the differential dfy is surjective for each y ∈ f−1(x).

Definition: Let f : S →M be a smooth map from a stratifold to a smooth manifold. We
say that x ∈M is a regular value of f , if x is a regular value of f |Si for all i.

Let f : M → N be a smooth map between smooth manifolds. The image of a point
y ∈ M where the differential is not surjective is called a critical value. Sard’s theorem
says that the critical values have measure zero. This implies that its complement, the set
of regular values is dense (Brown’s theorem). Since a finite union of sets of measure zero
has measure zero, we deduce the following generalization of Brown’s Theorem:

Proposition 2.6. Let g : S →M be a smooth map. The set of regular values of g is
dense in M .

Regular values x of smooth maps f : M → N have the useful property that f−1(x),
the set of solutions, is a smooth manifold of dimension dimM − dimN . An analogous
result holds for a smooth map g : S → M , where S is a stratifold of dimension n and M
a smooth manifold without boundary of dimension m. Consider a regular value x ∈ M .
By 2.5 we can define Cf−1(x) as the restriction of the smooth functions of S to f−1(x).
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Proposition 2.7. Let S be a k-dimensional stratifold, M an m-dimensional smooth
manifold, g : S →M be a smooth map and x ∈M a regular value. Then (g−1(x),C(g−1(x)))
is a k −m-dimensional stratifold.

Proof: We note that for each y ∈ g−1(x) the differential dgy : TyS → TxM as defined
at the end of chapter 1 is surjective. This uses the property that TyS = TyS

i if y ∈ Si.
From this we conclude that dimTyg

−1(x) ≤ dimTyS −m. On the other hand, Tyg
−1(x)

contains the subspace Ty((g|Si)−1(x)) and so the dimension must be equal:

dimTyg
−1(x) = dimTyS−m.

Thus g−1(x)i−m = (g|Si)−1(x), the stratification is induced from the stratification of S.

The topological conditions of a stratifold are obvious. To show condition 1, we have
to prove that

C(g−1(x))y → C∞(g−1(x)i−m)y

[f ] 7→ [f |g−1(x)i−m ]

is an isomorphism. We give an inverse by applying Proposition 2.1 to choose a local
retract r : U → V of S near y. The morphism gr is a local extension of g|V and g|U is
another extension implying by condition 1, that there exists a neighbourhood U ′ of y such
that gr|U ′ = g|U ′. Thus r|g−1(x)∩U ′ : g−1(x) ∩ U ′ → g−1(x)i−m is a morphism. Now we
obtain an inverse of C(g−1(x))y → C∞(g−1(x)i−m)y by mapping [f ] ∈ C∞(g−1(x)i−m) to
fr|g−1(x)∩U ′ ]. We have to show that [fr|g−1(x)∩U ′ ] is in C(g−1(x))y, i.e. is the restriction of
an element of Cy. But since g−1(x)i−m is a smooth submanifold of Si, we can extend [f ] to

a germ [f̂ ] ∈ (Si)y and so [f̂ r] is in Cy and [f̂ r|g−1(x)] = [fr|g−1(x)∩U ′ ]. Since r|g−1(x)∩U ′ is a
local retract, the map [f ] 7→ [fr|g−1(x)∩U ′ ] is an inverse of C(g−1(x))y → C∞(g−1(x)i−m)y.

This implies condition 1. The second condition is obvious and for condition 3 we note
that bump functions are given by restriction of appropriate bump functions on S.
q.e.d.

The next result will be very useful in the construction of homology. It answers the
following natural question. Let S be a connected k-dimensional stratifold and A and B
non-empty disjoint closed subsets of S.

A

B

S

The question is whether there is a (k − 1)-dimensional stratifold S′ with underlying
topological space S′ ⊂ S− (A ∪ B). Then we say that S′ separates A and B in S.
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´S

A

B

S

The positive answer uses several of the results presented so far. We first note that
there is a smooth function ρ : S → R which maps A to 1 and B to −1. Namely, since S is
paracompact, it is normal ([Sch], p. 95) and thus there are disjoint open neighbourhoods
U of A and V of B. Defining f as 1 on U and −1 on V the existence of ρ follows from
Proposition 2.4.

Now we apply Proposition 2.6 to see that the regular values of ρ are dense. Thus we
can choose a regular value t ∈ (−1, 1). Proposition 2.7 implies that ρ−1(t) separates A
and B. Thus we have proved a separation result:

Proposition 2.8. Let S be a k-dimensional connected stratifold and A and B disjoint
closed non-empty subsets of S.

Then there is a non-empty (k − 1)-dimensional stratifold S′ with S′ ⊂ S − (A ∪ B).
In other words, S′ separates A and B in S.



CHAPTER 3

Stratifolds with boundary: c-stratifolds

Stratifolds are generalizations of smooth manifolds without boundary, but we also
want to be able to define stratifolds with boundary. To motivate the idea of this def-
inition, we recall that a smooth manifold W with boundary has a collar, which is a
diffeomorphism c : ∂W × [0, ǫ) → V , where V is an open neighbourhood of ∂W in W , and
c|∂W = id∂W . Collars are useful for many constructions such as gluing of manifolds. This
makes it plausible to add a collar to the definition of a manifold with boundary as addi-
tional structure. Actually it is enough to consider the germ of collars. We call a smooth
manifold together with a germ of collars a c-manifold. Our stratifolds with boundary will
be defined as stratifolds together with a germ of collars, and so we call them c-stratifolds.

Staying with smooth manifolds for a while, we observe that we can define manifolds
which are equipped with a collar as follows. We consider a topological space W together

with a closed subspace ∂W . We denote W−∂W by
◦

W and call it the interior. We assume

that
◦

W and ∂W are smooth manifolds of dimension n and n− 1.

Definition: Let (W, ∂W ) be a pair as above. A collar is a homeomorphism

c : Uǫ → V,

where ǫ > 0, Uǫ := ∂W × [0, ǫ), and V is an open neighbourhood of ∂W in W such that
c|∂W×{0} is the identity map to ∂W and c|U−(∂W×{0}) is a diffeomorphism onto V − ∂W .

The condition requiring that c(Uǫ) is open avoids the following situation:

c(  W   [0,   ))x ε

Namely, it guarantees that the image of c is an “end” of W .

What is the relation to smooth manifolds equipped with a collar? If W is a smooth
manifold and c a collar, then we obviously obtain all the ingredients of the definition above
by considering W as a topological space. In turn, if (W, ∂W, c) is given as in the definition

above, we can in an obvious way extend the smooth structure of
◦

W to a smooth manifold

19
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W with boundary. The smooth structure on W is characterized by requiring that c is not
only a homeomorphism but a diffeomorphism. The advantage of the definition above is
that it can be given using only the language of manifolds without boundary. Thus it can
be generalized to stratifolds.

Let (T, ∂T) be a pair of topological spaces. We denote T − ∂T by
◦

T and call it the

interior. We assume that
◦

T and ∂T are stratifolds of dimension n and n− 1 and that ∂T
is a closed subspace.

Definition: Let (T, ∂T) be a pair as above. A collar is a homeomorphism

c : Uǫ → V,

where ǫ > 0, Uǫ := ∂T × [0, ǫ), and V is an open neighbourhood of ∂T in T such that
c|∂T×{0} is the identity map to ∂T and c|Uǫ−(∂T×{0}) is an isomorphism of stratifolds onto
V − ∂T.

Perhaps this definition needs some explanation. By examples 5 and 6 in §1 the open
subset Uǫ − (∂T × {0}) can be considered as a stratifold. Similarly, V − ∂T is an open
subset of T and thus, by example 5 in §2, it can be considered as a stratifold.

We are only interested in a germ of collars, an equivalence class of collars where two
collars c : Uǫ → V and c′ : U ′

ǫ′ → V ′ are called equivalent if there is a δ < min{ǫ, ǫ′}, such
that c|Uδ

= c′|Uδ
. As usual when we consider equivalence classes, we denote the germ

represented by a collar c by [c].

Now we define:

Definition: An n-dimensional c-stratifold T (a collared stratifold) is a pair of topo-

logical spaces (T, ∂T), where
◦

T = T − ∂T is an n-dimensional stratifold and ∂T is an
(n − 1)-dimensional stratifold, which is a closed subspace of T together with a germ of
collars [c]. We call ∂T the boundary of T.

A smooth map from T to a smooth manifold M is a continuous function f whose

restriction to
◦

T and to ∂T is smooth and commutes with an appropriate representative of
the germ of collars, i.e. there is an ǫ > 0 such that fc(x, t) = f(x) for all x ∈ ∂T and
t < ǫ.

We often call T the underlying space of the c-stratifold.

As for manifolds we allow that ∂T is empty. Then, of course, a c-stratifold is nothing
but a stratifold (without boundary or better with an empty boundary). Thus the strat-
ifolds are incorporated into the world of c-stratifolds as those c-stratifolds T with ∂T = ∅.
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The simplest examples of c-stratifolds are given by c-manifolds W . Here we define

T = W and ∂T = ∂W and attach to
◦

T and ∂T the stratifold and collar structures given
by the smooth manifolds. Another important class of examples is given by the product
of a stratifold S with a c-manifold W . By this we mean the c-stratifold whose underlying

topological space is S ×W , whose interior is S ×
◦

W and the boundary is S × ∂W , and
whose germ of collars is represented by idS × c, where [c] is the germ of collars of W .
We abbreviate this c-stratifold by S×W . In particular, we obtain the half open cylinder
S × [0, 1) or the cylinder S × [0, 1]. A third simple class of c-stratifolds is obtained by
the product of a c-stratifold T with a smooth manifold M . The underlying topological

space of this stratifold is given by T ×M with interior
◦

T ×M and boundary ∂T ×M
and germ of collars [c × idM ], where [c] is the germ of collars of T.

The next example is the (closed) cone C(S) over a stratifold S. The underlying topo-
logical space is the (closed) cone T := S× [0, 1]/S×{0} whose interior is S× [0, 1)/S×{0} and
whose boundary is S × 1. The collar is given by the map S × [0, 1/2) → C(S) mapping
(x, t) to (x, 1 − t).

In contrast to manifolds with boundary, where the boundary can be recognized from
the underlying topological space, this is not the case with c-stratifolds. For example we
can consider a c-manifold W as a stratifold without boundary with algebra C given by
the functions which are smooth on the boundary and interior and commute with the re-
tract given by a representative of the germ of collars. Here the strata are the boundary
and the interior of W . On the other hand it is—as mentioned above—a c-stratifold with
boundary ∂W . In both cases the smooth functions agree.

The following construction of cutting along a codimension 1 stratifold will be useful
later on. Suppose in the situation of Proposition 2.7, where g : S → R is a smooth
map to the reals with regular value t, that there is an open neighbourhood U of g−1(t)
and an isomorphism from g−1(t) × (t− ǫ, t+ ǫ) to U for some ǫ > 0, whose restriction to
g−1(t)×{0} is the identity map to g−1(t). Such an isomorphism is often called a bicollar.
Then we consider the spaces T+ := g−1[t,∞) and T− := g−1(−∞, t]. We define their

boundary as ∂T+ := g−1(t) and ∂T− := g−1(t). Since
◦

T+ and
◦

T− are open subsets of S
they are stratifolds. The restriction of the isomorphism to g−1(t) × [t, t+ ǫ) is a collar of
T+ and the restriction of the isomorphism to g−1(t) × (t − ǫ, t] is a collar of T−. Thus
we obtain two c-stratifolds T+ and T−. We say that T+ and T− are obtained from S by
cutting along a codimension 1 stratifold, namely along g−1(t).
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Now we construct the reverse process and introduce gluing of stratifolds along the
common boundary. Let T and T′ be c-stratifolds with same boundary, ∂T = ∂T′.
By passing to the minimum of ǫ and ǫ′ we can assume that the domains of the collars
are equal: c : ∂T × [0, ǫ) → V ⊂ T and c′ : ∂T′ × [0, ǫ) → V ⊂ T′. Then we con-
sider the topological space T ∪∂T=∂T′ T′ obtained from the disjoint union of T and T′

by identifying the boundary. We have a bicollar (in the world of topological spaces), a
homeomorphism ϕ : ∂T × (−ǫ, ǫ) → V ∪ V ′ by mapping (x, t) ∈ ∂T × (−ǫ, 0] to c(x,−t)
and (x, t) ∈ ∂T × [0, ǫ) to c′(x, t).

With respect to this underlying topological space, we define the algebra C(T∪∂T=∂T′

T′) to consist of those continuous maps f : T∪∂T=∂T′T′ → R, such that the restrictions to
◦

T and
◦

T′ are in C and C′, respectively, and where the composition fϕ : ∂T×(−ǫ, ǫ) → R

is in C(∂T × (−ǫ, ǫ)). It is easy to see that C(T ∪∂T=∂T′ T′) is a locally detectable al-
gebra. Since condition (2) in the definition of differential spaces is obviously fulfilled,
we have a differential space. Clearly, T ∪∂T=∂T′ T′ is a locally compact Hausdorff space
with countable basis. The conditions 1. - 3. in the definition of a stratifold are local

conditions. Since they hold for
◦

T,
◦

T′, and ∂T × (−ǫ, ǫ) and ϕ is an isomorphism, they
hold for T ∪∂T=∂T′ T′. Thus (T ∪∂T=∂T′ T′,C(T ∪∂T=∂T′ T′)) is a stratifold.

One can generalize the context of the above construction by assuming only the exis-
tence of an isomorphism g: ∂T → ∂T′ rather than ∂T = ∂T′. Then we glue the spaces
via g to obtain a space T ∪g T′. If we replace in the definition of the algebra the homeo-
morphism ϕ by ϕ : ∂T × (−ǫ, ǫ) → V ∪ V ′ mapping (x, t) ∈ ∂T × (−ǫ, 0] to c(x,−t) and
(x, t) ∈ ∂T × [0, ǫ) to c′(g(x), t), then we obtain a locally detectable algebra C(T ∪g T′).
The same arguments as above used for g = id imply that (T ∪g T′,C(T ∪g T′)) is a
stratifold. We summarize this as:

Proposition 3.1. Let T and T′ be k-dimensional c-stratifolds and g : ∂T → ∂T′ be
an isomorphism. Then

(T ∪g T′,C(T ∪g T′))

is a k-dimensional stratifold.
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Of course, if g is an isomorphism between some components of the boundary of T and
some components of the boundary of T′, we can glue as above via g to obtain a c-stratifold,
whose boundary is the union of the complements of these boundary components.

Finally we note that if f : T → R is a smooth function and s is a regular value of f | ◦
T

and f |∂T, then f−1(s) is a c-stratifold with collar given by restriction.





CHAPTER 4

Z/2-homology

Prerequisites: We use the classification of 1-dimensional compact manifolds [Mi 2], Appendix.

1. Motivation of homology

We begin by motivating the concept of a homology theory. We will construct in this
book several homology theories which are all in the same spirit in the sense that they all
attempt to heuristically measure the complexity of a space by analyzing the holes in X.
The understanding of holes typically is: Let Y be a topological space and L a non-empty
subspace. Then we say that X := Y −L has the hole L. We call such a hole an extrinsic
hole since we need to know the bigger space Y to say that X has a hole. We also want to
say what it means that X has a hole without knowing Y . Such a hole we would call an
intrinsic hole. The idea is rather simple: We try to detect holes by fishing them with
a net. We throw (= map) the net into X and try to shrink the net to a point. If this is
not possible, we have “caught” a hole. For example, if we consider X = Rn − 0, then we
would say that X is obtained from Rn by introducing the hole 0. We can detect the hole
by mapping the “net” Sn−1 to X via the inclusion. Since we cannot shrink Sn−1 in X
continuously to a point, we have “fished” the hole without using that X sits in Rn.

This is a very flexible concept since we are free in choosing the shape of our net.
In this chapter our nets will be certain compact stratifolds. Later we will consider other
classes of stratifolds. Further flexibility will come from the fact that we can use stratifolds
of different dimensions for detecting “holes of these dimensions”. Finally, we are free in
making precise what we mean by shrinking a net to a point. Here we will use a very rough
criterion: We say that a net given by a map from a stratifold S to X can be “shrunk” to a
point if there is a compact c-stratifold T with ∂T = S and one can extend the map from S
to T, in other words, instead of shrinking the hole, we ”fill” it with a compact stratifold T.

To explain this idea further, we start again from the situation where the space X is
obtained from a space Y by deleting a set L. Depending on the choice of L, this may be
a very strange space. Since we are more interested in nice spaces, let us assume that L

is the interior of a compact c-stratifold T ⊂ Y , i.e. L =
◦

T. Then we can consider the
inclusion of ∂T into X = Y − L as our net. We say that this inclusion detects the hole

obtained by deleting
◦

T if we cannot extend the inclusion from ∂T to X to a map from T
into X.

25
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We now weaken our knowledge of X by assuming that it is obtained from Y by deleting
the interior of some compact c-stratifold, but we do not know which one. We only know
the boundary S of the deleted c-stratifold. Then the only way to test if we have a hole with
boundary—the boundary of the deleted stratifold—is to consider all compact c-stratifolds
T having the same boundary S and to try to extend the inclusion of the boundary to a
continuous map from T to X. If this is impossible for all T, then we say thatX has a hole.

We have found a formulation which makes sense for arbitrary spaces X. It has a
hole with the boundary shape of a compact stratifold S without boundary if there is an
embedding of S into X which cannot be extended to any compact c-stratifold with bound-
ary S. Furthermore, instead of fishing holes only by embeddings, we consider arbitrary
continuous maps from compact stratifolds S to X. We say that such a map fishes a hole
if we cannot extend it to a continuous map of any compact c-stratifold T with boundary
S. Finally, we collect all these continuous maps from all compact stratifolds S of a fixed
dimension m to X modulo those extending to a compact c-stratifold with boundary S
into a set, and find an obvious group structure on it to obtain our first homology group
denoted Hm(X; Z/2).

X

f(S)

The idea for introducing homology this way is essentially contained in Poincaré’s
original paper from 1895 [Po]. Instead of using the concept of stratifolds, he uses objects
called “variétés”. The definition of these objects is not very clear in this paper, which leads
to serious difficulties. As a consequence, he suggested another combinatorial approach
which turned out to be successful, and is the basis of the standard approach to homology.
The original idea of Poincaré was taken up by Thom [Th 1] around 1950 and later on
by Conner and Floyd [C-F] who introduced a homology theory in the spirit of Poincaré’s
original approach using smooth manifolds. The construction of this homology theory is
very easy but computations are much harder than for ordinary homology. In this book,
we use their ideas (with some technical modification) to realize Poincaré’s original idea
in a textbook.

2. Z/2-oriented stratifolds

We begin with the construction of our first homology theory by following the motiva-
tion above. The elements of our first homology groups for a topological space X will be
equivalence classes of certain pairs (S, g) of m-dimensional stratifolds S together with a
continuous map g : S → X, with respect to an equivalence relation called a bordism.
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But before we define bordisms, we must introduce the concept of an isomorphism
between pairs (S, g), and (S′, g′).

Definition: Let X be a topological space and g : S → X and g′ : S′ → X be continuous
maps, where S and S′ are m-dimensional stratifolds. An isomorphism from (S, g) to
(S′, g′) is an isomorphism of stratifolds f : S → S′ such that

g = g′f.

If such an isomorphism exists, we call (S, g) and (S′, g′) isomorphic.

For a space X, the collection of pairs (S, g), where S is an m-dimensional stratifold
and g : S → X a continuous map, does not form a set. To see this, start with a fixed pair
(S, g) and consider the pairs (S × {i}, g), where i is an arbitrary index. For example, we
could take i to be any set. Thus, there are at least as many pairs as sets and the class of
all sets is not a set. But the isomorphism classes form a set.

Proposition 4.1. The isomorphism classes of pairs (S, g) form a set.

The proof of this Proposition does not help with the understanding of homology. Thus
we have postponed it to the end of Appendix A (as we have done with other proofs which
are more technical and whose understanding is not needed for reading the rest of the book).

We introduce the relation which leads to homology groups. Given two pairs (S1, g1)
and (S2, g2), we introduce the sum

(S1, g1) + (S2, g2) := (S1 + S2, g1 + g2),

where g1+g2 : S1+S2 → X is the disjoint sum of the maps g1 and g2. If T is a c-stratifold
and f : T → X a map, we abbreviate

∂(T, f) := (∂T, f |∂T).

We will now characterize ”certain“ stratifolds from which we would like to construct
our homology. There are two conditions we impose: Z/2-orientability and regularity.

Definition: We call an n-dimensional c-stratifold T with boundary S = ∂T (we allow

the possibility that ∂T is empty) Z/2-oriented if (
◦

T)n−1 = ∅, i. e. if the stratum of
codimension 1 is empty.

We note that if (
◦

T)n−1 = ∅, then Sn−2 = ∅. The reason is that via c we have an

embedding of U = Sn−2 × (0, ǫ) into (
◦

T)n−1 and so U = ∅ if (
◦

T)n−1 = ∅. But if U = ∅
then also Sn−2 = ∅. Thus the boundary of a Z/2-oriented stratifold is itself Z/2-oriented.

Remark: It is not clear at this moment what the notion Z/2-oriented has to do with
our intuitive imagination of orientation (knowing what is “left” and “right”). For a con-
nected closed smooth manifold, we know what “oriented” means [B-J]. If M is a closed
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manifold, this concept can be translated to a homological condition using integral homol-
ogy. It is equivalent to the existence of the so called fundamental class. Our definition
of Z/2-oriented stratifolds guarantees that a closed smooth manifold always has a Z/2-
fundamental class as we shall explain later.

3. Regular stratifolds

We distinguish another class of stratifolds by imposing a further local condition.

Definition: A stratifold S is called a regular stratifold if for each x ∈ Si there is an
open neighborhood U of x in S, a stratifold F with F0 a single point pt, an open subset V
of Si, and an isomorphism

ϕ : V × F → U,

whose restriction to V × pt is the identity.

To obtain a feeling for this condition, we look at some examples. We note that a
smooth manifold is a regular stratifold. If S is a regular stratifold and M a smooth
manifold, then S×M is a regular stratifold. Namely for (x, y) ∈ S ×M , we consider an
isomorphism ϕ : V × F → U near x for S as above and then

ϕ× id : (V × F) ×M → U ×M

is an isomorphism near (x, y). Thus S×M is a regular stratifold. A similar consideration
shows that the product S × S′ of two regular stratifolds S and S′ is regular.

Another example of a regular stratifold is the open cone over a compact smooth man-

ifold M . More generally, if S is a regular stratifold, then the open cone
◦

CS is a regular
stratifold. Namely, since the open subset S×(0, 1) is by the considerations above a regular
stratifold, it remains to check the condition for the 0-stratum, but this is clear (we can

take U = F =
◦

CS and V = pt).

It is obvious that the topological sum of two regular stratifolds is regular.

Thus the constructions of stratifolds using regular stratifolds from the examples in
chapter 2 lead to regular stratifolds.

It is also obvious that gluing of regular stratifolds as explained in Proposition 3.1 leads
to regular stratifolds. The reason is that points in the gluing look locally like points in

either
◦

T,
◦

T
′

or ∂T × (−ǫ, ǫ). Since these stratifolds are regular and regularity is a local
condition, the statement follows.

Finally, if S is a regular stratifold and f : S → R is a smooth map with regular
value t, then f−1(t) is a regular stratifold. To see this, it is enough to consider the local
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situation near x in Si and use ϕ to consider the case, where the stratifold is V ×F for some
i-dimensional manifold V and F0 is a point pt. Now we consider the maps (f |V ×pt) p1,
where p1 is the projection to V , and f and note that they agree on V × pt, which is the
i-stratum of V × F. By condition 1b.) of a stratifold there is some open neighbourhood
W of pt in F such that the maps agree on V ×W . Thus f |V ×W = (f |V ×pt) p, where

p is the projection from V ×W to V . Since t is a regular value of f |V ×pt, we see that

f−1(t)∩ (V ×W ) = f |−1

V ×pt(t)×W showing that the conditions of a regular stratifold are

fulfilled. Since we will apply this result in the next chapter, we summarize this as

Proposition 4.2. Let S be a regular stratifold, f : S → R a smooth function and t a
regular value. Then f−1(t) is a regular stratifold.

The main reason for introducing regular stratifolds in our context is the following
result. A regular point of a smooth map is a point x in S such that the derivative at x is
non-zero.

Proposition 4.3. Let S be a regular stratifold. Then the regular points of a smooth
map f : S → R are an open subset of S. If in addition S is compact, the set of regular
values is open.

Proof: To see the first statement consider a regular point x ∈ Si. Since Si is a smooth
manifold and the regular points of a smooth map on a smooth map are open (use the
continuity of the determinant to see this), there is an open neighbourhood U of x in Si

consisting of regular points. Since S is regular, there is an open neighbourhood Ux of
x in S isomorphic to V × F, where V ⊂ U is an open neighbourhood of x in Si, such
that f corresponds on V × F to a map which commutes with the projection from V × F
to V (this uses the fact that a smooth map has locally a unique germ of extensions to
an open neighbourhood). But for a map which commutes with this projection a point
(x, y) ∈ V × F is a regular point if and only if x is a regular point of f |V . Since V is
contained in U and U consists of regular points, Ux consists of regular points only finishing
the proof of the first statement.

If the regular points are an open set then the singular points, which are the comple-
ment, are a closed set. If S is compact, the singular points are compact, and so the image
under f is closed implying that the regular values are open.
q.e.d.

A c-stratifold T is called regular if
◦

T and ∂T are regular.

4. Z/2-homology

We call a c-stratifold T compact if the underlying space T is compact. Since ∂T is
a closed subset of T, the boundary of a compact regular stratifold is compact.

Definition: Two pairs (S0, g0) and (S1, g1), where Si are compact m-dimensional Z/2-
oriented regular stratifolds and gi : Si → X are continuous maps, are called bordant if
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there is a compact m + 1-dimensional Z/2-oriented regular c-stratifold T, and a contin-
uous map g : T → X such that (∂T, g) = (S0, g0) + (S1, g1). The pair (T, g) is called a
bordism between (S0, g0) and (S1, g1).

S0 S1T
g(T)

g

X

We will later see why we imposed the condition that the stratifolds are Z/2-oriented
and regular (the latter condition can be replaced by other conditions as long as Proposition
4.3 holds). If we would not require that the c-stratifolds are compact, we would obtain a
single bordism class, since otherwise we could use (S × [0,∞), gp) as a bordism between
(S, g) and the empty stratifold.

Proposition 4.4. “Bordant” is an equivalence relation and the topological sum

(S0, g0) + (S1, g1) := (S0 + S1, g0 + g1)

induces the structure of an abelian group on the set of equivalence classes. This group is
denoted by Hm(X; Z/2), the m-th singular homology group with Z/2-coefficients or
shortly Z/2-homology. As usual, we denote the equivalence class represented by (S, g)
by [S, g].

Proof: (S, g) is bordant to (S, g) via the bordism (S × [0, 1], h), where h(x, t) = g(x).
We call this bordism the cylinder over (S, g). We observe that if S is Z/2-oriented and
regular, then S× [0, 1] is Z/2-oriented and regular. Thus the relation is reflexive.

The relation is obviously symmetric.

To show transitivity we consider a bordism (T, g) between (S0, g0) and (S1, g1) and
(T′, g′) a bordism between (S1, g1) and (S2, g2), where T, T′ and all Si are regular Z/2-
oriented stratifolds. We glue T and T′ along S1 as explained in Proposition 3.1. The
result is regular and Z/2-oriented. The boundary of T ∪S1 T′ is S0 + S2. Since g and g′

agree on S1, they induce a map g ∪ g′ : T ∪S1 T′ → X, whose restriction to S0 is g0 and
to S2 is g2. Thus (S0, g0) and (S2, g2) are bordant, and the relation is transitive.

´WW

Next, we check that the equivalence classes form an abelian group with respect to the
topological sum. We first note that if (S1, g1) and (S2, g2) are isomorphic, then they are
bordant. A bordism is given by gluing the cylinders (S1 × [0, 1], h) and (S2 × [0, 1], h) via
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the isomorphism considered as a map from (S1 × {1}) to (S2 × {0}) (as explained after
Proposition 3.1). Since the isomorphism classes of pairs (S, g) are a set and isomorphic
pairs are bordant, the bordism classes are a quotient set of the isomorphism classes, and
thus are a set.

All axioms of an abelian group on Hm(X; Z/2) for the composition given by the topo-
logical sum are rather obvious. The topological sum is associative and commutative. An
element (S, g) represents the zero element if an only if there is a bordism (T, h) with
∂(T, h) = (S, g). The inverse of [S, g] is given by [S, g] again, since [S, g] + [S, g] is the
boundary of (S× [0, 1], h), the cylinder over (S, g).
q.e.d.

Remark: By the last argument, each element [S, g] in Hm(X; Z/2) is 2-torsion, i.e.
2[S, g] = 0. In other words, Hm(X; Z/2) is a vector space over the field Z/2.

Here we abbreviate the quotient group Z/2Z, which is a field, as Z/2. Later we will
define Hm(X; Q), which will be a Q-vector space. This indicates the role of Z/2 in the
notation of homology groups.

To obtain a feeling for homology groups, we compute H0(pt; Z/2), the 0-th homology
group of a point. A 0-dimensional stratifold is the same as a 0-dimensional manifold,
and a 1-dimensional c-stratifold that is Z/2-oriented, is the same as a 1-dimensional
manifold with a germ of collars since the codimension-1 stratum is empty and there is
only one possible non-empty stratum. We recall from ([Mi 2], Appendix) that a compact
1-dimensional manifold W with boundary has an even number of boundary points. Thus
the number of points modulo 2 of a closed 0-dimensional manifold is a bordism invariant.
On the other hand, an even number of points is the boundary of a disjoint union of
intervals. We conclude:

Theorem 4.5. H0(pt; Z/2) ∼= Z/2, the isomorphism is given by the number of points
modulo 2. The non-trivial element is [pt, id].

There is a generalization of Theorem 4.5; one can determine H0(X; Z/2) for an arbi-
trary space X. To develop this, we remind the reader of the following definition:

Definition: A topological space X is called path connected if any two points x and
y in X can be connected by a path, i.e. there is a continuous map α : [a, b] → X with
α(a) = x and α(b) = y.

The relation that two points are equivalent if they can be joined by a path is an
equivalence relation. The equivalence classes are called the path components of X. A
path connected space is connected (why?) but the converse is in general not true (why?)
although it is, for example, true for manifolds (why?).
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The number of path components is an interesting invariant of a topological space.
It can be computed via homology. Recall that since all elements of Hm(X; Z/2) are 2-
torsion, we consider Hm(X; Z/2) as a Z/2-vector space.

Theorem 4.6. The number of path components of a topological space X is equal to
dimZ/2 H0(X; Z/2). A basis of H0(X,Z/2) (as Z/2 vector space) is given by the homology
classes [pt, gi], where gi maps the point to an arbitrary point of the i-th path component
of X.

Proof: We recall that Z/2-oriented c-stratifolds of dimension ≤ 1 are the same as mani-
folds with a germ of collars. Choose for each path component Xi a point xi in Xi. Then
we consider the bordism class αi := [pt, xi], where the latter means the 0-dimensional
manifold pt together with the map mapping this point to xi. We claim that the bordism
classes αi form a basis of H0(X; Z/2). This follows from the definition of path components
and bordism classes once we know that for points x and y in X, we have [pt, x] = [pt, y]
if and only if there is a path joining x and y. Obviously if x and y can be joined by a
path, then [pt, x] = [pt, y]. Conversely, if there is a bordism between [pt, x] and [pt, y],
we consider the path components of this bordism that have a non-empty boundary. We
know that each path component is homeomorphic to [0, 1] ([Mi 2], Appendix). Since the
boundary consists of two points, there can be only one path component with non-empty
boundary. Then this bordism is a path joining x and y.
q.e.d.

As one can see from the proof, this result is more or less a tautology. Nevertheless, it
turns out that the interpretation of the number of path components as the dimension of
H0(X; Z/2) is very useful. We will develop methods for the computation of H0(X; Z/2)
which involve also higher homology groups Hk(X; Z/2) for k > 0 and apply them, for
example, to prove a sort of Jordan separation theorem in §6.

One of the main reasons for introducing singular homology groups is that one can
use them to distinguish spaces. To compare the singular homology of different spaces we
define induced maps.

Definition: For a continuous map f : X → Y , define f∗ : Hm(X; Z/2) → Hm(Y ; Z/2)
by f∗([S, g]) := [S, fg].

By construction, this is a group homomorphism. The following property is an imme-
diate consequence of the definition.

Proposition 4.7. Let f : X → Y and g : Y → Z be continuous maps. Then

(gf)∗ = g∗f∗

and

id∗ = id.
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One says that Hm(X; Z/2) together with the induced maps f∗ is a functor (which
means that the two properties of Proposition 4.7 are fulfilled). The functor properties
imply that if f : X → Y is a homeomorphism, then f∗ : Hm(X; Z/2) → Hm(Y ; Z/2) is an
isomorphism. The reason is that (f−1)∗ is an inverse since (f−1)∗f∗ = (f−1f)∗ = id∗ = id
and similarly f∗(f

−1)∗ = id.

We earlier motivated the idea of homology by fishing a hole using a continuous map
g : S → X. It is plausible that a deformation of g detects the same hole. These deforma-
tions play an important role in homology. The precise definition of a deformation is the
notion of homotopy.

Definition: Two continuous maps f and f ′ between topological spaces X and Y are
called homotopic if there is a continuous map h : X × I → Y such that h|X×{0} = f and
h|X×{1} = f ′. Such a map h is called a homotopy from f to f ′.

One should think of a homotopy as a continuous family of maps ht : X → Y ,
x 7→ h(x, t) joining f and f ′. Homotopy is an equivalence relation between maps which
we often denote by ≃. Namely, f ≃ f with homotopy h(x, t) = f(x). If f ≃ f ′ via h this
implies f ′ ≃ f via h′(x, t) := h(x, 1 − t). If f ≃ f ′ via h and f ′ ≃ f ′′ via h′ then f ≃ f ′′

via

h′′(x, t) :=

{
h(x, 2t) for 0 ≤ t ≤ 1/2
h′(x, 2t− 1) for 1/2 ≤ t ≤ 1

The reader should check that this map is continuous.

The set of all continuous maps between given topological spaces is huge and hard to
analyze. Often one is only interested in those properties of a map which are unchanged
under deformations. This is the reason for introducing the homotopy relation.

As suggested above, Z/2-homology cannot distinguish homotopic objects. This is
made precise in the next result which is one of the fundamental properties of homology
and is given the name homotopy axiom:

Proposition 4.8. Let f and f ′ be homotopic maps from X to Y . Then

f∗ = f ′
∗ : Hm(X; Z/2) → Hm(Y ; Z/2).

Proof: Let h : X×I → Y be a homotopy between maps f and f ′ from X to Y . Consider
[S, g] ∈ Hm(X). Then the cylinder (S × [0, 1], h ◦ (g × id)) is a bordism between (S, fg)
and (S, f ′g), and thus f∗[S, g] = f ′

∗[S, g].
q.e.d.

We mentioned above that homeomorphisms induce isomorphisms between Hm(X; Z/2)
and Hm(Y ; Z/2). This can be generalized by introducing homotopy equivalences. We
say that a continuous map f : X → Y is a homotopy equivalence if there is a con-
tinuous map g : Y → X such that gf and fg are homotopic to Id on X and Y . Such a
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map g is called a homotopy inverse of f . Roughly, a homotopy equivalence is a defor-
mation from one space to another. For example, the inclusion i : Sm → Rm+1 − {0} is a
homotopy equivalence with homotopy inverse given by g : x 7→ x/||x||. We have gi = id
and h(x, t) = tx + (1 − t) x

||x||
is a homotopy between ig and Id. As explained above, a

homotopy equivalence induces an isomorphism in singular bordism:

Proposition 4.9. A homotopy equivalence f : X → Y induces isomorphisms f∗ :
Hk(X; Z/2) → Hk(Y ; Z/2) for all k.

The reason is that if g is a homotopy inverse of f then g∗ is an inverse of f∗.

A space is called contractible if it is homotopy equivalent to a point. For exam-
ple, Rn is contractible. Thus for contractible spaces one has an isomorphism between
Hn(X; Z/2) and Hn(pt; Z/2). This gives additional motivation to determine the higher
homology groups of a point. The answer is very simple:

Theorem 4.10. For n > 0 we have

Hn(pt; Z/2) = 0.

Proof: Since there is only the constant map to the space consisting of a single point we
can omit the maps in our bordism classes if the space X is a point. Thus we have to show
that each Z/2-oriented compact regular stratifold S of dimension > 0 is the boundary of
a Z/2-oriented compact regular c-stratifold T. There is an obvious candidate, the closed
cone CS defined in §2. This is obviously Z/2-oriented since S is Z/2-oriented and the
dimension of S is > 0. (If dimS = 0, then the 0-dimensional stratum, the top of the cone,
is not empty in a 1-dimensional stratifold, and so the cone is not Z/2-oriented!) We have
seen already that the cone is regular if S is regular.
q.e.d.

This is a good place to see the effect of restricting to Z/2-oriented stratifolds. If we
considered arbitrary stratifolds, then even in dimension 0 the homology group of a point
would be trivial. But if all homology groups of a point are zero, then— at least for nice
spaces—their homology groups would also be zero. This follows from the Mayer-Vietoris
sequence which we will introduce in the next chapter. Similarly, the homology groups
would be uninteresting if we would not require that the stratifolds are compact since, for
instance, the half open cylinder S × [0, 1) could be taken to show that [S] is zero in the
homology of a point.



CHAPTER 5

The Mayer-Vietoris sequence and homology groups of spheres

1. The Mayer-Vietoris sequence

While on the one hand the definition of Hn(X; Z/2) is elementary and intuitive, on
the other hand it is hard to imagine how one can compute these groups. We will prove in
this chapter a rather effective method which—in combination with the homotopy axiom
(4.8)—often will allow us to reduce the computation to Hm(pt; Z/2). We will discuss
interesting applications of these computations in the next chapter.

The method for reducing Hn(X; Z/2) to Hm(pt; Z/2) is based on Propositions 4.7,
4.8 and 4.9, and the following long exact sequence. To formulate the method, we have
to introduce the notation of exact sequences. A sequence of homomorphisms between
abelian groups

· · · → An
fn−→ An−1

fn−1−→ An−2 → . . .

is called exact if for each n, holds: ker fn−1 = im fn.

For example,

0 → Z
·2→ Z → Z/2 → 0

is exact where the map Z → Z/2 is the reduction mod 2. The zeros on the left and right

side mean in combination with exactness that the map Z
·2→ Z is injective and Z → Z/2

is surjective, which is clearly the case. The exactness in the middle means that the kernel
of the reduction mod 2 is the image of the multiplication by 2, which is also clear.

To get a feeling for exact sequences, we observe that if we have an exact sequence

A
0→ B

f→ C
0→ D,

then f is injective (following from the 0-map on the left side) and surjective (following
from the 0-map on the right side). Thus, in this situation, f is an isomorphism. Of course,
if there is only a 0 on the left, then f is only injective, and if there is only a 0 on the
right, then f is only surjective.

Another elementary but useful consequence of exactness concerns sequences of abelian
groups where each group is a finite dimensional vector space over a field K and the maps
are linear maps. If

0 → An → An−1 · · · → A1 → A0 → 0

35
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is an exact sequence of finite dimensional K-vector spaces and linear maps, then:
∑

i=0,...,n

(−1)i dimAi = 0,

the alternating sum of the dimensions is 0. The reader is recommended to prove this
elementary exercise in linear algebra.

To formulate the method, we consider the following situation. Let U and V be open
subsets of a space X. We want to relate the homology groups of U , V , U ∩V and U ∪ V .
To do so, we need maps between the homology groups of these spaces. There are some
obvious maps induced by the different inclusions. In addition, we need a less obvious
map, the so-called boundary operator d : Hm(U ∪ V ; Z/2) → Hm−1(U ∩ V ; Z/2). We
begin with its description. Consider an element [S, g] ∈ Hm(U ∪ V ; Z/2). We note that
A := g−1(X − V ) and B := g−1(X − U) are disjoint closed subsets of S.

(t)

U

g(S)

g

A B

S

V

-1ρ

By arguments similar to the proof of Proposition 2.8, there is a separating stratifold
S′ ⊂ S− (A∪B) of dimension m− 1 (the picture above explains the idea of the proof of
2.8, where S′ = ρ−1(t) for a smooth function ρ : S → R with ρ(A) = 1 and ρ(B) = −1
and t a regular value) and we define

d([S, g]) := [S′, g|S′].

We will show in Appendix B (the proof is purely technical and plays no essential role in
understanding homology) that this construction gives a well defined map

d : Hm(U ∪ V ; Z/2) → Hm−1(U ∩ V ; Z/2).

If we apply this construction to a topological sum, it leads to the topological sum of
the corresponding pairs and so this map is a homomorphism.

Proposition 5.1. The construction above assigning to (S, g) the pair (S′, g|S′) gives
a well defined homomorphism

d : Hm(U ∪ V ; Z/2) → Hm−1(U ∩ V ; Z/2).

This map is called the boundary operator.

Now we can give the fundamental tool for relating homology groups of a space X to
those of a point:
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Theorem 5.2. For open subsets U and V of X the following sequence (Mayer-

Vietoris sequence) is exact:

. . .Hn(U∩V ; Z/2) → Hn(U ; Z/2)⊕Hn(V ; Z/2) → Hn(U∪V ; Z/2)
d

−→ Hn−1(U∩V ; Z/2) → Hn−1(U ; Z/2)⊕Hn−1(V ; Z/2) →

It commutes with induced maps.

Here the map Hn(U∩V ; Z/2) → Hn(U ; Z/2)⊕Hn(V ; Z/2) is α 7→ ((iU)∗(α), (iV )∗(α)),
the map Hn(U ; Z/2) ⊕ Hn(V ; Z/2) → Hn(U ∪ V ; Z/2) is (α, β) 7→ (jU)∗(α) − (jV )∗(β).

We give some explanation. The maps iU and iV are the inclusions from U ∩ V to U
and V , the maps jU and jV are the inclusions from U and V to U ∪ V . The sequence
extends arbitrarily far to the left and ends as

· · · → H0(U ; Z/2) ⊕ H0(V ; Z/2) → H0(U ∪ V ; Z/2) → 0

on the right side. Finally, the last condition in the definition means that if we have a space
X ′ with open subspaces U ′ and V ′ and a continuous map f : X → X ′ with f(U) ⊂ U ′

and f(V ) ⊂ V ′, then the diagram

. . . → Hn(U ∩ V ; Z/2) −→ Hn(U ; Z/2) ⊕ Hn(V ; Z/2) −→ Hn(U ∪ V ; Z/2) −→ Hn−1(U ∩ V ; Z/2) → . . .

↓ (f |U∩V )∗ ↓ (f |U )∗ ⊕ (f |V )∗ ↓ (f |U∪V )∗ ↓ (f |U∩V )∗

· · · → Hn(U ′ ∩ V ′; Z/2) −→ Hn(U ′; Z/2) ⊕ Hn(V ′; Z/2) −→ Hn(U ′ ∪ V ′; Z/2) −→ Hn−1(U ∩ V ; Z/2) → . . .

commutes. That is to say that the two compositions of maps going from the upper left
corner to the lower right corner in any rectangle agree.

The reader might wonder why we have taken the difference map (jU)∗(α) − (jV )∗(β)
instead of the sum (jU)∗(α) + (jV )∗(β), which is equivalent in our situation since for all
homology classes α ∈ Hm(X; Z/2) we have α = −α. The reason is that a similar sequence
exists for other homology groups (the Mayer-Vietoris sequence is actually one of the basic
axioms for a homology theory as will be explained later) where the elements do not have
order 2, and thus one has to take the difference map to obtain an exact sequence. We
actually will give the proof in such a way that it will extend verbally to the other main
homology groups in this book, integral homology, so that we don’t have to repeat the
argument.

The idea of the proof of Theorem 5.2 is very intuitive but there are some technical
points which make it a bit lengthy. We give now a short proof explaining the fundamental
steps. The understanding of this short proof is very helpful for getting in general a feeling
for homology theories. In Appendix B we add the details which are unnecessary to study
for a first reading of the book.
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Short proof of Theorem 5.2: We will show the exactness of the Mayer-Vietoris se-
quence step by step. We first recall that a sequence

A
f→ B

g→ C

is exact if and only if gf = 0 (i.e. im f ⊂ ker g) and ker g ⊂ im f .

The first case is:

Hn(U ∩ V ; Z/2) → Hn(U ; Z/2) ⊕ Hn(V ; Z/2) → Hn(U ∪ V ; Z/2)

Obviously the composition of the two maps is zero. To show the other inclusion, we
consider [S, g] ∈ Hn(U ; Z/2) and [S′, g′] ∈ Hn(V ; Z/2) that map to zero in Hn(U∪V ; Z/2).
Let (T, h) be a zero bordism of [S, jUg] − [S′, jV g

′]. Then we separate T using Proposi-
tion 2.8 along a compact regular stratifold D with h(D) ⊂ U ∩ V . We will show in the
detailed proof that we actually can choose T such that there is an open neighbourhood
U of D in T and an isomorphism of D × (−ǫ, ǫ) to U , which on D × {0} is the identity
map. In other words: there exists a bicollar (this is where we apply the property that
homology classes consist of regular stratifolds). Then—as explained in §4—we can cut
along D to obtain a bordism (T−, h|T−) between (S, g) and (D, h|D) as well as a bor-
dism (T+, g|T+) between (D, h|D) and (S′, g′). Thus [D, h|D] ∈ Hn(U ∩ V ; Z/2) maps to
([S, g], [S′, g′]) ∈ Hn(U ; Z/2) ⊕Hn(V ; Z/2).

S

Sg(    )

g

S

g(S)

D

U
V

T

´

´

Next we consider the exactness of

Hn(U ∪ V ; Z/2)
d→ Hn−1(U ∩ V ; Z/2) → Hn−1(U ; Z/2) ⊕Hn−1(V ; Z/2).

The composition of the two maps is zero. For this we show in the detailed proof that
as above we can choose a representative for the homology class in U ∪ V such that we
can cut along the separating manifold defining the boundary operator. The argument is
demonstrated in the following picture.

g

S

U

D
D D

g(S)

V V
U

zero bordism
zero bordism

The other inclusion is again self-explanatory demonstrated by the same pictures read in
reverse order, where instead of cutting we glue.
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Finally, we prove exactness of

Hn(U ; Z/2) ⊕ Hn(V ; Z/2) → Hn(U ∪ V ; Z/2)
d→ Hn−1(U ∩ V ; Z/2).

If [S, g] ∈ Hn(U ; Z/2) we show d(jU)∗[S, g] = 0. This is obvious by the construction of the
boundary operator since we can choose ρ and the regular value t such that the separating
regular stratifold D is empty. By the same argument d(jV )∗ is the trivial map.

To show the other inclusion we consider [S, g] ∈ Hn(U ∪ V ; Z/2) with d([S, g]) = 0.
We will show in Appendix B that we can choose (S, g) in such a way that the regular
stratifold S is obtained from two regular c-stratifolds S+ and S− with same boundary D
by gluing them along D. Furthermore we have g(S+) ⊂ U and g(S−) ⊂ V .

If d([S, g]) = 0, there is a compact regular c-stratifold Z with ∂Z = D and an exten-
sion of g|D to r : Z → U ∩ V . We glue S+ and S− to Z to obtain S+ ∪D Z and S− ∪D Z,
and map the first to U via g|S+ ∪r and the second to V via g|S−∪r. This gives an element
of Hn(U ; Z/2) ⊕ Hn(V ; Z/2).

S-+S

+S Z S- Z

g

U

g(S)

D

S

V U V

We are finished if in U ∪ V the difference of these two bordism classes is equal to [S, g].
For this we take (S+∪DZ)× [0, 1] and (S−∪D Z)× [1, 2] and paste it together along Z×1.

+S S-Z Z

We will show in Appendix A that this can be given the structure of a regular c-stratifold
with boundary S+ ∪D Z + S− ∪D Z + S+ ∪D S−. Since S+ ∪D S− = S and our maps
extend to a map from this regular c-stratifold to U ∪ V , we have a bordism between
[S+ ∪D Z, g|S+ ∪ r] + [S− ∪D Z, g|M− ∪ r] and [S, g].
q. e. d.

As an application we compute the homology groups of a topological sum. Let X and Y
be topological spaces and X+Y the topological sum (the disjoint union). Then X and Y
are open subspaces of X+Y and we denote them by U and V . Since the intersection U∩V
is the empty set and the homology groups of the empty set are 0 (this is a place where it
is necessary to allow the empty set as k-dimensional stratifold whose corresponding class
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is of course 0) the Mayer-Vietoris sequence gives short exact sequences:

0 → Hk(X; Z/2) ⊕Hk(Y ; Z/2) → Hk(X + Y ; Z/2) → 0,

where the zeroes on the left and right side correspond to Hn(∅; Z/2) = 0 and Hn−1(∅; Z/2) =
0, respectively. The map in the middle is (jX)∗−(jY )∗. As explained above, the exactness
implies that this map is an isomorphism:

(jX)∗ − (jY )∗ : Hn(X; Z/2) ⊕ Hn(Y ; Z/2) → Hn(X + Y ; Z/2)

is an isomorphism. Of course, this also implies that the sum (jX)∗ + (jY )∗ is an isomor-
phism.

2. Reduced homology groups and homology of spheres

For computations it is often easier to split the homology groups into the homology
groups of a point and the ”rest“, which will be called reduced homology. Let p : X →
pt be the constant map to the space consisting of a single point. The n-th reduced
homology group is H̃n(X; Z/2) := ker (p∗ : Hn(X; Z/2) → Hn(pt; Z/2)). A continuous

map f : X → Y induces a homomorphism on the reduced homology groups H̃n(X; Z/2)
to H̃n(Y ; Z/2) by restriction to the kernels and we denote it again by f∗ : H̃n(X; Z/2) →
H̃n(Y ; Z/2). If X is non-empty, there is a simple relation between the homology and the

reduced homology: Hn(X; Z/2) is isomorphic to H̃n(X; Z/2) ⊕ Hn(pt; Z/2), where the
isomorphism maps a homology class a ∈ Hn(X; Z/2) to (a− i∗p∗(a), p∗a), where i is the
inclusion from pt to an arbitrary point in X:

Hn(X; Z/2) ∼= H̃n(X; Z/2) ⊕Hn(pt; Z/2),

which for n > 0 means that the reduced homology is the same as the unreduced homology,
but for n = 0 it differs by a summand Z/2.

Since it is often useful to work with reduced homology, it would be nice to know
if there is also a Mayer-Vietoris sequence for reduced homology. This is the case. We
prepare the argument by developing a useful algebraic result. Consider a commutative
diagram (meaning that the composition of any two maps starting from the same group
and ending in the same group are equal) of abelian groups and homomorphisms

A1
f1−→ A2

f2−→ A3
f3−→ A4

↓h1 ↓h2 ↓h3 ↓h4

B1
g1−→ B2

g2−→ B3
g3−→ B4

where the horizontal sequences are exact and the map h1 is surjective. Then we consider
the sequence

ker h1
f1|−→ ker h2

f2|−→ ker h3
f3|−→ ker h4

where the maps fi| are fi|ker hi
. The statement is that the sequence

ker h2
f2|−→ ker h3

f3|−→ ker h4
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is again exact. This is proved by a general method called diagram chasing, which
we introduce in proving this statement. We chase in the commutative diagram given
by Ai and Bj above. The first step is to show that im f2| ⊂ ker f3| or equivalently
(f3|)(f2|) = 0. This follows since f3f2 = 0. To show that ker f3| ⊂ im f2|, we start the
chasing by considering x ∈ ker h3 with f3(x) = 0. By exactness of the sequence given
by the Ai, there is y ∈ A2 with f2(y) = x. Since h3(x) = 0 and h3f2(y) = g2h2(y),
we have g2h2(y) = 0 and thus by the exactness of the lower sequence and the surjectiv-
ity of h1, there is z ∈ A1 with g1h1(z) = h2(y). Since g1h1(z) = h2f1(z), we conclude
h2(y − f1(z)) = 0 or y − f1(z) ∈ ker h2. Since f2f1(z) = 0, we are done since we have
found y − f1(z) ∈ ker h2 with f2(y − f1(z)) = f2(y) = x.

With this algebraic information, we can compare the Mayer-Vietoris sequences for
X = U ∪ V with that of the space pt given by U ′ := pt =: V ′ :

→ Hn(U ∩ V ; Z/2) → Hn(U ; Z/2) ⊕ Hn(V ; Z/2) → Hn(X ; Z/2) → Hn−1(U ∩ V ; Z/2) →
↓ ↓ ↓ ↓

→ Hn(U ′ ∩ V ′; Z/2) → Hn(U ′; Z/2) ⊕ Hn(V ′; Z/2) → Hn(U ′ ∪ V ′; Z/2) → Hn−1(U
′ ∩ V ′; Z/2) →

Since U ′ ∩ V ′ = U ′ = V ′ = U ′ ∪ V ′ = pt, all vertical maps are surjective if U ∩ V is
non-empty (and thus U and V as well), and therefore by the argument above, the reduced
Mayer-Vietoris sequence

· · · → H̃n(U ∩ V ; Z/2) → H̃n(U ; Z/2) ⊕ H̃n(V ; Z/2) → H̃n(X ; Z/2) → H̃n−1(U ∩ V ; Z/2) → · · ·

is exact if U ∩ V is non-empty.

Now we use the homotopy axiom (Proposition 4.8) and the reduced Mayer-Vietoris
sequence to express the homology of the sphere Sm := {x ∈ Rm+1 | ||x|| = 1} in terms of
the homology of a point. For this we decompose Sm into the complement of the north
pole N = (0, ..., 0, 1) and the south pole S = (0, ..., 0,−1), and define Sm

+ : Sm − {S} and
Sm
− := Sm − {N}. The inclusion Sm−1 → Sm

+ ∩ Sm
− mapping y 7−→ (y, 0) is a homotopy

equivalence with homotopy inverse r : (x1, . . . , xm+1) 7−→ (x1, . . . , xm)/||(x1,...,xm)|| (why?).
Both Sm

+ and Sm
− are homotopy equivalent to a point, or equivalently the identity map on

these spaces is homotopic to the constant map (why?). Since Sm
+ ∪Sm

− is Sm, the reduced
Mayer-Vietoris sequence gives an exact sequence

· · · → H̃n(Sm
+∩Sm

− ; Z/2) → H̃n(Sm
+ ; Z/2)⊕H̃n(Sm

− ; Z/2) → H̃n(Sm; Z/2)
d−→ H̃n−1(S

m
+∩Sm

− ; Z/2) → . . .

or if we use the isomorphisms induced by the homotopy equivalences above.

· · · → H̃n(Sm−1; Z/2) → H̃n(pt; Z/2)⊕H̃n(pt; Z/2) → H̃n(Sm; Z/2)
d−→ H̃n−1(S

m−1; Z/2) → . . . .

Since H̃k(pt; Z/2) = 0, we obtain an isomorphism

d : H̃n(S
m; Z/2)

∼=−→ H̃n−1(S
m−1; Z/2)

and from this inductively:

H̃n(S
m; Z/2)

∼=−→ H̃n−m(S0; Z/2).
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S0 consists of two points {+1} and {−1} which are open subsets and by the formula

above for the homology of a topological sum we have H̃n(S
0; Z/2) ∼= Hn(pt; Z/2). We

summarize:

Theorem 5.3. H̃n(Sm; Z/2) ∼= Hn−m(pt; Z/2) or Hn(Sm; Z/2) ∼= Hn(pt; Z/2) ⊕
Hn−m(pt; Z/2). In particular, for m > 0 we have for k = 0 or k = m

Hk(S
m; Z/2) = Z/2

and
Hk(S

m; Z/2) = 0

otherwise.

It is natural to ask for an explicit representative of the non-trivial element in Hm(Sm; Z/2).
For this we introduce the fundamental class of a compact Z/2-oriented regular stratifold.
Let S be a n-dimensional Z/2-oriented compact regular stratifold. We define its fun-
damental class as [S]Z/2 := [S, id] ∈ Hn(S,Z/2). As the name indicates this class is
important. We will see that it is always non-trivial. In particular, we obtain for each
compact smooth manifold the fundamental class [M ]Z/2 = [M, id] where M is the strat-
ifold associated to M . In the case of the spheres the non-vanishing is clear since by the
inductive computation one sees that the non-trivial element of Hm(Sm; Z/2) is given by
the fundamental class [Sm]Z/2.

As an immediate consequence of Theorem 5.3 the spheres Sn and Sm are not homo-
topy equivalent for m 6= n, for otherwise their homology groups would all be isomorphic.
In particular, for n 6= m the spheres are not homeomorphic. In the next chapter, we will
show for arbitrary manifolds that the dimension is a homeomorphism invariant.



CHAPTER 6

Brouwer’s fixed point theorem, separation and invariance of

dimension

Prerequisites: The only new ingredient used in this chapter is the definition of topological manifolds which can be

found either in the first pages of [B-J] or [Hi].

1. Brouwer’s fixed point theorem

Let Dn := {x ∈ Rn| ||x|| ≤ 1} be the unit ball and Bn := {x ∈ Rn| ||x|| < 1} be the
open unit ball.

Theorem 7.1 : (Brouwer) A continuous map f : Dn → Dn has a fixed point, i.e.
there is a point x ∈ Dn with f(x) = x.

Proof: The case n = 0 is clear and so we assume that n > 0. If there is a continuous
map f : Dn → Dn without fixed points, define g : Dn → Sn−1 by mapping x ∈ Dn to the
intersection of the ray from f(x) to x with Sn−1 (give a formula for this map and see that
it is continuous).

x

f(x)

g(x)

Then g|Sn−1 = idSn−1 , the identity on Sn−1.

Now consider id = id∗ = (g ◦ i)∗ = g∗ ◦ i∗ : Hn−1(S
n−1; Z/2)

i∗−→ Hn−1(D
n; Z/2)

g∗−→
Hn−1(S

n−1; Z/2), where i : Sn−1 → Dn is the inclusion. By Theorem 5.3 we have
Hn−1(S

n−1; Z/2) = Z/2 for n > 1.

Thus the identity on Hn−1(S
n−1; Z/2) is non-trivial. On the other hand, since Dn is

homotopy equivalent to a point, Hn−1(D
n; Z/2) ∼= Hn−1(pt; Z/2) = {0} if n − 1 > 0,

implying a contradiction for n > 1. For n = 1 we have H0(S
0,Z/2) = Z/2 ⊕ Z/2 and

H0(D
1,Z/2) = Z/2 giving again a contradiction.

q.e.d.

43
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2. A separation theorem

As an application of the relation between the number of path components of a space
X and the dimension of H0(X; Z/2), we prove a theorem which generalizes a special case
of the Jordan curve theorem. A topological manifold M is called closed if it is compact
and has no boundary.

Theorem 6.1. Let M be a closed path connected topological manifold and f : M ×
(−ǫ, ǫ) → U ⊂ Rn be a homeomorphism on an open subset U of Rn. Then Rn − f(M)
has two path components.

In other words, a nicely embedded closed topological manifold M of dimension n−1 in
Rn separates Rn into two connected components. Here ”nice” means that the embedding
can be extended to an embedding of M × (−ǫ, ǫ). If M is a smooth submanifold, then it
is automatically nice [B-J].

Proof: Denote Rn − f(M) by V . Since U ∪V = Rn and H1(R
n; Z/2) ∼= H1(pt; Z/2) = 0

(Rn is contractible), the Mayer-Vietoris sequence implies

0 → H0(U ∩ V ; Z/2) → H0(U ; Z/2) ⊕H0(V ; Z/2) → H0(R
n; Z/2) → 0

Now, U ∩V is homeomorphic to M×(−ǫ, ǫ)−M×{0} and thus has two path components
implying that H0 is 2-dimensional by Theorem 4.6, and U is homeomorphic to M×(−ǫ, ǫ)
which is path connected implying that the dimension is 1. Since the alternating sum of
the dimensions is 0 we conclude dimZ/2 H0(V ; Z/2) = 2, which by Theorem 4.6 implies
the statement of Theorem 6.1.
q.e.d.

As earlier announced, this result, although equivalent to a statement about H0(R
n −

f(M); Z/2) uses higher homology groups, namely the vanishing of H1(R
n; Z/2).

3. Invariance of dimension

Next we want to prove the invariance of the dimension of a topological manifold under
a homeomorphism. Here we only need a weak definition of an m-dimensional topological
manifold M , namely that M is locally homeomorphic to an open subset of Rm. For this
we define the local homology of a space. To define the local homology of a topological
space X at a point x ∈ X, we consider the space X ∪X−x C(X − x), the union of X and
the cone over X − x, where CX = X × [0, 1]/X×{0} and we identify X × {1} in CX with
X. Equivalently, we may define it as C(X)− (x× (0, 1)). We define the local homology
of X at x as Hk(X ∪ C(X − x); Z/2). We will use the local homology of a topological
manifold to characterize its dimension. For this, we need the following consideration.

Lemma 6.2. Let M be a non-empty m-dimensional topological manifold. Then for
each x ∈M we have

H̃k(M ∪ C(M − x); Z/2) ∼=
{

Z/2 k = m
0 else
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Proof: Since M is non-empty, there is an x ∈ M and so we choose a homeomorphism
ϕ from the open ball Bm to an open neighborhood of x. We apply the Mayer-Vietoris
sequence and decomposeM∪C(M−x) into U := C(M−x) and V := ϕ(Bm−{0})×(1

2
, 1]∪

{x}. The projection of V to ϕ(Bm) is a homotopy equivalence and so V is contractible.
Also U is contractible, since it is a cone. U ∩ V is homotopy equivalent (again via the
projection) to ϕ(Bm − {0}) and so U ∩ V is homotopy equivalent to Sm−1. The reduced
Mayer-Vietoris sequence is

. . . H̃k(U ; Z/2) ⊕ H̃k(V ; Z/2) → H̃k(M ∪ C(M − x); Z/2) → H̃k−1(U ∩ V ; Z/2) → . . . .

Since H̃k(U ; Z/2) and H̃k(V ; Z/2) are zero, and H̃k−1(U ∩ V ; Z/2) ∼= H̃k−1(S
m−1; Z/2)

we have an isomorphism

H̃k(M ∪ C(M − x); Z/2) ∼= H̃k−1(S
m−1; Z/2)

and the statement follows from 5.3.
q.e.d.

Now we are in the situation to characterize the dimension of a non-empty topological
manifold M in terms of homology. Namely by 6.2 we know that dim(M) = m if and only

if H̃m(M ∪ C(M − x); Z/2) 6= 0, where x is an arbitrary point in M . If f : M → N is
a homeomorphism, then f can be extended to a homeomorphism g : M ∪ C(M − x) →
N ∪ C(N − g(x)) and so the corresponding local homology groups are isomorphic. Thus

dimM = dimN.

We summarize

Theorem 6.3. Let f : M → N be a homeomorphism between non-empty manifolds.
Then

dim M = dim N.

Remark: Let Y ⊂ X be a subspace, then one gives the reduced homology of X ∪C(Y )
often a name: it is called relative homology

Hk(X, Y ; Z/2) := H̃k(X ∪ C(Y ); Z/2).





CHAPTER 7

Z/2-homology of some important spaces and the Euler

characteristic

1. The fundamental class

It is very useful given a space X to have some explicit non-trivial homology classes.
The most important example is the fundamental class of a compact m-dimensional Z/2-
oriented regular stratifold S which we introduced as [S]Z/2 := [S, id] ∈ Hm(S; Z/2). We
have shown that for a sphere the fundamental class is non-trivial. In the following result,
we generalize this.

Proposition 7.1. Let S be a compact m-dimensional Z/2-oriented regular stratifold
with Sm 6= ∅. Then the fundamental class [S]Z/2 ∈ Hm(S; Z/2) is non-trivial.

Proof: The 0-dimensional case is clear and so we assume that m > 0. We reduce the
statement to the spheres. For this we consider a smooth embedding ψ : Bm →֒ Sm, where
Bm is the open unit ball, and we decompose S as ψ(Bm) =: U and S− ψ(0) =: V . Then
U ∩V = ψ(Bm−0). We want to determine d([S]Z/2), where d is the boundary operator in
the Mayer-Vietoris sequence corresponding to the covering of S by U and V . We choose
a smooth function η : [0, 1] → [0, 1], which is 0 near 0, 1 near 1 and η(t) = t near 1/2,
and then define ρ : S → [0, 1] by mapping ψ(x) to η(||x||) and S − imψ to 1. Then 1/2
is a regular value of ρ and by definition of the boundary operator we have

d([S]Z/2) = [ρ−1(1/2), i],

where i : ρ−1(1/2) → U ∩ V is the inclusion. Thus we are finished if [ρ−1(1/2), i] 6= 0.
Since ψ| 1

2
Sm−1 is a diffeomorphism from 1

2
Sm−1 = {x ∈ Rm | ||x|| = 1/2} to ψ(1

2
Sm−1) =

ρ−1(1/2), we have

[ρ−1(1/2), i] = ψ∗[
1

2
Sm−1, Id] = ψ∗[

1

2
Sm−1].

The inclusion ρ−1(1/2) → U ∩V is a homotopy equivalence and thus we are finished since
[Sm−1] 6= 0.
q.e.d.
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2. Z/2-homology of projective spaces

The most important geometric spaces are the classical Euclidean spaces Rn and Cn,
the home of affine geometry. It was an important breakthrough in the history of mathe-
matics when projective geometry was invented. The basic idea is to add certain points
at infinity to Rn and Cn. The effect of this change is not so easy to describe. One im-
portant difference is that projective spaces are compact. Another is that the intersection
of two hyperplanes (projective subspaces of codimension 1) is always non-empty. Many
interesting spaces, in particular the projective algebraic varieties, are contained in projec-
tive spaces so that they are the ”home” of algebraic geometry. In topology they play an
important role for classifying line bundles and so are the heart of characteristic classes.

Many important questions can be formulated and solved using the homology (and
cohomology) of projective spaces. Before we compute the homology groups, we have to
define projective spaces. They are the set of all lines through 0 in Rn+1 or Cn+1. The
lines which are not contained in Rn × 0 or Cn × 0 are in a 1 − 1 correspondence with Rn

or Cn, where the bijection maps a point x in Rn or Cn to the line given by (x, 1). Thus
Rn resp. Cn are contained in RPn resp. CPn. The lines which are contained in Rn × 0 or
Cn × 0 are called points at infinity. They are parametrized by RPn−1 resp. CPn−1. Thus
we obtain a decomposition of RPn as Rn ∪ RPn−1 and CPn as Cn ∪ CPn−1.

To see that the projective spaces are compact, we give a slightly different definition
by representing a line by a vector of norm 1.

We begin with the complex projective space CPm. This is defined as a quotient
space of S2m+1 = {x = (x0, ..., xm) ∈ Cm+1| ||x|| = 1}, where || || is the norm on Cm+1,
by the equivalence relation ∼ where x ∼ y if and only if there is a complex number λ such
that λx = y. In other words two points in S2m+1 are equivalent if they span the same line.
CPm is a topological manifold of dimension 2m and one introduces in a natural way a
smooth structure [Hi], p. 14. Actually, here the coordinate changes are not only smooth
maps but holomorphic maps, and thus CPm is what one calls a complex manifold, but we
don’t need this structure and consider it as a smooth manifold.

To compute its homology, we decompose it into open subspaces

U := {[x] ∈ CPm| xm 6= 0}
and

V := {[x] ∈ CPm| |xm| < 1}.
The reader should check the following properties: U is homotopy equivalent to a point
(a homotopy between the identity on U and a constant map is given by h([x], t) :=
[tx0, . . . , txm−1, xm]), and the inclusion from CPm−1 to V is a homotopy equivalence. A
homotopy between the identity on V and a map from V to CPm−1 is given by h([x], t) :=
[x0, . . . , xm−1, txm]). Furthermore the intersection U∩V is homotopy equivalent to S2m−1.
The reason is that we actually have a homeomorphism from U to the open unit ball by
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mapping [(x0, . . . xm)] to (x0/xm, . . . xm−1/xm) and under this homeomorphism U ∩ V is
mapped to the complement of 0, which is homotopy equivalent to S2m−1.

Thus the homotopy axiom together with the Mayer-Vietoris sequence for Z/2-homology
gives an exact sequence:

→ H̃k(S
2m−1; Z/2) → H̃k(CPm−1; Z/2) → H̃k(CPm; Z/2) → H̃k−1(S

2m−1; Z/2) →
Since H̃r(S

2m−1; Z/2) = 0 for r 6= 2m− 1, we conclude inductively:

Theorem 7.2. Hk(CPm; Z/2) ∼= Z/2 for k even and k ≤ 2m, and is 0 otherwise. The
nontrivial homology class in H2n(CPm; Z/2) for n ≤ m is given by [CPn, i], where i is the
inclusion from CPn to CPm.

The last statement follows from Proposition 7.1.

To compute the homology of the real projective space RPm := Sm/x ∼ −x, which
is a closed smooth m-dimensional manifold ([Hi] p. 13), we use the same approach as
for the complex projective spaces. We decompose RPm as U := {[x] ∈ RPm| xm+1 6= 0}
and V := {[x] ∈ RPm| |xm+1| < 1}. A similar argument as above shows: U is homotopy
equivalent to a point, and the inclusion from RPm−1 to V is a homotopy equivalence.
Furthermore the intersection U ∩ V is homotopy equivalent to Sm−1.

The decomposition RPm = U ∪ V gives an exact sequence:

H̃k(S
m−1; Z/2) → H̃k(RPm−1; Z/2)

i∗→ H̃k(RPm; Z/2)

→ H̃k−1(S
m−1; Z/2) → H̃k−1(RPm−1; Z/2)

This implies that for k different from m or m − 1 the inclusion is an isomorphism
i∗ : H̃k(RPm−1; Z/2)→H̃k(RPm; Z/2) and that this map is injective for k = m, and
surjective for k = m − 1. Since by Proposition 7.1 Hm(RPm; Z/2) 6= 0, we conclude
inductively:

Theorem 7.3. Hk(RPm; Z/2) ∼= Z/2 for k ≤ m, and 0 otherwise. The nontrivial
element in Hk(RPm; Z/2) ∼= Z/2 for k ≤ m is given by [RPk, i]Z/2 where i is the inclusion

from RPk to RPm.

3. Betti numbers and the Euler characteristic

The Betti numbers are important invariants for topological spaces and for some topo-
logical spaces X one can use them to define the Euler characteristic.

Definition: Let X be a topological space. The k-th Z/2-Betti number is bk(X; Z/2) :=
dimZ/2 Hk(X; Z/2).

A topological space X is called Z/2-homologically finite, if for all but for finitely
many k, the homology groups Hk(X; Z/2) are zero, and finite dimensional in the remain-
ing cases.
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For a Z/2-homologically finite spaceX, we define the Euler characteristic as e(X) :=
∑

i(−1)ibi(X; Z/2).

We will prove at the end of this chapter that all compact smooth manifolds are Z/2-
homologically finite. Thus their Euler characteristic can be defined.

The computations in the previous section imply:

i) Suppose m > 0. Then bk(S
m; Z/2) = 1 for k = 0 or k = m and 0 otherwise. Thus

e(Sm) = 2 for m even and e(Sm) = 0 for m odd.

ii) bk(CPm; Z/2) = 1 for k even and 0 ≤ k ≤ 2m and bk(CPm; Z/2) = 0 else. Thus
e(CPm) = m+ 1.

iii) bk(RPm; Z/2) = 1 for 0 ≤ k ≤ m and bk(RPm; Z/2) = 0 otherwise. Thus
e(RPm) = 1 for m even and e(RPm) = 0 for m odd.

The relevance of the Euler characteristic cannot immediately be seen from its defi-
nition. To indicate its importance we list the following fundamental properties without
proof.

i) The Euler characteristic is an obstruction for the existence of nowhere vanishing
vector fields on a closed smooth manifold, i.e. if such a vector field exists, then the Euler
characteristic vanishes. We will show that Sm has a nowhere vanishing vector field if and
only if m is odd.

ii) The Euler characteristic has to be even if a closed smooth manifold is the boundary
of a compact smooth manifold. An example of a closed smooth manifold with odd Euler
characteristic is given by one of the examples above, the Euler characteristic of RP2k is
1. Thus RP2k is not the boundary of a compact smooth manifold.

iii) For a finite polyhedron, the Euler characteristic can be computed from its combi-
natorial data: it is the alternating sum of the number of k-dimensional faces.

The following property is very useful for computing the Euler characteristic without
knowing the homology.

Theorem 7.4. Let U and V be Z/2-homologically finite open subspaces of a topological
space X, and suppose also that U ∩ V is Z/2-homologically finite. Then U ∪ V is Z/2-
homologically finite and

e(U ∪ V ) = e(U) + e(V ) − e(U ∩ V ).

Proof: The result follows from the Mayer-Vietoris sequence. On the one hand, exactness
of the sequence implies that U ∪ V is Z/2-homologically finite. The formula is a conse-

quence of the fact we explained earlier: Let 0 → An
fn−→ An−1

fn−1−→ · · · → A0 → 0 be an
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exact sequence of finite dimensional K-vector spaces, where K is some field. Then
n∑

i=0

(−1)i dim Ai = 0.

Applying this formula to the exact Mayer-Vietoris sequence, we obtain

e(U ∪ V ) = e(U) + e(V ) − e(U ∩ V )

q.e.d.

We finish this chapter by proving the previously claimed result that compact manifolds
are Z/2-homologically finite.

Theorem 7.5. A compact smooth c-manifold is Z/2-homologically finite.

Proof: It is enough to prove this for closed manifolds. The bounded case W can be
reduced to this case by considering the double W ∪∂W W , which is a closed manifold.
Thus, W ∪∂W W and ∂W have finitely generated homology groups, and we decompose
W ∪∂W W as U ∪ V , when U is the union of one copy of W together with the bicollar
used to glue and V is the union of the other copy of W together with the bicollar. U and
V are both homotopy equivalent to W and U ∩ V is homotopy equivalent to ∂W and so
a similar argument as in the proof of Theorem 7.4 shows that if U ∪ V and U ∩ V are
homologically finite, then U and V are homologically finite. The Mayer-Vietoris sequence
together with the collar neighbourhood theorem implies that W is as well.

To prove the theorem for a closed manifold M , we embed M into RN for some N ([Hi]
thm I.3.4) and consider a tubular neighbourhood U ([Hi] thm IV.5.2). Let r : U →M be
the retract corresponding to the projection of the normal bundle to M . Now we choose
for each point x ∈M an open cube in U containing x. Since M is compact, we can cover
M by finitely many cubes Ci:

M ⊂ ∪Ci ⊂ U.

The union of finitely many open cubes is Z/2-homologically finite. This follows in-
ductively. It is clear for a single cube. We suppose that the union of k − 1 cubes is
Z/2-homologically finite. If we add another cube then the intersection of the new cube
with the union of the k − 1 cubes is a union of at most k − 1 cubes since the intersection
of two cubes is again a cube or empty. Thus Theorem 7.4 implies that the union of k
cubes is Z/2-homologically finite.

Since r|∪Ci
is a retract, we conclude that the homology groups of ∪Ci are mapped

surjectively onto the homology groups of M , which finishes the argument.
q.e.d.





CHAPTER 8

Integral homology and the mapping degree

Prerequisites: The only new ingredient used in this chapter is the definition of orientation of smooth manifolds, which

can be found in [B-J] or [Hi].

1. Integral homology groups

In this chapter, we will introduce integral homology. This is the most powerful tool
in topology, fundamental in studying all sorts of classification problems. The definition is
completely analogous to that of Z/2-homology, the only difference being that we require
the top-dimensional stratum to be oriented.

Definition: An oriented m-dimensional c-stratifold is an m-dimensional c-stratifold

T with
◦

T
m−1

= ∅ and an orientation on
◦

T
m

.

An orientation on T induces an orientation of ∂T which is fixed by requiring that
the collar of T preserves the product orientation on (∂T)m−1 × (0, ǫ). If we change the

orientation of
◦

T
m

, we call the corresponding oriented stratifold −T.

In complete analogy with the case of smooth manifolds, we define bordism groups of
compact oriented m-dimensional regular stratifolds denoted Hm(X):

Hm(X) := {(S, g)}/bord,

where S is an m-dimensional compact oriented regular stratifold and g : S → X is a
continuous map. The relation “bord” means that two such pairs (S, g) and (S′, g′) are
equivalent if there is a compact oriented regular c-stratifold T with boundary S + (−S′)
and g+ g′ extends to a map G : T → X. The role of the negative orientation on S′ is the
following. To show that the relation is transitive, we proceed as for Z/2-homology and
glue a bordism T between S and S′ and a bordism T′ between S′ and S′′ along S′. We
have to guarantee that the orientations on the top stratum of T and of T′ fit together to
give an orientation of the top stratum of T ∪S′ T′. This is the case if the orientations on
S′ induced from T and T′ are opposite.

With this clarification the proof that the relation is an equivalence relation is the same
as for Z/2-homology (Proposition 4.4). It is useful to note that −[S, f ] = [−S, f ], the
inverse of (S, f) is given by changing the orientation of S.
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Defining the induced map as for Z/2-homology by composition we obtain a functor.
This functor is again a homology theory which means that homotopic maps induce the
same map and that there is a Mayer-Vietoris sequence commuting with induced maps
(for the definition of a homology theory see also the next chapter). The construction of
the boundary operator in the Mayer-Vietoris sequence which we gave for Z/2-homology
extends once we convince ourselves that the constructions used there (like cutting and
gluing) transform Z-oriented regular stratifolds into Z-oriented regular stratifolds. But
these facts are obvious once we have fixed an orientation on the preimage of a regular
value s of a smooth map f : M → R on an oriented manifold M . We orient such a
preimage by requiring that the orientation of it together with a vector v in the normal
bundle to f−1(s) is an orientation of M , if the image of v under the differential of f is
positive.

Theorem 8.1. The functor Hm(X) is a homology theory. This functor is called
integral homology.

To determine the integral homology groups of a point, we first note that for m > 0
the cone over an oriented regular stratifold S is an oriented regular stratifold with bound-
ary S. Thus for m > 0 we have Hm(pt) = 0. To determine H0(pt), we remind the
reader that an orientation of a 0-dimensional manifold assigns to each point x a number
ǫ(x) ∈ ±1, and that the boundary of an oriented interval [a, b] has an induced orienta-
tion such that ǫ(a) = −ǫ(b) [B-J]. Thus, if a compact 0-dimensional manifold M is the
boundary of a compact oriented 1-dimensional manifold, then

∑

x∈M ǫ(x) = 0. In turn,
if

∑

x∈M ǫ(x) = 0, then we can group the points in M in pairs with opposite orientation
and take as zero bordism for these pairs an interval. Since oriented regular stratifolds of
dimension 0 and 1 are the same as oriented manifolds, we conclude:

Theorem 8.2. The map

H0(pt) → Z

mapping [M ] to
∑

x∈M ǫ(x) is an isomorphism. Furthermore for m 6= 0 we have

Hm(pt) = 0

Since an oriented regular stratifold is automatically Z/2-oriented we have a forgetful
homomorphism

Hk(X) → Hk(X; Z/2)

We will discuss this homomorphism at the end of this chapter.

As for Z/2-homology, we say that a space X is homologically finite if for all but
finitely many k, the homology groups Hk(X) are zero and the remaining homology groups
are finitely generated. The same argument as for Z/2-homology implies that compact
smooth manifolds are homologically finite. We define the Betti numbers bk(X) as
the rank of Hk(X). This is an important invariant of spaces. We recall from alge-
bra that the rank of an abelian group G is equal to the dimension of the Q-vector
space G ⊗ Q (for some basic information about tensor products, see Appendix C). It
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is useful here to remind the reader of the fundamental theorem for finitely gen-
erated abelian groups G, which says that G is isomorphic to Zr ⊕ tor(G), where
tor(G) = {g ∈ G |ng = 0 for some natural number n 6= 0} is the torsion subgroup of G.
Since tor(G)⊗Q = 0, the number r is equal to the rank of G. The torsion subgroup T is
itself isomorphic to a sum of finite cyclic groups: tor(G) ∼= ⊕iZ/ni. If X is homologically
finite, then bk(X) is zero for all but finitely many k and finite otherwise.

Using the Mayer-Vietoris sequence, one computes the integral homology of the sphere
Sm for m > 0 as for Z/2-homology. The result is:

Hk(S
m) ∼= Z

for k = 0 or k = m and

Hk(S
m) = 0

for k different from 0 and m. A generator of Hm(Sm) is given by the homology class
[Sm, id]. Here we orient Sm as the boundary of Dm+1, which we equip with the ori-
entation induced from the standard orientation of Rm+1. (Note that this orientation is
characterized by the property that a basis of TxS

m is oriented, if the juxtaposition of it
with an inward pointing normal vector is the orientation of Rm+1.)

As a first important application of integral homology we define the degree of a map
from a compact oriented m-dimensional regular stratifold to a connected oriented smooth
manifold M . We start with the definition of the fundamental class.

Definition: Let S be a compact oriented m-dimensional regular stratifold. The funda-
mental class of S is [S, id] ∈ Hm(S). We abbreviate it as [S] := [S, id].

If we change the orientation of S passing to −S, then the fundamental class changes
orientation as well: [−S] = −[S]. Under the homomorphism Hm(S) → Hm(S; Z/2), the
fundamental class maps to the Z/2-fundamental class: [S] 7→ [S]Z/2. This implies that
the fundamental class is non-trivial. But one actually knows more:

Theorem 8.3. Let S be a compact oriented m-dimensional regular stratifold. Then
k[S] ∈ Hm(S) is non-trivial for all k ∈ Z − {0} (we say that [S] has infinite order) and
[S] is primitive, i.e. not divisible by r > 1.

Proof: The proof is similar to the proof of Proposition 7.1. The case m = 0 is trivial. For
m > 0 we construct—as for Z/2-homology—with the help of the Mayer-Vietoris sequence

a homomorphism from Hm(S) = H̃m(S) → H̃m−1(S
m−1) mapping [S] to [Sm−1]. Here we

orient Sm−1 as the boundary of Dm which we embed orientation preserving into the top
stratum of S. Then the statement follows by induction.
q.e.d.
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2. The degree

Now we define the degree and begin by defining it only for maps from compact ori-
ented m-dimensional regular stratifolds S to Sm. We recall that we have Hm(Sm) ∼= Z

generated by [Sm] for all m > 0.

Definition: Let S be a compact oriented m-dimensional regular stratifold, m > 0, and
f : S → Sm be a continuous map. Then we define

deg f := k ∈ Z

where [S, f ] = k[Sm].

In other words, f∗([S]) = deg (f)[Sm]. By construction, homotopic maps have the
same degree. For h : Sm → Sm, we see that h∗ : Hm(Sm) → Hm(Sm) is multiplication
by deg h. As a consequence, we conclude that the degree of the composition of two maps
f, g : Sn → Sn is the product of the degrees:

deg(fg) = deg(f)deg(g).

One can actually generalize the definition of the degree to maps from S to a connected
oriented m-dimensional smooth manifold M : Namely one chooses an orientation preserv-
ing embedding of a disc Dm into M and considers the map p : M → Sm = Dm/Sm−1

which is on
◦

D
m

the identity and maps the rest to the point represented by Sm−1. Then
we define the degree of f : S →M as

deg (f) := deg pf

Since any two orientation preserving embeddings of Dm into M are isotopic [B-J], the
definition of the degree is independent on the choice of this embedding.

To get a feeling for the degree, we compute it for the map zm : S1 → S1, where
we consider S1 as a subspace of C and map z to zm. The degree of zm is k, where
[S1, zm] = k · [S1] ∈ H1(S

1). We will show that k = m. We have to construct a bordism
between [S1, zm] and m · [S1]. The following picture explains how this can be done.

Here we remove |m| open balls from D2 sitting concentrically equally distributed in
the disk. This is a bordism between S1 and S1 + · · ·+ S1

︸ ︷︷ ︸

|m|

. To construct a map from

this bordism to S1, we map the curved lines joining the small circles with the large cir-
cle to the image of endpoint in the large circle under the map zm. We extend this to
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a map on the whole bordism by mapping the rest constantly to 1 ∈ S1. If m is posi-
tive, this induces the identity map id : S1 → S1 on each small circle. Thus we conclude
[S1, zm] = m · [S1, id] = m · [S1]. If m is negative, the induced map on each circle is
z−1 = z = (z1,−z2). Thus we obtain that for m < 0 the degree of zm is −m · deg z−1.
The degree of z−1 is −1. To see this we prove that [S1, z] = −[S1, z−1]. A bordism
between these two objects is given by W := (S1 × [0, 1/2]) ∪z−1 ((−S1) × [1/2, 1]) and
the map which is given by z ∪ z−1. The point here is that z−1 reverses the orientation
(why?) and thus is an orientation preserving diffeomorphism between S1 and (−S1) giv-
ing ∂W = S1 + S1, where both S1’s have the same orientation.

We summarize

Proposition 8.4. The degree of zm : S1 → S1 is m.

From this one can deduce the fundamental theorem of algebra.

Theorem 8.5. Each complex polynomial f : C → C of positive degree has a zero.

Proof: We can assume that f(z) = a0 + a1z + · · · + an−1z
n−1 + zn. If a0 = 0 then z = 0

is a zero and so we assume a0 6= 0. We assume that f has no zero and consider the
map S1 → S1, z 7→ f(z)/|f(z)|. This map is homotopic to a0/|a0| under the homotopy
f(tz)/|f(tz)|. On the other hand, it is also homotopic to zn under the following homotopy.
For t 6= 0 we take f(t−1z)/|f(t−1z)|. As t tends to 0, this map tends to zn. We obtain a
contradiction since the degree of a0/|a0| is zero while the degree of zn is n by Proposition
8.4.
q.e.d.

Since z−1 = z = (z1,−z2), we conclude that the degree of this reflection is −1. Us-
ing the inductive computation of Hm(Sm), we conclude that the degree of the reflection
map Sm → Sm mapping (z1, z2, · · · , zm+1) 7−→ (z1,−z2, z3, · · · , zm+1) is also −1. Since
all reflection maps si : Sm → Sm mapping (z1, · · · , zm+1) to (z1, · · · , zi−1,−zi, zi+1, · · ·
, zm+1) are conjugate to s2, we conclude that for each i the degree of si is −1. Since
−id = s1 ◦ · · · ◦ sm+1, we conclude

Proposition 8.6. For m > 0 the degree of −id : Sm → Sm is (−1)m+1.

As a consequence, for m even the identity is not homotopic to −id. This conse-
quence answers an important question, namely which spheres admit a nowhere vanish-
ing continuous vector field. Recall that the tangent bundle of Sm is TSm = {(x, w) ∈
Sm × Rm+1|w ⊥ x}. For those who are not familiar with tangent bundles, we suggest to
take the right side as a definition, but to convince themselves that for each x the vectors
w with w ⊥ x fit with our intuitive imagination of the tangent space of Sm at x.

A continuous vector field on a smooth manifold M is a continuous map v : M → TM
such that pv = id, where p is the projection of the tangent bundle. In the case of the sphere
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a nowhere vanishing continuous vector field is the same as a map v : Sm → Rm+1−{0} with
v(x) ⊥ x for all x ∈ Sm. Replacing v(x) by v(x)/||v(x)||, we can assume that v(x) ∈ Sm for
all x ∈ Sm. But then H : Sm×I → Sm mapping (x, t) 7→ (cos(π · t))x+(sin(π · t)) ·v(x) is
a homotopy between id and −id giving a contradiction, if m is even. Thus we have proved

Theorem 8.7. There is no nowhere vanishing continuous vector field on S2k.

For S2 this result runs under the name of the hedgehog theorem and says that it
is impossible to comb the spines of a hedgehog continuously.

On S2k+1 there is a nowhere vanishing vector field, for example

v(x1, x2, · · · , x2k+1, x2k+2) := (−x2, x1,−x4, x3, · · · ,−x2k+2, x2k+1).

or in complex coordinates

v(z1, · · · , zk+1) := (iz1, · · · , izk+1).

Thus we have shown:

There exists a nowhere vanishing vector field on Sm if and only if m is odd.

Remark: This is a special case of a much more general theorem: There is a nowhere
vanishing vector field on a compact m-dimensional smooth manifold M if and only if
the Euler characteristic e(M) vanishes. Note that this is consistent with our previous
calculation that the Euler characteristic of Sm is 0, if m is odd, and 2, if m is even.

3. Integral homology groups of projective spaces

We want to compute the integral homology of our favorite spaces. We recall that for
m > 0 we have

Hk(S
m) ∼= Z

for k = 0, m and zero otherwise.

The complex projective spaces are inductively treated as for Z/2-homology. Using
the decomposition of CPm into U and V as in §7, we conclude from the Mayer-Vietoris
sequence:

Theorem 8.8. Hk(CPm) ∼= Z for k even and 0 ≤ k ≤ 2m and 0 otherwise. The
non-trivial homology class in H2n(CPm) for n ≤ m is given by [CPn, i], where i is the
inclusion from CPn to CPm.

Finally we compute the integral homology of RPm.

Theorem 8.9. Hk(RPm) ∼= Z for k = 0 and k = m, if m is odd. Hk(RPm) ∼= Z/2
for k odd and k < m. The other homology groups are zero. Generators of the non-trivial
homology groups for k odd are represented by [RPk, i], where i is the inclusion.
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Proof: Again we use from §7 the decomposition of RPm into U and V with U homotopy
equivalent to a point, V homotopy equivalent to RPm−1, and U ∩V homotopy equivalent
to Sm−1. Then we conclude from the Mayer-Vietoris sequence by induction that for
k < m− 1 we have isomorphisms

i∗ : Hk(RPm−1) ∼= Hk(RPm).

To finish the induction we consider the exact Mayer-Vietoris sequence

0 → H̃m(RPm) → H̃m−1(S
m−1) → H̃m−1(RPm−1) → H̃m−1(RPm) → 0

If m is odd, we conclude by induction that Hm(RPm) ∼= Z and from Theorem 8.3 that
[RPm] = [RPm, id] is a generator. Here we use the fact that RPm is orientable and we
orient it in such a way that dpx : TxS

m → TxRPm is orientation preserving. Since by
induction Hm−1(RPm−1) = 0, we have Hm−1(RPm) = 0.

If m is even, we first note that 2i∗([RPm−1]) = 0. The reason is that the reflection
r([x1, ....., xm]) := [−x1, x2, ...., xm] is an orientation reversing diffeomorphism of RPm−1.
Thus [RPm−1] = [−RPm−1, r] = −r∗([RPm−1]). Now consider the homotopy h([x], t) :=
[cos(πt)x1, x2, ..., xm, sin(πt)x1] between i and ir. Thus i∗([RPm−1]) = −i∗([RPm−1]).

Next we note that i∗([RPm−1]) 6= 0, since it represents a non-trivial element in Z/2-
homology by Theorem 7.3, i.e. it is not even the boundary of a non-oriented regular strat-
ifold with a map to RPm. Then the statement follows from the exact Mayer-Vietoris se-
quence above: The group Hm−1(RPm) is cyclic of order 2 generated by i∗([RPm−1]). From
the non-triviality of Hm−1(RPm), we conclude that the map Hm−1(S

m−1) → Hm−1(RPm−1)
is non-trivial. Since both groups are isomorphic to Z, this implies that Hm(RPm) = 0.
q.e.d.

4. A comparison between integral and Z/2-homology

An oriented stratifold S is automatically Z/2-oriented. Thus we have a homomorphism

r : Hn(X) −→ Hn(X; Z/2)

for each topological space X and each n. One often calls it the reduction mod 2.
This homomorphism commutes with induced maps and the boundary operator, i. e. if
f : X −→ Y is a continuous map, then

f∗r = rf∗ : Hn(X) −→ Hn(Y ; Z/2),

and if X = U ∪ V , then

rd = dr : Hn(U ∪ V ) −→ Hn(U ∩ V ; Z/2),

where d is the boundary operator in the Mayer-Vietoris sequence. A map r (for each
space X and each n) fulfilling these two properties is called a natural transformation
from the functor integral homology to the functor Z/2-homology. Below and in the next
chapter, we will consider other natural transformations.
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If we want to use r to compare integral homology with Z/2–homology, we need in-
formation about the kernel and cokernel of r. The answer is given in terms of an exact
sequence.

Theorem 8.10. (Bockstein sequence:) There is a natural transformation

d : Hn(X; Z/2) −→ Hn−1(X)

and, if X is a smooth manifold, or a finite CW -complex (as defined in the next chapter),
then the following sequence is exact:

. . .Hn(X)
·2−→ Hn(X)

r−→ Hn(X; Z/2)
d−→ Hn−1(X) −→ . . .

Since we will not apply the Bockstein sequence in this book, we will not give a proof.
At the end of this book, we will explain the relation between our definition of homology
and the classical definition using singular chains. The groups are naturally isomorphic if
X is a smooth manifold or a finite CW -complex (we will define finite CW -complexes in
the next chapter). We will prove this in §20. If one uses the classical approach, the proof
of the Bockstein sequence is simple and it actually is a special case of a more general re-
sult. Besides reflecting different geometric aspects, the two definitions of homology groups
both have specific strengths and weaknesses. For example, the description of the funda-
mental class of a closed smooth (oriented) manifold is simpler in our approach whereas
the Bockstein sequence is more complicated.

The Bockstein sequence gives an answer to a natural question. Let X be a topological
space such that all Betti numbers bk(X) are finite and only finitely many are non-zero.
Then one can consider the alternating sum

∑

k

(−1)kbk(X).

The question is what is the relation between this expression and the Euler characteristic

e(x) =
∑

k

(−1)kbk(X; Z/2).

Theorem 8.11. Let X be a smooth manifold or a finite CW -complex. Then bk(X) is
finite and non-trivial only for finitely many k, and

e(X) =
∑

k

(−1)kbk(X).

Proof: We decompose Hk(X; Z) ∼= Zr(k) ⊕ Z/2a1 ⊕ . . .Z/2as(k) ⊕ T , where T consists

of odd torsion elements. Then the kernel of multiplication with 2 is (Z/2)s(k) and the
cokernel is

(Z/2)s(k) ⊕ (Z/2)r(k).

Thus we have a short exact sequence

0 → (Z/2)s(k) ⊕ (Z/2)r(k) → Hk(X; Z/2) → (Z/2)s(k−1) → 0
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implying that dimHk(X; Z/2) = s(k) + s(k − 1) + r(k) and from this we conclude the
theorem by a cancellation argument.
q.e.d.





CHAPTER 9

A comparison theorem for homology theories and

CW -complexes

1. The axioms of a homology theory

We have constructed already two homology theories. We now give a general definition
of a homology theory.

Definition: A generalized homology theory assigns to each topological space X a
sequence of abelian groups hn(X) for n ∈ Z, and to each continuous map f : X → Y a
homomorphism f∗ : hn(X) → hn(Y ). One requires that the groups are trivial if X = ∅,
or n < 0 and X arbitrary, and that the following properties hold:

i) id∗ = id, (gf)∗ = g∗f∗, i.e. h is a functor,

ii) if f is homotopic to g, then f∗ = g∗, i.e. h is homotopy invariant,

iii) for open subsets U and V of X there is a long exact sequence (Mayer-Vietoris
sequence)

· · · → hn(U∩V ) → hn(U)⊕hn(V ) → hn(U∪V )
d−→ hn−1(U ∩V ) −→ hn−1(U)⊕hn−1(V ) → . . .

commuting with induced maps (the Mayer-Vietoris sequence is natural). Here the map
hn(U ∩ V ) → hn(U) ⊕ hn(V ) is α 7→ ((iU)∗(α), (iV )∗(α)), the map hn(U) ⊕ hn(V ) →
hn(U ∪V ) is (α, β) 7→ (jU)∗(α)− (jV )∗(β) and the map d is a group homomorphism called
the boundary operator. Note that d is an essential part of the homology theory.

We required that hn(X) = 0 for n < 0. Such a theory is often called connective
homology theory. As before we say that hn is a functor from the category of topological
spaces and continuous maps to the category of abelian groups and group homomorphisms.
As for singular homology, the map d is an essential datum of a homology theory. The
maps iU and iV are the inclusions from U ∩ V to U and V , the maps jU and jV are the
inclusions from U and V to U ∪ V . The sequence extends arbitrarily far to the left and
ends as

· · · → h0(U) ⊕ h0(V ) → h0(U ∪ V ) → 0

on the right.

63
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2. Comparison of homology theories

We want to show that under appropriate conditions two homology theories are—in
a certain sense—equivalent. We begin with the definition of a natural transformation
between two homology theories A and B.

Definition: Let A and B be homology theories. A natural transformation τ assigns
to each space X a homomorphism τ : A(X) → B(X) such that for each f : X → Y the
diagram

A(X)
τ−→ B(X)

↓ f∗ ↓ f∗

A(Y )
τ−→ B(Y )

commutes.
We furthermore require that the diagram

An(U ∪ V )
τ−→ Bn(U ∪ V )

↓ dA ↓ dB

An−1(U ∩ V )
τ−→ Bn−1(U ∩ V )

commutes.
A natural transformation is called a natural equivalence if for each X the homo-

morphism τ : A(X) → B(X) is an isomorphism.

In the following chapters, we will sometimes consider two homology theories and a
natural transformation between them, and we may want to check whether this is a nat-
ural equivalence — at least for a suitable class of spaces X. It turns out that for the
spaces under consideration this can very easily be decided: one only has to check that
τ : An(pt) → Bn(pt) is an isomorphism for all n.

To characterize such a class of suitable spaces, we introduce the notion of homology
with compact support. A space is called weakly compact if each open covering has a finite
subcovering. If the space is Hausdorff, then this is equivalent to being compact.

Definition: A homology theory h is a homology with compact support if for each
homology class x ∈ hn(X) there is a weakly compact subspace K ⊂ X and β ∈ hn(K)
such that x = j∗(β), where j : K → X is the inclusion, and if for each weakly compact
K ⊂ X and x ∈ hn(K) mapping to 0 in hn(X), there is a weakly compact space K ′ with
K ⊂ K ′ ⊂ X such that i∗(x) = 0, where i : K → K ′ is the inclusion.
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For example, homology (integral or with Z/2-coefficients) is compactly supported since
the image of a compact space under a continuous map is weakly compact.

A first comparison result is the following:

Proposition 9.1. Let h and h′ be compactly supported homology theories and τ : h→
h′ be a natural transformation such that τ : hn(pt) → h′n(pt) is an isomorphism for all k.
Then τ is an isomorphism τ : hn(U) → h′n(U) for all open U ⊂ Rk.

The proof is based on the 5-Lemma in homological algebra.

Lemma 9.2. Consider a commutative diagram of abelian groups and homomorphisms

A −→ B −→ C −→ D −→ E
↓ ↓∼= ↓ f ↓∼= ↓
A′ −→ B′ −→ C ′ −→ D′ −→ E ′

where the horizontal lines are exact sequences, the maps from B and D are isomorphisms,
the map from A is surjective and the map from E is injective. Then the map f : C → C ′

is an isomorphism.

Proof: This is a simple diagram chasing argument. We demonstrate the principle by
showing that C → C ′ is surjective and leave the injectivity as an exercise to the reader.
For c′ ∈ C ′ consider the image d′ ∈ D′ and the pre-image d ∈ D. Since E injects into E ′,
the element d maps to 0 in E, and thus there is c ∈ C mapping to d. By construction
f(c) − c′ maps to 0 in D′. Thus there is b′ ∈ B′ mapping to f(c) − c′. We take the
pre-image b ∈ B and replace c by c − g(b), where g is the map from B to C. Then
f(c− g(b)) − c′ = f(c) − fg(b)− c′ = f(c) − g′(b′) − c′ = f(c) − f(c) + c′ − c′ = 0, where
g′ is the map from B′ to C ′.
q.e.d.

With this lemma we can now prove the proposition.

Proof of Proposition 9.1: Let U1 and U2 be open subsets of a space X and suppose that
τ is an isomorphism for U1, U2 and U1 ∩ U2. Then the Mayer-Vietoris sequence together
with the 5-Lemma imply that τ is an isomorphism for U1 ∪ U2.

Now consider a finite union of s open cubes (a1, b1) × · · · × (ak, bk) ⊂ Rk. Since the
intersection of two open cubes is again an open cube or empty, the intersection of the s-th
cube Us with U1 ∪ ... ∪ Us−1 is a union of s− 1 open cubes. Since each cube is homotopy
equivalent to a point pt, we conclude inductively over s that τ is an isomorphism for all
U ⊂ Rk which are a finite union of s cubes.

Now consider an arbitrary U ⊂ Rk and x ∈ h′n(U). Since h′n has compact support,
there is a compact subspace K ⊂ U such that x = j∗(β) with β ∈ h′n(K). Cover K by a
finite union V of open cubes such that K ⊂ V ⊂ U and denote the inclusion from K to V
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by i. Then, by the consideration above, i∗(β) is in the image of τ : hn(V ) → h′n(V ). Now
consider the inclusion from V to U to conclude that x is in the image of τ : hn(U) → h′n(U).
Thus τ is surjective.

For injectivity, one argues similarly. Let x ∈ hn(U) such that τ(x) = 0. Then we first
consider a compact subspace K in U such that x = j∗(β). Then, since τ(β) = 0 in h′n(U),
there is a compact set K ′ such that K ⊂ K ′ ⊂ U and j∗(β) maps to 0 in h′n(K ′). By
covering K ′ by a finite number of cubes in U , we conclude that β maps to 0 in this finite
number of cubes since τ is injective for this space. Thus x = 0.
q.e.d.

Applying the Mayer-Vietoris sequence and the 5-Lemma again, one concludes that in
the situation of Proposition 9.1 one can replace U by a space which can be covered by a
finite union of open subsets which are homeomorphic to open subsets of Rk.

Corollary 9.3. Let h and h′ be compactly supported homology theories and τ : h→ h′

be a natural transformation. Suppose that τ : hn(pt) → h′n(pt) is an isomorphism for all
n. Then for each topological manifold M (with or without boundary) admitting a finite
atlas τ : hn(M) → h′n(M) is an isomorphism for all n.

In particular, this corollary applies to all compact manifolds. One can easily generalize
this result by considering spaces X = R ∪f Y which are obtained by gluing a compact
c-manifold R (i.e. a manifold together with a germ class of collars) via a continuous
map f to space Y for which τ is an isomorphism. For then we decompose R ∪f Y into
U := R − ∂R and the union V of Y with the collar of ∂R in R. Then U is a manifold
with finite atlas, U ∩ V is homotopy equivalent to ∂R, a manifold with finite atlas and
V is homotopy equivalent to Y . Thus the result above together with the Mayer-Vietoris
and the 5-Lemma argument implies that τ is an isomorphism hn(R∪f Y ) → h′n(R∪f Y ).

Definition: We call a space X nice if it is either a topological manifold (with or with-
out boundary) with finite atlas or obtained by gluing a compact topological manifold with
boundary via a continuous map of the boundary to a nice space.

Corollary 9.4. Let h, h′ and τ be as above. Then for each nice space X the homo-
morphism τ : hn(X) → h′n(X) is an isomorphism.

3. CW -complexes

Motivated by the definition of nice spaces, we introduce now another class of objects
called (finite) CW -complexes which lead to nice spaces. Of course, CW -complexes are
not only useful for comparing homology theories but in many aspects of algebraic topology.

Definition: An m-dimensional finite CW -complex is a topological space X together
with subspaces ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xm = X. In addition we require that for
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0 ≤ j ≤ m, there are continuous maps f j
r = Sj−1

r −→ Xj−1, where Dj
r = Dj = {x ∈

Rj| ||x|| ≤ 1} and homeomorphisms

Xj ∼= (+
sj

r=1D
j
r) ∪(+fj

r ) X
j−1

We call X0, X1, .... a CW -decomposition of the topological space and call the open
balls cells. We denote a CW -complex shortly by X.

Thus a finite m-dimensional CW -complex can be obtained from a finite set of points
with discrete topology by first attaching a finite number of 1-dimensional balls, followed
by a finite number of 2-dimensional balls, ..., and finally a finite number of m-dimensional
balls via a continuous map from the boundary of the balls to the already constructed space.

Examples:
1.) X = Sm, X0 = · · · = Xm−1 = pt, Xm = Dm ∪ pt.

2.) Let f j : Sj−1 −→ RPj−1 be the canonical projection. Then we have a homeomorphism

Dj ∪fj RPj−1 −→ RPj

mapping x ∈ Dj to [x1, · · · , xj ,
√

1 − Σx2
j ] and [x] ∈ RPj−1 to [x, 0]. Thus Xj := RPj

(0 ≤ j ≤ m) gives a CW -decomposition of RPm.

3.) Similarly, Xj := CP[j/2] gives a CW -decomposition of CPn.

Here is a first instance showing that it is useful to consider CW -decompositions.

Theorem 9.5. A finite CW -complex X is homologically and Z/2-homologically finite.
Denote the number of j-cells of a finite CW -complex X by βj. Then:

e(X) =
m∑

j=0

(−1)j · βj

Proof: We prove the statement inductively over the cells. Suppose that Y is homolog-
ically finite and Z/2-homologically finite. Let f : Sk−1 → Y be a continuous map and

consider Z := Dk ∪f Y . We decompose Z = U ∪V with U =
◦

D k and V = Z−{0}, where
0 ∈ Dk. The space U ∩ V is homotopy equivalent to Sk−1, U is homotopy equivalent to
a point, and V is homotopy equivalent to Y .

The Mayer-Vietoris sequence implies that Z is homologically and Z/2-homologically
finite, thus, and by Theorem 7.4

e(Z) = e(Y ) + e(pt) − e(Sk−1)
= e(Y ) + 1 − (1 + (−1)k−1)
= e(Y ) + (−1)k,

which implies the statement.
q.e.d.
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Remark: In this case as well as in many other instances, it is enough to require that X
is homotopy equivalent to a finite CW -complex.

Remark: One can generalize the definition to non-finite CW -complexes which are ob-
tained from an arbitrary discrete set by attaching an arbitrary number of 1-cells, 2-cells
and so on.



CHAPTER 10

Künneth’s theorem

Prerequisites: In this chapter we assume that the reader is familiar with tensor products of modules. The basic

definitions and some results on tensor products relevant for our context are contained in Appendix C.

1. The ×-product

We want to compute the homology of X × Y . To compare it with the homology of X
and Y , we construct the ×-product Hi(X) × Hj(Y ) → Hi+j(X × Y ). If [S, g] ∈ Hk(X)
and [S′, g′] ∈ Hl(Y ) we construct an element

[S, g] × [S′, g′] ∈ Hk+l(X × Y )

and similar for Z/2-homology.

For this we take the cartesian product of S and S′ (considered as stratifold by example
6 in chapter 2) and the product of g and g′.

If S and S′ are regular and Z/2−oriented, then the product is regular and the (k +
l− 1)−dimensional stratum +i+j=k+l−1(S

i × (S ′)j) = Sk × (S′)l−1 +Sk−1 × (S′)l is empty.
Thus [S × S′, g × g′] is an element of Hk+l(X × Y ; Z/2). If S and S′ are oriented then
the (k+ l)-dimensional stratum is Sk × (S′)l and so carries the product orientation. Thus
[S×S′, g× g′] is an element of Hk+l(X × Y ). This is the construction of the ×-products:

Hi(X) ×Hj(Y ) → Hi+j(X × Y )

and
Hi(X; Z/2) ×Hj(X; Z/2) → Hi+j(X × Y ; Z/2)

which are defined as
[S, g] × [S′, g′] := [S × S′, g × g′].

By construction the ×-products are well defined and bilinear. They are also by con-
struction associative:

Proposition 10.1. The ×-products are bilinear and associative.

Since the ×-products are bilinear they induce maps from the tensor product

Hi(X; Z/2) ⊗Z/2 Hj(Y ; Z/2) −→ Hi+j(X × Y ; Z/2)

69
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and
Hi(X) ⊗Hj(Y ) −→ Hi+j(X × Y ).

(We denote the tensor product of abelian groups by ⊗ and of F -vector spaces by ⊗F .)

We sum the left side over all i, j with i+ j = k to obtain homomorphisms

× : ⊕i+j=kHi(X) ⊗ Hj(Y ) → Hk(X × Y )

and
× : ⊕i+j=kHi(X; Z/2) ⊗Z/2 Hj(Y ; Z/2) → Hk(X × Y ; Z/2).

It would be nice if these maps were isomorphisms. For Z/2-homology, we will show
this under some assumptions on X, but for integral homology these assumptions are not
sufficient. The idea is to fix Y and to consider the functor

HY
k (X) := Hk(X × Y )

where for f : X → X ′ we define

f∗ : HY
k (X) → HY

k (X ′)

by (f × Id)∗. This is obviously a homology theory: The Mayer-Vietoris sequence holds
since

(U1 × Y ) ∪ (U2 × Y ) = (U1 ∪ U2) × Y,

(U1 × Y ) ∩ (U2 × Y ) = (U1 ∩ U2) × Y.

Furthermore this is a homology theory with compact support.

For X a point the maps × above are isomorphisms. Thus we could try to prove that
they are always an isomorphism for nice spaces X by applying the comparison result
Corollary 9.4 if

X 7−→ ⊕i+j=kHi(X) ⊗ Hj(Y ) =: hY
k (X).

were also a homology theory and similarly if

X 7−→ ⊕i+j=kHi(X; Z/2) ⊗Z/2 Hj(Y ; Z/2) =: hY
k (X; Z/2)

were a homology theory. Here, for f : X → X ′, we define f∗ = ⊕i+j=k((f∗ ⊗ Id) :
Hi(X) ⊗Hj(Y ) → Hi(X

′) ⊗ Hj(Y )).

The homotopy axiom is clear but the Mayer-Vietoris sequence is a problem. It would
follow if for an exact sequence of abelian groups

A
f→ B

g→ C

and abelian group D the sequence

A⊗D
f⊗Id−→ B ⊗D

g⊗Id−→ C ⊗D
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were exact. But this is in general not the case. For example consider

0 → Z
·2−→ Z

and D = Z/2 giving

0 → Z/2Z
·2−→ Z/2Z

which is not exact since ·2 : Z/2Z → Z/2Z is 0. If instead of abelian groups we work with
vector spaces over a field F , the sequence

A⊗F D
f⊗F Id−→ B ⊗F D

g⊗F Id−→ C ⊗F D

is exact. It is enough to show this for short exact sequences 0 → A → B → C → 0 by
passing to the image in C and dividing out the kernel in A. Then there is a splitting
s : C → B with gs = Id and a splitting p : B → A with pf = Id. These splittings induce
splittings of

A⊗F D
f⊗F Id−→ B ⊗F D

g⊗F Id−→ C ⊗F D

implying its exactness.

The sequence is also exact, if D is a torsion free finitely generated abelian group.
Namely then D ∼= Zr for some r. It is enough to check exactness for r = 1, where it is
trivial since A⊗ Z ∼= A. For larger r we use that A⊗ (D ⊕D′) ∼= (A⊗D) ⊕ (A⊗D′).

Thus, if all homology groups of Y are finitely generated and torsion free, the functor
hY

k (X) is a generalized homology theory. And since Hk(X; Z/2) is a Z/2-vector space we
conclude that for a fixed space Y the functor hY

k (X; Z/2) is a homology theory. To obtain
some partial information about the integral homology groups of a product of two spaces,
if Hk(Y ) is not finitely generated and torsion free, we define rational homology groups.

Definition: Hm(X; Q) := Hm(X) ⊗ Q. For f : X → Y we define f∗ : Hm(X; Q) →
Hm(Y ; Q) by f∗ ⊗ Id : Hm(X) ⊗ Q → Hm(Y ) ⊗ Q.

By the considerations above the rational homology groups are a homology theory
called rational homology. Since the rational homology groups are Q-vector spaces
(scalar multiplication with λ ∈ Q is given by λ(x⊗ µ) := x⊗ λµ), the functor

X 7−→ ⊕i+j=kHi(X; Q) ⊗Hj(Y ; Q) =: hY
k (X; Q).

is a homology theory. By construction it has compact support.

2. The Künneth theorem

To apply Corollary 9.4 we have to check that the maps × : hY
k (X; Z/2) → HY

k (X; Z/2),
× : hY

k (X) → HY
k (X) and × : hY

k (X; Q) → HY
k (X; Q) commute with induced maps and

the boundary operator in the Mayer-Vietoris sequence, in other words are natural transfor-
mations. The proof is the same in all three cases and so we only give it for Z/2-homology:
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Lemma 10.2. The map

× : hY
k (X; Z/2) → HY

k (X; Z/2).

is a natural transformation.

Proof: Everything is clear except the commutativity in the Mayer-Vietoris sequence.
Let U1 and U2 be open subsets of X and consider for i+j = k the element [S, f ]⊗ [Z, g] ∈
Hi(U1 ∪ U2) ⊗ Hj(Y ). By our definition of the boundary operator in the Mayer-Vietoris
sequence of Hi(X) we can decompose the stratifold S (after perhaps changing it by a
bordism) as S = S1 ∪ S2 with ∂S1 = ∂S2 =: Q, where f(S1) ⊂ U1 and f(S2) ⊂ U2.
Then d([S, f ]) = [Q, f |Q]. Thus d([S, f ] ⊗ [Z, g]) = [Q, f |Q] ⊗ [Z, g]. On the other
hand [S, f ] × [Z, g] = [S × Z, f × g] and, since S × Z = (S1 ∪ S2) × Z, we conclude:
d([S× Z, f × g]) = [Q × Z, f |T × g]. Thus the diagram

Hi(U1 ∪ U2) ⊗ Hj(Y )
×−→ Hi+j((U1 ∪ U2) × Y )

↓ d ↓ d

Hi−1(U1 ∩ U2) ⊗ Hj(Y )
×−→ Hi+j−1((U1 ∩ U2) × Y )

commutes.
q.e.d.

Now the Künneth Theorem is an immediate consequence of Corollary 9.4:

Theorem 10.3. (Künneth Theorem) Let X be a nice space. Then for F = Q or
Z/2Z

× : ⊕i+j=kHi(X;F ) ⊗F Hj(Y ;F ) → Hk(X × Y ;F )

is an isomorphism. The same holds for integral homology if for all j the groups Hj(Y )
are torsion free and finitely generated.

We note that the Künneth theorem holds for all spaces X which are finite CW -
complexes since all these spaces are nice. In a later chapter we will identify singular
homology of CW -complexes with the homology groups defined in a traditional way using
simplices. The world of simplices is more appropriate for dealing with the Künneth The-
orem and one obtains there a general result computing the integral homology groups of a
product of CW -complexes.

As an application we prove that for nice spaces X the Euler characteristic of X × Y
is the product of the Euler characteristics of X and Y .

Theorem 10.4. Let X and Y be Z/2 homologically finite and X a nice space. Then

e(X × Y ) = e(X) · e(Y ).

Proof: By the previous theorem the proof follows from
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Lemma 10.5. Let A = (A0, A1, . . . , Ak) and B = (B0, . . . , Br) be sequences of finite-
dimensional Z/2-vector spaces. Then for C(A,B) with Cs = ⊕i+j=s Ai ⊗Bj, we have

e(C) = e(A) · e(B).

Here e(A) :=
∑

i(−1)i dimAi.

Proof: We prove it by induction over k. Let A′ be given by A0, A1, · · · , Ak−1. Then
e(A′) + (−1)k dimAk = e(A). Define C ′ as C(A′, B). Then Cs = C ′

s for s ≤ k and
Ck+j = C ′

k+j ⊕ (Ak ⊗ Bj).
Thus,

e(C) = e(C ′) + (−1)k dimAk e(B)
= e(A′) · e(B) + (−1)k dimAk e(B)
= e(A) · e(B).

q.e.d.

Another application is the computation of the homology of a product of two spheres
Sn × Sm for n and m positive. Since the homology groups of Sm are torsion free, the
Künneth theorem implies Hk(S

n × Sm) = ⊕i+j=kHi(S
n) ⊗Hj(S

m).

Hk(S
n × Sm) ∼=







Z k = 0, n+m
Z k = n, if n 6= m
Z k = m, if n 6= m
Z ⊕ Z k = n = m
0 else

Here we use that A⊗ Z ∼= A for each abelian group A. We actually obtain with the
×-product a basis for the homology groups: Let x be a point in Sn and y be a point in Sm.
Then [(x, y), i] generates H0(S

n × Sm), [Sn × y, i] generates Hn(Sn × Sm) and [x× Sm, i]
generates Hm(Sn × Sm) for n 6= m, and these elements are a basis of Hn(Sn × Sn), if
n = m, and finally the fundamental class [Sn × Sm] generates Hn+m(Sn × Sm). Here i
always stands for the inclusion.

These examples are in agreement with our geometric intuition that the manifolds
giving the homology classes ”fish” the corresponding holes.





CHAPTER 11

Some lens spaces and quarternionic generalizations

1. Lens spaces

In this chapter we will construct a class of manifolds that, on the one hand, gives
more fundamental examples to play with and, on the other hand, is the basis for some
very interesting aspects of modern differential topology. Some of these aspects will be
discussed in later chapters.

The manifolds under consideration have various geometric features. We will concen-
trate on one aspect: they are total spaces of smooth fibre bundles. A smooth fibre
bundle is a smooth map p : E → B between smooth manifolds such that for each x ∈ B
there is an open neighbourhood U and a diffeomorphism ϕ : p−1(U) → U × F for some
smooth manifold F with p|p−1(U) = p1ϕ. Such a ϕ is called a local trivialization. For a
point x ∈ B we call Ex := p−1(x) the fibre over x.

We begin with some bundles over S2 with fibre S1. Let k be an integer. Decompose
S2 as D2 ∪S1 D2 and define

Lk := D2 × S1 ∪fk
D2 × S1

where fk : S1×S1 → S1×S1 is the diffeomorphism mapping (z1, z2) to (z1, z
k
1z2). Here we

consider S1 as a subgroup of C∗. The map is a diffeomorphism since (z1, z2) 7→ (z1, z
−k
1 z2)

is an inverse map. Lk is equipped with a smooth structure. It is called a lens space. Is
it orientable? This is easily seen without deeper consideration for the following reason.
Since S1 ×S1 = ∂(D2 ×S1) is connected, f is either orientation preserving or orientation
reversing (by continuity of the orientation and of dfx the orientation behaviour cannot
jump). If it were orientation reversing, we are done by orienting both copies of D2×S1 in
D2 × S1 ∪f D

2 × S1 equally. If it is orientation preserving, we are also done by orienting
the second copy of D2 × S1 in D2 × S1 ∪f D

2 × S1 opposite to the first one, making f
artificially orientation reversing.

Of course, by computing d(fk)x in our example we can decide if fk is orientation
preserving. For this consider S1 × S1 as a submanifold of C∗ × C∗ and extend fk to the
map given by the same expression on C∗ × C∗. Then (dfk)(z1,z2) is given by the complex
Jacobi matrix 



1 0

kzk−1
1 z2 zk

1
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To obtain the map on T(z1,z2)(S
1×S1) we have to restrict this map to z⊥1 ×z⊥2 = T(z1,z2)(S

1×
S1). We give a basis of T(z1,z2)(S

1 × S1) by (iz1, 0) and (0, iz2) and use this basis as our
standard orientation. We have to compare the orientation given by d(fk)(z1,z2)(iz1, 0)
and d(fk)(z1,z2)(0, iz2) at the point fk(z1, z2) = (z1, z

k
1z2) with that given by (iz1, 0) and

(0, izk
1z2). But d(fk)(z1,z2)(iz1, 0) = (iz1, kiz

k
1z2) and d(fk)(z1,z2)(0, iz2) = (0, izk

1z2). The
base change matrix is

(
1 0
k 1

)

and it has a positive determinant. Thus fk is orientation preserving and to orient Lk we
have to consider it as D2 ×S1 ∪fk

−D2 ×S1. From now on, we consider Lk as an oriented
3-manifold with this orientation.

As mentioned above, there are different natural descriptions of lens spaces. Although
we don’t need this, we give another description of Lk for k > 0. For this we con-
sider the 3-sphere S3 as subspace of C2. The group of k-th roots of unity in S1 is
Gk = {z ∈ S1|zk = 1}. We consider the space S3/Gk

:= S3/∼ , where v ∼ w if and only
if there is z ∈ Gk such that zv = w. For example, S3/G2 is the projective space RP3. It
is not difficult to identify S3/Gk

with Lk. As a hint one should start with the case k = 1
and identify S3 = S3/G1 with L1. Once this is achieved, one can use this information to
solve the case k > 1.

We consider the map p : Lk → S2 = D2 ∪ −D2 mapping (z1, z2) ∈ D2 × S1 to z1
and (z1, z2) ∈ −D2 × S1 to z1. This is obviously well defined and by construction of
the smooth structures on Lk and on D2 ∪ −D2 = S2 it is a smooth map. Actually, by
construction p : Lk → S2 is a smooth fibre bundle.

We want to classify the manifolds Lk up to diffeomorphism. For this we first compute
the homology groups. We prepare this by some general considerations. As above, consider
two smooth c-manifolds W1 and W2 and a diffeomorphism f : ∂W1 → ∂W2. Then consider
the open covering of W1 ∪f W2 given by the union of W1 and the collar of ∂W2 in W2,
denoted by U , and of W2 and the collar of ∂W1 in W1, denoted by V . Obviously, the
inclusions from W1 to U and from W2 to V as well as from ∂W1 to U ∩ V are homotopy
equivalences. With this information we consider the Mayer-Vietoris sequence and replace
the homology group of U , V and U ∩ V by the isomorphic homology group of W1, W2

and ∂W1:

· · · → Hk(∂W1) → Hk(W1) ⊕ Hk(W2) → Hk(W1 ∪f W2)
d→ Hk−1(∂W1) → · · ·

where the map from Hk(W1) ⊕ Hk(W2) to Hk(W1 ∪W2) is the difference of the maps
induced by inclusions. The map from Hk(∂W1) to Hk(W1) is (j1)∗, where j1 is the inclu-
sion from ∂W1 to W1, and the map from Hk(∂W1) to Hk(W2) is (j2)∗f∗, where j2 is the
inclusion from ∂W2 to W2.

Applying this to Lk implies that Hr(Lk) = 0 for r > 3 and we have an isomorphism

H3(Lk)
d→ H2(S

1 × S1) ∼= Z. Since the fundamental class [Lk] ∈ H3(Lk) is a primitive
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element, we conclude
H3(Lk) = Z[Lk],

the free abelian group of rank 1 generated by the fundamental class[Lk]. The computation
of H2 and H1 is given by the exact sequence:

0 → H2(Lk) → H1(S
1 × S1) → H1(S

1) ⊕ H1(S
1) → H1(Lk) → 0

in which the map from H1(S
1 × S1) to the first component is (p2)∗, where p2 is the

projection onto the second factor, and the map from H1(S
1 × S1) to the second compo-

nent is (p2)∗(fk)∗. By the Künneth Theorem 10.3 we have seen that H1(S
1 × S1) =

Z[S1, i1] ⊕ Z[S1, i2], where i1(z) = (z, 1) and i2(z) = (1, z). If α is an element of
H1(S

1 × S1), the coefficients of α with respect to the basis [S1, i1] and [S1, i2] are
(p1)∗(α) ∈ H1(S

1) = Z and (p2)∗(α) ∈ H1(S
1) = Z.

Thus
(fk)∗[S

1, i1] = deg(p1fki1)[S
1, i1] + deg(p2fki1)[S

1, i2]

and
(fk)∗[S

1, i2] = deg(p1fki2)[S
1, i1] + deg(p2fki2)[S

1, i2]

From Proposition 8.4 we know the corresponding degrees and conclude that with
respect to the basis [S1, i1] and [S1, i2] of H1(S

1 × S1) the map (fk)∗ is given by
(

1 0
k 1

)

With this information the exact sequence above gives

0 → H2(Lk) → Z ⊕ Z → Z ⊕ Z → H1(Lk) → 0,

where the map Z ⊕ Z → Z ⊕ Z is given by the matrix
(

0 1
k 1

)

The kernel of this linear map is 0 and the cokernel Z/|k|Z. Thus we have shown that
H2(Lk) = 0 and H1(Lk) ∼= Z/|k|Z generated by the inclusions of the fibres into Lk:

Proposition 11.1. The homology of Lk is

Hr(Lk) ∼=







0 r > 3, r = 2
Z r = 0, 3
Z/|k|Z r = 1

where H1(Lk) is generated by [S1, j] and j : S1 → D2 × S1 ⊂ Lk maps z to (0, z).

As a consequence, |k| is an invariant of the homeomorphism type or even the homotopy
type of Lk. On the other hand, conjugation on the fibres S1 induces a diffeomorphism
from Lk to L−k. Thus we conclude

Proposition 11.2. Lk is diffeomorphic to Lq if and only if |k| = |q|.
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2. Milnor manifolds

Now, we generalize our construction by passing from the complex numbers to the
quaternions H. Recall that H is the skew field which as abelian group is R4 with basis
1, i, j, k and multiplication defined by the relations i2 = j2 = k2 = −1 and ij = −ji, ik =
−ki, jk = −kj and ij = k, jk = i, ki = j. It is useful to consider H as C × C with
1 = (1, 0), i = (i, 0), j = (0, 1) and k = (0, i). Then the multiplication is given by the
formula

(z1, z2) · (y1, y2) = (z1y1 − ȳ2z2, y2z1 + z2ȳ1)

The unit vectors S3 = {(z1, z2)|z1z̄1 + z2z̄2 = 1} form a multiplicative subgroup. In
contrast to S1 ⊂ C, this subgroup is not commutative. This is the reason why we have
more possibilities if we generalize our construction of Lk to quaternions.

Let k, l be integers. Then we define a diffeomorphism

fk,l : S3 × S3 −→ S3 × S3

(x, y) 7−→ (x, xkyxl)

and denote
Mk,l := D4 × S3 ∪fk,l

−D4 × S3

Here, as in the case of lens spaces, one can show that fk,l is orientation preserving, and
thus one has to take the opposite orientation on the second copy of D4 × S3 to orient
Mk,l in a consistent way. As for lens spaces the projection onto D4 ∪−D4 gives a smooth
fibre bundle p : Mk,l → S4. We call these manifolds Milnor manifolds, since they were
investigated by Milnor in his famous paper ”On manifolds homeomorphic to the 7-sphere”
[Mi 1].

We can compute Hr(Mk,l) in the same way as Hr(Lk) once we know the induced map

(fk,l)∗ : H3(S
3 × S3) → H3(S

3 × S3).

To compute this, consider two maps f, g : S3 → S3. We compute the degree of

f · g : S3 −→ S3

x 7−→ f(x) · g(x)
Lemma 11.3. For continuous maps f, g : S3 → S3 the degree of f · g is

deg(f · g) = deg f + deg g

Proof: Consider the diagonal map △ : S3 → S3 × S3 mapping x → (x, x). The
induced map in homology maps the fundamental class [S3] to [S3, i1] + [S3, i2], where
i1(q) = (q, 1) and i2(q) = (1, q). The map S3 × S3 → S3 mapping (q1, q2) to f(q1) · g(q2)
induces a map in homology mapping [S3, i1] to deg f · [S3] and [S3, i2] to deg g · [S3]
(why?). Thus deg f · g = deg f + deg g.
q.e.d.
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With this information one concludes that, with respect to the basis [S3, i1] and [S3, i2]
of H3(S

3 × S3), the induced map of fk,l on H3(S
3 × S3) is given by the matrix

(
1 0

k + l 1

)

From this, as in the case of Lk, one can compute the homology of Mk,l and obtains

Proposition 11.4. Hr(Mk,l) = 0 for r > 7, r = 1, 2, 5, 6;
H0(Mk,l) = Z

H7(Mk,l) = Z · [Mk,l]
H3(Mk,l) ∼= Z/|k + l| · Z

H4(Mk,l) =

{
Z k + l = 0
0 else

Thus |k + l| is an invariant of the homotopy type. In contrast to Lk, this is not
enough to distinguish the manifolds Mk,l. In the next chapters we will develop various
techniques of general interest which all have some implications for the manifolds Mk,l.
Thus, these manifolds serve in a wonderful way as motivating examples for theories of
high importance.





CHAPTER 12

Singular cohomology and Poincaré duality

1. Singular cohomology groups

Prerequisites: We assume that the reader knows what a smooth vector bundle is [B-J], [Hi].

In this chapter we consider another bordism group of stratifolds which at the first
glance looks like singular homology. It is only defined for smooth manifolds (without
boundary). Similar groups were first introduced by Quillen [Q] and Dold [D]. They con-
sider bordism classes of smooth manifolds instead of stratifolds.

The main difference between the new groups and singular homology is that we consider
bordism classes of non-compact stratifolds. To obtain something non-trivial we require
that the map g : T → M is a proper map. We recall that a map between paracompact
spaces is proper if the preimage of each compact space is compact. A second difference
is that we only consider smooth maps. For simplicity we only define these bordism groups
for oriented manifolds. (Each m-dimensional manifold is in a canonical way homotopy
equivalent to a m+1-dimensional oriented manifold, the total space of the so called orien-
tation line bundle, so that one can extend the definition to non-oriented manifolds using
this trick.)

Definition: Let M be an oriented smooth m-dimensional manifold without boundary.
Then we define the integral cohomology group Hk(M) as the group of bordism classes
of proper smooth maps g : S →M , where S is an oriented regular stratifold of dimension
m − k (of course we require also for bordisms that the maps are proper and smooth and
the stratifolds are oriented and regular).

Concerning the notation we have denoted cohomology groups by the letter Hk(M)
and not Hk(M), which seems to be more natural in analogy with the letter we used for
homology groups. The reason is that our cohomology groups agree with ordinary singular
cohomology groups of smooth manifolds (which are always denoted by Hk(M)) whereas
our homology groups Hk(X) are in general different from the singular homology groups
Hk(X) (but equal for nice spaces like manifolds and CW -complexes). For this compare
the discussion in §20.

The reader might wonder, why we required that M is oriented. The definition seems
to work without this condition. This will become clear when we define induced maps.
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Then we will better understand the relation between Hk(M) and Hk(−M), where we
change the orientation of M .

As for homology groups the sum is given by disjoint union and the inverse of [S, g] is
represented by (−S, g). The relation between the grade k of Hk(M) and the dimension
m − k of representatives of the bordism classes looks strange but we will see that it is
natural for various reasons.

If M is a point then g : S → pt is proper if and only if S is compact. Thus

Hk(pt) = H−k(pt) ∼= Z, if k = 0, and 0 if k 6= 0.

To get a first feeling for cohomology classes, we consider the following situation. Let
p : E → N be a k-dimensional smooth oriented vector bundle over an n-dimensional
oriented smooth manifold. Then the total space E is a smooth (k + n)-dimensional
manifold. The 0-section s : N → E is a proper map since s(N) is a closed subspace.
Thus

[N, s] ∈ Hk(E)

is a cohomology class. This is the most important example we have in mind and will
play an essential role when we define characteristic classes. A special case is given by a
0-dimensional vector bundle where E = N and p = Id. Thus we have for each smooth
oriented manifold N the class [N, Id] ∈ H0(N), which we call 1 ∈ H0(N). Later we will
define a multiplication on the cohomology groups and it will turn out that multiplication
with [N, id] is the identity, justifying the notation.

Is the class [N, s] non-trivial? We will see that it is often non-trivial but it is zero if E
admits a no-where vanishing section v : N → E. Namely then we obtain a zero bordism
by taking the smooth manifold N × [0,∞) and the map G : N × [0,∞) → E mapping
(x, t) 7→ tv(x). The fact that v is no-where vanishing implies that G is a proper map.
Thus we have shown

Proposition 12.1. Let p : E → N be a smooth oriented k-dimensional vector bundle
over a smooth oriented manifold N . If E has a no-where vanishing section v then [N, s] ∈
Hk(E) vanishes.

In particular, if [N, s] is non-trivial, then E does not admit a no-where vanishing sec-
tion.

In the following considerations and constructions it is helpful for the reader to look at
the cohomology class [N, s] ∈ Hk(E) and test the situation with this class.
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2. Poincaré duality

Cohomology groups are, as indicated for example in Proposition 12.1, a useful tool.
To apply this tool one has to find methods for their computation. We will do this in two
completely different ways. The fact that they are so different is very useful since one can
combine the information to obtain very surprising results like the vanishing of the Euler
characteristic of odd-dimensional compact smooth manifolds.

The first tool, the famous Poincaré duality isomorphism, only works for compact ori-
ented manifolds and relates their cohomology groups to the homology groups. Whereas
in the classical approach to (co)homology the duality theorem is difficult to prove it is
almost trivial in our context. The second tool is the Kronecker isomorphism which relates
the cohomology groups to the dual space of the homology groups. This will be explained
in a later chapter.

Let M be a compact oriented smooth m-dimensional manifold. (Here we recall that
if we use the term manifold, then it is automatically without boundary; manifolds with
boundary are in this book always c-manifolds. Thus a compact manifold is what in the
literature is often called a closed manifold, a compact manifold without boundary.) If
M is compact and f : S → M is a proper map, then S is actually compact. Thus we
obtain a homomorphism

P : Hk(M) → Hm−k(M)

which assigns to [S, g] ∈ Hk(M) the class [S, g] considered as element of Hm−k(M). Here
we only ”forget” that the map g is smooth and consider it as continuous map.

Theorem 12.2. (Poincaré duality): For a closed smooth oriented manifold M the
map

P : Hk(M) → Hm−k(M)

is an isomorphism

Proof: For the proof we apply the following useful approximation result for continuous
maps from a stratifold to a smooth manifold. It is another nice application of partition
of unity.

Proposition 12.3. Let f : S → N be a continuous map, which in an open neighbour-
hood of a closed subset A ⊂ S is smooth. Then there is a smooth map g : S → N which
on A agrees with f and which is homotopic to f rel. A.

Proof The proof is the same as for a map from a smooth manifold M to N in ([B-J]
Satz 14.8). More precisely there it is proved that if we embed N as closed subspace into
an Euclidean space Rn then we can find a smooth map g arbitrary close to f . The proof
only uses for M smooth partition of unity. Finally arbitrary close maps are homotopic
by ([B-J] Satz 12.9).
q.e.d.

As a consequence we obtain a similar result for c-stratifolds.
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Proposition 12.4. Let f : T →M be a continuous map from a smooth c-stratifold T
to a smooth manifold M , whose restriction to ∂T is a smooth map. Then f is homotopic
relative boundary to a smooth map.

The proof follows from 12.3 using as subset A an appropriate closed subset in the

collar of
◦

T.

We apply this result to finish our proof. If g : S → M represents an element of
Hm−k(M) we can apply Proposition 12.3 to replace g by a homotopic smooth map g′

and so [S, g] = P ([S, g′]). This gives surjectivity of P . Similarly we use the relative
version 12.4 to show injectivity. Namely if for [S1, g1] and [S2, g2] in Hk(M) we have
P ([S1, g1]) = P ([S2, g2]) there is a bordism (T, G) between these two pairs, where G is a
continuous map whose restriction to the boundary is smooth. We apply Proposition 12.4
to replace G by a smooth map G′ which on the boundary agrees with the restriction of
G. Thus [S1, g1] = [S2, g2] ∈ Hk(M) and P is injective.
q.e.d.

In analogy to integral cohomology groups by considering bordism classes of proper
maps on oriented regular stratifolds we can define Z/2-cohomology groups of arbitrary
(non-oriented) smooth manifolds. The only difference is that we replace oriented regular
stratifolds by Z/2-oriented regular stratifolds which means that Sn−1 = ∅ and no condi-
tion on the orientability of the top stratum. The corresponding cohomology groups are
denoted:

Hk(M ; Z/2)

The proof of Poincaré duality works the same way for Z/2-(co)homology:

Theorem 12.5. (Poincaré duality for Z/2-(co)homology): For a closed smooth
oriented manifold M the map

P : Hk(M ; Z/2) → Hm−k(M ; Z/2)

is an isomorphism

As mentioned above, we want to provide other methods for computing the cohomology
groups. They are based on the same ideas as used for computing homology groups, namely
to show that the cohomology groups fulfil axioms similar to the axioms of homology
groups. One of the applications of these axioms will be an isomorphism between Hk(M)⊗
Q and Hom(Hk(M),Q) and an isomorphism Hk(M ; Z/2) ∼= Hom(Hk(M ; Z/2),Z/2). The
occurrence of the dual spaces Hom(Hk(M),Q) and Hom(Hk(M ; Z/2),Z/2) indicates a
difference between the fundamental properties of homology and cohomology. The induced
maps occurring should reverse their directions. We will see that this is the case.
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3. The Mayer-Vietoris sequence

One of the most powerful tools for computing cohomology groups is, as for homology,
the Mayer-Vietoris sequence. To formulate it we have to define for an open subset U of a
smooth oriented manifold M the map induced by the inclusion i : U → M . We equip U
with the orientation induced from M . If g : S → M is a smooth proper map we consider
the open subset g−1(U) ⊂ S and restrict g to this open subset. It is again a proper map
(why ?) and thus we define

i∗[S, g] := [g−1(U), g|g−1(U)]

This is obviously well defined and a homomorphism i∗ : Hk(M) → Hk(U). This map
reverses the direction of the arrows, as was motivated above. If V is an open subset of U
and j : V → U is the inclusion, then by construction

j∗i∗ = (ij)∗.

The next ingredient for the formulation of the Mayer-Vietoris sequence is the boundary
operator. We consider open subsets U and V in a smooth oriented manifold M , denote
U ∪ V by X and define the boundary operator

δ : Hk(U ∩ V ) → Hk+1(U ∪ V )

as follows. We introduce the disjoint closed subsets A := X − V and B := X − U .
We choose a smooth map ρ : U ∪ V → R mapping A to 1 and B to −1. Now we
consider [S, f ] ∈ Hk(U ∩ V ). Let s ∈ (−1, 1) be a regular value of ρf . The preimage
D := (ρf)−1(s) is an oriented regular stratifold of dimension n−1 sitting in S. We define
δ([S, f ]) := [D, f |D] ∈ Hk+1(X). It is easy to check that f |D is proper.

ρ-1 (t)

RI

ρ

t

V

U

Similarly as in the definition of the boundary map for the Mayer-Vietoris sequence in
homology one shows that δ is well defined and that one obtains an exact sequence. For
details we refer to Appendix B.

At the first glance this definition of the boundary operator looks strange since f(D)
is contained in U ∩ V . But considered as class in the cohomology of U ∩ V it is trivial. It
is even zero in Hk+1(U) as well as in Hk+1(V ). The reason is that in the construction of
δ we can decompose S as S+ ∪D S− with ρ(S+) ≥ s and ρ(S−) ≤ s (as for the boundary
operator in homology we can assume up to bordism that there is a bicollar along D).
Then (S−, f |S−) is a zero bordism of (D, f |D) in U (note that f |S− is proper as map
into U and not into V ). Similarly (S+, f |S+) is a zero bordism of (D, f |D) in V . But in
Hk+1(U ∪ V ) it is in general non-trivial.
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We summarize:

Theorem 12.6. (Mayer-Vietoris sequence for integral cohomology): The fol-
lowing sequence is exact and commutes with induced maps

· · · → Hn(U ∪ V ) → Hn(U) ⊕ Hn(V ) → Hn(U ∩ V )
δ−→ Hn+1(U ∪ V ) → · · ·

The map from Hn(U ∪ V ) to Hn(U) ⊕Hn(V ) is given by α 7→ (j∗U(α), j∗V (α)), the map
from Hn(U) ⊕Hn(V ) to Hn(U ∩ V ) by (α, β) 7→ i∗U(α) − i∗V (β)



CHAPTER 13

Induced maps and the cohomology axioms

Prerequisites: In this chapter we apply one of the most powerful tools from differential topology, namely transversality.

The necessary information can be found in [B-J], [Hi].

1. Transversality for stratifolds

We recall the basic definitions and results concerning transversality of manifolds.
Let M , P and Q be smooth manifolds of dimensions m, p and q, and f : P → M
and g : Q → M be smooth maps. Then we say that f is transversal to g if for all
x ∈ P and y ∈ Q with f(x) = g(y) = z we have df(TxP ) + dg(TyQ) = TzM . If
g : Q → M is the inclusion of a point z in M then this condition means that z is
a regular value of f . It is useful to note that the transversality condition is equiva-
lent to the property that f × g : P × Q → M × M is transversal to the diagonal
∆ = {(x, x)} ⊂ M × M . Similar as for preimages of regular values one proves that
(P, f) ⋔ (Q, g) := {(x, y) ∈ (P × Q) | f(x) = g(y)} is a smooth submanifold of P × Q
dimension p+ q −m [B-J], [Hi].

If all three manifolds are oriented then there is a canonical orientation on (P, f) ⋔

(Q, g). To define this we firstly consider the case, where g is an embedding. In this case
we consider the normal bundle of g(Q) and orient it in such a way that the juxtaposition
of the orientations of TQ and the normal bundle give the orientation of M . In turn if
an orientation of the normal bundle and of M is given we obtain an induced compatible
orientation of Q. Now we note that in this case (P, f) ⋔ (Q, g) is a submanifold of P and
the normal bundle of (P, f) ⋔ (Q, g) in P is the pull back of the normal bundle of Q in M
and we equip it with the induced orientation, i.e. the orientation such the isomorphism
between the fibres of the normal bundle induced by the differential of f is orientation
preserving. By the considerations above this orientation of the normal bundle induces an
orientation on (P, f) ⋔ (Q, g). If g is not an embedding we choose an embedding of Q into
RN (equipped with the canonical orientation) for some integer N and thicken M and P
replacing them by M ×RN and P ×RN and replace f by f × id. The map given by g on
the first component and by the embedding to Rn on the second gives an embedding of Q
into M ×RN and f × id is transversal to this embedding and the preimage is canonically
diffeomorphic to (P, f) ⋔ (Q, g). Thus the construction above gives an orientation on
(P, f) ⋔ (Q, g). This orientation does not depend on the choice of N and the embedding
to RN , since any two such embeddings are isotopic if we make N large enough by sta-
bilization passing from RN to RN+1. This definition of an induced orientation has the

87
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useful property that if f ′ : P ′ → P is another smooth map transversal to (P, f) ⋔ (Q, g),
then the induced orientations on (P ′, f ′) ⋔ ((P ′, f) ⋔ (Q, g)) and (P ′, ff ′) ⋔ (Q, g) agree.

To shorten notation we often write f ⋔ g instead of (P, f) ⋔ (Q, g). If M , P and Q
are oriented we mean this manifold with the induced orientation.

If we replace P by a smooth c-manifold with boundary and f is a smooth map transver-
sal to g as well as f |∂P transversal to g, then (P, f) ⋔ (Q, g) := {(x, y) ∈ (P ×Q) | f(x) =
g(y)} is a smooth c-manifold of dimension p+ q−m with boundary f |∂P ⋔ g. We obtain
a similar statement if instead of admitting a boundary for P we replace Q by a c-manifold
with boundary and require that f is transversal to the smooth c-map g as well as f
transversal to g|∂Q.

The transversality theorem states that if f : P −→ M and g : Q −→ M are smooth
maps then f is homotopic to f ′ such that f ′ is transversal to g [B-J], [Hi]. More generally,
if A ⊂ P is a closed subset and for some open neighbourhood U of A the maps f |U and
g are transversal, then f is homotopic rel. A (i.e. the homotopy maps (x, t) ∈ A× T to
f(x)) to f ′ such that f ′ is transversal to g.

The same argument implies the following statement:

Theorem 13.1. Let f : P −→ M and g1 : Q1 −→ M, . . . , gr : Qr −→ M be smooth
maps such that for some closed subset A ⊂ P and open neighbourhood U of A the maps
f |U and gi are transversal for i = 1, . . . , r. Then f is rel. A homotopic to f ′ such that f ′

is transversal to gi for all i.

We want to generalize this argument to maps f : P −→ M , where P is as before a
smooth manifold, and g : S −→ M is a morphism from a stratifold to M . We say that
f is transversal to g if and only if f is transversal to restrictions of g to all strata. If f
is transversal to g, then we obtain a stratifold denoted by g ⋔ f whose underlying space
is {(x, y) ∈ S × P |f(x) = g(y)}. The algebra is given by C(g ⋔ f), the restriction of
the functions in S × P to this space. The argument for showing that this is a stratifold
is the same as for the special case of the preimage of a regular value (Proposition 2.5).
The strata of g ⋔ f are g|Si ⋔ f . The dimension of g ⋔ f is dimP + dimS − dimM .
If S is a regular stratifold, then g ⋔ f is regular, the isomorphisms of appropriate local
neighborhoods of the strata with a product are given by restrictions of the corresponding
isomorphisms for S× P .

As a consequence of the transversality theorem for manifolds we see:

Theorem 13.2. Let f : P −→ M be a smooth map from a smooth manifold P to M
and g : S −→ M be a morphism from a stratifold S to M . Let A be a closed subset of P
and U an open neighbourhood such that f |U is transversal to g. Then f is homotopic rel.
A to f ′ such that f ′ is transversal to g.
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Proof: We simply apply Theorem 13.1 to replace f by f ′ (homotopic to f rel. A)
such that f ′ is transversal to all h|Si .
q.e.d.

2. The induced maps

We return to our construction of singular cohomology and define the induced maps.
Let f : N →M be a smooth map between oriented manifolds and [S, g] be an element of
Hk(M). Then we replace f by a homotopic map f ′ : N →M which is transversal to g and
consider f ′ ⋔ g. This is a regular stratifold of dimension n+dimS−m = n+m−k−m =
n − k. The stratum of dimension n − k − 1 is empty. The projection to N gives a map
g′ : g ⋔ f ′ → N . This is a proper map (why?). The orientations of M , N and S induce an
orientation of f ′ ⋔ g, as explained above. This is the place where we used the ori-
entation of the manifold M . Thus the pair (g ⋔ f ′, g′) represents an element of Hk(N).

Using theorem 13.2 we see that the bordism class of (g ⋔ f ′, g′) is unchanged if we
choose another map f ′

1 homotopic to f and transversal to g. Namely then f ′ and f ′
1 are

homotopic. We can assume that this homotopy is a smooth map, and that there is an
ǫ > 0 s.t. h(x, t) = f ′(x) for t < ǫ and h(x, t) = f ′

1(x) for t > 1 − ǫ (such a homotopy
is often called a technical homotopy). By Theorem 13.2 we can further assume that this
homotopy h is transversal to g. Then (g ⋔ h, g′) is a bordism between (g ⋔ f ′, g′) and
(g ⋔ f ′

1, g
′).

For later use (Proof of Proposition 13.5) we note that this argument implies that the
induced map is a homotopy invariant.

Next we show that if (S1, g1) and (S2, g2) are bordant, then (g1 ⋔ f ′, g′1) is bordant to
(g2 ⋔ f ′, g′2), where f ′ is homotopic to f and transversal to g1 and to g2 simultaneously
(by the argument above we are free in the choice of the map which is transversal to a
given bordism class). Let (T, G) be a bordism between (S1, g1) and (S2, g2). Then using
again the fact that we are free in the choice of f ′ we assume that f ′ is also transversal to
G. Then (G ⋔ f ′, G′) is a bordism between (g1 ⋔ f ′, g′1) and (g2 ⋔ f ′, g′2). Thus we obtain
a well defined induced map

f ∗ : Hk(M) → Hk(N)

mapping

[S, g] 7→ [g ⋔ f ′, g′]

where f ′ is transversal to g and g′ is the restriction of the projection onto N . This con-
struction respects disjoint unions and so we have defined the induced homomorphism
in cohomology for a smooth map f : N → M . As announced above this induced map
in cohomology reverses its direction. By construction this definition agrees for inclusions
with the previous definition used in the formulation of the Mayer-Vietoris sequence. Here
one has to be careful with the orientation and we suggest that the reader checks that the
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conventions lead to the same definition.

The following is a useful special case for induced maps. Let f : N →M be an orienta-
tion preserving diffeomorphism. Then by construction f ∗([S, g]) = [S, f−1g]. If f reverses
the orientation then f ∗([S, g]) = −[S, f−1g]. In particular if we consider as f the identity
map from M to −M equipped with opposite orientation, we see that f ∗ = −id. (One
should in this context not write id for the identity map, whose name in the oriented world
should be reserved for the identity map from M to M , where both are equipped with the
same orientation.)

If M and N are not oriented the same construction gives us an induced map

f ∗ : Hk(M ; Z/2) → Hk(N ; Z/2)

mapping
[S, g] 7→ [g ⋔ f ′, g′]

A central case of an induced map is the situation considered in the previous chapter
of a smooth oriented vector bundle p : E → N over an oriented manifold. We introduced
the cohomology class [N, s] ∈ Hk(E). We want to look at s∗([N, s]) ∈ Hk(N). To obtain
this class we have to approximate s by another map s′ which is transversal to s(N) ⊂ E
(one can actually find s′ which is again a section [B-J]). Then s′(N) ⋔ s(N) is a smooth
submanifold of s(N) = N of dimension n− k. Let i : s′(N) ⋔ s(N) → s(N) = N be the
inclusion then we obtain

s∗([N, s]) = [s′(N) ⋔ s(N), i] ∈ Hk(N)

This class is called the Euler class of E and is abbreviated as

e(E) := s∗([N, s]) = [s′(N) ⋔ s(N), i] ∈ Hk(N).

In the next chapter we will investigate this class in detail. From Proposition 12.1 we
conclude:

Proposition 13.3. Let p : E → N be a smooth oriented k-dimensional vector bundle.
If E has a no-where vanishing section v then e(E) = 0.

3. The cohomology axioms

We will now formulate and prove properties of cohomology groups which are analogous
to the axioms of a homology theory. Besides the fact that induced maps change direction
the main difference is that we only defined cohomology groups of smooth manifolds and
induced maps of smooth maps.

If f : N → M and h : P → N are smooth maps, such that f is transversal to
g : S → M , where S is a regular stratifold, and h is transversal to g′ : f ⋔ g → N , then
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fh : P → M is transversal to g : S → M and fh ⋔ g = h ⋔ g′ (with induced orientations
as explained at the beginning of this chapter). This implies the following:

Proposition 13.4. Let f1 : M1 →M2 and f2 : M2 → M3 be smooth maps. Then

f ∗
1 f

∗
2 = (f2f1)

∗

Furthermore by definition:
id∗ = id

Here we stress again, that we reserved the name id for the identity map from M to
M , both equipped with the same orientation!

Up to change of direction these are the properties of a functor assigning to a smooth
manifold an abelian group and to a smooth map a homomorphism between these groups re-
versing its direction. To distinguish it from a functor we call it a contravariant functor.
To make notation more symmetric, a functor is often also called a covariant functor.

To compare the Mayer-Vietoris sequence of different spaces it is useful to know that in-
duced maps commute with the boundary operator. Since the construction of the boundary
operator for cohomology is completely analogous to that for homology the same argument
implies this statement.

The property of a contravariant functor (Proposition 13.4) is—in analogy to homology—
the first fundamental property of a cohomology theory. The other two are the homotopy
axiom and the Mayer-Vietoris sequence which he have already constructed. The homo-
topy axiom was also already shown when we proved that the induced map is well defined:

Proposition 13.5. Let f : N → M and g : N → M be homotopic smooth maps.
Then

f ∗ = g∗ : Hk(M) → Hk(M)

A contravariant functor hk(M) assigning to each smooth manifold abelian groups and
to each smooth map an induced map such that the statements of Theorems 12.6, 13.4,
13.5 hold and where the boundary operator in the Mayer-Vietoris sequence commutes
with induced maps, is called a cohomology theory for smooth manifolds and smooth
maps. Thus singular cohomology is a cohomology theory.

As for homology one can use the cohomology axioms to compute the cohomology
groups for many spaces like for example the spheres and complex projective spaces. For
compact oriented manifolds without boundary one can use Poincaré duality and reduce
it to the computation of homology groups.





CHAPTER 14

Products in cohomology and the Kronecker isomorphism

1. The ×-product and the Künneth theorem

So far the basic structure of cohomology is completely analogous to that of homology.
The essential difference so far is the change of the direction of the maps between coho-
mology groups. We will in this chapter introduce a new structure called the cup product.

It is derived from the ×-product which is defined as the ×-product in homology. Let
M and N be smooth oriented manifolds of dimension m and n respectively. If [S1, g1] ∈
Hk(M) and [S2, g2] ∈ Hr(N) we define

[S1, g1] × [S2, g2] := (−1)nk[S1 × S2, g1 × g2] ∈ Hk+r(M ×N).

The sign looks strange at the first glance but it is needed to give a comfortable expression
when interchanging the factors, as we will discuss in the next paragraph. As in homology
the ×-product

× : Hk(M) ×Hr(N) → Hk+r(M ×N)

is a bilinear and associative map. In the same way one defines the ×-product for Z/2-
cohomology (of course one can omit there the signs):

× : Hk(M ; Z/2) ×Hr(N ; Z/2) → Hk+r(M ×N ; Z/2)

As announced we study the behavior of the ×-product under a change of the factors.
For this we consider the flip diffeomorphism τ : N × M → M × N mapping (x, y) to
(y, x), where M and N are m-resp. n-dimensional oriented manifolds. Then τ changes the
orientation by (−1)mn. Thus by the interpretation of induced map for diffeomorphisms,
if [S, f ] ∈ Hk(M) and [S′, f ′] ∈ Hr(N), then

τ ∗([S× S′, f × f ′]) = (−1)mm′

[S × S′, τ−1(f × f ′)].

To compare this with [S′ × S, f ′ × f ] we consider the flip map τ ′ from S × S′ to S′ × S
and note that τ−1(f × f ′) = (f ′ × f)τ ′. Since τ ′ changes the orientation by the factor
(−1)dimSdimS′

= (−1)(m−k)(n−r), we conclude that

τ ∗([S×S′, f×f ′]) = (−1)mn(−1)(m−k)(n−r)[S′×S, (f ′×f)] = (−1)mr+nk+kr[S′×S, (f ′×f)].

Now we combine these signs with the sign occurring in the definition of the ×-product to
obtain:

τ∗([S, f ]×[S′, f ′]) = τ∗((−1)nk([S×S
′, f×f ′]) = (−1)mr+kr[S′×S, (f ′×f)] = (−1)kr[S′, f ′]×[S, f ].

93
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Thus we have the equality

τ ∗([S, f ] × [S′, f ′]) = (−1)kr([S′, f ′] × [S, f ])

The × product is a very useful tool. For example—as for homology—the ×-product
is used in a Künneth theorem for rational cohomology and for Z/2-cohomology. Here
we define the rational cohomology groups Hk(M ; Q) := Hk(M) ⊗ Q. By elementary
algebraic considerations similar to the arguments for rational homology groups one shows
that rational cohomology fulfils the axioms of a cohomology theory. The proof of the
Künneth Theorem would be the same as for homology if we had a comparison theorem
like Corollary 9.4. The proof of Corollary 9.4 used the fact that homology groups are
compactly supported. This is not the case for cohomology groups. But the inductive
proof of Corollary 9.4 based on the 5-Lemma goes through in cohomology if we can cover
M by finitely many open subsets Ui such that we know that the natural transformation
is an isomorphism for all finite intersections of these subsets. This leads to the concept
of a good atlas of a smooth manifolds M . This is an atlas ϕi : Ui → Vi such that all
finite intersections of the Ui are diffeomorphic to Rm. But Rm is homotopy equivalent to a
point and, if we assume that for a point we have an isomorphism between the cohomology
theories, the induction argument for the proof of Corollary 9.4 works for cohomology, if
M has a finite good atlas:

Proposition 14.1. Let M be a smooth oriented manifold admitting a finite good atlas.
Let h and h′ be cohomology theories and τ : h→ h′ be a natural transformation which for
a point is an isomorphism in all degrees. Then τ : hk(M) → (h′)k(M) is an isomorphism
for all k.

One can show that all smooth manifolds admit a good atlas (compare [B-T]). In
particular all compact manifolds admit a finite good atlas.

If we combine Proposition 14.1 with the argument for the Künneth isomorphism in
homology we obtain:

Theorem 14.2. (Künneth Theorem for cohomology): Let M be a smooth
oriented manifold admitting a finite good atlas. Then for F equal to Z/2 or equal to Q

the ×-product induces for each smooth oriented manifold N an isomorphism

× : ⊕i+j=kH
i(M ;F ) ⊗F H

j(N ;F ) → Hk(M ×N ;F )

If all cohomology groups of N are torsion free and finitely generated, then the same holds
for integral cohomology.

2. The cup-product

The following construction with the ×-product is the main difference between homol-
ogy and cohomology, since it can only be carried out for cohomology. Let ∆ : M →M×M
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be the diagonal map x 7→ (x, x). Then we define the cup product as follows

∪ : Hk(M) ×Hr(M) → Hk+r(M)

([S1, g1], [S2, g2]) 7→ ∆∗([S1, g1] × [S2, g2]).

The properties of the ×-product imply that the cup product is bilinear and associative.

In addition it has the following property which one often calls graded commutative:

[S1, g1] ∪ [S2, g2] = (−1)kr[S2, g2] ∪ [S1, g1].

This follows from the behavior of the × product under the flip map τ shown above to-
gether with the fact that τ∆ = ∆.

There is also a neutral element, namely the cohomology class [M, Id] ∈ H0(M). To
see this we consider [S, g] ∈ Hk(M). Then [M, Id]× [S, g] = [M×S, Id×g]. To determine
∆∗([M×S, Id×g]) we note that Id×g is transversal to ∆ and so ∆∗([M×S, Id×g]) = [S, g],
i.e. [M, Id] is a neutral element. This property justifies our previous notation:

1 := [M, Id] ∈ H0(M)

and we have

1 ∪ [S, g] = [S, g].

Similarly, one shows

[S, g] ∪ 1 = [S, g].

Furthermore we note that

f ∗([S1, g1] ∪ [S2, g2]) = f ∗([S1, g1]) ∪ f ∗([S2, g2]),

i.e. the cup product commutes with induced maps.

For the computation of the ∪-product the following is a useful observation. Let M
be an oriented manifold and suppose that [N1, g1] ∈ Hk(M) and [N2, g2] ∈ Hr(M) are
cohomology classes with Ni smooth manifolds. Then we can obtain the cup product by
considering as before g := g1 × g2. But instead of making the diagonal transversal to g
and then taking the transversal intersection we can keep the diagonal ∆ unchanged, ap-
proximate g instead by a map g′ transversal to ∆ and take the transversal intersection. It
is easy to use the transversality theorem to prove the existence of a bordism between the
two cohomology classes obtained by making ∆ transversal to g or by making g transversal
to ∆. Furthermore we can interpret the latter transversal intersection as the transversal
intersection of g1 and g2, i.e. we approximate g1 by g′1 transversal to g2 and then we obtain:

Let [N1, g1] ∈ Hk(M) and [N2, g2] ∈ Hr(M) be cohomology classes with Ni smooth
manifolds such that g1 is transversal to g2. Then

[N1, g1] ∪ [N2, g2] = [g1 ⋔ g2, g1p1],
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where m = dimM .

A priory this identity is only clear up to sign and we have to show that the sign
is +. To do this it is enough to consider the case, where g1 and g2 are embeddings
and after identifying Ni with their image under gi we assume that Ni are submanifolds
of M . The orientation of N1 ∩ N2 ⊂ N1 (which with the inclusion to M represents
[g1 ⋔ g2, g1p1]) at x ∈ N1 ∩N2 is given by requiring that TxN1 = Tx(N1 ∩N2)⊕ νx(N2,M)
(where ν(N2,M) is the normal bundle of N2 in M) preserves the orientations induced
from the orientation of Ni and M . On the other hand ∆∗([N1 × N2, g1 × g2]) is repre-
sented by N1 ∩ N2 together with the inclusion to M which we identify with ∆(M). The
orientation at x ∈ N1 ∩N2 of N1 ∩N2 ⊂ M is given by requiring that the decomposition
Tx(N1∩N2)⊕νx(N1×N2,M×M) = Tx∆(M) = TxM preserves the orientation. We have to
determine the orientation of νx(N1×N2,M×M) in terms of the orientations of νx(N1,M)
and νx(N2,M). Comparing the orientations of TxN1 ⊕ νx(N1,M) ⊕ TxN2 ⊕ νx(N2,M) =
TxM ⊕ TxM and TxN1 ⊕ TxN2 ⊕ νx(N1,M) ⊕ νx(N2,M) = T(x,x)(M ×M) we see that

as oriented vector spaces νx(N1 × N2,M ×M) = (−1)(m−n1)n2νx((N1,M) ⊕ νx(N2,M).
Combining this with the identity Tx(N1 ∩N2)⊕νx(N1,M)⊕νx(N2,M) = TxM we obtain
(−1)(m−n1)n2(Tx(N1 ∩N2)⊕ νx(N1,M) ⊕ νx(N2,M)) = TxM = TxN1 ⊕ νx(N1,M). Com-
paring this with the orientation of N1 ∩N2 ⊂ N1 we conclude that (−1)(m−n1)n2(Tx(N1 ∩
N2)⊕νx(N1,M)⊕νx(N2,M) = Tx(N1∩N2)⊕νx(N2,M)⊕νx(N1,M) and so we conclude
that the orientations differ by (−1)(m−n1)n2(−1)(m−n1)(m−n2) = (−1)m(m−n1) = (−1)mk,
where k = m − n1. This is the sign we introduced when defining the ×-product and so
we have shown that the sign in the formula is correct.

For example we can use this to compute the cup product structure for the complex
projective spaces CPn. Since this is a closed oriented smooth manifold we have the
tautology H2k(CPn) = H2n−2k(CPn) which by Theorem 8.8 is Z generated by [CPn−k, i],
where i is the inclusion [z0, ..., zn−k] 7→ [z0, ..., zn−k, 0..., 0]. To compute the cup product
[CPn−k, i] ∪ [CPn−l, j] we have to replace i by a map which is transversal to j. This can
easily be done by choosing an appropriate other embedding, namely i′([z0, ..., zn−k]) :=
[0, ..., 0, z0, ..., zn−k]. This is the same homology class since the inclusions are homotopic.
The map i′ is transversal to j and so the cup product is represented by [i′(CPn−k) ∩
j(CPn−l), s], where s is again the inclusion. The intersection is CPn−k−l and the map is
up to a permutation the standard embedding. We conclude

[CPn−k, i] ∪ [CPn−l, i] = [CPn−k−l, i]

As a consequence we look at x := [CPn−1, i] ∈ H2(CPn) and conclude:

xr = [CPn−r, i] ∈ H2r(CPn),

where xr stands for the r-fold cup product. In particular xn = [CP0, i], the canonical
generator of H2n(CPn).
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It is useful to collect all cohomology groups into a direct sum and denote it by

H∗(M) := ⊕kH
k(M)

The cup product induces a ring structure on this:

(
∑

i

αi)(
∑

j

βj) :=
∑

k

(
∑

i+j=k

αi ∪ βj),

where αi ∈ H i(M) and βj ∈ Hj(M). This way we consider H∗(M) a ring called the
cohomology ring. The computation above for the complex projective spaces can be
reformulated as:

H∗(CPn) = Z[x]/xn+1,

This ring is called a truncated polynomial ring.

We also introduce the Z/2-cohomology ring as

H∗(M ; Z/2) := ⊕kH
k(M ; Z/2)

By a similar argument one shows:

H∗(RPn; Z/2) = (Z/2)[x]/xn+1,

where x ∈ H1(RPn; Z/2) is the non-trivial element.

3. The Kronecker isomorphism

Now we can prove the announced relation between cohomology and homology groups.
Let M be an oriented smooth m-dimensional manifold. The first step is the construc-
tion of the so called Kronecker homomorphism from Hk(M) to Hom(Hk(M),Z). The
map is induced by a bilinear map Hk(M) × Hk(M) → Z, where M is an oriented
smooth manifold. To describe this let [S1, g1] ∈ Hk(M) be a cohomology class and
[S2, g2] ∈ Hk(M) be a homology class. Applying Proposition 12.4 we can approximate
g2 by a smooth map and so we assume from now on that g2 is smooth. We consider
g = g1 × g2 : (−1)mkS1 × S2 → M ×M . The sign changing the orientation of S1 × S2 is
compatible with the sign introduced in the definition of the ×-product.

Let ∆ : M →M ×M be the diagonal map. We want to approximate ∆ by a smooth
map ∆′ with is transversal to g1 × g2 in such a way that the transversal intersection
∆′ ⋔ (g1×g2) is compact. To achieve this we note that since g1 is proper and S2 is compact
the intersection im(g1×g2)∩ im(∆) is compact. Namely, we define C0 := {x ∈ S1| g1(x) ∈
im(g2)}, which is compact since S2 is compact and g1 is proper. Thus g1 × g2(C0 ×S2) is
compact. But im(g1×g2)∩im(∆) is a closed subset of (g1×g2)(C0×S2) and so is compact.
Since ∆ is proper C1 := ∆−1(im(g1×g2)∩ im(∆)) is compact. We choose compact subsets

C2 ⊂ C3 ⊂ M such that C1 ⊂
◦

C2 and C2 ⊆
◦

C3. Then A := M −
◦

C2 is a closed subset
which is contained in the open subset U := M − C1. Since im(g1 × g2) ∩ ∆(U) = ∅,
the map ∆|U is transversal to g1 × g2. We approximate ∆ by a transversal map ∆′
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which on A agrees with ∆. By construction ∆′ ⋔ (g1 × g2) ⊂ C2 × S1 × S2. The set
D := {x ∈ S1| g1(x) ∈ im(p1∆

′(C2))} is compact since p1(∆
′(C2)) is compact and g1 is

proper. But ∆′ ⋔ (g1 × g2) ⊂ C2 × D × S2 is a closed subset of a compact space and
so compact. It is a zero-dimensional stratifold and oriented. We consider the sum of the
orientations of this stratifold, where we recall that we equipped S1×S2 with (−1)mk times
the product orientation. This way we attach to a cohomology class [S1, g1] ∈ Hk(M) and
a homology class [S2, g2] ∈ Hk(M) an integer denoted:

〈[S1, g1], [S2, g2]〉 ∈ Z

A similar transversality argument as used for showing that f ∗ is well defined implies that
this number is well defined, if we assume the same transversality condition for the bor-
disms.

The construction gives a bilinear map which we call the Kronecker pairing or Kro-
necker product:

〈..., ...〉 : Hk(M) × Hk(M) → Z.

If M is a compact m-dimensional smooth manifold there is the following relation be-
tween the cup-product, Poincaré duality and the Kronecker pairing:

Proposition 14.3. Let [S1, g1] ∈ Hk(M) and [S2, g2] ∈ Hm−k(M) be cohomology
classes. Then

〈[S1, g1], P ([S2, g2])〉 = 〈[S1, g1] ∪ [S2, g2], [M ]〉
This useful identity follows from the definitions.

The Kronecker pairing gives a homomorphism Hk(M) → Hom (Hk(M),Z) by map-
ping [S1, g1] ∈ Hk(M) to the homomorphism assigning to [S2, g2] ∈ Hk(M) the Kronecker
pairing 〈[S1, g1], [S2, g2]〉. We call this the Kronecker homomorphism:

κ : Hk(M) → Hom(Hk(M),Z)

The Kronecker homomorphism Hk(M) to Hom (Hk(M),Z) commutes with induced
maps f : N →M :

〈f ∗([S1, g1]), [S2, g2]〉 = 〈[S1, g1], f∗([S2, g2])〉
for all [S1, g1] ∈ Hk(M) and [S2, g2] ∈ Hk(N).

The Kronecker homomorphism also commutes with the boundary operators in the
Mayer-Vietoris sequence. The argument is the following. Choose a separating function
ρ : U∪V → R as in the definition of δ. For [S1, g1] ∈ Hk(U∩V ) and [S2, g2] ∈ Hk−1(U∪V )
we choose a common regular value s of ρg1 and ρg2. This gives a decomposition of S1 =
(S1)+ ∪ (S1)− and S2 = (S2)+ ∪ (S2)− as in the definition of δ in §10. Then δ([S1, g1]) =
[∂(S1)+, g1|∂(S1)+ ] and d([S2, g2]) = [∂(S2)+, g2|∂(S2)+ ]. We consider the oriented regular
stratifold (S1)+×(S2)+ with boundary (∂(S1)+×(S2)+)∪∂(S1)+×∂(S2)+−((S1)+×∂((S2)+)).
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(The product of two bounded stratifolds has—as the product of two bounded smooth
manifolds—corners. There is a standard method for smoothing the corners which is
based on collars. Thus the same can be done for stratifolds. Smoothing of corners is
in a different context explained in appendix A.) Now we approximate the diagonal map
∆ : X → X ×X by a map ∆′ which is transversal to g1 × g2 : (S1)+ × (S2)+ → X ×X
and the restriction of g1 × g2 to ∂((S1)+ × (S2)+) and to ∂(S1)+ × ∂(S2)+. We con-
sider the bounded stratifold (S1 × S2, g1 × g2) ⋔ (X,∆′). This is a 1-dimensional strati-
fold with boundary (S1 × S2, g1 × g2)|∂((S1)+×(S2)+) ⋔ (X,∆′). Since ∆′ is transversal to
∂(S1)+ × ∂(S2)+ the dimension of (∂(S1)+ × ∂(S2)+, g1|∂(S1)+ × g2|∂(S2)+) ⋔ (X,∆′) is −1
implying that the boundary of (S1×S2, g1×g2) ⋔ (X,∆′) is (∂(S1)+×S2, g1|∂(S1)+ ×g2) ⋔

(X,∆′)+(−S1 ×∂(S2)+, g1×g2|∂(S2)+) ⋔ (X,∆′) (the sign comes from the sign in the de-
composition of the boundary of (S1)+×(S2)+). The number of oriented intersection points
of (∂(S1)+×S2, g1|∂(S1)+ ×g2) ⋔ (X,∆′) is the Kronecker pairing of δ([S1, g1]) and [S2, g2].
The number of oriented intersection points of (S1 × ∂(S2)+, g1 × g2|∂(S2)+) ⋔ (X,∆′) is
the Kronecker pairing of [S1, g1] and d([S2, g2]). Thus these two numbers agree.

These considerations imply that the Kronecker homomorphism gives a natural trans-
formation from

Hk(M) → Hom(Hk(M),Z).

Unfortunately Hom(Hk(M),Z) is not a cohomology theory. The reason is that if
A → B → C is an exact sequence then in general the induced sequence Hom(C,Z) →
Hom(B,Z) → Hom(A,Z) is not exact. But by a similar argument as for taking the tensor
product with Q the induced sequence Hom(C,Q) → Hom(B,Q) → Hom(A,Q) is exact.
Thus Hom(Hk(X),Q) is a cohomology theory.

We can in a similar way define the Kronecker pairing for the Z/2-(co)homology groups
of a (not necessarily orientable) manifold M . The only difference is that we have to
take the number of points mod 2 in the transversal intersection instead of the sum of
the orientations as before. From the Kronecker product we obtain as before a natural
transformation

Hk(M ; Z/2) → Hom(Hk(M ; Z/2),Z/2),

where now both sides are cohomology theories.

For M a point both these natural transformations are obviously an isomorphism. Thus
we obtain from Proposition 14.1:

Theorem 14.4. The Kronecker homomorphism is for all smooth oriented manifolds
M admitting a finite good atlas an isomorphism:

κ : Hk(M ; Q) ∼= Hom (Hk(M),Q)

and if M is not oriented:

κ : Hk(M ; Z/2) ∼= Hom (Hk(M ; Z/2), Z/2)
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In particular this theorem applies to all compact oriented manifolds. There is also a
version of the Kronecker Theorem for integral cohomology, but the Kronecker homomor-
phism is not an isomorphism any more. It is still surjective and the kernel is isomorphic
to the torsion subgroup of Hk−1(M). We will not give a proof of this result. One way
to prove it is to use the isomorphism between our (co)homology groups and the classical
groups defined using chain complexes. This will be explained in a later chapter. The
world of chain complexes is closely related to homological algebra and in this context the
integral Kronecker Theorem is rather easy to prove. One can also give a more direct prove
using linking numbers, but this would lead to far in our present context.

As announced before we want to combine for closed (oriented) manifolds Poincaré du-
ality with other ways to determine (co)homology groups, like for example the Kronecker
Theorem. Here are examples of such applications.

If we compose the Kronecker isomorphism with Poincaré duality we obtain the follow-
ing non-trivial consequence:

Corollary 14.5. Let M be a closed smooth oriented m-dimensional manifold. Then
the Kronecker pairing induces an isomorphism which we denote by 〈..., ...〉:

〈..., ...〉 : Hm−k(M ; Q) ∼= Hom (Hk(M),Q).

Similarly if M is not necessarily oriented:

〈..., ...〉 : Hm−k(M ; Z/2) ∼= Hom (Hk(M ; Z/2),Z/2)

An important consequence of this result is that the Euler characteristic of an odd-
dimensional closed smooth manifold M vanishes. For, the Betti numbers bk(M ; Z/2) are
equal to bm−k(M ; Z/2) and so (−1)kbk(M ; Z/2) + (−1)m−kbm−k(M ; Z/2) = 0 implying:

Corollary 14.6. The Euler characteristic of a smooth closed odd-dimensional man-
ifold vanishes.

We earlier quoted a result from differential topology that there is a nowhere vanishing
vector field on a closed smooth manifold if and only if the Euler characteristic vanishes.
As a consequence of the corollary we conclude that each closed odd-dimensional smooth
manifold has a nowhere vanishing vector field.



CHAPTER 15

The signature

As an application of the cup product, we define the signature of a closed smooth
oriented 4k-dimensional manifold and prove an important property. We recall from linear
algebra the definition of the signature or index of a symmetric bilinear form over a finite
dimensional Q -vector space

b : V × V −→ Q.

The signature τ(b) is defined to be the number of positive eigenvalues minus the number
of negative eigenvalues of a matrix representation of b. Equivalently, one chooses a basis
e1, · · · , er of V such that b(ei, ej) = 0 for i 6= j and defines τ(b) as the number of ei with
b(ei, ei) > 0 minus the number of ej with b(ej , ej) < 0. This is independent of any choices
and a fundamental algebraic invariant. If we replace b by −b the signature changes its
sign:

τ(−b) = −τ(b)

Now we define the signature of a closed smooth oriented 4k-dimensional manifold
M . We know from §8 that the cohomology group H2k(M) ∼= H2k(M) is finitely gener-
ated. Recall that we abbreviated the fundamental class [M, id] ∈ H4k(M) by [M ]. The
intersection form of M is the bilinear form

S(M) : H2k(M) ×H2k(M) → Z

mapping
(α, β) 7→ 〈α ∪ β, [M ]〉,

the Kronecker pairing between α∪β and the fundamental class. Since α∪β = (−1)(2k)2β∪
α the intersection form is symmetric. Thus we can consider after taking the tensor product
with Q the signature τ(S(M) ⊗ Q) and define the signature of M as

τ(M) := τ(S(M) ⊗ Q).

This is an important invariant of manifolds as we will see. If we replace M by −M then
we only replace [M ] by −[M ] and thus S changes its sign implying

τ(−M) = −τ(M).

Since H2k(S4k) = 0, it is zero on spheres. We have computed the cohomology ring of
CP2k and know that H2k(CP2k) = Zxk and that 〈x2k, [CP2k]〉 = 1. Thus we have:

τ(CP2k) = 1.

101
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The relevance of the signature is demonstrated by the fact that it is bordism invariant:

Theorem 15.1. If a compact oriented smooth manifold M is the boundary of a com-
pact oriented smooth c-manifold, then its signature vanishes:

τ(M) = 0

The main ingredient of the proof is the following:

Lemma 15.2. Let W be a compact smooth oriented c-manifold of dimension 2k + 1.

Let j : ∂W →
◦

W be the map given by j(x) := ϕ(x, ǫ/2), where ϕ is the collar of W . Then

ker(j∗ : Hk(∂W ) → Hk(
◦

W )) = im(j∗ : Hk(
◦

W ) → Hk(∂W ) = Hk(∂W )).

Proof: If [S, g] ∈ Hk(∂W ) maps to 0 under j∗ there is a compact regular c-stratifold

T with ∂T = S and a map G : T →
◦

W extending j ◦ g. Now we consider P :=

T∪∂T×ǫ/2 ∂T× (0, ǫ/2] and extend G to a smooth proper map Ḡ : P →
◦

W in such a way
that for t small enough (x, t) is mapped to ϕ(g(x), t). For some fixed δ > 0 we consider

jδ : ∂W →
◦

W by mapping x to ϕ(x, δ). For δ small enough (so that the intersection
of the image of T with the image of jδ is empty) we have by construction of [P, Ḡ] that
j∗δ ([P, Ḡ]) = ±[S, g]. Since jδ is homotopic to j we have shown ker j∗ ⊂ im j∗.

To show the other inclusion, we consider [P, h] ∈ Hk(
◦

W ). By Sard’s Theorem h
is transversal to ϕ(∂W, δ) for some δ > 0. We denote S = h ⋔ ϕ(∂W × δ). Then
j∗δ ([P, h]) = [S, h|S] and—since jδ is homotopic to j—we have j∗([P, h]) = [S, h|S]. To

show that j∗([S, h|S]) = 0 we consider h−1(
◦

W − (∂W × (0, δ)). We are finished if this
is a regular c-stratifold T with boundary S. Namely then (T, h|T) is a zero bordism of
(S, h|S). Now we assume that S has a bicollar in P (for this we have to replace P by
a bordant regular stratifold as explained in Appendix B (see Lemma B.1 in the detailed

proof of the Mayer-Vietoris sequence). Then it is clear that h−1(
◦

W − (∂W × (0, δ)) is a
oriented regular c-stratifold T with boundary S finishing the argument.
q.e.d.

This Lemma is normally obtained from the generalization of Poincaré duality to com-
pact oriented manifolds with boundary, the Lefschetz duality Theorem. But one only
needs this partial elementary information for the proof of Theorem 15.1.

Combining this Lemma with the Kronecker isomorphism (which implies that after
passing to rational (co)homology we have: j∗ = (j∗)

∗, where the last ∗ denotes the dual

map) we conclude that for j∗ : Hk(∂W ) → Hk(
◦

W ):

rank(ker j∗) = rank(im((j∗)
∗)).
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From linear algebra we know that rank(im j∗) = rank(im((j∗)
∗)) and we obtain:

rank(ker j∗) = rank(im j∗)

and by the dimension formula:

rank(ker j∗) = 1/2 rankHk(∂W )

Applying Lemma 15.2 again we finally note:

rank(im j∗) = 1/2 rankHk(∂W ).

As a last preparation for the proof of Theorem 15.1 we need the following observation
from linear algebra. Let b : V × V → Q be a symmetric non-degenerate bilinear form
on a finite dimensional Q-vector space. Suppose that there is a subspace U ⊂ V with
dim U = 1

2
dim V such that, for all x, y ∈ U , we have b(x, y) = 0. Then τ(b) = 0. The

reason is the following. Let e1, . . . , en be a basis of U . Since the form is non-degenerate,
there are elements f1, . . . , fn in V such that b(fi, ej) = δij and b(fi, fj) = 0. This implies
that e1, . . . , en, f1, . . . , fn are linear independent and thus form a basis of V . Now consider
e1 + f1, . . . , en + fn, e1 − f1, . . . , en − fn and note that, with respect to this basis, b has
the form 










2
. . .

2
−2

. . .
−2












and thus
τ(b) = 0.

Proof of Theorem 12.6: We first note that for α ∈ im j∗ and β ∈ im j∗ the intersection
form S(∂W )(α, β) vanishes. For if, α = j∗(ᾱ) and β = j∗(β̄) then

S(∂W )(α, β) = 〈j∗(ᾱ) ∪ j∗(β̄), [∂W ]〉 = 〈ᾱ ∪ β̄, j∗([∂W ]〉 = 0

since j∗([∂W ]) = 0 (note that W is a zero bordism).

Thus the intersection form vanishes on im j∗. By Poincaré duality the intersection
form S(∂W )⊗Q is non-degenerate. Since the rank of im j∗ is 1/2 rankHk(∂W ) the proof
is finished by the considerations above from linear algebra.
q.e.d.

The relevance of Theorem 15.1 becomes more visible if we define bordism groups of
compact oriented smooth manifolds. They were introduced by Thom [Th 1] who com-
puted them and provided with this the ground for very interesting applications (for exam-
ple the signature theorem, which in a special case we will discuss later). The group Ωn is
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defined as the bordism classes of compact oriented smooth manifolds. More precisely the
elements in Ωn are represented by a compact smooth n-dimensional manifold M and two
such manifolds M and M ′ are equivalent if there is a compact oriented manifold W with
boundary M + −M ′. The sum is given by disjoint union, the inverse of a bordism class
M is −M . Thus the definition is analogous to the definition of Hn(pt), the difference is
that we only consider manifolds instead of regular stratifolds.

Whereas it was simple to determine Hn(pt) it is very difficult to compute the groups
Ωn. This difficulty is indicated by the following consequence of Theorem 15.1.

The signature of a disjoint union of manifolds is the sum of the signatures, and
τ(−M) = −τ(M). Thus we conclude from Theorem 15.1, that

τ : Ω4k(pt) → Z

is a homomorphism. This homomorphism τ : Ω4k(pt) → Z is a surjective map. The
reason is that τ(CP2k) = 1.

Thus we obtain:

Corollary 15.3. For each k ≥ 0 the groups Ω4k(pt) are non-trivial.

It is natural to ask what the signature of a product of two manifolds is. It is the
product of the signatures of the two manifolds:

Theorem 15.4. Let M and N be closed oriented smooth manifolds. Then

τ(M ×N) = τ(M)τ(N).

The proof is based on the Künneth theorem for rational cohomology and Poincaré
duality and we refer to Hirzebruch’s original proof [Hir], p. 85.



CHAPTER 16

The Euler class

1. The Euler class

We recall the definition of the Euler class. Let p : E → M be a smooth oriented
k-dimensional vector bundle over a smooth oriented manifold M . Let s : M → E be the
zero section. Then e(E) := s∗[M, s] ∈ Hk(M) is the Euler class of E. The Euler class is
called a characteristic class. We will define other characteristic classes like the Chern,
Pontrjagin and Stiefel-Whitney classes.

By construction the Euler classes of bundles p : E → M and p′ : E ′ → M , which are
orientation preserving isomorphic, are equal. Thus the Euler class is an invariant of the
oriented isomorphism type of a smooth vector bundle. We also recall Proposition 13.3,
that if a smooth oriented bundle E has a nowhere vanishing section v then e(E) = 0. In
particular the Euler class of a positive dimensional trivial bundle is 0.

The following properties of the Euler class are a fundamental tool.

Theorem 16.1. Let p : E → M be a smooth oriented vector bundle. Then, if −E is
E with opposite orientation :

e(−E) = −e(E)

If f : N →M is a smooth map, then the Euler class is natural:

e(f ∗E) = f ∗(e(E)).

If q : F →M ′ is another smooth oriented vector bundle then

e(E × F ) = e(E) × (F ),

and if M = M ′,

e(E ⊕ F ) = e(E) ∪ e(F ).

Here we recall that the Whitney sum E ⊕ F := ∆∗(E × F ) is the pull back of E × F
under the diagonal map. The fibre of E ⊕ F at x is Ex ⊕ Fx.

Proof: The first property follows from the definition of the Euler class. For the second
property we first consider the case where N ⊂ M is a submanifold of M and f is the
inclusion. In this case it is clear from the definition that e(f ∗E) = f ∗e(E). Next we
assume that f is a diffeomorphism and note that the property follows again from the def-
inition. Combining these two cases we conclude that the statement holds for embeddings
f : N → M . A next obvious case is given by considering for an arbitrary manifold N the

105
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projection p : M ×N → M and see that e(p∗(E)) = p∗(E). Now we consider the general
case of a smooth map f : N →M . Let g : N → M ×N be the map x 7→ (f(x), x). This
is an embedding and pg = f . Thus from the cases above we see:

e(f∗(E)) = e((pg)∗(E)) = e(g∗(p∗(E))) = g∗(e(p∗(E))) = g∗(p∗(e(E))) = (pg)∗e((E)) = f∗(e(E))

The property e(E×F ) = e(E)×(F ) follows again from the definition. Combining this with
the definition of the Whitney sum and the naturality we conclude e(E⊕F ) = e(E)∪e(F ).
q.e.d.

The following is a useful observation.

Corollary 16.2. Let p : E → M be a smooth oriented vector bundle. If E is odd-
dimensional, then

2e(E) = 0

Proof: If E is odd-dimensional −Id : E → E is an orientation reversing bundle isomor-
phism and thus we conclude e(E) = −e(E).
q.e.d.

Remark: The name Euler class was chosen since there is a close relation between the
Euler class of a closed oriented smooth manifold M and the Euler characteristic. Namely:

e(M) = 〈e(TM), [M ]〉,
the Euler characteristic is the Kronecker product between the Euler class of the tangent
bundle and the fundamental class of M . By definition of the Euler class and the Kro-
necker product this means that if v : M → TM is a section, which is transversal to the
0-section, then the Euler characteristic is the sum of the orientations of the intersection
of v with the 0-section. This identity is the Poincaré-Hopf Theorem.

In special cases one can compute 〈e(TM), [M ]〉 directly and verify the Poincaré-Hopf
Theorem. We have done this already for the spheres. For complex projective spaces one
has:

〈e(TCPm), [CPm]〉 = m+ 1

We leave this as an exercise to the reader. Combining it with Proposition 9.5 we conclude:

Theorem 16.3. Each vector field on CPn has a zero.

2. Euler classes of some bundles

Now we compute the Euler class of some bundles. As a first example we consider the
tautological bundle

p : L = {([x], v) ∈ CPn × Cn+1|v ∈ C · x} → CPn.
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This is a complex vector bundle of complex dimension 1, whose fibre over [x] is the
vector space generated by x. By construction the restriction of the tautological bundle
over CPn to CPk for some k < n is the tautological bundle over CPk. This is the rea-
son which allows by abuse of notation to use the same name for bundles over different
spaces. A complex vector space V considered as a real vector space has a canonical
orientation. Namely choose a basis (v1, . . . , vn) and consider the basis of the real vector
space (v1, iv1, v2, ivs, . . . , vn, ivn). The orientation given by this basis is independent of the
choice of the basis (v1, . . . , vn) (why?). Using this orientation fibrewise we can consider
L as a 2-dimensional oriented real vector bundle. To compute the Euler class we first
consider the case p : L→ CP1 and consider the section given by

s : [x0, x1] 7→ ([x0, x1], x0 · x̄1, x1 · x̄1)

Then

s([x0, x1]) = 0 ⇔ x1 = 0

To check whether the section is transversal and to compute ǫ([1, 0]), we choose local coor-
dinates around this point: ϕ : {([x], v) ∈ CP1×C2|v ∈ Cx and x0 6= 0} → C×C mapping
([x], v) to (x1

x0
, µ), where v = µ(1, x1

x0
). This map is an isomorphism. With respect to this

trivialization, we have p2ϕs([1, x1]) = p2ϕ([1, x1], (x̄1, x1 · x̄1)) = x̄1. Thus s is transversal
and ǫ([1, 0]) = −1. We conclude:

Proposition 16.4. 〈e(L), [CP 1]〉 = −1.

We return to the tautological bundle p : L → CPn over CPn. The restriction of
p : L→ CPn to CP1 is p : L→ CP1. Using the naturality of the Euler class the statement
above implies 〈e(L), [CP1, i]〉 = −1. We recall that we defined x := [CPn−1, i] ∈ H2(CPn)
and showed that 〈x, [CP1, i]〉 = 1. Thus Proposition 16.4 implies:

e(L) = −x.

As another example we consider the complex line bundle

Ek := D2 × C ∪fk
−D2 × C

p1−→ D2 ∪−D2 = S2,

where fk : S1 × C → S1 × C maps (z, v) 7→ (z, zk · v). This bundle is closely related to
the lens spaces. If we equip Ek with the Riemannian metric induced from the standard
Euclidean metric on C = R2, the lens space Lk is the sphere bundle SEk. The bundle Ek

can naturally be equipped with the structure of a smooth vector bundle by describing it
as:

C × C ∪gk
C × C

with
gk : C∗ × C −→ C∗ × C

(x, y) 7−→ (1/x, xky)

If we consider Ek above as an oriented bundle over D2 ∪z̄ D
2 instead of over the diffeo-

morphic oriented manifold D2 ∪ −D2, we have to describe Ek = D2 × C ∪f ′
k
D2 × C

p1−→
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D2 ∪z̄ D
2 = S2, where f ′

k(z, v) = (z̄, zk · v) = (1/z, zk · v).

This describes Ek as a smooth (even holomorphic) vector bundle over C ∪ 1
x

C = S2.

Now we first compute e(E1)([S
2]) by choosing a transversal section. For ||x|| < 2 and

x ∈ C, the first copy of C in C ∪ 1
x

C, we define the section as s(x) := (x, x̄) and for z

in the second copy we define s(z) := (z, ρ(||z||)2), where ρ : [0,∞) → (0,∞) is a smooth
function with ρ(s) = 1/s for s > 1/2. This smooth section has a single 0 at 0 in the first
summand and there it intersects transversally with local orientation −1.

We conclude:
〈e(E1), [S

2]〉 = −1.

From this we compute 〈e(Ek), [S
2]〉 for all k by showing

〈e(Ek+l), [S
2]〉 = 〈e(Ek), [S

2]〉 + 〈e(El), [S
2]〉.

Namely considerD3 with two holes as in the following picture and denote this 3-dimensional
oriented manifold by M :

S    Ix
1

S    Ix
1

Decompose M along the two embedded S1 × I’s and denote the three resulting areas
M1,M2 and M3. Now construct a bundle over M by gluing M1 × C to M2 × C via
fk×Id : S1×C×I → S1×C×I and M2×C to M3×C via fl×Id : S1×C×I → S1×C×I
to obtain

E := M1 × C ∪fk×Id M2 × C ∪fl×Id M3 × C
p1−→ M1 ∪M2 ∪M3 = M.

Orient M so that ∂M = S2 + (−S2
1) + (−S2

2), where S2
i are the boundaries of the two

holes. Then the reader should convince himself that

E|S2 = Ek+l

since we can combine the two gluings by fk and fl along the two circles into one gluing
by fl ◦ fk = fl+k. By construction E|S2

1
= Ek and E|S2

2
= El. Next we note that

〈e(E), [∂M ]〉 = 0

since [∂M ] is zero in H2(M) (M itself is a zero bordism of ∂M). But

〈e(E), [∂M ]〉 = 〈e(E), ([S2] + [−S2
1 ] + [−S2

2 ])〉
= 〈e(E|S2), [S2]〉 − 〈e(E|S2

1
), [S2

1 ]〉 − 〈e(E|S2
2
), [S2

2 ]〉
= 〈e(Ek+l), [S

2]〉 − 〈e(Ek), [S
2]〉 − 〈e(El), [S

2]〉
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Since 〈e(E), [∂M ]〉 = 0 we have shown:

Lemma 16.5. The map Z → Z mapping k to 〈e(Ek), [S
2]〉 is a homomorphism.

Combining this with the fact 〈e(E1), [S
2]〉 = −1, we conclude

Proposition 16.6.
〈e(Ek), [S

2]〉 = −k
In particular: There is an orientation preserving bundle isomorphism between Ek and Er

if and only if k = r.

In complete analogy we study the bundle Ek,l over S4 given as

D4 × H ∪fk,l
−D4 × H

p1−→ D4 ∪−D4 = S4

where
fk,l(z, v) = (z, zk · v · zl)

and we use quarternionic multiplication (z ∈ S3). As in the case of Ek over S4, we show
that

〈e(E1,0), [S
4]〉 = −1.

By the same argument as in the case of Ek, one shows

〈e(Ek+k′,l+l′), [S
4]〉 = 〈e(Ek,l), [S

4]〉 + 〈e(Ek′,l′), [S
4]〉

or, in other words, that the map Z × Z → Z mapping (k, l) to 〈e(Ek,l), [S
4]〉 is a homo-

morphism.

Next we consider the following isomorphism of H, considered as a real vector space:

(z1, z2) 7→ (z̄1,−z2) =: (z1, z2)

and note that, for z ∈ S3, we have z̄ = z−1. Further x · y = ȳ · x̄. Now consider the bundle
isomorphism

Ek,l → E−l,−k

mapping (x, v) 7→ (x, v̄). Since v 7→ v̄ is orientation reversing, this implies

Ek,l
∼= −E−l,−k

and so
−〈e(Ek,l), [S

4]〉 = 〈e(E−l,−k), [S
4]〉.

This implies
〈e(Ek,l), [S

4]〉 = c(k + l)

for some constant c. Since 〈e(E1,0), [S
4]〉 = −1, we conclude c = −1 and thus
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Proposition 16.7. 〈e(Ek,l), [S
4]〉 = −k − l.



CHAPTER 17

The Chern classes

Now we define the Chern classes of a complex vector bundle p : E → M . We remind
the reader that a smooth k-dimensional complex vector bundle is a smooth map
p : E →M together with a C-vector space structure on the fibres which is locally isomor-
phic to U×Ck, where the isomorphism means diffeomorphism and fibrewise C -linear. For
example we know that the tautological bundle p : L → CPn is a 1-dimensional complex
vector bundle. If E and F are complex vector bundles the Whitney sum E ⊕ F is a
complex vector bundle. Given two complex vector bundles E and F one can consider
their tensor product E ⊗C F which is obtained by taking fibrewise the tensor product to
obtain a new complex vector bundle [Mi-St]. If E and F are smooth vector bundles then
E ⊗C F is again smooth.

To prepare the definition of Chern classes we consider for a smooth manifold M
the homology of M × CPN , for some N . By the Künneth Theorem and the fact that
H∗(CPN) = Z[e(L)]/e(L)N+1(implying that the cohomology of CPN is free) we have for
k ≤ N if M admits a finite good atlas:

Hk(M × CPN ) ∼= Hk(M) ⊗ Z · 1 ⊕ Hk−2(M) ⊗ Z · e(L) ⊕ Hk−4(M) ⊗ Z · (e(L) ∪ e(L)) ⊕ · · ·

Actually the same result is true for arbitrary manifolds M as one can show inductively
over N using the Mayer-Vietoris sequence. Now let p : E → M be a smooth k-dimensional
complex vector bundle and consider p∗1E⊗C p

∗
2L, a complex vector bundle over M ×CPN

for some N > k. Since every complex vector bundle considered as a real bundle has a
canonical orientation, we can consider the Euler class e(p∗1E ⊗C p

∗
2L) ∈ H2k(M × CPN).

Using the isomorphism above we define the Chern classes ci(E) ∈ H2i(M) by the
equation

e(p∗1E ⊗C p
∗
2L) =

k∑

i=0

ci(E) × e(L)k−i.

With other words the Chern classes are the coefficients of e(p∗1E ⊗C p
∗
2L) if we consider

the Euler class as a “polynomial” in e(L).

Since for the inclusion i : CPN → CPN+1 we know that i∗L is the tautological bundle
over CPN , if L was the tautological bundle over CPN+1, this definition does not depend
on N so long as N is larger than k.

We prove some basic properties of the Chern classes. The naturality of the Euler class
implies that the Chern classes are natural, i.e. if f : N →M is a smooth map, then

ck(f
∗(E)) = f ∗(ck(E)).

111
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The Chern classes depend only on the isomorphism type of the bundle. Both implies that
the Chern classes of a trivial bundle are zero except c0 = 1. Comparing with a point we
conclude that for arbitrary bundles E we have

c0(E) = 1.

By construction ci(E) = 0 for i > k, where k is the complex dimension of E. Next we
note that ck(E) = e(E). To see this, fix a point x0 ∈ CPN and consider the inclusion

j : M −→ M × CPN

x 7−→ (x, x0).

Then j∗(p∗1E ⊗C p
∗
2L) = j∗p∗1E ⊗C j

∗p∗2L
∼= j∗p∗1E = E, since p2j is the constant map and

so j∗p∗2L is the product bundle M×C. On the other hand j∗ : H2k(M×CPN) → H2k(M)
maps H2k(M)⊗Z·e(L)0 = H2k(M) identically to H2k(M) and the other summands in the
decomposition to 0. Thus e(E) = e(j∗(p∗1E⊗Cp

∗
2L)) = j∗e(p∗1E⊗Cp

∗
2L) = j∗ck(E)×e(L)0,

and therefore

e(E) = ck(E).

This property together with the following product formula is basic for the Chern
classes. We would like to know cr(E⊕F ) for k and l-dimensional complex vector bundles
E and F over M . For this we choose N ≥ k + l and note that

p∗1(E ⊕ F ) ⊗C p
∗
2L = (p∗1E ⊗C p

∗
2L) ⊕ (p∗1F ⊗C p

∗
2L).

Then we conclude from

e((p∗1E ⊗C p
∗
2L) ⊕ (p∗1F ⊗C p

∗
2L)) = e(p∗1E ⊗C p

∗
2L) ∪ e(p∗1F ⊗C p

∗
2L)

and the definition of the Chern classes:

k+l∑

i=0

ci(E ⊕ F ) × e(L)k+l−i = (

k∑

j=0

cj(E) × e(L)k−j) ∪ (

l∑

s=0

cs(F ) × e(L)l−s),

that

ci(E ⊕ F ) =
∑

j+s=i

cj(E) ∪ cs(F )

A convenient way to write the product formula is to consider the Chern classes as elements
of the cohomology ring H∗(M) = ⊕kH

k(M). We define the total Chern class as

c(E) :=
∑

k

ck(E) ∈ H∗(M)

Then the product formula translates to:

c(E ⊕ F ) = c(E) ∪ c(F )

We summarize these properties as
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Theorem 17.1. Let E be a k-dimensional smooth complex vector bundle over M .
The Chern classes are natural, i.e. if f : N →M is a smooth map, then

ck(f
∗(E)) = f ∗(ck(E)).

The Chern classes depend only on the isomorphism type of the bundle.

c0(E) = 1.

For i > k:
ci(E) = 0

ck(E) = e(E)

If E and F are smooth complex vector bundles over M , then (Whitney formula):

cr(E ⊕ F ) =
∑

i+j=r

ci(E) ∪ cj(F ),

or using the total Chern class:

c(E ⊕ F ) = c(E) ∪ c(F )

One can show that these properties characterize the Chern classes uniquely [Mi-St].

At the end of this chapter we shortly introduce Stiefel-Whitney classes (although we
will not apply them in this book). The definition is completely analogous to the defini-
tion of the Euler class and the Chern classes. The main difference is that we will replace
oriented or even complex vector bundles by arbitrary vector bundles.

If E is a k-dimensional vector bundle (not oriented) we can make the same construc-
tion as for the Euler class with Z/2-cohomology instead of integral cohomology and define
wk(E) := s∗[M, s] ∈ Hk(M ; Z/2) the k-th Stiefel-Whitney class of E. This class fulfills
the analogous properties as were shown for the Euler class in Theorem 16.1. Perhaps a
better name for the k-th Stiefel-Whitney class would be to call it mod2 Euler class, since
it is the version of the Euler class for Z/2-cohomology.

Now we define the lower Stiefel-Whitney classes. This is done in complete analogy to
the Chern classes, where we replace the Euler class by the k-th Stiefel-Whitney class and
the tautological bundle over the complex projective space by the tautological bundle L
over RPN . This is a 1-dimensional real bundle. The Z/2-cohomology of M × RPN is:

Hk(M ×RP
N ; Z/2) ∼= Hk(M ; Z/2)⊗Z/2 · 1⊕Hk−1(M ; Z/2)⊗ Z/2 ·w1(L)⊕Hk−2(M ; Z/2) ⊗Z/2 · (w1(L)∪ w1(L))⊕ · · ·

Then we define the Stiefel-Whitney classes of a real smooth vector bundle E of
dimension k over M denoted wi(E) ∈ H i(M) by the equation

wk(p
∗
1E ⊗R p

∗
2L) =

k∑

i=0

wi(E) × w1(L)k−i.

With other words the Stiefel-Whitney classes are the coefficients of e(p∗1E ⊗R p
∗
2L) if we

consider the Euler class as a “polynomial” in w1(L). By a similar argument as for Theorem
17.1 one proves:
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Theorem 17.2. Let E be a k-dimensional smooth real vector bundle over M . Then
the analogous statement as in the previous theorem hold. In particular for i > k:

wi(E) = 0

If E and F are smooth vector bundles over M , then (Whitney formula):

wr(E ⊕ F ) =
∑

i+j=r

wi(E) ∪ wj(F ).



CHAPTER 18

Pontrjagin classes and applications to bordism

1. Pontrjagin classes

To obtain an other invariant for k-dimensional real vector bundles E we simply com-
plexify the bundle considering

E ⊗R C.

This means that we replace the fibres of Ex of E by the complex vector spaces Ex⊗R C or
equivalently by Ex⊕Ex with complex vector space structure given by i ·(v, w) := (−w, v).
This is a complex vector bundle of complex dimension k and we define the Pontrjagin
classes

pr(E) := (−1)rc2r(E ⊗R C) ∈ H4r(M).

Here one might wonder why we have not taken c2r+1(E⊗RC) into account. The reason
is that these classes are 2-torsion, as we will discuss. Also the sign convention asks for an
explanation. One could leave out the sign without any problem. Probably the historical
reason for the sign convention is that for 2n-dimensional oriented bundles one can show:

pn(E) = e(E) ∪ e(E).

We prepare the argument that the classes c2r+1(E⊗R C) are 2-torsion by some general
considerations. If V is a complex k-dimensional vector space, we consider its conjugate
complex vector space V̄ with new scalar multiplication λ ⋄ v := λ̄ · v. Note that the
orientation of V̄ , as a real vector space, is (−1)k times the orientation of V (why?).
Taking the conjugate complex structure fibrewise we obtain for a complex bundle E the
conjugate bundle Ē. The change of orientation of vector spaces translates to complex
vector bundles giving for a k-dimensional complex vector bundle that as oriented bundles
Ē ∼= (−1)kE. From this one concludes:

ci(Ē) = (−1)ici(E)

Now we note that since C is as a complex vector space isomorphic to its conjugate this
isomorphism induces an isomorphism:

E ⊗R C ∼= E ⊗R C.

Thus c2r+1(E ⊗R C) = −c2r+1(E ⊗R C) implying 2c2r+1(E ⊗R C) = 0.

115
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Since 2c2r+1(E ⊗R C) = 0, the product formula for the Chern classes gives the corre-
sponding product formula for the Pontrjagin classes:

pr(E ⊕ F ) =
∑

i+j=r

pi(E) ∪ pj(F ) + β,

where 2β = 0.

Again we introduce the total Pontrjagin class:

p(E) :=
∑

k

pk(E) ∈ H∗(M)

and rewrite the product formula as:

p(E ⊕ F ) = p(E) ∪ p(F ) + β,

where 2β = 0.

For the computation of the Pontrjagin classes of a complex vector bundle the following
considerations are useful. Let V be a complex vector space. If we forget that V is a
complex vector space and complexify it to obtain V ⊗R C, we see that V ⊗R C is, as a
complex vector space, isomorphic to V ⊕ V̄ . Namely, V ⊗R C is, as a real vector space,
equal to V ⊕ V and - with respect to this decomposition - the multiplication by i maps
(x, y) to (−y, x). With this we write down an isomorphism

V ⊗R C = V ⊕ V −→ V ⊕ V̄
(x, y) 7−→ (x+ iy, ix+ y)

This extends to vector bundles. For a complex vector bundle E the fibrewise isomor-
phism above gives an isomorphism :

E ⊗R C ∼= E ⊕ Ē

Using the product formula for Chern classes one can express the Pontrjagin classes of a
complex vector bundle E in terms of the Chern classes of E. For example:

p1(E) = −c2(E ⊕ Ē) = −(c1(E) ∪ c1(Ē) + c2(E) + c2(Ē)) = c21(E) − 2c2(E)

Now, we compute 〈p1(Ek,l), [S
4]〉, where p : Ek,l → S4 is the R4-bundle considered

above. As for the Euler class one shows that

(k, l) 7−→ 〈p1(Ek,l), [S
4]〉

is a homomorphism. Next we observe that p1(Ek,l) does not depend on the orientation of
Ek,l and, since Ek,l is isomorphic to E−l,−k (reversing orientation), we conclude

〈p1(Ek,l), [S
4]〉 = 〈p1(E−l,−k), [S

4]〉.
Linearity and this property imply that there is a constant a such that

〈p1(Ek,l), [S
4]〉 = a(k − l).
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To determine a we compute 〈p1(E0,1), [S
4]〉. Since, for a fixed element x ∈ H, the map

y 7→ y · x is C -linear, E0,1 is a complex vector bundle. Thus by the formula above:

p1(E0,1) = −2c2(E0,1) = −2e(E0,1)

From 〈e(Ek,l), [S
4]〉 = −k − l we conclude

〈p1(E0,1), [S
4]〉 = 2

and thus we have proved:

Proposition 18.1.

〈p1(Ek,l), [S
4]〉 = −2(k − l).

2. Pontrjagin numbers

To demonstrate the use of characteristic classes we consider the following invariants
for closed smooth 4k-dimensional manifolds M . Let I := (i1, i2, . . . , ir) be a sequence of
natural numbers 0 < i1 ≤ · · · ≤ ir such that i1 + · · · + ir = k, i.e. I is a partition of k.
Then we define the Pontrjagin number

pI(M) := 〈pi1(TM) ∪ · · · ∪ pir(TM), [M ]〉 ∈ Z

To compute the Pontrjagin numbers in examples we consider the complex projective
spaces and look at their tangent bundle. To determine this bundle we consider the fol-
lowing line bundle over CPn, the Hopf bundle. Its total space H is the quotient of
S2n+1 × C under the equivalence relation (x, z) ∼ (λx, λz) for some λ ∈ S1. The projec-
tion p : H → CPn maps [(x, z)] to [x]. The fibre over [x] is equipped with the structure
of a 1-dimensional complex vector space by defining [(x, z)] + [(x, z′)] := [(x, z + z′)]. A
local trivialization around [x] is given as follows: Let xi be non zero and define Ui :=
{[y] ∈ CPn|yi 6= 0}. Then a trivialization over Ui is given by the map p−1(Ui) → Ui × C

mapping [(x, z)] to ([x], z/xi).

Proposition 18.2. There is an isomorphism of complex vector bundles

TCPn ⊕ CPn × C ∼= ⊕n+1H

Proof: We start with the description of CPn as Cn+1 −{0}/C∗ = Cn+1/∼ where x ∼ λx
for all λ ∈ C∗. Let π : Cn+1 − {0} −→ CPn be the canonical projection. This is a
differentiable map. Moreover, if we use complex charts for Cn, it even is a complex dif-
ferentiable map. Using local coordinates, one checks that for each x ∈ Cn+1 − {0} the
complex differential dπx : Cn+1 = Tx(C

n+1 − {0}) → T[x]CPn is surjective.

If for some λ ∈ C∗ we consider the map Cn+1 → Cn+1 given by multiplication with
λ, its complex differential is for each tangent space Cn+1 again multiplication by λ. Thus
the differential

dπ : T (Cn+1 − {0}) → TCPn
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induces a fibrewise surjective bundle map between two bundles over CPn

[dπ] : (Cn+1 − {0}) × Cn+1/∼ → TCPn

where (x, v) ∼ (λx, λv). The bundle

(Cn+1 − {0}) × Cn+1/∼ → CPn

given by projection onto the first factor is
⊕

n+1H .

To finish the proof, we have to extend the bundle map [dπ] to a bundle map

(Cn+1 − {0}) × Cn+1/∼ → TCPn ⊕ CPn × C

which is fibrewise an isomorphism. This map is given by

[x, v] 7−→ ([dπ]([x, v]), ([x], 〈v/||x||, x/||x||〉))
where 〈v, x〉 is the hermitian scalar product Σvi · x̄i.

Since the kernel of [dπx] consists of all v which are multiples of x, the map is fibrewise
injective and thus fibrewise an isomorphism, since both vector spaces have the same di-
mensions.
q.e.d.

To compute the Pontrjagin classes of the complex projective spaces we have to deter-
mine the characteristic classes of H . Since H is a complex line bundle, its first Chern
class is equal to e(H) ∈ H2(CPn). Since H2(CPn) is generated by e(L) we know that
e(H) = k · e(L) for some k. To determine k it is enough to consider p : H → CP1 and to
compute 〈e(H), [CP1]〉. For this consider the section [x] → [x, x0] which has just one zero
at [x] = [0, 1] where it is transversal. One checks that the local orientation at this point
is 1. We conclude:

〈e(H), [CP1]〉 = 1

and thus

c1(H) = e(H) = −e(L).

Now we use the relation between the Pontrjagin and Chern classes of a complex bundle
above and see that

p1(H) = c1(H)2 − 2c2(H) = e(L)2,

since c2(H) = 0. Thus

p(H) = 1 + e(L)2

With the product formula for Pontrjagin classes and the fact that the cohomology of
CPn is torsion free and finitely generated, we conclude from TCPn ⊕CPn ×C =

⊕

n+1H
that p(TCPn) = p(

⊕

n+1H) and using the product formula again:
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Theorem 18.3. The total Pontrjagin class of the complex projective space CPn is:

p(TCPn) = 1 + p1(TCPn) + · · ·+ p[n/2](TCPn) = p(H)n+1 = (1 + e(L)2)n+1

or

pk(TCPn) =

(
n+ 1

k

)

· e(L)2k.

We use this to compute the following Pontrjagin numbers. We recall that as a con-
sequence of Proposition 11.3 we saw that e(L) = −x and from §11 that 〈xn, [CPn]〉 = 1.
Thus 〈e(L)2n, [CP2n]〉 = 1 and we obtain:

p(1)(CP2) = 3,

p(1,1)(CP4) = 25,

p(2)(CP4) = 10,

3. Applications of Pontrjagin numbers to bordism

One of the reasons why Pontrjagin numbers are interesting, is the fact that they
are bordism invariants for oriented manifolds. We first note that they are additive under
disjoint union and change sign if we pass from M to −M (note that the Pontrjagin classes
do not depend on the orientation of a bundle, but the fundamental class does). To see
that Pontrjagin numbers are bordism invariants, let W be a compact oriented (4k + 1)-
dimensional smooth manifold. Using our collar we identify an open neighbourhood of ∂W

in W with ∂W × [0, 1). Then T
◦

W |∂W×(0,1) = T∂W × ((0, 1)×R). Thus from the product
formula we conclude: j∗(pi1(TW ) ∪ · · · ∪ pir(TW )) = pi(T∂W ) ∪ · · · ∪ pir(T∂W ), where
j is the inclusion from ∂W to W . From this we see by naturality:

pI(∂W ) = 〈pi1(T∂W ) ∪ · · · ∪ pir(T∂W ), [∂W ]〉
= 〈pi1(TW ) ∪ · · · ∪ pir(TW ), j∗[∂W ]〉 = 0,

the latter following since j∗[∂W ] = 0 (W is a zero bordism!). We summarize:

Theorem 18.4. The Pontrjagin numbers induce homomorphisms from the oriented
bordism group Ω to Z :

pI : Ω4k −→ Z.

Since pn(TCP2n) =
(

2n+1
n

)
· e(L)2n, the homomorphism p(n) : Ω4n → Z is non-trivial

and we have another proof for the fact we have shown using the signature, namely that
Ω4k 6= 0 for all k ≥ 0.

The existence of a homomorphism Ω4k → Z for each partition I of k naturally raises the
question whether the corresponding elements in Hom(Ω4k,Z) are all linearly independent.
This is in fact the case and can be proved with the methods known to the reader of this
book [Mi-St]. In low dimensions one can easily check this by hand. In dimension 4
there is nothing to show. In dimension 8 we consider CP2 × CP2. The tangent bundle
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is TCP2 × TCP2 or π∗
1TCP2 ⊕ π∗

2TCP2. Thus by the product formula for the Pontrjagin
classes p1(T (CP2 × CP2)) = π∗

13e(L)2 + π∗
23e(L)2 and p2(T (CP2 × CP2)) = π∗

13e(L)2 ∪
π∗

23e(L)2 = 9 · (π∗
1e(L)2 ∪π∗

2e(L)2) or 9(e(L)2 × e(L)2). By definition of the cross-product

〈e(L)2 × e(L)2, [CP2 × CP2]〉 = 〈e(L)2, [CP2]〉 · 〈e(L)2, [CP2]〉 = 1

and so
p(2)(CP2 × CP2) = 9

and, using p1(TCP2) = 3e(L)2 we compute:

(p1(T (CP2×CP2)))2 = (π∗
13e(L)2+π∗

23e(L)2)2 = 9π∗
1e(L)4+18(π∗

1e(L)2∪π∗
2e(L)2)+9π∗

2e(L)4

= 18(π∗
1e(L)2 ∪ π∗

2e(L)2) = 18(e(L)2 × e(L)2).

We conclude
p(1,1)(CP2 × CP2) = 18.

With this information one checks that the matrix




p(1,1)(CP4) p(1,1)(CP2 × CP2)

p(2)(CP4) p(2)(CP2 × CP2)



 =

(
25 18
10 9

)

is invertible and the two homomorphisms on Ω8 are linearly independent. We summarize:

Theorem 18.5. rank Ω4 ≥ 1 and rank Ω8 ≥ 2.

For the first information we had already another argument using the signature (Corol-
lary 15.3).

4. Classification of some Milnor manifolds

For a final application of characteristic classes in this section, we return to the Milnor
manifolds Mk,l. For dimensional reasons, there is just one Pontrjagin class which might
be of some use, namely p1(TMk,l) ∈ H4(Mk,l; Z). Since this group is zero except for
k+ l = 0 (Proposition 11.4), we only look at Mk,−k. Since H4(Mk,−k) ∼= Z, there is up to
sign a unique generator [V, g] ∈ H4(Mk,−k). Thus we can obtain a numerical invariant by
evaluating p1(TMk,−k) on [V, g] and taking its absolute value:

Mk,−k 7−→ |〈p1(TMk,−k), [V, g]〉|.
This is an invariant of the diffeomorphism type of Mk,−k.

To compute this number, recall that Mk,l is the sphere bundle of Ek,l. Thus TMk,l ⊕
Mk,l × R = TD(Ek,l)|Mk,l

= TEk,l|Mk,l
(for the first identity use a collar of SEk,l = Mk,l

in DEk,l). Let j : Mk,l → Ek,l be the inclusion. Then our invariant is

|〈p1(TMk,−k), [V, g]〉| = |〈j∗p1(TEk,−k), [V, g]〉|
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= |〈p1(TEk,−k), j∗[V, g]〉|

= |〈p1(i
∗TEk,−k), [S

4]〉|.
The last equality comes from two facts, namely that the map j∗ : H4(Mk,−k) → H4(Ek,−k)
is an isomorphism (this follows from a computation of the homology of Ek,−k using the
Mayer-Vietoris sequence as for Mk,−k and comparing these exact sequences) and that
the inclusion i : S4 → Ek,−k given by the 0-section induces an isomorphism H4(S

4) →
H4(Ek,−k). To compute p1(i

∗TEk,−k) = p1(TEk,−k|S4), we note that TEk,l|S4
∼= TS4⊕Ek,l.

The isomorphism is induced by the differential of i from TS4 to TEk,l and by the dif-
ferential of the inclusion of a fibre (Ek,l)x to Ek,l giving a homomorphism T ((Ek,l)x) =
Ek,l → TEk,l. With the help of a local trivialization one checks that this bundle map
TS4 ⊕ Ek,l → TEk,l|S4 is fibrewise an isomorphism and thus a bundle isomorphism.

Returning to the Milnor manifolds, since TS4 ⊕ S4 ×R = TR5|S4 = S4 ×R5, we note
that:

|〈p1(i
∗TEk,−k), [S

4]〉| = |〈p1(Ek,−k), [S
4]〉| = 4|k|.

Thus |k| is a diffeomorphism invariant of Mk,−k showing an analogy to Lk, where also
|k| was a diffeomorphism invariant. But there is a big difference between the two cases
since for Lk we have detected |k| as the order of H1(Lk), whereas all Mk,−k have the same
homology and we have used a more subtle invariant to distinguish them.

Finally, we construct an (orientation reversing) diffeomorphism from Mk,l to M−k,−l

by mapping D4 × S3 to D4 × S3 via (x, y) 7→ (x̄, y) and −D4 × S3 to −D4 × S3 via
(x, y) 7→ (x̄, y). Thus we conclude:

Theorem 18.6. Two Milnor manifolds Mk,−k and Mr,−r are diffeomorphic if and only
if |k| = |r|.





CHAPTER 19

Exotic 7-spheres

1. The signature theorem and exotic 7-spheres

At the end of the last section we classified those Milnor manifolds where H4(M) ∼= Z.
In this section we want to look at the other extremal case, namely where all homology
groups of Mk,l except in dimension 0 and 7 are trivial. By Proposition 11.4 this is equiv-
alent to k + l = ±1. Then homologically Mk,±1−k looks like S7. We are going to prove
that it is actually homeomorphic to S7, a remarkable result by Milnor [Mi 1]:

Theorem 19.1. (Milnor): The Milnor manifolds Mk,±1−k are homeomorphic to S7.

Although the proof of this result is not related to the main theme of this book we will
give it at the end of this chapter for completeness.

This result raises the question whether all manifolds Mk,±1−k are diffeomorphic to S7.
We will show that in general this is not the case. We prepare the argument by some
considerations concerning bordism groups and the signature.

In §18 we have introduced Pontrjagin numbers, which turned out to be bordism invari-
ants for oriented smooth manifolds. We used them to show that the rank of Ω4 is at least
one and of Ω8 is at least two. Moreover, we stated that the Pontrjagin numbers can be
used to show that for all k the products of complex projective spaces CP2i1 × · · · × CP2ir

for i1 + · · · + ir = k are linear independent, implying rank Ω4k ≥ π(k), the number of
partitions of k. In his celebrated paper [Th 1] Thom has proved that dim Ω4k⊗Q = π(k).

Theorem 19.2. (Thom): The dimension of Ω4k ⊗ Q is π(k) and the products

[CP2i1 × · · · × CP2ir ]

for i1 + · · · ir = k form a basis of Ω4k ⊗ Q.

The original proof of this result consists of three steps. The first is a translation of
bordism groups into homotopy groups of the so called Thom space of a certain bundle,
the universal bundle over the classifying space for oriented vector bundles. The main
ingredient for this so called Pontrjagin-Thom construction is transversality. The second
is a computation of the rational cohomology ring. Both steps are explained in the book
[Mi-St]. The final third step is a computation of the rational homotopy groups of this
Thom space. Details for this are not given in Milnor-Stasheff, where the reader is referred
to the original paper of Serre. An elementary proof based on [K-K] is sketched in [K-L],

123
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p. 14 ff.

Now we will apply Thom’s result to give a formula for the signature in low dimensions.
The key observation here is the bordism invariance of the signature (Theorem 11.6). We
recall that the signature induces a homomorphism

τ : Ω4k → Z

Combining this fact with Theorem 19.2 we conclude that the signature can be expressed as
a linear combination of Pontrjagin numbers. For example in dimension 4, where Ω4⊗Q ∼=
Q, the formula can be obtained by comparing 1 = τ(CP2) with 〈p1(TCP2), [CP2]〉 = 3
and so, for all closed oriented smooth 4-manifolds, one has the formula:

τ(M) =
1

3
〈p1(TM), [M ]〉

In dimension 8 one knows that τ(M) = ap(1,1)(M) + bp(2)(M) = a〈p1(TM)2, [M ]〉 +

b〈p2(TM), [M ]〉. We have computed the Pontrjagin numbers of CP2 ×CP2 and CP4. We
know already that τ(CP4) = 1 and one checks that also τ(CP2×CP2) = 1. Comparing the
values of the signature and the Pontrjagin numbers for these two manifolds one concludes:

Theorem 19.3. (Hirzebruch):For a closed oriented smooth 8-dimensional manifold
M one has

τ(M) =
1

45
(7〈p2(TM), [M ]〉 − 〈p1(TM)2, [M ]〉)

Proof: We only have to check the formula for CP4 and for CP2 × CP2. The values for
the Pontrjagin numbers were computed at the end of §18 and with this the reader can
verify the formula.
q.e.d.

The two formulas above are special cases of Hirzebruch’s famous signature theorem,
which gives a corresponding formula in all dimensions (see [Hir] or [Mi-St]).

One of the most spectacular applications of Theorem 19.3 was Milnor’s discovery of
exotic spheres. Milnor shows that in general Mk,1−k is not diffeomorphic to S7. His
argument is the following: Suppose there is a diffeomorphism f : Mk,1−k → S7. Since
Mk,1−k is the boundary of the disk bundle DEk,1−k, we can then form the closed smooth
manifold

N := DEk,1−k ∪f D
8

We extend the orientation of DEk,1−k to N (which can be done, since the disk has an
orientation reversing diffeomorphism) and compute its signature. The inclusion induces

an isomorphism j∗ : H4(N) ∼= H4(
◦

DEk,1−k) ∼= H4(S4) ∼= Z. We will show that the
signature of N is −1 by constructing a class with negative self intersection number. To

do this we consider the cohomology class j∗([S4, v]) ∈ H4(
◦

DEk,1−k), where v is the zero
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section. We also consider v∗(j∗([S4, v])) ∈ H4(S4). This is equal to the Euler class of
Ek,1−k. By definition the self intersection SN([S4, v], [S4, v]) = 〈e(Ek,1−k), [S

4]〉. We have
computed this number in Proposition 16.7 and conclude:

SN([S4, v], [S4, v]) = −k − (1 − k) = −1

Thus:
τ(N) = −1

Now we use the signature theorem to compute τ(N) in terms of 〈p1(TN)2, [N ]〉 and
〈p2(TN), [N ]〉. Since v∗ : H4(N) → H4(S4) is an isomorphism, we know p1(TN) =
(v∗)−1(p1(TN |S4)). But v∗TN ∼= TS4 ⊕ Ek,1−k and so the Whitney formula implies
together with Proposition 18.1:

〈v∗(p1(TN)), [S4]〉 = 〈p1(Ek,1−k), [S
4]〉 = −2(2k − 1)

Comparing this information with the Kronecker product 〈v∗([S4, v]), [S4]〉 = −1 we con-
clude:

p1(TN) = 2(2k − 1)[S4, v].

Using
SN([S4, v], [S4, v]) = −k − (1 − k) = −1

we have:
〈p2

1(TN), [N ]〉 = −4(2k − 1)2

Now we feed this information into the signature Theorem 19.3:

−1 = τ(N) =
1

45
(7〈p2(TN), [N ]〉 + 4(2k − 1)2)

Since 〈p2(TN), [N ]〉 ∈ Z, we obtain the congruence

45 + 4(2k − 1)2 ≡ 0 mod 7

if Mk,1−k is diffeomorphic to S7. Taking k = 2 we obtain a contradiction and so have
proved

Theorem 19.4. (Milnor): M2,−1 is homeomorphic to S7 but not diffeomorphic.

This was the first example of a so called exotic smooth structure on a manifold, i.e. a
second smooth structure which is not diffeomorphic to the given one.

We give another application of the signature formula. Given a topological manifold M
of dimension 2k one can ask whether there is a complex structure on M , i.e. an atlas of
charts in Ck whose coordinate changes are holomorphic functions. We suppose now that
M is closed and connected. A necessary condition is that M admits a non-trivial class in
H2k(M). One can introduce the concept of orientation for topological manifolds and show
that a connected closed n-dimensional manifold is orientable if and only if a non-trivial
class in Hn(M) exists. Thus the necessary condition above amounts to a topological
version of orientability. It k = 1 it is a classical fact that all orientable surfaces admit a
complex structure. As another application of the signature formula we show
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Theorem 19.5. S4 admits no complex structure.

Proof: If S4 is equipped with a complex structure, the tangent bundle is a complex vector
bundle. For a complex vector bundle E we can compute the first Pontrjagin class using
the formula from §18:

p1(E) = −2c2(E)

Thus
p1(TS

4) = −2c2(TS
4) = −2e(TS4),

since c1(TS
4) = 0. Now we use the fact from the Remark after Corollary 12.2 that

〈e(TM), [M ]〉 = e(M) (following from the Poincaré-Hopf Theorem for vector fields) and
conclude:

〈e(TS4), [S4]〉 = e(S4) = 2

Next we note that τ(S4) = 0 and so we obtain a contradiction from the signature formula:

0 = τ(S4) = 1/3〈p1(TS
4), [S4]〉 = −4/3

q.e.d.

One actually can show that S2k has no complex structure for k 6= 1, 3. It is a famous
open problem whether S6 has a complex structure.

2. The Milnor spheres are homeomorphic to the 7-sphere

We finish this chapter with the proof of Theorem 19.1. It is based on an elementary
but fundamental argument in Morse theory.

Lemma 19.6. Let W be a compact smooth manifold with ∂W = M0 +M1. If there is
a smooth function

f : W → [0, 1]

without critical points and f(M0) = 0 and f(M1) = 1, then W is diffeomorphic to M0 ×
[0, 1].

Proof: Choose a smooth Riemannian metric g on TW (for example embed W
smoothly into a Euclidean space and restrict the Euclidean metric to each fibre of the
tangent bundle). Consider the so called normed gradient vector field of f which is
defined by mapping x ∈M to the vector s(x) ∈ TxM such that

i) dfxs(x) = 1 ∈ R = Tf(x)R

ii) 〈s(x), v〉g(x) = 0 for all v with dfx(v) = 0.
This is a well defined function since the dimension of ker dfx is dimM−1 and dfx|ker df⊥

x

is an isomorphism (the orthogonal complement is taken with respect to gx). Since W , f
and g are smooth, this is a smooth vector field on W .

Now, we consider the ordinary differential equation for a given point x ∈W :

ϕ̇(t) = s(ϕ(t)) and ϕ(0) = x,
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where ϕ is a smooth function (a path) from an interval to W and as usual we abbreviate
the differential of a path ϕ at the time t by ϕ̇(t).

The existence and uniqueness result for ordinary differential equations says that lo-
cally (using a chart to translate everything into Rm) there is a unique solution called an
integral curve. Furthermore, the solution depends smoothly on x if we vary the initial
point x and on t.

Now, for each x ∈ M0 we consider a maximal interval for which one has a solution ϕx

with initial value x. Then

df(ϕ̇x(t)) = df(s(ϕx(t))) = 1

Thus
fϕx(t) = t+ c

for some c ∈ R. Since ϕx(0) = x, we conclude c = 0 and so fϕx(t) = t.
Since W is compact, the interval is maximal and since fϕx(t) = t, the interval has to

be [0, 1]. As ϕx depends smoothly on x and t we obtain a smooth function

ψ : M0 × [0, 1] → W
(x, t) 7→ ϕx(t)

(x,t)ϕ

ϕ
x

t

f

x

This function is a diffeomorphism since we have an inverse. For this consider for
y ∈W the integral curve of the differential equation:

η̇y(t) = −s(ηy(t)) and ηy(0) = y

(we use the negative gradient field to “travel” backwards). As above, we see that

fηy(t) = f(y) − t

The integral curve ηϕx(t) joins ϕx(t) with x and is the time inverse of the integral curve
ϕx. With this information, we can write down the inverse:

ψ−1(y) = (ηy(f(y)), f(y))

q.e.d.

Proof of Theorem 19.1 after Milnor: For simplicity we only consider the case Mk,1−k,
the other case follows similarly. With Lemma 19.6 we will give the proof by constructing
two disjoint embeddings D7

+ and D7
− in Mk,1−k and constructing a smooth function

f : Mk,1−k − (
◦

D
7
+ +

◦

D
7
−) → [0, 1]
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without critical points. Then by Lemma 19.6 there is a diffeomorphism

ϕ : S6
+ × [0, 1] −→Mk,1−k − (

◦

D
7
+ +

◦

D
7
−)

with ϕ(x, 0) = x for all x ∈ S6
+.

From this we construct a homeomorphism from Mk,1−k to S7 = D7
+ ∪D7

− as follows.
We map

x ∈ D7
+ to x ∈ D7

+ ⊂ S7,

ϕ(x, t) to (1 − t/2) · x ∈ D7
− forx ∈ S6

+ and t ∈ [0, 1]

x ∈ D7
− to x/2 ∈ D7

− ⊂ S7.

The reader should check that this map is well defined, continuous and bijective. Thus it
is a homeomorphism.

Continuing in the proof, we note that

Mk,l = H × S3 ∪fk,l
−H × S3

where fk,l : H − {0} × S3 → −H − {0} × S3 maps

(x, y) 7→ (x/||x||2, x
kyxl/||x||(k+l))

We have used this description since it gives Mk,l as a smooth manifold. Now we
consider the smooth functions

g : H × S3 −→ R

(x, y) 7−→ y1√
1+||x||2

and
h : −H × S3 −→ R

(x, y) 7−→ (x·y−1)1√
1+||x·y−1||2

where ( )1 denotes the first component.

If l = 1−k, the two functions are compatible with the gluing function fk,1−k and thus

g ∪ h : Mk,1−k −→ R

is a smooth function.

What are the singular points of g and h? The function h has no singular points but g
has singular points (0, 1) and (0,−1), where 1 = (1, 0, 0, 0) ∈ S3. Thus, 1 and −1 are the
only singular values of g ∪ h.

Since ±1/2 are regular values, we can decompose Mk,1−k as (g ∪ h)−1(−∞,−1
2
]∪ (g ∪

h)−1[−1
2
, 1

2
] and (g ∪ h)−1[1

2
,∞) =: D+ ∪W ∪ D−. We identify D± with D7 as follows:
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D+ = (g ∪ h)−1(−∞,−1
2
] = {(x, y) ∈ H × S3|y1 ≤ −1

2

√

1 + ||x||2} using the fact that
y ∈ S3 and so y2

1 + y2
2 + y2

3 + y2
4 = 1. From this we conclude that

D+ = {(x, (y2, y3, y4))| 4 (y2
2 + y2

3 + y2
4) + ||x||2 ≤ 3}

and thus D+ is diffeomorphic to D7. Similarly one shows that D− is diffeomorphic to D7.
Since g∪h|W has no critical points, we are in the situation discussed above and the proof
is finished.
q.e.d.





CHAPTER 20

Relation to ordinary singular (co)homology

1. Hk(X) is isomorphic to ordinary homology for CW -complexes

This chapter has a different character since we use several concepts and results which
are not covered in this book. In particular we assume familiarity with ordinary singular
homology and cohomology.

Eilenberg and Steenrod showed that if a functor fulfils their homology axioms, then
there is a unique natural isomorphism between this homology and ordinary singular ho-
mology Hk(X) for finite CW -complexes X, which for a point is the identity [E-S]. Their
axioms are equivalent to our axioms, if in addition the homology groups of a point are
Z in degree 0 and 0 else. Thus for finite CW -complexes X there is a unique natural
isomorphism (which for a point is the identity)

σ : Hk(X) → Hk(X)

Since Hk(X) is compactly supported one can extend σ to a natural transformation
for arbitrary CW -complexes. Namely, if X is a CW -complex and [S, g] is an element of
Hk(X), the image of S under g is compact. Thus there is a finite subcomplex Y in X such
that g(S) ⊂ Y . Let i : Y → X be the inclusion, then we consider i∗(σ([S, g]) ∈ Hk(X),
where we consider [S, g] as element of Hk(Y ). It is easy to see that this gives a well
defined natural transformation

σ : Hk(X) → Hk(X)

for arbitrary CW -complexes X. We use the fact that if (T, h) is a bordism, then g(T) is
contained in some other finite subcomplex Z with Y ⊂ Z.

Theorem 20.1. The natural transformation

σ : Hk(X) → Hk(X)

is an isomorphism for all CW -complexes X and all k.
This natural transformation commutes with the ×-product.

More generally it is enough to require that X is homotopy equivalent to a CW -
complex. All smooth manifolds are homotopy equivalent to CW -complexes [Mi 3] and
so theorem 20.1 holds for all smooth manifolds.

131
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Proof: We know this already for finite CW -complexes. The argument for arbitrary CW -
complexes uses the same idea as the construction of the generalization of σ. Namely if X
is an arbitrary CW -complex and x ∈ Hk(X) is a homology class then there exists a finite
subcomplex Y such that x ∈ im(Hk(Y ) → Hk(X)). From this we conclude using the
result for finite CW -complexes that x is in the image of σ : Hk(X) → Hk(X). Similarly
if x ∈ Hk(X) maps to zero under σ, we find a finite CW -complex Z ⊂ X such that
x ∈ im(Hk(Z) → Hk(X)) since Hk(X) has compact support. Thus we can assume that
x ∈ Hk(Z). Since Hk(X) has compact support there is a finite CW complex T ⊂ X such
that Z ⊂ T and σ(x) maps to zero in Hk(T ). From the result for finite CW -complexes
we conclude σ(x) = 0 in Hk(T ) and so x = 0.

The argument that the natural transformation commutes with the ×-product is based
on a description of ordinary singular homology using bordism of stratifolds with addi-
tional structure, a so called parametrization. This is defined in [K], where we construct
a natural isomorphism between homology based on parametrized stratifolds and ordinary
homology. This natural isomorphism preserves the ×-product. The forgetful map (for-
getting the parametrization) gives another natural transformation from homology based
on parametrized stratifolds to Hk(X) which preserves the ×-product. Since the natural
transformations commute for CW -complexes (by the fact that for a point they are the
identity) this shows that the natural transformation above commutes with the ×-product.
q. e. d.

Remark: A similar argument gives a natural isomorphism

σn : Hk(X; Z/2) → Hk(X; Z/2).

for all CW -complexes X.

2. An example where Hk(X) and Hk(X) are different

We denote the oriented surface of genus g by Fg. For g = 1 we obtain the torus F1 = T
and Fg is the connected sum of g copies of the torus.

We consider the following subspace of R3 given by an infinite connected sum of tori
as in the following picture, where the point on the right side is removed. We call this an
infinite sum of tori. This is a non-compact smooth submanifold of R3 denoted by F∞.
The space on the picture is the one point compactification of F∞. This is a compact
subspace of R3.

As in example 2.) in §2 we make F+
∞ a 2-dimensional stratifold denoted S by the

algebra C consisting of continuous functions which are constant near the additional point
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and smooth on F∞. Obviously this stratifold is regular and oriented. Thus we can consider
the fundamental class

[S] = [S, id] ∈ H2(S)

This class has the following property. Let pg : S → Fg be the projection onto Fg (we
map all tori added to Fg to obtain F∞ to a point). Then

(pg)∗([S]) = [Fg]

(why ?). In particular (pg)∗([S]) is non-trivial for all g.

But there is no class α in H2(S) such that pg∗(α) is non-trivial for all g. The reason is
that for each topological space X and each class α in H2(X) there is a map f : F → X,
where F is a closed oriented surface, such that α = f∗([F ]). This follows from [C-F] using
the Atiyah-Hirzebruch spectral sequence. Now we suppose that we can find f : F → S
such that (pg)∗(α) 6= 0 in H2(Fg) for all g. But this is impossible since the degree of
fpg is non-zero and there is no map F → Fg with degree non-zero if the genus of F
is smaller than g. The reason is that if the degree is non-trivial then the induced map
H1(Fg) → H1(F ) is injective (as follows from the unimodularity of the intersection form).

We summarize these considerations:

Theorem 20.2. The homology theories Hk(X) and Hk(X) are not equivalent.

Remark: For compact metric spaces (where the maps between these spaces are the ordi-
nary continuous maps) there are other homology theories which for finite CW -complexes
agree with ordinary homology, for example Steenrod homology. It is natural to ask if
Hk(X) on compact metric spaces agrees with Steenrod homology. The answer is no. We
will discuss this relation in [K].

In [K] we will introduce stratifolds with an additional structure, called a parametriza-
tion. We will use parametrized stratifolds to define homology groups as we did it here with
arbitrary stratifolds. It turns out that the resulting homology theory is ordinary homology
for all spaces X. This will be shown in [K].

3. Hk(M) is isomorphic to ordinary singular cohomology

We also want to identify our cohomology groups Hk(M) constructed via stratifolds
with the singular cohomology groups Hk(M). To distinguish the notation we denote the
cohomology groups constructed via stratifolds by Hk(M).

So far we only have defined integral cohomology groups for oriented manifolds. We will
now use a trick to extend the definition to arbitrary manifolds. The idea is to associate
in a natural way to each non-oriented manifold an oriented manifold whose cohomology
will be defined as the cohomology of the original manifold.
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For this we consider for a smooth m-dimensional manifold M the determinant line
bundle ΛmTM . This is the bundle whose fibre at x is ΛmTxM , the 1-dimensional space
of alternating m-forms on TxM . The total space of ΛmTM has a canonical orienta-
tion. Namely if p : E → M is a smooth vector bundle, then p∗E, the tangent vec-
tors along the fibre, is a subbundle of TE, and the differential of p induces an isomor-
phism TE/p∗E → p∗TM . In the situation above we choose for x ∈ ΛmTM vectors
v1, . . . , vm ∈ Tx(Λ

mTM) such that dp(vi) are a basis of Tp(x)M and 0 6= ω ∈ ΛmTp(x)M
and say that (v1, . . . , vm, ω) are positively oriented if ω(dpx(ν1), . . . , dpm(νm)) > 0. It is
easy to check that this determines an orientation of the total space of ΛmTM .

After we have oriented ΛmTM , we can define Hk(M) := Hk(ΛmTM). If g : M ′ → M
is a smooth map, we define ĝ : ΛmTM ′ → ΛmTM as sgp′, where p′ : ΛmTM ′ → M ′ is
the projection and s : M → ΛmTM is the 0-section. If : M ′′ → M ′ is a smooth map,

then ĝĥ = sgp′hp′′ = sghp′′ = ˆ(gh). We further note that since sp′ is homotopic to

id : ΛmTM → ΛmTM , the maps îd and id : ΛmTM → ΛmTM are homotopic.

Now for g : M ′ →M we define

g∗ := (ĝ)∗ : Hk(M) → Hk(M ′)

and the projections above imply that

id∗ = id

(gh)∗ = h∗g∗

If U and V are given subsets of M , then p−1(U) and p−1(V ) are open subsets of ΛmTM
with p−1(U)∩ p−1(V ) = p−1(U ∩V ). Thus we obtain a Mayer-Vietoris sequence from the
Mayer-Vietoris sequence of oriented manifolds:

· · · → Hk(U ∪ V ) → Hk(U) ⊕ Hk(V ) → Hk(U ∩ V ) → Hk+1(U ∩ V ) → . . . .

By construction it is natural, i.e. commutes with induced maps.

Thus we have defined a cohomology theory for arbitrary smooth manifolds. It remains
to show that, if M is oriented, there is a canonical natural isomorphism between Hk(M)
as defined previously and Hk(ΛmTM). Such an isomorphism is easily described, namely:

p∗ : Hk(M) → Hk(ΛmTM)

is an isomorphism since p is a homotopy equivalence. Actually an orientation of M gives
an orientation preserving isomorphism between ΛmTM and M × R. Using this, one sees
that p∗ is a natural isomorphism.

This finishes our definition of integral cohomology for non-oriented manifolds extend-
ing the previous definition if the manifold is oriented. Now we proceed with the compar-
ison with ordinary integral cohomology.

We use a characterization of singular cohomology on smooth manifolds from [K-S].
The main result from this paper says that we only have to check the following conditions
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for such a cohomology theory h for which the cohomology groups of a point are Z in
degree 0 and 0 else.
i) Let Mi for i = 1, 2... be a sequence of smooth manifolds. Then

hk(+Mi) ∼=
∏

i

hk(Mi),

where the isomorphism from hk(M) to the direct product is given by the inclusions.
ii) The ×-product gives an isomorphism

× : hk(Sk) ⊗ hn(Sn) ∼= hk+n(Sk × Sn)

Since these conditions hold for our cohomology theory there is a unique natural iso-
morphism θ from Hk(M) to Hk(M) commuting with the × products and inducing the
identity on H0(pt) [K-S]:

Theorem 20.3. There is a unique natural isomorphism θ from the cohomology groups
constructed in this book via stratifolds to ordinary singular cohomology, commuting with
the × products and inducing the identity on cohomology in degree 0.

Since the natural transformation θ respects the cup product we obtain a geometric
interpretation of the intersection form on ordinary singular cohomology. Let M be a
closed smooth oriented manifold of dimension m. Since θ respects the cup-products we
conclude:

Corollary 20.4. For a closed smooth oriented m-dimensional manifold M and co-
homology classes x ∈ Hk(M) and y ∈ Hm−k(M) we have the identity:

〈x ∪ y, [M ]〉 = [Sx, gx] ⋔ [Sy, gy],

where [Sx, gx] := θ(x) and [Sy, gy] := θ(y) are cohomology classes in Hk(M) and Hm−k(M)
corresponding to x and y via θ and ⋔ means the transversal intersection.

Thus the traditional geometric interpretation of the intersection form for those co-
homology classes on a closed oriented smooth manifold, where the Poincaré duals are
represented by a map from a closed oriented smooth manifold to M , as transversal inter-
section makes sense for arbitrary cohomology classes.

The natural isomorphism between the (co)homology groups defined in this book and
ordinary singular cohomology allow - for CW -complexes - to translate results from one of
the worlds to the other. Above we have made use of this by interpreting the intersection
form on singular cohomology geometrically. The geometric feature is one of the strengths
of our approach to (co)homology. There are other aspects of (co)homology which are
easier and more natural in ordinary singular (co)homology, in particular those which al-
low an application of homological algebra. This is demonstrated by the general Künneth
Theorem or by the various universal coefficient theorems. It is useful to have both inter-
pretations of (co)homology available so that one can choose in which world one wants to
work depending on the questions one is interested in.





APPENDIX A

Constructions of stratifolds

1. The product of two stratifolds

Now we show that (S×S′,C(S×S′)) as defined in chapter 2 is a stratifold. It is clear
that S × S′ is a locally compact Hausdorff space with countable basis. We have to show
that C(S × S′) is an algebra. Let f and g be in C(S × S′) and x ∈ Si and y ∈ (S′)j.
Using local retracts one sees that f + g and fg are in C(S× S′). Obviously the constant
maps are in C(S × S′). Since we characterize C(S × S′) by local conditions it is locally
detectable. Also condition 2.) of a differential space is obvious.

Next we show that restriction gives an isomorphism of germs near (x, y) ∈ Si × (S′)j :

C(S× S′)(x,y)

∼=−→ C∞(Si × (S′)j)(x,y)

To see that this map is surjective, we consider f ∈ C∞(Si × (S′)j) and choose for x
a local retract r : U → V near x of S and for y a local retract r′ : U ′ → V ′ near y of S′.
Let ρ be a smooth function on S with support ρ ⊂ U which is constant 1 near x and ρ′

a corresponding smooth function on S′ with support ρ′ ⊂ U ′ which is constant 1 near y.
Then ρ(z)ρ′(z′)f(r(z), r′(z′)) (which we extend by 0 to the complement of U × U ′) is in
C(S × S′). (To see this we only have to check for (z, z′) ∈ U × U ′ that there are local
retracts q near z and q′ near z′ such that f(rq(t), r′q′(t′)) = f(r(t), r′(t′)). But since r is a
morphism, we can choose q such that rq(t) = r(t) and similarly r′q′(t′) = r′(t′) implying
the statement.) Thus we have found a germ near (x, y) which maps to f under restriction.

To see that the map is injective, we note that if f ∈ C(S × S′) maps to zero in
C∞(Si × (S′)j)(x,y) it vanishes in an open neighborhood of (x, y) in Si × (S′)j and since
there are retracts near x and y such that f commutes with them, it is zero in some open
neighborhood of (x, y) in S× (S′).

After we have shown that C(S × S′)(x,y)

∼=−→ C∞(Si × (S′)j)(x,y) is an isomorphism,
we conclude that T(x,y)(S × S′) ∼= T(x,y)(S

i × (S′)j), and so the induced stratification on
S×S′ is given by +i+j=kS

i × (S′)j. Now condition 1 also follows from the isomorphism of
germs, condition 2 is obvious and condition 3 follows form the product ρρ′ of appropriate
bump functions of S and S′.

Thus (S× S′,C(S× S′)) is (k + l)-dimensional stratifold.
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2. Gluing along part of the boundary

In the proof of the Mayer-Vietoris sequence we will also need gluing along part of
the boundary. If one glues naively then corners or cusps occur (see picture below). The
corners or cusps can in a natural way be removed or better smoothed. The central tool
for this smoothing is given by collars. The constructions will depend on the choice of a
collar, not just on the corresponding germ. But up to bordism, these choices are irrelevant.

Now we return to gluing along part of the boundary. Consider two c-stratifolds W1

and W2 and suppose that ∂W1 is obtained by gluing two c-stratifolds Z and Y1 over the
common boundary ∂Z = ∂Y1 = N (assuming that Z and Y1 have collars ϕZ and ϕY1):
∂W1 = Z∪N Y1. Similarly, we assume that ∂W2 = Z∪N Y2 (using collars ϕZ and ϕY2) and
that W1 and W2 have collars η1 and η2. Then we want to make W1 ∪Z W2 a c-stratifold

with boundary Y1 ∪N Y2. We define
◦

W1 ∪Z W2 as W1 ∪Z W2 − Y1 ∪N Y2. But this space is

equal to W1 −Y1 ∪◦
Z
W2 −Y2, gluing of two c-stratifolds along the full boundary

◦

Z, which

is a stratifold by the considerations above. If we add the boundary Y1 ∪N Y2 naively and
use the given collars, we obtain ”cusps” along N .

W
2W

1 Z

N

To smooth along N we first combine ϕZ and ϕY1 to an isomorphism ϕ1 : N×(−1, 1) →
∂W1 onto its image, where ϕ1(x, t) := ϕZ(x, t) for t ≥ 0 and ϕ1(x, t) := ϕY1(x,−t) for t ≤
0. ϕ1|N×{0} is the identity map. Similarly, we combine ϕZ and ϕY2 to ϕ2 : N × (−1, 1) →
∂W1 and note that ϕ2|N×[0,1) = ϕ1|N×[0,1). We denote by α1 : N×(−1, 1)×[0, 1) →W1 the
map (x, s, t) 7→ η1(ϕ1(x, s), t). We denote the image by U1. This map is an isomorphism
away from the boundary. Similarly, we define α2 : N × (−1, 1) × [0, 1) → U2. The union
U1 ∪ U2 := UN is an open neighbourhood of N in W1 ∪Z W2.

Now we pass in R2 to polar coordinates (r, ϕ) and choose a smooth monotone map
ρ : R≥0 → (0, 1], which is for r ≤ 1

3
equal to 1

2
and for r ≥ 2

3
equal to 1 (it is important to

fix this map for the future and use the same map to make the constructions unique). Then
consider the map β1 from (−1, 1) × [0, 1) ⊂ {(r, ϕ)|r ≥ 0, 0 ≤ ϕ ≤ π} to R2 mapping
(r, ϕ) to (r, ρ(r) · ϕ) and similarly β2 mapping (r, ϕ) to (r,−ρ(r) · ϕ). The images of
(−1, 1) × [0, 1) in cartesian coordinates look roughly as
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and

Identifying β1([0, 1)× {0}) with β2([0, 1) × {0}) gives a smooth c-manifold G looking
as

where the collar is indicated in the picture. We obtain a homeomorphism Φ : UN −→
N×Gmapping α1(x, s, t) to (x, β1(s, t)) and α2(x, s, t) to (x, β2(s, t)). Φ is an isomorphism
of stratifolds outside N . By construction the collar induced from N × G via Φ and the
collars of W1 along ∂W1− imϕY1 and of W2 along ∂W2− imϕY2 fit together to give a collar
on W1 ∪Z W2 finishing the proof of:

Proposition A.1. Let (for i = 1, 2) Wi be c-stratifolds such that ∂Wi is obtained by
gluing two c-stratifolds Z and Yi over the common boundary ∂Z = ∂Yi = N :

∂Wi = Z ∪N Yi

Choose representatives of the germs of collars for Yi and Z.

Then there is a c-stratifold W1 ∪Z W2 extending the stratifold structures on Wi − (Z ∪
imϕYi

). The boundary of W1 ∪Z W2 is Y1 ∪N Y2.

It should be noted that the construction of the collar of W1 ∪Z W2 depends on the
choice of representatives of the collars of Wi, Yi and Z. For our application in the proof
of the Mayer-Vietoris sequence it is important to observe, that the collar was constructed
in such a way, that away from the neighbourhood of the union of the collars of N in Yi

and Z is the original collar of W1 and W2.
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3. Proof of Proposition 4.1

At the end of this chapter we prove that for a space X the isomorphism classes of pairs
(S, g), where S is anm-dimensional stratifold, and g : S → X is a continuous map, is a set.

Proof of Proposition 4.1: For this we first note that the diffeomorphism classes of
manifolds form a set. This follows since a manifold is diffeomorphic to one obtained by
taking a countable union of open subsets of Rm (the domains of a countable atlas) and
identifying them according to an appropriate equivalence relation. Since the countable
sum of copies of Rm is a set, the set of subsets of a set is a set, and the possible equivalence
relations on these sets form a set, the diffeomorphism classes of m-dimensional manifolds
are a subset of the set of all sets obtained from a countable disjoint union of subsets of
Rm by some equivalence relation.

Next we note that a stratifold is obtained from a disjoint union of manifolds, the
strata, by introducing a topology (a collection of certain subsets) and a certain algebra.
The possible topologies as well as the possible algebras are a set. Thus the isomorphism
classes of stratifolds are a set. Finally for a fixed stratifold S and space X the maps from
S to X are a set, and so we conclude that the isomorphism classes of pairs (S, g), where
S is an m-dimensional stratifold, and g : S → X is a continuous map, is a set.
q.e.d.



APPENDIX B

The detailed proof of the Mayer-Vietoris sequence

The following lemma is the main tool for completing the proof of the Mayer-Vietoris
sequence along the lines explained in §5. It is also useful in other contexts. Roughly it
says that up to bordism we can separate a regular stratifold S by an open cylinder over
some regular stratifold P. Such an embedding is called a bicollar, i.e. an isomorphism
g : P × (−ǫ, ǫ) → V , where V is an open subset of S. The most naive idea would be to
”replace” P by P× (−ǫ, ǫ), so that as a set we change S into (S−P)∪ (P× (−ǫ, ǫ)). The
proof of the following lemma makes this rigorous.

Lemma B.1. Let T be a regular c-stratifold. Let ρ : T → R be a continuous function

such that ρ| ◦
T

is smooth. Let 0 be a regular value of ρ| ◦
T

and suppose that ρ−1(0) ⊂
◦

T and

that there is an open neighbourhood of 0 in R consisting only of regular values of ρ| ◦
T
.

Then there exists a regular c-stratifold T′ and a continuous map f : T′ → T with
∂T′ = ∂T, f |∂T′ = id such that f commutes with appropriate representatives of the collars
of T′ and T. Furthermore there is an ǫ > 0 such that ρ−1(0)×(−ǫ, ǫ) is contained in T′ as
open subset and a continuous map ρ′ : T′ → R whose restriction to the interior is smooth
and whose restriction to ρ−1(0)×(−ǫ, ǫ) is the projection to (−ǫ, ǫ). The restriction of f to
ρ−1(0) × (−ǫ, ǫ) is the projection onto ρ−1(0). In addition (ρ′)−1(−∞,−ǫ) ⊂ ρ−1(−∞, 0)
and (ρ′)−1(ǫ,∞) ⊂ ρ−1(0,∞).

If ∂T = ∅ then (T, id) and (T′, f) are bordant.

Proof: Choose δ such that (−δ, δ) consists only of regular values of ρ.

Consider a monotone smooth map µ : R → R which is the identity for |t| > δ/2 and
0 for |t| < δ/4.

RI

µ

4 2δδ
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Then η : T × R → R mapping (x, t) 7→ ρ(x) − µ(t) has 0 as regular value. Namely,
for those (x, t) mapping to 0 with |t| < δ we have |ρ(x)| < δ and thus (x, t) is a regular
point of η, and for those (x, t) mapping to 0 with |t| > δ/2 we have µ(t) = t and again
(x, t) is a regular point. Thus T′ := η−1(0) is by Proposition 4.2 a regular c-stratifold
(the collar is discussed below) containing V := ρ−1(0) × (−δ/4, δ/4). Setting ǫ = δ/4 we
have constructed the desired subset in T′.

0

T RIx
T T ´

To relate T′ to T, consider the map f : T′ → T given by the restriction of the projec-
tion onto T in T×R. This is an isomorphism outside ρ−1(0)× (−δ/2, δ/2). In particular
we can identify the boundaries via this isomorphism: ∂T′ = ∂T. Similarly we use this
isomorphism to induce a collar on T′ from a small collar of T and so the c-structure on
T makes T′ a regular c-stratifold. Finally we define ρ′ by the projection onto R. The
desired properties are obvious and this finishes the proof of the first statement.

If ∂T = ∅, we want to construct a bordism between (T, id) and (T′, f). For this,
choose a smooth map ζ : I → R which is 0 near 0 and 1 near 1. Then consider the
smooth map T × R × I → R mapping (x, t, s) → ρ(x) − (ζ(s)µ(t) + (1 − ζ(s))t). This
map has again 0 as regular value and the preimage of 0 is the required bordism Q. By
construction and Proposition 4.2 Q is a regular c-stratifold. The projection from Q to T
is a map r : Q → T, whose restriction to T is the identity on T and whose restriction to
T′ is f . Thus (Q, r) is a bordism between (T, id) and (T′, f).
q.e.d.

Now we apply this lemma to the proof of Proposition 5.1 and the detailed proof of
Theorem 5.2, the Mayer-Vietoris sequence.

Proofs of Proposition 5.1 and Theorem 5.2: We begin with the proof of Proposi-
tion 5.1. For [S, g] ∈ Hm(X) we consider as before Proposition 5.1 the closed subsets
A := g−1(X − V ) and B := g−1(X − U). By partition of unity we construct a smooth
function ρ : S → R and choose a regular value s such that ρ−1(s) ⊂ S − (A ∪ B) and
A ⊂ ρ−1(s,∞) and B ⊂ ρ−1(−∞, s). After composition with an appropriate translation
we can assume s = 0. Since S is compact, by Proposition 4.3 the regular values of ρ are
an open set in R.

Thus we can apply Lemma B.1 and we consider S′, f and ρ′. Then (S, g) is bordant to
(S′, gf) (since (S′, f) is bordant to (S, id)) and 0 is a regular value of ρ′. By construction
ρ−1(0)×(−ǫ, ǫ) is contained in S′ as open neighbourhood of P := (ρ′)−1(0) = ρ−1(0), with
other words we have a bicollar of P. Furthermore by construction gf is on P = ρ−1(0)
equal to g, in particular gf(P) is contained in U ∩ V . In Proposition 5.1 we had defined
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d([S, g]) as [ρ−1(0), g|ρ−1(0)] and the considerations so far implied that this definition is the
same if we pass from (S, g) to the bordant pair (S′, gf) and define d([S′, gf ]) as [P, gf |P],
which situation has the advantage that P has a bicollar.

To show that d is well defined it is enough to show that if (S′, gf) is the boundary of
(T, F ), then [P, g|P] is zero in Hk−1(U ∩ V ). Here T is a c-stratifold with boundary S′.
In particular we can take as T the cylinder over S and see that d does not depend on the
choice of the separating function or the regular value. We choose a representative of the
germ of collars c of T. Define AT := F−1(A) and BT := F−1(B) and construct a smooth
function η : T → R with the following properties:
1.) There is a µ > 0 such that the restriction of η to P × (−µ, µ) is the projection to
(−µ, µ),
2.) η(c(x, t)) = η(x),
3.) there is an δ > 0 such that F (η−1(−δ, δ)) ⊂ U ∩ V .
The construction of such a map η is easy by partition of unity since P has a bicollar in
S′.

By Sard’s theorem there is a t with |t| < min{δ, µ} which is a regular value of η. Since
the restriction of η to P × (−µ, µ) is the projection to (−µ, µ) we conclude that t is also
a regular value of η|S′. By condition 2.) we guarantee that Q := η−1(t) is a c-stratifold
with boundary P×{t}. By condition 3.) we know that F (Q) ⊂ U ∩V and so we see that
[P×{t}, F |P×{t}] is zero in Hk−1(U ∩V ). On the other hand obviously [P×{t}, F |P×{t}]
is bordant to [P, g|P]. This finishes the proof of Proposition 5.1.

Now we pass to the proof of Theorem 5.2. We first show that d commutes with induced
maps. The reason is the following. Let X ′ be a space with decomposition X ′ = U ′ ∪ V ′

and h : X → X ′ a continuous map respecting the decomposition. Then if we consider
(S, hf) instead of (S, f) one can take the same separating function ρ in the definition of
d and so d′([S, hf ]) = [ρ−1(s), hf |ρ−1(s)] = h∗([ρ

−1(s), f |ρ−1(s)]) = h∗(d([S, f ])).

Now we begin with the proof of the exactness by looking at

Hn(U ∩ V ; Z/2) → Hn(U ; Z/2) ⊕ Hn(V ; Z/2) → Hn(U ∪ V ; Z/2)

Since jU iU = i : U ∩ V → U ∪ V , the inclusion map, and also jV iV = i, the differ-
ence of the composition of the two maps is zero. To show the other inclusion, consider
[S, f ] ∈ Hn(U ; Z/2) and [S′, f ′] ∈ H(V ; Z/2) with (jU)∗([S, f ]) = (jV )∗([S

′, f ′]). Let
(T, g) be a bordism between [S, f ] and [S′, f ′], where g : T → U ∪ V . Similarly as in the
proof that d is well defined, we consider the closed disjoint subsets AT := S∪ g−1(X−V )
and BT := S′ ∪ g−1(X − U). By partition of unity we construct a smooth function
ρ : T → R with ρ(A) = −1 and ρ(B) = 1 and choose a regular value s such that

ρ−1(s) ⊂
◦

T − (AT ∪ BT). After composition with an appropriate translation we can as-
sume s = 0. Since T is compact, by Proposition 4.3 the regular values of ρ are an open set
in R. Applying Lemma B.1 we can assume after replacing T by T′ that ρ−1(s) has a bicol-
lar ϕ. Then [ρ−1(s), g|ρ−1(s)] ∈ Hn(U∩V ) and— as explained in §3—(ρ−1[s,∞), g|ρ−1[s,∞))
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is a bordism between (S, f) and (ρ−1(s), g|ρ−1(s)) in U .

S

Sg(    )

g

S

g(S)

P

U
V

T

´

´

Similarly (ρ−1(−∞, s]), g|ρ−1(−∞,s])) is a bordism between (S′, f ′) and (ρ−1(s), g|ρ−1(s)) in
V . Thus ((iU)∗([ρ

−1(s), g|ρ−1(s)]), (iV )∗([ρ
−1(s), g|ρ−1(s)])) = ([S, f ], [S′, f ′]).

Next we consider the exactness of

Hn(U ∪ V ; Z/2)
d→ Hn−1(U ∩ V ; Z/2) → Hn−1(U ; Z/2) ⊕Hn−1(V ; Z/2).

By construction of the boundary operator the composition of the two maps is zero. Namely
(ρ−1[s,∞), f |ρ−1[s,∞)) is a zero-bordism of d([S, f ]) in U and (ρ−1(−∞, s], f |ρ−1(−∞,s]) is a
zero-bordism of d([S, f ]) in V . Here we again apply Lemma B.1 and assume that ρ−1(s)
has a bicollar.

To show the other inclusion, start with [P, r] ∈ Hn−1(U ∩ V ; Z/2) and suppose
(iU)∗([P, r]) = 0 and (iV )∗([P, r]) = 0. Let (T1, g1) be a zero bordism of (iU)∗([P, r])
and (T2, g2) be a zero bordism of (iV )∗([P, r]). Then we consider T1 ∪P T2. Since
g1|P = g2|P = r, we can - as in the proof of the transitivity of the bordism rela-
tion - extend r to T1 ∪P T2 using g1 and g2 and denote this map by g1 ∪ g2. Thus
[T1 ∪P T2, g1 ∪ g2] ∈ Hn(U ∪ V ; Z/2). By construction of the boundary operator we have
d([T1∪PT2, g1∪g2]) = [P, r]. Here one constructs using the bicollar a separating function
which near P is the projection from P× (−ǫ, ǫ) to the second factor.

Finally, we prove exactness of

Hn(U ; Z/2) ⊕ Hn(V ; Z/2) → Hn(U ∪ V ; Z/2)
d→ Hn−1(U ∩ V ; Z/2).

The composition of the two maps is obviously zero. Now, consider [S, f ] ∈ Hn(U∪V ; Z/2)
with d([S, f ]) = 0. Consider ρ, s and P as in the definition of the boundary map d and
assume by Lemma B.1 that ρ−1(s) has a bicollar. We denote S+ := ρ−1[s,∞) and
S− := ρ−1(−∞, s]. Then S = S+ ∪P S−. If d([S, f ]) = [P, f |P] = 0 in Hn−1(U ∩ V ; Z/2)
there is Z with ∂Z = P and an extension of f |P to r : Z → U ∩ V . We glue to obtain
S+ ∪P Z and S− ∪P Z. Since f |P = r|P the maps f |S+ and r give a continuous map
f+ : S+ ∪P Z → U and similarly we obtain f− : S− ∪P Z → V . We are finished if
(jU)∗([S+ ∪P Z, f+]) − (jV )∗([S− ∪P Z, f−]) = [S, f ]. For this we have to find a bordism
(T, g) such that ∂T = S+ ∪ Z + S− ∪ Z + S (recall that −[P, r] = [P, r] for all elements
in Hn(Y ; Z/2)) and g extends the given three maps on the pieces.

This bordism is given as T := ((S+ ∪P Z) × [0, 1]) ∪Z ((S− ∪P Z) × [1, 2]) with
∂T = (S+ ∪P Z) × {0} + (S− ∪P Z) × {2} + S+ ∪P S−. Here we apply Lemma A.1



B. THE DETAILED PROOF OF THE MAYER-VIETORIS SEQUENCE 145

to smooth the corners or cusps. This finishes the proof of Theorem 5.2.
q.e.d.

Finally we discuss the modification needed to prove the Mayer-Vietoris sequence in
cohomology. Everything works with appropriate obvious modifications as for homology
except where we argue that the regular values of the separating map ρ are an open set.
This used that the stratifold on which ρ is defined is compact, which is not the case for
regular stratifolds representing cohomology classes. We are free in the choice of the sep-
arating function and we show now that we can always find a separating function ρ and a
regular value, which is an inner point of the set of regular values.

Let g : S → M be a proper smooth map and C and D be disjoint closed subsets of
M . We choose a smooth map ρ : M → R which on C is 1 and on D is −1. We select a
regular value s of ρg. The set of singular points of ρg is closed by Proposition 4.3, and
since a proper map on a locally compact space is closed ([Sch], p. 72), the image of the
singular points of ρg under g is a closed subset F of M .

Now we consider a bicollar ϕ : U → M − F of ρ−1(s), where U = {(x, t) ∈
ρ−1(s) × R| |t| < δ(x) for some continuous map δ : ρ−1(s) → R>0. We can choose ϕ
in such a way, that ρϕ(x, t) = t. Now we ”expand” this bicollar by choosing a diffeo-
morphism from U to ρ−1(s) × (−1/2, 1/2) mapping (x, t) to (x, η(x, t)), where η(x, ..) is
a diffeomorphism for each x ∈ ρ−1(s). Using this it is easy to find a new separating
function ρ′, such that ρ′ϕ(x, t) = t and ρ′−1(−1/2, 1/2) = U . By construction the interval
(−1/2, 1/2) consists only of regular values of ρ′f .

We apply this in the proof of the Mayer-Vietoris sequence for cohomology as follows.
Let U and V be open subsets of M = U ∪V . We consider the closed subsets C := M −U
and D := M − V . Then we construct ρ′ as above and note that ρ′g is a separating func-
tion of A := g−1(C) and B := g−1(D), and s is a regular value which is an inner point
in the set of regular values. With this the definition of the boundary operator works as
explained in chapter 12.

Now we explain why the Mayer-Vietoris sequence is exact. We do this separately at
the three places and only explain the non-obvious steps. We explain the arguments with
pictures.
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We begin with the exactness of

Hk−1(U ∩ V ) → Hk(U ∪ V ) → Hk(U) ⊕Hk(V )

Let α ∈ Hk(U ∪ V ) (picture A) such that it maps to zero. That is there are strati-
folds with boundary and proper maps extending the map representing α after restrict-
ing to U and V respectively. We abbreviate these extension by β and γ and write
∂β = j∗U (α) and ∂γ = j∗V (α) (picture B). Now we restrict β and γ to the intersection
U ∩ V and glue them (respecting the orientation) along the common boundary to obtain
ζ := (−γ|U∩V ) ∪ β|U∩V ∈ Hk−1(U ∩ V ) (picture C). Using a separating function ρ we
determine the image of ζ under the boundary operator: δ(ζ). Finally we have to show
that δ(ζ) is bordant to α. For this we consider η := β|ρ−1(−∞,s] ∪ (−γ|ρ−1[s,∞)), which
gives such a bordism (picture D).
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A

B

C

D

U
V

α ∈ Hk(U ∪ V )

γ

j∗V α = ∂γ

j∗Uα = ∂β

β

ζ := (−γ|U∩V ) ∪ β|U∩V

∈ Hk−1(U ∩ V )

̺−1(s) δζ

η := β|̺−1(−∞,s]

∪ (−γ|̺−1[s,∞))

∂η = α − δζ
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Now we consider the exactness of

Hk(U ∪ V ) → Hk(U) ⊕Hk(V ) → Hk(U ∩ V )

For this we consider α ∈ Hk(U) and β ∈ Hk(V ) (picture A) such that (α, β) maps to zero
in Hk(U ∩ V ). This means there is γ, a stratifold with boundary together with a proper
map to U∩V , such that ∂γ = i∗U(α)−i∗V (β) (picture B). Next we choose a separating func-
tion ρ as indicated in picture B. Using ρ we consider ζ := α|̺−1(−∞,s] ∪ (−δγ) ∪ β|̺−1[s,∞)

∈ Hk(U ∪ V ) (picture C). Finally we have to construct a bordism between j∗U(ζ) and
α resp. j∗V (ζ) and β. This is given by the equations j∗Uζ + ∂(γ|̺−1[s,∞)) = α and
j∗V ζ − ∂(γ|̺−1(−∞,s]) = β (picture D).

A

B

C

D

α ∈ Hk(U)

β ∈ Hk(V )

U

V

γ

∂γ = i∗Uα − i∗V β
̺−1(s)

ζ := α|̺−1(−∞,s] ∪ (−δγ) ∪ β|̺−1[s,∞)

∈ Hk(U ∪ V )

j∗
U

ζ + ∂(γ|̺−1[s,∞)) = α

j∗
V

ζ − ∂(γ|̺−1(−∞,s])

= β
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Finally we consider the exactness of

Hk(U) ⊕Hk(V ) → Hk(U ∩ V ) → Hk+1(U ∪ V )

Let α be in Hk(U ∩ V ) (and ρ a separating function) such that δα = 0 (picture A).
This means that there is a stratifold β with boundary δ(α) and a proper map extending
the given map (picture B). From this we construct the classes ζ1 := α|̺−1(−∞,s] ∪ β|U ∈
Hk(U) and ζ2 := (−α|̺−1[s,∞)) ∪ (−β|V ) ∈ Hk(V ) (picture C). Finally we note that
i∗U(ζ1) − i∗V (ζ2) = α (picture D).
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B

C

D

α ∈ Hk(U ∩ V )

̺−1(s)

U ∩ V

U
V

δα = ∂β

β

ζ1 := α|̺−1(−∞,s] ∪ β|U

ζ2 :=

(−α|̺−1[s,∞)) ∪ (−β|V )

i∗U (ζ1) − i∗V (ζ2) = α

+





APPENDIX C

The tensor product

We want to describe an important construction in linear algebra, the tensor product.
This assigns to two R-modules another R-module. The slogan is: Bilinearity is transferred
to linearity. More precisely, let R be a commutative ring with unit, for example Z or a
field. Consider a bilinear map f : V ×W → P between R-modules. Then we will construct
another R-module denoted V ⊗R W together with a canonical map V ×W → V ⊗R W
such that f induces a map from V ⊗RW → P commuting with the canonical map and f .

Since we are particularly interested in the case of R = Z we note that a Z-module is
the same as an abelian group. If A is an abelian group we make it a Z-module by defining
(for n ≥ 0) n · a := a + ... + a, where the sum is taken over n summands, and for n < 0
we define n · a := −(−n · a).

We begin with the definition of V ⊗R W . This is an R-module generated by all pairs
(v, w) with v ∈ V and w ∈ W . One denotes the corresponding generators by v ⊗ w and
calls them pure tensors. The fact that these will be the generators means that we will
get a surjective map

⊕

(v,w)∈V ×W

(v, w) · R −→ V ⊗R W

mapping (v, w) to v ⊗ w. In order to finish the definition of V ⊗R W we only need to
define the kernel K of this map. We describe the generators of the kernel, these are :

(rv, w)− (v, rw) for all v, w ∈ V, r ∈ R and
(rv, w)− (v, w)r for all v, w ∈ V, r ∈ R and
(v, w) + (v′, w) − (v + v′, w) respectively
(v, w) + (v, w′) − (v, w + w′) for all v, v′, w, w′ ∈ V

Let K be the submodule generated by these elements. Then we define the tensor prod-
uct

V ⊗R W :=




⊕

(v,w)∈V ×W

(v, w) · R





/

K

Remark: The following rules are translations of the relations and very useful for working
with tensor products:

r · (v ⊗ w) = (r · v) ⊗ w = v ⊗ (r · w)

v ⊗ w + v′ ⊗ w = (v + v′) ⊗ w

v ⊗ w + v ⊗ w′ = v ⊗ (w + w′)

151
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These rules imply that the following canonical map is well defined and bilinear:

V ×W −→ V ⊗R W
(v, w) 7−→ v ⊗ w

Let f : V ×W → P be bilinear. Then f induces a linear map

f : V ⊗R W −→ P
v ⊗ w 7−→ f(v, w)

This map is well defined since (rv)⊗w−v⊗ (rw) 7→ f(rv, w)−f(v, rw) = r f(v, w)−
r f(v, w) = 0 and v ⊗ w + v′ ⊗ w − (v + v′) ⊗ w 7→ f(v, w) + f(v′, w) − f(v + v, w) = 0 ,
respectively v ⊗ w + v ⊗ w′ − v ⊗ (w + w′) 7→ 0.

In turn, if we have a linear map from V ⊗R W to P , the composition of the canonical
map with this map is a bilinear map from V ×W to P . Thus as indicated above we have
seen the fundamental fact:

The linear maps from V ⊗RW to P correspond isomorphically to the bilinear

maps from V ×W to P .

Example: Let V = W = R. Then the bilinear map

R× R → R
(x, y) 7→ x · y

induces
R⊗R R → R
x⊗ y 7→ x · y

Obviously this map is surjective since 1 ⊗ 1 7→ 1. It is also injective, since

R → R⊗R R
x 7→ x⊗ 1

is the inverse map.

What is (V ⊕V ′)⊗R W ? The reader should convince himself that the following maps
are bilinear

(V ⊕ V ′) ×W −→ (V ⊗R W ) ⊕ (V ′ ⊗R W )
((v, v′), w) 7−→ (v ⊗ w, v′ ⊗ w)

and
V ×W −→ (V ⊕ V ′) ⊗R W and V ′ ×W −→ (V ⊕ V ′) ⊗R W
(v, w) 7−→ (v, 0) ⊗ w (v′, w) 7−→ (0, v′) ⊗ w

These maps induce homomorphisms
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(V ⊕ V ′) ⊗R W −→ V ⊗R W ⊕ V ′ ⊗R W and
(v, v′) ⊗ w 7−→ (v ⊗ w, v′ ⊗ w)

V ⊗R W ⊕ V ′ ⊗R W −→ (V ⊕ V ′) ⊗R W
((v ⊗ w1), (v

′ ⊗ w2)) 7−→ (v, 0) ⊗ w1 + (0, v′) ⊗ w2

and these are inverse to each other. Thus we have shown:

Proposition C.1. (V ⊕ V ′) ⊗R W
∼=−→ (V ⊗R W ) ⊕ (V ′ ⊗R W ).

It follows:
Rn⊗R Rm = (Rn−1⊕R)⊗R Rm ∼= Rn−1⊗R Rm ⊕R⊗R Rm ∼= Rn−1⊗R Rm⊕(R⊗R [R⊕· · ·⊕R]) = (Rn−1⊗R Rm)⊕Rm.

Thus dim Rn ⊗R R
m = n ·m and

Rn ⊗R R
m ∼= Rn·m ∼= M(n,m)
ei ⊗ ej 7−→ ei,j

where ei,j denotes the n × m-matrix whose coefficients are 0 except at the place (i, j),
where it is 1.

Example:
R⊗R M ∼= M
r ⊗ x 7→ r · x
If R = Z we note that a Z-module is the same as an abelian group. For abelian groups

A and B we write A⊗ B instead of A⊗Z B.

We want to determine Z/n ⊗ Z/m. We prepare this by some general considerations.
Let f : A → B and g : C → D be homomorphisms of R-modules. They induce a
homomorphism

f ⊗ g : A⊗R C → B ⊗R D
a⊗ c 7→ f(a) ⊗ g(c).

called the tensor product of f and g.

If we have an exact sequence of R-modules

...→ Ak+1 → Ak → Ak−1 → ...

and a fixed R-module P we can tensorize all Ak with P and tensorize all maps in the
exact sequence with Id on P , and obtain a new sequence of maps

...→ Ak+1 ⊗R P → Ak ⊗R P → Ak−1 ⊗R P → ...

called the induced sequence and ask if this is again exact. This is in general not the
case and this is one of the starting points of homological algebra which systematically
investigates the failure of exactness. Here we only study a very special case.

Proposition C.2. Let
0 → A→ B → C → 0

be a short exact sequence of R-modules. Then the induced sequence

A⊗R P → B ⊗R P → C ⊗R P → 0
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is again exact. In general the map A⊗R P → B ⊗R P is not injective.

Proof: Denote the map from A→ B by f and the map from B to C by g. Obviously
(g ⊗ Id)(f ⊗ Id) is zero. Thus g ⊗ Id induces a homomorphism B ⊗R P/(f⊗Id)(A⊗RP ) →
C ⊗R P . We have to show that this is an isomorphism. We give an inverse by defining
a bilinear map C × P to B ⊗R P/(f⊗Id)(A⊗RP ) by assigning to (c, p) an element [b ⊗ p],
where g(b) = c. The exactness of the original sequence shows that this induces a well
defined homomorphism from C ⊗R P to B ⊗R P/(f⊗Id)(A⊗RP ) and that it is an inverse of
B ⊗R P/(f⊗Id)(A⊗RP ) → C ⊗R P .

The last statement follows from the next example.
q.e.d.

As an application we compute Z/n⊗ Z/m. For this consider the exact sequence

0 → Z → Z → Z/n → 0

where the first map is multiplication by n, and tensorize it with Z/m to obtain an exact
sequence

Z ⊗ Z/m→ Z ⊗ Z/m→ Z/n⊗ Z/m→ 0

where the first map is multiplication by n. This translates by the isomorphism above to

Z/m→ Z/m→ Z/n⊗ Z/m→ 0

where again the first map is multiplication by n (if n and m are not coprime, the left map
is not injective finishing the proof of Proposition C.2). Thus Z/n⊗Z/m ∼= Z/gcd(m,n) and
we have shown:

Corollary C.3.
Z/n⊗ Z/m ∼= Z/gcd(n,m)

If A is a finitely generated abelian group it is isomorphic to F ⊕ T , where F ∼= Zk is
a free abelian group, and T is the torsion subgroup. The number k is called the rank of
A. A finitely generated torsion group is isomorphic to a finite sum of cyclic groups Z/ni

for some ni > 0. Thus Propositions C.1 and C.3 allow to compute the tensor products of
arbitrary finitely generated abelian groups.

Now we study the tensor product of an abelian group with the rationals Q. Let A be
an abelian group and K be a field. We first introduce the structure of a K-vector space
on A ⊗ K (where we consider K as abelian group to construct the tensor product) by:
α · (a ⊗ β) := a ⊗ α · β for a in A and α and β in K. Decompose A = F ⊕ T as above.
The tensor product T ⊗ Q is zero, since a⊗ q = n · a⊗ q/n = 0, if n · a = 0. The tensor
product F ⊗ Q is isomorphic to Qk. Thus A ⊗ Q is - considered as Q-vector space - a
vector space of dimension rank A.

Finally we consider an exact sequence of abelian groups

...→ Ak+1 → Ak → Ak−1 → ...

and the tensor product with an abelian group P .
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Proposition C.4. Let

...→ Ak+1 → Ak → Ak−1 → ...

be an exact sequence of abelian groups and P either be Q or a finitely generated free abelian
group, then the induced sequence

...→ Ak+1 ⊗ P → Ak ⊗ P → Ak−1 ⊗ P → ...

is exact.

Proof: The case of a free finitely generated abelian group P can by Lemma C.1 be
reduced to the case P = Z, which is clear.

If P = Q we return to Lemma C.2 and note that we are finished if we can show the
injectivity of f ⊗ Id : A ⊗ Q → B ⊗ Q. Consider an element of A ⊗ Q, a finite sum
∑

i ai ⊗ qi, and suppose
∑

i f(ai) ⊗ qi = 0. Let m be the product of the denominators of
the qi’s and consider m(

∑

i ai ⊗ qi) =
∑

i ai ⊗m · qi. The latter is an element of A ⊗ Z

mapping to zero in B ⊗ Q. Thus its image in B ⊗ Z is a torsion element (the kernel of
B ∼= B⊗Z → B⊗Q is the torsion subgroup of B (why?)). Since f ⊗Id : A⊗Z → B⊗Z

is injective, this implies that
∑

i ai ⊗m · qi is a torsion element mapping to zero in A⊗Q.
Since this is a Q-vector space m(

∑

i ai ⊗ qi) = 0 implies
∑

i ai ⊗ qi = 0.
q.e.d.
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Birkhäuser Verlag, Basel, 2005
[K-S] M. Kreck, W. Singhof Uniqueness of homology and cohomology on manifolds. preprint (2004)
[Mi 1] J. Milnor On manifolds homeomorphic to the 7-sphere. Ann. Math. 64 (1956) 399-405
[Mi 2] J. Milnor Topology from the differentiable viewpoint. Based on notes by David W. Weaver. The

University Press of Virginia, 1965
[Mi 3] J. Milnor Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics

Studies, No. 51 Princeton University Press, Princeton, N.J. 1963
[Mi-St] J. Milnor, J. Stasheff Characteristic classes. Annals of Mathematics Studies, No. 76. Princeton

University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974.
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connective homology theory, 63
contractible, 34
contravariant functor, 91
covariant functor, 91
cup product, 95
cutting, 21
cylinder, 21

degree, 56
derivation, 4
differential, 5
differential space, 2

Euler characteristic, 50
Euler class, 90, 105
exact, 35
exact sequence, 35

functor, 33, 63
fundamental class, 42, 55
fundamental theorem for finitely generated abelian

groups, 55
fundamental theorem of algebra, 57

generalized homology theory, 63
germ, 4
good atlas, 94
graded commutative, 95

hedgehog theorem, 58
homologically finite, 54
homology with compact support, 64
homotopic, 33
homotopy, 33
homotopy axiom, 33
homotopy equivalence, 33
homotopy inverse, 34
Hopf bundle, 117

induced homomorphism in cohomology, 89
induced map, 32
integral cohomology group, 81
integral homology, 54
intersection form, 101
isomorphism, 3, 27

Künneth Theorem, 72
Künneth Theorem for cohomology, 94
Kronecker homomorphism, 98
Kronecker pairing, 98
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Kronecker product, 98

lens space, 75
linear maps, 152
local homology, 44
local retract, 10
local trivialization, 75

Mayer-Vietoris sequence, 37, 63
Mayer-Vietoris sequence for integral cohomology,

86
Milnor manifolds, 78
morphism, 5

natural equivalence, 64
natural transformation, 59, 64
nice, 66
nowhere vanishing vector field, 100

one-point compactification, 11
open cone, 11
open unit ball, 43
oriented m-dimensional c-stratifold, 53

p-stratifold, 14
parametrized stratifold, 14
partition of unity, 15
path components, 31
path connected, 31
Poincaré duality, 83
Poincaré duality for Z/2-(co)homology, 84
Pontrjagin classes, 115
Pontrjagin number, 117
product formula for the Pontrjagin classes, 116
proper, 81
pure tensors, 151

quaternions, 78

rank, 154
rational cohomology, 94
rational homology, 71
reduction mod 2, 59
regular stratifold, 28
regular value, 16
relative homology, 45

signature, 101
signature theorem, 124
singular homology group, 30
skeleton, 8
smooth fibre bundle, 75
smooth manifold, 3
smooth maps, 14

Stiefel-Whitney class, 113
Stiefel-Whitney classes, 113
stratification, 8
stratifold, 8
stratifolds, i
stratum, 8

tangent space, 5
tautological bundle, 106
tensor product, 151, 153
top stratum, 8
topological sum, 13
total Chern class, 112
total Pontrjagin class, 116
transversal, 88

unit ball, 43

vector field, 57

Whitney formula, 113, 114


