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Preface

Together with philosophy, mathematics is the oldest academic dis-
cipline known to mankind. Today mathematics is a huge and complex
enterprise, far beyond the ken of any one individual. Those of us who
choose to study the subject can only choose a piece of it, and in the end
must specialize rather drastically in order to make any contribution to
the evolution of ideas.

An important development of twenty-first century life is that mathe-
matical and analytical thinking have permeated all aspects of our world.
We all need to understand the spread of diseases, the likelihood that we
will contract SARS or hepatitis. We all must deal with financial matters.
Finally, we all must deal with computers and databases and the Internet.
Mathematics is an integral part of the theory and the operating systems
that make all these computer systems work. Theoretical mathematics is
used to design automobile bodies, to plan reconstructive surgery proce-
dures, and to analyze prison riots. The modern citizen who is unaware
of mathematical thought is lacking a large part of the equipment of life.

Thus it is worthwhile to have a book that will introduce the student
to some of the genesis of mathematical ideas. While we cannot get into
the nuts and bolts of Andrew Wiles’s solution of Fermat’s Last Theorem,
we can instead describe some of the stream of thought that created the
problem and led to its solution. While we cannot describe all the sophis-
ticated mathematics that goes into the theory behind black holes and
modern cosmology, we can instead indicate some of Bernhard Riemann’s
ideas about the geometry of space. While we cannot describe in spe-
cific detail the mathematical research that professors at the University
of Paris are performing today, we can instead indicate the development
of ideas that has led to that work.

Certainly the modern school teacher, who above all else serves as a
role model for his/her students, must be conversant with mathematical
thought. As a matter of course, the teacher will use mathematical ex-
amples and make mathematical allusions just as examples of reasoning.
Certainly the grade school teacher will seek a book that is broadly ac-
cessible, and that speaks to the level and interests of K-6 students. A
book with this audience in mind should serve a good purpose.
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Mathematical history is exciting and rewarding, and it is a signifi-
cant slice of the intellectual pie. A good education consists of learning
different methods of discourse, and certainly mathematics is one of the
most well-developed and important modes of discourse that we have.

The purpose of this book, then, is to acquaint the student with
mathematical language and mathematical life by means of a number of
historically important mathematical vignettes. And, as has already been
noted, the book will also serve to help the prospective school teacher to
become inured in some of the important ideas of mathematics—both
classical and modern.

The focus in this text is on doing—getting involved with the math-
ematics and solving problems. This book is unabashedly mathematical:
The history is primarily a device for feeding the reader some doses of
mathematical meat. In the course of reading this book, the neophyte
will become involved with mathematics by working on the same prob-
lems that Zeno and Pythagoras and Descartes and Fermat and Riemann
worked on. This is a book to be read with pencil and paper in hand, and
a calculator or computer close by. The student will want to experiment,
to try things, to become a part of the mathematical process.

This history is also an opportunity to have some fun. Most of the
mathematicians treated here were complex individuals who led colorful
lives. They are interesting to us as people as well as scientists. There are
wonderful stories and anecdotes to relate about Pythagoras and Galois
and Cantor and Poincaré, and we do not hesitate to indulge ourselves in
a little whimsy and gossip. This device helps to bring the subject to life,
and will retain reader interest.

It should be clearly understood that this is in no sense a thorough-
going history of mathematics, in the sense of the wonderful treatises of
Boyer/Merzbach [BOM] or Katz [KAT] or Smith [SMI]. It is instead a col-
lection of snapshots of aspects of the world of mathematics, together with
some cultural information to put the mathematics into perspective. The
reader will pick up history on the fly, while actually doing mathematics—
developing mathematical ideas, working out problems, formulating ques-
tions.

And we are not shy about the things we ask the reader to do. This
book will be accessible to students with a wide variety of backgrounds
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and interests. But it will give the student some exposure to calculus, to
number theory, to mathematical induction, cardinal numbers, cartesian
geometry, transcendental numbers, complex numbers, Riemannian ge-
ometry, and several other exciting parts of the mathematical enterprise.
Because it is our intention to introduce the student to what mathemati-
cians think and what mathematicians value, we actually prove a number
of important facts: (i) the existence of irrational numbers, (ii) the exis-
tence of transcendental numbers, (iii) Fermat’s little theorem, (iv) the
completeness of the real number system, (v) the fundamental theorem of
algebra, and (vi) Dirichlet’s theorem. The reader of this text will come
away with a hands-on feeling for what mathematics is about and what
mathematicians do.

This book is intended to be pithy and brisk. Chapters are short, and
it will be easy for the student to browse around the book and select topics
of interest to dip into. Each chapter will have an exercise set, and the
text itself will be peppered with items labeled “For You to Try”. This
device gives the student the opportunity to test his/her understanding
of a new idea at the moment of impact. It will be both rewarding and
reassuring. And it should keep interest piqued.

In fact the problems in the exercise sets are of two kinds. Many of
them are for the individual student to work out on his/her own. But
many are labeled for class discussion. They will make excellent group
projects or, as appropriate, term papers.

It is a pleasure to thank my editor, Richard Bonacci, for enlisting me
to write this book and for providing decisive advice and encouragement
along the way. Certainly the reviewers that he engaged in the writing
process provided copious and detailed advice that have turned this into
a more accurate and useful teaching tool. I am grateful to all.

The instructor teaching from this book will find grist for a num-
ber of interesting mathematical projects. Term papers, and even honors
projects, will be a natural outgrowth of this text. The book can be used
for a course in mathematical culture (for non-majors), for a course in the
history of mathematics, for a course of mathematics for teacher prepa-
ration, or for a course in problem-solving. We hope that it will help to
bridge the huge and demoralizing gap between the technical world and
the humanistic world. For certainly the most important thing that we



do in our society is to communicate. My wish is to communicate math-
ematics.

SGK
St. Louis, MO
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Chapter 1

The Ancient Greeks and the
Foundations of Mathematics

1.1 Pythagoras
1.1.1 Introduction to Pythagorean Ideas

Pythagoras (569-500 B.C.E.) was both a person and a society (i.e., the
Pythagoreans). He was also a political figure and a mystic. He was
special in his time because, among other reasons, he involved women as
equals in his activities. One critic characterized the man as “one tenth
of him genius, nine-tenths sheer fudge.” Pythagoras died, according to
legend, in the flames of his own school fired by political and religious
bigots who stirred up the masses to protest against the enlightenment
which Pythagoras sought to bring them.

As with many figures from ancient times, there is little specific that
we know about Pythagoras’s life. We know a little about his ideas and
his school, and we sketch some of these here.

The Pythagorean society was intensely mathematical in nature, but
it was also quasi-religious. Among its tenets (according to [RUS]) were:

e To abstain from beans.

Not to pick up what has fallen.

Not to touch a white cock.

Not to break bread.

Not to step over a crossbar.
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e Not to stir the fire with iron.
e Not to eat from a whole loaf.
e Not to pluck a garland.
e Not to sit on a quart measure.
e Not to eat the heart.
e Not to walk on highways.
e Not to let swallows share one’s roof.

e When the pot is taken off the fire, not to leave the mark
of it in the ashes, but to stir them together.

e Not to look in a mirror beside a light.

e When you rise from the bedclothes, roll them together
and smooth out the impress of the body.

The Pythagoreans embodied a passionate spirit that is remarkable
to our eyes:

Bless us, divine Number, thou who generatest gods
and men.

and
Number rules the universe.

The Pythagoreans are remembered for two monumental contribu-
tions to mathematics. The first of these was to establish the impor-
tance of, and the necessity for, proofs in mathematics: that mathemati-
cal statements, especially geometric statements, must be established by
way of rigorous proof. Prior to Pythagoras, the ideas of geometry were
generally rules of thumb that were derived empirically, merely from ob-
servation and (occasionally) measurement. Pythagoras also introduced
the idea that a great body of mathematics (such as geometry) could be
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a
Figure 1.1. The fraction g

derived from a small number of postulates. The second great contribu-
tion was the discovery of, and proof of, the fact that not all numbers are
commensurate. More precisely, the Greeks prior to Pythagoras believed
with a profound and deeply held passion that everything was built on
the whole numbers. Fractions arise in a concrete manner: as ratios of
the sides of triangles (and are thus commensurable—this antiquated ter-
minology has today been replaced by the word “rational”)—see Figure
1.1.

Pythagoras proved the result that we now call the Pythagorean theo-
rem. It says that the legs a, b and hypotenuse c of a right triangle (Figure
1.2) are related by the formula

a’ + b =c*. (%)

This theorem has perhaps more proofs than any other result in
mathematics—over fifty altogether. And in fact it is one of the most
ancient mathematical results. There is evidence that the Babylonians
and the Chinese knew this theorem nearly 1000 years before Pythago-
ras.

In fact one proof of the Pythagorean theorem was devised by Pres-
ident James Garfield. We now provide one of the simplest and most
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a
Figure 1.2. The Pythagorean theorem.

classical arguments. Refer to Figure 1.3.
Proof of the Pythagorean Theorem:

Observe that we have four right triangles and a square packed into a
larger square. Each triangle has legs a and b, and we take it that b > a.
Of course, on the one hand, the area of the larger square is ¢2. On the
other hand, the area of the larger square is the sum of the areas of its
component pieces.

Thus we calculate that

¢* = (area of large square)
= (area of triangle) + (area of triangle) +
(area of triangle) + (area of triangle) +

(area of small square)
S T A A b+ (b—a)’
=g-abtg-abtg-abt-a a

= 2ab + [a* — 2ab + b]



1.1 Pythagoras

Figure 1.3
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=a’+ 1.

That proves the Pythagorean theorem. O

For You to Try: If c¢= 10 and a = 6 then can you determine what b
must be in the Pythagorean theorem?

Other proofs of the Pythagorean theorem will be explored in the exer-
cises, as well as later on in the text.

Now Pythagoras noticed that, if a = 1 and b = 1, then ¢ = 2. He
wondered whether there was a rational number ¢ that satisfied this last
identity. His stunning conclusion was this:

Theorem: There is no rational number ¢ such
that ¢ = 2.

Proof: Suppose that the conclusion is false. Then there s a rational
number ¢ = a//[3, expressed in lowest terms (i.e. o and § have no integer
factors in common) such that ¢* = 2. This translates to

(6%

7=
or

o’ =262

We conclude that the righthand side is even, hence so is the lefthand
side. Therefore o = 2m for some integer m.
But then
(2m)* = 23°

or
2m? = 32

So we see that the lefthand side is even, so (3 is even.

But now both a and 3 are even—the two numbers have a common
factor of 2. This statement contradicts the hypothesis that o and 3 have
no common integer factors. Thus it cannot be that ¢ is a rational num-
ber. Instead, ¢ must be irrational. O
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For You to Try: Use the argument just presented to show that 7 does
not have a rational square root.

For You to Try: Use the argument just presented to show that if a
positive integer (i.e., a whole number) k has a rational square root then
it has an integer square root.

We stress yet again that the result of the last theorem was a bomb-
shell. It had a profound impact on the thinking of ancient times. For
it established irrefutably that there were new numbers besides the ra-
tionals to which everyone had been wedded. And these numbers were
inescapable: they arose in such simple contexts as the calculation of the
diagonal of a square. Because of this result of Pythagoras, the entire
Greek approach to the number concept had to be rethought.

1.1.2 Pythagorean Triples

It is natural to ask which triples of integers (a, b, ¢) satisfy a? + b* = 2.
Such a trio of numbers is called a Pythagorean triple.

The most famous and standard Pythagorean triple is (3,4,5). But
there are many others, including (5, 12, 13), (7,24, 25), (20,21, 29), and
(8,15,17). What would be a complete list of all Pythagorean triples?
Are there only finitely many of them, or is there in fact an infinite list?

It has in fact been known since the time of Euclid that there are
infinitely many Pythagorean triples, and there is a formula that generates
all of them.! We may derive it as follows. First, we may as well suppose
that a and b are relatively prime—they have no factors in common. We
call this a reduced triple. Therefore a and b are not both even, so one of
them is odd. Say that b is odd.

Now certainly (a + b)? = a? + b* + 2ab > a® + b* = ¢*. From this we
conclude that ¢ < a+b. So let us write ¢ = (a+b) — vy for some positive
integer 7. Plugging this expression into the Pythagorean formula (x)

11t may be noted, however, that the ancients did not have adequate notation to write
down formulas as such.
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yields
a>+b*=(a+b—7)?

or
a® + b = a® +b* +~* + 2ab — 2a7y — 2by.

Cancelling, we find that
v? = 2ary + 2by — 2ab. (1)

The righthand side is even (every term has a factor of 2), so we conclude
that v is even. Let us write v = 2m, for m a positive integer.
Substituting this last expression into () yields

Am? = 4am + 4bm — 2ab
or
ab = 2am + 2bm — 2m? .

The righthand side is even, so we conclude that ab is even. Since we have
already noted that b is odd, we can only conclude that a is even. Now
equation (x) tells us

=a*+b*.

Since the sum of an odd and an even is an odd, we see that ¢? is odd.
Hence c is odd.

Thus the numbers in a reduced Pythagorean triple are never all even
and never all odd. In fact two of them are odd and one is even. It is
convenient to write b = s —t and ¢ = s+t for some integers s and ¢ (one
of them even and one of them odd). Then (%) tells us that

a*+(s—t) = (s+1)?.
Multiplying things out gives
a® + (s* — 2st + 1) = (s* + 2st + 17).
Cancelling like terms and regrouping gives

a® = 4st .
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We already know that a is even, so this is no great surprise.
Since st must be a perfect square (because 4 is a perfect square and
a? is a perfect square), it is now useful to write s = u?, t = v2. Therefore

a® = 4uv?

and hence
a=2uv.

In conclusion, we have learned that a reduced Pythagorean triple
must take the form
(2uv, u* — v?, u? +v?), (1)

with u, v relatively prime (i.e., having no common factors). Conversely,
any triple of the form (2uv, u?—v?, u?>+v?) is most certainly a Pythagorean
triple. This may be verified directly:

[2uv)® + [u? — v?]? = [4u*0?] + [u* — 2uv? + Y
= u* + 2u*v? + v?
= [u® + v?]?.

Take a moment to think about what we have discovered. Every
Pythagorean triple must have the form (f). That is to say, a = 2uwv,
b = u?—v?% and ¢ = u? +v% Here u and v are any integers of our
choosing.

As examples:

o If we take u = 2 and v = 1 then we obtain a = 2-2-1 = 4,
b=22-12=3 and c = 22+1%2 = 5. Of course (4, 3,5) is
a familiar Pythagorean triple. We certainly know that
4% + 32 = 52,

o If we take u = 3 and v = 2 then we obtain a =2-3-2 =
12, b = 32 —22 =5, and ¢ = 32 + 22 = 13. Indeed
(12,5,13) is a Pythagorean triple. We may calculate
that 12% + 5% = 132,

o If we take u = 5 and v = 3 then we obtain a =2-5-3 =
30, b = 52 — 3% = 16, and ¢ = 5% + 3% = 34. You
may check that (30, 16,34) is a Pythagorean triple, for
30% + 162 = 342,
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For You to Try: Find all Pythagorean triples in which one of the
terms is 5.

For You to Try: Find all Pythagorean triples in which all three terms
are less than 30.

1.2 Euclid
1.2.1 Introduction to Euclid

Certainly one of the towering figures in the mathematics of the ancient
world was Euclid of Alexandria (325 B.C.E.-265 B.C.E.). Although Eu-
clid is not known so much (as were Archimedes and Pythagoras) for his
original and profound insights, and although there are not many theo-
rems named after Euclid, he has had an incisive effect on human thought.
After all, Euclid wrote a treatise (consisting of thirteen Books)—now
known as Fuclid’s Elements—which has been continuously in print for
over 2000 years and has been through myriads of editions. It is still stud-
ied in detail today, and continues to have a substantial influence over the
way that we think about mathematics.

Not a great deal is known about Fuclid’s life, although it is fairly
certain that he had a school in Alexandria. In fact “Euclid” was quite a
common name in his day, and various accounts of Euclid the mathemati-
cian’s life confuse him with other Euclids (one a prominent philosopher).
One appreciation of Euclid comes from Proclus, one of the last of the
ancient Greek philosophers:

Not much younger than these [pupils of Plato] is
Euclid, who put together the Elements, arrang-
ing in order many of Eudoxus’s theorems, per-
fecting many of Theaetus’s, and also bringing to
irrefutable demonstration the things which had
been only loosely proved by his predecessors. This
man lived in the time of the first Ptolemy; for
Archimedes, who followed closely upon the first
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Ptolemy makes mention of Euclid, and further
they say that Ptolemy once asked him if there
were a shortened way to study geometry than the
Elements, to which he replied that “there is no
royal road to geometry.” He is therefore younger
than Plato’s circle, but older than Eratosthenes
and Archimedes; for these were contemporaries,
as Eratosthenes somewhere says. In his aim he
was a Platonist, being in sympathy with this phi-
losophy, whence he made the end of the whole El-
ements the construction of the so-called Platonic
figures.

As often happens with scientists and artists and scholars of immense
accomplishment, there is disagreement, and some debate, over exactly
who or what Euclid actually was. The three schools of thought are these:

e Kuclid was an historical character—a single individual—
who in fact wrote the Elements and the other scholarly
works that are commonly attributed to him.

e Kuclid was the leader of a team of mathematicians work-
ing in Alexandria. They all contributed to the creation
of the complete works that we now attribute to Euclid.
They even continued to write and disseminate books
under Euclid’s name after his death.

e Kuclid was not an historical character at all. In fact
“Euclid” was a nom de plume—an allonym if you will—
adopted by a group of mathematicians working in Alexan-
dria. They took their inspiration from Euclid of Megara
(who was in fact an historical figure), a prominent philoso-
pher who lived about 100 years before Euclid the math-
ematician is thought to have lived.

Most scholars today subscribe to the first theory—that Euclid was
certainly a unique person who created the Elements. But we acknowledge
that there is evidence for the other two scenarios. Certainly Euclid had
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a vigorous school of mathematics in Alexandria, and there is little doubt
that his students participated in his projects.

It is thought that Euclid must have studied in Plato’s Academy in
Athens, for it is unlikely that there would have been another place where
he could have learned the geometry of Eudoxus and Theaetus on which
the Elements are based.

Another famous story and quotation about Euclid is this. A certain
pupil of Euclid, at his school in Alexandria, came to Euclid after learning
just the first proposition in the geometry of the Flements. He wanted
to know what he would gain by putting in all this study, doing all the
necessary work, and learning the theorems of geometry. At this, Euclid
called over his slave and said, “Give him threepence since he must needs
make gain by what he learns.”

What is important about Euclid’s Elements is the paradigm it pro-
vides for the way that mathematics should be studied and recorded. He
begins with several definitions of terminology and ideas for geometry,
and then he records five important postulates (or axioms) of geometry.
A version of these postulates is as follows:

P1 Through any pair of distinct points there passes a line.

P2 For each segment AB and each segment C'D there is a
unique point E (on the line determined by A and B)
such that B is between A and E and the segment C'D
is congruent to BE (Figure 1.4(a)).

P3 For each point C' and each point A distinct from C' there
exists a circle with center C' and radius C'A (Figure

1.4(b)).
P4 All right angles are congruent.

These are the standard four axioms which give our Eu-
clidean conception of geometry. The fifth axiom, a topic
of intense study for two thousand years, is the so-called
parallel postulate (in Playfair’s formulation):
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P5 For each line ¢ and each point P that does not lie on
¢ there is a unique line m through P such that m is
parallel to ¢ (Figure 1.4(c)).

Of course, prior to this enunciation of his celebrated five axioms,
Euclid had defined point, line, “between”, circle, and the other terms
that he uses. Although Euclid borrowed freely from mathematicians
both earlier and contemporaneous with himself, it is generally believed
that the famous “Parallel Postulate”, that is Postulate P5, is of Euclid’s
own creation.

It should be stressed that the Elements are not simply about geome-
try. In fact Books VII-IX deal with number theory. It is here that Euclid
proves his famous result that there are infinitely many primes (treated
elsewhere in this book) and also his celebrated “Euclidean algorithm” for
long division. Book X deals with irrational numbers, and books XI-XIII
treat three-dimensional geometry. In short, Euclid’s Elements are an
exhaustive treatment of virtually all the mathematics that was known
at the time. And it is presented in a strictly rigorous and axiomatic
manner that has set the tone for the way that mathematics is presented
and studied today. Euclid’s Elements is perhaps most notable for the
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clarity with which theorems are formulated and proved. The standard
of rigor that Euclid set was to be a model for the inventors of calculus
nearly 2000 years later.

Noted algebraist B. L. van der Waerden assesses the impact of Eu-
clid’s Elements in this way:

Almost from the time of its writing and lasting
almost to the present, the Flements has exerted a
continuous and major influence on human affairs.
It was the primary source of geometric reasoning,
theorems, and methods at least until the advent
of non-Euclidean geometry in the 19th century. It
is sometimes said that, next to the Bible, the FEle-
ments may be the most translated, published, and
studied of all the books produced in the Western
world.

Indeed, there have been more than 1000 editions of Euclid’s Fle-
ments. It is arguable that Fuclid was and still is the most important
and most influential mathematics teacher of all time. It may be added
that a number of other books by Euclid survive until now. These include
Data (which studies geometric properties of figures), On Divisions (which
studies the division of geometric regions into subregions having areas of
a given ratio), Optics (which is the first Greek work on perspective),
and Phaenomena (which is an elementary introduction to mathemati-
cal astronomy). Several other books of Euclid—including Surface Loci,
Porisms, Conics, Book of Fuallacies, and Elements of Music—have all
been lost.

1.2.2 The Ideas of Euclid

Now that we have set the stage for who Euclid was and what he accom-
plished, we give an indication of the kind of mathematics for which he
is remembered. We discuss the infinitude of primes and the Euclidean
algorithm elsewhere in the book (Chapter 11). Here we concentrate on
Euclidean geometry.

In fact we shall state some simple results from planar geometry and
prove them in the style of Euclid. For the student with little background
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Figure 1.5. Two Congruent Triangles

in proofs, this will open up a whole world of rigorous reasoning and
geometrical analysis. Let us stress that, in the present text, we are only
scratching the surface.

In the ensuing discussion we shall use the fundamental notion of con-
gruence. In particular, two triangles are congruent if their corresponding
sides and angles are equal in length. See Figure 1.5. There are a variety
of ways to check that two triangles are congruent:?

e If the two sets of sides may be put in one-to-one corre-
spondence so that corresponding pairs are equal, then
the two triangles are congruent. We call this device
“side-side-side” or SSS. See Figure 1.6.

e If just one side and its two adjacent angles correspond in
each of the two triangles, so that the two sides are equal
and each of the corresponding angles is equal, then the
two triangles are congruent. We call this device “angle-
side-angle” or ASA. See Figure 1.7.

e If two sides and the included angle correspond in each
of the two triangles, so that the two pairs of sides are
equal, and the included angles are equal, then the two

2In this discussion we use corresponding markings to indicate sides or angles that
are equal. Thus if two sides are each marked with a single hash mark, then they are
equal in length. If two angles are marked with double hash marks, then they are
equal in length.
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Figure 1.7

triangles are congruent. We call this device “side-angle-
side” or SAS. See Figure 1.8.

We shall take these three paradigms for congruence as intuitively obvious.
You may find it useful to discuss them in class.

Theorem 1.1
Let ANABC be an isosceles triangle with equal sides AB and AC. See
Figure 1.9. Then the angles /B and /C" are equal.

Proof: Draw the median from the vertex A to the opposite side BC
(here the definition of the median is that it bisects the opposite side).
See Figure 1.10. Thus we have created two subtriangles AABD and
NACD. Notice that these two smaller triangles have all corresponding
sides equal (Figure 1.11): side AB in the first triangle equals side AC
in the second triangle; side AD in the first triangle equals side AD in
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Figure 1.8

Figure 1.9
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Figure 1.10

the second triangle; and side BD in the first triangle equals side C'D in
the second triangle (because the median bisects side BC). As a result
(by SSS), the two subtriangles are congruent. All the corresponding ar-
tifacts of the two triangles are the same. We may conclude, therefore,
that /B = /C. O

Corollary 1.1

Let AABC be an isosceles triangle as in the preceding theorem (Figure
1.9). Then the median from A to the opposite side BC' is also perpen-
dicular to BC.

Proof: We have already observed that the triangles AABD and ANADC
are congruent. In particular, the angles /ZADB and /ADC' are equal.
But those two angles also must sum up to 180° or 7 radians. The only
possible conclusion is that each angle is 90° or a right angle. O

A basic fact, which is equivalent to the Parallel Postulate P35, is as
follows.



1.2 Euclid 19

Figure 1.12

Theorem 1.2

Let ¢ and m be parallel lines, as in Figure 1.12. Let p be a transverse
line which intersects both ¢ and m. Then the alternating angles v and
B (as shown in the figure) are equal.

The proof is intricate, and would take us far afield. We shall omit it. An
immediate consequence of Theorem 1.2 is this simple corollary:

Corollary 1.2
Let lines ¢ and m be parallel lines as in the theorem, and let p be a
transversal. Then the alternating angles o' and 3’ are equal. Also o



20 Chapter 1: The Ancient Greeks

Figure 1.13

and (" are equal.
Proof: Notice that
a+a =180° =B+ 4.

Since o = 3, we may conclude that o/ = '.
The proof that o = " follows similar lines, and we leave it for you
to discuss in class. O

Now we turn to some consequences of this seminal idea.

Theorem 1.3
Let ANABC' be any triangle. Then the sum of the three angles in this
triangle is equal to a halfline (i.e. to 180°).

Proof: Examine Figure 1.13. Observe that /3 = /3 and /v = /7.
It follows that

sum of angles in triangle = a + 3 +v=a+ 3 +7 = a line = 180° .

That is what was to be proved. O

A companion result to the last theorem is this:
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Figure 1.14

Corollary 1.3
Let AABC be any triangle and let 7 be an exterior angle (see Figure
1.14). Then ~ equals the sum of the other two interior angles o and (3.

We have defined the necessary terminology in context. The exterior an-
gle 7 is determined by the two sides AC and BC of the triangle—but is
outside the triangle. This exterior angle is adjacent to an interior angle
v, as the figure shows. The assertion is that 7 is equal to the sum of the
other two angles o and f3.

Proof: According to Figure 1.15, the angle 7 is certainly equal to a+ 3'.
Also = (' and v = +'. Thus

180° =~"+a+p =+ +71.
It follows that
T=180° -+ =180° —vy=a + 3.
That is the desired result. O

1.3 Archimedes
1.3.1 The Genius of Archimedes

Archimedes (287 B.C.E.-212 B.C.E.) was born in Syracuse, Sicily. His
father was Phidias, the astronomer. Archimedes developed into one of
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Figure 1.15

the most gifted, powerful, and creative mathematicians who ever lived.

One of Archimedes’s achievements was to develop methods for cal-
culating areas and volumes of various geometric figures. We shall imi-
tate one of Archimedes’s techniques—the method of exhaustion that he
learned from Eudoxus (408 B.C.E-355 B.C.E.)—to approximate the area
inside a circle to any desired degree of accuracy. This gives us a method
for in turn approximating the value of 7. It can be said that Archimedes
turned the method of exhaustion to a fine art, and that some of his cal-
culations were tantamount to the foundations of integral calculus (which
was actually not fully developed until nearly 2000 years later).

Archimedes grew up in privileged circumstances. He was closely
associated with, and perhaps even related to, Hieron King of Syracuse;
he was also friends with Gelon, son of Hieron. He studied in Alexandria
and developed there a relationship with Conon of Samos; Conon was
someone whom Archimedes admired as a mathematician and cherished
as a friend.

When Archimedes returned from his studies to his native city he
devoted himself to pure mathematical research. During his lifetime, he
was regularly called upon to develop instruments of war in the service
of his country. And he was no doubt better known to the populace at
large, and also appreciated more by the powers that be, for that work
than for his pure mathematics. Among his other creations, Archimedes is
said to have created (using his understanding of leverage) a device that
would lift enemy ships out of the water and overturn them. Another
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of his creations was a burning mirror that would set enemy ships afire.
Archimedes himself set no value on these contrivances, and declined even
to leave any written record of them.

Perhaps the most famous story about Archimedes concerns a crown
that was specially made for his friend King Hieron. It was alleged to be
manufactured of pure gold, yet Hieron suspected that it was actually part
silver. Archimedes puzzled over the proper method to determine whether
this was true (without modifying or destroying the crown!). Then, one
day, as Archimedes was stepping into his bath, he observed the water
running over and had an inspiration. He determined that the excess of
bulk that would be created by the introduction of alloy into the crown
could be measured by putting the crown and equal weights of gold and
silver separately into a vessel of water—and then noting the difference
of overflow. If the crown were pure gold then it would create the same
amount of overflow as the equal weight of gold. If not, then there was
alloy present.

Archimedes is said to have been so overjoyed with his new insight
that he sprang from his bath-—stark naked—and ran home down the
middle of the street shouting “FEureka! Fureka!”, which means “I have
found it! I have found it!” To this day, in memory of Archimedes, people
cry Eureka to celebrate a satisfying discovery.

Another oft-told story of Archimedes concerns his having said to
Hieron, “Give me a place to stand and I will move the earth.” What
Archimedes meant by this bold assertion is illustrated in Figure 1.16.
Archimedes was one of the first to study and appreciate the power of
levers. He realized that a man of modest strength could move a very great
weight if he was assisted by the leverage afforded by a very long arm.
Not fully understanding this principle, Hieron demanded of Archimedes
that he give an illustration of his ideas. And thus Archimedes made
his dramatic claim. As a practical illustration of the idea, Archimedes
arranged a lever system so that Hieron himself could move a large and
fully laden ship.

One of Archimedes’s inventions that lives on today is a water screw
that he devised in Egypt for the purpose of irrigating crops. The same
mechanism is used now in electric water pumps as well as hand-powered
pumps in third world countries.
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Figure 1.16

Archimedes died during the capture of Syracuse by the troops of
Marcellus in 212 B.C.E. Even though Marcellus gave explicit instructions
that neither Archimedes nor his house were to be harmed, a soldier
became enraged when Archimedes would not divert his attention from
his mathematics and obey an order. Archimedes is reported to have said
sternly to the soldier, “Do not disturb my circles!” Thus Archimedes fell
to the sword. Later in this book we tell the story of how Sophie German
became enthralled by this story of Archimedes’s demise, and was thus
inspired to become one of the greatest female mathematicians who ever
lived.

Next we turn our attention to Archimedes’s study of the area of the
circle.

1.3.2 Archimedes’s Calculation of the Area of a Circle

Begin by considering a regular hexagon with side length 1 (Figure 1.17).
We divide the hexagon into triangles (Figure 1.18). Notice that each of
the central angles of each of the triangles must have measure 360°/6 =
60°. Since the sum of the angles in a triangle is 180°, and since each of
these triangles certainly has two equal sides and hence two equal angles,
we may now conclude that all the angles in each triangle have measure
60°. See Figure 1.19.

But now we may use the Pythagorean theorem to analyze one of the
triangles. We divide the triangle in two—Figure 1.20. Thus the triangle
is the union of two right triangles. We know that the hypotenuse of one
of these right triangles—which is the same as a diagonal of the original
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Figure 1.19

V3/2

V2

Figure 1.20
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hexagon—is 1 and the base is 1/2. Thus the Pythagorean theorem tells

us that the height of the right triangle is /12 — (1/2)2 = v/3/2. We may
conclude then that the area of this right triangle, as shown in Figures
1.19 and 1.20, is
1 1 1 3 3
A(T):§-(base)-(height):i-g-gz\/?_.

Therefore the area of the full equilateral triangle, with all sides equal to
1, is twice this or \/§/4

Now of course the full regular hexagon is made up of six of these
equilateral triangles, so the area inside the hexagon is

V3 3V3
AH)=6-— = —.
(H) 1 5

We think of the area inside the regular hexagon as being a crude
approximation to the area inside the circle: Figure 1.21. Thus the area
inside the circle is very roughly the area inside the hexagon. Of course
we know from other considerations that the area inside this circle is
712 =7 -12 = 7. Thus, putting our ideas together, we find that

3V3
7w = (area inside unit circle) &~ (area inside regular hexagon) = & 2.508. ..

It is known that the true value of 7 is 3.14159265.... So our ap-
proximation is quite crude. The way to improve the approximation is to
increase the number of sides in the approximating polygon. In fact what
we shall do is double the number of sides to 12. Figure 1.22 shows how
we turn one side into two sides; doing this six times creates a regular
12-sided polygon.

Notice that we create the regular 12-sided polygon (a dodecagon)
by adding small triangles to each of the edges of the hexagon. Our job
now is to calculate the area of the twelve-sided polygon. Thus we need
to calculate the lengths of the edges. Examine a blown-up picture of
the triangle that we have added (Figure 1.23). We use the Pythagorean
theorem to calculate the length = of a side of the new dodecagon. It is

xz\l(%>2+<1—£>2=\/i+(1—\/§+2>z\/m.

2
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Figure 1.23

Now let us focus attention on the dodecagon, divided into twelve
isosceles triangles (Figure 1.24). We have just calculated that each side

of the dodecahedron has length /2 — V3. If we can calculate the area
of each of the congruent subtriangles, then we can obtain the area of the
entire dodecahedron (by multiplying by 12). Examine Figure 1.25. This
is one of the 12 triangles that makes up the dodecahedron. It has base

\/2 — /3. Each of the two sides has length 1. Thus we may use the
Pythagorean theorem to determine that the height of the triangle is

hJP_ (25\/5)2\/1_2_4\/5\/22\/3‘

We conclude that the area of the triangle is

- (base) - (height) = = - /2 — 3 44_ S _ i .

Hence the area of the dodecagon is

AT) =

AD)=12--=3.
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Figure 1.24

Figure 1.25
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Figure 1.26

Figure 1.27

Examining Figure 1.26, and thinking of the area inside the dodecahedron
as an approximation to the area inside the unit circle, we find that

7w = (area inside unit circle) & (area inside regular dodecahedron) = 3.

This is obviously a better approximation to 7 than our first attempt. At
least we now got the “3” right! Now let us do one more calculation in
an attempt to improve the estimate. After that we will seek to find a
pattern in these calculations.

Now we consider a regular 24-sided polygon (an icositetragon). As
before, we construct this new polygon by erecting a small triangle over
each side of the dodecagon. See Figure 1.27. We examine a blowup
(Figure 1.28) of one of these triangles, just as we did above for the do-
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Figure 1.28

decagon. We first solve the right triangle with base /2 — v/3/2 and
hypotenuse 1—using the Pythagorean theorem, of course—to find that

it has height /2 + \/§/2 Then we see that the smaller right trian-

gle has base 1 — /24 +/3/2 and height /2 —+/3/2. Thus, again by

the Pythagorean theorem, the hypotenuse of the small right triangle is

V2 -2+ V3.

But the upshot is that the icositetragon is made up of isosceles trian-

gles, as in Figure 1.29, having base /2 — 1/2 + v/3 and side length 1. We

may divide the triangle into two right triangles, as indicated in the figure.
And then solve one of the right triangles using the Pythagorean theorem.

The solution is that the height of this right triangle is /2 4 /2 4+ v/3/2.
Altogether, then, the area of the triangle which is one twenty-fourth of
the polygon is

AT) = %-(base) (height) = \/ /2 2 V3 /2
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Figure 1.29

We conclude that the area of the 24-sided regular polygon is

A(P):24-2%\/§:6\/2—\/§.

Examining Figure 1.30, and thinking of the area inside the dodecahedron
as an approximation to the area inside the unit circle, we find that

7w = (area inside unit circle) &~ (area inside regular 24-gon) ~ 3.1058.

We see that, finally, we have an approximation to 7 that is accurate to
one decimal place.

Of course the next step is to pass to a polygon of 48 sides. We shall
not repeat all the steps of the calculation but just note the high points.
First, we construct the regular 48-gon by placing small triangles along
each of the edges of the dodecagon. See Figure 1.31. Now, once again, we
must (blowing up the triangle construction) examine a figure like 1.32.
The usual calculation shows that the side of the small added triangle has

length \/2 —1/2+ /24 V3. Thus we end up examining a new isosceles

triangle, which is 1/48th of the 48-sided polygon. See Figure 1.33.
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The usual calculations, just as we did for the polygons having 6 or

12 or 24 sides, show that this new triangle has base \/2 —/24+ 24+ V3

and height \/2 +1/2 +1/2 + V/3/2. Thus the area is

A(T) =

- (base) - (height)

N A
\/2+\/2+\/2+\/§/2= /2 '42+\/§.

The polygon comprises 48 such triangles, so the total area of the polygon
is

N | —

A(P) =48 - o ”2+\/§=12\/2—\/2+\/§.

4
Thinking of the area inside the 48-sided regular polygon as an approxi-
mation to the area inside the unit circle, we find that

7w = (area inside unit circle) &~ (area inside 48-sided regular polygon) ~ 3.1326.

This is obviously a better approximation to 7 than our last three at-
tempts. It is accurate to one decimal place, and the second decimal
place is close to being right.

And now it is clear what the pattern is. The next step is to examine
a regular polygon with 96 sides. The usual calculations will show that
this polygon breaks up naturally into 96 isosceles triangles, and each of
these triangles has area

AT \/2 —\/2+V2+V3
_ y ,

Thus the area of the polygon is

A(P):96-\/2_ '22 2+\/§=24-\/2—\/2+\/2+\/§.
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Figure 1.33

We then see that
7w = (area inside unit circle) &~ (area inside 96-sided regular polygon) ~ 3.13935.

This is certainly an improved approximation to the true value of 7, which
is 3.14159265. . ..

The next regular polygon in our study has 192 sides. It breaks up
naturally into 192 isosceles triangles, each of which has area

\/2—\/2+\/2+\/m

4

A(T) =

Thus the area of the regular 192-gon is

\/2—\/2+4\/2+\/m48.\/2_\/2+

We then see that

V2+Vv2+3.

A(P) =192

7w = (area inside unit circle) &~ (area inside 192-sided regular polygon) ~ 3.14103.
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This new approximation of 7 is accurate to nearly three decimal places.
Archimedes himself considered regular polygons with nearly 500 sides.

His method did not yield an approximation as accurate as ours. But,

historically, it was one of the first estimations of the size of 7.

Exercises
1. Verify that the number /17 is irrational.

2. The number a = v/9 is that unique positive real number
that satisfies o® = 9. Verify that this « is irrational.

3. Let m be any positive whole number (i.e., a natural
number). Show that y/m is either a positive whole num-
ber or is irrational. Discuss this problem in class.

4. Let m be any positive whole number (i.e., a natural
number). Show that ¢/m is either a positive whole num-
ber or is irrational. Discuss this problem in class.

5. Develop a new verification of the Pythagorean theorem
using the diagram in Figure 1.34. Observe that the
figure contains four right triangles and a square, but
the configuration is different from that in Figure 1.3.
Now we have a large square in a tilted position inside
the main square. Using the labels provided in the figure,
observe that the area of each right triangle is ab/2. And
the area of the inside square is ¢?. Finally, the area
of the large, outside square is (a + b)?. Put all this
information together to derive Pythagoras’s formula.

6. Explain the reasoning represented in Figure 1.35 to dis-
cover yet another proof of the Pythagorean theorem.

7. Find all Pythagorean triples in which one of the three
numbers is 7. Explain your answer.

8. Find all Pythagorean triples in which each of the three
numbers is less than 35. Explain your answer.
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9.

10.

11.

12.

13.

The famous Waring problem (formulated in 1770) was
to show that every positive integer can be written as
the sum of at most four perfect squares. David Hilbert
was the mathematician who finally solved this problem
in 1909. So, for example,

11=324+12+1%2+12

and
87 =224+324+524+7°

and
31 =52 +22+12+12%.

Find the Waring/Hilbert decomposition of 101. Find
the Waring/Hilbert decomposition of 1001. Write a
computer program that will perform this job for you.
Discuss this problem in class.

This is a good problem for class discussion. Refer to the
Waring problem in Exercise 9. Formulate a version of
the Waring problem for cubes instead of squares. How
many cubes will it take to compose any positive inte-
ger? Write a computer program to test your hypothesis.
Find a decomposition of 101 into cubes. Find a decom-
position of 1001 into cubes.

We can locate any point in the plane with an ordered
pair of real numbers. See Figure 1.36. Discuss this idea
in class. Now use your understanding of the Pythagorean
theorem to derive a formula for the distance in the plane
between the points (0,0) and (a,b).

Refer to Exercise 11. Use the idea there to find a for-
mula for the distance between two planar points (x,y)
and (2/,9').

Refer to Exercise 12. If we can locate any point in
the plane with an ordered pair of real numbers, then
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A
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v

Figure 1.36

we can locate any point in 3-dimensional space with
an ordered triple of numbers—see Figure 1.37. Dis-
cuss this idea in class. Now use your understanding
of the Pythagorean theorem to derive a formula for
the distance in 3-dimensional space between two points
(x,y,2) and (2',y, 2).
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Chapter 2

Zeno’s Paradox and the Concept
of Limit

2.1 The Context of the Paradox?

Ancient Greek mathematics—f{rom about 500 B.C.E. to 100 C.E.—enjoyed
many successes. The sieve of Eratosthenes, the discovery of infinitely
many prime numbers, and the Pythagorean theorem are cornerstones
of mathematics that live on today. We shall discuss all of these in the
present book. But the mathematics of the Greeks was marked by one
huge gap. They simply could not understand the concept of “limit”. The
popular formulations of the limit question were dubbed “Zeno’s para-
dox” (named after the mathematician and Eleatic philosopher Zeno, 495
B.C.E.-435 B.C.E.), and these questions were hotly debated in the Greek
schools and forums.

In fact Euclid’s Elements (see [EUC]) contains over 40 different for-
mulations of Zeno’s paradox. For this is what mathematicians do: When
they cannot solve a problem, they re-state it and turn it around and try
to find other ways to look at it. This is nothing to be ashamed of. As the
great classic work on problem-solving—Podlya’s How to Solve It [POL]—
will tell you, one of the mathematician’s most powerful tools is to restate
a problem. We shall encounter this technique repeatedly in the present

book.

But, unfortunately, this method of re-statement did not help the
Greeks. Like all people in all civilizations, they had an interlocking
system of beliefs to which their reasoning was wedded. And their sci-
entific beliefs were intertwined with their religious beliefs. For example,

43
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Pythagoras was not simply a person. “Pythagoras” (or “the Pythagore-
ans”) was the name for a society of people who developed the ideas to
which we now attach his name. And that society was both a religious
organization and a scientific laboratory.

One of the overriding Greek philosophical concerns was whether ev-
erything in the universe was “one”, or whether the universe contained
independent entities. The discussions of these matters were vigorous and
subtle. Certainly Zeno’s paradoxes, which live on to today, were an out-
growth of the question of “oneness”. We shall consider this matter in
further detail in the considerations that follow. Suffice it to say for the
moment that the issue of oneness had a powerful effect on the Greeks’
ability to think about mathematical questions.

To put the matter bluntly, and religious beliefs aside, the Greeks
were uncomfortable with division, they had rather limited mathematical
notation, and they had a poor understanding of limits. It must be said
that the Greeks made great strides with the tools that they had available,
and it is arguable that Archimedes at least had a good intuitive grasp
of the limit concept. Our knowledge has advanced a bit since that time.
Today we have more experience and a broader perspective. Mathematics
is now more advanced, and more carefully thought out. After we state
Zeno’s paradox, we shall be able to analyze it quickly and easily.

2.2 The Life of Zeno of Elea

Little is known of the life of Zeno of Elea (490 B.C.E.-425 B.C.E.).
Our main source of information concerning this influential thinker is
Plato’s dialogue Parmenides. Although Plato gives a positive account of
Zeno’s teachings, he does not necessarily believe all the paradoxes that
we usually attribute to Zeno.

The philosopher Diogenes Laertius also wrote of Zeno’s life, but his
reports are today deemed to be unreliable.

Zeno was certainly a philosopher, and was the son of Teleutagoras.
He was a pupil and friend of the more senior philosopher Parmenides,
and studied with him in Elea in southern Italy at the school which Par-
menides had founded. This was one of the leading pre-Socratic schools
of Greek philosophy, and was quite influential.
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Parmenides’s philosophy of “monism” claimed that the great diver-
sity of objects and things that exist are merely a single external reality.
This reality he called “Being”. Parmenides asserted that “all is one”
and that change or “non-Being” are impossible. Zeno’s thinking was
strongly influenced by his teacher Parmenides. Zeno and Parmenides
visited Athens together around the year 450 B.C.E. It is believed that
Socrates met with the two men at that time. Zeno had already written a
book before his trip to Athens, and this one book is really Zeno’s claim
to fame. In fact, as far as we know, Socrates was 20 years old, Zeno
40 years old, and Parmenides 65 years old at the time of the meeting.
Zeno was something of the celebrity of the group—Ilargely because of his
book. Proclus describes the book in loving detail. It contains Zeno’s 40
paradoxes concerning the continuum.

Of particular interest is the fact that Zeno argued for the One by
endeavoring to contradict the existence of the Many. By this means
Zeno is credited with developing a method of indirect argument whose
purpose is not victory but rather the discovery of truth. We now call
this type of reasoning a dialectic.

As indicated, Zeno endeavored to answer objections to Parmenides’s
theory of the existence of the One by showing that the hypothesis of the
existence of the Many, both in time and in space, would lead to more
serious inconsistencies.

What we today commonly call “Zeno’s paradoxes” grew out of his
wrestling with the “One vs. Many” dialectic. Thus Zeno’s standard list
of paradoxes certainly includes the tortoise and the hare and the man
walking towards the wall, as described below. But it also includes more
philosophical musings as we now relate:

(1) If the Existent is Many, it must be at once infinitely
small and infinitely great—infinitely small, because its
parts must be indivisible and therefore without mag-
nitude; infinitely great, because, that any part having
magnitude may be separate from any other part, the in-
tervention of a third part having magnitude is necessary;,
and that this third part may be separate from the other
two the intervention of other parts having magnitude is
necessary, and so on ad infinitum.
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(2) In like manner the Many must be numerically both fi-
nite and infinite—numerically finite, because there are
as many things as there are, neither more nor less; nu-
merically infinite, because, that any two things may be
separate, the intervention of a third thing is necessary,
and so on ad infinitum.

(3) If all that is is in space, space itself must be in space,
and so on ad infinitum.

(4) If a bushel of corn turned out upon the floor make a
noise, each grain and each part of each grain must make
a noise likewise; but, in fact, it is not so.

In fact even greater influence was had on the ancient Greeks by
Zeno’s paradox of predication. According to Plato, this conundrum ran
as follows:

If existences are many, they must be both like and
unlike (unlike, inasmuch as they are not one and
the same, and like, inasmuch as they agree in not
being one and the same). But this is impossible;
for unlike things cannot be like, nor like things
unlike. Therefore existences are not many.

In the second decade of the fourth century, the Greeks resumed the
pursuit of truth in earnest. It was felt that Zeno’s paradox of predication
must be dealt with before there could be any discussion of the problem
of knowledge and the problem of being could be resumed. Plato thus
directs his serious students to the study of this question, and offers his
own theory of the immanent! idea as a solution of the paradox.

Zeno took his teacher Parmenides’s dictum “The Ent is, the Non-ent
is not” and interpreted it anew.? To Zeno, this was a declaration of the
Non-ent’s absolute nullity. Thus Zeno developed the theory of the One
as opposed to the theory of the Many. As a result of his efforts, the
Eleaticism of Parmenides was forever ceased.

I Concerning the relationship of the world to the mind.
2Here “Ent” is an enunciation of the concept of oneness.
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After meeting with Socrates in Athens, Zeno returned to the Ital-
ian town of Elea. Diogenes Laertius reports that Zeno died in a heroic
attempt to remove a tyrant from the city. In fact Diogenes reports in
great detail of the heroic deeds and the torture of Zeno at the hands of
the tyrant. Diogenes also gives some material about Zeno’s theory of
cosmology.

Now let us look at the provenance of the paradoxes. They were well
known in Plato’s day, as they bore on Parmenides’s rather prominent
monistic theory of “Being”. In other words, these paradoxes were offered
as proof that everything was one, and could not be divided. Of them,
Plato wrote

...a youthful effort, and it was stolen by someone,
so that the author had no opportunity of consid-
ering whether to publish it or not. Its object was
to defend the system of Parmenides by attacking
the common conceptions of things.

In fact Plato claimed that Zeno’s book was circulated without his knowl-
edge. Proclus goes on to say

... Zeno elaborated forty different paradoxes fol-
lowing from the assumption of plurality and mo-
tion, all of them apparently based on the difficul-
ties deriving from an analysis of the continuum.

The gist of Zeno’s arguments, and we shall examine them in con-
siderable detail below, is that if anything can be divided then it can be
divided infinitely often. This leads to a variety of contradictions, espe-
cially because Zeno also believed that a thing which has no magnitude
cannot exist.

In fact Simplicius was the last head of Plato’s academy, in the early
sixth century. He explained Zeno’s argument against the existence of
any item of zero magnitude as follows:

For if it is added to something else, it will not
make it bigger, and if it is subtracted, it will not
make it smaller. But if it does not make a thing
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bigger when added to it nor smaller when sub-
tracted from it, then it appears obvious that what
was added or subtracted was nothing.

It is a measure of how seriously Zeno’s ideas were taken at the time
that Aristotle, in his work Physics, gives four of Zeno’s arguments: the
Dichotomy, the Achilles, the Arrow, and the Stadium. For the Di-
chotomy, Aristotle describes Zeno’s argument as follows:

There is no motion because that which is moved
must arrive at the middle of its course before it
arrives at the end.

In greater detail: In order the traverse a line segment it is necessary to
reach its midpoint. To do this one must reach the 1/4 point, to do this
one must reach the 1/8 point and so on ad infinitum. Hence motion
can never begin. The argument here is not answered by the well known
infinite sum

Loy

21T T
On the one hand Zeno can argue that the sum 1/2 +1/4 +1/8 + ...
never actually reaches 1, but more perplexing to the human mind is the
attempts to sum 1/2 4+ 1/4 + 1/8 + ... backwards. Before traversing a
unit distance we must get to the middle, but before getting to the middle
we must get 1/4 of the way, but before we get 1/4 of the way we must
reach 1/8 of the way etc. See Figure 2.1. This argument makes us realize
that we can never get started since we are trying to build up this infinite
sum from the "wrong” end. Indeed this is a clever argument which still
puzzles the human mind today. We shall spend considerable time in the
present text analyzing this particular argument of Zeno.

The Arrow paradox is discussed by Aristotle as follows:

If, says Zeno, everything is either at rest or moving
when it occupies a space equal to itself, while the
object moved is in the instant, the moving arrow
is unmoved.

The argument rests on the fact that if in an indivisible instant of time
the arrow moved, then indeed this instant of time would be divisible (for
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Figure 2.1

example in a smaller ‘instant’ of time the arrow would have moved half
the distance). Aristotle argues against the paradox by claiming:

... for time is not composed of indivisible ‘nows’,
no more than is any other magnitude.

It is easy to see, from what we have said, that Zeno’s paradoxes have
been important in the development of the notion of infinitesimals. In
fact some modern writers believe that Zeno aimed his paradoxes against
those who were introducing infinitesimals. Anaxagoras and the followers
of Pythagoras—both of whom had a theory of incommensurables—are
also thought by some to be the targets of Zeno’s arguments.

The most famous of Zeno’s paradoxes, and the one most frequently
quoted and described, is undoubtedly Achilles and the hare (to be dis-
cussed in detail shortly). Aristotle, in his Physics, says:

...the slower when running will never be over-
taken by the quicker; for that which is pursuing
must first reach the point from which that which is
fleeing started, so that the slower must necessarily
always be some distance ahead.

Plato and Aristotle both did not fully appreciate the significance
of Zeno’s arguments. In fact Aristotle called them “fallacies”, without
being able to refute them.

The celebrated twentieth-century philosopher Bertrand Russell paid
due homage to Zeno when he wrote:
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In this capricious world nothing is more capri-
cious than posthumous fame. One of the most
notable victims of posterity’s lack of judgment is
the Eleatic Zeno. Having invented four arguments
all immeasurably subtle and profound, the gross-
ness of subsequent philosophers pronounced him
to be a mere ingenious juggler, and his arguments
to be one and all sophisms. After two thousand
years of continual refutation, these sophisms were
reinstated, and made the foundation of a mathe-
matical renaissance . ...

There is no question that Zeno’s ideas, and his cogent arguments,
remained vital and influential even into modern times. Isaac Newton
wrestled with the ideas when he was inventing his calculus (see [GLE]).
It was not until A. Cauchy in the nineteenth century that a cogent man-
ner was devised for dealing with many of the issues that Zeno raised. It
is well known that man wrestled with the idea of infinity for many hun-
dreds of years; many nineteenth century mathematicians forbade any
discussion or mention of the concept of infinity (see [KAP2]). And in-
finity is the obverse idea to infinitesimals. The histories of the two ideas
are intimately bound up (see also [KAP1]).

As to Zeno’s cosmology, it is by no means disjoint from his monistic
ideas. Diogenes Laertius asserts that Zeno proposed a universe consisting
of several worlds, composed of “warm” and “cold”, “dry” and “wet”
but no void or empty space. It is not immediately clear that these
contentions are consistent with the spirit of Zeno’s paradoxes, but there
is evidence that this type of belief was prevalent in the fifth century
B.C.E., particularly associated with medical theory, and it may have
been Zeno’s version of a belief held by the Eleatic School.

Now let us turn our attention to the mathematical aspects of Zeno’s
ideas. We begin our studies by stating some versions of Zeno’s paradox.
Then we will analyze them, and compare them with our modern notion
of limit that was developed by Cauchy and others in the nineteenth
century. In the end, we will solve this 2000-year-old problem that so
mightily baffled the Greeks.
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Figure 2.3

2.3 Consideration of the Paradoxes

We consider several distinct formulations of the paradoxes. There is a
common theme running through all of them.

Zeno’s Paradox, First Formulation: A tortoise and a hare are in a
race. See Figure 2.2. Now everyone knows that a hare can run faster
than a tortoise (for specificity, let us say that the hare runs ten times
as fast as the tortoise), so it is decided to give the tortoise a head start.
Thus the tortoise is allowed to advance 10 feet before the hare begins—
Figure 2.3. Hence the race starts with the tortoise at point A and the
hare at point B.
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A A
Tortoise O

Hare Q

Figure 2.4

Now first the hare must advance to the point A. But while he is
doing that, the tortoise will have moved ahead a bit and he will be at
a new point A" (Figure 2.4). Now the hare, in order to catch up, must
move to point A’. Of course, while the hare is doing that, the tortoise
will have moved ahead to some new point A”. Now the hare must catch
up to point A”.

You can see the problem. Every time the hare endeavors to catch
up with the tortoise, the tortoise will move ahead. The hare can never
catch up. Thus the tortoise will win the race. O

For You to Try: Apply the analysis just given to two children who are
each packing sand into a bucket. One child is twice as fast as the other:
she packs two cups of sand per minute while the slower boy packs only
one cup of sand per minute. But the slower child is allowed to begin with
3 cups of sand already in his bucket. Discuss how the bucket-packing
will progress.

Zeno’s Paradox, Second Formulation: A woman is walking towards
a wall—Figure 2.5. But first she must walk halfway to the wall (Figure
2.6). And then she must walk half the remaining distance to the wall.
See Figure 2.7. And so forth. In short, she will never actually reach the
wall—because at each increment she has half the remaining distance to
go. Figure 2.8 illustrates the incremental positions of the woman. O
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Zeno’s Paradox, Third Formulation: Motion is impossible. For if
an object moves in a straight line from 0 to A, then it first much reach
%A. See Figure 2.9. But before it can reach %A it must reach iA. Ad

infinitum. Thus the motion can never begin.
What is Really Going On?

Let us examine the first version of the paradox to see what is really
going on. For specificity, let us suppose that the tortoise moves at the
rate of 1 foot per second, and the hare moves at the rate of 10 feet per
second. It takes the hare 1 second to catch up to the tortoise’s head-start
position at A. During that 1 second, the tortoise has of course advanced
1 foot. It takes the hare 0.1 seconds to advance that additional foot.
During that 0.1 seconds, the tortoise has advanced 0.1 of a foot. It takes
the hare 0.01 seconds to catch up that much space. During that time,
the tortoise advances another 0.01 feet. And so forth.

To summarize, if we add up all the units of distance that the tortoise
will travel during this analysis, we obtain

Dr=104+1+01+0.014---.
A similar calculation shows that the hare travels
Dg=10+14+014+001+---.

Now we see that our decimal notation comes to the rescue (and the
Greeks definitely did not have decimal notation). The sum Dy = Dy
equals 11.111... feet. To see this just sum up the terms:

104+1=11

10+1+01=111

10+140.140.01 =11.11
and so forth.

Now take out your pencil and paper and divide 9 into 1 (or do it on
your calculator if you must). You will obtain the answer 0.111....> Thus

3In the next section we shall discuss infinite repeating decimal representations for
rational numbers.
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Figure 2.5

Figure 2.6

Figure 2.7
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we see that the total distance that the tortoise (or hare) travels during
our analysis is D = 11% feet. What does this number mean?

The point of the number D is that this is the place where the hare
and the tortoise meet—they are in the same position. After that, the
hare will pull ahead and win the race.

But we can say more. The total length of time that it takes the
tortoise (or the hare) to get to position D is

1
T=14+01+0014+---=1.1111... = 1§ seconds.

Our conclusion is that, after 1% seconds, the tortoise and the hare will
have reached the same point. In the ensuing time, the hare will still be
traveling ten times as fast as the tortoise, so of course it will pull ahead
and win the race.

For You to Try: Refer back to the preceding For You to Try unit.
Assume that each child has a very large bucket. Do an analysis like the
one that we did for the tortoise and the hare to determine when the

faster girl will equal the slower boy in sandpacking (and thereafter pass
him).

2.4 Decimal Notation and Limits

In our analysis of Zeno’s paradox, we came across an interesting idea:
that of repeating decimal expansions. The specific one that came up in
the last section was .11111.... We were conveniently able to observe
that this is just 1/9. But what does (for instance) the decimal expansion
0.57123123123123. .. represent (if anything)? Let us do a little analysis.

Let = 0.57123123123123.... Now consider the number 1000z =
571.23123123123123.... We subtract these two numbers in the tradi-
tional way:*

10002 = 571.23123123123123 . ..

4The choice of 10002 rather than 100z or 10000z is motivated by the fact that it
results in useful cancellations, as we shall see.
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xr = 0.57123123123123. ..

999z = 570.66

Notice how all the 123s cancel out! It is convenient to write the resulting
equation as

57066
999y = ———.
YT 00
Then we find that
57066 9511

¥ 799900 ~ 16650 °

We see that, with a bit of algebraic manipulation, we were able to ex-
press a repeating decimal as a rational fraction.

For You to Try: Express the number
x =43.75417171717 . ..

as a rational fraction.

Rest assured that the ancient Greeks certainly considered the ques-
tions we are discussing here. But they were not equipped to come up
with the answers that you have seen here. They did not have the nota-
tion nor the concept of decimal number. But they certainly set in place
the beginnings of the more complete understanding that we have today.

2.5 Infinite Sums and Limits

The ideas we have considered so far actually beg a much more general
question. When we studied Zeno’s paradox, in the rendition with the
tortoise and the hare, we considered the sum

10+14+01+0.014---.
This might more conveniently be written as

100 +10°+107' +1072 +---
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or perhaps as

1 0 1 1 1 2
10 — = — ce
* (10) * (10) * (10) *
Observe that, after the first term, this is a sum of all the non-negative
powers of a fixed number, namely 1/10. But that is an interesting notion,
is it not? How can we sum all the powers of a fixed number? Let us pose

the question a bit more abstractly.
Let the fixed number be ¢ > 0. Consider the sum

S=1+o0+0c2 4>+,

We call this a geometric series in powers of o. Our goal is to actually
sum this series—to find an explicit formula for the infinite sum on the
right.

In order to understand S, let us multiply both sides by o. So

oc-S=0c+d*+o°+--- .
Adding 1 to both sides yields
l+o-S=14+0+0*+0>+---.

But now we recognize the righthand side as S. So we can rewrite the
last equation as

l1+0-5=5
or
1=5-(1-o0).
Finally, we conclude that
1
S = .
l1—-0

Put in other words, what we have learned is that

1
1—0

4040 +o*+--- =

Example 2.1
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Calculate the sum

1o +(1)2+(1)3+
10 10 10
SOLUTION  We recognize this as the series that we encountered in our study of

Zeno’s paradox. But now we have a simple and direct way to analyze it. We see that

this is a geometric series with 0 = 1/10. Thus the sum is

1 10
5_1—1/10_5'

Example 2.2
Calculate the sum

2 2\2 2\
T=24(Z2 d
(G ()

SOLUTION This is not precisely in our standard form for a geometric series.

But we may write

2 2 /2\? 2
T=2.|14+2 Z L =Z.9
3 l+3+<3>+ ] 3 7

where S is a standard geometric series in powers of 2/3. Thus S = 1/[1—2/3] = 3

and hence

T==2.3=2.
3

For You to Try: Find the sum of the series

4.5 4-25 4-125
+ +

4
+6 36+216
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2.6 Finite Geometric Series

Thus far we have been examining the question of summing an infinite
geometric series of the form

l+o+o*+0°+---

It seems reasonable to consider also the sums of finite geometric series
such as
14343 4---+3"2.

The idea is best understood by way of an example.

Example 2.3
Find the sum of the series

() )G ()

SOLUTION It would be quite tedious to actually add up this series—even with
the aid of a calculator. Let us instead use some mathematical reasoning to tame the
problem.

Our idea is to express this sum in terms of infinite geometric series. Namely, we

@ e (B O (0]
L@ O™

RN

» )" e G0

@D+ @)+

In conclusion,

HORORGE OSSO S INON
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|

The method used in this last example is a cute trick, but not entirely
satisfactory. For suppose we endeavored to sum

14343243+ 43
by the same method. It would fail, just because
14343 +3+--- (%)

cannot be added. In other words, the sum (*) increases without bound.’
So it cannot be manipulated arithmetically as we did in the last example.

Let us now develop a somewhat different technique. We will imitate
the methodology of the last section. Let

S=l+o+o*+o*+.- +o.
Multiplying both sides by o, we find that
oc-S=c+o’+o+ot 4+ + ok

=|l+o+0°+d’+o'+ - +0" |+ (" —1)
=S+ (cF T —1).
Rearranging, we see that
S-(c—1)=c"" -1

or
O.K—l—l -1

S=———. *

p— (*)
Now let us do an example to illustrate the utility of this new formula.
Example 2.4

Calculate the sum

S=1+3+32+3+...4310,

5 A mathematician might say that the limit is +oo.
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SOLUTION  We apply formula (%) with 0 = 3 and K = 100. Thus

3011 1
S = :—-@NL—Q.
3—-1 2

For You to Try: Use your calculator to calculate the last sum, and
compare your result with the answer that we obtained through mathe-
matical reasoning.

Example 2.5
Calculate the sum

(@ O ()
SOLUTION We write
ot () e () () )]
B/ -1 3/ -1
(3/4)—1  (3/4) —1

[T

For You to Try: Calculate the sum
-5 12 -5 13 -5 14 -5 45
w=(—- e —_- e (Z22)
&) <(F) &)+ (5)

For You to Try: Calculate the sum

() () e ()
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Can you discern a pattern in your answers? Is it possible to look at
a sum of the form ’ '
of +altt 4o of

for 0 < j < k and just write down the answer?

2.7 Some Useful Notation

This is a good opportunity to learn some useful and fun mathematical
notation. The symbols

N
Z aj
j=1
is a shorthand for the sum
ap+ax+a+3+---+an.

The symbol Y is the Greek letter sigma (the cognate of “S” in our
alphabet), and stands for sum. The lower limit j = 1 tells where the
sum, or series, begins. The upper limit “N” (or “j = N”) tells where
the sum (or series stops).

Example 2.6
Write out the sum

8
> it+.
j=1
Solution: According to our rule, this is
(P+1)+(2°4+2)+ (32 +3) + (4*+4) + (5* +5)
+(6°+6) + (7> +7) + (8 +8)

=246+ 12+ 20+ 30 442 + 56 + 72
= 240.
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Example 2.7
Write out the sum ‘
J
=2
Solution: Notice that we are stretching our new notation by begin-
ning the sum at an index other than 1. It equals

5+6+7+8+9+10
5+1 6+1 741 841 9+1 1041

5 6 7 8 9 10

s 7TsTo T
~ 5.2634.

O

We can also use the summation notation to denote an infinite series.
For example,

S ORORCRORMO RS
) )

And we know, from our earlier studies, that in fact this sum equals 2.

2.8 Concluding Remarks

Geometric series arose very naturally for us in our consideration of Zeno’s
paradox. In fact the Greeks were well aware of geometric series. They oc-
cur, in essence, in Euclid IX-35 [EUC], and also in Archimedes’s quadra-
ture of the parabola. Today, geometric series arise frequently in engineer-
ing analysis, in the study of the way that plants grow, and in many other
applications of the mathematical sciences. They are a primary example
of the mathematical modeling of nature. They also have considerable
intrinsic interest—they are simply fascinating mathematical objects to
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study.

FExercises

1. Use geometric series to analyze the second version of
Zeno’s paradox.

2. Formulate a version of Zeno’s paradox that involves di-
vision by 3 instead of division by 2. Discuss this ques-
tion in class.

3. Calculate the sum
4\° 4\ 6 4N\
(5) *‘(5) *‘(5) *
4. Calculate the sum

2 3 2 6 2 9 2 81
(?) *‘(?) *‘(?) *“"*‘(?) |
5. Calculate the sum
>(5) -1+ () + (5) +
= 13 13 13
6. Calculate the sum
- () () (-
—\17) \17 17 17
‘7_
7. Calculate the sum

()" ()
21 21 21

()
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10.

11.

12.
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. A certain radioactive material has the property that half

the substance present decays every three hours. If there
are 10 grams present at 10:00am on Monday, then how
much material will remain at 10:00am on Thursday of
that same week? [Hint: You cannot solve this problem
just using techniques of arithmetic. You must use the
lessons of this chapter.|

. A population of bacteria reproduces constantly. As a re-

sult, the total number of bacteria doubles every 6 hours.
If there are 10,000 bacteria present at 9:00am on Tues-
day, then how many bacteria will be present at 9:00am
on Saturday of that same week? [Hint: You cannot
solve this problem just using techniques of arithmetic.
You must use the lessons of this chapter.]

It begins snowing some time before noon. At noon, a
snow plow begins to clear the street. It clears two blocks
in the first hour and one block in the second hour. When
did it start snowing? [Hint: You will not be able to ac-
tually write down an equation or formula and solve this
problem. But you can use the ideas from this chapter to
set up an analysis of the problem. Use your computer or
calculator to do some numerical approximations for the
situation described. In other words, think of this as a
problem of mathematical modeling. Use the calculating
machinery to emulate the snow fall and come up with
an approximate answer. Discuss this problem in class.]

A sponge absorbs water at a steady rate. As a result,
the volume of the sponge increases by a factor of one
tenth each hour. If the sponge begins at noon having
volume 0.8 cubic feet, then what will be the volume of
the sponge at the same time on the next day?

You deposit $1000 in the bank on January 2, 2006. The
bank pays 5% interest, compounded daily (this means
that 1/365 of the interest is paid each day, and the
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interest is added to the principal). How much money
will be in your account on January 2, 20077 [Hint: Bear
in mind that, when interest is calculated on the second
day, there will be interest paid on the interest from the
first day. And so forth. Thus the amount of increase
in money is greater with each passing day. Discuss this
problem in class.]
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Chapter 3

The Mystical Mathematics of
Hypatia

3.1 Introduction to Hypatia

One of the great minds of the ancient world was Hypatia of Alexandria
(370 C.E.-430 C.E.). Daughter of the astronomer and mathematician
Theon, and wife of the philosopher Isidorus, she flourished during the
reign of the Emperor Arcadius.

Historians believe that Theon endeavored to raise the “perfect human
being” in his daughter Hypatia. He nearly succeeded, in that Hypatia
had surpassing physical beauty and a dazzling intellect. She had a re-
markable physical grace and was an accomplished athlete. She was a
dedicated scholar and had a towering intellect.

Hypatia soon outstripped her father and her teachers and became
the leading intellectual light of Alexandria. She was a powerful teacher,
and communicated strong edicts to her pupils. Among these were:

All formal dogmatic religions are fallacious and
must never be accepted by self-respecting persons
as final.

Reserve your right to think, for even to think
wrongly is better than not to think at all.

Neo-Platonism is a progressive philosophy, and
does not expect to state final conditions to men
whose minds are finite. Life is an unfoldment, and

69
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the further we travel the more truth we can com-
prehend. To understand the things that are at
our door is the best preparation for understand-
ing those that lie beyond.

Fables should be taught as fables, myths as myths,
and miracles as poetic fantasies. To teach super-
stitions as truths is a most terrible thing. The
child mind accepts and believes them, and only
through great pain and perhaps tragedy can he
be in after years relieved of them. In fact men
will fight for a superstition quite as quickly as for
a living truth—often more so, since a superstition
is so intangible you cannot get at it to refute it,
but truth is a point of view, and so is changeable.

The writings of Hypatia have all been lost to time. What we know of
her thoughts comes from citations and quotations in the work of others.

Hypatia was a pagan thinker at the time when Rome was converted
to Christianity. Thus, in spite of her many virtues, she made enemies.
Chief among these was Cyril, the Bishop of Alexandria. According to
legend, he enflamed a mob of Christians against her. They set upon
her as she was leaving her Thursday lecture, and she was dragged to
a church where it was planned that she would be forced to recant her
beliefs. But the mob grew out of control. Her clothes were rent from her
body, she was beaten mercilessly, and then she was dismembered. The
skin was flayed from her body with oyster shells. Her remains were then
burned. The book [DZI] considers a variety of accounts of Hypatia and
her demise. It is difficult to tell which are apocryphal.

Hypatia is remembered today for her work on Appolonius’s theory
of conics, and for her commentary on Diophantus. All of these theories
survive to the present time, and are still studied intently. She also did
work, alongside her father, on editing Euclid’s Elements. The surviving
presentation of Euclid’s classic work bears Hypatia’s mark.

Certainly Hypatia was one of the great thinkers of all time, and it
is appropriate for us to pay her due homage. But we have no detailed
knowledge of her work—certainly no firsthand knowledge. So what we
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Figure 3.1

can do is to study conic sections with Hypatia in mind, knowing that she
certainly left her mark on this subject. We will give some of the classical
ideas, as Hypatia herself would have conceived them, and also some of
the modern ideas—based on the analytic geometry of René Descartes
(see Chapter 8).

It was Appolonius, Hypatia’s inspiration, who first realized that all
of the conic sections can be realized as slices of a fixed cone. He also
gave the names to the conic sections that we use today. Examine Figure
3.1. It shows a cone with two nappes (branches). We slice this cone
with a plane. Depending on the way that the plane intersects the cone,
the result will give different types of curves. Figure 3.2 shows a circle.
Figure 3.3 shows an ellipse. Figure 3.4 exhibits a parabola. And Figure
3.5 gives us a hyperbola. Figure 3.6 shows each of these curves on a
planar set of axes.

Of course it is intuitively clear how one can examine the intersection
of the plane and the cone in Figures 3.2-3.5 to see where the circle, el-
lipse, parabola, and hyperbola in Figure 3.6 come from. But it would be
advantageous, and certainly aesthetically pleasing, to have a synthetic
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Figure 3.2

Figure 3.3
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Figure 3.4
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Figure 3.5
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circle ellipse
hyperbola
parabola

Figure 3.6
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Figure 3.7

definition of each of these figures that makes sense in the context of the
plane. This we shall now discuss.

The Circle: A circle with center P and radius r is just the set of all
points in the plane that have distance r from the point P. Examine
Figure 3.7. It clearly exhibits this geometric definition. And you can
see that we have made this definition without any reference to the cone.
The cone is of course interesting for historical reasons: it is the genesis
of these figures, and suggests that they are related. But each can be
studied intrinsically, and for its own merits.

The Ellipse: Fix two points F; and F5 in the plane. Fix a positive num-
ber a such that 2a is greater than the distance from F} to Fy. Consider
the locus of points P in the plane with the property that the distance of
P to F plus the distance of P to F is equal to 2a. This locus is called
an ellipse. Refer to Figure 3.8.

The two points F}, F; are called the foci of the ellipse and the mid-
point of the segment F} [} is called the center of the ellipse. The chord
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Figure 3.8

of the ellipse passing through the two foci is called the major axis of
the ellipse. The perpendicular chord, passing through the center of the
ellipse, is called the minor axis of the ellipse. See Figure 3.9.

For You to Try: What happens to the ellipse as the two foci tend
towards each other? As they coalesce into a single point? Does another
conic section result?

The Parabola: Fix a point P in the plane and a line ¢ that does not
pass through P. The set of points that are equidistant from P and ¢
is a parabola. See Figure 3.10. The point that is on the perpendicular
segment from P to ¢ and halfway between the two is called the vertex of
the parabola. The point P is called the focus, and the line ¢ is called the
directrix.

For You to Try: Let P = (2,0) and let ¢ be the line {(x,y) : = —2}.
Sketch the resulting parabola. Where will the vertex lie?

The Hyperbola: Fix two distinct points Fp, F5 in the plane. Fix a
positive number a that is less than half the distance of I to F5;. Consider
the locus of points P with the property that the difference of the distances
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Figure 3.10
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Figure 3.11

|P — Fi| and |P — Fy| equals 2a. This is a hyperbola. The points Fy, Fy
are called foci of the hyperbola. The midpoint of the two foci is called
the center of the hyperbola. The line through the two foci intersects the
hyperbola in two points called the vertices of the hyperbola. All of these
attributes are exhibited in Figure 3.11.

For You to Try: Let F; = (—2,0) and F5 = (2,0). Let a = 1. Discuss
the resulting hyperbola. Does it open up-down or left-right? Can you
sketch the graph?

3.2 What is a Conic Section?

Now we shall attempt to unify the preceding discussion. What do the
circle, the ellipse, the parabola, and the hyperbola have in common?
What are their common features?

One of the beauties of Descartes’s conception of geometry is that it
allows us to think of conic sections in terms of equations.

As an example, consider the parabola. Let us suppose that the di-
rectrix is the line y = a > 0 and the focus is the origin O = (0,0). The
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parabola defined by these two pieces of data is the set of points which are
equidistant from the focus and the directrix. Let (x,y) be such a point.
Then the distance of (z,y) to O is v/z2 + y2. The distance of (z,y) to
the directrix is |y — a|—see Figure 3.12. So the equation is then

Vet +y?=|y—al.

Squaring both sides gives
2+ = % — 2ay + d

or
1 5, a
Y= —%ZE + 5

See Figure 3.13.

A characteristic of the equation of a parabola is that one variable
(in this case x) is squared and the other (in this case y) is not. Because
of the positioning of the directrix and focus, a parabola such as we have
been discussing must open either up or down. See Figure 3.13.

If instead we were to set up the geometry so that the directrix is

x = a > 0 and the focus is the origin, then the equation would be

Again, we see that one variable (in this case y) is squared and the other
(in this case x) is not. Because of the positioning of the directrix and
focus, a parabola such as we have been discussing must open either left
or right. See Figure 3.14.
More generally, the equation of an up-down opening parabola will
have the form
y—b=c(r—a)’.

Such a parabola will have vertex at the point (a,b) and will open up if
¢ > 0 and down if ¢ < 0. See Figure 3.15. The equation of a left-right
opening parabola will have the form

r—a=c(y—b)?.
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Figure 3.15
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c<( ¢>0

Figure 3.16

Such a parabola will have vertex at the point (a,b) and will open to the
right if ¢ > 0 and to the left if ¢ < 0. See Figure 3.16.

For You to Try: Discuss the parabola y? —4x —2y = 10. Does it open
up-down or left-right? How can you tell? Can you sketch the graph?

An analysis similar to the one just given for the parabola, but a bit
more complicated, yields that the equation of an ellipse will have the
form

x —cp)? —c)?

( . . W . )
The center of this ellipse is the point (cy,¢z). If we put in y = ¢ and
solve for x we find that * = ¢; £ a. Thus the left and right extreme
points of the ellipse are (¢; — a,c2) and (¢ + a,cy). If instead we put
x = ¢ and solve for y then we find that y = ¢, = b. Thus the upper and
lower extreme points of the ellipse are (¢1,c2 — b) and (c1, c2 + b). Refer
to Figure 3.17 for a picture of this ellipse.

=1.

For You to Try: Discuss the ellipse 422 +8y?+ 162+ 32y = 16. Which
direction is the major axis (the long direction) of the ellipse? Which di-
rection is the minor axis (the short direction) of the ellipse? Can you
sketch it?
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(Cl ,Cz‘l'b)

Figure 3.17

Yet another analysis of the same type—and we shall omit the details—
shows that the equation of a hyperbola has the form

(f—Cl)z (?/—02)2 _
" — 72 =+1. (k)

If the righthand side of () is +1 then the hyperbola opens left-right.
In fact take y = c¢9; you can then solve for x and find that x = ¢; & a.
So the vertices of the hyperbola are at (¢; — a, ) and (¢ + a,cg). See
Figure 3.18.

If instead the righthand side of (%) is —1 then the hyperbola opens
up-down. In fact take x = ¢q; you can then solve for y and find that
y = cg £ b. So the vertices of the hyperbola are at (c¢1,co — b) and
(c1,c2 +b). See Figure 3.19.

For You to Try: Discuss the hyperbola 42% — 8y? + 8z — 16y = 12.
Does it open up-down or left-right? Can you sketch the graph?
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Figure 3.18
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Figure 3.19
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Figure 3.20

FExercises

1. Let P,Q, R be three points in the plane which do not
all lie on the same line. Then there is a unique circle
that passes through all three of them. See Figure 3.20.
There are several ways to confirm this assertion.

(a) A general circle has equation
2 2 _
+ar+y +by=c.

Thus there are three undetermined parameters. And
the three pieces of information provided by the fact that
the circle must pass through P = (p1,p2), @ = (q1, ¢2),
R = (r1,7r2) (and therefore these three points must sat-
isfy the equation) will determine those parameters. Use
this idea to find the unique circle that passes through
(1,2), (2,3), and (4,9).

(b) There is a well-defined perpendicular bisector to the
segment PQ. This line represents the set of all points
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Q

Figure 3.21

that are equidistant from P and @). There is also a well-
defined perpendicular bisector to the segment Q) R. This
line represents the set of all points that are equidistant
from ) and R. The intersection of these two lines—
which will be a single point C'—will be the unique point
that is equidistant from all three of P,Q, R. That must
be the center of the circle. See Figure 3.21. The distance
of C to P will be the radius. Use this idea to find the
unique circle that passes through (1,0), (0,1), (1,1).

. Consider the parabola y = 2%. Any ray entering the

parabola from above and traveling straight down (see
Figure 3.22) will bounce off the parabola and pass through
the focus point (0,1/4) (the directrix is the line y =
—1/4, as you can readily verify). Discuss this assertion
in class. How would you determine the bounce of the
ray? Think about the tangent line to the parabola at
the point of impact. What does the tangent line have
to do with the question?

3. Let ¢ > 0. Fix the two points F; = (—¢,0) and Fy =
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Figure 3.22

(c,0) in the plane. Imagine a string of length 2a > 2¢
that has one end pinned down at the point F; and the
other end pinned down at the point F,. Now stretch the
string taught with a pencil and move the pencil around
in a loop. See Figure 3.23. The resulting curve will
be an ellipse. You should try this yourself with two
thumbtacks, a piece of string, and a real pencil.

Discuss this situation in class. Explain why the result
is an ellipse. What is the length of the major axis of
the ellipse? What is the length of the minor axis of the
ellipse?

4. Let {p1,p2,ps3, ...} be an infinite collection of points in
the plane. Suppose that the distance between any two of
these points is an integer (different integers for different
pairs of points in general). Then argue that the points
must all lie on the same line. Discuss this problem in
class. [Hint: The solution has something to do with a
hyperbolal]

5. Two points in the plane do not uniquely determine a
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Figure 3.23

parabola. Give an example to explain why this is so.
But three non-collinear points do uniquely determine a
parabola. Explain why this is so. [Hint: Refer to the
discussion in Exercise 1(a) for a clue.]

. The transformation

V2 V2
—_— x4+ —
Y 9 9 )
describes a rotation of the plane through an angle of
/4 radians (in the counterclockwise direction). Ex-
plain why this is so. Discuss the problem with your

class. More generally, the transformation
x +— [cosf|x — [sinfly

y — [sin O]z + [cos O]y

describes a rotation of the plane through an angle of ¢
radians (in the counterclockwise direction). Verify this
assertion also.
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If a quadratic equation describing a conic section—as
discussed in this chapter—is subjected to one of these
two changes of variable, then an equation of the form

Ax? + Bry+ Cy* + D+ Ey+ F =0 (%)

results. Perform the calculation and see this for your-
self.

Now, if you are given an equation of the form (%), how
can you tell whether it is the equation of an ellipse, a
parabola, or a hyperbola? The tests that we learned in
this chapter do not apply. For example,

2?4+ 2ry+ 1y +1=0

describes a parabola. So how can one tell which equa-
tion corresponds to which type of curve? Try some ex-
periments and see whether you can formulate a conjec-
ture. Make this a project for class work.

7. Refer to Exercise 6. We need a test for telling which
equations of the form (%) describe which types of curves.
Define the discriminant of the equation (x) to be

D = B? — 4AC'.

It turns out that if D = 0 then the equation describes
a parabola. If D < 0 then the equation describes an
ellipse. and if D > 0 then the equation describes a
hyperbola.

Test these assertions out on some familiar equations of
conic sections that you know. Now rotate one of these
equations, as in Exercise 6, and try the test again. You
should get the same answer (because the essential na-
ture of a conic section does not change when it is ro-
tated).
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Refer to Exercises 6 and 7. Now examine the equation
P rry+yi+r+y+1=0.
Determine what sort of conic section it represents. Now

graph the curve.

How does the curve change if +zy is changed to —xy?
Graph the new curve that has equation with this changed
term.

. Consider the line ¢ given by

ar +by+c=0

in the plane. Let P = (p1, p2) be a point that does not
lie on that line. Show that the distance of P to the line
¢ is given by

_apy + bpz + |

Discuss this question with your class. How does one
determine the distance of a point to a line? What geo-
metric construction is relevant?

d

Consider the parabola y = 22 and the circle 22 + ¢y? =
r?. Is there a choice of r > 0 so that, at the points
of intersection of the parabola and the circle, the two
curves are perpendicular? [Hint: You can answer this
question without calculating. Discuss the issue with

your class.|

Answer Exercise 10 with the parabola y = 22 replaced
by the hyperbola 2% — y? = 1.

Discuss the concept of tangent line to the curve y = 22
at the point (1,1). What properties should it have?
How could you determine this line? Discuss the issue
with your class. We will consider this matter in further
detail in Chapter 4.
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Sketch the graph of the conic section
2? — 22 — 3y* + 6y = 10.
Which type of conic section is this? How can you tell?
Sketch the graph of the conic section
4 dr —y=15.
Which type of conic section is this? How can you tell?
Sketch the graph of the conic section
4a* — 8x + 8y* + 32y = 64.

Which type of conic section is this? How can you tell?
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Chapter 4

The Arabs and the Development
of Algebra

4.1 Introductory Remarks

In the early seventh century C.E., the Muslims formed a small and per-
secuted sect. But by the end of that century, under the inspiration of
Mohammed’s leadership, they had conquered lands from India to Spain—
including parts of North Africa and southern Italy. It is believed that,
when Arab conquerors settled in new towns, they would contract dis-
eases which had been unknown to them in desert life. In those days the
study of medicine was confined mainly to Greeks and Jews. Encouraged
by the caliphs (the local Arab leaders), these doctors settled in Baghdad,
Damascus, and other cities. Thus we see that a purely social situation
led to the contact between two different cultures which ultimately led to
the transmission of mathematical knowledge.

Around the year 800, the caliph Haroun Al Raschid ordered many
of the works of Hippocrates, Aristotle, and Galen to be translated into
Arabic. Much later, in the twelfth century, these Arab translations were
further translated into Latin so as to make them accessible to the Eu-
ropeans. Today we credit the Arabs with preserving the grand Greek
tradition in mathematics and science. Without their efforts, much of
this classical work would have been lost.

93
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4.2 The Development of Algebra
4.2.1 Al-Khowarizmi and the Basics of Algebra

There is general agreement that the rudiments of algebra found their
genesis with the Hindus. Particularly Arya-Bhata in the fifth century
and Brahmagupta in the sixth and seventh centuries played a major role
in the development of these ideas. Notable among the developments due
to these men is the summation of the first NV positive integers, and also
the sum of their squares and their cubes (see our discussion of these
matters in Chapter 9).

But the Arab expansion two hundred years later caused the transfer
of these ideas to the Arab empire, and a number of new talents exerted
considerable influence on the development of these concepts. Perhaps
the most illustrious and most famous of the ancient Arab mathemati-
cians was Abu Ja’far Muhammad ibn Musa Al-Khwarizmi (780 C.E.-850
C.E.). In 830 C.E. this scholar wrote an algebra text that became the
definitive work in the subject. Called Kitab fi al-jabr wa’l-mugabala, it
introduced the now commonly used term “algebra” (from “al-jabr”). The
word “jabr” referred to the balance maintained in an equation when the
same quantity is added to both sides (curiously, the phrase “al-jabr” also
came to mean “bonesetter”); the word “mugabala” refers to cancelling
like amounts from both sides of an equation.

Al-Khwarizmi’s book Art of Hindu Reckoning introduced the nota-
tional system that we now call Arabic numerals: 1, 2, 3, 4, .... Al-
Khowarizmi also introduced the concept, and the word, that has now
come to be known as “algorithm”.

It is worth noting, and we have made this point elsewhere in the
present text, that good mathematical notation can make the difference
between an idea that is clear and one that is obscure. The Arabs, like
those who came before them, were hindered by lack of notation. When
they performed their algebraic operations and solved their problems, they
referred to everything with words. The modern scholars of this period
are fond of saying that the Arabic notation was “rhetorical”, with no
symbolism of any kind. Moreover, the Arabs would typically exhibit
their solutions to algebraic problems using geometric figures. There were
particular difficulties when the solution involved a root (like v/2, which
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can arise easily in solving a quadratic equation). They did not have an
efficient method for simply writing the solution as we would today.

4.2.2 The Life of Al-Khwarizmi

Abu Ja’far Muhammad ibn Musa Al-Khwarizmi (780 C.E.-850 C.E.)
was likely born in Baghdad, now part of Iraq. The little that we know
about his life is based in part on surmise, and interpretation of evidence.

The “Al-Khwarizmi” in his name suggests that he came from Khwarizm,
south of the Aral Sea in central Asia. But we also have this from an his-
torian (Toomer [GIL]) of the period:

But the historian al-Tabari gives him the addi-
tional epithet “al-Qutrubbulli”; indicating that he
came from Qutrubbull, a district between the Tigris
and Euphrates not far from Baghdad, so perhaps
his ancestors, rather than he himself, came from
Khwarizm ... Another epithet given to him by al-
Tabari, “al-Majusi”, would seem to indicate that
he was an adherent of the old Zoroastrian religion.
... the pious preface to Al-Khwarizmi’s “Algebra”
shows that he was an orthodox Muslim, so Al-
Tabari’s epithet could mean no more than that
his forebears, and perhaps he in his youth, had
been Zoroastrians.

We begin our tale of Al-Khwarizmi’s life by describing the context in
which he developed. Harun al-Rashid became the fifth Caliph of the Ab-
basid dynasty on 14 September 786, at the time that Al-Khwarizmi was
born. Harun ruled in Baghdad over the Islam empire—which stretched
from the Mediterranean to India. He brought culture to his court and
tried to establish the intellectual disciplines which at that time were not
flourishing in the Arabic world. He had two sons, al-Amin the eldest and
al-Mamun the youngest. Harun died in 809 and thus engendered a war
between the two sons.

Al-Mamun won the armed struggle and al-Amin was defeated and
killed in 813. Thus al-Mamun became Caliph and ruled the empire. He
continued the patronage of learning started by his father and founded
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an academy called the House of Wisdom where Greek philosophical and
scientific works were translated. He also built up a library of manuscripts,
the first major library to be set up since that at Alexandria.! His mission
was to collect important works from Byzantium. In addition to the House
of Wisdom, al-Mamun set up observatories in which Muslim astronomers
could build on the knowledge acquired in the past.

Al-Khwarizmi and his colleagues called the Banu Musa were scholars
at the House of Wisdom in Baghdad. Their tasks there involved the
translation of Greek scientific manuscripts; they also studied, and wrote
on, algebra, geometry, and astronomy. Certainly Al-Khwarizmi worked
with the patronage of Al-Mamun; he dedicated two of his texts to the
Caliph. These were his treatise on algebra and his treatise on astronomy.
The algebra treatise Hisab al-jabr w’al-muqabala was the most famous
and significant of all of Al-Khwarizmi’s works. The title of this text is
the provenance of the word “algebra”. It is, in an important historical
sense, the very first—and historically one of the most important—book
on algebra.

Al-Khwarizmi tells us that the significance of his book is:

...what is easiest and most useful in arithmetic,
such as men constantly require in cases of inheri-
tance, legacies, partition, lawsuits, and trade, and
in all their dealings with one another, or where the
measuring of lands, the digging of canals, geomet-
rical computations, and other objects of various
sorts and kinds are concerned.

It should be remembered that it was typical of early mathematics
tracts that they concentrated on, and found their motivation in, practi-
cal problems. Al-Khwarizmi’s work was no exception. His motivations
and his interests may have been abstract, but his presentation was very
practical.

Early in the book Al-Khwarizmi describes the natural numbers in
terms that are somewhat ponderous to us today. But it is easy to see

1This was the great library of the ancient world. It was unfortunately—at least as
far as we know—destroyed by invading hordes.
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that he is thereby laying the foundations of base-ten arithmetic. We
must acknowledge the new abstraction and profundity of what he was
doing:

When 1 consider what people generally want in
calculating, I found that it always is a number. I
also observed that every number is composed of
units, and that any number may be divided into
units. Moreover, I found that every number which
may be expressed from one to ten, surpasses the
preceding by one unit: afterwards the ten is dou-
bled or tripled just as before the units were: thus
arise twenty, thirty, etc. until a hundred: then the
hundred is doubled and tripled in the same man-
ner as the units and the tens, up to a thousand,
...so forth to the utmost limit of numeration.

We should bear in mind that, for many centuries, the motivation for
the study of algebra was the solution of equations. In Al-Khwarizmi’s day
these were linear and quadratic equations. His equations were composed
of units, roots and squares. For example, to Al-Khwarizmi a unit was a
number, a root was z, and a square was x2 (at least this was what he
seemed to be thinking). However, it is both astonishing and significant to
bear in mind that Al-Khwarizmi did his algebra with no symbols—only
words.

Al-Khwarizmi first reduces an equation (linear or quadratic) to one
of six standard forms:?

1. Squares equal to roots.
2. Squares equal to numbers.
3. Roots equal to numbers.

4. Squares and roots equal to numbers; e.g. 2+ 10x = 39.

2For clarity, we continue to indulge in the conceit here of using semi-modern
notation—notation that Al-Khwarizmi would never have used.
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5. Squares and numbers equal to roots; e.g. x2421 = 10x.
6. Roots and numbers equal to squares; e.g. 3x 4+ 4 = 2.

The reduction is carried out using the two operations of “al-jabr” and
“al-muqabala”. Here “al-jabr” means “completion” and is the process
of removing negative terms from an equation. For example, using one
of Al-Khwarizmi’s own examples, “al-jabr” transforms x2 = 40x — 422
into 52 = 40x. The term “al-mugabala” means “balancing” and is
the process of reducing positive terms of the same power when they
occur on both sides of an equation. For example, two applications of
“al-muqgabala” reduces 50 + 3z 4+ 22 = 29 4+ 10x to 21 + 2 = 7z (one
application to deal with the numbers and a second to deal with the
roots).

Al-Khwarizmi then shows how to solve the six types of equations
adumbrated above. He uses both algebraic methods of solution and
geometric methods. We shall treat his algebraic methodology in detail
below.

Al-Khwarizmi continues his study of algebra in Hisab al-jabr w’al-
mugabala by considering how the laws of arithmetic extrapolate to an
algebraic context. For example, he shows how to multiply out expressions
such as

(a+ bx)(c+dx).

Again we stress that Al-Khwarizmi uses only words to describe his ex-
pressions; no symbols are used.

There seems to be little doubt, from our modern perspective, that
Al-Khwarizmi was one of the greatest mathematicians of all time. His
algebra was original, incisive, and profound. It truly change the way that
we think about mathematics.

The next part of Al-Khwarizmi’s Algebra consists of applications and
worked examples. He then goes on to look at rules for finding the area
of figures such as the circle and also finding the volume of solids such as
the sphere, cone, and pyramid. This section on mensuration certainly
has more in common with Hindu and Hebrew texts than it does with
any Greek work. The final part of the book deals with the complicated
Islamic rules for inheritance but requires little from the earlier algebra
beyond solving linear equations. Again, in all these aspects of the book,
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we see the over-arching need to justify the mathematics with practical
considerations.

Al-Khwarizmi also wrote a treatise on Hindu-Arabic numerals. The
Arabic text is lost but a Latin translation, Algoritmi de numero Indo-
rum (rendered in English, the title is Al-Khwarizmi on the Hindu Art of
Reckoning) gave rise to the word “algorithm”, deriving from his name in
the title. The work describes the Hindu place-value system of numerals
based on 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0. The first use of zero as a place
holder in positional base notation was probably due to Al-Khwarizmi in
this work. Methods for arithmetical calculation are given, and a method
to find square roots is known to have been in the Arabic original although
it is missing from the Latin version.

Another important work by Al-Khwarizmi was his work Sindhind zij
on astronomy. The work is based in Indian astronomical works:

...as opposed to most later Islamic astronomi-
cal handbooks, which utilised the Greek planetary
models laid out in Ptolemy’s Almagest.

The Indian text on which Al-Khwarizmi based his treatise was one
which had been given to the court in Baghdad around 770 as a gift from
an Indian political mission. There are two versions of Al-Khwarizmi’s
work which he wrote in Arabic but both are lost. In the tenth cen-
tury al-Majriti made a critical revision of the shorter version and this
was translated into Latin by Adelard of Bath. The main topics covered
by Al-Khwarizmi in the Sindhind zij are calendars; calculating true posi-
tions of the sun, moon and planets, tables of sines and tangents; spherical
astronomy; astrological tables; parallax and eclipse calculations; and vis-
ibility of the moon. A related manuscript, attributed to Al-Khwarizmi,
concerns spherical trigonometry.

Although his astronomical work is based on that of the Indians, and
most of the values from which he constructed his tables came from Hindu
astronomers, Al-Khwarizmi must have been influenced by Ptolemy’s
work too.

Al-Khwarizmi wrote a major work on geography which give lati-
tudes and longitudes for 2402 localities as a basis for a world map. The
book, which is based on Ptolemy’s Geography, lists—with latitudes and
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longitudes—cities, mountains, seas, islands, geographical regions, and
rivers. The manuscript does include maps which on the whole are more
accurate than those of Ptolemy. In particular it is clear that where more
local knowledge was available to Al-Khwarizmi such as the regions of Is-
lam, Africa and the Far East then his work is considerably more accurate
than that of Ptolemy, but for Europe Al-Khwarizmi seems to have used
Ptolemy’s data.

A number of minor works were written by Al-Khwarizmi on topics
such as the astrolabe, on which he wrote two works, on the sundial,
and on the Jewish calendar. He also wrote a political history containing
horoscopes of prominent persons.

We have already discussed the varying views of the importance of
Al-Khwarizmi’s algebra which was his most important contribution to
mathematics. Al-Khwarizmi is perhaps best remembered by Mohammad
Kahn:

In the foremost rank of mathematicians of all time
stands Al-Khwarizmi. He composed the oldest
works on arithmetic and algebra. They were the
principal source of mathematical knowledge for
centuries to come in the East and the West. The
work on arithmetic first introduced the Hindu num-
bers to Europe, as the very name algorithm sig-
nifies; and the work on algebra ... gave the name
to this important branch of mathematics in the
European world ...

4.2.3 The Ideas of Al-Khwarizmi

The ideas discussed thus far in the present chapter are perhaps best
illustrated by some examples.

Example 4.1
Solve this problem of Al-Khwarizmi:

A square and ten roots equal thirty-nine dirhems.

SOLUTION It requires some effort to determine what is being asked. First, a
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dirhem is a unit of money in medieval Arabic times. In modern English (we shall
introduce some mathematical notation later), what Al-Khwarizmi is telling us is
that a certain number squared plus ten times that number (by “root” he means the
number that was squared—what we would call the unknown) equals 39. If we call

this unknown number Z, then what is being said is that
2® + 10z = 39

or

22 +102 —39=0.

Of course the quadratic formula quickly tells us that

—104 /102 —4-(=39) - 1 104256 —10+ 16
xr = —_= —_= .
2 2 2
This gives us the two roots 3 and —13.
Now the Arabs could not deal with negative numbers, and in any event Al-
Khwarizmi was thinking of his unknown as the side of a square. So we take the

solution

—10 + 16
o3
2

Thus, from our modern perspective, this is a straightforward problem. We in-

troduce a variable, write down the correct equation, and solve it using a standard
formula.

Matters were different for the Arabs. They did not have notation, and certainly
did not yet know the quadratic formula. Their method was to deal with these matters
geometrically. Consider Figure 4.1. This shows the “square” mentioned in the original
problem, with unknown side length that we now call x. In Figure 4.2, we attach to
each side of the square a rectangle of length & and width 2.5. The reasoning here is
that Al-Khwarizmi tells us to add 10 times the square’s side length. We divide 10
into four pieces and thus add four times “2.5 times the side length”. The quantity
“2.5 times the side length” is represented by an appropriate rectangle in Figure 4.2.

Now we know, according to the statement of the problem, that the sum of the
areas of the square in the middle and the four rectangles around the sides is 39. We
handle this situation by filling in four squares in the corners—see Figure 4.3. Now the
resulting large square plainly has area equal to 39+ 2.5% 4+2.52 4+2.52 4+2.5? = 64.
Since the large square has area 64, it must have side length 8. But we know that
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X

Figure 4.1

2.5
2.5

2.5 X

2.5

Figure 4.2. Sum of shaded areas is 10 x x.
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2.5 X 2.5

2.5

2.5

Figure 4.3. Area of large, inclusive square is 64.

each of the squares in the four corners has side length 2.5. It must follow then that
r =8 —2.5—2.5=3. And that is the correct answer. |

For You to Try: Use the method of Al-Khwarizmi to find the positive
root of the quadratic equation

22+ 5x=15.

In fact the method of this last example can be used to solve any
quadratic equation with positive, real roots. We explore this contention
in the exercises.

Now we examine another algebra problem of Al-Khwarizmi. This is
in the format of a familiar sort of word problem. It has interesting social
as well as mathematical content. We shall present the solution both in
modern garb and in the argot of Al-Khwarizmi’s time.

Example 4.2
Solve this problem of Al-Khwarizmi:
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A man dies leaving two sons behind him, and be-
queathing one-fifth of his property and one dirhem
to a friend. He leaves ten dirhems in property and
one of the sons owes him ten dirhems. How much
does each legatee receive?

SOLUTION  We already know that a dirhem is a unit of currency. It is curious
that, in Al-Khwarizmi’s time, there was no concept of “estate”. A legacy could only
be left to a person or people, not to an abstraction like an “estate”.

However we understand what an estate is, and it helps us to solve the problem
in modern language. Our solution goes as follows. The dead man’s estate consists
of 20 dirhems: the 10 dirhems that he has in hand and the 10 dirhems owed to him
by his son. The friend receives 1/5 of that estate plus one dirhem. Thus the friend
receives 4 + 1 = 5 dirhems. That leaves the estate with 5 dirhems in hand (the one
son owing another 10 dirhems to the estate) and 10 dirhems owed to it, for a total of
15 dirhems. Thus each son is owed 7.5 dirhems. That means that the son who owes
10 dirhems should pay the estate 2.5 dirhems. Now the estate has 7.5 dirhems cash
in hand. And that amount is paid to the other son.

Since Al-Khwarizmi did not have the abstraction of “estate” to aid his reasoning,

he solved the problem with the following chain of logic:

Call the amount taken out of the debt thing. Add this to
the property. The sum is 10 dirhems plus thing. Subtract
1/5 of this, since he has bequeathed 1/5 of his property to
the friend. The remainder is 8 dirhems plus 4/5 of thing.
Then subtract the 1 dirhem extra that is bequeathed to the
friend. There remain 7 dirhems and 4/5 of thing. Divide
this between the two sons. The portion of each of them is
three and one half dirhems plus 2/5 of thing. Then you
have 3/5 of thing equal to three and one half dirhems.
Form a complete thing by adding to this quantity 2/3 of
itself. Now 2/3 of three and one half dirhems is two and
one third dirhems. Conclude that thing is five and five
sixths dirhems.
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In one of the exercises we shall ask you to reconcile Al-Khwarizmi’s
solution of the problem with our own solution that we presented at first.

For You to Try: Solve Al-Khwarizmi’s preceding problem if there
are three sons instead of two (and the friend still receives the indicated
share).

4.2.4 Omar Khayyam and the Resolution of the Cubic

Omar Khayyam (1050-1123) is famed, and still well-remembered, for his
beautiful poem The Rubaiyat. The words “A loaf of bread, a jug of wine,
and thou beside me in the wilderness” ring down through the ages. It is
perhaps less well known that Khayyam was an accomplished astronomer
and mathematician. He is remembered particularly for his geometric
method of solving the cubic equation (we will also discuss the cubic
equation, from a somewhat more modern point of view, in Section 6.6).
Here we give an example to illustrate the technique of Omar Khayyam.

Example 4.3
Consider the cubic equation
>+ Bx =C,
where B, (' are positive constants. Find all positive, real solu-

tions.

SOLUTION The first step is to choose positive numbers b, ¢ so that b =B
and b?c = C'. We know we can do this because every positive number has a square
root, and every linear equation has a solution.
Thus the equation becomes
3+ br = bc.

Now we construct a parabola whose latus rectumis b.® It is intuitively clear that the

3The latus rectum of an upward-opening parabola is the horizontal line segment that
begins and ends on the parabolic curve and passes through the focus—see Figure 4.4.
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Figure 4.4. The latus rectum.

length of the latus rectum uniquely determines the shape of the parabola. Notice that
the point ) in Figure 4.5 figure is the vertex of the parabola (we may take () to be
the origin if we wish). The segment ()R which is shown has length ¢. Now consider
the semicircle with diameter Q—R The point P is defined to be the intersection of
the parabola and the semicircle. The segment PS is erected to be perpendicular to
the segment (JR. Then the length o = ().S is a root of the cubic equation.

Let us explain why this last statement is true. Because the latus rectum has
length b, we know that the focus of the parabola is at the point (0, b / 4). Moreover
the directrix is the line y = —b / 4. We can be sure (from our synthetic definition of
parabola in Section 3.2) that the parabola has equation y = x? / b. Thus, in Figure
4.5,

PS =a?/b. (%)
This relation may be rewritten as
b a
Z = *
a PS ()

A basic property of semicircles tells us that the triangle AQPR is a right
triangle (with right angle at P). Since PS is an altitude of this triangle, we can be
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>
P
c-a
Q @ 8§ R
C
Figure 4.5
sure that
o PS
— = . (k)
PS c—-«a
Equations (*) and (**) together tell us that
b PS
— = . (k)
« C—
But (*) tells us that
0[2
PS=—.
b
Substituting this value for P.S into (>l<>l<>l<) now tells us that
b a?/b
a c—a

Simplifying this last identity yields that
o’ + bra = bc.

Thus the positive number «v solves the cubic. |



108 Chapter 4: The Arabs and the Development of Algebra

We reiterate that the Arabs only understood positive, real roots of
polynomial equations. Gauss’s Fundamental Theorem of Algebra (Sec-
tion 6.7) was centuries off. Negative numbers and certainly complex
numbers were still a mystery.

4.3 The Geometry of the Arabs
4.3.1 The Generalized Pythagorean Theorem

Arab geometry took many forms. We have already seen that they used
geometry to analyze the roots of polynomial equations. The Arabs took a
great interest in the parallel postulate and the existence of non-Euclidean
geometries (a topic that we shall discuss later in the book), although
their efforts were not very successful. We will begin our analysis of Arab
geometry by considering a remarkable generalization of the Pythagorean
theorem.

At this time you may wish to review our discussion of Pythagoras’s
theorem in Chapter 2. That result was formulated specifically for, and in
fact only holds true for, right triangles. The generalization of the result
that is due to Thabit ibn-Qurra in fact applies to all triangles.

Before we begin we must review the concept of similarity of triangles.
Consider the two triangles AABC and AA'B’C" in Figure 4.6. They
appear to have the same shape. This means that the corresponding
angles are equal:

e the angle at A equals the angle at A,
e the angle at B equals the angle at B’,
e the angle at C' equals the angle at C’.

It also means that the corresponding ratios of sides are equal. For ex-
ample,

AB A'B
o — — ———
BC BC”
AB A'B

AC  AC
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C
A B A
BI
Figure 4.6

We may formulate these corresponding ratios in a slightly different
fashion as follows:

AB AC
MU Ueh
BC AC
® B'C’ = A/C/‘

What is of particular interest is finding conditions that are sufficient
to guarantee that two given triangles are similar. Such a condition will
(unlike the concept of congruence) not involve equality of side lengths—
after all, one triangle is larger than the other. In fact the most useful
condition of this nature is the following:

Consider the triangles AABC and AA'B'C’ in
Figure 4.7. If either

e The angle at A equals the angle at A’ and
the angle at B equals the angle at B’

or
e The angle at A equals the angle at A’ and
the angle at C' equals the angle at C’
or

e The angle at B equals the angle at B’ and
the angle at C' equals the angle at C’
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B B
N
C A
B’ <
B
AQ Q
C A
B’ «
B
AQ ’
C A
C’
Figure 4.7

then AABC is similar to NA'B'C".

Thus, in order to test two triangles for similarity, we need only estab-
lish that two of the corresponding pairs of angles are equal. [Of course
we know that the sum of the three angles in a triangle is 180°. Hence if
two pairs of the angles are equal then the third pair is equal also.| Since
we know that the sum of the angles in a triangle is 180°, it must then
follow that the third pair of angles are equal. So the triangles are the
same shape and hence similar.

Now we may state the generalized Pythagorean theorem that was
discovered by the Arabs.

Theorem: Let AABC be a planar triangle, with
BC its longest side. Refer to Figure 4.8. Choose
the point B’ on the segment BC so that the angle
/B'AB (in dashes) is equal to angle £C (i.e., the
angle at the vertex C' in the triangle). Choose
the point C” on the segment BC so that the angle
LC"AC (in dots) is equal to angle /B (the angle
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.
.
. .
. .
. .
. .

S \
i R \ -
C’ B’

Figure 4.8

B

at vertex B in the triangle). Then

AB’ +AC* =BC - (BB +CC).

For the verification of this theorem, study Figure 4.8. Choose the
points B" and C’ as in the statement of the theorem. We see that angle
/AB'B (marked with a single slash) equals angle ZCAB and the angle
LAC'C (marked with a double slash) equals angle /BAC.

It results—since /ZAB'B = /CAB and /ABB’ = /C BA—that trian-
gle AB’BA is similar to the original triangle AABC'. Also, by analogous
reasoning, AC’'AC' is similar to the original triangle AABC. Thus we
have the identical ratios

AB  BC
BB AB’
Likewise we see that -
AC  BC
cC’ - ACT

From the first of these equations we derive (clearing denominators) that

AB° = BC-BH .
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10 10

12
Figure 4.9

From the second we derive that

AC? = BC.-CC.

Adding these together yields that

AB° +AC° =BC-BB' +BC-CC'=BC - (BB +CC").

This is the desired result.

In Exercise 7 you will be asked to show that, for a right triangle, this
new theorem of Thabit ibn Qurra reduces to the classical Pythagorean
theorem.

4.3.2 Inscribing a Square in an Isosceles Triangle

In fact our friend Al-Khwarizmi examined a problem based on the isosce-
les triangle shown in Figure 4.9. Figure 4.10 shows the inscribed square
that we seek. Al-Khwarizmi would have used the name “thing” to refer
to the side-length of the square. Now we shall emulate the analysis that
he might have done more than 1000 years ago.

The area of the square is of course (thing) x (thing). Notice that,
in the figures, we denote the side of the square by “x”. But we call
it “thing”. Figure 4.11 shows how we might analyze the areas of the
triangles.
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10 N 10
X
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Figure 4.10
8-x
! )

X |

x/2 | xX/2 /
6

6 -x/2

Figure 4.11
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The small right triangle on the left has base 6 — x/2 and height x.
Similarly for the small right triangle on the right. Thus the total area of
the two triangles is (6 — x/2).

We may solve for the altitude of the large isosceles triangle using the
Pythagorean theorem. It equals v/10%2 — 62 = 8. Thus the small isosceles
triangle at the top of the figure has base x and height 8 —z. We conclude
that that triangle has area [z/2] - (8 — ).

In summary, then, the total area of the large isosceles triangle may
be written in two ways. On the one hand, the triangle has base 12 and
height 8. So its area is % -12-8 = 48. On the other hand the area is the
sum of the areas of the square and the three little triangles. So we have

482:62%—:5-(6—%)%—%-(8—:17).

This simplifies to
48 = 10z

hence z = 4.8. That is the solution to Al-Khwarizmi’s problem.

4.4 A Little Arab Number Theory

The Arabs were fascinated by a technique that has come down through
the ages as “Casting Out Nines”. The basic rule for casting out nines
for a positive integer N is to add its digits together. Thus

4873 - 4+8+T7+3=22—-24+2=4.

We began here with the positive integer 4873. We added together its
digits: 4 + 8 4+ 7 + 3 = 22. Then we again added together the digits of
22—2 4+ 2 = 4—+to obtain 4. Part of the rule of casting out nines is that
if we ever encounter a 9 then we set it equal to 0. Thus if we cast out
nines on the number 621 we obtain 6 +2+1 — 9 — 0.

The remarkable thing about casting out nines is that the process
respects addition and multiplication. If we let “c.o.n.” stand for casting
out nines, then we have

c.on.[k +m| = c.on.(k) + c.on.(m)
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and
c.on.[k-m] = c.on.(k)-comn.(m).

Thus casting out nines can be used to check arithmetic problems.
We illustrate the idea with some examples.

Example 4.4
Using casting out nines to check whether

693 x 42 = 29206 .

SOLUTION  Casting out nines on the left gives
64+94+3=18—-9—=0

and

4+2=6.

Therefore

693 x42 —-0x6=0.

Casting out nines on the right gives 24+9+2+0+6 =19 — 10 — 1.

Thus the result of casting out nines gives 0 X 6 = 0 on the left and 1 on the
right. These do not match. Thus the multiplication is incorrect. In fact checking
with a calculator gives that 693 X 42 = 29106. |

Casting out nines does not provide a failsafe method for checking
arithmetic problems. For example, casting out nines on 6 x 8 gives 14
and then 5. Casting out nines on 23 also gives 5. Yet it certainly is not
the case that 6 x 8 = 23. What is true is this: If casting out nines does
not work then the original arithmetic problem is incorrect. If casting out
nines does work then it is likely that the original arithmetic problem was
correct. But it is not guaranteed.

Example 4.5
Check whether the addition

385 + 2971 + 1146 = 4502 (%)

1s correct.
