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1 Foreword

This is a revised version of Section 7.5 of my Advanced Calculus (Harper & Row,

1978). It is a supplement to my textbook Introduction to Real Analysis, which is refer-

enced several times here. You should review Section 3.4 (Improper Integrals) of that

book before reading this document.

2 Introduction

In Section 7.2 (pp. 462–484) we considered functions of the form

F.y/ D
Z b

a

f .x; y/ dx; c � y � d:

We saw that if f is continuous on Œa; b� � Œc; d �, then F is continuous on Œc; d � (Exer-

cise 7.2.3, p. 481) and that we can reverse the order of integration in

Z d

c

F.y/ dy D
Z d

c

 

Z b

a

f .x; y/ dx

!

dy

to evaluate it as
Z d

c

F.y/ dy D
Z b

a

 

Z d

c

f .x; y/ dy

!

dx

(Corollary 7.2.3, p. 466).

Here is another important property of F .

Theorem 1 If f and fy are continuous on Œa; b� � Œc; d �; then

F.y/ D
Z b

a

f .x; y/ dx; c � y � d; (1)

is continuously differentiable on Œc; d � and F 0.y/ can be obtained by differentiating (1)

under the integral sign with respect to yI that is,

F 0.y/ D
Z b

a

fy.x; y/ dx; c � y � d: (2)

Here F 0.a/ and fy .x; a/ are derivatives from the right and F 0.b/ and fy .x; b/ are

derivatives from the left:

Proof If y and y C �y are in Œc; d � and �y ¤ 0, then

F.y C �y/ � F.y/

�y
D
Z b

a

f .x; y C �y/ � f .x; y/

�y
dx: (3)

From the mean value theorem (Theorem 2.3.11, p. 83), if x 2 Œa; b� and y, y C �y 2
Œc; d �, there is a y.x/ between y and y C �y such that

f .x; yC�y/�f .x; y/ D fy.x; y/�y D fy.x; y.x//�yC.fy .x; y.x/�fy .x; y//�y:
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From this and (3),
ˇ

ˇ

ˇ

ˇ

ˇ

F.y C �y/ � F.y/

�y
�
Z b

a

fy.x; y/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

�
Z b

a

jfy.x; y.x// � fy.x; y/j dx: (4)

Now suppose � > 0. Since fy is uniformly continuous on the compact set Œa; b��Œc; d �

(Corollary 5.2.14, p. 314) and y.x/ is between y and y C �y, there is a ı > 0 such

that if j�j < ı then

jfy.x; y/ � fy.x; y.x//j < �; .x; y/ 2 Œa; b� � Œc; d �:

This and (4) imply that

ˇ

ˇ

ˇ

ˇ

ˇ

F.y C �y � F.y//

�y
�
Z b

a

fy.x; y/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

< �.b � a/

if y and y C �y are in Œc; d � and 0 < j�yj < ı. This implies (2). Since the integral

in (2) is continuous on Œc; d � (Exercise 7.2.3, p. 481, with f replaced by fy), F 0 is

continuous on Œc; d �.

Example 1 Since

f .x; y/ D cos xy and fy.x; y/ D �x sin xy

are continuous for all .x; y/, Theorem 1 implies that if

F.y/ D
Z �

0

cos xy dx; �1 < y < 1; (5)

then

F 0.y/ D �
Z �

0

x sin xy dx; �1 < y < 1: (6)

(In applying Theorem 1 for a specific value of y, we take R D Œ0; �� � Œ��; ��, where

� > jyj.) This provides a convenient way to evaluate the integral in (6): integrating the

right side of (5) with respect to x yields

F.y/ D
sin xy

y

ˇ

ˇ

ˇ

ˇ

�

xD0

D
sin �y

y
; y ¤ 0:

Differentiating this and using (6) yields

Z �

0

x sin xy dx D sin �y

y2
� � cos �y

y
; y ¤ 0:

To verify this, use integration by parts.

We will study the continuity, differentiability, and integrability of

F.y/ D
Z b

a

f .x; y/ dx; y 2 S;
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where S is an interval or a union of intervals, and F is a convergent improper integral

for each y 2 S . If the domain of f is Œa; b/ � S where �1 < a < b � 1, we say

that F is pointwise convergent on S or simply convergent on S , and write

Z b

a

f .x; y/ dx D lim
r!b�

Z r

a

f .x; y/ dx (7)

if, for each y 2 S and every � > 0, there is an r D r0.y/ (which also depends on �)

such that

ˇ

ˇ

ˇ

ˇ

F.y/ �
Z r

a

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

ˇ

Z b

r

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

< �; r0.y/ � y < b: (8)

If the domain of f is .a; b� � S where �1 � a < b < 1, we replace (7) by

Z b

a

f .x; y/ dx D lim
r!aC

Z b

r

f .x; y/ dx

and (8) by

ˇ

ˇ

ˇ

ˇ

ˇ

F.y/ �
Z b

r

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z r

a

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

< �; a < r � r0.y/:

In general, pointwise convergence of F for all y 2 S does not imply that F is

continuous or integrable on Œc; d �, and the additional assumptions that fy is continuous

and
R b

a
fy.x; y/ dx converges do not imply (2).

Example 2 The function

f .x; y/ D ye�jyjx

is continuous on Œ0; 1/ � .�1; 1/ and

F.y/ D
Z 1

0

f .x; y/ dx D
Z 1

0

ye�jyjx dx

converges for all y, with

F.y/ D

8

ˆ

<

ˆ

:

�1 y < 0;

0 y D 0;

1 y > 0I
therefore, F is discontinuous at y D 0.

Example 3 The function

f .x; y/ D y3e�y2x

is continuous on Œ0; 1/ � .�1; 1/. Let

F.y/ D
Z 1

0

f .x; y/ dx D
Z 1

0

y3e�y2x dx D y; �1 < y < 1:
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Then

F 0.y/ D 1; �1 < y < 1:

However,

Z 1

0

@

@y
.y3e�y2x/ dx D

Z 1

0

.3y2 � 2y4x/e�y2x dx D
(

1; y ¤ 0;

0; y D 0;

so

F 0.y/ ¤
Z 1

0

@f .x; y/

@y
dx if y D 0:

3 Preparation

We begin with two useful convergence criteria for improper integrals that do not involve

a parameter. Consistent with the definition on p. 152, we say that f is locally integrable

on an interval I if it is integrable on every finite closed subinterval of I .

Theorem 2 ( Cauchy Criterion for Convergence of an Improper Integral I) Suppose

g is locally integrable on Œa; b/ and denote

G.r/ D
Z r

a

g.x/ dx; a � r < b:

Then the improper integral
R b

a g.x/ dx converges if and only if; for each � > 0; there

is an r0 2 Œa; b/ such that

jG.r/ � G.r1/j < �; r0 � r; r1 < b: (9)

Proof For necessity, suppose
R b

a
g.x/ dx D L. By definition, this means that for

each � > 0 there is an r0 2 Œa; b/ such that

jG.r/ � Lj <
�

2
and jG.r1/ � Lj <

�

2
; r0 � r; r1 < b:

Therefore

jG.r/ � G.r1/j D j.G.r/ � L/ � .G.r1/ � L/j
� jG.r/ � Lj C jG.r1/ � Lj < �; r0 � r; r1 < b:

For sufficiency, (9) implies that

jG.r/j D jG.r1/ C .G.r/ � G.r1//j < jG.r1/j C jG.r/ � G.r1/j � jG.r1/j C �;

r0 � r � r1 < b. Since G is also bounded on the compact set Œa; r0� (Theorem 5.2.11,

p. 313), G is bounded on Œa; b/. Therefore the monotonic functions

G.r/ D sup
˚

G.r1/
ˇ

ˇ r � r1 < b
	

and G.r/ D inf
˚

G.r1/
ˇ

ˇ r � r1 < b
	

5
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are well defined on Œa; b/, and

lim
r!b�

G.r/ D L and lim
r!b�

G.r/ D L

both exist and are finite (Theorem 2.1.11, p. 47). From (9),

jG.r/ � G.r1/j D j.G.r/ � G.r0// � .G.r1/ � G.r0//j
� jG.r/ � G.r0/j C jG.r1/ � G.r0/j < 2�;

so

G.r/ � G.r/ � 2�; r0 � r; r1 < b:

Since � is an arbitrary positive number, this implies that

lim
r!b�

.G.r/ � G.r// D 0;

so L D L. Let L D L D L. Since

G.r/ � G.r/ � G.r/;

it follows that limr!b� G.r/ D L.

We leave the proof of the following theorem to you (Exercise 2).

Theorem 3 (Cauchy Criterion for Convergence of an Improper Integral II) Suppose

g is locally integrable on .a; b� and denote

G.r/ D
Z b

r

g.x/ dx; a � r < b:

Then the improper integral
R b

a
g.x/ dx converges if and only if; for each � > 0; there

is an r0 2 .a; b� such that

jG.r/ � G.r1/j < �; a < r; r1 � r0:

To see why we associate Theorems 2 and 3 with Cauchy, compare them with The-

orem 4.3.5 (p. 204)

4 Uniform convergence of improper integrals

Henceforth we deal with functions f D f .x; y/ with domains I � S , where S is an

interval or a union of intervals and I is of one of the following forms:

� Œa; b/ with �1 < a < b � 1;

� .a; b� with �1 � a < b < 1;

� .a; b/ with �1 � a � b � 1.
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In all cases it is to be understood that f is locally integrable with respect to x on I .

When we say that the improper integral
R b

a
f .x; y/ dx has a stated property “on S” we

mean that it has the property for every y 2 S .

Definition 1 If the improper integral

Z b

a

f .x; y/ dx D lim
r!b�

Z r

a

f .x; y/ dx (10)

converges on S; it is said to converge uniformly .or be uniformly convergent/ on S if;

for each � > 0; there is an r0 2 Œa; b/ such that

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x; y/ dx �
Z r

a

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

< �; y 2 S; r0 � r < b;

or; equivalently;

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

r

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

< �; y 2 S; r0 � r < b: (11)

The crucial difference between pointwise and uniform convergence is that r0.y/ in

(8) may depend upon the particular value of y, while the r0 in (11) does not: one choice

must work for all y 2 S . Thus, uniform convergence implies pointwise convergence,

but pointwise convergence does not imply uniform convergence.

Theorem 4 .Cauchy Criterion for Uniform Convergence I/ The improper integral

in (10) converges uniformly on S if and only if; for each � > 0; there is an r0 2 Œa; b/

such that
ˇ

ˇ

ˇ

ˇ

Z r1

r

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

< �; y 2 S; r0 � r; r1 < b: (12)

Proof Suppose
R b

a
f .x; y/ dx converges uniformly on S and � > 0. From Defini-

tion 1, there is an r0 2 Œa; b/ such that

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

r

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

<
�

2
and

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

r1

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

<
�

2
; y 2 S; r0 � r; r1 < b: (13)

Since
Z r1

r

f .x; y/ dx D
Z b

r

f .x; y/ dx �
Z b

r1

f .x; y/ dx;

(13) and the triangle inequality imply (12).

For the converse, denote

F.y/ D
Z r

a

f .x; y/ dx:
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Since (12) implies that

jF.r; y/ � F.r1; y/j < �; y 2 S; r0 � r; r1 < b; (14)

Theorem 2 with G.r/ D F.r; y/ (y fixed but arbitrary in S ) implies that
R b

a f .x; y/ dx

converges pointwise for y 2 S . Therefore, if � > 0 then, for each y 2 S , there is an

r0.y/ 2 Œa; b/ such that
ˇ

ˇ

ˇ

ˇ

ˇ

Z b

r

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

< �; y 2 S; r0.y/ � r < b: (15)

For each y 2 S , choose r1.y/ � maxŒr0.y/; r0�. (Recall (14)). Then

Z b

r

f .x; y/ dx D
Z r1.y/

r

f .x; y/ dx C
Z b

r1.y/

f .x; y/ dx;

so (12), (15), and the triangle inequality imply that
ˇ

ˇ

ˇ

ˇ

ˇ

Z b

r

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

< 2�; y 2 S; r0 � r < b:

In practice, we don’t explicitly exhibit r0 for each given �. It suffices to obtain

estimates that clearly imply its existence.

Example 4 For the improper integral of Example 2,
ˇ

ˇ

ˇ

ˇ

Z 1

r

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

D
Z 1

r

jyje�jyjx D e�r jyj; y ¤ 0:

If jyj � �, then
ˇ

ˇ

ˇ

ˇ

Z 1

r

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

� e�r�;

so
R1

0
f .x; y/ dx converges uniformly on .�1; �� [ Œ�; 1/ if � > 0; however, it

does not converge uniformly on any neighborhood of y D 0, since, for any r > 0,

e�r jyj > 1
2

if jyj is sufficiently small.

Definition 2 If the improper integral

Z b

a

f .x; y/ dx D lim
r!aC

Z b

r

f .x; y/ dx

converges on S; it is said to converge uniformly .or be uniformly convergent/ on S if;

for each � > 0; there is an r0 2 .a; b� such that
ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x; y/ dx �
Z b

r

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

< �; y 2 S; a < r � r0;

or; equivalently;
ˇ

ˇ

ˇ

ˇ

Z r

a

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

< �; y 2 S; a < r � r0:
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We leave proof of the following theorem to you (Exercise 3).

Theorem 5 .Cauchy Criterion for Uniform Convergence II/ The improper integral

Z b

a

f .x; y/ dx D lim
r!aC

Z b

r

f .x; y/ dx

converges uniformly on S if and only if; for each � > 0; there is an r0 2 .a; b� such

that
ˇ

ˇ

ˇ

ˇ

Z r

r1

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

< �; y 2 S; a < r; r1 � r0:

We need one more definition, as follows.

Definition 3 Let f D f .x; y/ be defined on .a; b/ � S; where �1 � a < b � 1:

Suppose f is locally integrable on .a; b/ for all y 2 S and let c be an arbitrary point

in .a; b/: Then
R b

a
f .x; y/ dx is said to converge uniformly on S if

R c

a
f .x; y/ dx and

R b

c
f .x; y/ dx both converge uniformly on S:

We leave it to you (Exercise 4) to show that this definition is independent of c;

that is, if
R c

a
f .x; y/ dx and

R b

c
f .x; y/ dx both converge uniformly on S for some

c 2 .a; b/, then they both converge uniformly on S for every c 2 .a; b/.

We also leave it you (Exercise 5) to show that if f is bounded on Œa; b� � Œc; d �

and
R b

a
f .x; y/ dx exists as a proper integral for each y 2 Œc; d �, then it converges

uniformly on Œc; d � according to all three Definitions 1–3.

Example 5 Consider the improper integral

F.y/ D
Z 1

0

x�1=2e�xy dx;

which diverges if y � 0 (verify). Definition 3 applies if y > 0, so we consider the

improper integrals

F1.y/ D
Z 1

0

x�1=2e�xy dx and F2.y/ D
Z 1

1

x�1=2e�xy dx

separately. Moreover, we could just as well define

F1.y/ D
Z c

0

x�1=2e�xy dx and F2.y/ D
Z 1

c

x�1=2e�xy dx; (16)

where c is any positive number.

Definition 2 applies to F1. If 0 < r1 < r and y � 0, then

ˇ

ˇ

ˇ

ˇ

Z r1

r

x�1=2e�xy dx

ˇ

ˇ

ˇ

ˇ

<

Z r

r1

x�1=2 dx < 2r1=2;

so F1.y/ converges for uniformly on Œ0; 1/.
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Definition 1 applies to F2. Since

ˇ

ˇ

ˇ

ˇ

Z r1

r

x�1=2e�xy dx

ˇ

ˇ

ˇ

ˇ

< r�1=2

Z 1

r

e�xy dx D e�ry

yr1=2
;

F2.y/ converges uniformly on Œ�; 1/ if � > 0. It does not converge uniformly on

.0; �/, since the change of variable u D xy yields

Z r1

r

x�1=2e�xy dx D y�1=2

Z r1y

ry

u�1=2e�u du;

which, for any fixed r > 0, can be made arbitrarily large by taking y sufficiently small

and r D 1=y. Therefore we conclude that F.y/ converges uniformly on Œ�; 1/ if

� > 0:

Note that that the constant c in (16) plays no role in this argument.

Example 6 Suppose we take

Z 1

0

sin u

u
du D �

2
(17)

as given (Exercise 31(b)). Substituting u D xy with y > 0 yields

Z 1

0

sin xy

x
dx D �

2
; y > 0: (18)

What about uniform convergence? Since .sin xy/=x is continuous at x D 0, Defini-

tion 1 and Theorem 4 apply here. If 0 < r < r1 and y > 0, then

Z r1

r

sin xy

x
dx D � 1

y

�

cos xy

x

ˇ

ˇ

ˇ

ˇ

r1

r

C
Z r1

r

cos xy

x2
dx

�

; so

ˇ

ˇ

ˇ

ˇ

Z r1

r

sin xy

x
dx

ˇ

ˇ

ˇ

ˇ

<
3

ry
:

Therefore (18) converges uniformly on Œ�; 1/ if � > 0. On the other hand, from (17),

there is a ı > 0 such that

Z 1

u0

sin u

u
du >

�

4
; 0 � u0 < ı:

This and (18) imply that

Z 1

r

sin xy

x
dx D

Z 1

yr

sin u

u
du >

�

4

for any r > 0 if 0 < y < ı=r . Hence, (18) does not converge uniformly on any interval

.0; �� with � > 0.
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5 Absolutely Uniformly Convergent Improper Integrals

Definition 4 .Absolute Uniform Convergence I/ The improper integral

Z b

a

f .x; y/ dx D lim
r!b�

Z r

a

f .x; y/ dx

is said to converge absolutely uniformly on S if the improper integral

Z b

a

jf .x; y/j dx D lim
r!b�

Z r

a

jf .x; y/j dx

converges uniformly on S ; that is, if, for each � > 0, there is an r0 2 Œa; b/ such that

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

jf .x; y/j dx �
Z r

a

jf .x; y/j dx

ˇ

ˇ

ˇ

ˇ

ˇ

< �; y 2 S; r0 < r < b:

To see that this definition makes sense, recall that if f is locally integrable on Œa; b/

for all y in S , then so is jf j (Theorem 3.4.9, p. 161). Theorem 4 with f replaced by

jf j implies that
R b

a
f .x; y/ dx converges absolutely uniformly on S if and only if, for

each � > 0, there is an r0 2 Œa; b/ such that

Z r1

r

jf .x; y/j dx < �; y 2 S; r0 � r < r1 < b:

Since
ˇ

ˇ

ˇ

ˇ

Z r1

r

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

�
Z r1

r

jf .x; y/j dx;

Theorem 4 implies that if
R b

a
f .x; y/ dx converges absolutely uniformly on S then it

converges uniformly on S .

Theorem 6 . Weierstrass’s Test for Absolute Uniform Convergence I/ Suppose

M D M.x/ is nonnegative on Œa; b/;
R b

a
M.x/ dx < 1; and

jf .x; y/j � M.x/; y 2 S; a � x < b: (19)

Then
R b

a
f .x; y/ dx converges absolutely uniformly on S:

Proof Denote
R b

a
M.x/ dx D L < 1. By definition, for each � > 0 there is an

r0 2 Œa; b/ such that

L � � <

Z r

a

M.x/ dx � L; r0 < r < b:

Therefore, if r0 < r � r1; then

0 �
Z r1

r

M.x/ dx D
�Z r1

a

M.x/ dx � L

�

�
�Z r

a

M.x/ dx � L

�

< �

11
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This and (19) imply that

Z r1

r

jf .x; y/j dx �
Z r1

r

M.x/ dx < �; y 2 S; a � r0 < r < r1 < b:

Now Theorem 4 implies the stated conclusion.

Example 7 Suppose g D g.x; y/ is locally integrable on Œ0; 1/ for all y 2 S and, for

some a0 � 0, there are constants K and p0 such that

jg.x; y/j � Kep0x ; y 2 S; x � a0:

If p > p0 and r � a0, then

Z 1

r

e�px jg.x; y/j dx D
Z 1

r

e�.p�p0/xe�p0xjg.x; y/j dx

� K

Z 1

r

e�.p�p0/x dx D Ke�.p�p0/r

p � p0

;

so
R1

0
e�pxg.x; y/ dx converges absolutely on S . For example, since

jx˛ sin xyj < ep0x and jx˛ cos xyj < ep0x

for x sufficiently large if p0 > 0, Theorem 4 implies that
R1

0
e�pxx˛ sin xy dx

and
R1

0 e�pxx˛ cos xy dx converge absolutely uniformly on .�1; 1/ if p > 0 and

˛ � 0. As a matter of fact,
R1

0
e�pxx˛ sin xy dx converges absolutely on .�1; 1/

if p > 0 and ˛ > �1. (Why?)

Definition 5 .Absolute Uniform Convergence II/ The improper integral

Z b

a

f .x; y/ dx D lim
r!aC

Z b

r

f .x; y/ dx

is said to converge absolutely uniformly on S if the improper integral

Z b

a

jf .x; y/j dx D lim
r!aC

Z b

r

jf .x; y/j dx

converges uniformly on S ; that is, if, for each � > 0, there is an r0 2 .a; b� such that

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

jf .x; y/j dx �
Z b

r

jf .x; y/j dx

ˇ

ˇ

ˇ

ˇ

ˇ

< �; y 2 S; a < r < r0 � b:

We leave it to you (Exercise 7) to prove the following theorem.

Theorem 7 .Weierstrass’s Test for Absolute Uniform Convergence II/ Suppose

M D M.x/ is nonnegative on .a; b�;
R b

a
M.x/ dx < 1; and

jf .x; y/j � M.x/; y 2 S; x 2 .a; b�:

Then
R b

a
f .x; y/ dx converges absolutely uniformly on S .

12



Example 8 If g D g.x; y/ is locally integrable on .0; 1� for all y 2 S and

jg.x; y/j � Ax�ˇ ; 0 < x � x0;

for each y 2 S , then
Z 1

0

x˛g.x; y/ dx

converges absolutely uniformly on S if ˛ > ˇ � 1. To see this, note that if 0 < r <

r1 � x0, then

Z r

r1

x˛jg.x; y/j dx � A

Z r

r1

x˛�ˇ dx D Ax˛�ˇC1

˛ � ˇ C 1

ˇ

ˇ

ˇ

ˇ

r

r1

<
Ar˛�ˇC1

˛ � ˇ C 1
:

Applying this with ˇ D 0 shows that

F.y/ D
Z 1

0

x˛ cos xy dx

converges absolutely uniformly on .�1; 1/ if ˛ > �1 and

G.y/ D
Z 1

0

x˛ sin xy dx

converges absolutely uniformly on .�1; 1/ if ˛ > �2.

By recalling Theorem 4.4.15 (p. 246), you can see why we associate Theorems 6

and 7 with Weierstrass.

6 Dirichlet’s Tests

Weierstrass’s test is useful and important, but it has a basic shortcoming: it applies

only to absolutely uniformly convergent improper integrals. The next theorem applies

in some cases where
R b

a
f .x; y/ dx converges uniformly on S , but

R b

a
jf .x; y/j dx

does not.

Theorem 8 .Dirichlet’s Test for Uniform Convergence I/ If g; gx ; and h are con-

tinuous on Œa; b/ � S; then
Z b

a

g.x; y/h.x; y/ dx

converges uniformly on S if the following conditions are satisfiedW

(a) lim
x!b�

(

sup
y2S

jg.x; y/j
)

D 0I

(b) There is a constant M such that

sup
y2S

ˇ

ˇ

ˇ

ˇ

Z x

a

h.u; y/ du

ˇ

ˇ

ˇ

ˇ

< M; a � x < bI

13
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(c)
R b

a
jgx.x; y/j dx converges uniformly on S:

Proof If

H.x; y/ D
Z x

a

h.u; y/ du; (20)

then integration by parts yields

Z r1

r

g.x; y/h.x; y/ dx D
Z r1

r

g.x; y/Hx .x; y/ dx

D g.r1; y/H.r1; y/ � g.r; y/H.r; y/ (21)

�
Z r1

r

gx.x; y/H.x; y/ dx:

Since assumption (b) and (20) imply that jH.x; y/j � M; .x; y/ 2 .a; b��S , Eqn. (21)

implies that

ˇ

ˇ

ˇ

ˇ

Z r1

r

g.x; y/h.x; y/ dx

ˇ

ˇ

ˇ

ˇ

< M

�

2 sup
x�r

jg.x; y/j C
Z r1

r

jgx.x; y/j dx

�

(22)

on Œr; r1� � S .

Now suppose � > 0. From assumption (a), there is an r0 2 Œa; b/ such that

jg.x; y/j < � on S if r0 � x < b. From assumption (c) and Theorem 6, there is

an s0 2 Œa; b/ such that

Z r1

r

jgx.x; y/j dx < �; y 2 S; s0 < r < r1 < b:

Therefore (22) implies that

ˇ

ˇ

ˇ

ˇ

Z r1

r

g.x; y/h.x; y/

ˇ

ˇ

ˇ

ˇ

< 3M�; y 2 S; max.r0; s0/ < r < r1 < b:

Now Theorem 4 implies the stated conclusion.

The statement of this theorem is complicated, but applying it isn’t; just look for a

factorization f D gh, where h has a bounded antderivative on Œa; b/ and g is “small”

near b. Then integrate by parts and hope that something nice happens. A similar

comment applies to Theorem 9, which follows.

Example 9 Let

I.y/ D
Z 1

0

cos xy

x C y
dx; y > 0:

The obvious inequality
ˇ

ˇ

ˇ

ˇ

cos xy

x C y

ˇ

ˇ

ˇ

ˇ

� 1

x C y

is useless here, since
Z 1

0

dx

x C y
D 1:

14



However, integration by parts yields

Z r1

r

cos xy

x C y
dx D sin xy

y.x C y/

ˇ

ˇ

ˇ

ˇ

r1

r

C
Z r1

r

sin xy

y.x C y/2
dx

D sin r1y

y.r1 C y/
� sin ry

y.r C y/
C
Z r1

r

sin xy

y.x C y/2
dx:

Therefore, if 0 < r < r1, then

ˇ

ˇ

ˇ

ˇ

Z r1

r

cos xy

x C y
dx

ˇ

ˇ

ˇ

ˇ

<
1

y

�

2

r C y
C
Z 1

r

1

.x C y/2

�

� 3

y.r C y/2
� 3

�.r C �/

if y � � > 0. Now Theorem 4 implies that I.y/ converges uniformly on Œ�; 1/ if

� > 0.

We leave the proof of the following theorem to you (Exercise 10).

Theorem 9 .Dirichlet’s Test for Uniform Convergence II/ If g; gx ; and h are con-

tinuous on .a; b� � S; then
Z b

a

g.x; y/h.x; y/ dx

converges uniformly on S if the following conditions are satisfiedW

(a) lim
x!aC

(

sup
y2S

jg.x; y/j
)

D 0I

(b) There is a constant M such that

sup
y2S

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

x

h.u; y/ du

ˇ

ˇ

ˇ

ˇ

ˇ

� M; a < x � bI

(c)
R b

a
jgx.x; y/j dx converges uniformly on S .

By recalling Theorems 3.4.10 (p. 163), 4.3.20 (p. 217), and 4.4.16 (p. 248), you

can see why we associate Theorems 8 and 9 with Dirichlet.

7 Consequences of uniform convergence

Theorem 10 If f D f .x; y/ is continuous on either Œa; b/ � Œc; d � or .a; b� � Œc; d �

and

F.y/ D
Z b

a

f .x; y/ dx (23)

converges uniformly on Œc; d �; then F is continuous on Œc; d �: Moreover;

Z d

c

 

Z b

a

f .x; y/ dx

!

dy D
Z b

a

 

Z d

c

f .x; y/ dy

!

dx: (24)
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Proof We will assume that f is continuous on .a; b� � Œc; d �. You can consider the

other case (Exercise 14).

We will first show that F in (23) is continuous on Œc; d �. Since F converges uni-

formly on Œc; d �, Definition 1 (specifically, (11)) implies that if � > 0, there is an

r 2 Œa; b/ such that
ˇ

ˇ

ˇ

ˇ

ˇ

Z b

r

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

< �; c � y � d:

Therefore, if c � y; y0 � d�, then

jF.y/ � F.y0/j D
ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x; y/ dx �
Z b

a

f .x; y0/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

Z r

a

Œf .x; y/ � f .x; y0/� dx

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

ˇ

Z b

r

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

ˇ

Z b

r

f .x; y0/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

;

so

jF.y/ � F.y0/j �
Z r

a

jf .x; y/ � f .x; y0/j dx C 2�: (25)

Since f is uniformly continuous on the compact set Œa; r ��Œc; d � (Corollary 5.2.14,

p. 314), there is a ı > 0 such that

jf .x; y/ � f .x; y0/j < �

if .x; y/ and .x; y0/ are in Œa; r � � Œc; d � and jy � y0j < ı. This and (25) imply that

jF.y/ � F.y0/j < .r � a/� C 2� < .b � a C 2/�

if y and y0 are in Œc; d � and jy � y0j < ı. Therefore F is continuous on Œc; d �, so the

integral on left side of (24) exists. Denote

I D
Z d

c

 

Z b

a

f .x; y/ dx

!

dy: (26)

We will show that the improper integral on the right side of (24) converges to I . To

this end, denote

I.r/ D
Z r

a

 

Z d

c

f .x; y/ dy

!

dx:

Since we can reverse the order of integration of the continuous function f over the

rectangle Œa; r � � Œc; d � (Corollary 7.2.2, p. 466),

I.r/ D
Z d

c

�Z r

a

f .x; y/ dx

�

dy:
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From this and (26),

I � I.r/ D
Z d

c

 

Z b

r

f .x; y/ dx

!

dy:

Now suppose � > 0. Since
R b

a
f .x; y/ dx converges uniformly on Œc; d �, there is an

r0 2 .a; b� such that
ˇ

ˇ

ˇ

ˇ

ˇ

Z b

r

f .x; y/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

< �; r0 < r < b;

so jI � I.r/j < .d � c/� if r0 < r < b. Hence,

lim
r!b�

Z r

a

 

Z d

c

f .x; y/ dy

!

dx D
Z d

c

 

Z b

a

f .x; y/ dx

!

dy;

which completes the proof of (24).

Example 10 It is straightforward to verify that
Z 1

0

e�xy dx D 1

y
; y > 0;

and the convergence is uniform on Œ�; 1/ if � > 0. Therefore Theorem 10 implies that

if 0 < y1 < y2, then
Z y2

y1

dy

y
D

Z y2

y1

�Z 1

0

e�xy dx

�

dy D
Z 1

0

�Z y2

y1

e�xy dy

�

dy

D
Z 1

0

e�xy1 � e�xy2

x
dx:

Since
Z y2

y1

dy

y
D log

y2

y1

; y2 � y1 > 0;

it follows that
Z 1

0

e�xy1 � e�xy2

x
dx D log

y2

y1

; y2 � y1 > 0:

Example 11 From Example 6,
Z 1

0

sin xy

x
dx D �

2
; y > 0;

and the convergence is uniform on Œ�; 1/ if � > 0. Therefore, Theorem 10 implies

that if 0 < y1 < y2, then

�

2
.y2 � y1/ D

Z y2

y1

�
Z 1

0

sin xy

x
dx

�

dy D
Z 1

0

�
Z y2

y1

sin xy

x
dy

�

dx

D
Z 1

0

cos xy1 � cos xy2

x2
dx: (27)
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The last integral converges uniformly on .�1; 1/ (Exercise 10(h)), and is therefore

continuous with respect to y1 on .�1; 1/, by Theorem 10; in particular, we can let

y1 ! 0C in (27) and replace y2 by y to obtain

Z 1

0

1 � cos xy

x2
dx D �y

2
; y � 0:

The next theorem is analogous to Theorem 4.4.20 (p. 252).

Theorem 11 Let f and fy be continuous on either Œa; b/ � Œc; d � or .a; b� � Œc; d �:

Suppose that the improper integral

F.y/ D
Z b

a

f .x; y/ dx

converges for some y0 2 Œc; d � and

G.y/ D
Z b

a

fy.x; y/ dx

converges uniformly on Œc; d �: Then F converges uniformly on Œc; d � and is given ex-

plicitly by

F.y/ D F.y0/ C
Z y

y0

G.t/ dt; c � y � d:

Moreover, F is continuously differentiable on Œc; d �; specifically,

F 0.y/ D G.y/; c � y � d; (28)

where F 0.c/ and fy.x; c/ are derivatives from the right, and F 0.d/ and fy.x; d/ are

derivatives from the left:

Proof We will assume that f and fy are continuous on Œa; b/ � Œc; d �. You can

consider the other case (Exercise 15).

Let

Fr.y/ D
Z r

a

f .x; y/ dx; a � r < b; c � y � d:

Since f and fy are continuous on Œa; r � � Œc; d �, Theorem 1 implies that

F 0
r .y/ D

Z r

a

fy.x; y/ dx; c � y � d:

Then

Fr .y/ D Fr .y0/ C
Z y

y0

�
Z r

a

fy.x; t/ dx

�

dt

D F.y0/ C
Z y

y0

G.t/ dt

C.Fr .y0/ � F.y0// �
Z y

y0

 

Z b

r

fy.x; t/ dx

!

dt; c � y � d:

18



Therefore,
ˇ

ˇ

ˇ

ˇ

Fr .y/ � F.y0/ �
Z y

y0

G.t/ dt

ˇ

ˇ

ˇ

ˇ

� jFr.y0/ � F.y0/j

C
ˇ

ˇ

ˇ

ˇ

ˇ

Z y

y0

Z b

r

fy.x; t/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

dt: (29)

Now suppose � > 0. Since we have assumed that limr!b� Fr.y0/ D F.y0/ exists,

there is an r0 in .a; b/ such that

jFr.y0/ � F.y0/j < �; r0 < r < b:

Since we have assumed that G.y/ converges for y 2 Œc; d �, there is an r1 2 Œa; b/ such

that
ˇ

ˇ

ˇ

ˇ

ˇ

Z b

r

fy.x; t/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

< �; t 2 Œc; d �; r1 � r < b:

Therefore, (29) yields
ˇ

ˇ

ˇ

ˇ

Fr.y/ � F.y0/ �
Z y

y0

G.t/ dt

ˇ

ˇ

ˇ

ˇ

< �.1 C jy � y0j/ � �.1 C d � c/

if max.r0; r1/ � r < b and t 2 Œc; d �. Therefore F.y/ converges uniformly on Œc; d �

and

F.y/ D F.y0/ C
Z y

y0

G.t/ dt; c � y � d:

Since G is continuous on Œc; d � by Theorem 10, (28) follows from differentiating this

(Theorem 3.3.11, p. 141).

Example 12 Let

I.y/ D
Z 1

0

e�yx2

dx; y > 0:

Since
Z r

0

e�yx2

dx D 1
p

y

Z r
p

y

0

e�t2

dt;

it follows that

I.y/ D 1
p

y

Z 1

0

e�t2

dt;

and the convergence is uniform on Œ�; 1/ if � > 0 (Exercise 8(i)). To evaluate the last

integral, denote J.�/ D
R �

0
e�t2

dt ; then

J 2.�/ D
�
Z �

0

e�u2

du

��
Z �

0

e�v2

dv

�

D
Z �

0

Z �

0

e�.u2Cv2/ du dv:

Transforming to polar coordinates r D r cos � , v D r sin � yields

J 2.�/ D
Z �=2

0

Z �

0

re�r2

dr d� D �.1 � e��2

/

4
; so J.�/ D

q

�.1 � e��2
/

2
:
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Therefore

Z 1

0

e�t2

dt D lim
�!1

J.�/ D
p

�

2
and

Z 1

0

e�yx2

dx D 1

2

r

�

y
; y > 0:

Differentiating this n times with respect to y yields

Z 1

0

x2ne�yx2

dx D 1 � 3 � � � .2n � 1/
p

�

2nynC1=2
y > 0; n D 1; 2; 3; : : : ;

where Theorem 11 justifies the differentiation for every n, since all these integrals

converge uniformly on Œ�; 1/ if � > 0 (Exercise 8(i)).

Some advice for applying this theorem: Be sure to check first that F.y0/ D
R b

a
f .x; y0/ dx converges for at least one value of y. If so, differentiate

R b

a
f .x; y/ dx

formally to obtain
R b

a
fy.x; y/ dx. Then F 0.y/ D

R b

a
fy.x; y/ dx if y is in some

interval on which this improper integral converges uniformly.

8 Applications to Laplace transforms

The Laplace transform of a function f locally integrable on Œ0; 1/ is

F.s/ D
Z 1

0

e�sxf .x/ dx

for all s such that integral converges. Laplace transforms are widely applied in mathe-

matics, particularly in solving differential equations.

We leave it to you to prove the following theorem (Exercise 26).

Theorem 12 Suppose f is locally integrable on Œ0; 1/ and jf .x/j � Mes0x for suf-

ficiently large x. Then the Laplace transform of F converges uniformly on Œs1; 1/ if

s1 > s0.

Theorem 13 If f is continuous on Œ0; 1/ and H.x/ D
R1

0
e�s0uf .u/ du is bounded

on Œ0; 1/; then the Laplace transform of f converges uniformly on Œs1; 1/ if s1 > s0:

Proof If 0 � r � r1,

Z r1

r

e�sxf .x/ dx D
Z r1

r

e�.s�s0/xe�s0xf .x/ dt D
Z r1

r

e�.s�s0/t H 0.x/ dt:

Integration by parts yields

Z r1

r

e�sxf .x/ dt D e�.s�s0/xH.x/

ˇ

ˇ

ˇ

ˇ

r1

r

C .s � s0/

Z r1

r

e�.s�s0/xH.x/ dx:
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Therefore, if jH.x/j � M , then
ˇ

ˇ

ˇ

ˇ

Z r1

r

e�sxf .x/ dx

ˇ

ˇ

ˇ

ˇ

� M

ˇ

ˇ

ˇ

ˇ

e�.s�s0/r1 C e�.s�s0/r C .s � s0/

Z r1

r

e�.s�s0/x dx

ˇ

ˇ

ˇ

ˇ

� 3Me�.s�s0/r � 3Me�.s1�s0/r ; s � s1:

Now Theorem 4 implies that F.s/ converges uniformly on Œs1; 1/.

The following theorem draws a considerably stonger conclusion from the same

assumptions.

Theorem 14 If f is continuous on Œ0; 1/ and

H.x/ D
Z x

0

e�s0uf .u/ du

is bounded on Œ0; 1/; then the Laplace transform of f is infinitely differentiable on

.s0; 1/; with

F .n/.s/ D .�1/n

Z 1

0

e�sxxnf .x/ dxI (30)

that is, the n-th derivative of the Laplace transform of f .x/ is the Laplace transform

of .�1/nxnf .x/.

Proof First we will show that the integrals

In.s/ D
Z 1

0

e�sxxnf .x/ dx; n D 0; 1; 2; : : :

all converge uniformly on Œs1; 1/ if s1 > s0. If 0 < r < r1, then
Z r1

r

e�sxxnf .x/ dx D
Z r1

r

e�.s�s0/xe�s0xxnf .x/ dx D
Z r1

r

e�.s�s0/xxnH 0.x/ dx:

Integrating by parts yields
Z r1

r

e�sxxnf .x/ dx D rn
1 e�.s�s0/r1H.r/ � rne�.s�s0/rH.r/

�
Z r1

r

H.x/
�

e�.s�s0/xxn
�0

dx;

where 0 indicates differentiation with respect to x. Therefore, if jH.x/j � M � 1 on

Œ0; 1/, then
ˇ

ˇ

ˇ

ˇ

Z r1

r

e�sxxnf .x/ dx

ˇ

ˇ

ˇ

ˇ

� M

�

e�.s�s0/r rn C e�.s�s0/rrn C
Z 1

r

j.e�.s�s0/x/xn/0j dx

�

:

Therefore, since e�.s�s0/r rn decreases monotonically on .n; 1/ if s > s0 (check!),
ˇ

ˇ

ˇ

ˇ

Z r1

r

e�sxxnf .x/ dx

ˇ

ˇ

ˇ

ˇ

< 3Me�.s�s0/r rn; n < r < r1;

so Theorem 4 implies that In.s/ converges uniformly Œs1; 1/ if s1 > s0. Now The-

orem 11 implies that FnC1 D �F 0
n, and an easy induction proof yields (30) (Exer-

cise 25).
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Example 13 Here we apply Theorem 12 with f .x/ D cos ax (a ¤ 0) and s0 D 0.

Since
Z x

0

cos au du D
sin ax

a

is bounded on .0; 1/, Theorem 12 implies that

F.s/ D
Z 1

0

e�sx cos ax dx

converges and

F .n/.s/ D .�1/n

Z 1

0

e�sxxn cos ax dx; s > 0: (31)

(Note that this is also true if a D 0.) Elementary integration yields

F.s/ D
s

s2 C a2
:

Hence, from (31),

Z 1

0

e�sxxn cos ax D .�1/n d n

dsn

s

s2 C a2
; n D 0; 1; : : : :
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9 Exercises

1. Suppose g and h are differentiable on Œa; b�, with

a � g.y/ � b and a � h.y/ � b; c � y � d:

Let f and fy be continuous on Œa; b� � Œc; d �. Derive Liebniz’s rule:

d

dy

Z h.y/

g.y/

f .x; y/ dx D f .h.y/; y/h0.y/ � f .g.y/; y/g0 .y/

C
Z h.y/

g.y/

fy.x; y/ dx:

(Hint: Define H.y; u; v/ D
R v

u
f .x; y/ dx and use the chain rule.)

2. Adapt the proof of Theorem 2 to prove Theorem 3.

3. Adapt the proof of Theorem 4 to prove Theorem 5.

4. Show that Definition 3 is independent of c; that is, if
R c

a
f .x; y/ dx and

R b

c
f .x; y/ dx

both converge uniformly on S for some c 2 .a; b/, then they both converge uni-

formly on S and every c 2 .a; b/.

5. (a) Show that if f is bounded on Œa; b� � Œc; d � and
R b

a
f .x; y/ dx exists as a

proper integral for each y 2 Œc; d �, then it converges uniformly on Œc; d �

according to all of Definition 1–3.

(b) Give an example to show that the boundedness of f is essential in (a).

6. Working directly from Definition 1, discuss uniform convergence of the follow-

ing integrals:

(a)

Z 1

0

dx

1 C y2x2
dx (b)

Z 1

0

e�xyx2 dx

(c)

Z 1

0

x2ne�yx2

dx (d)

Z 1

0

sin xy2 dx

(e)

Z 1

0

.3y2 � 2xy/e�y2x dx (f)

Z 1

0

.2xy � y2x2/e�xy dx

7. Adapt the proof of Theorem 6 to prove Theorem 7.

8. Use Weierstrass’s test to show that the integral converges uniformly on S W

(a)

Z 1

0

e�xy sin x dx, S D Œ�; 1/, � > 0

(b)

Z 1

0

sin x

xy
dx, S D Œc; d �, 1 < c < d < 2
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(c)

Z 1

1

e�px sin xy

x
dx, p > 0, S D .�1; 1/

(d)

Z 1

0

exy

.1 � x/y
dx, S D .�1; b/, b < 1

(e)

Z 1

�1

cos xy

1 C x2y2
dx, S D .�1; ��� [ Œ�; 1/, � > 0.

(f)

Z 1

1

e�x=y dx, S D Œ�; 1/, � > 0

(g)

Z 1

�1
exye�x2

dx, S D Œ��; ��, � > 0

(h)

Z 1

0

cos xy � cos ax

x2
dx, S D .�1; 1/

(i)

Z 1

0

x2ne�yx2

dx, S D Œ�; 1/, � > 0, n D 0, 1, 2,. . .

9. (a) Show that

� .y/ D
Z 1

0

xy�1e�x dx

converges if y > 0, and uniformly on Œc; d � if 0 < c < d < 1.

(b) Use integration by parts to show that

� .y/ D � .y C 1/

y
; y � 0;

and then show by induction that

� .y/ D � .y C n/

y.y C 1/ � � � .y C n � 1/
; y > 0; n D 1; 2; 3; : : : :

How can this be used to define � .y/ in a natural way for all y ¤ 0, �1,

�2, . . . ? (This function is called the gamma function.)

(c) Show that � .n C 1/ D nŠ if n is a positive integer.

(d) Show that

Z 1

0

e�st t˛ dt D s�˛�1� .˛ C 1/; ˛ > �1; s > 0:

10. Show that Theorem 8 remains valid with assumption (c) replaced by the as-

sumption that jgx.x; y/j is monotonic with respect to x for all y 2 S .

11. Adapt the proof of Theorem 8 to prove Theorem 9.

12. Use Dirichlet’s test to show that the following integrals converge uniformly on

S D Œ�; 1/ if � > 0:
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(a)

Z 1

1

sin xy

xy
dx (b)

Z 1

2

sin xy

log x
dx

(c)

Z 1

0

cos xy

x C y2
dx (d)

Z 1

1

sin xy

1 C xy
dx

13. Suppose g; gx and h are continuous on Œa; b/ � S; and denote H.x; y/ D
R x

a
h.u; y/ du; a � x < b: Suppose also that

lim
x!b�

(

sup
y2S

jg.x; y/H.x; y/j
)

D 0 and

Z b

a

gx.x; y/H.x; y/ dx

converges uniformly on S: Show that
R b

a g.x; y/h.x; y/ dx converges uniformly

on S .

14. Prove Theorem 10 for the case where f D f .x; y/ is continuous on .a; b� �
Œc; d �.

15. Prove Theorem 11 for the case where f D f .x; y/ is continuous on .a; b� �
Œc; d �.

16. Show that

C.y/ D
Z 1

�1
f .x/ cos xy dx and S.y/ D

Z 1

�1
f .x/ sin xy dx

are continuous on .�1; 1/ if

Z 1

�1
jf .x/j dx < 1:

17. Suppose f is continuously differentiable on Œa; 1/, limx!1 f .x/ D 0, and

Z 1

a

jf 0.x/j dx < 1:

Show that the functions

C.y/ D
Z 1

a

f .x/ cos xy dx and S.y/ D
Z 1

a

f .x/ sin xy dx

are continuous for all y ¤ 0. Give an example showing that they need not be

continuous at y D 0.

18. Evaluate F.y/ and use Theorem 11 to evaluate I :

(a) F.y/ D
Z 1

0

dx

1 C y2x2
, y ¤ 0; I D

Z 1

0

tan�1 ax � tan�1 bx

x
dx,

a, b > 0
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(b) F.y/ D
Z 1

0

xy dx, y > �1; I D
Z 1

0

xa � xb

log x
dx, a, b > �1

(c) F.y/ D
Z 1

0

e�xy cos x dx, y > 0

I D
Z 1

0

e�ax � e�bx

x
cos x dx, a, b > 0

(d) F.y/ D
Z 1

0

e�xy sin x dx, y > 0

I D
Z 1

0

e�ax � e�bx

x
sin x dx, a, b > 0

(e) F.y/ D
Z 1

0

e�x sin xy dx; I D
Z 1

0

e�x 1 � cos ax

x
dx

(f) F.y/ D
Z 1

0

e�x cos xy dx; I D
Z 1

0

e�x sin ax

x
dx

19. Use Theorem 11 to evaluate:

(a)

Z 1

0

.log x/nxy dx, y > �1, n D 0, 1, 2,. . . .

(b)

Z 1

0

dx

.x2 C y/nC1
dx, y > 0, n D 0, 1, 2, . . . .

(c)

Z 1

0

x2nC1e�yx2

dx, y > 0, n D 0, 1, 2,. . . .

(d)

Z 1

0

xyx dx, 0 < y < 1.

20. (a) Use Theorem 11 and integration by parts to show that

F.y/ D
Z 1

0

e�x2

cos 2xy dx

satisfies

F 0 C 2yF D 0:

(b) Use part (a) to show that

F.y/ D
p

�

2
e�y2

:

21. Show that
Z 1

0

e�x2

sin 2xy dx D e�y2

Z y

0

eu2

du:

(Hint: See Exercise 20.)

22. State a condition implying that

C.y/ D
Z 1

a

f .x/ cos xy dx and S.y/ D
Z 1

a

f .x/ sin xy dx
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are n times differentiable on for all y ¤ 0. (Your condition should imply the

hypotheses of Exercise 16.)

23. Suppose f is continuously differentiable on Œa; 1/,

Z 1

a

j.xkf .x//0j dx < 1; 0 � k � n;

and limx!1 xnf .x/ D 0. Show that if

C.y/ D
Z 1

a

f .x/ cos xy dx and S.y/ D
Z 1

a

f .x/ sin xy dx;

then

C .k/.y/ D
Z 1

a

xkf .x/ cos xy dx and S .k/.y/ D
Z 1

a

xkf .x/ sin xy dx;

0 � k � n.

24. Differentiating

F.y/ D
Z 1

1

cos
y

x
dx

under the integral sign yields

�
Z 1

1

1

x
sin

y

x
dx;

which converges uniformly on any finite interval. (Why?) Does this imply that

F is differentiable for all y?

25. Show that Theorem 11 and induction imply Eq. (30).

26. Prove Theorem 12.

27. Show that if F.s/ D
R1

0
e�sxf .x/ dx converges for s D s0, then it converges

uniformly on Œs0; 1/. (What’s the difference between this and Theorem 13?)

28. Prove: If f is continuous on Œ0; 1/ and
R1

0
e�s0xf .x/ dx converges, then

lim
s!s0C

Z 1

0

e�sxf .x/ dx D
Z 1

0

e�s0xf .x/ dx:

(Hint: See the proof of Theorem 4.5.12, p. 273.)

29. Under the assumptions of Exercise 28, show that

lim
s!s0C

Z 1

r

e�sxf .x/ dx D
Z 1

r

e�s0xf .x/ dx; r > 0:
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30. Suppose f is continuous on Œ0; 1/ and

F.s/ D
Z 1

0

e�sxf .x/ dx

converges for s D s0. Show that lims!1 F.s/ D 0. (Hint: Integrate by parts.)

31. (a) Starting from the result of Exercise 18(d), let b ! 1 and invoke Exer-

cise 30 to evaluate

Z 1

0

e�ax sin x

x
dx; a > 0:

(b) Use (a) and Exercise 28 to show that

Z 1

0

sin x

x
dx D �

2
:

32. (a) Suppose f is continuously differentiable on Œ0; 1/ and

jf .x/j � Mes0x ; 0 � x � 1:

Show that

G.s/ D
Z 1

0

e�sxf 0.x/ dx

converges uniformly on Œs1; 1/ if s1 > s0. (Hint: Integrate by parts.)

(b) Show from part (a) that

G.s/ D
Z 1

0

e�sxxex2

sin ex2

dx

converges uniformly on Œ�; 1/ if � > 0. (Notice that this does not follow

from Theorem 6 or 8.)

33. Suppose f is continuous on Œ0; 1/,

lim
x!0C

f .x/

x

exists, and

F.s/ D
Z 1

0

e�sxf .x/ dx

converges for s D s0. Show that

Z 1

s0

F.u/ du D
Z 1

0

e�s0x f .x/

x
dx:
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10 Answers to selected exercises

5. (b) If f .x; y/ D 1=y for y ¤ 0 and f .x; 0/ D 1, then
R b

a
f .x; y/ dx does not

converge uniformly on Œ0; d � for any d > 0.

6. (a), (d), and (e) converge uniformly on .�1; �� [ Œ�; 1/ if � > 0; (b), (c), and (f)

converge uniformly on Œ�; 1/ if � > 0.

17. Let C.y/ D
Z 1

1

cos xy

x
dx and S.y/ D

Z 1

1

sin xy

x
dx. Then C.0/ D 1 and

S.0/ D 0, while S.y/ D �=2 if y ¤ 0.

18. (a) F.y/ D �

2jyj
; I D �

2
log

a

b
(b) F.y/ D 1

y C 1
; I D log

a C 1

b C 1

(c) F.y/ D y

y2 C 1
; I D 1

2

b2 C 1

a2 C 1

(d) F.y/ D 1

y2 C 1
; I D tan�1 b � tan�1 a

(e) F.y/ D y

y2 C 1
; I D 1

2
log.1 C a2/

(f) F.y/ D 1

y2 C 1
; I D tan�1 a

19. (a) .�1/nnŠ.y C 1/�n�1 (b) �2�2n�1

 

2n

n

!

y�n�1=2

(c)
nŠ

2ynC1
.log y/�2 (d)

1

.log x/2

22.

Z 1

�1
jxnf .x/j dx < 1

24. No; the integral defining F diverges for all y.

31. (a)
�

2
� tan�1 a
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