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Abstract

A book-embedding of a graph is a linear ordering of its vertices, and a partition of
its edges into non-crossing sets (called pages). The pagenumber of a graph is the
minimum number of pages for which it has a book-embedding.

After introducing concepts relevant to book-embeddings and their applications, we
will describe the main results on the pagenumber for classes of graphs, particularly
results on the pagenumber of planar graphs. We will briefly cover extremal graph
theory before discussing extremal results with regards to the pagenumber of graphs.

The original results consider edge-maximal book-embeddings : book-embeddings to
which no edge can be added without increasing the pagenumber. We prove that the
minimum number of edges of such graphs with three pages and n vertices is

⌈
7n
2

⌉
−8.

Generalising to k pages, we prove an upper bound of (k+4)n
2
− 3k

2
and a lower bound

of
√

k
2
n on the minimum number of edges.
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Chapter 1

Introduction

A book-embedding of a graph consists of a linear ordering of its vertices, with the

edges partitioned into sets such that, under the given layout of the vertices, edges

which are in the same set can be drawn without crossing on half-planes bounded by

the line of the vertex embedding. Each of the non-crossing sets of edges is a page

of the book-embedding, and the pagenumber of a graph is the minimum number of

pages in any of its book-embeddings.

The concepts of book-embeddings and pagenumber were first introduced by Oll-

mann in 1973 [37], and have since been shown to have many interesting applications

in fields such as circuit design and complexity theory. Most research on book-

embeddings consists of finding a book-embedding for a particular class of graphs.

Book-embeddings are a particular layout for graphs, and several different types

of problems arise in research in this field. One approach is to characterise the graphs

of a given pagenumber. For example, graphs with pagenumber at most two are sub-

hamiltonian planar. Another approach is to look for properties of book-embeddings

for families of graphs, for example all planar graphs can be embedded in four pages.

Finding optimal book-embeddings for various classes of graphs is a common type of

problem that appears in this field.

With regards to the applications that exist for book-embeddings, there tend

to be two main types of approach. Some applications enforce a predetermined

ordering on the layout of the vertices, while there are other types of applications

in which determining the optimal ordering of the vertices is part of the problem.

Even in the case where the ordering is pre-specified, it is NP-complete to determine

whether a graph has a k-page book-embedding for k ≥ 2 [18] . For some particular

classes of graphs, there are efficient ways of getting optimal, and near optimal,

book-embeddings.

There are several different variations on the terms used when discussing book-

embeddings, which arise from the various approaches to the subject. For example,

the equivalent term stack layout arises from the interpretation of book-embeddings
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as representations of PUSH and POP operations on a stack data structure. Many

of the applications can be seen to relate to this particular interpretation of book-

embeddings, which is why most uses for book-embeddings arise from topics in com-

puter science.

Overview of Topics

The focus of this thesis will be on presenting ideas with regards to book-embeddings

and extremal graph theory that build towards the main results on maximal book-

embeddings and the minimum number of edges in these graphs.

In Chapter 2 the concepts of book-embeddings and pagenumber will be intro-

duced, along with related concepts relevant to research on this topic. Some appli-

cations will also be discussed to provide motivation for research in this field and to

give some context for where these concepts might arise.

Chapter 3 will look into some of the basic theorems that have arisen from this

field. Some results on book-embeddings for particular classes of graphs will be

discussed, graphs with small pagenumber will be characterised, and some optimal

book-embeddings will be described.

The subject of book-embeddings for planar graph will be addressed in chapter 4,

where the history of results for this topic will be briefly covered, and Buss and

Shor’s [6] constructive proof for nine-page book-embeddings of planar graphs will

be covered in detail. While this result has since been superseded, it is still of par-

ticular importance in that it was the first to show that planar graphs have bounded

pagenumber, disproving the conjecture by Bernhart and Kainen [4] that no such

bound exists.

Chapter 5 will make a brief detour to introduce the field of extremal graph

theory, providing some context for later chapters. Turán’s theorem is considered

to have initiated research in this field, and will be introduced along with some

other results from extremal graph theory to provide an intuition for the types of

results that will be considered in later chapters with regards to book-embeddings.

As extremal graph theory is a large and varied field, the focus will be restricted

to results which consider the maximum and minimum number of edges in graphs

relative to other graph invariants, such as chromatic number. From there, some

extremal results specific to the concept of book-embeddings will be described in

Chapter 6. In particular, results which relate pagenumber to other graph invariants

will be considered.

In Chapter 7 the concept of maximal book-embeddings will be introduced, and

consideration will be given to the size of such graphs. In particular, some original

results on the minimum number of edges in a maximal book-embedding will be
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proven. We show that the minimum size of a maximal book-embedding with n

vertices on k pages is at most (k+4)n
2
− 3k

2
and at least

√
k
2
n. For the case where

k = 3, the minimum number of edges in a maximal book-embedding is shown to be

d7n
2
e − 8 for n ≥ 3.
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Chapter 2

Preliminaries

2.1 Concepts and Definition

A graph is defined as an ordered pair G = (V,E), consisting of a vertex set V along

with an edge set E whose elements are two-element subsets of the vertex set V . The

terms order and size are used to refer to the number of elements in the vertex and

edge set, respectively. A graph G = (V,E) is said to be a subgraph of another graph

G′ = (V ′, E ′) if V ⊂ V ′ and E ⊂ E ′.

The degree of a vertex v, denoted deg(v), is the number of edges which are

incident to v. The minimum degree of a graph G is denoted by δ(G), and is the

minimum degree of all vertices in V (G). Similarly, the maximum degree of a graph

G, denoted by ∆(G), is the maximum of the degrees of all the vertices in V (G).

An embedding of a graph G on a surface S is defined as a drawing of G with

the vertices and edges drawn on the surface S such that no edges of G intersect,

except at a common endpoint. The main type of graph embedding which will be

considered is the class of graphs embeddable in the plane.

Definition 1. A planar graph is a graph that can be embedded in the plane without

crossings.

Definition 2. A maximal planar graph is a planar graph G such that adding any

new edge to G will result in a non-planar graph.

A face of a planar graph is one of the regions defined by its edges. It can be

seen that all faces in a maximal planar graph are triangles, as otherwise there would

be at least one edge crossing that face which could be added without violating the

condition of planarity.

Definition 3. An outerplanar graph is a graph that can be embedded in the plane

with all vertices on the outer face, such that all edges are pairwise non-crossing.
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A common way of visualising outerplanar graphs is with the vertices embedded

in a circular layout, ordered such that no edges cross. All outerplanar graphs are

planar, however the converse is not true. For example, while K4 can be embedded

in the plane without any edges crossing, it is not outerplanar.

Graph colouring problems involve assigning labels, referred to as colours, to some

elements of the graph, subject to certain constraints. There are two standard types

of colourings of graphs, in which either the vertices or the edges might be considered

as the object to be coloured. An edge colouring of a graph is an assignment of colours

to the edges of a graph such that no edges incident to the same vertex are assigned

the same colour. A vertex colouring of a graph is an assignment of colours to the

vertices of a graph such that no vertex is assigned the same colour as any of its

neighbours.

Definition 4. The chromatic number of a graph G, denoted χ(G), is the minimum

number of colours required for a vertex colouring of G.

When referring to a class of graphs, the chromatic number of that class is the

maximum chromatic number of any graph in that class. One of the major results

in the topic of graph colouring is that the chromatic number for the class of planar

graphs is four [2].

A k-page book-embedding can be considered as a graph with vertices embedded

on a circle, and edges drawn inside the circle and coloured with k colours such that

no two edges of the same colour cross. Other representations involve a restricted

embedding of the graph in a topological structure referred to as a book.

Definition 5. A book is a topological structure consisting of half planes joined along

a common boundary line, called the spine.

Definition 6. A page of a book is one of its half-planes.

When embedding a graph in a book, we impose restrictions on the layout of

edges on the same page.

Definition 7. Given a book-embedding with vertices laid out in the order v1, v2, . . . , vn,

edges are said to cross if they have labels vavb and vivj such that a < i < b < j.

Definition 8. Given a book-embedding with vertices laid out in the order v1, v2, . . . , vn,

edges are said to be nested if they have labels vavb and vivj such that a < i < j < b.

A k-page book-embedding can also be considered as an ordering of the vertices

along with a partition of the edges into k sets such that, given the vertices ordered

along a line in the specified order, no edges which are in the same part cross. There

are several conceptually distinct, yet theoretically equivalent, ways of defining book-

embeddings of graphs, which can relate to different ways of visualising the graph
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431 52

Figure 2.1: Edges of a book-embedding
which are crossing

431 52

Figure 2.2: Edges of a book-embedding
which are nested

drawing.

Theorem 9. The following definitions of book-embeddings are equivalent;

1. A book-embedding is a graph with vertices embedded in a straight line, with

edges assigned colours such that no edges of the same colour cross, and no

edges cross the line in which the vertices are embedded (see Figure 2.3).

2. A book-embedding is a graph with vertices embedded in a circle, and edges

(also called chords) drawn across the circle and coloured in such a way that

no crossing edges are of the same colour (see Figure 2.4).

3. A book-embedding is a topological embedding of a graph, with vertices em-

bedded in a straight line (called the spine of the book), and edges residing on

half-planes (pages) such that no edges on the same plane cross (see Figure 2.5).

31 62 754 8

Figure 2.3: A two page book-embedding of a graph represented with vertices in
linear formation

Proof. We first show how a book-embedding in a linear layout can be drawn in a

circular layout. We then show how a circular layout can be drawn in a topological

layout, and then how a topological layout can be drawn as a linear book-embedding.

1. If we have a book-embedding in the linear layout of definition one, with all

edges drawn above the line of vertices, we can get the equivalent circular layout
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5
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Figure 2.4: A two page book-embedding of the same graph, represented as a circular
embedding

as follows; first consider a conceptual line to be drawn through the vertices

along the line in which they are embedded, then bring the end vertices on the

line around to get the vertices in a circular layout. It it clear that any edges

that were not crossing in the initial layout will not cross in the new layout,

hence the pages of the book-embedding are preserved.

2. If we have a circular layout of a book-embedding, we can get an equivalent

topological embedding by taking one of the edges on the outside of the circular

embedding, and bringing the adjacent vertices down and apart in such a way

that all the vertices are in a line. Consider this line to be the spine of the book

61 2 3 75

 

 

 84  

 
 

 

Figure 2.5: A three page book-embedding represented as an embedding in a
topological book
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the graph will be embedded in. For each of the colours used in the initial layout,

take all the edges in that colour and embed them in a single page of the book,

using a new page for each colour. This gives a topological representation of the

initial book-embedding which maintains the relative ordering of the vertices

and partitioning of the edges.

3. From definition three, with the edges embedded in half-planes, and the vertices

in pages of a topological book, we can easily get the linear layout of definition

one by assigning each of the pages to a distinct colour, so all edges on the

same page are in the same colour set. Then all the pages can be embedded

in the plane above the spine to give a linear layout of the book-embedding.

Since edges on the same page don’t cross, there are no crossing edges of the

same colour.

Using these relations we can go from a book-embedding in any of the three

formats to any of the other formats, showing equivalence.

When considering book-embeddings in a circular layout, it can be useful to dis-

tinguish between the following two types of edges.

Definition 10. The edges of a book-embedding that are between consecutive ver-

tices on the external face are called external edges.

The edges of a book-embedding which are not external edges are said to be

internal edges.

The different ways of representing book-embeddings reflect different perspec-

tives from which book-embeddings can be considered. Some properties of book-

embeddings are more easily visualised, and some applications more readily modelled,

by using particular layouts for book-embeddings.

For example, linear layouts of book-embeddings are often more convenient when

considering book-embeddings as a model for stack operations. Another way of re-

ferring to book-embeddings is as stack layouts of graphs, as they can be considered

as representing processes on a stack data structure. When traversing the vertices of

the book-embedding in order along the spine, edges embedded in the same page are

encountered in a Last-In-First-Out order, which is associated with stacks.

For example, consider the one page book-embedding shown in Figure 2.6. The

linear ordering of the vertices in the book-embedding is π = 1, 2, 3, 4, 5, 6.

Starting at vertex 1 and stepping through the vertices, we we push and pop the

edges in the following order:
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541 2 63

Figure 2.6: The ordering of the vertices from left to right can be interpreted in
terms of stack operations

vertex 1: PUSH(1, 6), PUSH(1, 2)

vertex 2: POP (1, 2), PUSH(2, 6), PUSH(2, 5)

vertex 3: PUSH(3, 5), PUSH(3, 4)

vertex 4: POP (3, 4), PUSH(4, 5)

vertex 5: POP (4, 5), POP (3, 5), POP (2, 5)

vertex 6: POP (2, 6), POP (1, 6)

We can see from this that the Last-In First-Our behaviour of the stack is main-

tained by the ordering of the edges in the book-embedding.

Related is the concept of a queue layout, arising from the conceptually similar

queue data structure.

Definition 11. A k-queue layout of a graph consists of a total ordering of the

vertices, along with a partition of the edge set into k sets of pairwise non-nested

elements [10].

While the pages of a book-embedding can be considered in terms of stack oper-

ations, for a queue layout of a graph the pages relate instead to queue operations.

Most questions about book-embeddings relate to the minimum number of pages

required for book-embeddings of a particular class of graphs. There are many ways

for any non-trivial graph to be embedded in a book, which arises from the number

of possible orderings which can be imposed on the vertices. Clearly the number

of pages required for a book-embedding varies according to the order in which the

vertices are embedded along the spine.

Definition 12. The pagenumber of a graph G, denoted pn(G), is the minimum

number of pages in which it can be embedded without crossings.

The pagenumber of a graph can also referred to as its book-thickness, stack

number or fixed outer-thickness. It is a ubiquitous concept when discussing book-

embeddings, as most results in this area focus on minimising the number of pages
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used. It can also be of interest to minimise the pagewidth in a book-embedding of

a graph. The cutwidth of a page in a book-embedding is the maximum number of

edges which cross some line perpendicular to the spine of the book.

Definition 13. The pagewidth of a book-embedding of a graph is the maximum

width of its pages.

Sometimes when considering book-embeddings of graphs we will be interested in

minimising the pagewidth of the layout as well as the pagenumber.

Any graph can trivially be given a book-embedding with pagewidth one by em-

bedding each of its edges in different pages, so while we can consider the pagenumber

of a graph, the pagewidth is a property of book-embeddings. An alternative term

which may be used for the pagewidth of a book-embedding is stackwidth.

For a given ordering of the vertices of a graph G, the width of an edge is the

number of edges along the spine between the endpoints. More formally, for a per-

mutation π = (v1, . . . , vn) of the vertices of G, an edge (vi, vj) ∈ E(G) has width of

|i− j| in π. The bandwidth of a permutation π on graph G is the maximum width

of all the edges in E(G) under the vertex ordering specified by permutation π.

Definition 14. The bandwidth of a graph G is the minimum bandwidth over all

permutations of V (G).

If a graph has bandwidth k it is referred to as a bandwidth-k graph. The class

of bandwidth-k graphs has pagenumber k− 1, although the ordering of the vertices

which optimises the pagenumber is not the same as the one which specifies the

bandwidth [40].

For a queue layout of a graph, the equivalent concept in place of pagenumber is

referred to as the queue number.

Definition 15. The queue number of a graph G, denoted qn(G), is the minimum

number k such that G has a k-queue layout [10].

There are many results on queue layouts for classes of graphs with minimal

queue number. Applications of queue layouts are fairly similar to those of book-

embeddings, as many of the application relate to the underlying connection between

these graph drawings and the relevant data structures.

2.2 Motivations and Applications

Book-embeddings of graphs relate to many interesting question with regards to other

topics in graph theory. Most of the results in this area of research involve considering

the least sufficient pagenumber for a given class of graphs, and several of these classes
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have many interesting real-world applications for which the pagenumber might be

of interest. For example some important interconnection networks have been shown

to have 3-page book-embeddings [17].

Another use of book-embeddings for graphs relates to compact encodings of

graphs. For example, Jacobson [27] described a succinct data structure for rep-

resenting graphs of bounded pagenumber, which gives a good space complexity

representation for planar graphs as they have pagenumber of four.

There are several direct applications motivating the study of book-embeddings,

mostly pertaining to questions which arise from the fields of computer science and

electrical engineering, in particular the areas of circuit design and complexity theory.

Most of these examples consider systems that can be naturally modelled by graphs

in which the features of the book-embedding, usually the pagenumber, have some

convenient analogy with the application. In many of the applications, the association

between book-embeddings and stacks becomes apparent.

2.2.1 Optimised VLSI Design

One application of book-embeddings is that of optimised layouts for VLSI circuits.

The design of Very Large-Scale Integration (VLSI) systems involves integrating a

large number (billions) of electronic components, such as transistors and wires, into

a single chip. Optimised design techniques become a priority in order to place

such a large number of transistors on a single integrated circuit. VLSI circuits

are a ubiquitous technology, appearing in most levels of modern technology, from

computers to cars to phones, so the value of this application cannot be understated.

VLSI circuits can be visualised as a graph, where the processor elements are

represented as vertices, with the edges representing the interconnections between

these elements. Several of the graph theoretic questions which arise from problems

regarding VLSI circuits relate to minimising some cost function by laying out the

vertices of the graph on a line [45].

One approach to VLSI design involves simplifying the problem of laying out

the processing elements by placing them on a line, with the interconnecting wires

running along parallel tracks.

The cutwidth of a graph corresponds with the minimum number of tracks re-

quired for routing the interconnecting wires in the initial VLSI circuit. So the

problem of finding an ordering of the processor elements which minimises the re-

quired number of tracks, and which would therefore minimise the necessary area for

the wiring, is related to the cutwidth of circuits representative graph [45].
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2.2.2 Layout of Fault Tolerant Processor Arrays

Another motivation for the study of book-embeddings which arises from the field

of electrical engineering is the problem of designing fault tolerant VLSI processor

arrays. The DIOGENES approach was proposed by Rosenberg [39] as a method

for designing fault tolerant arrays of processing elements. The logic behind this

approach is as follows. The processing elements, some of which might be faulty,

are laid out in a (conceptual) line, corresponding to the spine of a book-embedding.

Parallel to the line of processors are bundles of wires with embedded switches. The

switches built into the chip allow the bundles of wires to function as a stack, hence

each of these bundles can be considered as a page of a book-embedding.

For any given processor, a connection to a processor on its right is PUSHed on a

stack, whereas connections to processors on its left would be POPped from a stack.

Therefore, each connection to a good processor requires one stack operation at that

processor. If a processor is bad, then no stack operations occur at that processor.

Whether a processor is good or bad can be considered as a binary variable, so a

single control signal can cause the PUSHing and POPping of many connections. By

switching in only good processors, fault tolerance can be achieved.

The required array of the processors is modelled by a connection graph, where the

vertices represent the processors, and edges correspond with the desired connections

between these processors. The DIOGENES design layout problem considers the

number of stacks, and the number of connections carried by each of the stacks, that

is necessary for implementing the array of processors. In other words, it considers

the pagenumber (or stack number) and pagewidth (or stackwidth) of the connection

graph.

As noted before, a single page of a book-embedding can be considered as a

representation of a stack, and hence the required number of stacks is exactly the

number of pages necessary for a book-embedding of the connection graph, and the

width of these stacks is the width of the pages in the book-embedding.

2.2.3 Sorting With Parallel Stacks

Book-embeddings also have also been discussed with regards to the question of

realising fixed permutations of N distinct elements with disjoint, parallel stacks

[14].

This question was described by Tarjan [41] as “The Switchyard Problem”, and

was considered in terms of the layout of a railroad switchyard. This description of

the question considers a train pulling N cars travelling from one end of a switchyard

to the other, and looks at the possible rearrangements that can be made to the

cars before the train reaches the end of the switchyard. The switchyard can be
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visualised as a directed acyclic graph (dag) possessing a unique source and sink. Each

vertex represents a side track of the railway, with the edges representing connections

between them. The vertices are assumed to have indefinite storage space, and can

be considered as either stacks or queues. It is the version of this problem which

considers the vertices as stacks that gives rise to the book-embedding connection, as

would be expected given the natural connection of book-embeddings with the stack

data structure. The version of this model that considers side tracks to operate as

queues rather than stacks would relate instead to a queue layout graph.

This problem has also been considered by Even and Itai [14] in terms of colouring

a permutation graph. For a permutation π of {1, . . . , n}, its permutation graph has

vertex set {1, . . . , n} and an edge (i, j) whenever i < j and π−1(i) < π−1(j) or i > j

and π−1(i) > π−1(j). Even and Itai show that minimising the number of stacks

required is equivalent to colouring a circle graph, and is therefore NP-complete [18].

This problem can also be considered in terms of finding the possible permutations

of {1, . . . , N} that can be obtained using non-communicating stacks [7]. Each of the

numbers is initially pushed, in increasing order, onto any one of the stacks. After

all of the numbers have been pushed onto the stacks, the permutation is formed by

popping the numbers from the stacks.

Suppose that for some permutation π of {1, . . . , N}, we wish to know the min-

imum number of stacks required in this formulation to realise permutation π. To

solve this, we use a graph theoretic model of the problem.

This can be achieved by visualising the process as a bipartite graph, with the

partitions corresponding to the initial and final permutations of the numbers. This is

modelled as follows. For our permutation π, we construct a graph Gπ with vertices

{a1, . . . , aN , b1, . . . , bN}, with edges between vertices ai and bπ(i) representing the

mapping of i under the permutation π.

For our problem of finding the minimum number of stacks required for realising

some permutation π, we now have a neat relation with book-embeddings, as the

problem now corresponds to finding the pagenumber of the permutation graph.

This is because the pages in a book-embedding of Gπ correspond with numbers

which are inversely ordered under the permutation π, which means that when they

are PUSHed onto a stack, the order in which they will be POPped from the stack

is the proper ordering under the new permutation given by π.

Even and Itai [14] showed that minimising the number of stacks required to realise

such a permutations is NP-complete by showing that this problem is equivalent to

colouring a circle graph.

The related model of this problem using queues in place of stacks would use the

queue number of the permutation graph as the minimum number of queues required

for realising permutation π.
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2.2.4 Turing Machine Graphs

A Turing machine computation of t steps can be modelled by constructing a corre-

sponding t-vertex graph [7]. The construction is as follows; each step of the compu-

tation is represented by a vertex of the graph, and two vertices t1 and t2 are adjacent

in the graph when one of the machines tapeheads has visited the same tape square

at both of the timesteps corresponding to the vertices t1 and t2, and not at any

intervening time. From this construction it follows that the dependency graph of

every k-tape Turing machine graph can be embedded in a book with 2k pages.

Since we can associate the computations of a Turing machine with graphs of a

bounded pagenumber, it is possible that results characterising graphs which can be

embedded in a given number of pages might have interesting interpretations with

regards to results in complexity theory.

For example, a proof that k-page graphs have a small (subquadratic) bandwidth

would imply that a one-tape non-deterministic Turing machine could simulate a

two-tape machine in subquadratic time [16].

2.2.5 Modelling RNA Structures

While most applications of book-embeddings are with regards to topics in computer

science and electrical engineering, there have been some attempts to use them in

biology, particularly for modelling secondary structures of RNA sequences. In this

application, the order in which the vertices are embedded is predetermined by the

structures nucleotide sequence.

The primary structure of a RNA sequence is an ordering of monomers, or nu-

cleotides, and can be considered equivalent to the spine of a book-embedding. The

secondary structure is a set of hydrogen bonds between pairs of monomers, and can

be represented by edges between the equivalent vertices. A knot in such a structure

describes when two or more edges are mutually crossing, and is referred to as a

pseudo-knot when it can be drawn on two pages without crossings. Many RNA

molecules feature pseudo-knots, which poses some difficulties as they don’t fit under

conventional models of secondary structures [19].

In such a model, the pagenumber of the graph represents the minimum number

of disjoint secondary structures that the initial structure can be decomposed into,

where each page represents a secondary structure of the RNA structure [8]. From

this, we can see that unknotted secondary structures can be embedded in one page,

and knotted structures require at least two.
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Chapter 3

Book-Embeddings and

Pagenumber

3.1 Introduction to Graph Layout

Book-embeddings are a specific example of a graph layout, where the vertices are

embedded in either a line or a circle, depending on the approach used.

Chung et.al. [7] distinguish two approaches for considering the problem of con-

structing book-embeddings of graphs. The first, and simplest, case is where the

ordering in which the vertices are embedded along the spine is pre-defined. This

formulation appears in such applications as single row routing, and sorting with

parallel stacks. The second case is when finding the optimal ordering of vertices is

a part of the problem itself, such as in the construction of fault tolerant processor

arrays. The number of permutations of the vertices make this a much more compli-

cated problem than the first case. In this section, some results of this second kind

are given for certain types of graphs.

Many classes of graphs have been shown to be able to be embedded in a bounded

number of pages, with some of these bounds known to be strict. Graphs with a

pagenumber of zero, one and two can be shown to have particular properties, as for

these values there exist class equivalence relations. For example, the set of graphs

with pagenumber at most one are exactly the class of outerplanar graphs.

3.2 Graphs with Small Pagenumber

Graphs which can be embedded in few pages can be shown to have particular prop-

erties. In particular, for values of k strictly less than three, the set of graphs which

can be embedded in k pages can be shown to be exactly equivalent to another class

of graphs.
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Theorem 16. [7] A graph G has a book-embedding using a single page if and only

if G is an outerplanar graph.

4

2

7

5

1

6

3

Figure 3.1: An outerplanar graph G

61 2 53 4 7

Figure 3.2: Outerplanar graph G embedded in one page

Proof. A graph G is referred to as outerplanar precisely when it’s vertices can be

placed in a circular formation such that it’s edges are internal to the circle and do

not cross any other edges. Let G be some arbitrary outerplanar graph, drawn in the

specified formation, for example the graph shown in 3.1. We can obtain a one-page

book-embedding of this graph by cutting the circle between any two vertices, v1 and

v2. The vertices of the graph G can now be straightened out to form a line from

v1 to v2 in which the ordering of the vertices between them is preserved. The edge

v1, v2 can be added back into the graph without crossing any other edges. We see

the result of this for our example in Figure 3.2. So any arbitrary outerplanar graph

can be embedded on a single page.

Conversely, a one-page book-embedding of G can be converted into the above

formation for an outerplanar graph. This is achieved by considering a conceptual

line to be passed through the vertices in the order of their embedding, where we

label the first vertex as v1 and the end vertex vn. The vertices v1 and vn can then
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be brought around to form a circle preserving both the order of the vertices and the

non-crossing property of the edges, thus demonstrating its outerplanarity.

An example of an outerplanar graph and it’s equivalent one-page book-embedding

can be seen in Figures 3.1 and 3.2.

Similarly, graphs with a queuenumber of one can also be characterised as a class

of planar graphs. Heath and Rosenberg characterised the graphs with queuenumber

of one as a class of planar graph with a particular type of planar embedding, which

are referred to as arched leveled-planar graphs [24]. However, while identifying

whether a graph has pagenumber one can be completed in linear time, the equivalent

problem for identifying graphs with queuenumber one is NP-complete [23]. But

when the vertex ordering is pre-specified, finding the pagenumber of the graph is

NP-complete, while finding the queuenumber can be done in polynomial time [14].

The next relation demonstrates that graphs with two page book-embeddings are

a sub-class of planar graphs. First, it is useful to give the following definitions.

Definition 17. A Hamiltonian cycle of a graph G is a cycle in G that contains

each vertex in V (G) exactly once.

A graph is described as Hamiltonian if it contains a Hamiltonian cycle. A graph

is subhamiltonian planar if it is a subgraph of a planar Hamiltonian graph. The

problem of identifying Hamiltonian cycles in graphs is a well known NP-complete

problem [29].

Theorem 18. [4] A graph G has pagenumber at most two if and only if G is a

subgraph of a hamiltonian planar graph.

Proof. It is quite simple to show that all two page embeddings are subhamiltonian

planar. Starting with any arbitrary two page book-embedding G with n vertices, it

is possible to draw G on the plane with one of its pages above the spine, and the

other page below the spine. Clearly this is a planar drawing of G. Consider the

labelling of the vertices in the order of the spine to be v1, v2, . . . , vn. For any two

consecutive vertices vi, v(i+1 mod n), either the edge (vi, v(i+1 mod n)) is already in G,

or it can be added to G without crossing any other edge, since no edges in G cross

the spine. Calling this new graph G′, it is clearly true that G′ is Hamiltonian, as

it contains the Hamiltonian cycle v1, v2, . . . , vn, v1. Since the initial graph G was

planar, and none of the edges added in making G′ cross any other edges, G′ is also

planar. So the initial graph G is a subgraph of Hamiltonian planar graph G′, and

hence any arbitrary two page book-embedding is a subhamiltonian planar graph.

From any subhamiltonian planar graph G, we can add edges to G to obtain

another planar graph G′ with a Hamiltonian cycle. The Hamiltonian cycle in G′

partitions the edges of G′ into three sets, which we will refer to as the edges along the
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Figure 3.3: A planar graph G

cycle, the edges on the external face of the cycle, and the edges on the internal face

of the cycle. The edges along the cycle are exactly the edges in the Hamiltonian

cycle of G′. The internal face of the cycle is the area which is enclosed by the

Hamiltonian cycle, and the external face is the area which is not enclosed by the

cycle.

The edges in the Hamiltonian cycle can be considered as being along the spine

of the book-embedding, imposing the required order on the vertices.

Ignoring the edges on the external face, the remaining graph is clearly outerpla-

nar, as all the vertices are on the outer face, and none of the edges cross. This is

also true if the internal edges are ignored, as all the vertices will then be on the

internal face of the remaining graph.

So by embedding the vertices along the spine in order of the Hamiltonian cycle of

G′, we can then embed the edges internal to the cycle on one page, the edges external

to the cycle on another page, and the edges along the cycle can be embedded on

either of these pages as they are along the spine, and no edges cross the spine. Since

G was a subgraph of G′, by removing the edges which were added in making G′ we

have a two page book-embedding of G. So any subhamiltonian planar graph can be

embedded in two pages.

Since all two page book-embeddings are subhamiltonian planar, and all sub-

hamiltonian planar graphs can be embedded in two pages, the equivalence of these

two classes follows.

So determining whether a given graph G has a two page book-embedding is

equivalent to determining whether it is subhamiltonian planar. Therefore determin-
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Figure 3.4: A Hamiltonian graph G’ with G as a subgraph

node24 node26node29node33node27 node31 node28node30

Figure 3.5: Graph G’ laid out on two pages along it’s Hamiltonian cycle

ing whether a given planar graph has a two page book-embedding is a NP-complete

problem [7], since the Hamiltonian circuit problem for maximal planar graphs is

known to be NP-complete [44].

The above result provides a trivial lower bound on the pagenumber of non-planar

graphs.

Corollary 19. For any non-planar graph G, there is no book-embedding of G with

fewer than three pages.

It also should be noted that, while outerplanar graphs are equivalent to graphs

with pagenumber equal to one, and sub-hamiltonian planar graphs are equivalent

to graphs of pagenumber less than two, there exists no such pagenumber equiv-

alence relation for the class of planar graphs. Since there exist non-Hamiltonian

planar graphs, such as in Figure 3.7, it is obvious from Theorem 18 that two pages

are not sufficient for book-embeddings of planar graphs. Furthermore, there exist

non-planar graphs that can be embedded in three pages, for example K5. So the
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Figure 3.6: A two page book-embedding of a subhamiltonian planar graph

class of planar graphs can not be defined by bounded pagenumber, although from

Theorem 35, all planar graphs have pagenumber less than four.

The question of finding a sufficient pagenumber for book-embeddings of planar

graphs is one which has an interesting history, as such a bound was initially consid-

ered not to exist. Since then the best bound for book-embeddings of planar graphs

has been iteratively improved until the current bound of four pages was given by

Yannakakis [46]. The topic of book-embeddings of planar graphs will be discussed

in more detail in the next chapter.

node2_133 node3_220

node9_873

node1_462 node4_813

node6_575

node7_478

node5_889

node8_414

node10_042

node0_885

Figure 3.7: A non-Hamiltonian maximal planar graph

3.3 Book-Embeddings of Complete Graphs

It is useful to consider the pagenumber for book-embeddings of complete graphs, in

order to find a rough upper bound on the pagenumber for any graph given its order.

Definition 20. A graph G is complete when, for any pair of distinct vertices v, u ∈
V (G), there is an edge (v, u) ∈ E(G).

The complete graph on n vertices is denoted Kn.
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Theorem 21. [4] For n ≥ 4, the pagenumber of the complete graph Kn is dn
2
e.

Proof. There are n(n−1)
2

edges in a complete graph on n vertices. A book-embedding

of such a graph would have n external edges, which gives the number of internal

edges as n(n−3)
2

. Since there can be at most n − 3 internal edges on any page, for

there to be a k-page book-embedding we require that k(n−3) ≥ n(n−3)
2

, which means

that the minimum number of pages in which we could embed this many edges is⌈
n
2

⌉
.

Since we know that that pagenumber is at least n
2
, we now need to show that

there exist book-embeddings of Kn with this many pages. For even values of n we

can write n = 2k, so we need to show that K2k has a book-embedding with k pages.

We can consider the vertices as being in a circular layout, with the vertex ordering

(v0, v1, . . . , vn−1). For each of 0 ≤ i ≤ k − 1 we can define the sets:

Ei =

{
vavb :

⌈
1

2
(a+ b)

⌉
≡ i mod

n

2

}
We can see that no pair of edges in the same set cross, as that would give two

edges vavb and vivj such that a < i < b < j, so a+ b ≤ i+ j − 2 which means that

these two edges can’t be in the same set by the construction. Since k = n
2

we can

see that each of these k sets are distinct.

Each of these k disjoint partitions of the edges of K2k contains n − 3 internal

edges which can be embedded without crossing on a single page. By adding the

external edges to any of these pages we get a k-page book-embedding of K2k.

Since K2k−1 is a subgraph of K2k the equivalent result for odd values of n follows

from the even case.

1 5

0

2 4

3

Figure 3.8: 3-page book-embedding of K6

We can see this illustrated for the case of K6 in Figure 3.8. If we consider the
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edge set for i = 0 we can see that we get the edges E0 = {v0v5, v5v1, v1v4, v4v2, v2v3},
which is represented by the edges coloured red.

So given any graph on n vertices, we know that the maximum number of pages

that could be required for it to be embedded in a book is dn
2
e.

A similar result has been found regarding the lower bound on the pagenumber

of complete bipartite graphs.

Definition 22. A graph G is bipartite if the vertex set V (G) can be partitioned

into two sets such that there are no edges between vertices in the same set.

An alternate and equivalent characterisation of bipartite graphs is as graphs

which contain no odd cycles [30].

Definition 23. A graph G is a complete bipartite graph if the vertex set V (G)

can be partitioned into sets V1(G) and V2(G) such that there are no edges between

vertices in the same set, and for every pair of vertices u ∈ V1(G), v ∈ V2(G) there

exists an edge (u, v) ∈ E(G).

The complete bipartite graph with one part containing n vertices, and the other

part containing m vertices, is denoted Kn,m. It should be noted that Kn,m and Km,n

are isomorphic.

Theorem 24. [4] The pagenumber of the complete bipartite graph Kn,m is at least

min(
⌈
n
2

⌉
,
⌈
m
2

⌉
).

Some work has been done in obtaining upper bounds on the pagenumber of

complete bipartite graphs [35] [12].

3.4 Book-Embeddings for Other Graphs

For many different classes of graphs, there are known results for optimal book-

embeddings and bounds on the maximum pagenumber. In this section, some of

these results will be introduced.

Since all trees are outerplanar, it follows that they allow a book-embedding

with a single page. So for embeddings of trees it it more informative to consider

how to construct one page book-embeddings with small pagewidth. For the case of

binary trees, there is a construction which is optimal for both the pagewidth and

pagenumber.

Theorem 25. [7] All binary trees can be embedded in one page with pagewidth log2 n.

Embedding binary trees in a single page is quite simple; starting from the root

of the tree, traverse the tree using a depth-first search algorithm to obtain a pre-

ordering of the vertices, which specifies the layout of the vertices along the spine

[7].
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The pagewidth of this embedding is given by the height of the tree, which is

log2 n. This construction gives a book-embedding of binary trees for which the

pagewidth is optimal [5].

node6node4 node2node1 node0 node5node7
Figure 3.9: One page book-embedding of a binary tree

While in the case of binary trees there are book-embeddings which optimise both

pagenumber and pagewidth, for many other classes of graphs layouts with optimal

pagenumber have relatively large pagewidth. Many results on book-embeddings con-

sider some trade-off between the pagenumber and pagewidth of book-embeddings.

For example, while it was shown in Theorem 16 that outerplanar graphs are equiv-

alent to one page book-embeddings, we can also consider book-embeddings of out-

erplanar graphs with near-optimal pagenumber and small pagewidth.

Theorem 26. [21] Every n-vertex outerplanar graph G with a maximum degree of

∆(G) = d admits a book-embedding with two pages and pagewidth O(d log(n)).

In general, adding edges to a graph increases the number of pages in which it

allows a book-embedding. An obvious question with regards to the pagenumber of

graphs would be the rate of growth with regards to the number of edges.

Theorem 27. [32] All graphs with E edges have pagenumber of O(
√
E).

Since the pagenumber of a graph is the minimum number of half-planes in which

its edges can be embedded, we might consider how this relates other surfaces in

which a graph allows an embedding. A graph G is embeddable in a surface Σ if

there is a drawing of G on Σ such that no edges of G cross. A surface with genus g

is a sphere with g handles.

Definition 28. The genus of a graph G is the minimum genus of an orientable

surface into which G can be embedded without any edges crossing.

From this we can see that planar graphs have genus zero, as they are able to be

embedded on a sphere without any edge crossings. So now we can consider how the

genus of a graph relates to the pagenumber.

Theorem 29. [31] Any graph of genus g has a book-embedding with O(
√
g) pages.

This improves upon the earlier result of Heath and Istrail showing that graphs

of genus g allow book-embeddings with O(g) pages [22].

We can see that this bound is tight, since complete graphs on n vertices are

known to have genus Θ(n2) [38] and were shown earlier to have pagenumber Θ(n).
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3.5 Topological Book-Embeddings

The standard definition of book-embeddings considered the vertices to be embedded

along the spine, with each edge embedded on a single page in such a way that no

edges on the same page cross. If the restriction that an edge be embedded on a

single page were to be lifted, it would result in a different type of book-embedding,

defined as follows.

Definition 30. A topological book-embedding of a graph G consists of the vertices

of G embedded along the spine of a book, with each edge embedded on any number

of the pages in such a way that no two edges cross.

Topological book-embeddings have also been referred to as homeomorphic book-

embeddings [28]. When discussing topological book-embeddings, the standard con-

cept of book-embeddings in which edges do not cross the spine have been referred

to as combinatorial book-embeddings [11].

There has been much research on the topic of topological book-embeddings. Of

interest are some classifications of graphs which allow topological book-embeddings

on one or two pages, which give results which are comparable to the equivalent cases

on book-embeddings.

Theorem 31. [11] A graph G is outerplanar if and only if it has a topological

book-embedding with one page.

When restricted to one page, topological book-embeddings are equivalent to

book-embeddings, as the allowance that edges be embedded on more than one page

has no effect for this case. For topological book-embeddings, unlike with general

book-embeddings, there is a nice relation for planar graphs and the number of

pages.

Theorem 32. [11] A graph G is planar if and only if it has a topological book-

embedding with two pages.

So while for general book-embeddings, graphs with pagenumber two are sub-

hamiltonian planar, allowing edges to cross the spine generalises this to all planar

graphs. This is because two pages are equivalent to the plane, so allowing edges to

cross the spine means that a two-page topological book-embedding is an embedding

of the graph on the plane with vertices embedded in a line.

While we can construct graphs which require an arbitrarily large number of

pages for a book-embedding, with topological book-embeddings there is a bounded

number of pages which is sufficient for embedding any graph.

Theorem 33 ([4],[3]). For every graph G there is a topological book-embedding of

G which uses three pages.
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Proof. In order to construct a three page topological book-embedding for some ar-

bitrary graph G, we can use any ordering of the vertices along the spine. To embed

an edge of the graph, we add pseudonodes at each endpoint of the edge, which are

artificial nodes representing the first position at which the edge crosses the spine,

relative to each of the vertices it connects.

Consider some vertex v. For every edge adjacent to v we add pseudonodes along

the spine next to v and use a single page to embed edges from v to the pseudonodes.

Doing this for every vertex in G, we get 2m pseudonodes in total, where m is the

number of edges in G. For any edge in G we have two corresponding pseudonodes,

and to embed an edge in the book we draw an edge between the two pseudonodes

using the remaining two pages.

For example, if we consider the graph K5 with its vertices embedded in a line.

Since each vertex is adjacent to all the other four vertices, we get four pseudonodes

for each vertex. In Figure 3.10 the pseudonodes and the single-page embedding of

the connecting edges is shown.

node6 node1node7node8node9node6_257 node7_627

node22

node20 node5node4

node26

node18node0 node15_999 node2node10node11node12 node3node8_503node18_041 node19

node25

node27

node21node10_436node19_099node20_655node16node2_432node0_505node3_962node15node14node13 node1_901node9_175node17

Figure 3.10: The vertices of K4 with associated pseudonodes

Since each page is a half-plane and we allow crossing the spine, two pages are

equivalent to the plane, and we have a linear arrangement of vertices which we need

to pair up using non-intersecting edges. When matching up any pair of vertices, the

edge does not divide the plane, so it will always be possible to draw a line between

the remaining pairs of vertices.

For example, in Figure 3.11 we can see how the pseudonodes for K5 can be con-

nected using two pages and crossing the spine. The embedding of an edge between

two edges can be seen by starting from one of the end vertices and taking the path

through the associated pseudonodes. If we ignore the pseudonodes, this gives the

embedding of the edge of the initial graph.

So for any graph G we can add pseudonodes at each of the vertices corresponding

with the adjacent edges. Using a single page, we can connect each of the vertices to

its pseudonodes. With the two remaining pages we can connect up the pseudonodes

associated with the endpoints of each edge of the graph, and from this we obtain a

three page topological book-embedding of G with no crossings.

So for any graph there is topological book-embedding using only three pages.

So if a graph is outerplanar it has a one page topological book-embedding, if
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Figure 3.11: A topological book-embedding of K5

it is planar it can be embedded in two pages, and all other graphs allow three

page topological book-embeddings. Most research on book-embeddings considers

the number of pages required for embedding particular graphs, however we have

seen that determining the number of pages for topological book-embeddings reduces

to determining whether a graph is outerplanar, planar or non-planar.

Since topological book-embeddings allow edges to cross the spine, it is a feature of

some research on this topic to consider topological book-embeddings which minimise

the number of crossings of the spine.

Theorem 34. [34] For any graph G with n vertices, there is a three page topological

book-embedding of G in which each edge crosses the spine no more than n times.
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Chapter 4

Book-Embeddings of Planar

Graphs

4.1 Introduction and History

One obvious question that arises from the topic of book-embeddings of graphs is

finding an upper bound on the pagenumber for planar graphs. This question was

first considered by Bernhart and Kainen, with the conjecture that no such bound

exists, and that there exists planar graphs with arbitrarily large pagenumber [4].

This was later refuted, when Buss and Shor [6] proved that all planar graphs

could be embedded in nine pages. This result was improved to seven pages by

Heath [20], and further improved by Istrail [26] to six pages.

The latest result on this question was a proof by Yannakakis showing that four

pages are sufficient for book-embeddings of planar graphs [46]. He further claimed

that there exist planar graphs which can’t be embedded in three pages. However,

the details of this proof have never been published, and there are currently no known

examples of planar graphs that require four pages for a book-embedding.

4.2 Embedding Planar Graphs in Books

In this section, the proof for the sufficiency of nine pages for book-embeddings of

planar graphs, and consequently that a bound on the pagenumber exists, will be

given. While this result was the first to show that it is possible to embed any planar

graph in a bounded number of pages, the bound itself has since been improved upon.

The current best bound is as follows.

Theorem 35. [46] For any planar graph G the pagenumber of G is at most four.

In proving this result, Yannakakis gives a linear-time algorithm for obtaining

a four-page book-embedding of any planar graph. The existence of a bounded pa-
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genumber sufficient for book-embeddings of planar graphs has many interesting con-

sequences, as it implies that results in terms of a graphs pagenumber can potentially

be used to provide bounds for the class of planar graphs.

For example, Jacobson [27] provides a succinct data structure for planar graphs

by providing a more general construction for graphs of bounded pagenumber.

Nine Page Book-Embeddings

The proof, as given by Buss and Shor [6], on the sufficiency of nine pages for book-

embeddings of planar graphs uses the idea that subhamiltonian planar graphs can

be embedded in two pages.

The construction in this proof is based on two main ideas. First is the result

from Theorem 18, from which we know that the pagenumber of subhamiltonian

planar graphs is two. Second is the idea that the vertices of a graph can be divided

into successive levels in such a way that every edge connects vertices which are

either on the same or adjacent levels. The appropriate nesting of levels guarantees

that edges belonging to non-adjacent levels can be assigned independent pages in a

book-embedding.

Before describing the proof of this theorem, it is necessary to provide some basic

definitions, and to introduce a theorem of Whitney that is required.

Definition 36. A k-cycle is separating if its removal from the graph would result

in the graph being separated into two or more distinct connected components.

Separating 3-cycles are referred to as separating triangles.

node30_430node24_139

node27_189

node29_448

node33

node31_338 node22_861

node28_475

node23_782 node32

node25_771 node26_879

Figure 4.1: A separating triangle in a planar graph
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Definition 37. A triangulation of a planar graph G is the graph obtained by

adding edges to G that don’t cross any other edge until the resulting graph has all

triangular faces.

A triangulation of a planar graph results in a maximal planar graph. Note that

a book-embedding for a triangulation of a planar graph gives an upper bound on the

pagenumber for the original graph, so for this result it suffices to give a construction

for maximal planar graphs.

For this construction we shall require the following theorem, which was proven

by Hassler Whitney in 1931.

Theorem 38 (Whitney’s Theorem [43]). A triangulated planar graph with no sep-

arating triangles has a Hamiltonian cycle.

For the purpose of this proof we can consider Whitney’s Theorem in the following

form, which we will show to be equivalent.

Lemma 39. [6] Consider a graph G which is embedded in the plane such that all

faces of G are triangulated except for the outer face, and such that there are no

separating triangles. Then there exists a two page book-embedding of G such that

each triangular face of G is on a single page, with this last condition requiring that

some edges be embedded on both pages.

Proof. The proof of this lemma uses a three step process to augment graph G into

graph G′, which meets the criteria of Whitney’s Theorem. The first two steps are

repeated as many times as possible, while the final step only occurs once.

1. While there exist some vertices p, q and r which occur consecutively on the

outer face, with q occurring again on the outer face, add edge (p, r) to the

outer face.

2. While there exist some vertices p, q and r occurring consecutively on the outer

face, and there exists some other vertex s on the outer face for which there

is an edge (q, s), add a new vertex q′ along with the edges (p, q′), (q, q′) and

(r, q′) in the outer face.

3. Add a new vertex t to the outer face, and connect it to all of the vertices on

the outer face.

This process is clearly terminating, and the resulting graph contains neither

duplicated edges nor separating triangles. So, by Whitney’s Theorem, G′ contains a

Hamiltonian cycle, and therefore can be embedded on two pages. If the edges of the

Hamiltonian cycle are embedded in both of the pages of the book, then the triangles

of the graph are preserved. The desired two page book-embedding of the initial

graph G can be obtained by removing the edges and vertices which were added.
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Consider some planar graph G which is embedded in the plane. The algorithm

of Hopcroft and Tarjan can be used to obtain such an embedding [25]. For any

non-triangular faces in G, add edges until the graph is triangulated.

Denote the set of vertices in G which are not enclosed in some separating triangle

of G as V0.

Assuming that sets V0, V1, . . . , Vn have been defined, let V n+1 = V (G)− ∪ni=0Vi,

and let Gn+1 be the subgraph of G induced by the vertex set V n+1.

Let Vn+1 ⊆ V n+1 be the set of vertices in Gn+1 which are not enclosed by some

separating triangle in some connected component of Gn+1.

Let Gn be the subgraph of G induced by the vertex set Vn. When referring to

parts of our graph G we use the following terms:

• Each subgraph Gn is a level of G.

• A section of G is a connected component of some subgraph Gn.

• A section which is inside a section of the preceding level is a subsection of that

section.

From this we can derive the following lemma, which can then be used in the

proof of the sufficiency of nine pages for book-embeddings of planar graphs.

Lemma 40. [6] For any section S of G, it is possible to order the vertices along

the spine such that the edges of S and those from S to its subsections can be embed-

ded in a book with six pages, where only three pages are used for edges to any one

subsection. This book-embedding is not dependent on the ordering of the vertices of

any subsection.

Proof. By definition, each of the distinct levels of G has no separating triangles,

so we can use the construction from Lemma 39 to embed S on two pages. Let

S1, S2, . . . , Sm be the subsections of S. For each Si there are three vertices of S

in the separating triangle connected to Si, which we denote as ai, bi and ci, where

ai < bi < ci under the vertex ordering of S. Let a′i be the successor of ai in the

vertex ordering of S. Then place Si between vertices ai and a′i. If we have ai = aj

for some i 6= j, then section Si is placed before section Sj if and only if bi > bj.

Since the embedding used places all the triangles of S on the same page, the

triangle aibici uses one page of the book. If the triangle aibici is on the first page of

the embedding, then the edges (Si, ai), (Si, bi) and (Si, ci) are embedded on pages

one, three and four, respectively. Otherwise, these edges are embedded on pages

two, five and six. The edge (Si, ai) can obviously be placed on the same page as

the triangle aibici as we placed Si between vertices adjacent along the spine of the

embedding of S. So the new edges on pages one and two cannot cross any edges of

the same page, as they don’t span any of the vertices in S.
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If (Si, ai) was embedded on page one, then the edges placed on pages three and

four which correspond to the different ai’s run parallel to the edges (ai, bi) and (ai, ci)

of S, which are embedded without conflict on page one. Similarly, for (Si, ai) on

page two, the same argument holds for the edges placed on pages five and six. Edges

which correspond to the same a don’t conflict due to the ordering of the sections

Si, and they will only be placed on the same page if the corresponding triangles of

S don’t conflict.

So this six page book-embedding meets the required conditions.

With all the preliminaries covered, a construction for nine page book-embeddings

of planar graphs can now be described. In this construction, the boundaries between

levels will be separating triangles.

Theorem 41. [6] Any planar graph can be embedded in nine pages.

Proof. Starting with level zero, we can apply Lemma 40 to the sections of each

of the levels of the given planar graph. The six pages required by the lemma are

always available for embedding the edges of each of these sections, as the edges which

connect any section to the previous level only use three pages. Due to the nesting

of the sections, there are no other possible conflicts in embedding the edges.

34



Chapter 5

Extremal Graph Theory

5.1 Introduction to Extremal Graph Theory

Extremal graph theory is the study of maximal or minimal graphs which satisfy

particular properties, usually with regards to graph invariants such as order, maxi-

mum vertex degree, genus or pagenumber. A standard extremal question would be

to consider the smallest and largest size for a graph with some given property, in

terms of the number of vertices. The properties in consideration can be in terms of

some graph invariant, such as chromatic number or maximum vertex degree.

The inception of extremal graph theory is considered to be in 1941, with Turán’s

proof of his theorem on the size of k-clique-free graphs, although many results in this

area have been proven earlier, including Mantel’s Theorem, which gives a special

case of Turán’s result for k = 3. Both Mantel’s Theorem, and Turán’s generalisation

thereof, will be proven in this chapter.

Some other standard results from extremal graph theory are also described,

mostly focusing on the minimum and maximum number of edges for certain types of

graphs. In particular, results pertaining to the chromatic number and connectivity

of graphs will be described.

There are many possible extremal questions related to the topic of book-embeddings,

mostly pertaining to the structure of graphs with a given pagenumber. We will con-

sider questions from extremal graph theory which relate to the pagenumber of graphs

in Chapter 6.

5.2 Turán’s Theorem

First proven in 1941, Turán’s theorem is considered to be the start of research in ex-

tremal graph theory. The general theorem relates to graphs which forbid subgraphs

of the complete graph Kn; the equivalent result specific to the special case of K3 is
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referred to as Mantel’s theorem, and was proven prior to Turán’s result.

Theorem 42 (Mantel’s Theorem [1] [33]). If G is a n-vertex triangle-free graph,

then the maximum possible number of edges in G is
⌊
n2

4

⌋
.

Proof. Let {i, j} be some edge in a triangle free graph G. The other n− 2 vertices

can be adjacent to at most one of the vertices i, j without creating a triangle. So

(deg(i)− 1) + (deg(j)− 1) ≤ n− 2, which means that deg(i) + deg(j) ≤ n.

If we sum over all the edges of the graph, the number of times any vertex is

counted is equal to its degree, which gives:

∑
{i,j}∈E(G)

(deg(i) + deg(j)) =
n∑
i=1

deg(i)2

Using this along with the previous inequality gives:

n∑
i=1

deg(i)2 =
∑

{i,j}∈E(G)

(deg(i) + deg(j))

≤
∑

{i,j}∈E(G)

n = n|E(G)|

If we multiply both sides of this by n we get:

n2|E(G)| ≥
n∑
i=1

deg(i)2n =
n∑
i=1

deg(i)2
n∑
i=1

12

Applying the Cauchy-Schwarz inequality, and using the observation that
∑n

i=1 deg(i) =

2|E(G)|, gives:

n2|E(G)| ≥
n∑
i=1

deg(i)2
n∑
i=1

12

≥

(
n∑
i=1

deg(i)

)2

= 4|E(G)|2

From this follows the result that |E(G)| ≤ n2

4
.

The extremal graphs for Mantel’s Theorem are complete bipartite graphs with

n vertices and n
2

in each partition, if n is even. We can see this has no triangles, as

bipartite graphs are by definition. Each vertex is adjacent to all of the n
2

vertices in

the other partition, giving exactly n2

4
edges.

For example, the extremal case for n = 10 is K5,5, as shown in Figure 5.1, and

it has exactly n2

4
= 25 edges.
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Figure 5.1: The complete bipartite graph K5,5

Turàn’s Theorem is an extension of Mantel’s Theorem to graphs which don’t

contain a clique of a given size.

Theorem 43 (Turán’s Theorem [42]). Let G be a graph on n vertices that contains

no r-clique. Then the number of edges in G is at most (r−2)n2

2(r−1) .

Proof. The idea for this proof is to use induction on n. The statement is obviously

true for small values of n. So we prove that it is true for graphs with n vertices

given that it is true for all graphs with less than n vertices.

Let G be a graph with V (G) = {1, 2, . . . , n} such that G has no r-clique and has

the maximal number of edges. It is clear that G must contain an (r − 1)-clique as

otherwise there would still be some edges that could be added.

Let A be one of the (r−1)-cliques in G, and let V (A) and E(A) denote the vertex

and edge sets of A respectively. So the number of vertices in A is |V (A)| = r − 1

and the number of edges is E(A) =
(
r−1
2

)
.

From this we can define the set of vertices not in V (A), which we denote as

B = V (G)\V (A). Since B contains all vertices except the r− 1 in V (A), we can see

that |B| = n− r + 1.

Let E(B) be the number of edges on the vertices in B, and let E(A,B) denote

the number of edges between V (A) and B. By induction, since |B| = n− r+ 1 and

we assume that the theorem holds for graphs with fewer than n vertices, it can be

seen that E(B) ≤ r−2
2(r−1)(n− r+ 1)2. Since there are no r-cliques in G, every vertex

v ∈ B is adjacent to at most r − 2 of the vertices in V (A), and hence we obtain

E(A,B) ≤ (r − 2)(n− r + 1).
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Adding all these together yields the result:

|E| ≤
(
r − 1

2

)
+

r − 2

2(r − 1)
(n− r + 1)2 + (r − 2)(n− r + 1)

=
r − 2

2(r − 1)
n2

Which gives the maximum number of edges in an r-clique-free graph with n

vertices as r−2
2(r−1)n

2.

The extremal graphs for Turàn’s Theorem are an extension of the extremal case

for Mantel’s Theorem.

Definition 44. A k-partite graph is a graph in which the vertices can be partitioned

into k disjoint sets such that there are no edges between vertices in the same set.

We can see that the result given by Turàn’s Theorem is tight because complete

r− 1-partite graphs with n
r−1 edges in each part can be seen to contain no r-clique,

and have exactly r−2
2(r−1)n

2 edges.

5.3 Other Extremal Results

While Turán’s theorem is responsible for initiating the development of the field of

extremal graph theory, this area of research has since grown into a major component

of graph theory. Similar to Turán’s theorem, many of the results in extremal graph

theory consider the maximum or minimum number of edges, relative to the number

of vertices, which can be in a graph with certain properties.

As examples, we will consider some well known results from this field relating

to the chromatic number and and connectivity of graphs, and the relation of these

parameters to the number of edges.

Definition 45. A graph is said to be k-chromatic when it allows a vertex colouring

with k colours, but no fewer.

From this we can give upper and lower bounds on the number of edges in a

k-chromatic graph.

Theorem 46. The minimum number of edges in a k-chromatic graph is
(
k
2

)
. In fact,

for every integer k and for all integers n > k there exists a k-chromatic n-vertex

graph with this many edges.

Proof. If a graph G is k-chromatic, then we can partition the vertices into sets

V1, V2, . . . , Vk such that there are no edges between vertices in the same set, and no

such partitioning is possible with fewer than k partitions.
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If there are two partitions Vi and Vj such that there is no edge between the

vertices in these sets, then we could group these two sets together to reduce the

number of sets used, which would mean that we could colour the graph with fewer

than k colours. So for G to be k-chromatic, there must be an edge between every

pair of the k sets, and to achieve this requires
(
k
2

)
edges. So for a graph to be

k-chromatic, there must be at least
(
k
2

)
edges.

This bound is tight, as if we have n vertices, where n ≥ k, then we can form a

complete graph on k of these vertices and leave the remaining vertices disconnected.

Each of the k vertices in the connected component must be in a distinct partition,

and this graph has exactly
(
k
2

)
edges. The remaining n − k vertices which are

disconnected can be assigned any of the k colours without restriction. This graph

clearly can’t be coloured with fewer than k colours, and allows a k-colouring, and is

therefore a k-chromatic graph on n vertices with
(
k
2

)
edges.

Since we have a lower bound on the number of edges in a k-chromatic graph, we

might also wish to consider the upper bound.

Theorem 47. The maximum number of edges in a k-chromatic n-vertex graph is
n2

2

(
1− 1

k

)
.

Proof. Consider some k-chromatic graph G with n vertices. Since this graph is

k-chromatic, we can separate the vertices into k sets according to their colouring.

Vertices in the same colour set must not be adjacent, but there may exist a path

between them via the vertices in the other sets.

Consider the ith set of vertices, where the number of vertices in set i is ni. The

maximal case is when each of the vertices in any set i is connected to all the n− ni
vertices in the other sets, giving ni(n− ni) edges from each of the sets.

Since every edge is counted twice (once per end vertex) we get the relation:

|E(G)| ≤ 1

2

k∑
i=1

ni (n− ni)

≤ 1

2
k
n

k

(
n− n

k

)
=

n2

2

(
1− 1

k

)
The last inequality is because the maximal case occurs when all the sets of

vertices are equally of size n
k
.

This bound is tight, because if n is a multiple of k we can construct a graph

with n
k

vertices of each colour, with every edge between vertices of a different colour

present. So any given vertex would be adjacent to all of the n − n
k

= n
(
1− 1

k

)
vertices assigned a different colour. This gives the number of edges in this graph as
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n2

2
(1 − 1

k
). So the extremal graph as complete k-partite graphs with n

k
vertices in

each part.

So the number of edges in a k-chromatic n-vertex graph is at most n2

2

(
1− 1

k

)
,

and this is a tight bound.

We can see that the extremal graph for this case is quite similar to that of Turàn’s

theorem; in fact if we replace k with r − 1 we find that we have the same upper

bound on the number of edges. This is because k-chromatic graphs are k+ 1-clique

free.

Another graph invariant we can consider relates to the connectedness of a graph.

Definition 48. A graph is k-connected if there is no set of k − 1 vertices whose

removal would disconnect the graph.

As with the previous results on k-chromatic graphs, we can consider the minimum

number of edges in graphs which are k-connected.

Theorem 49. For all k ≥ 2, every k-connected n-vertex graph has at least kn
2

edges,

and for all values of k and n such that kn is even there exists a k-connected graph

with this many edges.

Proof. For a graph to be k-connected, the minimum vertex degree must be at least

k, because otherwise there would be some vertex with degree less than k which

could be disconnected from the graph by the removal of it’s neighbours, violating

the condition of k-connectivity.

So the minimum number of edges is at least when all vertices have degree k,

giving |E(G)| ≥ nk
2

, since there are n vertices all with degree k. Obviously this

bound only makes sense when nk is even, for otherwise this is not an integer.

Furthermore, this minimum bound on the number of edges is achievable, as we

can construct a graph which is k-connected and has this many edges.

We can consider the vertices as being in a circular layout, with the vertices

labelled (v0, v1, . . . , vn−1) around the circle. To add in the appropriate edges we

must consider the cases where k is even and odd separately.

Case 1. If k is even then the edge set of our k-connected graph G can be defined as:

E(G) =

{
vavb : |a− b| ≡ i mod n, ∀i ∈

{
1, . . . ,

k

2

}}
We can see that every vertex is adjacent to k

2
vertices on the left, and k

2
vertices

on the left, so this graph is k-regular, and therefore has kn
2

edges as required.

To prove that this is k-connected, we can consider some pair of non-adjacent

vertices vj and vi, and show that removing any set of k − 1 other vertices can’t

disconnect these two vertices.
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We have two paths between vi and vj around the outside of the circle, so to

disconnect these two vertices requires that there is no path between then in both

directions around the circle. Since vi and vj are not adjacent, we know that (|i− j|
mod n) > k

2
by the construction of the graph. If we remove some vertex vt and

neither of the adjacent vertices, then we know that the edge vt−1vt+1 is in the graph,

so we still have a path between u and v. Similarly if we remove two adjacent vertices

vtvt+1 we still have the edge vt−1vt+2.

By the construction of the graph we can see that we need to remove all vertices

vtvt+1 . . . vt+ k
2
−1 to prevent there from being a path from vi to vj around the circle

in the direction of vt, which means that we need k
2

vertices to be removed from

each of the halves of the circle between vi and vj. But this requires k vertices to be

removed, meaning that removing only k−1 vertices from this graph wont disconnect

the graph. So this graph is k-connected, and has kn
2

edges.

Case 2. If k is odd then n must be even for kn to be even, so we can use the edges

as for the even case of k−1 and add edges between vertices which are opposite along

the circle. Formally we would define this as:

E(G) =

{
vavb : |a− b| ≡ i mod n, ∀i ∈

{
1, . . . ,

k − 1

2

}}
∪
{
vavb : |a− b| ≡ n

2

}
As before, we need to show that for any non-adjacent vertices vi and vj in this

graph, there is no set of k−1 vertices whose removal from the graph would disconnect

vi and vj.

Using the reasoning as for the even case, we can see that we need k−1
2

adjacent

vertices to be removed along each of the halves of the circle between vi and vj.

However, we also need to consider the edges vivi+n
2

and vjvj+n
2
. Since vi and vj are

not adjacent, both of the vertices vi+n
2

and vj+n
2

are in the same half of the circle.

To separate the vertices vi and vj we need to remove k−1
2

consecutive vertices from

the half of the circle which does not contain vi+n
2

and vj+n
2
, by the same reasoning

as for the even case. Furthermore, we need to remove k−1
2

consecutive vertices from

the half which does contain vi+n
2

and vj+n
2
, as well as both the vertices vi+n

2
and

vj+n
2
.

Since vi and vj are not connected, it follows that vi+n
2

and vj+n
2

are not connected,

so no k−1
2

consecutive vertices can contain both of these two vertices. So we need

to remove some k−1
2

vertices which includes either vi+n
2

or vj+n
2

as well the other

of these tow vertices. This means that we need to remove k+1
2

vertices from this

half, which gives a total of k vertices that need to be removed from the graph to

disconnect vi and vj. So we can’t disconnect the graph with only k − 1 vertices, so

the graph is k-connected and contains kn
2

edges.

So the minimum number of edges in a k-connected graph is kn
2

and if kn is even
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we can construct a k-connected graph with this many vertices.

Another graph property which we discussed earlier is that of planarity, in which

case the graph can be embedded in the plane with no edges crossing. We can give

a bound on the maximum number of edges in a planar graph.

Theorem 50. For n ≥ 3 the maximum number of edges in a planar graph with n

vertices is 3n− 6.

Proof. Consider a maximal planar graph G. Let m denote the number of edges in

G, and f denote the number of faces.

Since G is maximal, there is no edge that can be added to G without violating

planarity. Every face in G must have size three, as if there were any face in G with

size larger than three then we could add one of the edges crossing that face to G

without crossing any other edge, contradicting the assumption of maximality.

Since every face is bounded by three edges, and each edge is adjacent to two

faces, then the number of faces f = 2m
3

.

From Euler’s formula we know that for planar graphs n−m+f = 2. Combining

this with the previous relation gives n − m + 2m
3

= n − m
3

= 2. Rearranging this

gives m = 3n− 6 as required.

From Theorem 18 we know that graphs with two page book-embeddings are

subhamiltonian planar, so this also gives an upper bound on the number of edges in

a two page book-embedding.
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Chapter 6

Pagenumber and Extremal Results

6.1 Introduction

The most ubiquitous concept with regards to book-embeddings is that of the pa-

genumber of graphs. The nature of the relations between the pagenumber of a

graph and other graph invariants is a natural question to arise from research in this

field. Types of extremal question pertaining to book-embeddings would be with

regards to the maximum or minimum pagenumber of graphs with given properties,

or the relationship between the pagenumber and some other graph invariants such

as chromatic number, or average vertex degree.

For classes of graphs in which there are known results regarding some other graph

invariants, relations between these graph invariants and pagenumber can provide

constraints on the number of pages that might be required for book-embeddings

of such graphs. Conversely, we can get constraints for other graph invariants for

graphs where the pagenumber is known.

In this chapter we give consideration to the types of extremal results which

relate other graph invariants to the pagenumber. We give some results which relate

pagenumber of a graph to various types of graph thickness parameters. For graphs

with bounded pagenumber we give some results relating to the size and chromatic

number.

6.2 Pagenumber and Size

One of the more common types of extremal questions in graph theory is with regards

to the maximum and minimum number of edges in graphs with certain properties.

So an obvious question to ask would be the maximum number of edges in an n-vertex

graph such that it can be embedded in k pages.

Theorem 51. [10] The maximum number of edges in a k-page book-embedding on
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n vertices is (k + 1)n− 3k.

Proof. Let the vertices of the graph be labelled (v0, v1, . . . vn−1), in the order of their

layout along the outer circle. The edges (vi, vi+1) mod (n) are the external edges

of the book-embedding, with all other edges being internal. The maximum number

of external edges in a book-embedding is n, and we can always add these edges to

a page since there are no edges which can cross them.

As any single page of a book-embedding is outerplanar, each page has at most

2n − 3 edges, which includes the n external edges. So the maximum number of

internal edges on a page in n− 3.

Since we can have at most n− 3 internal edges on each of the k pages, and there

are n external edges, which gives k(n − 3) + n = (k + 1)n − 3k as the maximum

number of edges in a k-page book-embedding on n vertices.

This bound is tight, as we can construct k-page n-vertex book-embeddings with

this many edges.

For each page i, where 1 ≤ i ≤ k, we can define the set of edges on the page i

by:

Ei =

{
vavb :

⌈
1

2
(a+ b)

⌉
≡ i− 1 mod

n

2

}
Each of the k disjoint sets E1, E2, . . . , Ek contains n − 3 internal edges which can

be embedded on a single page without crossing. Since the n external edges can

be embedded on any of these pages without conflict, this gives a k-page n-vertex

book-embedding with a total of (k + 1)n− 3k edges.

As a consequence of this result, we know that any graph on n vertices with more

than (k + 1)n− 3k edges does not have a book-embedding on k pages.

6.3 Pagenumber and Graph Thickness

The pagenumber of a graph is alternatively referred to as book-thickness, and it can

be related to some other measures of the thickness of a graph. There are several

types of graph thickness parameters, such as geometric thickness, arboricity and

outerplanar thickness. In this section we will consider some relations between the

pagenumber with these other graph invariants for measuring graph thickness.

Definition 52. The thickness of a graph G is the minimum number of planar

subgraphs of G required such that the union of the subgraphs is equal to G, and is

denoted θ(G).

Definition 53. The outerthickness of a graph G is the minimum number of out-

erplanar subgraphs of G required such that the union of the subgraphs is equal to

G, and is denoted θop(G).
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The outerthickness of a graph can also be referred to as the graphs outerplanar

thickness [4].

Definition 54. The geometric thickness of a graph G is defined as the minimum

number of colours such that there exists a straight line drawing of G in which all

edges that cross are assigned a different colour, and is denoted θ̄(G).

Geometric thickness is also referred to as real linear thickness, or rectilinear

thickness [13].

It is worth noting that as a consequence of Fáry’s Theorem [15] that all planar

graphs admit a planar straight line drawing, the graphs with thickness of one are

exactly the graphs with geometric thickness of one, this being the set of planar

graphs.

With regards to these graph properties, the following relations with the pagenum-

ber of graphs are known.

Lemma 55. [4] The outerthickness of a graph is at most its pagenumber.

Intuitively we would expect this to be true, as each page of a graph is outerplanar,

but book-embeddings impose greater restrictions on the layout, which would imply

that we should require more pages than outerplanar subgraphs.

Lemma 56. [4] The thickness of a graph G is at most
⌈
1
2
pn(G)

⌉
.

This aligns with the previous lemma, as planar graphs which are not outerplanar

have pagenumber at least two, implying that the thickness of a graph would be about

half its outerthickness.

Lemma 57. [13] The geometric thickness of a graph is at most equal to its pa-

genumber.

Proof. If we use a circular layout for the book-embedding of a graph G, we can

interpret it as a straight line drawing of G where each page is assigned a colour.

This fits with the definition of geometric thickness of a graph, except with an extra

condition imposed on the vertex layout. So we can see that the pagenumber of a

graph gives an upper bound on the geometric thickness.

From this we can see that the pagenumber of a graph can be interpreted as a

restriction of the geometric thickness in which the vertices must be placed in convex

position.

More generally, the above thickness parameters have the following order:

θ(G) ≤ θ̄(G) ≤ pn(G)

θ(G) ≤ θop(G) ≤ pn(G)
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The pagenumber of a graph imposes greater restrictions on the layout than the

other thickness parameters, and is therefore the largest of these values. The thickness

is smaller than the other parameters as it is the least restrictive.

Instead of considering partitions of the graph into planar or outerplanar sub-

graphs, we can consider partitioning the edges into forests. Since all trees are out-

erplanar, this is a further restriction on the partitions than that of outerplanar

thickness.

Definition 58. The arboricity of a graph G is the minimum number of forests into

which the edges of G can be partitioned.

Theorem 59. [9] For any graph G, the arboricity of G is at most pn(G) + 1.

The arboricity of a graph must be at least the maximum arboricity of its sub-

graphs. In 1964 Nash-Williams gave a characterisation of arboricity of a graph in

terms of the ratio of edges and vertices in any subgraph.

Theorem 60 (Nash-Williams [36]). For any graph G, the arboricity of G is:

max
S⊆G

(⌊
|E(G)|
|V (G)| − 1

⌋)
Since we know that the arboricity of a graph is strictly less than the pagenumber,

this gives us a lower bound on the number of pages we might need for a book-

embedding.

6.4 Pagenumber and Other Graph Invariants

Given the pagenumber of a graph, one might wonder what further information can

be inferred regarding other invariants for that graph. Here we will present some

results relating the pagenumber of a graph to other invariants such as the average

vertex degree and chromatic number. We will also consider relations between the

pagenumber and several other measures of the thickness of a graph, such as thickness,

outerplanar thickness and arboricity.

Definition 61. The average vertex degree of a graph G is defined as the average

number of edges incident to any vertex in G, and can be calculated as 2m
n

, where m

is the number of edges, and n the number of vertices in the graph.

For graphs with bounded pagenumber we can also give a bound on the average

vertex degree.

Theorem 62. [4] For a graph G and some integer k > 0, if pn(G) ≤ k then the

average degree of G is less than 2k + 2.
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Proof. Consider a k-page book embedding of a graph G, and let m = |E(G)| and

n = |V (G)|. There are at most n external edges an the embedding, and at most

n − 3 other edges in each of the pages. Therefore m ≤ n + k(n − 3) which gives

the relation pn(G) ≤ m−n
n−3 . From this we know that the average degree is 2m

n
≤

2 (k+1)n−3k
n

< 2k + 2.

The only assumption was that G has a k-page book-embedding, which means

that pn(G) ≤ k implies that the average degree is less than 2k + 2.

Since book-embeddings can be considered in terms of colouring the chords of a

circular embedding of a graph, it seems natural to relate this to the idea of graph

colourings. The following result relating the pagenumber and chromatic number of

a graph follows directly from Theorem 62 on the average vertex degree.

Theorem 63. [4] For a graph G and some integer k, if pn(G) ≤ k then χ(G) ≤
2k + 2.

Proof. From Theorem 62 we know that the average degree of a graph with pagenum-

ber at most k is less than 2k + 2. We show using induction that this means the

chromatic is at most 2k + 2.

For small graphs, for example with n = 3, if the average degree is less than

some value d then we can see that the chromatic number is at most d. Assume that

graphs on n − 1 vertices and average degree d − 1 have chromatic number at most

d. Consider some graph G of size n with average degree d − 1, which means that

there exists some vertex v with degree at most d − 1. Since the graph G\{v} has

chromatic number at most d, and the vertex v has degree at most d − 1, we can

add the vertex v to G\{v} without increasing the number of colours used. So G has

chromatic number d.

So if we have some graph with pagenumber at most k, then the average degree is

less than 2k+ 2. Since the chromatic number is at most one more than the average

degree, this means that graphs with pagenumber at most k have chromatic number

at most 2k + 2.

There are examples of graph with pagenumber k and chromatic number 2k. For

example, from Theorem 21 we know that K2k has pagenumber k, and the chromatic

number of this graph is 2k. So this relation is not far from optimal.
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Chapter 7

Maximal Book-Embeddings

7.1 Introduction

When considering extremal questions with regards to book-embeddings, it seems

natural to look at graphs which have book-embeddings with k-pages and which

have the maximum number of edges. In Theorem 51 we showed that the maximum

number of edges in a book-embedding on k-pages with n vertices is (k + 1)n − 3k.

Since there are maximal k-page book-embeddings with fewer than the maximum

number of edges, we can define the sub-class of book-embeddings which are edge-

maximal for a given number of pages.

Definition 64. An edge-maximal k-page book-embedding is a book-embedding on

k-pages such that no edge can be added on any of the k pages.

For convenience, when discussing this type of book-embedding we will usually

be using the circular layout for book-embeddings, and interpreting each of the pages

as a colouring of the edges.

In this chapter, some results on graphs of this class will be discussed, particularly

questions with regards to the size of such graphs. The original results for this thesis

give bounds on the minimum number of edges in such graphs. This is the first work

to be done on the minimum number of edges in edge-maximal book-embeddings.

7.2 Size of Maximal Book-Embeddings

Determining the minimum number of edges which can be in a k-page maximal

book-embedding is a complicated question, as an edge can only be absent from such

a graph if it would cross an edge on every page. For the cases of one and two

page book-embeddings, the number of edges in an edge-maximal book-embedding

is exactly given by the maximum number of edges.
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Lemma 65. For k < 3 and n ≥ 3, the number of edges in a k-page edge-maximal

book-embedding with n vertices is (k + 1)n− 3k.

Proof. It follows from Theorem 51 that the maximum number of edges in a k-page

book-embedding with n vertices is (k+ 1)n− 3k. So we need to show that for k < 3

the total number of edges in an edge-maximal book-embedding can be no less than

this.

The maximum number of edges occurs when all the pages are triangulated. If

the total number of edges is less than the upper bound, then there is some face on

a page of the book-embedding which is not triangulated. For the edges inside this

face to be absent from the page, they must be embedded on one of the other pages

of the book-embedding. Since any non-triangular face has two crossing edges inside

it, we require at least two other pages to embed the edges inside this face. So if

k < 3 then there aren’t enough pages to embed these edges, so there can’t be any

faces of size greater than three.

So for k < 3 all pages in an edge-maximal book-embedding must be triangulated,

so the tota number of edges is (k + 1)n− 3k.

When considering the number of edges in a book-embedding, it can be of interest

to consider the number of edges that can be of the same page, or colour. We have

already noted that the maximum number of internal edges on the same page is

n − 3, which occurs when that page is triangulated. A slightly less obvious result

is the minimum number of edges which can be embedded on a single page of an

edge-maximal book-embedding.

Definition 66. A monochromatic face is a face in a book-embedding of a graph

for which all edges are on the same page, that is, all the edges of the face have the

same colour.

It should be noted that as external edges are considered as being on all pages of

the book-embedding they are included in a face on each of the k pages.

An edge e = (u, v) is internal to a face if u and v are vertices bounding that

face but e is not an edge which bounds the face. Two faces are considered to cross

when there are edges bounding one of the faces which are internal to the other face.

From this concept we get a simple result which is quite useful when considering

the structure of edge-maximal book-embeddings.

Theorem 67. For k ≥ 3, the largest possible size for a monochromatic face in a

k-page book-embedding is 2k − 2.

Proof. For a monochromatic face of size f to be in a maximal k-page book-embedding,

all of the edges internal to the face must be able to be embedded in the remaining

k − 1 pages without crossings. This corresponds with a complete subgraph of size
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f which must have pagenumber less than k − 2. So this problem is equivalent to

finding the maximum value of f such that Kf can be embedded in k − 1 pages.

From Theorem 21 we know that a complete graph of size f has pagenumber
⌈
f
2

⌉
.

So for our edge-maximal book-embedding to have a monochromatic face of size f ,

the number of other pages in the book must satisfy k − 1 ≥
⌈
f
2

⌉
.

This gives f ≤ 2k−2, so the maximum size of a monochromatic face in a k-page

book-embedding is 2k − 2.

We can see that increasing the size of the cycles in a given colour corresponds

with decreasing the number of edges which are embedded on the corresponding

page, as the edges internal to that face are not on that page. If a graph has a

monochromatic face of size f then there are f − 3 edges less than if that face were

to be triangulated.

So we can use the maximum size of the monochromatic faces to characterise the

minimum width of a page in an edge-maximal book-embedding.

Theorem 68. For k ≥ 3, the minimum number of internal edges embedded on any

single page of an edge-maximal k-page book-embedding on n vertices is
⌈
n−2
2k−4

⌉
− 1.

Proof. From Theorem 67, the maximum size of a face on a single page of a maximal

book-embedding with k pages is 2k − 2. Maximising the size of the faces on a page

is equivalent to minimising the number of edges on that page, since all the edges

internal to that face are absent from the page.

If we consider a page with only the external edges, then there is exactly one

internal face on the page. For each internal edge we add, the number of internal

faces increases by one. If we denote the number of internal edges by e then this

gives the total number of internal faces as e + 1. If we denote the size of face i by

fi, then from Theorem 67 we know that the size of each internal face on the page is

at most 2k − 2, so for all i we have fi ≤ 2k − 2.

If we sum up the size of each face, then since internal edges bound two faces,

and external edges bound one face, this gives:

n+ 2e =
e+1∑
i=1

fi ≤ (e+ 1)(2k − 2)

Rearranging this gives e ≥ n−2
2k−4 − 1 as a lower bound on the number of internal

edges.

We note that when n−2 is not a multiple of 2k−4 then we have one face smaller

than the maximal size, and
⌈
n−2
2k−4

⌉
− 1 edges.

So when the size of the faces on a page is maximal, then if the graph has order n

that gives a total of
⌈
n−2
2k−4

⌉
−1 edges and this is the minimal number of edges which

can be on a page of an edge-maximal book-embedding.
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7.3 Minimum Edge Number

Another question with regards to edge-maximal k-page book-embeddings is under

what conditions can an edge be absent from such a graph. This would be when that

edge can not be placed on any page of the graph without crossing some edge already

on that page. So the positions of all edges not in that graph must be crossed by at

least k edges that are in the graph, with at least one of these edges on each of the

k pages. This leads in to the question of the minimum number of edges that must

be in an edge-maximal k-page book-embedding.

First we will give a constructive proof for a minimal edge-maximal 3-page book-

embedding, this being the first value for which there is a difference between the

upper and lower bounds on the number of edges.

From Theorem 67 we know that the maximum size of a face for a 3-page edge-

maximal book-embedding is 2k− 2 = 4. In Figure 7.1 we can see that if there were

a 5-face in one colour, then there would be an internal edge that could still be added

in that colour, which violates the assumption of maximality.

node4_645

node0_965

node2_619

node3_586

node1_839

Figure 7.1: A 3-page book-embedding with a monochromatic 5-face is not
edge-maximal

We shall refer to faces of size four as 4-faces, and use the following terminology.

Definition 69. A page is a quadrangulation when every face is a 4-face, except for

one 3-face if there are an odd number of vertices.

We will show that the minimum number of edges in a 3-page edge-maximal book-

embedding occurs when one page is a quadrangulation, and that this required the

remaining two pages to be triangulated.

Theorem 70. Every 3-page edge-maximal book-embedding on n vertices has at least⌈
7n
2

⌉
− 8 edges, with equality occurring if and only if one of the pages is a quadran-

gulation, with the other two pages triangulations.
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node22_926

node18_987

node17_549

node21_875

node19_412

node20_838node16_086

node15_654 node14_140

Figure 7.2: A maximal three page book-embedding. The quadrangulated page is
represented by the red edges, with external edges represented as black as they can be

considered to be embedded on any of the pages

Proof. From Theorem 68 we know that the minimum number of edges on a single

page of a 3-page edge-maximal book-embedding is
⌈
n−2
2k−4

⌉
−1, which gives the number

of internal faces as
⌈
n−2
2k−4

⌉
. For k = 3 this gives

⌈
n−2
2

⌉
=
⌈
n
2

⌉
− 1 internal faces.

When we have three pages and there are an odd number of vertices, then it is not

possible for all faces of a page to be 4-faces, so there would always be at least one

3-face. We can see that this gives the number of 4-faces in a quadrangulation as⌊
n
2

⌋
− 1 when n is odd.

So a quadrangulated page in an edge-maximal 3-page book-embedding has
⌊
n
2

⌋
−

1 faces of size four.

In any 3-page book-embedding, all 4-faces must be disjoint. This is because in

any monochromatic 4-face, edges of both other colours must cross that face. So

if any two 4-faces were to cross, one of them could not be crossed by both other

colours, meaning that one of those 4-faces could be triangulated. But that would

mean the book-embedding is not edge maximal, so all 4-faces must be disjoint.

It is not possible for 4-faces to cross, as if an edge which is internal to some

4-face were to be part of another 4-face then there would be some internal edge in

one of these faces which could only be included in the same colour as the face it is

crossing.

We can see in Figure 7.3 that if one of the edges crossing the red 4-face were to

bound another 4-face then there is always an edge internal to that 4-face that can

only be included in the same colour as the face it crosses. So for the book-embedding

to be maximal, this face must be a triangle. This includes the case in which one

of the bounding edges of the faces is external, which is represented as a black edge
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node4_645node0_965

node2_619

node1_839

node3_586 node5_198 node2_619

node4_645

node3_586

node1_839node0_965

node5_198

node4_645node0_965

node2_619

node1_839

node3_586

Figure 7.3: Crossing 4-faces - the grey edge must be added to the blue face for the
book-embedding to be maximal

bounding both of the 4-faces. So any edges internal to a 4-face must be 3-faces to

maintain the maximality of the book-embedding.

Since no two 4-faces can cross there can be at most
⌊
n
2

⌋
− 1 such faces, with the

maximal case when all 4-faces are the same colour, which corresponds with one face

being a quadrangulation.

Denote the number of faces of size four on page i by fi. So our upper bound on

the total number of 4-faces gives:∑
i∈{1,2,3}

fi ≤
⌊n

2

⌋
− 1

Denote the number of internal edges on page i by pi. Since the maximum number

of internal edges on a page is n − 3, and this is decreased by one for every 4-face,

we have pi = n− 3− fi, for i ∈ {1, 2, 3}.
So the total number of edges in the maximal book-embedding is the sum of all

the internal edges on each page, along with the n external edges.

Summing over all the pages gives:

|E(G)| = n+
∑

i∈{1,2,3}

pi = n+
∑

i∈{1,2,3}

(n− 3− fi)

= 4n− 9−
∑

i∈{1,2,3}

fi

≥ 4n− 9−
⌊n

2

⌋
+ 1 =

⌈
7n

2

⌉
− 8

This bound is tight, since we can construct graphs with one page quadrangulated

and the other two pages triangulated.

So E ≥
⌈
7n
2

⌉
−8, with equality occurring when one page is a quadrangulation.

We can extend the construction used for the three page case to edge-maximal

book-embeddings with k pages, where k−2 of the pages are mostly quadrangulated,
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and the remaining two pages are triangulated. This gives an upper bound on the

minimum number of edges in such graphs.

Theorem 71. The minimum possible number of edges in an edge-maximal k-page

n-vertex book-embedding is fewer than (k+4)n
2
− 3k

2
.

Proof. We prove this by construction of an edge-maximal k-page book-embedding

on n vertices with the required number of edges. We triangulate two of the pages,

with the remaining k − 2 pages quadrangulations with as many as two triangular

faces.

We consider the vertices to be arranged in a circle and labelled in circular order

as v1, v2, . . . , vn. External edges can be embedded on any page without crossing, so

we consider them to be present on all pages.

For 1 ≤ i ≤ k − 2 we define the set of edges on page i as:

Ei =
{
vavb : (a+ b) ≡ i mod

n

2

}
For the remaining two colours k and k − 1 the edges on associated pages are:

Ek−1 =

{
vavb :

⌈
1

2
(a+ b)

⌉
≡
⌈
k − 1

2

⌉
mod

n

2

}

Ek =

{
vavb :

⌈
1

2
(a+ b)

⌉
≡ 0 mod

n

2

}
These last two pages are triangulations. Assume that there is some non-triangular

face on one of these pages, for example on page k. If we consider some edge vavb

on page k, then we know that
⌈
1
2
(a+ b)

⌉
≡ 0 mod n

2
. Depending on the parity

of a + b either
⌈
1
2
(a+ b− 1)

⌉
≡ 0 mod n

2
or
⌈
1
2
(a+ 1 + b)

⌉
≡ 0 mod n

2
, so one of

these edges is on page k. This gives us a triangular face, either vava+1vb or vavb−1vb.

The remaining k− 2 pages are either quadrangulated, or mostly quadrangulated

with two triangular faces. For 1 ≤ i ≤ k− 2, if we consider edge vavb on page i then

we know that (a+ b) = i mod n
2
. Since a+ 1 + b− 1 = a− 1 + b+ 1 = i, the edges

va+1vb−1 and va−1vb+1 are also on page i, which gives us the 4-faces vavbvb−1va+1 and

vavbvb+1va−1 on this page.

We can consider a face vava+1vb−1vb on page i for 1 ≤ i ≤ k − 2, where a + b =

a+ 1 + b− 1 = i mod n
2
. This face is crossed by the edges vavb−1 and va+1vb. Since

(a+b−1) ≡ i−1 mod n
2

and (a+1+b) ≡ i+1 mod n
2

we know from the definitions

of the edge sets that these edges are already present on the pages corresponding to

i + 1 and i − 1 mod k, as the 4-faces on page 1 are crossed by the edges on page

k from the definition of Ek. So no edges can be added to any of the pages, and

therefore this defines an edge-maximal book-embedding.
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Figure 7.4: A maximal four page book-embedding. The quadrangulated pages are
represented by the red and blue edges, with the black and green pages triangulated.

We can see this construction illustrated for the case of k = 4 and n = 14 in

Figure 7.4, where the red and blue faces are both maximal since the edges internal

to the 4-faces are present on other pages. The red and blue faces are quadrangulated,

with the exception of the two triangular faces on the blue page since there are an

even number of vertices. The page for colour k = 4 is represented in black, and can

be seen to be triangulated with some edges crossing the red 4-faces. Similarly, the

page for k − 1 = 3 is represented as the triangulated green page.

The number of internal edges in each of these sets depends on the parity of n.

Case 1. If n is odd, then the first k− 2 edge sets are always quadrangulations, with⌊
n
2

⌋
− 1 4-faces on each page, and therefore

⌈
n
2

⌉
− 2 = n−3

2
edges on each of these

k − 2 pages. The remaining two pages are triangulated, with n − 3 internal edges

each, and there are n external edges. So the total number of edges is:

n− 3

2
(k − 2) + n+ 2(n− 3) =

k + 2

2
(n− 3) + n =

(k + 4)n

2
− 3k

2
− 3

Case 2. If n is even, then we get two cases for the number of edges on a page.

For even values of i we have a quadrangulation on the corresponding page, which

gives the number of edges on that page as n
2
− 2. For odd values of i the page is

quadrangulated except for two triangular faces, so we have n
2
− 1 edges on these

pages.

55



So there are
⌊
k−2
2

⌋
pages with n

2
− 2 internal edges, and

⌈
k−2
2

⌉
pages with n

2
− 1

internal edges, which adds up to (k−2)n
2
−
⌊
3k
2

⌋
+ 3 internal edges on these pages.

On the remaining two pages we have n− 3 internal edges, and there are n external

edges. So the total number of edges is:

(k − 2)n

2
−
⌊

3k

2

⌋
+ 3 + 2(n− 3) + n =

(k + 4)n

2
−
⌊

3k

2

⌋
− 3

For both of these cases we can see that the total number of edges in the con-

structed graph is less than (k+4)n
2
− 3k

2
.

For our lower bound on the minimum number of edges in edge-maximal k-page

book-embeddings, we give a restriction on the minimum vertex degree for such

graphs, and use this to bound the number of edges relative to the number of vertices.

Theorem 72. The minimum degree of a vertex in a k-page edge-maximal book-

embedding is at least
√

2k for all k ≤ n.

Proof. We consider external edges to be embedded on all pages. Let v0 ∈ V (G) be

a vertex such that deg(v0) is minimal amongst the vertices of the graph. If there is

no vertex to which v0 is not adjacent, then since deg(v0) is minimal this means that

we have a complete graph, in which case the average degree is n−1 ≥
√

2k. So now

we consider the case in which there is at least one edge not present in the k-page

edge-maximal book-embedding, and therefore that there is some vertex which is not

adjacent to v0.

Consider the vertices to have a circular layout v0, v1, v2, . . . , vn−1 in a clockwise

order. Define the set of vertices which are adjacent to v0 as N(v0), the neighbours

of v0, and note that |N(v0)| = deg(v0). This gives the number of edges between

vertices in N(v0) as
(
deg(v0)

2

)
.

For each of the k colours of the graph there is at least one monochromatic face

of that colour which includes the vertex v0, and from this we will prove that there

is at least one internal edge of that colour between the neighbours of v0.

Consider the page of colour i. If there is no internal edge of colour i adjacent to

v0, then we consider the monochromatic face of colour i which includes the vertex

v0. All the edges internal to this face must be on other pages of the book-embedding

for it to be maximal, and there must be some internal edge of colour i in this face,

as otherwise we could add edges in colour i from v0 to all vertices not adjacent to v0,

contradicting the assumption that there exist vertices not adjacent to v0. So there

is at least one internal edge of colour i on the vertices in N(v0).

If there are edges of colour i adjacent to vertex v0, then since deg(v0) is minimal

there is some vertex vt which is not adjacent to v0. Consider the edges v0vj and v0vk

of colour i such that there is no edge v0vs of colour i where j < s < t or t < s < k.

56



V0

13

1

14 3

2

Vt

5

89

7

11

10

6

V0

3

21

14

13 Vt

5

10

11

9 8

7

6

Figure 7.5: There is always an internal edge on a face with vertex v0.

Consider the monochromatic face of colour i which includes the edges v0vj and

v0vk. If this face is a triangle, then the edge vjvk means that we have an internal

edge on the neighbours of v0.

If this face has size greater than three, then there are some vertices between vj

and vk in the monochromatic face. For the book-embedding to be edge-maximal, all

of the edges internal to the monochromatic face must be on other pages of the book-

embedding, so all of the edges bounding the face between vj and vk are between

vertices adjacent to v0. Since vertex vt is not adjacent to v0 and is between vj and

vk, at least one of the edges in this face is an internal edge of the book-embedding.

So for any colour i there is an internal edge of colour i between vertices in N(v0).

Since the total number of edges between the neighbours of v0 is
(
deg(v0)

2

)
, this

means that k ≤
(
deg(v0)

2

)
, which can be rearranged to give deg(v0) >

√
2k.

Theorem 73. The minimum number of edges in an edge-maximal k-page book-

embedding is at least
√

k
2
n.

Proof. From Theorem 72 we know that every vertex in a k-page edge-maximal book-

embedding has degree greater than
√

2k. If there are n vertices in the graph, then

counting the edges from each vertex gives:

|E(G)| >
√

2kn

2
=

√
k

2
n

So a lower bound on the number of edges in a k-page edge-maximal book-

embedding with n vertices is
√

k
2
n.

So we have a linear upper bound and a square root lower bound on the average

degree of vertices in an edge-maximal k-page book-embedding, in terms of the num-

ber of pages. The upper bound gives a construction for a maximal book-embedding

with relatively few edges, while there may not exist maximal book-embeddings which

achieve the lower bound.
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# pages min # edges max # edges

1 2n− 3 2n− 3

2 3n− 6 3n− 6

3
⌈
7n
2

⌉
− 8 4n− 9

k ≥
√

k
2
n (k + 1)n− 3k

≤ (k+4)n
2
− 3k

2

Table 7.1: Upper and lower bounds on the number of edges in a k-page
edge-maximal book-embedding

7.4 Conclusion

Book-embeddings of graphs pose many interesting questions in terms of both optimal

graph layout and the relation to other classes of graphs. We have considered many

results on the pagenumber of major classes of graphs such as outerplanar, planar and

complete graphs. We have also considered the relationship between the pagenumber

of graphs with several other graph invariants, as part of our consideration of extremal

types of questions that might be posed with regards to this topic.

As the original work in this thesis, we established upper and lower bounds on the

minimum number of edges in edge-maximal k-page book-embeddings, giving exact

results for up to three pages, with three being the first value for which the minimum

number of edges diverges from the maximum. Future research might improve upon

these bounds, with the aim of finding an exact solution for the minimum number of

edges in these graphs.

In Table 7.1 we can see the current bounds on the number of edges in a k-

page edge-maximal book-embedding. For k ≤ 2 there is no variance between the

maximum and minimum number of edges, and for three pages we have exact bounds

on the extremal values. For general k the maximum number of edges is known, but

the bounds on the minimum number of edges are asymptotically different.

We conclude with a conjecture on the minimum number of edges in k-page edge-

maximal book-embeddings with n vertices.

Conjecture 74. The minimum number of edges in an n-vertex k-page edge-maximal

book-embedding is Ω(kn).
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