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Preface

Together with philosophy, mathematics is the oldest academic dis-
cipline known to mankind. Today mathematics is a huge and complex
enterprise, far beyond the ken of any one individual. Those of us who
choose to study the subject can only choose a piece of it, and in the end
must specialize rather drastically in order to make any contribution to
the evolution of ideas.

An important development of twenty-first century life is that mathe-
matical and analytical thinking have permeated all aspects of our world.
We all need to understand the spread of diseases, the likelihood that we
will contract SARS or hepatitis. We all must deal with financial matters.
Finally, we all must deal with computers and databases and the Internet.
Mathematics is an integral part of the theory and the operating systems
that make all these computer systems work. Theoretical mathematics is
used to design automobile bodies, to plan reconstructive surgery proce-
dures, and to analyze prison riots. The modern citizen who is unaware
of mathematical thought is lacking a large part of the equipment of life.

Thus it is worthwhile to have a book that will introduce the student
to some of the genesis of mathematical ideas. While we cannot get into
the nuts and bolts of Andrew Wiles’s solution of Fermat’s Last Theorem,
we can instead describe some of the stream of thought that created the
problem and led to its solution. While we cannot describe all the sophis-
ticated mathematics that goes into the theory behind black holes and
modern cosmology, we can instead indicate some of Bernhard Riemann’s
ideas about the geometry of space. While we cannot describe in spe-
cific detail the mathematical research that professors at the University
of Paris are performing today, we can instead indicate the development
of ideas that has led to that work.

Certainly the modern school teacher, who above all else serves as a
role model for his/her students, must be conversant with mathematical
thought. As a matter of course, the teacher will use mathematical ex-
amples and make mathematical allusions just as examples of reasoning.
Certainly the grade school teacher will seek a book that is broadly ac-
cessible, and that speaks to the level and interests of K-6 students. A
book with this audience in mind should serve a good purpose.
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Mathematical history is exciting and rewarding, and it is a signifi-
cant slice of the intellectual pie. A good education consists of learning
different methods of discourse, and certainly mathematics is one of the
most well-developed and important modes of discourse that we have.

The purpose of this book, then, is to acquaint the student with
mathematical language and mathematical life by means of a number of
historically important mathematical vignettes. And, as has already been
noted, the book will also serve to help the prospective school teacher to
become inured in some of the important ideas of mathematics—both
classical and modern.

The focus in this text is on doing—getting involved with the math-
ematics and solving problems. This book is unabashedly mathematical:
The history is primarily a device for feeding the reader some doses of
mathematical meat. In the course of reading this book, the neophyte
will become involved with mathematics by working on the same prob-
lems that Zeno and Pythagoras and Descartes and Fermat and Riemann
worked on. This is a book to be read with pencil and paper in hand, and
a calculator or computer close by. The student will want to experiment,
to try things, to become a part of the mathematical process.

This history is also an opportunity to have some fun. Most of the
mathematicians treated here were complex individuals who led colorful
lives. They are interesting to us as people as well as scientists. There are
wonderful stories and anecdotes to relate about Pythagoras and Galois
and Cantor and Poincaré, and we do not hesitate to indulge ourselves in
a little whimsy and gossip. This device helps to bring the subject to life,
and will retain reader interest.

It should be clearly understood that this is in no sense a thorough-
going history of mathematics, in the sense of the wonderful treatises of
Boyer/Merzbach [BOM] or Katz [KAT] or Smith [SMI]. It is instead a col-
lection of snapshots of aspects of the world of mathematics, together with
some cultural information to put the mathematics into perspective. The
reader will pick up history on the fly, while actually doing mathematics—
developing mathematical ideas, working out problems, formulating ques-
tions.

And we are not shy about the things we ask the reader to do. This
book will be accessible to students with a wide variety of backgrounds
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and interests. But it will give the student some exposure to calculus, to
number theory, to mathematical induction, cardinal numbers, cartesian
geometry, transcendental numbers, complex numbers, Riemannian ge-
ometry, and several other exciting parts of the mathematical enterprise.
Because it is our intention to introduce the student to what mathemati-
cians think and what mathematicians value, we actually prove a number
of important facts: (i) the existence of irrational numbers, (ii) the exis-
tence of transcendental numbers, (iii) Fermat’s little theorem, (iv) the
completeness of the real number system, (v) the fundamental theorem of
algebra, and (vi) Dirichlet’s theorem. The reader of this text will come
away with a hands-on feeling for what mathematics is about and what
mathematicians do.

This book is intended to be pithy and brisk. Chapters are short, and
it will be easy for the student to browse around the book and select topics
of interest to dip into. Each chapter will have an exercise set, and the
text itself will be peppered with items labeled “For You to Try”. This
device gives the student the opportunity to test his/her understanding
of a new idea at the moment of impact. It will be both rewarding and
reassuring. And it should keep interest piqued.

In fact the problems in the exercise sets are of two kinds. Many of
them are for the individual student to work out on his/her own. But
many are labeled for class discussion. They will make excellent group
projects or, as appropriate, term papers.

It is a pleasure to thank my editor, Richard Bonacci, for enlisting me
to write this book and for providing decisive advice and encouragement
along the way. Certainly the reviewers that he engaged in the writing
process provided copious and detailed advice that have turned this into
a more accurate and useful teaching tool. I am grateful to all.

The instructor teaching from this book will find grist for a num-
ber of interesting mathematical projects. Term papers, and even honors
projects, will be a natural outgrowth of this text. The book can be used
for a course in mathematical culture (for non-majors), for a course in the
history of mathematics, for a course of mathematics for teacher prepa-
ration, or for a course in problem-solving. We hope that it will help to
bridge the huge and demoralizing gap between the technical world and
the humanistic world. For certainly the most important thing that we



do in our society is to communicate. My wish is to communicate math-
ematics.

SGK
St. Louis, MO



Table of Contents

Preface

1 The Ancient Greeks 1
1.1 Pythagoras . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Introduction to Pythagorean Ideas . . . . . . . . 1
1.1.2 Pythagorean Triples . . . . . . . . . . . . . . . . 7

1.2 Euclid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Introduction to Euclid . . . . . . . . . . . . . . . 10
1.2.2 The Ideas of Euclid . . . . . . . . . . . . . . . . . 14

1.3 Archimedes . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1 The Genius of Archimedes . . . . . . . . . . . . . 21
1.3.2 Archimedes’s Calculation of the Area of a Circle . 24

2 Zeno’s Paradox and the Concept of Limit 43
2.1 The Context of the Paradox? . . . . . . . . . . . . . . . 43
2.2 The Life of Zeno of Elea . . . . . . . . . . . . . . . . . . 44
2.3 Consideration of the Paradoxes . . . . . . . . . . . . . . 51
2.4 Decimal Notation and Limits . . . . . . . . . . . . . . . 56
2.5 Infinite Sums and Limits . . . . . . . . . . . . . . . . . . 57
2.6 Finite Geometric Series . . . . . . . . . . . . . . . . . . . 59
2.7 Some Useful Notation . . . . . . . . . . . . . . . . . . . . 63
2.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . 64

3 The Mystical Mathematics of Hypatia 69
3.1 Introduction to Hypatia . . . . . . . . . . . . . . . . . . 69
3.2 What is a Conic Section? . . . . . . . . . . . . . . . . . . 78

vii



viii

4 The Arabs and the Development of Algebra 93
4.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . 93
4.2 The Development of Algebra . . . . . . . . . . . . . . . . 94
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Chapter 1

The Ancient Greeks and the
Foundations of Mathematics

1.1 Pythagoras

1.1.1 Introduction to Pythagorean Ideas

Pythagoras (569–500 B.C.E.) was both a person and a society (i.e., the
Pythagoreans). He was also a political figure and a mystic. He was
special in his time because, among other reasons, he involved women as
equals in his activities. One critic characterized the man as “one tenth
of him genius, nine-tenths sheer fudge.” Pythagoras died, according to
legend, in the flames of his own school fired by political and religious
bigots who stirred up the masses to protest against the enlightenment
which Pythagoras sought to bring them.

As with many figures from ancient times, there is little specific that
we know about Pythagoras’s life. We know a little about his ideas and
his school, and we sketch some of these here.

The Pythagorean society was intensely mathematical in nature, but
it was also quasi-religious. Among its tenets (according to [RUS]) were:

• To abstain from beans.

• Not to pick up what has fallen.

• Not to touch a white cock.

• Not to break bread.

• Not to step over a crossbar.

1
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• Not to stir the fire with iron.

• Not to eat from a whole loaf.

• Not to pluck a garland.

• Not to sit on a quart measure.

• Not to eat the heart.

• Not to walk on highways.

• Not to let swallows share one’s roof.

• When the pot is taken off the fire, not to leave the mark
of it in the ashes, but to stir them together.

• Not to look in a mirror beside a light.

• When you rise from the bedclothes, roll them together
and smooth out the impress of the body.

The Pythagoreans embodied a passionate spirit that is remarkable
to our eyes:

Bless us, divine Number, thou who generatest gods
and men.

and

Number rules the universe.

The Pythagoreans are remembered for two monumental contribu-
tions to mathematics. The first of these was to establish the impor-
tance of, and the necessity for, proofs in mathematics: that mathemati-
cal statements, especially geometric statements, must be established by
way of rigorous proof. Prior to Pythagoras, the ideas of geometry were
generally rules of thumb that were derived empirically, merely from ob-
servation and (occasionally) measurement. Pythagoras also introduced
the idea that a great body of mathematics (such as geometry) could be
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a

b

Figure 1.1. The fraction b
a
.

derived from a small number of postulates. The second great contribu-
tion was the discovery of, and proof of, the fact that not all numbers are
commensurate. More precisely, the Greeks prior to Pythagoras believed
with a profound and deeply held passion that everything was built on
the whole numbers. Fractions arise in a concrete manner: as ratios of
the sides of triangles (and are thus commensurable—this antiquated ter-
minology has today been replaced by the word “rational”)—see Figure
1.1.

Pythagoras proved the result that we now call the Pythagorean theo-
rem. It says that the legs a, b and hypotenuse c of a right triangle (Figure
1.2) are related by the formula

a2 + b2 = c2 . (?)

This theorem has perhaps more proofs than any other result in
mathematics—over fifty altogether. And in fact it is one of the most
ancient mathematical results. There is evidence that the Babylonians
and the Chinese knew this theorem nearly 1000 years before Pythago-
ras.

In fact one proof of the Pythagorean theorem was devised by Pres-
ident James Garfield. We now provide one of the simplest and most
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a

b
c

Figure 1.2. The Pythagorean theorem.

classical arguments. Refer to Figure 1.3.

Proof of the Pythagorean Theorem:

Observe that we have four right triangles and a square packed into a
larger square. Each triangle has legs a and b, and we take it that b > a.
Of course, on the one hand, the area of the larger square is c2. On the
other hand, the area of the larger square is the sum of the areas of its
component pieces.

Thus we calculate that

c2 = (area of large square)

= (area of triangle) + (area of triangle) +

(area of triangle) + (area of triangle) +

(area of small square)

=
1

2
· ab+

1

2
· ab+

1

2
· ab+

1

2
· ab+ (b− a)2

= 2ab+ [a2 − 2ab+ b2]



1.1 Pythagoras 5

a

b

c

c

c

c

a

a a

b

b

b

Figure 1.3
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= a2 + b2 .

That proves the Pythagorean theorem.

For You to Try: If c = 10 and a = 6 then can you determine what b
must be in the Pythagorean theorem?

Other proofs of the Pythagorean theorem will be explored in the exer-
cises, as well as later on in the text.

Now Pythagoras noticed that, if a = 1 and b = 1, then c2 = 2. He
wondered whether there was a rational number c that satisfied this last
identity. His stunning conclusion was this:

Theorem: There is no rational number c such
that c2 = 2.

Proof: Suppose that the conclusion is false. Then there is a rational
number c = α/β, expressed in lowest terms (i.e. α and β have no integer
factors in common) such that c2 = 2. This translates to

α2

β2
= 2

or
α2 = 2β2 .

We conclude that the righthand side is even, hence so is the lefthand
side. Therefore α = 2m for some integer m.

But then
(2m)2 = 2β2

or
2m2 = β2.

So we see that the lefthand side is even, so β is even.
But now both α and β are even—the two numbers have a common

factor of 2. This statement contradicts the hypothesis that α and β have
no common integer factors. Thus it cannot be that c is a rational num-
ber. Instead, c must be irrational.
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For You to Try: Use the argument just presented to show that 7 does
not have a rational square root.

For You to Try: Use the argument just presented to show that if a
positive integer (i.e., a whole number) k has a rational square root then
it has an integer square root.

We stress yet again that the result of the last theorem was a bomb-
shell. It had a profound impact on the thinking of ancient times. For
it established irrefutably that there were new numbers besides the ra-
tionals to which everyone had been wedded. And these numbers were
inescapable: they arose in such simple contexts as the calculation of the
diagonal of a square. Because of this result of Pythagoras, the entire
Greek approach to the number concept had to be rethought.

1.1.2 Pythagorean Triples

It is natural to ask which triples of integers (a, b, c) satisfy a2 + b2 = c2.
Such a trio of numbers is called a Pythagorean triple.

The most famous and standard Pythagorean triple is (3, 4, 5). But
there are many others, including (5, 12, 13), (7, 24, 25), (20, 21, 29), and
(8, 15, 17). What would be a complete list of all Pythagorean triples?
Are there only finitely many of them, or is there in fact an infinite list?

It has in fact been known since the time of Euclid that there are
infinitely many Pythagorean triples, and there is a formula that generates
all of them.1 We may derive it as follows. First, we may as well suppose
that a and b are relatively prime—they have no factors in common. We
call this a reduced triple. Therefore a and b are not both even, so one of
them is odd. Say that b is odd.

Now certainly (a+ b)2 = a2 + b2 + 2ab > a2 + b2 = c2. From this we
conclude that c < a+ b. So let us write c = (a+ b)− γ for some positive
integer γ. Plugging this expression into the Pythagorean formula (?)

1It may be noted, however, that the ancients did not have adequate notation to write

down formulas as such.
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yields
a2 + b2 = (a+ b− γ)2

or
a2 + b2 = a2 + b2 + γ2 + 2ab− 2aγ − 2bγ .

Cancelling, we find that

γ2 = 2aγ + 2bγ − 2ab . (†)

The righthand side is even (every term has a factor of 2), so we conclude
that γ is even. Let us write γ = 2m, for m a positive integer.

Substituting this last expression into (†) yields

4m2 = 4am+ 4bm− 2ab

or
ab = 2am+ 2bm− 2m2 .

The righthand side is even, so we conclude that ab is even. Since we have
already noted that b is odd, we can only conclude that a is even. Now
equation (?) tells us

c2 = a2 + b2 .

Since the sum of an odd and an even is an odd, we see that c2 is odd.
Hence c is odd.

Thus the numbers in a reduced Pythagorean triple are never all even
and never all odd. In fact two of them are odd and one is even. It is
convenient to write b = s− t and c = s+ t for some integers s and t (one
of them even and one of them odd). Then (?) tells us that

a2 + (s− t)2 = (s+ t)2 .

Multiplying things out gives

a2 + (s2 − 2st+ t2) = (s2 + 2st+ t2) .

Cancelling like terms and regrouping gives

a2 = 4st .



1.1 Pythagoras 9

We already know that a is even, so this is no great surprise.
Since st must be a perfect square (because 4 is a perfect square and

a2 is a perfect square), it is now useful to write s = u2, t = v2. Therefore

a2 = 4u2v2

and hence
a = 2uv .

In conclusion, we have learned that a reduced Pythagorean triple
must take the form

(2uv, u2 − v2, u2 + v2) , (†)
with u, v relatively prime (i.e., having no common factors). Conversely,
any triple of the form (2uv, u2−v2, u2+v2) is most certainly a Pythagorean
triple. This may be verified directly:

[2uv]2 + [u2 − v2]2 = [4u2v2] + [u4 − 2u2v2 + v4]

= u4 + 2u2v2 + v4

= [u2 + v2]2 .

Take a moment to think about what we have discovered. Every
Pythagorean triple must have the form (†). That is to say, a = 2uv,
b = u2 − v2, and c = u2 + v2. Here u and v are any integers of our
choosing.

As examples:

• If we take u = 2 and v = 1 then we obtain a = 2·2·1 = 4,
b = 22−12 = 3, and c = 22+12 = 5. Of course (4, 3, 5) is
a familiar Pythagorean triple. We certainly know that
42 + 32 = 52.

• If we take u = 3 and v = 2 then we obtain a = 2 ·3 ·2 =
12, b = 32 − 22 = 5, and c = 32 + 22 = 13. Indeed
(12, 5, 13) is a Pythagorean triple. We may calculate
that 122 + 52 = 132.

• If we take u = 5 and v = 3 then we obtain a = 2 ·5 ·3 =
30, b = 52 − 32 = 16, and c = 52 + 32 = 34. You
may check that (30, 16, 34) is a Pythagorean triple, for
302 + 162 = 342.
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For You to Try: Find all Pythagorean triples in which one of the
terms is 5.

For You to Try: Find all Pythagorean triples in which all three terms
are less than 30.

1.2 Euclid

1.2.1 Introduction to Euclid

Certainly one of the towering figures in the mathematics of the ancient
world was Euclid of Alexandria (325 B.C.E.–265 B.C.E.). Although Eu-
clid is not known so much (as were Archimedes and Pythagoras) for his
original and profound insights, and although there are not many theo-
rems named after Euclid, he has had an incisive effect on human thought.
After all, Euclid wrote a treatise (consisting of thirteen Books)—now
known as Euclid’s Elements—which has been continuously in print for
over 2000 years and has been through myriads of editions. It is still stud-
ied in detail today, and continues to have a substantial influence over the
way that we think about mathematics.

Not a great deal is known about Euclid’s life, although it is fairly
certain that he had a school in Alexandria. In fact “Euclid” was quite a
common name in his day, and various accounts of Euclid the mathemati-
cian’s life confuse him with other Euclids (one a prominent philosopher).
One appreciation of Euclid comes from Proclus, one of the last of the
ancient Greek philosophers:

Not much younger than these [pupils of Plato] is
Euclid, who put together the Elements, arrang-
ing in order many of Eudoxus’s theorems, per-
fecting many of Theaetus’s, and also bringing to
irrefutable demonstration the things which had
been only loosely proved by his predecessors. This
man lived in the time of the first Ptolemy; for
Archimedes, who followed closely upon the first



1.2 Euclid 11

Ptolemy makes mention of Euclid, and further
they say that Ptolemy once asked him if there
were a shortened way to study geometry than the
Elements, to which he replied that “there is no
royal road to geometry.” He is therefore younger
than Plato’s circle, but older than Eratosthenes
and Archimedes; for these were contemporaries,
as Eratosthenes somewhere says. In his aim he
was a Platonist, being in sympathy with this phi-
losophy, whence he made the end of the whole El-
ements the construction of the so-called Platonic
figures.

As often happens with scientists and artists and scholars of immense
accomplishment, there is disagreement, and some debate, over exactly
who or what Euclid actually was. The three schools of thought are these:

• Euclid was an historical character—a single individual—
who in fact wrote the Elements and the other scholarly
works that are commonly attributed to him.

• Euclid was the leader of a team of mathematicians work-
ing in Alexandria. They all contributed to the creation
of the complete works that we now attribute to Euclid.
They even continued to write and disseminate books
under Euclid’s name after his death.

• Euclid was not an historical character at all. In fact
“Euclid” was a nom de plume—an allonym if you will—
adopted by a group of mathematicians working in Alexan-
dria. They took their inspiration from Euclid of Megara
(who was in fact an historical figure), a prominent philoso-
pher who lived about 100 years before Euclid the math-
ematician is thought to have lived.

Most scholars today subscribe to the first theory—that Euclid was
certainly a unique person who created the Elements. But we acknowledge
that there is evidence for the other two scenarios. Certainly Euclid had
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a vigorous school of mathematics in Alexandria, and there is little doubt
that his students participated in his projects.

It is thought that Euclid must have studied in Plato’s Academy in
Athens, for it is unlikely that there would have been another place where
he could have learned the geometry of Eudoxus and Theaetus on which
the Elements are based.

Another famous story and quotation about Euclid is this. A certain
pupil of Euclid, at his school in Alexandria, came to Euclid after learning
just the first proposition in the geometry of the Elements. He wanted
to know what he would gain by putting in all this study, doing all the
necessary work, and learning the theorems of geometry. At this, Euclid
called over his slave and said, “Give him threepence since he must needs
make gain by what he learns.”

What is important about Euclid’s Elements is the paradigm it pro-
vides for the way that mathematics should be studied and recorded. He
begins with several definitions of terminology and ideas for geometry,
and then he records five important postulates (or axioms) of geometry.
A version of these postulates is as follows:

P1 Through any pair of distinct points there passes a line.

P2 For each segment AB and each segment CD there is a
unique point E (on the line determined by A and B)
such that B is between A and E and the segment CD
is congruent to BE (Figure 1.4(a)).

P3 For each point C and each point A distinct from C there
exists a circle with center C and radius CA (Figure
1.4(b)).

P4 All right angles are congruent.

These are the standard four axioms which give our Eu-
clidean conception of geometry. The fifth axiom, a topic
of intense study for two thousand years, is the so-called
parallel postulate (in Playfair’s formulation):
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P5 For each line ` and each point P that does not lie on
` there is a unique line m through P such that m is
parallel to ` (Figure 1.4(c)).

Of course, prior to this enunciation of his celebrated five axioms,
Euclid had defined point, line, “between”, circle, and the other terms
that he uses. Although Euclid borrowed freely from mathematicians
both earlier and contemporaneous with himself, it is generally believed
that the famous “Parallel Postulate”, that is Postulate P5, is of Euclid’s
own creation.

It should be stressed that the Elements are not simply about geome-
try. In fact Books VII–IX deal with number theory. It is here that Euclid
proves his famous result that there are infinitely many primes (treated
elsewhere in this book) and also his celebrated “Euclidean algorithm” for
long division. Book X deals with irrational numbers, and books XI–XIII
treat three-dimensional geometry. In short, Euclid’s Elements are an
exhaustive treatment of virtually all the mathematics that was known
at the time. And it is presented in a strictly rigorous and axiomatic
manner that has set the tone for the way that mathematics is presented
and studied today. Euclid’s Elements is perhaps most notable for the
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clarity with which theorems are formulated and proved. The standard
of rigor that Euclid set was to be a model for the inventors of calculus
nearly 2000 years later.

Noted algebraist B. L. van der Waerden assesses the impact of Eu-
clid’s Elements in this way:

Almost from the time of its writing and lasting
almost to the present, the Elements has exerted a
continuous and major influence on human affairs.
It was the primary source of geometric reasoning,
theorems, and methods at least until the advent
of non-Euclidean geometry in the 19th century. It
is sometimes said that, next to the Bible, the Ele-
ments may be the most translated, published, and
studied of all the books produced in the Western
world.

Indeed, there have been more than 1000 editions of Euclid’s Ele-
ments. It is arguable that Euclid was and still is the most important
and most influential mathematics teacher of all time. It may be added
that a number of other books by Euclid survive until now. These include
Data (which studies geometric properties of figures), On Divisions (which
studies the division of geometric regions into subregions having areas of
a given ratio), Optics (which is the first Greek work on perspective),
and Phaenomena (which is an elementary introduction to mathemati-
cal astronomy). Several other books of Euclid—including Surface Loci,
Porisms, Conics, Book of Fallacies, and Elements of Music—have all
been lost.

1.2.2 The Ideas of Euclid

Now that we have set the stage for who Euclid was and what he accom-
plished, we give an indication of the kind of mathematics for which he
is remembered. We discuss the infinitude of primes and the Euclidean
algorithm elsewhere in the book (Chapter 11). Here we concentrate on
Euclidean geometry.

In fact we shall state some simple results from planar geometry and
prove them in the style of Euclid. For the student with little background
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Figure 1.5. Two Congruent Triangles

in proofs, this will open up a whole world of rigorous reasoning and
geometrical analysis. Let us stress that, in the present text, we are only
scratching the surface.

In the ensuing discussion we shall use the fundamental notion of con-
gruence. In particular, two triangles are congruent if their corresponding
sides and angles are equal in length. See Figure 1.5. There are a variety
of ways to check that two triangles are congruent:2

• If the two sets of sides may be put in one-to-one corre-
spondence so that corresponding pairs are equal, then
the two triangles are congruent. We call this device
“side-side-side” or SSS. See Figure 1.6.

• If just one side and its two adjacent angles correspond in
each of the two triangles, so that the two sides are equal
and each of the corresponding angles is equal, then the
two triangles are congruent. We call this device “angle-
side-angle” or ASA. See Figure 1.7.

• If two sides and the included angle correspond in each
of the two triangles, so that the two pairs of sides are
equal, and the included angles are equal, then the two

2In this discussion we use corresponding markings to indicate sides or angles that

are equal. Thus if two sides are each marked with a single hash mark, then they are
equal in length. If two angles are marked with double hash marks, then they are

equal in length.
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Figure 1.6

Figure 1.7

triangles are congruent. We call this device “side-angle-
side” or SAS. See Figure 1.8.

We shall take these three paradigms for congruence as intuitively obvious.
You may find it useful to discuss them in class.

Theorem 1.1

Let 4ABC be an isosceles triangle with equal sides AB and AC. See
Figure 1.9. Then the angles 6 B and 6 C are equal.

Proof: Draw the median from the vertex A to the opposite side BC
(here the definition of the median is that it bisects the opposite side).
See Figure 1.10. Thus we have created two subtriangles 4ABD and
4ACD. Notice that these two smaller triangles have all corresponding
sides equal (Figure 1.11): side AB in the first triangle equals side AC
in the second triangle; side AD in the first triangle equals side AD in
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Figure 1.8
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A

B CD

Figure 1.10

the second triangle; and side BD in the first triangle equals side CD in
the second triangle (because the median bisects side BC). As a result
(by SSS), the two subtriangles are congruent. All the corresponding ar-
tifacts of the two triangles are the same. We may conclude, therefore,
that 6 B = 6 C.

Corollary 1.1

Let 4ABC be an isosceles triangle as in the preceding theorem (Figure
1.9). Then the median from A to the opposite side BC is also perpen-
dicular to BC.

Proof: We have already observed that the triangles4ABD and4ADC
are congruent. In particular, the angles 6 ADB and 6 ADC are equal.
But those two angles also must sum up to 180◦ or π radians. The only
possible conclusion is that each angle is 90◦ or a right angle.

A basic fact, which is equivalent to the Parallel Postulate P5, is as
follows.
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Figure 1.11
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Theorem 1.2

Let ` and m be parallel lines, as in Figure 1.12. Let p be a transverse
line which intersects both ` and m. Then the alternating angles α and
β (as shown in the figure) are equal.

The proof is intricate, and would take us far afield. We shall omit it. An
immediate consequence of Theorem 1.2 is this simple corollary:

Corollary 1.2

Let lines ` and m be parallel lines as in the theorem, and let p be a
transversal. Then the alternating angles α′ and β ′ are equal. Also α′′
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A
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Figure 1.13

and β ′′ are equal.

Proof: Notice that

α+ α′ = 180◦ = β + β ′ .

Since α = β, we may conclude that α′ = β ′.
The proof that α′′ = β ′′ follows similar lines, and we leave it for you

to discuss in class.

Now we turn to some consequences of this seminal idea.

Theorem 1.3

Let 4ABC be any triangle. Then the sum of the three angles in this
triangle is equal to a halfline (i.e. to 180◦).

Proof: Examine Figure 1.13. Observe that 6 β = 6 β ′ and 6 γ = 6 γ′.
It follows that

sum of angles in triangle = α + β + γ = α+ β ′ + γ′ = a line = 180◦ .

That is what was to be proved.

A companion result to the last theorem is this:
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Corollary 1.3

Let 4ABC be any triangle and let τ be an exterior angle (see Figure
1.14). Then γ equals the sum of the other two interior angles α and β.

We have defined the necessary terminology in context. The exterior an-
gle τ is determined by the two sides AC and BC of the triangle—but is
outside the triangle. This exterior angle is adjacent to an interior angle
γ, as the figure shows. The assertion is that τ is equal to the sum of the
other two angles α and β.

Proof: According to Figure 1.15, the angle τ is certainly equal to α+β ′.
Also β = β ′ and γ = γ′. Thus

180◦ = γ′ + α+ β ′ = γ′ + τ .

It follows that

τ = 180◦ − γ′ = 180◦ − γ = α+ β .

That is the desired result.

1.3 Archimedes

1.3.1 The Genius of Archimedes

Archimedes (287 B.C.E.–212 B.C.E.) was born in Syracuse, Sicily. His
father was Phidias, the astronomer. Archimedes developed into one of
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Figure 1.15

the most gifted, powerful, and creative mathematicians who ever lived.

One of Archimedes’s achievements was to develop methods for cal-
culating areas and volumes of various geometric figures. We shall imi-
tate one of Archimedes’s techniques—the method of exhaustion that he
learned from Eudoxus (408 B.C.E–355 B.C.E.)—to approximate the area
inside a circle to any desired degree of accuracy. This gives us a method
for in turn approximating the value of π. It can be said that Archimedes
turned the method of exhaustion to a fine art, and that some of his cal-
culations were tantamount to the foundations of integral calculus (which
was actually not fully developed until nearly 2000 years later).

Archimedes grew up in privileged circumstances. He was closely
associated with, and perhaps even related to, Hieron King of Syracuse;
he was also friends with Gelon, son of Hieron. He studied in Alexandria
and developed there a relationship with Conon of Samos; Conon was
someone whom Archimedes admired as a mathematician and cherished
as a friend.

When Archimedes returned from his studies to his native city he
devoted himself to pure mathematical research. During his lifetime, he
was regularly called upon to develop instruments of war in the service
of his country. And he was no doubt better known to the populace at
large, and also appreciated more by the powers that be, for that work
than for his pure mathematics. Among his other creations, Archimedes is
said to have created (using his understanding of leverage) a device that
would lift enemy ships out of the water and overturn them. Another
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of his creations was a burning mirror that would set enemy ships afire.
Archimedes himself set no value on these contrivances, and declined even
to leave any written record of them.

Perhaps the most famous story about Archimedes concerns a crown
that was specially made for his friend King Hieron. It was alleged to be
manufactured of pure gold, yet Hieron suspected that it was actually part
silver. Archimedes puzzled over the proper method to determine whether
this was true (without modifying or destroying the crown!). Then, one
day, as Archimedes was stepping into his bath, he observed the water
running over and had an inspiration. He determined that the excess of
bulk that would be created by the introduction of alloy into the crown
could be measured by putting the crown and equal weights of gold and
silver separately into a vessel of water—and then noting the difference
of overflow. If the crown were pure gold then it would create the same
amount of overflow as the equal weight of gold. If not, then there was
alloy present.

Archimedes is said to have been so overjoyed with his new insight
that he sprang from his bath—stark naked—and ran home down the
middle of the street shouting “Eureka! Eureka!”, which means “I have
found it! I have found it!” To this day, in memory of Archimedes, people
cry Eureka to celebrate a satisfying discovery.

Another oft-told story of Archimedes concerns his having said to
Hieron, “Give me a place to stand and I will move the earth.” What
Archimedes meant by this bold assertion is illustrated in Figure 1.16.
Archimedes was one of the first to study and appreciate the power of
levers. He realized that a man of modest strength could move a very great
weight if he was assisted by the leverage afforded by a very long arm.
Not fully understanding this principle, Hieron demanded of Archimedes
that he give an illustration of his ideas. And thus Archimedes made
his dramatic claim. As a practical illustration of the idea, Archimedes
arranged a lever system so that Hieron himself could move a large and
fully laden ship.

One of Archimedes’s inventions that lives on today is a water screw
that he devised in Egypt for the purpose of irrigating crops. The same
mechanism is used now in electric water pumps as well as hand-powered
pumps in third world countries.
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Figure 1.16

Archimedes died during the capture of Syracuse by the troops of
Marcellus in 212 B.C.E. Even though Marcellus gave explicit instructions
that neither Archimedes nor his house were to be harmed, a soldier
became enraged when Archimedes would not divert his attention from
his mathematics and obey an order. Archimedes is reported to have said
sternly to the soldier, “Do not disturb my circles!” Thus Archimedes fell
to the sword. Later in this book we tell the story of how Sophie German
became enthralled by this story of Archimedes’s demise, and was thus
inspired to become one of the greatest female mathematicians who ever
lived.

Next we turn our attention to Archimedes’s study of the area of the
circle.

1.3.2 Archimedes’s Calculation of the Area of a Circle

Begin by considering a regular hexagon with side length 1 (Figure 1.17).
We divide the hexagon into triangles (Figure 1.18). Notice that each of
the central angles of each of the triangles must have measure 360◦/6 =
60◦. Since the sum of the angles in a triangle is 180◦, and since each of
these triangles certainly has two equal sides and hence two equal angles,
we may now conclude that all the angles in each triangle have measure
60◦. See Figure 1.19.

But now we may use the Pythagorean theorem to analyze one of the
triangles. We divide the triangle in two—Figure 1.20. Thus the triangle
is the union of two right triangles. We know that the hypotenuse of one
of these right triangles—which is the same as a diagonal of the original
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hexagon—is 1 and the base is 1/2. Thus the Pythagorean theorem tells

us that the height of the right triangle is
√

12 − (1/2)2 =
√

3/2. We may
conclude then that the area of this right triangle, as shown in Figures
1.19 and 1.20, is

A(T ) =
1

2
· (base) · (height) =

1

2
· 1
2
·
√

3

2
=

√
3

8
.

Therefore the area of the full equilateral triangle, with all sides equal to
1, is twice this or

√
3/4.

Now of course the full regular hexagon is made up of six of these
equilateral triangles, so the area inside the hexagon is

A(H) = 6 ·
√

3

4
=

3
√

3

2
.

We think of the area inside the regular hexagon as being a crude
approximation to the area inside the circle: Figure 1.21. Thus the area
inside the circle is very roughly the area inside the hexagon. Of course
we know from other considerations that the area inside this circle is
π · r2 = π · 12 = π. Thus, putting our ideas together, we find that

π = (area inside unit circle)≈ (area inside regular hexagon) =
3
√

3

2
≈ 2.598 . . .

It is known that the true value of π is 3.14159265 . . .. So our ap-
proximation is quite crude. The way to improve the approximation is to
increase the number of sides in the approximating polygon. In fact what
we shall do is double the number of sides to 12. Figure 1.22 shows how
we turn one side into two sides; doing this six times creates a regular
12-sided polygon.

Notice that we create the regular 12-sided polygon (a dodecagon)
by adding small triangles to each of the edges of the hexagon. Our job
now is to calculate the area of the twelve-sided polygon. Thus we need
to calculate the lengths of the edges. Examine a blown-up picture of
the triangle that we have added (Figure 1.23). We use the Pythagorean
theorem to calculate the length x of a side of the new dodecagon. It is

x =

√√√√
(

1

2

)2

+

(
1−
√

3

2

)2

=

√
1

4
+
(
1−
√

3 +
3

4

)
=
√

2 −
√

3 .
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Now let us focus attention on the dodecagon, divided into twelve
isosceles triangles (Figure 1.24). We have just calculated that each side

of the dodecahedron has length
√

2 −
√

3. If we can calculate the area
of each of the congruent subtriangles, then we can obtain the area of the
entire dodecahedron (by multiplying by 12). Examine Figure 1.25. This
is one of the 12 triangles that makes up the dodecahedron. It has base√

2−
√

3. Each of the two sides has length 1. Thus we may use the
Pythagorean theorem to determine that the height of the triangle is

h =

√√√√√12 −




√
2−
√

3

2




2

=

√

1− 2 −
√

3

4
=

√
2 +
√

3

4
.

We conclude that the area of the triangle is

A(T ) =
1

2
· (base) · (height) =

1

2
·
√

2 −
√

3 ·

√
2 +
√

3

4
=

√
4 − 3

4
=

1

4
.

Hence the area of the dodecagon is

A(D) = 12 · 1
4

= 3 .
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Figure 1.26

Figure 1.27

Examining Figure 1.26, and thinking of the area inside the dodecahedron
as an approximation to the area inside the unit circle, we find that

π = (area inside unit circle) ≈ (area inside regular dodecahedron) = 3 .

This is obviously a better approximation to π than our first attempt. At
least we now got the “3” right! Now let us do one more calculation in
an attempt to improve the estimate. After that we will seek to find a
pattern in these calculations.

Now we consider a regular 24-sided polygon (an icositetragon). As
before, we construct this new polygon by erecting a small triangle over
each side of the dodecagon. See Figure 1.27. We examine a blowup
(Figure 1.28) of one of these triangles, just as we did above for the do-



32 Chapter 1: The Ancient Greeks

1 1

2 - 3

2

3

2

2 +

3

2

2 +1 -

Figure 1.28

decagon. We first solve the right triangle with base
√

2−
√

3/2 and
hypotenuse 1—using the Pythagorean theorem, of course—to find that

it has height
√

2 +
√

3/2. Then we see that the smaller right trian-

gle has base 1 −
√

2 +
√

3/2 and height
√

2−
√

3/2. Thus, again by
the Pythagorean theorem, the hypotenuse of the small right triangle is√

2−
√

2 +
√

3.

But the upshot is that the icositetragon is made up of isosceles trian-

gles, as in Figure 1.29, having base

√
2−

√
2 +
√

3 and side length 1. We

may divide the triangle into two right triangles, as indicated in the figure.
And then solve one of the right triangles using the Pythagorean theorem.

The solution is that the height of this right triangle is

√
2 +

√
2 +
√

3/2.

Altogether, then, the area of the triangle which is one twenty-fourth of
the polygon is

A(T ) =
1

2
·(base)·(height) =

1

2
·
√

2−
√

2 +
√

3·

√
2 +

√
2 +
√

3

2
=

√
2−
√

3

4
.
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1

2 -   2 +   3 /2

Figure 1.29

We conclude that the area of the 24-sided regular polygon is

A(P ) = 24 ·

√
2−
√

3

4
= 6

√
2 −
√

3 .

Examining Figure 1.30, and thinking of the area inside the dodecahedron
as an approximation to the area inside the unit circle, we find that

π = (area inside unit circle) ≈ (area inside regular 24-gon) ≈ 3.1058 .

We see that, finally, we have an approximation to π that is accurate to
one decimal place.

Of course the next step is to pass to a polygon of 48 sides. We shall
not repeat all the steps of the calculation but just note the high points.
First, we construct the regular 48-gon by placing small triangles along
each of the edges of the dodecagon. See Figure 1.31. Now, once again, we
must (blowing up the triangle construction) examine a figure like 1.32.
The usual calculation shows that the side of the small added triangle has

length

√

2 −
√

2 +
√

2 +
√

3. Thus we end up examining a new isosceles

triangle, which is 1/48th of the 48-sided polygon. See Figure 1.33.
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Figure 1.30

Figure 1.31

2 -   2 +   3

2 +   2 +   3

2

Figure 1.32
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The usual calculations, just as we did for the polygons having 6 or

12 or 24 sides, show that this new triangle has base

√

2 −
√

2 +
√

2 +
√

3

and height

√

2 +

√
2 +

√
2 +
√

3/2. Thus the area is

A(T ) =
1

2
· (base) · (height)

=
1

2
·

√

2 −
√

2 +
√

2 +
√

3 ·
√

2 +

√
2 +

√
2 +
√

3/2 =

√
2 −

√
2 +
√

3

4
.

The polygon comprises 48 such triangles, so the total area of the polygon
is

A(P ) = 48 ·

√
2−

√
2 +
√

3

4
= 12

√
2−

√
2 +
√

3 .

Thinking of the area inside the 48-sided regular polygon as an approxi-
mation to the area inside the unit circle, we find that

π = (area inside unit circle)≈ (area inside 48-sided regular polygon) ≈ 3.1326 .

This is obviously a better approximation to π than our last three at-
tempts. It is accurate to one decimal place, and the second decimal
place is close to being right.

And now it is clear what the pattern is. The next step is to examine
a regular polygon with 96 sides. The usual calculations will show that
this polygon breaks up naturally into 96 isosceles triangles, and each of
these triangles has area

A(T ) =

√

2 −
√

2 +
√

2 +
√

3

4
.

Thus the area of the polygon is

A(P ) = 96 ·

√

2−
√

2 +
√

2 +
√

3

4
= 24 ·

√

2−
√

2 +
√

2 +
√

3 .
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2 +   2 +   32 -

2 +   2 +   32 +

2

Figure 1.33

We then see that

π = (area inside unit circle)≈ (area inside 96-sided regular polygon) ≈ 3.13935 .

This is certainly an improved approximation to the true value of π, which
is 3.14159265 . . ..

The next regular polygon in our study has 192 sides. It breaks up
naturally into 192 isosceles triangles, each of which has area

A(T ) =

√

2 −
√

2 +
√

2 +
√

2 + 3

4
.

Thus the area of the regular 192-gon is

A(P ) = 192 ·

√

2 −
√

2 +
√

2 +
√

2 + 3

4
= 48 ·

√

2−
√

2 +
√

2 +
√

2 + 3 .

We then see that

π = (area inside unit circle)≈ (area inside 192-sided regular polygon) ≈ 3.14103 .
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This new approximation of π is accurate to nearly three decimal places.
Archimedes himself considered regular polygons with nearly 500 sides.

His method did not yield an approximation as accurate as ours. But,
historically, it was one of the first estimations of the size of π.

Exercises

1. Verify that the number
√

17 is irrational.

2. The number α = 5
√

9 is that unique positive real number
that satisfies α5 = 9. Verify that this α is irrational.

3. Let m be any positive whole number (i.e., a natural
number). Show that

√
m is either a positive whole num-

ber or is irrational. Discuss this problem in class.

4. Let m be any positive whole number (i.e., a natural
number). Show that 3

√
m is either a positive whole num-

ber or is irrational. Discuss this problem in class.

5. Develop a new verification of the Pythagorean theorem
using the diagram in Figure 1.34. Observe that the
figure contains four right triangles and a square, but
the configuration is different from that in Figure 1.3.
Now we have a large square in a tilted position inside
the main square. Using the labels provided in the figure,
observe that the area of each right triangle is ab/2. And
the area of the inside square is c2. Finally, the area
of the large, outside square is (a + b)2. Put all this
information together to derive Pythagoras’s formula.

6. Explain the reasoning represented in Figure 1.35 to dis-
cover yet another proof of the Pythagorean theorem.

7. Find all Pythagorean triples in which one of the three
numbers is 7. Explain your answer.

8. Find all Pythagorean triples in which each of the three
numbers is less than 35. Explain your answer.
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a

b

c

Figure 1.34

a b

a

a

b

b

a b

a

a

b

b

a b

a

a

b

b

a

a

b

c

c

c

c

c

c

Figure 1.35
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9. The famous Waring problem (formulated in 1770) was
to show that every positive integer can be written as
the sum of at most four perfect squares. David Hilbert
was the mathematician who finally solved this problem
in 1909. So, for example,

11 = 32 + 12 + 12 + 12

and
87 = 22 + 32 + 52 + 72

and
31 = 52 + 22 + 12 + 12 .

Find the Waring/Hilbert decomposition of 101. Find
the Waring/Hilbert decomposition of 1001. Write a
computer program that will perform this job for you.
Discuss this problem in class.

10. This is a good problem for class discussion. Refer to the
Waring problem in Exercise 9. Formulate a version of
the Waring problem for cubes instead of squares. How
many cubes will it take to compose any positive inte-
ger? Write a computer program to test your hypothesis.
Find a decomposition of 101 into cubes. Find a decom-
position of 1001 into cubes.

11. We can locate any point in the plane with an ordered
pair of real numbers. See Figure 1.36. Discuss this idea
in class. Now use your understanding of the Pythagorean
theorem to derive a formula for the distance in the plane
between the points (0, 0) and (a, b).

12. Refer to Exercise 11. Use the idea there to find a for-
mula for the distance between two planar points (x, y)
and (x′, y′).

13. Refer to Exercise 12. If we can locate any point in
the plane with an ordered pair of real numbers, then
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(a,b)

Figure 1.36

we can locate any point in 3-dimensional space with
an ordered triple of numbers—see Figure 1.37. Dis-
cuss this idea in class. Now use your understanding
of the Pythagorean theorem to derive a formula for
the distance in 3-dimensional space between two points
(x, y, z) and (x′, y′, z′).
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(a, b, c)

Figure 1.37
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Chapter 2

Zeno’s Paradox and the Concept
of Limit

2.1 The Context of the Paradox?

Ancient Greek mathematics—from about 500 B.C.E. to 100 C.E.—enjoyed
many successes. The sieve of Eratosthenes, the discovery of infinitely
many prime numbers, and the Pythagorean theorem are cornerstones
of mathematics that live on today. We shall discuss all of these in the
present book. But the mathematics of the Greeks was marked by one
huge gap. They simply could not understand the concept of “limit”. The
popular formulations of the limit question were dubbed “Zeno’s para-
dox” (named after the mathematician and Eleatic philosopher Zeno, 495
B.C.E.–435 B.C.E.), and these questions were hotly debated in the Greek
schools and forums.

In fact Euclid’s Elements (see [EUC]) contains over 40 different for-
mulations of Zeno’s paradox. For this is what mathematicians do: When
they cannot solve a problem, they re-state it and turn it around and try
to find other ways to look at it. This is nothing to be ashamed of. As the
great classic work on problem-solving—Pólya’s How to Solve It [POL]—
will tell you, one of the mathematician’s most powerful tools is to restate
a problem. We shall encounter this technique repeatedly in the present
book.

But, unfortunately, this method of re-statement did not help the
Greeks. Like all people in all civilizations, they had an interlocking
system of beliefs to which their reasoning was wedded. And their sci-
entific beliefs were intertwined with their religious beliefs. For example,

43
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Pythagoras was not simply a person. “Pythagoras” (or “the Pythagore-
ans”) was the name for a society of people who developed the ideas to
which we now attach his name. And that society was both a religious
organization and a scientific laboratory.

One of the overriding Greek philosophical concerns was whether ev-
erything in the universe was “one”, or whether the universe contained
independent entities. The discussions of these matters were vigorous and
subtle. Certainly Zeno’s paradoxes, which live on to today, were an out-
growth of the question of “oneness”. We shall consider this matter in
further detail in the considerations that follow. Suffice it to say for the
moment that the issue of oneness had a powerful effect on the Greeks’
ability to think about mathematical questions.

To put the matter bluntly, and religious beliefs aside, the Greeks
were uncomfortable with division, they had rather limited mathematical
notation, and they had a poor understanding of limits. It must be said
that the Greeks made great strides with the tools that they had available,
and it is arguable that Archimedes at least had a good intuitive grasp
of the limit concept. Our knowledge has advanced a bit since that time.
Today we have more experience and a broader perspective. Mathematics
is now more advanced, and more carefully thought out. After we state
Zeno’s paradox, we shall be able to analyze it quickly and easily.

2.2 The Life of Zeno of Elea

Little is known of the life of Zeno of Elea (490 B.C.E.–425 B.C.E.).
Our main source of information concerning this influential thinker is
Plato’s dialogue Parmenides. Although Plato gives a positive account of
Zeno’s teachings, he does not necessarily believe all the paradoxes that
we usually attribute to Zeno.

The philosopher Diogenes Laertius also wrote of Zeno’s life, but his
reports are today deemed to be unreliable.

Zeno was certainly a philosopher, and was the son of Teleutagoras.
He was a pupil and friend of the more senior philosopher Parmenides,
and studied with him in Elea in southern Italy at the school which Par-
menides had founded. This was one of the leading pre-Socratic schools
of Greek philosophy, and was quite influential.
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Parmenides’s philosophy of “monism” claimed that the great diver-
sity of objects and things that exist are merely a single external reality.
This reality he called “Being”. Parmenides asserted that “all is one”
and that change or “non-Being” are impossible. Zeno’s thinking was
strongly influenced by his teacher Parmenides. Zeno and Parmenides
visited Athens together around the year 450 B.C.E. It is believed that
Socrates met with the two men at that time. Zeno had already written a
book before his trip to Athens, and this one book is really Zeno’s claim
to fame. In fact, as far as we know, Socrates was 20 years old, Zeno
40 years old, and Parmenides 65 years old at the time of the meeting.
Zeno was something of the celebrity of the group—largely because of his
book. Proclus describes the book in loving detail. It contains Zeno’s 40
paradoxes concerning the continuum.

Of particular interest is the fact that Zeno argued for the One by
endeavoring to contradict the existence of the Many. By this means
Zeno is credited with developing a method of indirect argument whose
purpose is not victory but rather the discovery of truth. We now call
this type of reasoning a dialectic.

As indicated, Zeno endeavored to answer objections to Parmenides’s
theory of the existence of the One by showing that the hypothesis of the
existence of the Many, both in time and in space, would lead to more
serious inconsistencies.

What we today commonly call “Zeno’s paradoxes” grew out of his
wrestling with the “One vs. Many” dialectic. Thus Zeno’s standard list
of paradoxes certainly includes the tortoise and the hare and the man
walking towards the wall, as described below. But it also includes more
philosophical musings as we now relate:

(1) If the Existent is Many, it must be at once infinitely
small and infinitely great—infinitely small, because its
parts must be indivisible and therefore without mag-
nitude; infinitely great, because, that any part having
magnitude may be separate from any other part, the in-
tervention of a third part having magnitude is necessary,
and that this third part may be separate from the other
two the intervention of other parts having magnitude is
necessary, and so on ad infinitum.
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(2) In like manner the Many must be numerically both fi-
nite and infinite—numerically finite, because there are
as many things as there are, neither more nor less; nu-
merically infinite, because, that any two things may be
separate, the intervention of a third thing is necessary,
and so on ad infinitum.

(3) If all that is is in space, space itself must be in space,
and so on ad infinitum.

(4) If a bushel of corn turned out upon the floor make a
noise, each grain and each part of each grain must make
a noise likewise; but, in fact, it is not so.

In fact even greater influence was had on the ancient Greeks by
Zeno’s paradox of predication. According to Plato, this conundrum ran
as follows:

If existences are many, they must be both like and
unlike (unlike, inasmuch as they are not one and
the same, and like, inasmuch as they agree in not
being one and the same). But this is impossible;
for unlike things cannot be like, nor like things
unlike. Therefore existences are not many.

In the second decade of the fourth century, the Greeks resumed the
pursuit of truth in earnest. It was felt that Zeno’s paradox of predication
must be dealt with before there could be any discussion of the problem
of knowledge and the problem of being could be resumed. Plato thus
directs his serious students to the study of this question, and offers his
own theory of the immanent1 idea as a solution of the paradox.

Zeno took his teacher Parmenides’s dictum “The Ent is, the Non-ent
is not” and interpreted it anew.2 To Zeno, this was a declaration of the
Non-ent’s absolute nullity. Thus Zeno developed the theory of the One
as opposed to the theory of the Many. As a result of his efforts, the
Eleaticism of Parmenides was forever ceased.

1Concerning the relationship of the world to the mind.
2Here “Ent” is an enunciation of the concept of oneness.
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After meeting with Socrates in Athens, Zeno returned to the Ital-
ian town of Elea. Diogenes Laertius reports that Zeno died in a heroic
attempt to remove a tyrant from the city. In fact Diogenes reports in
great detail of the heroic deeds and the torture of Zeno at the hands of
the tyrant. Diogenes also gives some material about Zeno’s theory of
cosmology.

Now let us look at the provenance of the paradoxes. They were well
known in Plato’s day, as they bore on Parmenides’s rather prominent
monistic theory of “Being”. In other words, these paradoxes were offered
as proof that everything was one, and could not be divided. Of them,
Plato wrote

. . . a youthful effort, and it was stolen by someone,
so that the author had no opportunity of consid-
ering whether to publish it or not. Its object was
to defend the system of Parmenides by attacking
the common conceptions of things.

In fact Plato claimed that Zeno’s book was circulated without his knowl-
edge. Proclus goes on to say

. . . Zeno elaborated forty different paradoxes fol-
lowing from the assumption of plurality and mo-
tion, all of them apparently based on the difficul-
ties deriving from an analysis of the continuum.

The gist of Zeno’s arguments, and we shall examine them in con-
siderable detail below, is that if anything can be divided then it can be
divided infinitely often. This leads to a variety of contradictions, espe-
cially because Zeno also believed that a thing which has no magnitude
cannot exist.

In fact Simplicius was the last head of Plato’s academy, in the early
sixth century. He explained Zeno’s argument against the existence of
any item of zero magnitude as follows:

For if it is added to something else, it will not
make it bigger, and if it is subtracted, it will not
make it smaller. But if it does not make a thing
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bigger when added to it nor smaller when sub-
tracted from it, then it appears obvious that what
was added or subtracted was nothing.

It is a measure of how seriously Zeno’s ideas were taken at the time
that Aristotle, in his work Physics, gives four of Zeno’s arguments: the
Dichotomy, the Achilles, the Arrow, and the Stadium. For the Di-
chotomy, Aristotle describes Zeno’s argument as follows:

There is no motion because that which is moved
must arrive at the middle of its course before it
arrives at the end.

In greater detail: In order the traverse a line segment it is necessary to
reach its midpoint. To do this one must reach the 1/4 point, to do this
one must reach the 1/8 point and so on ad infinitum. Hence motion
can never begin. The argument here is not answered by the well known
infinite sum

1

2
+

1

4
+

1

8
+ · · · = 1

On the one hand Zeno can argue that the sum 1/2 + 1/4 + 1/8 + . . .
never actually reaches 1, but more perplexing to the human mind is the
attempts to sum 1/2 + 1/4 + 1/8 + . . . backwards. Before traversing a
unit distance we must get to the middle, but before getting to the middle
we must get 1/4 of the way, but before we get 1/4 of the way we must
reach 1/8 of the way etc. See Figure 2.1. This argument makes us realize
that we can never get started since we are trying to build up this infinite
sum from the ”wrong” end. Indeed this is a clever argument which still
puzzles the human mind today. We shall spend considerable time in the
present text analyzing this particular argument of Zeno.

The Arrow paradox is discussed by Aristotle as follows:

If, says Zeno, everything is either at rest or moving
when it occupies a space equal to itself, while the
object moved is in the instant, the moving arrow
is unmoved.

The argument rests on the fact that if in an indivisible instant of time
the arrow moved, then indeed this instant of time would be divisible (for



2.2 The Life of Zeno of Elea 49

0

1

1/4
1/8

1/2

Figure 2.1

example in a smaller ‘instant’ of time the arrow would have moved half
the distance). Aristotle argues against the paradox by claiming:

. . . for time is not composed of indivisible ‘nows’,
no more than is any other magnitude.

It is easy to see, from what we have said, that Zeno’s paradoxes have
been important in the development of the notion of infinitesimals. In
fact some modern writers believe that Zeno aimed his paradoxes against
those who were introducing infinitesimals. Anaxagoras and the followers
of Pythagoras—both of whom had a theory of incommensurables—are
also thought by some to be the targets of Zeno’s arguments.

The most famous of Zeno’s paradoxes, and the one most frequently
quoted and described, is undoubtedly Achilles and the hare (to be dis-
cussed in detail shortly). Aristotle, in his Physics, says:

. . . the slower when running will never be over-
taken by the quicker; for that which is pursuing
must first reach the point from which that which is
fleeing started, so that the slower must necessarily
always be some distance ahead.

Plato and Aristotle both did not fully appreciate the significance
of Zeno’s arguments. In fact Aristotle called them “fallacies”, without
being able to refute them.

The celebrated twentieth-century philosopher Bertrand Russell paid
due homage to Zeno when he wrote:
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In this capricious world nothing is more capri-
cious than posthumous fame. One of the most
notable victims of posterity’s lack of judgment is
the Eleatic Zeno. Having invented four arguments
all immeasurably subtle and profound, the gross-
ness of subsequent philosophers pronounced him
to be a mere ingenious juggler, and his arguments
to be one and all sophisms. After two thousand
years of continual refutation, these sophisms were
reinstated, and made the foundation of a mathe-
matical renaissance . . . .

There is no question that Zeno’s ideas, and his cogent arguments,
remained vital and influential even into modern times. Isaac Newton
wrestled with the ideas when he was inventing his calculus (see [GLE]).
It was not until A. Cauchy in the nineteenth century that a cogent man-
ner was devised for dealing with many of the issues that Zeno raised. It
is well known that man wrestled with the idea of infinity for many hun-
dreds of years; many nineteenth century mathematicians forbade any
discussion or mention of the concept of infinity (see [KAP2]). And in-
finity is the obverse idea to infinitesimals. The histories of the two ideas
are intimately bound up (see also [KAP1]).

As to Zeno’s cosmology, it is by no means disjoint from his monistic
ideas. Diogenes Laertius asserts that Zeno proposed a universe consisting
of several worlds, composed of “warm” and “cold”, “dry” and “wet”
but no void or empty space. It is not immediately clear that these
contentions are consistent with the spirit of Zeno’s paradoxes, but there
is evidence that this type of belief was prevalent in the fifth century
B.C.E., particularly associated with medical theory, and it may have
been Zeno’s version of a belief held by the Eleatic School.

Now let us turn our attention to the mathematical aspects of Zeno’s
ideas. We begin our studies by stating some versions of Zeno’s paradox.
Then we will analyze them, and compare them with our modern notion
of limit that was developed by Cauchy and others in the nineteenth
century. In the end, we will solve this 2000-year-old problem that so
mightily baffled the Greeks.
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Tortoise

Hare

Figure 2.2

Tortoise

Hare

A

B

Figure 2.3

2.3 Consideration of the Paradoxes

We consider several distinct formulations of the paradoxes. There is a
common theme running through all of them.

Zeno’s Paradox, First Formulation: A tortoise and a hare are in a
race. See Figure 2.2. Now everyone knows that a hare can run faster
than a tortoise (for specificity, let us say that the hare runs ten times
as fast as the tortoise), so it is decided to give the tortoise a head start.
Thus the tortoise is allowed to advance 10 feet before the hare begins—
Figure 2.3. Hence the race starts with the tortoise at point A and the
hare at point B.
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Figure 2.4

Now first the hare must advance to the point A. But while he is
doing that, the tortoise will have moved ahead a bit and he will be at
a new point A′ (Figure 2.4). Now the hare, in order to catch up, must
move to point A′. Of course, while the hare is doing that, the tortoise
will have moved ahead to some new point A′′. Now the hare must catch
up to point A′′.

You can see the problem. Every time the hare endeavors to catch
up with the tortoise, the tortoise will move ahead. The hare can never
catch up. Thus the tortoise will win the race.

For You to Try: Apply the analysis just given to two children who are
each packing sand into a bucket. One child is twice as fast as the other:
she packs two cups of sand per minute while the slower boy packs only
one cup of sand per minute. But the slower child is allowed to begin with
3 cups of sand already in his bucket. Discuss how the bucket-packing
will progress.

Zeno’s Paradox, Second Formulation: A woman is walking towards
a wall—Figure 2.5. But first she must walk halfway to the wall (Figure
2.6). And then she must walk half the remaining distance to the wall.
See Figure 2.7. And so forth. In short, she will never actually reach the
wall—because at each increment she has half the remaining distance to
go. Figure 2.8 illustrates the incremental positions of the woman.
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Zeno’s Paradox, Third Formulation: Motion is impossible. For if
an object moves in a straight line from 0 to A, then it first much reach
1
2
A. See Figure 2.9. But before it can reach 1

2
A it must reach 1

4
A. Ad

infinitum. Thus the motion can never begin.

What is Really Going On?

Let us examine the first version of the paradox to see what is really
going on. For specificity, let us suppose that the tortoise moves at the
rate of 1 foot per second, and the hare moves at the rate of 10 feet per
second. It takes the hare 1 second to catch up to the tortoise’s head-start
position at A. During that 1 second, the tortoise has of course advanced
1 foot. It takes the hare 0.1 seconds to advance that additional foot.
During that 0.1 seconds, the tortoise has advanced 0.1 of a foot. It takes
the hare 0.01 seconds to catch up that much space. During that time,
the tortoise advances another 0.01 feet. And so forth.

To summarize, if we add up all the units of distance that the tortoise
will travel during this analysis, we obtain

DT = 10 + 1 + 0.1 + 0.01 + · · · .

A similar calculation shows that the hare travels

DH = 10 + 1 + 0.1 + 0.01 + · · · .

Now we see that our decimal notation comes to the rescue (and the
Greeks definitely did not have decimal notation). The sum DT = DH

equals 11.111 . . . feet. To see this just sum up the terms:
10 + 1 = 11
10 + 1 + 0.1 = 11.1
10 + 1 + 0.1 + 0.01 = 11.11

and so forth.
Now take out your pencil and paper and divide 9 into 1 (or do it on

your calculator if you must). You will obtain the answer 0.111 . . ..3 Thus

3In the next section we shall discuss infinite repeating decimal representations for

rational numbers.
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Figure 2.5

Figure 2.6

Figure 2.7
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we see that the total distance that the tortoise (or hare) travels during
our analysis is D = 111

9
feet. What does this number mean?

The point of the number D is that this is the place where the hare
and the tortoise meet—they are in the same position. After that, the
hare will pull ahead and win the race.

But we can say more. The total length of time that it takes the
tortoise (or the hare) to get to position D is

T = 1 + 0.1 + 0.01 + · · · = 1.1111 . . . = 1
1

9
seconds.

Our conclusion is that, after 11
9

seconds, the tortoise and the hare will
have reached the same point. In the ensuing time, the hare will still be
traveling ten times as fast as the tortoise, so of course it will pull ahead
and win the race.

For You to Try: Refer back to the preceding For You to Try unit.
Assume that each child has a very large bucket. Do an analysis like the
one that we did for the tortoise and the hare to determine when the
faster girl will equal the slower boy in sandpacking (and thereafter pass
him).

2.4 Decimal Notation and Limits

In our analysis of Zeno’s paradox, we came across an interesting idea:
that of repeating decimal expansions. The specific one that came up in
the last section was .11111 . . .. We were conveniently able to observe
that this is just 1/9. But what does (for instance) the decimal expansion
0.57123123123123 . . . represent (if anything)? Let us do a little analysis.

Let x = 0.57123123123123 . . .. Now consider the number 1000x =
571.23123123123123 . . .. We subtract these two numbers in the tradi-
tional way:4

1000x = 571.23123123123123 . . .

4The choice of 1000x rather than 100x or 10000x is motivated by the fact that it

results in useful cancellations, as we shall see.
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x = 0.57123123123123 . . .

999x = 570.66

Notice how all the 123s cancel out! It is convenient to write the resulting
equation as

999x =
57066

100
.

Then we find that

x =
57066

99900
=

9511

16650
.

We see that, with a bit of algebraic manipulation, we were able to ex-
press a repeating decimal as a rational fraction.

For You to Try: Express the number

x = 43.75417171717 . . .

as a rational fraction.

Rest assured that the ancient Greeks certainly considered the ques-
tions we are discussing here. But they were not equipped to come up
with the answers that you have seen here. They did not have the nota-
tion nor the concept of decimal number. But they certainly set in place
the beginnings of the more complete understanding that we have today.

2.5 Infinite Sums and Limits

The ideas we have considered so far actually beg a much more general
question. When we studied Zeno’s paradox, in the rendition with the
tortoise and the hare, we considered the sum

10 + 1 + 0.1 + 0.01 + · · · .

This might more conveniently be written as

101 + 100 + 10−1 + 10−2 + · · ·
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or perhaps as

10 +
(

1

10

)0

+
(

1

10

)1

+
(

1

10

)2

+ · · · .

Observe that, after the first term, this is a sum of all the non-negative
powers of a fixed number, namely 1/10. But that is an interesting notion,
is it not? How can we sum all the powers of a fixed number? Let us pose
the question a bit more abstractly.

Let the fixed number be σ > 0. Consider the sum

S = 1 + σ + σ2 + σ3 + · · · .

We call this a geometric series in powers of σ. Our goal is to actually
sum this series—to find an explicit formula for the infinite sum on the
right.

In order to understand S, let us multiply both sides by σ. So

σ · S = σ + σ2 + σ3 + · · · .

Adding 1 to both sides yields

1 + σ · S = 1 + σ + σ2 + σ3 + · · · .

But now we recognize the righthand side as S. So we can rewrite the
last equation as

1 + σ · S = S

or
1 = S · (1− σ) .

Finally, we conclude that

S =
1

1 − σ
.

Put in other words, what we have learned is that

1 + σ + σ2 + σ3 + · · · = 1

1 − σ .

Example 2.1
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Calculate the sum

1 +
1

10
+
(

1

10

)2

+
(

1

10

)3

+ · · · .

SOLUTION We recognize this as the series that we encountered in our study of
Zeno’s paradox. But now we have a simple and direct way to analyze it. We see that
this is a geometric series with σ = 1/10. Thus the sum is

S =
1

1 − 1/10
=

10

9
.

Example 2.2

Calculate the sum

T =
2

3
+
(

2

3

)2

+
(

2

3

)3

+ · · · .

SOLUTION This is not precisely in our standard form for a geometric series.
But we may write

T =
2

3
·
[
1 +

2

3
+
(

2

3

)2

+ · · ·
]

=
2

3
· S ,

where S is a standard geometric series in powers of 2/3. Thus S = 1/[1−2/3] = 3
and hence

T =
2

3
· 3 = 2 .

For You to Try: Find the sum of the series

4 +
4 · 5
6

+
4 · 25
36

+
4 · 125
216

+ · · · .
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2.6 Finite Geometric Series

Thus far we have been examining the question of summing an infinite
geometric series of the form

1 + σ + σ2 + σ3 + · · · .

It seems reasonable to consider also the sums of finite geometric series
such as

1 + 3 + 32 + · · ·+ 312 .

The idea is best understood by way of an example.

Example 2.3

Find the sum of the series

1 +
(

1

3

)
+
(

1

3

)2

+
(

1

3

)3

+ · · ·+
(

1

3

)100

.

SOLUTION It would be quite tedious to actually add up this series—even with
the aid of a calculator. Let us instead use some mathematical reasoning to tame the
problem.

Our idea is to express this sum in terms of infinite geometric series. Namely, we
may write

1 +
(

1

3

)
+
(

1

3

)2

+
(

1

3

)3

+ · · ·+
(

1

3

)100

=
[
1 +

(
1

3

)
+
(

1

3

)2

+
(

1

3

)3

+ · · ·
]

−
[(

1

3

)101

+
(

1

3

)102

+
(

1

3

)103

+ · · ·
]

=
[
1 +

(
1

3

)
+
(

1

3

)2

+
(

1

3

)3

+ · · ·
]

−
(

1

3

)101

·
[
1 +

(
1

3

)
+
(

1

3

)2

+ · · ·
]
.

Now we know that

1 +
(

1

3

)
+
(

1

3

)2

+
(

1

3

)3

+ · · · = 1

1 − (1/3)
=

3

2
.

In conclusion,

1+
(

1

3

)
+
(

1

3

)2

+
(

1

3

)3

+· · ·+
(

1

3

)100

=
3

2
−
(

1

3

)101

·3
2

=
3

2
·
[
1 −

(
1

3

)101
]
.
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The method used in this last example is a cute trick, but not entirely
satisfactory. For suppose we endeavored to sum

1 + 3 + 32 + 33 + · · ·+ 3100

by the same method. It would fail, just because

1 + 3 + 32 + 33 + · · · (∗)

cannot be added. In other words, the sum (∗) increases without bound.5

So it cannot be manipulated arithmetically as we did in the last example.
Let us now develop a somewhat different technique. We will imitate

the methodology of the last section. Let

S = 1 + σ + σ2 + σ3 + · · ·+ σK .

Multiplying both sides by σ, we find that

σ · S = σ + σ2 + σ3 + σ4 + · · ·+ σK+1

=
[
1 + σ + σ2 + σ3 + σ4 + · · ·+ σK

]
+ (σK+1 − 1)

= S + (σK+1 − 1) .

Rearranging, we see that

S · (σ − 1) = σK+1 − 1

or

S =
σK+1 − 1

σ − 1
. (?)

Now let us do an example to illustrate the utility of this new formula.

Example 2.4

Calculate the sum

S = 1 + 3 + 32 + 33 + · · ·+ 3100 .

5A mathematician might say that the limit is +∞.
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SOLUTION We apply formula (?) with σ = 3 and K = 100. Thus

S =
3101 − 1

3− 1
=

1

2
·
(
3101 − 1

)
.

For You to Try: Use your calculator to calculate the last sum, and
compare your result with the answer that we obtained through mathe-
matical reasoning.

Example 2.5

Calculate the sum

T =
(

3

4

)10

+
(

3

4

)11

+
(

3

4

)12

+ · · ·+
(

3

4

)30

.

SOLUTION We write

T =
[
1 +

3

4
+
(

3

4

)2

+ · · ·+
(

3

4

)30]
−
[
1 +

3

4
+
(

3

4

)2

+ · · ·+
(

3

4

)9]

=
(3/4)31 − 1

(3/4) − 1
− (3/4)10 − 1

(3/4) − 1

= 4 ·
[(

3

4

)10

−
(

3

4

)31
]
.

For You to Try: Calculate the sum

W =
(−5

7

)12

+
(−5

7

)13

+
(−5

7

)14

+ · · ·+
(−5

7

)45

.

For You to Try: Calculate the sum

V =
(

6

11

)4

+
(

6

11

)6

+
(

6

11

)8

+ · · ·+
(

6

11

)30

.
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Can you discern a pattern in your answers? Is it possible to look at
a sum of the form

αj + αj+1 + · · ·+ αk

for 0 < j < k and just write down the answer?

2.7 Some Useful Notation

This is a good opportunity to learn some useful and fun mathematical
notation. The symbols

N∑

j=1

aj

is a shorthand for the sum

a1 + a2 + a+ 3 + · · ·+ aN .

The symbol
∑

is the Greek letter sigma (the cognate of “S” in our
alphabet), and stands for sum. The lower limit j = 1 tells where the
sum, or series, begins. The upper limit “N” (or “j = N”) tells where
the sum (or series stops).

Example 2.6

Write out the sum
8∑

j=1

j2 + j .

Solution: According to our rule, this is

(12 + 1) + (22 + 2) + (32 + 3) + (42 + 4) + (52 + 5)

+(62 + 6) + (72 + 7) + (82 + 8)

= 2 + 6 + 12 + 20 + 30 + 42 + 56 + 72

= 240 .
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Example 2.7

Write out the sum
10∑

j=5

j

j + 1
.

Solution: Notice that we are stretching our new notation by begin-
ning the sum at an index other than 1. It equals

5

5 + 1
+

6

6 + 1
+

7

7 + 1
+

8

8 + 1
+

9

9 + 1
+

10

10 + 1

=
5

6
+

6

7
+

7

8
+

8

9
+

9

10
+

10

11

≈ 5.2634 .

We can also use the summation notation to denote an infinite series.
For example,

∞∑

j=0

(
1

2

)j

=
(

1

2

)0

+
(

1

2

)1

+
(

1

2

)2

+
(

1

2

)3

+ · · ·

= 1 +
(

1

2

)1

+
(

1

2

)2

+
(

1

2

)3

+ · · · .

And we know, from our earlier studies, that in fact this sum equals 2.

2.8 Concluding Remarks

Geometric series arose very naturally for us in our consideration of Zeno’s
paradox. In fact the Greeks were well aware of geometric series. They oc-
cur, in essence, in Euclid IX-35 [EUC], and also in Archimedes’s quadra-
ture of the parabola. Today, geometric series arise frequently in engineer-
ing analysis, in the study of the way that plants grow, and in many other
applications of the mathematical sciences. They are a primary example
of the mathematical modeling of nature. They also have considerable
intrinsic interest—they are simply fascinating mathematical objects to
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study.

Exercises

1. Use geometric series to analyze the second version of
Zeno’s paradox.

2. Formulate a version of Zeno’s paradox that involves di-
vision by 3 instead of division by 2. Discuss this ques-
tion in class.

3. Calculate the sum

(
4

3

)5

+
(

4

3

)6

+
(

4

3

)7

+ · · ·+
(

4

3

)50

.

4. Calculate the sum

(
2

7

)3

+
(

2

7

)6

+
(

2

7

)9

+ . . .+
(

2

7

)81

.

5. Calculate the sum

∞∑

j=0

(
6

13

)j

= 1 +
(

6

13

)
+
(

6

13

)2

+ · · · .

6. Calculate the sum

∞∑

j=3

(
12

17

)j

=
(

12

17

)3

+
(

12

17

)4

+
(

12

17

)5

+ · · · .

7. Calculate the sum

(
17

21

)5

+
(

17

21

)10

+
(

17

21

)15

+ · · · .
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8. A certain radioactive material has the property that half
the substance present decays every three hours. If there
are 10 grams present at 10:00am on Monday, then how
much material will remain at 10:00am on Thursday of
that same week? [Hint: You cannot solve this problem
just using techniques of arithmetic. You must use the
lessons of this chapter.]

9. A population of bacteria reproduces constantly. As a re-
sult, the total number of bacteria doubles every 6 hours.
If there are 10,000 bacteria present at 9:00am on Tues-
day, then how many bacteria will be present at 9:00am
on Saturday of that same week? [Hint: You cannot
solve this problem just using techniques of arithmetic.
You must use the lessons of this chapter.]

10. It begins snowing some time before noon. At noon, a
snow plow begins to clear the street. It clears two blocks
in the first hour and one block in the second hour. When
did it start snowing? [Hint: You will not be able to ac-
tually write down an equation or formula and solve this
problem. But you can use the ideas from this chapter to
set up an analysis of the problem. Use your computer or
calculator to do some numerical approximations for the
situation described. In other words, think of this as a
problem of mathematical modeling. Use the calculating
machinery to emulate the snow fall and come up with
an approximate answer. Discuss this problem in class.]

11. A sponge absorbs water at a steady rate. As a result,
the volume of the sponge increases by a factor of one
tenth each hour. If the sponge begins at noon having
volume 0.8 cubic feet, then what will be the volume of
the sponge at the same time on the next day?

12. You deposit $1000 in the bank on January 2, 2006. The
bank pays 5% interest, compounded daily (this means
that 1/365 of the interest is paid each day, and the
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interest is added to the principal). How much money
will be in your account on January 2, 2007? [Hint: Bear
in mind that, when interest is calculated on the second
day, there will be interest paid on the interest from the
first day. And so forth. Thus the amount of increase
in money is greater with each passing day. Discuss this
problem in class.]
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Chapter 3

The Mystical Mathematics of
Hypatia

3.1 Introduction to Hypatia

One of the great minds of the ancient world was Hypatia of Alexandria
(370 C.E.–430 C.E.). Daughter of the astronomer and mathematician
Theon, and wife of the philosopher Isidorus, she flourished during the
reign of the Emperor Arcadius.

Historians believe that Theon endeavored to raise the “perfect human
being” in his daughter Hypatia. He nearly succeeded, in that Hypatia
had surpassing physical beauty and a dazzling intellect. She had a re-
markable physical grace and was an accomplished athlete. She was a
dedicated scholar and had a towering intellect.

Hypatia soon outstripped her father and her teachers and became
the leading intellectual light of Alexandria. She was a powerful teacher,
and communicated strong edicts to her pupils. Among these were:

All formal dogmatic religions are fallacious and
must never be accepted by self-respecting persons
as final.

Reserve your right to think, for even to think
wrongly is better than not to think at all.

Neo-Platonism is a progressive philosophy, and
does not expect to state final conditions to men
whose minds are finite. Life is an unfoldment, and

69
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the further we travel the more truth we can com-
prehend. To understand the things that are at
our door is the best preparation for understand-
ing those that lie beyond.

Fables should be taught as fables, myths as myths,
and miracles as poetic fantasies. To teach super-
stitions as truths is a most terrible thing. The
child mind accepts and believes them, and only
through great pain and perhaps tragedy can he
be in after years relieved of them. In fact men
will fight for a superstition quite as quickly as for
a living truth—often more so, since a superstition
is so intangible you cannot get at it to refute it,
but truth is a point of view, and so is changeable.

The writings of Hypatia have all been lost to time. What we know of
her thoughts comes from citations and quotations in the work of others.

Hypatia was a pagan thinker at the time when Rome was converted
to Christianity. Thus, in spite of her many virtues, she made enemies.
Chief among these was Cyril, the Bishop of Alexandria. According to
legend, he enflamed a mob of Christians against her. They set upon
her as she was leaving her Thursday lecture, and she was dragged to
a church where it was planned that she would be forced to recant her
beliefs. But the mob grew out of control. Her clothes were rent from her
body, she was beaten mercilessly, and then she was dismembered. The
skin was flayed from her body with oyster shells. Her remains were then
burned. The book [DZI] considers a variety of accounts of Hypatia and
her demise. It is difficult to tell which are apocryphal.

Hypatia is remembered today for her work on Appolonius’s theory
of conics, and for her commentary on Diophantus. All of these theories
survive to the present time, and are still studied intently. She also did
work, alongside her father, on editing Euclid’s Elements. The surviving
presentation of Euclid’s classic work bears Hypatia’s mark.

Certainly Hypatia was one of the great thinkers of all time, and it
is appropriate for us to pay her due homage. But we have no detailed
knowledge of her work—certainly no firsthand knowledge. So what we
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Figure 3.1

can do is to study conic sections with Hypatia in mind, knowing that she
certainly left her mark on this subject. We will give some of the classical
ideas, as Hypatia herself would have conceived them, and also some of
the modern ideas—based on the analytic geometry of René Descartes
(see Chapter 8).

It was Appolonius, Hypatia’s inspiration, who first realized that all
of the conic sections can be realized as slices of a fixed cone. He also
gave the names to the conic sections that we use today. Examine Figure
3.1. It shows a cone with two nappes (branches). We slice this cone
with a plane. Depending on the way that the plane intersects the cone,
the result will give different types of curves. Figure 3.2 shows a circle.
Figure 3.3 shows an ellipse. Figure 3.4 exhibits a parabola. And Figure
3.5 gives us a hyperbola. Figure 3.6 shows each of these curves on a
planar set of axes.

Of course it is intuitively clear how one can examine the intersection
of the plane and the cone in Figures 3.2–3.5 to see where the circle, el-
lipse, parabola, and hyperbola in Figure 3.6 come from. But it would be
advantageous, and certainly aesthetically pleasing, to have a synthetic
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Figure 3.2

Figure 3.3
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Figure 3.4

Figure 3.5
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circle ellipse

parabola

hyperbola

Figure 3.6
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P

r

Figure 3.7

definition of each of these figures that makes sense in the context of the
plane. This we shall now discuss.

The Circle: A circle with center P and radius r is just the set of all
points in the plane that have distance r from the point P . Examine
Figure 3.7. It clearly exhibits this geometric definition. And you can
see that we have made this definition without any reference to the cone.
The cone is of course interesting for historical reasons: it is the genesis
of these figures, and suggests that they are related. But each can be
studied intrinsically, and for its own merits.

The Ellipse: Fix two points F1 and F2 in the plane. Fix a positive num-
ber a such that 2a is greater than the distance from F1 to F2. Consider
the locus of points P in the plane with the property that the distance of
P to F1 plus the distance of P to F2 is equal to 2a. This locus is called
an ellipse. Refer to Figure 3.8.

The two points F1, F2 are called the foci of the ellipse and the mid-
point of the segment F1F2 is called the center of the ellipse. The chord
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F F
1 2

Figure 3.8

of the ellipse passing through the two foci is called the major axis of
the ellipse. The perpendicular chord, passing through the center of the
ellipse, is called the minor axis of the ellipse. See Figure 3.9.

For You to Try: What happens to the ellipse as the two foci tend
towards each other? As they coalesce into a single point? Does another
conic section result?

The Parabola: Fix a point P in the plane and a line ` that does not
pass through P . The set of points that are equidistant from P and `
is a parabola. See Figure 3.10. The point that is on the perpendicular
segment from P to ` and halfway between the two is called the vertex of
the parabola. The point P is called the focus, and the line ` is called the
directrix.

For You to Try: Let P = (2, 0) and let ` be the line {(x, y) : x = −2}.
Sketch the resulting parabola. Where will the vertex lie?

The Hyperbola: Fix two distinct points F1, F2 in the plane. Fix a
positive number a that is less than half the distance of F1 to F2. Consider
the locus of points P with the property that the difference of the distances
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major axis
minor axis

Figure 3.9

P

l

vertex

Figure 3.10
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F

F

1

2

Figure 3.11

|P − F1| and |P − F2| equals 2a. This is a hyperbola. The points F1, F2

are called foci of the hyperbola. The midpoint of the two foci is called
the center of the hyperbola. The line through the two foci intersects the
hyperbola in two points called the vertices of the hyperbola. All of these
attributes are exhibited in Figure 3.11.

For You to Try: Let F1 = (−2, 0) and F2 = (2, 0). Let a = 1. Discuss
the resulting hyperbola. Does it open up-down or left-right? Can you
sketch the graph?

3.2 What is a Conic Section?

Now we shall attempt to unify the preceding discussion. What do the
circle, the ellipse, the parabola, and the hyperbola have in common?
What are their common features?

One of the beauties of Descartes’s conception of geometry is that it
allows us to think of conic sections in terms of equations.

As an example, consider the parabola. Let us suppose that the di-
rectrix is the line y = a > 0 and the focus is the origin O = (0, 0). The
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y = a

(x,y)

x   + y2 2

|y - a|

Figure 3.12

y = a

Figure 3.13
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parabola defined by these two pieces of data is the set of points which are
equidistant from the focus and the directrix. Let (x, y) be such a point.
Then the distance of (x, y) to O is

√
x2 + y2. The distance of (x, y) to

the directrix is |y − a|—see Figure 3.12. So the equation is then

√
x2 + y2 = |y − a| .

Squaring both sides gives

x2 + y2 = y2 − 2ay + a2

or

y = − 1

2a
x2 +

a

2
.

See Figure 3.13.
A characteristic of the equation of a parabola is that one variable

(in this case x) is squared and the other (in this case y) is not. Because
of the positioning of the directrix and focus, a parabola such as we have
been discussing must open either up or down. See Figure 3.13.

If instead we were to set up the geometry so that the directrix is
x = a > 0 and the focus is the origin, then the equation would be

x = − 1

2a
y2 +

a

2
.

Again, we see that one variable (in this case y) is squared and the other
(in this case x) is not. Because of the positioning of the directrix and
focus, a parabola such as we have been discussing must open either left
or right. See Figure 3.14.

More generally, the equation of an up-down opening parabola will
have the form

y − b = c(x− a)2 .

Such a parabola will have vertex at the point (a, b) and will open up if
c > 0 and down if c < 0. See Figure 3.15. The equation of a left-right
opening parabola will have the form

x− a = c(y − b)2 .
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x = a

Figure 3.14

c < 0 c > 0

Figure 3.15



82 Chapter 3: The Mystical Mathematics of Hypatia

c < 0 c > 0

Figure 3.16

Such a parabola will have vertex at the point (a, b) and will open to the
right if c > 0 and to the left if c < 0. See Figure 3.16.

For You to Try: Discuss the parabola y2−4x−2y = 10. Does it open
up-down or left-right? How can you tell? Can you sketch the graph?

An analysis similar to the one just given for the parabola, but a bit
more complicated, yields that the equation of an ellipse will have the
form

(x− c1)2

a2
+

(y − c2)2

b2
= 1 .

The center of this ellipse is the point (c1, c2). If we put in y = c2 and
solve for x we find that x = c1 ± a. Thus the left and right extreme
points of the ellipse are (c1 − a, c2) and (c1 + a, c2). If instead we put
x = c1 and solve for y then we find that y = c2 ± b. Thus the upper and
lower extreme points of the ellipse are (c1, c2 − b) and (c1, c2 + b). Refer
to Figure 3.17 for a picture of this ellipse.

For You to Try: Discuss the ellipse 4x2+8y2+16x+32y = 16. Which
direction is the major axis (the long direction) of the ellipse? Which di-
rection is the minor axis (the short direction) of the ellipse? Can you
sketch it?



3.2 What is a Conic Section? 83

( c  , c   )
2

( c   , c   + b)

( c   , c   - b)

1

2

2

( c   - a, c   ) ( c   + a, c   )1

1

1
12

2

Figure 3.17

Yet another analysis of the same type—and we shall omit the details—
shows that the equation of a hyperbola has the form

(x− c1)2

a2
− (y − c2)2

b2
= ±1 . (∗∗)

If the righthand side of (∗∗) is +1 then the hyperbola opens left-right.
In fact take y = c2; you can then solve for x and find that x = c1 ± a.
So the vertices of the hyperbola are at (c1 − a, c2) and (c1 + a, c2). See
Figure 3.18.

If instead the righthand side of (∗∗) is −1 then the hyperbola opens
up-down. In fact take x = c1; you can then solve for y and find that
y = c2 ± b. So the vertices of the hyperbola are at (c1, c2 − b) and
(c1, c2 + b). See Figure 3.19.

For You to Try: Discuss the hyperbola 4x2 − 8y2 + 8x − 16y = 12.
Does it open up-down or left-right? Can you sketch the graph?
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Figure 3.19
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Figure 3.20

Exercises

1. Let P,Q,R be three points in the plane which do not
all lie on the same line. Then there is a unique circle
that passes through all three of them. See Figure 3.20.
There are several ways to confirm this assertion.

(a) A general circle has equation

x2 + ax+ y2 + by = c .

Thus there are three undetermined parameters. And
the three pieces of information provided by the fact that
the circle must pass through P = (p1, p2), Q = (q1, q2),
R = (r1, r2) (and therefore these three points must sat-
isfy the equation) will determine those parameters. Use
this idea to find the unique circle that passes through
(1, 2), (2, 3), and (4, 9).

(b) There is a well-defined perpendicular bisector to the
segment PQ. This line represents the set of all points
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Figure 3.21

that are equidistant from P and Q. There is also a well-
defined perpendicular bisector to the segmentQR. This
line represents the set of all points that are equidistant
from Q and R. The intersection of these two lines—
which will be a single point C—will be the unique point
that is equidistant from all three of P,Q,R. That must
be the center of the circle. See Figure 3.21. The distance
of C to P will be the radius. Use this idea to find the
unique circle that passes through (1, 0), (0, 1), (1, 1).

2. Consider the parabola y = x2. Any ray entering the
parabola from above and traveling straight down (see
Figure 3.22) will bounce off the parabola and pass through
the focus point (0, 1/4) (the directrix is the line y =
−1/4, as you can readily verify). Discuss this assertion
in class. How would you determine the bounce of the
ray? Think about the tangent line to the parabola at
the point of impact. What does the tangent line have
to do with the question?

3. Let c > 0. Fix the two points F1 = (−c, 0) and F2 =
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Figure 3.22

(c, 0) in the plane. Imagine a string of length 2a > 2c
that has one end pinned down at the point F1 and the
other end pinned down at the point F2. Now stretch the
string taught with a pencil and move the pencil around
in a loop. See Figure 3.23. The resulting curve will
be an ellipse. You should try this yourself with two
thumbtacks, a piece of string, and a real pencil.

Discuss this situation in class. Explain why the result
is an ellipse. What is the length of the major axis of
the ellipse? What is the length of the minor axis of the
ellipse?

4. Let {p1, p2, p3, . . .} be an infinite collection of points in
the plane. Suppose that the distance between any two of
these points is an integer (different integers for different
pairs of points in general). Then argue that the points
must all lie on the same line. Discuss this problem in
class. [Hint: The solution has something to do with a
hyperbola!]

5. Two points in the plane do not uniquely determine a
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Figure 3.23

parabola. Give an example to explain why this is so.
But three non-collinear points do uniquely determine a
parabola. Explain why this is so. [Hint: Refer to the
discussion in Exercise 1(a) for a clue.]

6. The transformation

x 7−→
√

2

2
x−
√

2

2
y

y 7−→
√

2

2
x+

√
2

2
y

describes a rotation of the plane through an angle of
π/4 radians (in the counterclockwise direction). Ex-
plain why this is so. Discuss the problem with your
class. More generally, the transformation

x 7−→ [cos θ]x− [sin θ]y

y 7−→ [sin θ]x+ [cos θ]y

describes a rotation of the plane through an angle of θ
radians (in the counterclockwise direction). Verify this
assertion also.
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If a quadratic equation describing a conic section—as
discussed in this chapter—is subjected to one of these
two changes of variable, then an equation of the form

Ax2 +Bxy + Cy2 +Dx + Ey + F = 0 (?)

results. Perform the calculation and see this for your-
self.

Now, if you are given an equation of the form (?), how
can you tell whether it is the equation of an ellipse, a
parabola, or a hyperbola? The tests that we learned in
this chapter do not apply. For example,

x2 + 2xy + y2 + 1 = 0

describes a parabola. So how can one tell which equa-
tion corresponds to which type of curve? Try some ex-
periments and see whether you can formulate a conjec-
ture. Make this a project for class work.

7. Refer to Exercise 6. We need a test for telling which
equations of the form (?) describe which types of curves.
Define the discriminant of the equation (?) to be

D = B2 − 4AC .

It turns out that if D = 0 then the equation describes
a parabola. If D < 0 then the equation describes an
ellipse. and if D > 0 then the equation describes a
hyperbola.

Test these assertions out on some familiar equations of
conic sections that you know. Now rotate one of these
equations, as in Exercise 6, and try the test again. You
should get the same answer (because the essential na-
ture of a conic section does not change when it is ro-
tated).
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8. Refer to Exercises 6 and 7. Now examine the equation

x2 + xy + y2 + x+ y + 1 = 0 .

Determine what sort of conic section it represents. Now
graph the curve.

How does the curve change if +xy is changed to −xy?
Graph the new curve that has equation with this changed
term.

9. Consider the line ` given by

ax+ by + c = 0

in the plane. Let P = (p1, p2) be a point that does not
lie on that line. Show that the distance of P to the line
` is given by

d =
|ap1 + bp2 + c|√

a2 + b2
.

Discuss this question with your class. How does one
determine the distance of a point to a line? What geo-
metric construction is relevant?

10. Consider the parabola y = x2 and the circle x2 + y2 =
r2. Is there a choice of r > 0 so that, at the points
of intersection of the parabola and the circle, the two
curves are perpendicular? [Hint: You can answer this
question without calculating. Discuss the issue with
your class.]

11. Answer Exercise 10 with the parabola y = x2 replaced
by the hyperbola x2 − y2 = 1.

12. Discuss the concept of tangent line to the curve y = x2

at the point (1, 1). What properties should it have?
How could you determine this line? Discuss the issue
with your class. We will consider this matter in further
detail in Chapter 4.
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13. Sketch the graph of the conic section

x2 − 2x− 3y2 + 6y = 10 .

Which type of conic section is this? How can you tell?

14. Sketch the graph of the conic section

x2 + 4x− y = 15 .

Which type of conic section is this? How can you tell?

15. Sketch the graph of the conic section

4x2 − 8x+ 8y2 + 32y = 64 .

Which type of conic section is this? How can you tell?
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Chapter 4

The Arabs and the Development
of Algebra

4.1 Introductory Remarks

In the early seventh century C.E., the Muslims formed a small and per-
secuted sect. But by the end of that century, under the inspiration of
Mohammed’s leadership, they had conquered lands from India to Spain—
including parts of North Africa and southern Italy. It is believed that,
when Arab conquerors settled in new towns, they would contract dis-
eases which had been unknown to them in desert life. In those days the
study of medicine was confined mainly to Greeks and Jews. Encouraged
by the caliphs (the local Arab leaders), these doctors settled in Baghdad,
Damascus, and other cities. Thus we see that a purely social situation
led to the contact between two different cultures which ultimately led to
the transmission of mathematical knowledge.

Around the year 800, the caliph Haroun Al Raschid ordered many
of the works of Hippocrates, Aristotle, and Galen to be translated into
Arabic. Much later, in the twelfth century, these Arab translations were
further translated into Latin so as to make them accessible to the Eu-
ropeans. Today we credit the Arabs with preserving the grand Greek
tradition in mathematics and science. Without their efforts, much of
this classical work would have been lost.

93
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4.2 The Development of Algebra

4.2.1 Al-Khowârizmı̂ and the Basics of Algebra

There is general agreement that the rudiments of algebra found their
genesis with the Hindus. Particularly Arya-Bhata in the fifth century
and Brahmagupta in the sixth and seventh centuries played a major role
in the development of these ideas. Notable among the developments due
to these men is the summation of the first N positive integers, and also
the sum of their squares and their cubes (see our discussion of these
matters in Chapter 9).

But the Arab expansion two hundred years later caused the transfer
of these ideas to the Arab empire, and a number of new talents exerted
considerable influence on the development of these concepts. Perhaps
the most illustrious and most famous of the ancient Arab mathemati-
cians was Abu Ja’far Muhammad ibn Musa Al-Khwarizmi (780 C.E.–850
C.E.). In 830 C.E. this scholar wrote an algebra text that became the
definitive work in the subject. Called Kitab fi al-jabr wa’l-mugabala, it
introduced the now commonly used term “algebra” (from “al-jabr”). The
word “jabr” referred to the balance maintained in an equation when the
same quantity is added to both sides (curiously, the phrase “al-jabr” also
came to mean “bonesetter”); the word “mugabala” refers to cancelling
like amounts from both sides of an equation.

Al-Khwarizmi’s book Art of Hindu Reckoning introduced the nota-
tional system that we now call Arabic numerals: 1, 2, 3, 4, . . . . Al-
Khowârizmı̂ also introduced the concept, and the word, that has now
come to be known as “algorithm”.

It is worth noting, and we have made this point elsewhere in the
present text, that good mathematical notation can make the difference
between an idea that is clear and one that is obscure. The Arabs, like
those who came before them, were hindered by lack of notation. When
they performed their algebraic operations and solved their problems, they
referred to everything with words. The modern scholars of this period
are fond of saying that the Arabic notation was “rhetorical”, with no
symbolism of any kind. Moreover, the Arabs would typically exhibit
their solutions to algebraic problems using geometric figures. There were
particular difficulties when the solution involved a root (like

√
2, which
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can arise easily in solving a quadratic equation). They did not have an
efficient method for simply writing the solution as we would today.

4.2.2 The Life of Al-Khwarizmi

Abu Ja’far Muhammad ibn Musa Al-Khwarizmi (780 C.E.–850 C.E.)
was likely born in Baghdad, now part of Iraq. The little that we know
about his life is based in part on surmise, and interpretation of evidence.

The “Al-Khwarizmi” in his name suggests that he came from Khwarizm,
south of the Aral Sea in central Asia. But we also have this from an his-
torian (Toomer [GIL]) of the period:

But the historian al-Tabari gives him the addi-
tional epithet “al-Qutrubbulli”, indicating that he
came from Qutrubbull, a district between the Tigris
and Euphrates not far from Baghdad, so perhaps
his ancestors, rather than he himself, came from
Khwarizm . . . Another epithet given to him by al-
Tabari, “al-Majusi”, would seem to indicate that
he was an adherent of the old Zoroastrian religion.
. . . the pious preface to Al-Khwarizmi’s “Algebra”
shows that he was an orthodox Muslim, so Al-
Tabari’s epithet could mean no more than that
his forebears, and perhaps he in his youth, had
been Zoroastrians.

We begin our tale of Al-Khwarizmi’s life by describing the context in
which he developed. Harun al-Rashid became the fifth Caliph of the Ab-
basid dynasty on 14 September 786, at the time that Al-Khwarizmi was
born. Harun ruled in Baghdad over the Islam empire—which stretched
from the Mediterranean to India. He brought culture to his court and
tried to establish the intellectual disciplines which at that time were not
flourishing in the Arabic world. He had two sons, al-Amin the eldest and
al-Mamun the youngest. Harun died in 809 and thus engendered a war
between the two sons.

Al-Mamun won the armed struggle and al-Amin was defeated and
killed in 813. Thus al-Mamun became Caliph and ruled the empire. He
continued the patronage of learning started by his father and founded
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an academy called the House of Wisdom where Greek philosophical and
scientific works were translated. He also built up a library of manuscripts,
the first major library to be set up since that at Alexandria.1 His mission
was to collect important works from Byzantium. In addition to the House
of Wisdom, al-Mamun set up observatories in which Muslim astronomers
could build on the knowledge acquired in the past.

Al-Khwarizmi and his colleagues called the Banu Musa were scholars
at the House of Wisdom in Baghdad. Their tasks there involved the
translation of Greek scientific manuscripts; they also studied, and wrote
on, algebra, geometry, and astronomy. Certainly Al-Khwarizmi worked
with the patronage of Al-Mamun; he dedicated two of his texts to the
Caliph. These were his treatise on algebra and his treatise on astronomy.
The algebra treatise Hisab al-jabr w’al-muqabala was the most famous
and significant of all of Al-Khwarizmi’s works. The title of this text is
the provenance of the word “algebra”. It is, in an important historical
sense, the very first—and historically one of the most important—book
on algebra.

Al-Khwarizmi tells us that the significance of his book is:

. . . what is easiest and most useful in arithmetic,
such as men constantly require in cases of inheri-
tance, legacies, partition, lawsuits, and trade, and
in all their dealings with one another, or where the
measuring of lands, the digging of canals, geomet-
rical computations, and other objects of various
sorts and kinds are concerned.

It should be remembered that it was typical of early mathematics
tracts that they concentrated on, and found their motivation in, practi-
cal problems. Al-Khwarizmi’s work was no exception. His motivations
and his interests may have been abstract, but his presentation was very
practical.

Early in the book Al-Khwarizmi describes the natural numbers in
terms that are somewhat ponderous to us today. But it is easy to see

1This was the great library of the ancient world. It was unfortunately—at least as

far as we know—destroyed by invading hordes.
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that he is thereby laying the foundations of base-ten arithmetic. We
must acknowledge the new abstraction and profundity of what he was
doing:

When I consider what people generally want in
calculating, I found that it always is a number. I
also observed that every number is composed of
units, and that any number may be divided into
units. Moreover, I found that every number which
may be expressed from one to ten, surpasses the
preceding by one unit: afterwards the ten is dou-
bled or tripled just as before the units were: thus
arise twenty, thirty, etc. until a hundred: then the
hundred is doubled and tripled in the same man-
ner as the units and the tens, up to a thousand;
. . . so forth to the utmost limit of numeration.

We should bear in mind that, for many centuries, the motivation for
the study of algebra was the solution of equations. In Al-Khwarizmi’s day
these were linear and quadratic equations. His equations were composed
of units, roots and squares. For example, to Al-Khwarizmi a unit was a
number, a root was x, and a square was x2 (at least this was what he
seemed to be thinking). However, it is both astonishing and significant to
bear in mind that Al-Khwarizmi did his algebra with no symbols—only
words.

Al-Khwarizmi first reduces an equation (linear or quadratic) to one
of six standard forms:2

1. Squares equal to roots.

2. Squares equal to numbers.

3. Roots equal to numbers.

4. Squares and roots equal to numbers; e.g. x2+10x = 39.

2For clarity, we continue to indulge in the conceit here of using semi-modern

notation—notation that Al-Khwarizmi would never have used.
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5. Squares and numbers equal to roots; e.g. x2+21 = 10x.

6. Roots and numbers equal to squares; e.g. 3x+ 4 = x2.

The reduction is carried out using the two operations of “al-jabr” and
“al-muqabala”. Here “al-jabr” means “completion” and is the process
of removing negative terms from an equation. For example, using one
of Al-Khwarizmi’s own examples, “al-jabr” transforms x2 = 40x − 4x2
into 5x2 = 40x. The term “al-muqabala” means “balancing” and is
the process of reducing positive terms of the same power when they
occur on both sides of an equation. For example, two applications of
“al-muqabala” reduces 50 + 3x + x2 = 29 + 10x to 21 + x2 = 7x (one
application to deal with the numbers and a second to deal with the
roots).

Al-Khwarizmi then shows how to solve the six types of equations
adumbrated above. He uses both algebraic methods of solution and
geometric methods. We shall treat his algebraic methodology in detail
below.

Al-Khwarizmi continues his study of algebra in Hisab al-jabr w’al-
muqabala by considering how the laws of arithmetic extrapolate to an
algebraic context. For example, he shows how to multiply out expressions
such as

(a+ bx)(c+ dx) .

Again we stress that Al-Khwarizmi uses only words to describe his ex-
pressions; no symbols are used.

There seems to be little doubt, from our modern perspective, that
Al-Khwarizmi was one of the greatest mathematicians of all time. His
algebra was original, incisive, and profound. It truly change the way that
we think about mathematics.

The next part of Al-Khwarizmi’s Algebra consists of applications and
worked examples. He then goes on to look at rules for finding the area
of figures such as the circle and also finding the volume of solids such as
the sphere, cone, and pyramid. This section on mensuration certainly
has more in common with Hindu and Hebrew texts than it does with
any Greek work. The final part of the book deals with the complicated
Islamic rules for inheritance but requires little from the earlier algebra
beyond solving linear equations. Again, in all these aspects of the book,
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we see the over-arching need to justify the mathematics with practical
considerations.

Al-Khwarizmi also wrote a treatise on Hindu-Arabic numerals. The
Arabic text is lost but a Latin translation, Algoritmi de numero Indo-
rum (rendered in English, the title is Al-Khwarizmi on the Hindu Art of
Reckoning) gave rise to the word “algorithm”, deriving from his name in
the title. The work describes the Hindu place-value system of numerals
based on 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0. The first use of zero as a place
holder in positional base notation was probably due to Al-Khwarizmi in
this work. Methods for arithmetical calculation are given, and a method
to find square roots is known to have been in the Arabic original although
it is missing from the Latin version.

Another important work by Al-Khwarizmi was his work Sindhind zij
on astronomy. The work is based in Indian astronomical works:

. . . as opposed to most later Islamic astronomi-
cal handbooks, which utilised the Greek planetary
models laid out in Ptolemy’s Almagest.

The Indian text on which Al-Khwarizmi based his treatise was one
which had been given to the court in Baghdad around 770 as a gift from
an Indian political mission. There are two versions of Al-Khwarizmi’s
work which he wrote in Arabic but both are lost. In the tenth cen-
tury al-Majriti made a critical revision of the shorter version and this
was translated into Latin by Adelard of Bath. The main topics covered
by Al-Khwarizmi in the Sindhind zij are calendars; calculating true posi-
tions of the sun, moon and planets, tables of sines and tangents; spherical
astronomy; astrological tables; parallax and eclipse calculations; and vis-
ibility of the moon. A related manuscript, attributed to Al-Khwarizmi,
concerns spherical trigonometry.

Although his astronomical work is based on that of the Indians, and
most of the values from which he constructed his tables came from Hindu
astronomers, Al-Khwarizmi must have been influenced by Ptolemy’s
work too.

Al-Khwarizmi wrote a major work on geography which give lati-
tudes and longitudes for 2402 localities as a basis for a world map. The
book, which is based on Ptolemy’s Geography, lists—with latitudes and
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longitudes—cities, mountains, seas, islands, geographical regions, and
rivers. The manuscript does include maps which on the whole are more
accurate than those of Ptolemy. In particular it is clear that where more
local knowledge was available to Al-Khwarizmi such as the regions of Is-
lam, Africa and the Far East then his work is considerably more accurate
than that of Ptolemy, but for Europe Al-Khwarizmi seems to have used
Ptolemy’s data.

A number of minor works were written by Al-Khwarizmi on topics
such as the astrolabe, on which he wrote two works, on the sundial,
and on the Jewish calendar. He also wrote a political history containing
horoscopes of prominent persons.

We have already discussed the varying views of the importance of
Al-Khwarizmi’s algebra which was his most important contribution to
mathematics. Al-Khwarizmi is perhaps best remembered by Mohammad
Kahn:

In the foremost rank of mathematicians of all time
stands Al-Khwarizmi. He composed the oldest
works on arithmetic and algebra. They were the
principal source of mathematical knowledge for
centuries to come in the East and the West. The
work on arithmetic first introduced the Hindu num-
bers to Europe, as the very name algorithm sig-
nifies; and the work on algebra ... gave the name
to this important branch of mathematics in the
European world . . .

4.2.3 The Ideas of Al-Khwarizmi

The ideas discussed thus far in the present chapter are perhaps best
illustrated by some examples.

Example 4.1

Solve this problem of Al-Khwarizmi:

A square and ten roots equal thirty-nine dirhems.

SOLUTION It requires some effort to determine what is being asked. First, a
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dirhem is a unit of money in medieval Arabic times. In modern English (we shall
introduce some mathematical notation later), what Al-Khwarizmi is telling us is
that a certain number squared plus ten times that number (by “root” he means the
number that was squared—what we would call the unknown) equals 39. If we call
this unknown number x, then what is being said is that

x2 + 10x = 39

or
x2 + 10x − 39 = 0 .

Of course the quadratic formula quickly tells us that

x =
−10±

√
102 − 4 · (−39) · 1

2
=
−10±

√
256

2
=
−10 ± 16

2
.

This gives us the two roots 3 and −13.
Now the Arabs could not deal with negative numbers, and in any event Al-

Khwarizmi was thinking of his unknown as the side of a square. So we take the
solution

x =
−10 + 16

2
= 3 .

Thus, from our modern perspective, this is a straightforward problem. We in-
troduce a variable, write down the correct equation, and solve it using a standard
formula.

Matters were different for the Arabs. They did not have notation, and certainly
did not yet know the quadratic formula. Their method was to deal with these matters
geometrically. Consider Figure 4.1. This shows the “square” mentioned in the original
problem, with unknown side length that we now call x. In Figure 4.2, we attach to
each side of the square a rectangle of length x and width 2.5. The reasoning here is
that Al-Khwarizmi tells us to add 10 times the square’s side length. We divide 10
into four pieces and thus add four times “2.5 times the side length”. The quantity
“2.5 times the side length” is represented by an appropriate rectangle in Figure 4.2.

Now we know, according to the statement of the problem, that the sum of the
areas of the square in the middle and the four rectangles around the sides is 39. We
handle this situation by filling in four squares in the corners—see Figure 4.3. Now the
resulting large square plainly has area equal to 39+2.52 +2.52+2.52+2.52 = 64.
Since the large square has area 64, it must have side length 8. But we know that
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Figure 4.2. Sum of shaded areas is 10 × x.
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x

x

2.5

2.5

2.5

2.5

Figure 4.3. Area of large, inclusive square is 64.

each of the squares in the four corners has side length 2.5. It must follow then that
x = 8− 2.5− 2.5 = 3. And that is the correct answer.

For You to Try: Use the method of Al-Khwarizmi to find the positive
root of the quadratic equation

x2 + 5x = 15 .

In fact the method of this last example can be used to solve any
quadratic equation with positive, real roots. We explore this contention
in the exercises.

Now we examine another algebra problem of Al-Khwarizmi. This is
in the format of a familiar sort of word problem. It has interesting social
as well as mathematical content. We shall present the solution both in
modern garb and in the argot of Al-Khwarizmi’s time.

Example 4.2

Solve this problem of Al-Khwarizmi:
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A man dies leaving two sons behind him, and be-
queathing one-fifth of his property and one dirhem
to a friend. He leaves ten dirhems in property and
one of the sons owes him ten dirhems. How much
does each legatee receive?

SOLUTION We already know that a dirhem is a unit of currency. It is curious
that, in Al-Khwarizmi’s time, there was no concept of “estate”. A legacy could only
be left to a person or people, not to an abstraction like an “estate”.

However we understand what an estate is, and it helps us to solve the problem
in modern language. Our solution goes as follows. The dead man’s estate consists
of 20 dirhems: the 10 dirhems that he has in hand and the 10 dirhems owed to him
by his son. The friend receives 1/5 of that estate plus one dirhem. Thus the friend
receives 4 + 1 = 5 dirhems. That leaves the estate with 5 dirhems in hand (the one
son owing another 10 dirhems to the estate) and 10 dirhems owed to it, for a total of
15 dirhems. Thus each son is owed 7.5 dirhems. That means that the son who owes
10 dirhems should pay the estate 2.5 dirhems. Now the estate has 7.5 dirhems cash
in hand. And that amount is paid to the other son.

Since Al-Khwarizmi did not have the abstraction of “estate” to aid his reasoning,
he solved the problem with the following chain of logic:

Call the amount taken out of the debt thing. Add this to
the property. The sum is 10 dirhems plus thing. Subtract
1/5 of this, since he has bequeathed 1/5 of his property to
the friend. The remainder is 8 dirhems plus 4/5 of thing.
Then subtract the 1 dirhem extra that is bequeathed to the
friend. There remain 7 dirhems and 4/5 of thing. Divide
this between the two sons. The portion of each of them is
three and one half dirhems plus 2/5 of thing. Then you
have 3/5 of thing equal to three and one half dirhems.
Form a complete thing by adding to this quantity 2/3 of
itself. Now 2/3 of three and one half dirhems is two and
one third dirhems. Conclude that thing is five and five
sixths dirhems.
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In one of the exercises we shall ask you to reconcile Al-Khwarizmi’s
solution of the problem with our own solution that we presented at first.

For You to Try: Solve Al-Khwarizmi’s preceding problem if there
are three sons instead of two (and the friend still receives the indicated
share).

4.2.4 Omar Khayyam and the Resolution of the Cubic

Omar Khayyam (1050–1123) is famed, and still well-remembered, for his
beautiful poem The Rubaiyat. The words “A loaf of bread, a jug of wine,
and thou beside me in the wilderness” ring down through the ages. It is
perhaps less well known that Khayyam was an accomplished astronomer
and mathematician. He is remembered particularly for his geometric
method of solving the cubic equation (we will also discuss the cubic
equation, from a somewhat more modern point of view, in Section 6.6).
Here we give an example to illustrate the technique of Omar Khayyam.

Example 4.3

Consider the cubic equation

x3 +Bx = C ,

where B,C are positive constants. Find all positive, real solu-
tions.

SOLUTION The first step is to choose positive numbers b, c so that b2 = B
and b2c = C . We know we can do this because every positive number has a square
root, and every linear equation has a solution.

Thus the equation becomes

x3 + b2x = b2c .

Now we construct a parabola whose latus rectum is b.3 It is intuitively clear that the

3The latus rectum of an upward-opening parabola is the horizontal line segment that

begins and ends on the parabolic curve and passes through the focus—see Figure 4.4.
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Figure 4.4. The latus rectum.

length of the latus rectum uniquely determines the shape of the parabola. Notice that
the point Q in Figure 4.5 figure is the vertex of the parabola (we may take Q to be
the origin if we wish). The segment QR which is shown has length c. Now consider
the semicircle with diameter QR. The point P is defined to be the intersection of
the parabola and the semicircle. The segment PS is erected to be perpendicular to
the segment QR. Then the length α = QS is a root of the cubic equation.

Let us explain why this last statement is true. Because the latus rectum has
length b, we know that the focus of the parabola is at the point (0, b/4). Moreover
the directrix is the line y = −b/4. We can be sure (from our synthetic definition of
parabola in Section 3.2) that the parabola has equation y = x2/b. Thus, in Figure
4.5,

PS = α2/b . (?)

This relation may be rewritten as

b

α
=

α

PS
. (∗)

A basic property of semicircles tells us that the triangle 4QPR is a right
triangle (with right angle at P ). Since PS is an altitude of this triangle, we can be
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Q

P

RS

c -

c

Figure 4.5

sure that
α

PS
=

PS

c− α . (∗∗)

Equations (∗) and (∗∗) together tell us that

b

α
=

PS

c− α . (∗∗∗)

But (?) tells us that

PS =
α2

b
.

Substituting this value for PS into (∗∗∗) now tells us that

b

α
=

α2/b

c− α .

Simplifying this last identity yields that

α3 + b2α = b2c .

Thus the positive number α solves the cubic.
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We reiterate that the Arabs only understood positive, real roots of
polynomial equations. Gauss’s Fundamental Theorem of Algebra (Sec-
tion 6.7) was centuries off. Negative numbers and certainly complex
numbers were still a mystery.

4.3 The Geometry of the Arabs

4.3.1 The Generalized Pythagorean Theorem

Arab geometry took many forms. We have already seen that they used
geometry to analyze the roots of polynomial equations. The Arabs took a
great interest in the parallel postulate and the existence of non-Euclidean
geometries (a topic that we shall discuss later in the book), although
their efforts were not very successful. We will begin our analysis of Arab
geometry by considering a remarkable generalization of the Pythagorean
theorem.

At this time you may wish to review our discussion of Pythagoras’s
theorem in Chapter 2. That result was formulated specifically for, and in
fact only holds true for, right triangles. The generalization of the result
that is due to Thabit ibn-Qurra in fact applies to all triangles.

Before we begin we must review the concept of similarity of triangles.
Consider the two triangles 4ABC and 4A′B′C ′ in Figure 4.6. They
appear to have the same shape. This means that the corresponding
angles are equal:

• the angle at A equals the angle at A′,

• the angle at B equals the angle at B′,

• the angle at C equals the angle at C ′.

It also means that the corresponding ratios of sides are equal. For ex-
ample,

• AB

BC
=
A′B′

B′C ′ ,

• AB

AC
=
A′B′

A′C ′ .
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We may formulate these corresponding ratios in a slightly different
fashion as follows:

• AB

A′B′ =
AC

A′C ′ ,

• BC

B′C ′ =
AC

A′C ′ .

What is of particular interest is finding conditions that are sufficient
to guarantee that two given triangles are similar. Such a condition will
(unlike the concept of congruence) not involve equality of side lengths—
after all, one triangle is larger than the other. In fact the most useful
condition of this nature is the following:

Consider the triangles 4ABC and 4A′B′C ′ in
Figure 4.7. If either

• The angle at A equals the angle at A′ and
the angle at B equals the angle at B′

or

• The angle at A equals the angle at A′ and
the angle at C equals the angle at C ′

or

• The angle at B equals the angle at B′ and
the angle at C equals the angle at C ′
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then 4ABC is similar to 4A′B′C ′.

Thus, in order to test two triangles for similarity, we need only estab-
lish that two of the corresponding pairs of angles are equal. [Of course
we know that the sum of the three angles in a triangle is 180◦. Hence if
two pairs of the angles are equal then the third pair is equal also.] Since
we know that the sum of the angles in a triangle is 180◦, it must then
follow that the third pair of angles are equal. So the triangles are the
same shape and hence similar.

Now we may state the generalized Pythagorean theorem that was
discovered by the Arabs.

Theorem: Let 4ABC be a planar triangle, with
BC its longest side. Refer to Figure 4.8. Choose
the point B′ on the segment BC so that the angle
6 B′AB (in dashes) is equal to angle 6 C (i.e., the
angle at the vertex C in the triangle). Choose
the point C ′ on the segment BC so that the angle
6 C ′AC (in dots) is equal to angle 6 B (the angle
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A

B C
C’ B’

Figure 4.8

at vertex B in the triangle). Then

AB
2
+AC

2
= BC · (BB′ + CC ′) .

For the verification of this theorem, study Figure 4.8. Choose the
points B′ and C ′ as in the statement of the theorem. We see that angle
6 AB′B (marked with a single slash) equals angle 6 CAB and the angle
6 AC ′C (marked with a double slash) equals angle 6 BAC.

It results—since 6 AB′B = 6 CAB and 6 ABB′ = 6 CBA—that trian-
gle4B′BA is similar to the original triangle4ABC. Also, by analogous
reasoning, 4C ′AC is similar to the original triangle 4ABC. Thus we
have the identical ratios

AB

BB′ =
BC

AB
.

Likewise we see that
AC

CC ′ =
BC

AC
.

From the first of these equations we derive (clearing denominators) that

AB
2

= BC ·BB′ .
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12
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Figure 4.9

From the second we derive that

AC
2

= BC · CC ′ .

Adding these together yields that

AB
2
+AC

2
= BC ·BB′ +BC · CC ′ = BC · (BB′ + CC ′) .

This is the desired result.

In Exercise 7 you will be asked to show that, for a right triangle, this
new theorem of Thabit ibn Qurra reduces to the classical Pythagorean
theorem.

4.3.2 Inscribing a Square in an Isosceles Triangle

In fact our friend Al-Khwarizmi examined a problem based on the isosce-
les triangle shown in Figure 4.9. Figure 4.10 shows the inscribed square
that we seek. Al-Khwarizmi would have used the name “thing” to refer
to the side-length of the square. Now we shall emulate the analysis that
he might have done more than 1000 years ago.

The area of the square is of course (thing) × (thing). Notice that,
in the figures, we denote the side of the square by “x”. But we call
it “thing”. Figure 4.11 shows how we might analyze the areas of the
triangles.
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The small right triangle on the left has base 6 − x/2 and height x.
Similarly for the small right triangle on the right. Thus the total area of
the two triangles is x(6− x/2).

We may solve for the altitude of the large isosceles triangle using the
Pythagorean theorem. It equals

√
102 − 62 = 8. Thus the small isosceles

triangle at the top of the figure has base x and height 8−x. We conclude
that that triangle has area [x/2] · (8− x).

In summary, then, the total area of the large isosceles triangle may
be written in two ways. On the one hand, the triangle has base 12 and
height 8. So its area is 1

2
· 12 · 8 = 48. On the other hand the area is the

sum of the areas of the square and the three little triangles. So we have

48 = x2 + x ·
(
6 − x

2

)
+
x

2
· (8− x) .

This simplifies to

48 = 10x

hence x = 4.8. That is the solution to Al-Khwarizmi’s problem.

4.4 A Little Arab Number Theory

The Arabs were fascinated by a technique that has come down through
the ages as “Casting Out Nines”. The basic rule for casting out nines
for a positive integer N is to add its digits together. Thus

4873→ 4 + 8 + 7 + 3 = 22→ 2 + 2 = 4 .

We began here with the positive integer 4873. We added together its
digits: 4 + 8 + 7 + 3 = 22. Then we again added together the digits of
22—2 + 2 = 4—to obtain 4. Part of the rule of casting out nines is that
if we ever encounter a 9 then we set it equal to 0. Thus if we cast out
nines on the number 621 we obtain 6 + 2 + 1→ 9→ 0.

The remarkable thing about casting out nines is that the process
respects addition and multiplication. If we let “c.o.n.” stand for casting
out nines, then we have

c.o.n.[k +m] = c.o.n.(k) + c.o.n.(m)
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and
c.o.n.[k ·m] = c.o.n.(k) · c.o.n.(m) .

Thus casting out nines can be used to check arithmetic problems.
We illustrate the idea with some examples.

Example 4.4

Using casting out nines to check whether

693 × 42 = 29206 .

SOLUTION Casting out nines on the left gives

6 + 9 + 3 = 18→ 9→ 0

and
4 + 2 = 6 .

Therefore
693 × 42→ 0× 6 = 0 .

Casting out nines on the right gives 2 + 9 + 2 + 0 + 6 = 19→ 10→ 1.
Thus the result of casting out nines gives 0 × 6 = 0 on the left and 1 on the

right. These do not match. Thus the multiplication is incorrect. In fact checking
with a calculator gives that 693 × 42 = 29106.

Casting out nines does not provide a failsafe method for checking
arithmetic problems. For example, casting out nines on 6 × 8 gives 14
and then 5. Casting out nines on 23 also gives 5. Yet it certainly is not
the case that 6 × 8 = 23. What is true is this: If casting out nines does
not work then the original arithmetic problem is incorrect. If casting out
nines does work then it is likely that the original arithmetic problem was
correct. But it is not guaranteed.

Example 4.5

Check whether the addition

385 + 2971 + 1146 = 4502 (?)

is correct.
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SOLUTION Casting out nines on the left gives

3 + 8 + 5 = 16→ 7

and
2 + 9 + 7 + 1 = 19→ 10→ 1

and
1 + 1 + 4 + 6 = 12→ 3 .

Casting out nines on the right yields

4 + 5 + 0 + 2 = 11→ 2 .

Altogether then, applying casting out nines to the equation (?) gives the result

7 + 1 + 3 ∼= 2 ,

where we use the notation∼= to indicate equivalence under casting out nines. Casting
out nines on the left yields 11 ∼= 2 or 2 = 2.

Thus the casting out nines checks out. This does not guarantee that our original
addition was correct. But it provides strong evidence that it is.

What is interesting for us is why the method of casting out nines
works. And the answer, in our modern language, is simplicity itself:

Casting out nines is nothing other than arithmetic
modulo 9. And arithmetic modulo 9 respects ad-
dition and multiplication.

Modular arithmetic will be discussed in greater detail later in the text
(Section 18.3). Suffice it to say for now that we do arithmetic modulo 9
by subtracting from any number all the multiples of 9 that we possibly
can. Thus

17 mod 9 = 8 ,

94 mod 9 = 4 ,

87 mod 9 = 6 ,

and
−5 mod 9 = 4 .
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We can perform addition and multiplication modulo 9. For instance,

[23 + 35] mod 9 = 58 mod 9 = 4 mod 9 .

This may also be performed by first reducing the summands modulo 9:

23 mod 9 + 35 mod 9 = 5 mod 9 + 8 mod 9 = 13 mod 9 = 4 mod 9 .

Matters are similar with multiplication:

[12 mod 9] · [15 mod 9] = [3 mod 9] · [6 mod 9] = 18 mod 9 = 0 mod 9 .

To understand now why casting out nines works, first note that

1 mod 9 = 1 ,

10 mod 9 = 1 ,

100 mod 9 = 1 ,

1000 mod 9 = 1 ,

and so forth. Now let us look at a specific example.

Consider the number 5784. Then

5784 mod 9 = [5000 + 700 + 80 + 4] mod 9

= 5 · [1000 mod 9] + 7 · [100 mod 9] + 8 · [10 mod 9] + 4 · [1 mod 9]

= (5 · 1 + 7 · 1 + 8 · 1 + 4 · 1) mod 9

= (5 + 7 + 8 + 4) mod 9 .

In other words, we see rather directly that casting out nines on the
number 5794 consists of just adding the digits together. If the result is
greater than 9, we just add the digits together again. If the digit 9 occurs
then we replace it by 0 (which is consistent with arithmetic modulo 9).

Of course the Arabs did not have modular arithmetic at their dis-
posal. Their reasoning was more indirect. But they nonetheless gave us
a useful and fascinating arithmetical tool.
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Exercises

1. Use the method of Example 4.1 to solve the quadratic
equation

x2 + x− 2 = 0 .

Can you find both roots, or just the positive root?

2. What goes wrong if we endeavor to use the method of
Example 4.1 to solve the quadratic equation

x2 + x+ 4 = 0 ?

(Note that this quadratic equation has complex roots.)
Discuss in class.

3. What goes wrong if we endeavor to use the method of
Example 4.1 to solve the quadratic equation

x2 + 3x+ 2 = 0 ?

Discuss in class.

4. Explain why the modern solution and Al-Khwarizmi’s
solution of Example 4.2 are consistent.

5. Solve the following algebra problem of Al-Khwarizmi:

A man marries while in his final illness and
pays a marriage settlement of his entire prop-
erty in the amount of 100 dirhems, 10 dirhems
of which was his wife’s dowry. His plans are
upset, however, as his wife dies first, leaving
one-third of her property to a third party, af-
ter which the husband dies. There are then
three sets of claimants to the 100 dirhems:
(1) the third party, (2) the wife’s direct heirs
(her family), and (3) the husband’s direct
heirs (his children or parents). How is the
estate to be divided up?
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Certainly discuss this question in class.

6. The Arab mathematician Nasir-Eddin proved that if
you roll a circle of radius r around the inside edge of
a circle of radius 2r, and if the smaller circle has a dot
on the edge, then the dot will trace out a diameter of
the larger circle. Draw a picture to illustrate this result.
Now try to verify it. Discuss this problem in class.

7. Suppose that 4ABC is a right triangle with right angle
at A. Apply Thabit ibn-Qurra’s generalization of the
Pythagorean theorem and show that, in this case, his
result reduces to the standard Pythagorean theorem.

8. This problem comes from Al-Khwarizmi’s Algebra. You
should solve it. A woman dies and leaves her daugh-
ter, her mother, and her husband. She bequeaths to
some person as much as the share of her mother and to
another person as much as one-ninth of her entire cap-
ital. Find the share of each person. [Note: It is known,
from Arab legal principles of the time, that the mother’s
share would be 2/13 and the husband’s share 3/13.]

9. Abu Kamil (850 C.E.–930 C.E.) wrote a commentary on
Al-Khwarizmi’s Algebra. In it, he contributed a number
of ingenious algebra problems. Solve the following one:
The number 50 is divided by a certain other number. If
the divisor is increased by 3, then the quotient decreases
by 3 3/4. What is the divisor?

10. The method of “Casting out Elevens” is mathematically
equivalent to doing arithmetic modulo 11 (just as we
learned in the text for casting out nines). Casting out
elevens is performed on a positive integer by (i) adding
up the digits in the odd positions, (ii) adding up the
digits in the even positions, and (iii) subtracting the
second sum from the first. Explain why this method
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works. Use the method of casting out elevens to check
the examples in the text.

11. The Arabs were interested in the question of finding the
center of a sphere if you are given finitely many points
on that sphere. Recall that, for a circle in the plane,
three distinct points on the circle uniquely determine
its center. How many points are needed to determine
the center of a sphere?

12. A pair of positive integers is amicable if each is equal
to the sum of the proper divisors of the other. For
example, the numbers 220 and 284 are amicable. For
notice that the proper divisors (sometimes called the
aliquot divisors) of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44,
55, 110 and these sum to 284; also the proper divisors
of 284 are 1, 2, 4, 71, 142 and these sum to 220. Thabit
ibn Qurra found the following formula for generating
pairs of amicable numbers. If n is a positive integer
then set

h = 3 · 2n − 1 t = 3 · 2n−1 − 1 s = 9 · 22n−1 − 1 .

If h, t, s are all prime numbers then 2n · h · t and 2n · s
are amicable. Verify that, for n = 2, Thabit ibn Qurra’s
formula gives the pair of amicable numbers that we just
discussed. Also check that, for n = 4, this formula gives
a new pair of amicable numbers. Discuss your results in
class. Today about 6, 262, 871 pairs of amicable num-
bers have been identified. Nobody knows whether this
formula will generate infinitely many pairs of amicable
numbers. Explain what this last statement means in
the context of what went before.

13. Heron’s formula for finding the area of a triangle was
known both to the Hindus and the Arabs. It says this.
Let a, b, c be the side lengths of a given triangle. Let
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s = (a+ b+ c)/2 be the semi-perimeter. Then the area
A of the triangle is given by

A =
√
s(s− a)(s− b)(s− c) .

Verify Heron’s formula for some triangles that you know.
Discuss in class why Heron’s formula might be true.
[Hint: Think about the symmetric roles of a, b, c.]

14. Refer to Exercise 13. Why does Heron’s formula imply
the Pythagorean theorem?
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Chapter 5

Cardano, Abel, Galois, and the
Solving of Equations

5.1 Introduction

Ever since the eighth century among Arab scholars, algebra has exerted
a profound influence on modern mathematics. One of the prevailing
themes has been the solving of equations—especially polynomial equa-
tions. Early on, mathematicians realized that some equations, such as

2x+ 3 = 9 ,

can be solved by elementary manipulation. One writes

[2x+ 3]− 3 = 9− 3 ,

then

2x = 6

hence

x = 3 .

More interesting are the higher-order equations. An equation like

x2 − 5x+ 6 = 0

can be factored as

(x− 2)(x− 3) = 0

123
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and a complete solution (namely x = 2, x = 3) obtained. Other equa-
tions, such as

x2 + 1 = 0 ,

do not admit real solutions. This was certainly one of the motivations for
the invention of the complex number system. In the present chapter we
shall concentrate our attention on real solutions of polynomials. Later
on we shall consider the complex number system.

A mathematical program of long standing was to determine which
polynomial equations are solvable. Particularly, which ones are solv-
able by a procedure of finitely many operations of arithmetic and taking
roots? And which are not? For those which are solvable, what is an
algorithm or methodology for finding the solution(s)? Can one write an
explicit formula for the solution(s)? Work on these problems absorbed
many centuries.

5.2 The Story of Cardano

We begin our saga with an account of the life of Girolamo Cardano (1501
C.E.–1576 C.E.). His actual name was Hieronymus Cardano. But he is
sometimes known by the English version of his name: Jerome Cardan.

He was the illegitimate child of Fazio Cardano and Chiara Micheria.
His father was a lawyer in the Italian city of Milan. But his father knew
quite a lot of mathematics; he was actually consulted by Leonardo da
Vinci on questions of geometry. In addition to practicing law, Fazio
Cardano lectured on geometry at the University of Pavia and the Piatti
foundation in Milan.

Girolamo Cardano’s mother was struck by the plague when she was
pregnant for him. She repaired to Pavia for safety, and stayed with
wealthy friends of Fazio. Her other children died of the plague, but
Girolamo survived.

After Girolamo Cardano grew up, he became his father’s assistant.
But his health was very poor, and he required assistance from two
nephews in order to perform some of the more arduous tasks.

Over his father’s objections, Girolamo Cardano ended up entering
the University of Pavia and studying medicine (his father wanted him to
study law, of course). War broke out and interrupted Cardano’s studies.
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He was forced to transfer to the University of Padua. Cardano was
always outspoken and politically oriented. He campaigned to become
rector of the university, and he succeeded.

Being a fiery and irrepressible personality, Cardano squandered the
small bequest that his father left when he died around this time. He
ended up supporting himself by gambling—at cards, dice, and chess. Be-
ing a mathematician by nature, he understood probability theory rather
well. So he was better equipped to gamble than most, and he won more
than he lost. He managed to support himself with gambling, and his
addiction to the pastime persisted for years.

Cardano did succeed in earning his medical degree in 1525 C.E..
He applied to join the College of Physicians in Milan. But his difficult
personality turned out to be a problem for the admissions committee.
When they learned that he was a bastard child, they found grounds to
decline his application.

Cardano then went to the small village of Sacco near Padua. There
he was able to set up a medical practice. Cardano subsequently married,
but his modest practice did not give him the resources to support a
family. He moved to Gallarate, near Milan. He was again turned down
by the College of Physicians, and he found himself unable to practice
medicine. He reverted again to gambling, and he also hocked many
family valuables. Things went from bad to worse, and the Cardanos
ended up in the poorhouse.

Cardano was finally able to assume his father’s position as lecturer
at the Piatti Foundation in Milan. This allowed him some free time, and
he was able to treat some patients. He had such success as a practicing
physician that he was able to build a coterie of backers. Cardano con-
tinued to be resentful that he could not gain admission to the College
of Physicians. In 1536 he then published a book attacking the College’s
medical abilities and also it’s character. A passage from the book gives
a sense of its quality:

The things which give most reputation to a physi-
cian nowadays are his manners, servants, carriage,
clothes, smartness and caginess, all displayed in a
sort of artificial and insipid way . . .
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This broadside aggravated the College of Physicians even further, and
they continued to rebuff Cardano’s applications. However, in 1539, Car-
dano’s admirers convinced the college to modify the clause excluding
illegitimate children. Cardano was finally admitted. In that same year,
Cardano’s first two mathematical books were published. Cardano sub-
sequently published numerous other books on mathematics; he wrote on
topics as diverse as medicine, philosophy, astronomy, and philosophy.

In 1539 Cardano approached Tartaglia, who had achieved fame in
winning a contest on solving cubics; he endeavored to convince Tar-
gaglia to divulge his methods. It should be understood that it was not
common for scientists in those days to publish their results or their meth-
ods. Much was kept secret. He finally convinced Tartaglia to share his
ideas, on the condition that Cardano would not publish the ideas until
he (Tartaglia) himself had published them. In fact Cardano’s oath was

I swear to you, by God’s holy Gospels, and as
a true man of honour, not only never to publish
your discoveries, if you teach me them, but I also
promise you, and I pledge my faith as a true Chris-
tian, to note them down in code, so that after my
death no one will be able to understand them.

Cardano spent the next six years in intense study of the solution of cubic
and quartic equations.

One of Cardano’s difficulties with this study was that he often was
forced to confront roots of negative numbers. Complex numbers were
not an established tool for mathematicians of the age. Even though
the ultimate solution of the problem at hand was usually a genuine real
number, the complex numbers came up as tools along the way. Cardano
wrote to Tartaglia on August 4, 1529:

I have sent to enquire after the solution to various
problems for which you have given me no answer,
one of which concerns the cube equal to an un-
known plus a number. I have certainly grasped
this rule, but when the cube of one-third of the
coefficient of the unknown is greater in value than
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the square of one-half of the number, then, it ap-
pears, I cannot make it fit into the equation.

Ultimately Cardano exhibited the means for dealing with this diffi-
culty, and as a result Tartaglia was jealous. He regretted revealing his
methods to Cardano. He endeavored to confuse Cardano with his reply
to the letter. But a feud raged between the two mathematicians.

In 1540 Cardano resigned his post at the Piatti Foundation. The
vacancy was filled by Cardano’s assistant Ferrari, who had brilliantly
solved quartic equations by radicals. From 1540 to 1542 Cardano spent
his time gambling and playing chess all day. From 1543 to 1552 Cardano
lectured on medicine at the Universities of Milan and Pavia.

In 1543 Cardano realized that Tartaglia had not been the first to
solve cubics by radicals. He therefore felt justified in publishing what
he knew on the subject. Thus in 1545 he published his masterpiece Ars
Magna. This book contains, among other important facts, the very first
calculations with complex numbers.

Although Cardano’s wife died in 1546, he was not much taken aback
by this loss. He had achieved considerable fame with his writings, and
had finally been elected rector of the College of Physicians. He was, by
some measures, the most famous physician in the world. He received
offers from heads of state all over Europe to tend to their medical needs.

In 1552 Cardano was asked by the Archbishop of St. Andrews to
treat his asthma. Although Cardano had routinely declined invitations of
this sort, he found time to accept this one. He undertook the considerable
journey, and was able to treat and to cure the Archbishop’s illness. He
was paid over 2000 gold crowns as an honorarium, and his considerable
reputation was even more enhanced. On his return to Italy, Cardano
was appointed Professor of Medicine at the University of Pavia.

Unfortunately, it was at this point in time that Cardano’s life was
struck by his profoundest tragedy. It affected him deeply, and led to his
decline and to his death.

Cardano’s eldest son Giambatista had studied medicine and quali-
fied as a physician in 1557. But, meanwhile, he had married a woman of
whom Girolamo disapproved. In fact he characterized her as “a worth-
less, shameless woman.” The elder Cardano supported his son finan-
cially and the young couple kept house with her parents. But the young
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woman’s parents seemed to be scheming to extort money from Giambat-
ista and his wealthy father. And she mocked her new husband for not
being the father of her three children.

Giambatista took the situation badly, and ended up poisoning his
wife. The young man confessed the crime and was ultimately brought
to trial. The judge demanded, as part of the settlement, that Gerolamo
Cardano make peace with his son’s wife’s parents. They demanded a
payment which was far beyond Cardano’s means. So Giambatista was
kept in prison and tortured. His left hand was cut off. On April 13,
1560, Giambatista Cardano was executed.

The elder Cardano never recovered from these circumstances. He
tormented himself for failing to rescue his son. Since he was now the fa-
ther of a convicted murderer, he became a hated man. He had to move,
and obtained a Professorship of Medicine at the University of Bologna
(the oldest university in the Western world). But his time in Bologna
was plagued by controversy. His arrogant manner and questionable rep-
utation combined to alienate him from his colleagues. At one point they
conspired to have him dismissed from his post.

Cardano had additional problems with his children. His remaining
son Aldo was a compulsive gambler who spent his time with low life.
Cardano wrote in his autobiography of the four greatest disappointments
in his life:

The first was my marriage; the second, the bitter
death of my son; the third, imprisonment ; the
fourth, the base character of my youngest son.

In fact, in 1569, young Aldo gambled away all of his clothes and
possessions as well as a notable portion of his father’s assets. He even
broke into his father’s house and stole jewelry, cash, and valuables. Car-
dano was forced to report Aldo to the authorities, and the miscreant was
banished from Bologna.

In 1570 Girolamo Cardano himself was jailed for heresy. He had
cast a horoscope of Jesus Christ and written a book in praise of Nero
(tormentor of the Christian martyrs). Evidently this was an attempt to
pump up his notoriety and perpetuate his name. But this made him
obvious fodder for the Spanish Inquisition, and he suffered accordingly.
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Fortunately for Cardano, he was given lenient treatment (in part
because public opinion had come full circle and there was actually con-
siderable sympathy for Cardano in those days). He only served a short
time in prison. But he was banned from the university and forbidden
from publishing his work.

At this point in his life Cardano moved to Rome. There he received a
surprisingly warm reception. He was granted membership in the College
of Physicians. The Pope gave Cardano a pardon, and granted him a
pension. It was at this time that Cardano wrote his autobiography and
published it in Paris and Amsterdam.

One of the legends of Girolamo Cardano is that he predicted the
exact date of his own death. But he achieved this feat by committing
suicide.

In addition to Cardano’s significant contributions to algebra he also
made important contributions to probability, hydrodynamics, mechanics
and geology. He wrote a number of important and influential books, and
he was the first ever to write on the subject of probability and its appli-
cations to gambling. He even wrote two encyclopedias of natural science,
which were comprehensive compendia of all the scientific knowledge of
the day.

Girolamo Cardano was a multi-talented individual who made pro-
found contributions to the development of mathematics. His chaotic
personal life certainly cut into, and in the end cut short, his scientific
activities and contributions. But he will long be remembered for his
significant ideas.

5.3 First-Order Equations

Girolamo Cardano is best remembered for the solution of algebraic (es-
pecially polynomial) equations. Thus we will concentrate here on topics
of that nature.

Of course solving a linear equation, one of the form

ax+ b = c ,

is trivial. One engages in simple manipulations, such as

ax = c− b
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1

a
· ax =

1

a
· (c− b)

x =
c− b
a

.

to find the complete solution. And this method works on all linear (or
first-order) polynomial equations.

For You to Try: Solve the equation

3x− 9 = 15 .

5.4 Rudiments of Second-Order Equations

Second order, or quadratic, equations are slightly more subtle. A quadratic
equations has the form

ax2 + bx+ c = 0 .

Here a, b, c are real constants which can be positive, negative, or zero.
In the special case that b = 0, we have

ax2 + c = 0

or
ax2 = −c .

Division by a yields

x2 = − c
a

hence

x = ±
√
− c
a
.

In summary, the quadratic equation

ax2 + c = 0
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has the two solutions x =
√
−c/a and x = +

√
−c/a. This is all correct

provided that −c/a ≥ 0, so that the square root operation is valid.

For You to Try: Solve the quadratic equation

8x2 − 4 = 0 .

You should find two solutions.

The philosophy for solving a general quadratic equation is a time-
honored one in mathematics: to reduce the general case to the special
case that we have already understood. We do this by the method of
completing the square. Let us first acquaint ourselves with that technique
before we proceed.

5.5 Completing the Square

Consider the square expression

A = (x+ α)2 .

Formulas like this are common in elementary algebra. We frequently
want to multiply it out so that we can manipulate it more effectively. In
fact we may write

A = (x+α)(x+α) = x · (x+α)+α · (x+α) = x ·x+x ·α+α ·x+α ·α .

Combining terms finally gives

A = (x+ α)(x+ α) = x2 + 2αx+ α2 . (∗)

Now it is also worthwhile to be able to look at a quadratic expression
and recognize when it is a square. In examining (∗), we observe that it
has a special feature:

A = x2 + 2αx+ α2 . (?)

The number whose square gives the constant term (namely, α) is just
half of the coefficient of the x-term. Let us examine this feature in the
context of a specific example.
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Example 5.1

Consider the expression

A = x2 + 8x+ 16 .

Observe that half the coefficient of x is 4; and 42 = 16—which is
the constant term. This matches equation (?) exactly. So A must
be a perfect square. In fact it must be that α = 4 hence

A = x2 + 8x+ 16 = (x+ 4)2 .

Example 5.2

Examine the polynomial

C = x2 − 6x + 9 .

Notice that half the coefficient of x is −3; and (−3)2 = 9—which
is the constant term. According to our analysis of equation (?),
we know then that C is a perfect square. In fact α = −3 hence

C = x2 − 6x+ 9 = (x− 3)2 .

Example 5.3

Let us determine whether

D = x2 − 20x + 140

is a perfect square. We see that half the coefficient of x is −10
and (−10)2 = 100 6= 140. So the square of half the coefficient of
x is not the constant term. Thus D is not a perfect square. Put
in other words: the coefficient of the x-term forces α = −10; but
the square of this α does not match the constant term.

Even in this circumstance, we may rewrite D in terms of a
square. Using the fact that (−10)2 = 100, we rewrite D as

D = [x2 − 20x + 100] + 40 .

According to our calculations, the expression in brackets is in fact
a perfect square. So we finally may write

D = (x− 10)2 + 40 .
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5.6 The Solution of a Quadratic Equation

Let us now use the philosophy of completing the square, combined with
the methodology for solving ax2 + c = 0, to solve an arbitrary quadratic
equation. It is natural to build on the ideas in Section 5.4, 5.5 in order
to treat the general case.

Now our general quadratic equation is

ax2 + bx+ c = 0 .

We may assume that a 6= 0, otherwise the equation has no quadratic
term and it is in fact linear. Let us then divide out by a:

1

a

[
ax2 + bx+ c

]
= 0 .

This reduces to

x2 +
b

a
x+

c

a
= 0 .

Write this as [
x2 +

b

a
x
]

+
c

a
= 0 .

We know from the last example that the expression in brackets may
be turned into a perfect square by the following device: We divide the
coefficient of x by two and square it, then add the result on as our
constant term. Thus we need

(
1

2
· b
a

)2

=
b2

4a2
.

This is what we must add to the expression in brackets. But if we add a
number to one side of the equation then of course we must add it to the
other side (this is the Arab philosophy of keeping the equation balanced
or al-jabr, that we encountered in Chapter 4). The result is

[
x2 +

b

a
x+

b2

4a2

]
+
c

a
=

b2

4a2

or [
x+

b

2a

]2
=

b2

4a2
− c

a
.
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It is convenient to put the righthand side over a common denominator
so that we have [

x+
b

2a

]2
=
b2 − 4ac

4a2
.

The equation we have now is quite analogous to the sort of quadratic
equation that we solved in Section 5.4: something squared equals a con-
stant. The natural thing to do now is take the square root of both sides.
We must remember, of course, that a positive real number has both a
positive square root and a negative square root. The result is

x+
b

2a
= ±

√
b2 − 4ac

4a2

or

x+
b

2a
= ±
√
b2 − 4ac

2a
.

Now a little algebraic manipulation allows us to rewrite our result as

x = − b

2a
±
√
b2 − 4ac

2a

or

x =
−b±

√
b2 − 4ac

2a
. (†)

Of course this is the familiar quadratic formula that we all learn in
high school algebra. There is evidence that the Egyptians dealt with
quadratic equations (in the so-called Berlin Papyrus). The Babylonian
tablet Plimpton 322 contains many fascinating calculations along these
lines. There are even more definite indications that the ancient Greeks
and Hindus knew the quadratic formula (around 500 B.C.E.). It was
almost certainly then passed on to the Arabs.

Example 5.4

Find all the roots of the quadratic equation

x2 + 3x − 10 = 0 .
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SOLUTION This equation is in the standard form of a quadratic equation, with
a = 1, b = 3, and c = −10. According to the quadratic formula (†),

x =
−3 ±

√
32 − 4 · 1 · (−10)

2 · 1

=
−3 ±

√
49

2

=
−3 ± 7

2

=





2

−5 .

Example 5.5

Find all the roots of the quadratic equation

x2 + 3x− 7 = 0 .

SOLUTION Of course this equation fits our paradigm for a quadratic equation
with a = 1, b = 3, c = −7. According to the quadratic formula (†),

x =
−3±

√
32 − 4 · 1 · (−7)

2 · 1

=
−3±

√
9 + 28

2

=
−3±

√
37

2

=





−3 +
√

37

2

−3−
√

37

2
.
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Example 5.6

Find all the roots of the quadratic equation

5x2 − 8x+ 2 = 0 .

SOLUTION This equation certainly fits our paradigm for a quadratic equations
with a = 5, b = −8, c = 2. The solution is therefore

x =
−(−8)±

√
(−8)2 − 4 · 5 · 2
2 · 5

=
8 ±
√

64 − 40

10

=
8 ±
√

24

10

=





8 +
√

24

10

8 −
√

24

10
.

5.7 The Cubic Equation

It is Geronimo Cardano (1501–1576) who deserves the credit for finally
taming the cubic equation. Cardano also solved the quartic, or fourth-
degree; equation. Both solutions appeared in Cardano’s important trea-
tise Ars magna. It should be noted that Cardano’s work was in some
ways anticipated by work of Scipione del Ferro (1465–1526) and Niccolo
Tartaglia (1500–1557) and Lodovico Ferrari (1522–1565). We shall only
treat the cubic equation in this text. The analysis of the quartic equation
is similar, but much more complicated. In fact one solves the quartic by
reducing it to a cubic. Well, big surprise. We shall in fact solve the cubic
by reducing it to a quadratic. This is how mathematics works.
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5.7.1 A Particular Equation

Let us begin by examining a particular cubic equation—one that Car-
dano wrote about in Ars magna in 1545. Of course Cardano did not
have our modern notation, and we are rendering his ideas in contempo-
rary language. That is the equation

x3 + 6x = 20 . (∗)

This may seem rather special, but in fact it is quite typical. And the
general case may be reduced to it.

Cardano’s idea is to introduce two new variables u and v. In fact we
let u3 − v3 = 20 and uv = 2.1 As a result, we may rewrite the equation
(∗) as

x3 + (3uv)x = u3 − v3 . (∗∗)

Now be forewarned that Cardano’s solution method is a bag of tricks.
His idea now is to observe—just by educated guessing—that x = u− v
solves this new equation (∗∗). Let us verify this claim:

(u− v)3 + (3uv)(u− v) (?)
= u3 − v3

[u3 − 3u2v + 3uv2 − v3] + (3u2v − 3uv2)
(?)
= u3 − v3

u3 − v3 = u3 − v3 .

Thus we may write x = u− v. It is our job, then, to determine u and v.
But we know that

u3 = 20 + v3 = 20 +
8

u3
(?)

because uv = 2 so (uv)3 = 8 hence v3 = 8/u3. Now it is convenient to
let α = u3. Then equation (?) becomes

α = 20 +
8

α

1Remember that we saw a trick like this when we studied Pythagorean triples in

Chapter 1.
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or (multiplying through by α)

α2 = 20α + 8 ;

we may rearrange this to read

α2 − 20α − 8 = 0 . (‡)

Of course equation (‡) is a quadratic equation, and we may solve it.
We find that

α =
20 ±

√
(−20)2 − 4 · 1 · (−8)

2 · 1

=
20 ±

√
400 + 32

2

= 10 ±
√

108

=





10 +
√

108

10 −
√

108

So u3 = α = 10 ±
√

108.
Now we must unwind our construction. Since u3−v3 = 20, we know

that v3 = u3 − 20 = −10 ±
√

108. Now we have two cases:

The Case u3 = 10 +
√

108. In this situation,
v3 = −10 +

√
108. Taking roots, we find that

u =
3
√

10 +
√

108 and v =
3
√
−10 +

√
108. In con-

clusion, x = u−v =
3
√

10 +
√

108− 3
√
−10 +

√
108.

The Case u3 = 10 −
√

108. In this situation,
v3 = −10−

√
108. Taking roots, we find that u =

3
√

10 −
√

108 and v =
3
√
−10−

√
108. In conclu-

sion, x = u−v =
3
√

10 −
√

108− 3
√
−10−

√
108 =

3
√

10 +
√

108 − 3
√
−10 +

√
108.

For the last equality, distribute the minus signs.
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We see that we have discovered the same root of our polynomial
equation twice. We invite the reader to actually plug this value for x
into the expression x3 + 6x and confirm that the result is 20.

There is one remaining thing to consider. We expect that a cubic
equation will factor as three linear factors. So we expect there to be
three roots. But we have only found one root. Where are the other two
hiding?

It turns out that the other two roots of x3 + 6x = 20 are complex.
We are not going to get into the complex numbers at this time (but see
Section 8.1), so we shall content ourselves (just as Cardano did) with
just one root for the polynomial equation.

5.7.2 The General Case

At the beginning of this section, we made the bold assertion that any
cubic equation can be reduced to the one that we have just studied. Let
us now see why that is so. Consider a cubic equation

x3 + ax2 + bx+ c = 0 .

We make the change of variable x = t− a/3. The result is

(
t− a

3

)3

+ a
(
t− a

3

)2

+ b
(
t− a

3

)
+ c = 0

or
(
t3 − 3 · t2 · a

3
+ 3 · t · a

2

32
− a3

33

)
+a

(
t2 − 2 · a

3
· t+

a2

32

)
+b

(
t− a

3

)
+c = 0 .

Now we regroup the lefthand side in powers of t. The result is

t3 +
(
−3 · a

3
+ a

)
t2 +

(
3 · a

2

9
− 2a2

3
+ b

)
t+

(
−a

3

27
+
a3

9
− ab

3

)

= t3 +

(
−a

2

3
+ b

)
t+

(
2a3

27
− ab

3

)
= 0 .

Observe that what we have accomplished is that our polynomial now has
no square term.
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If we assume for the moment that b− a2/3 > 0 then2 we may make

the change of variable t =
√

(b− a2/3)/6 u. The result is

[√
(b− a2/3)/6 u

]3
+

(
−a

2

3
+ b

)[√
(b− a2/3)/6 u

]
+

(
2a3

27
− ab

3

)
= 0 .

Doing the algebra, and simplifying, we find that our polynomial has
become

u3 + 6u+
2a3/27 − ab/3

[(b− a2/3)/6]3/2
= 0 .

This is Cardano’s polynomial equation, with −20 replaced by a some-
what different constant. But Cardano’s technique still applies, and the
solution may be found. Then one can resubstitute t for u, and then re-
substitute x for t, and find the root of the original polynomial equation.

For You to Try: Use Cardano’s method to find a root of the polyno-
mial equation

x3 + 9x2 + 33x + 35 = 0 .

For You to Try: Use Cardano’s method to find a root of the polyno-
mial equation

x3 − 6x2 + 18x − 24 = 0 .

5.8 Fourth Degree Equations and Beyond

Cardano’s method can be extended to fourth degree equations. That
situation is fairly complicated, and we shall not discuss it here. It
was an open problem for a long time—nearly 240 years—to determine

2Things are a bit more complicated if b − a2/3 < 0 and we shall not discuss that
situation here. The situation b − a2/3 = 0 is trivial since then the equation reduces

to t3 + ([2a3/27]− [ab/3]) = 0 or t = ([ab/3− [2a3/27])1/3.
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whether there was a formula, or a technique, for solving fifth degree (or
higher) equations. Both Niels Henrik Abel (1802–1829) and Évariste
Galois (1812–1832) thought that they found a means, but then discov-
ered their own error. It was Abel himself, at the age of twenty-two,
who finally proved the impossibility of solving a quintic equation with a
formula involving only arithmetic operations and roots. There is an ad-
vanced theorem, called the Implicit Function Theorem (see the reference
[KRP]), that allows one to solve a quintic equation using transcendental
functions (like sine and cosine and logarithm, for example). But Abel
showed that there was no elementary formula.

5.8.1 The Brief and Tragic Lives of Abel and Galois

Niels Henrik Abel (1802–1829) lived an all-too-brief life that was domi-
nated by poverty and deprivation. At the time, the Norwegian economy
was suffering a blockade by the British, and there were also political dif-
ficulties with Denmark and Sweden. The entire country of Norway was
in a bad way, and poverty was widespread.

Both Abel’s father and grandfather were men of the cloth. His father
was also involved in politics and in fact held office in the national legisla-
tive body, the Storting. Niels Henrik was the second of seven children.
In those hard times, the young man’s parents had difficulty putting food
on the table. In addition, it is suspected that Niels Henrik’s father was
a drunk and his mother a woman of lax morals.

In 1815 the young genius was sent to the Cathedral School in Chris-
tiana. Once a distinguished academy, this institution had lost all its good
teachers to the staffing of the university. So education was in a bad state
when the young man arrived. He was uninspired by the instruction, but
exhibited some talent for mathematics and physics. It was Niels Henrik
Abel’s good fortune that a new instructor, Bernt Holmboe, arrived at
the Cathedral School in 1817. He immediately recognized Abel’s talent
and encouraged him to study university-level mathematics. The young
student bloomed under this attention, and he advanced rapidly. Tragedy
struck, however, when Abel’s father died in 1820.

Abel’s father had ended his political career in disgrace because he
had made false charges against his fellow members of the Storting. His
excessive drinking led to his dismissal from the Storting, and it followed
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that the family was in the direst straits when the old man died. Niels
Henrik feared that he would have to quit school in order to support his
family.

But his teacher Holmboe arranged a scholarship so that Abel could
attend the University of Christiania. He also raised money from his col-
leagues to help support the young scholar. Abel did manage to graduate
from the University in 1822.

During his final year in school, Abel worked on the solution of the
quintic equation. In 1821 he believed that he had found the solution,
and he submitted a paper to the Danish mathematician Ferdinand Degen
for publication by the Royal Society of Copenhagen. Degen questioned
Abel closely about his work, and led him to find an error. Degen also
encouraged Abel to develop an interest in elliptic integrals.

Abel was also fortunate at this time to have found a new men-
tor, Christopher Hansteen, at the University of Christiania. In fact
Hansteen’s wife took Abel under her wing, and treated the young fel-
low as her own son. Abel was able to publish papers in a new scientific
journal that had been started by Hansteen. In particular, he produced
the first known solution of an integral equation.

At this time Abel won a small grant that enabled him to visit Degen
in Copenhagen. In Copenhagen he met Christine Kemp, who became his
fiancee. Abel had ambitions to visit the leading mathematical scholars
in France and Germany in order to be able to discuss and develop his
work. But he did not have the funds and did not speak the languages, so
he instead obtained more modest funds to stay in Christiania and study.
In 1824 he succeeded in proving the impossibility of solving the quintic
equation by radicals. He published the work in French, as a pamphlet, at
his own expense. This decision was motivated by a desire to get into print
quickly so that he would have an impressive piece of work to bring with
him when he engaged in his planned travels. In order to save printing
costs, he reduced his proof to fit on half a folio sheet (six pages).

Abel sent his pamphlet to a number of distinguished mathematicians
of the day, including Carl Friedrich Gauss. He intended to visit Göttingen
when he engaged in his travels. In 1825 he obtained a scholarship from
the Norwegian government that finally made his planned European so-
journ possible. Reaching Copenhagen, Abel was disappointed to learn
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that Degen had died. He decided not to go to Paris but instead to stay
with his traveling companions and proceed to Berlin.

Abel had obtained a letter of introduction to Crelle. He then met
Crelle in Berlin, and the two men became fast friends. At the time, Crelle
was developing a new journal (Die Journal für die Reine und Andge-
wandte Mathematik) which was to become a very distinguished showcase
for mathematical research. Today it is the oldest extant mathematics
journal. Crelle encouraged Abel to develop a more detailed version of
his ideas about the unsolvability of quintic equations, and to publish it
in his new journal. That Abel did, and his paper appears in the very
first volume of the journal. In fact a total of seven of his papers appear
in that volume.

Abel began to dedicate himself to the development of the rigorous
foundations of mathematical analysis and to publish papers in Crelle’s
journal. He was disappointed to learn that the only open professorship
at the only university in Norway had been given to Holmboe. Abel had
had plans to go with Crelle to Paris and to visit Gauss in Göttingen
along the way. But Gauss, who was notorious for being unsupportive
of bright, young mathematicians, had evinced displeasure with Abel’s
pamphlet on the non-solvability of the quintic. This may at first seem
rather odd, as Abel’s pamphlet was later found still in the envelope and
unopened among Gauss’s papers. But it is believed that Gauss attached
no significance to the explicit solution of particular equations. Recall that
Gauss was the one who proved the Fundamental Theorem of Algebra,
which says that any polynomial has a complex root. That is an abstract,
non-constructive result—the sort of theorem that Gauss favored. In any
event, Gauss’s lack of support deeply affected Abel.

When Abel finally got to Paris he was upset to find that the lead-
ing French mathematicians had little interest in his work. Cauchy, in
particular, had no time for him. He wrote to Holmboe that

The French are much more reserved with strangers
than the Germans. It is extremely difficult to gain
their intimacy, and I do not dare to urge my pre-
tensions as far as that; finally every beginner had
a great deal of difficulty getting noticed here. I
have just finished an extensive treatise on a cer-
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tain class of transcendental functions to present it
to the Institute which will be done next Monday.
I showed it to Mr. Cauchy but he scarcely deigned
to glance at it.

Abel had important new results on elliptic integrals—some of which far
surpassed earlier work of Euler—but he could find no interest for them.
He was running out of money, could only afford one meager meal per
day, and was becoming emaciated, despondent, and tired.

But Abel doggedly continued his work on elliptic integrals. He ulti-
mately left Paris and returned to Berlin. There he borrowed some money
so that he could continue his work on elliptic functions. But his health
was in a poor state. Crelle continued to be Abel’s staunch supporter.
He endeavored to land a professorship for the young scholar, and also
offered him the editorship of his journal. But Abel determined to return
to his homeland. Abel finally reached Christiania in 1827 and obtained a
very small grant from the university. He tutored schoolchildren to make
ends meet, and his fiance was employed as a governess.

At this time Hansteen received a major grant to investigate the
Earth’s magnetic field in Siberia. Thus Abel was hired to replace him
as a Professor at the University. This improved Abel’s circumstances
slightly.

In 1828 Abel became aware of work of Jacobi on transformations of
elliptic integrals. These ideas were a revelation to Abel, and he realized
that they fit into the context of what he had been studying. He quickly
wrote several papers which transformed the subject, and which finally
gained the attention of Adrien-Marie Legendre (1752 C.E.–1833 C.E.)
among others.

While his health deteriorated, Abel continued to produce first-class
work on elliptic functions. He spent the summer of 1828 with his fiance
in Froland. He had submitted his masterpiece on elliptic function theory
to the Paris Academy, but they had somehow lost the manuscript. This
was long before the days of photocopying, so Abel had to produce the
manuscript from scratch again.

Abel traveled by sled to visit his fiance in Froland for Christmas of
1828. On that trip he became seriously ill. Crelle, ever his friend and
mentor, redoubled his efforts to obtain better circumstances for Abel.
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He finally succeeded in obtaining a professorial appointment for Abel in
Berlin. He wrote to Abel on April 8, 1829 to tell of the great news. But
it was too late; Abel had already died.

After Abel’s untimely death, Cauchy (after much searching) found
his Paris manuscript. It was printed in 1841 but again somehow van-
ished. It did not surface again until 1952!—some 122 years after Abel’s
death. It was in fact found in Florence, Italy. Another manuscript found
after Abel’s death—he continued working to the very end, even on his
deathbed—gave important results about the solution of polynomial equa-
tions. These anticipated seminal results that would later be proved by
Galois.

Evariste Galois (1811–1832) also lived a painfully brief life. His
demise was not brought on by abject poverty, but rather by personal
chaos and, in the end, death by a gunshot wound.

Galois’s family consisted of intelligent and well-educated people. His
mother was his only teacher until the age of 12, and she taught him
classical languages and religion. There is no evidence of mathematical
talent in the family before Evariste Galois himself.

Galois lived in times of great political turmoil in France. The storm-
ing of the Bastille took place 1789, and set the tone of unrest and foment
in which the young Galois grew up. His school itself—the Lycée of Louis-
le-Grand—was marked by rebellion among the students.

The year 1827 was turning point for Galois, because he had his first
mathematics class from M. Vernier. He quickly became absorbed by the
subject and excelled dramatically. His director of studies wrote of him

It is the passion for mathematics which dominates
him, I think it would be best for him if his par-
ents would allow him to study nothing but this,
he is wasting his time here and does nothing but
torment his teachers and overwhelm himself with
punishments.

Young Galois’s school reports described him repeatedly as “singular,
bizarre, original, and closed.” Since Galois is today remembered as one
of the most original mathematicians who ever lived, it is remarkable that
his originality was at first taken to be a liability.
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In 1828 Galois applied to the École Polytechnique, the most distin-
guished technical school in France (analogous to M.I.T. in the United
States today). His interests in the school were of course academic, but
he was also interested in the powerful political movements that existed
among the students. He failed the entrance exam, and was not admitted.

Galois disappointedly returned to Louis-le-Grand, where he took
mathematics from Louis Richard. But the young man concentrated more
on his own interests (Adrien-Marie Legendre and J. L. Lagrange) and
less on his classwork. In 1829 he published his first research paper. Two
more papers quickly followed. Unfortunately, Galois’s father committed
suicide later that year, and of course young Galois took this event very
badly. His second application to the École Polytechnique, as a result,
failed. Galois instead entered the École Normale, which was an annex
to the Louis-le-Grand school.

Galois always had trouble formulating and expressing his mathe-
matical ideas, and this may have contributed to his failure to pass the
entrance exam to the École Polytechnique. In order to enter the École
Normale, he had to pass Baccalaureate examinations. His examiner in
mathematics reported

This pupil is sometimes obscure in expressing his
ideas, but he is intelligent and shows a remarkable
spirit of research.

As a counterpoint, his examiner in literature said

This is the only student who has answered me
poorly, he knows absolutely nothing. I was told
that this student has an extraordinary capacity
for mathematics. This astonishes me greatly, for,
after his examination, I believed him to have but
little intelligence.

Galois sent some of his work to Cauchy at this time, and was in-
formed that it overlapped with work of Abel. He subsequently read
Abel’s papers, and this changed the course of his research. He began
to study elliptic functions and abelian integrals. Galois had submitted
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his work to Fourier, the secretary of the French Academy, for considera-
tion for their Grand Prize in Mathematics. The prize was subsequently
awarded to Abel and Jacobi, certainly disappointing Galois. They seem
to have lost his submission.

France experienced considerable political unrest in 1830, and Galois
became involved. This certainly distracted from his mathematics. He
only published two more papers in 1831, and these were to be his last.
Sophie Germain (discussed elsewhere in this book) noted in a letter that
Galois was suffering because his mentor Fourier had died. Galois was
without money, dispirited, and distracted by radical politics. He was
expelled from the École Normale.

In 1831 Galois was arrested for making public threats against the
King, Louis-Phillipe. Testimony revealed that there was confusion about
what Galois had actually said, and no reliable witness could be brought
against him. He was acquitted.

Not long after, Galois was found carrying loaded weapons on Bastille
day, and he was arrested again. While in prison, he got word of the
rejection of his latest mathematical memoir. He attempted suicide while
incarcerated, but the other prisoners wrested the dagger from him.

During a cholera epidemic in March, 1832 the prisoners, including
Galois,were transferred to the pension Sieur Faultrier. There he seems to
have fallen in love with Stephanie-Felice du Motel, daughter of the resi-
dent physician. After his release in April, he pursued a correspondence
with Stephanie, but she distanced herself from the relationship.

Galois fought a duel with Perscheux d’Herbinville on May 30, 1832.
Although the specific reasons for the duel have been lost to history, it
seems clear that the issue was related to Stephanie. According to legend,
Galois knew that he had no skills related to dueling, and was convinced
that he would die in this confrontation. So he spent the night before
writing out all that he knew about group theory. In any event, he was
wounded in the duel and was abandoned by d’Herbinville and his own
second. Later a peasant found him and arranged for him to be taken to
Cochin hospital. When Galois was taken to the hospital with his fatal
wounds, his brother waited there weeping at his bedside. Galois said,
“Don’t cry. I need all my courage to die at twenty.” Galois died on May
31, 1832.
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Galois’s brother and his friend Chevalier copied out Galois’s mathe-
matical papers and sent them to Gauss. There is no record that Gauss
ever studied them, but the papers found their way to Liouville. Liouville
did study them, and subsequently announced to the French Academy
that Galois had found a complete solution of the problem of when a poly-
nomial may be solved by radicals. These papers contain the foundations
of what is now known as Galois theory—one of the central cornerstones
of modern number theory.

5.9 The Work of Abel and Galois in Context

As you can see from their dates, both Galois and Abel led tragically
short lives. Abel was a relatively happy person, but was burdened with
the support of his six-member family and ultimately was defeated by his
poverty. He died of consumption at the age of 26. Galois turned out to
be his own worst enemy. He was tormented by his ill fortune and the lack
of recognition that his work had received. He turned to radical politics
amid social upheaval in order to expiate his frustrations. He ended up
involved in a self-destructive duel that he knew he would lose. He spent
the night before the duel recording, as best he could, his many brilliant
ideas. Then he went out the next morning and died from a bullet shot.
He was only twenty.

One of the astonishing theorems of mathematics, that was proved
by Carl Friedrich Gauss (1777-1855) in his thesis, is the fundamental
theorem of algebra. This theorem asserts that every non-constant poly-
nomial has a (complex) root. It does not give a formula or a method for
finding that root. But it does assert that one exists. However, there is a
catch. Consider the polynomial

p(x) = x2 + 1 .

There is no real value for x which makes this polynomial equal to 0. Why
not? Well, for any real x, x2 ≥ 0 so x2 + 1 ≥ 1. Thus the polynomial
cannot take the value 0. And that is all there is to it.

So how can Gauss’s fundamental theorem be true? The answer is
that it is true in a larger number system—the complex numbers. We
shall consider the complex numbers in the next chapter.
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Exercises

1. Find all solutions of the equation 3x − 7 = 4 = 0. Ex-
plain why you have found all the roots. Discuss this
problem in class.

2. Find all solutions of the quadratic equations x2+x−4 =
0. Explain why you have found all the roots. Discuss
this problem in class.

3. Apply the quadratic formula to the equation x2 +x+4.
What difficulty do you encounter? Does this equation
have any real roots? Draw the graph of p(x) = x2+x+4
and discuss in class why there are no real roots.

4. If a polynomial is to have real roots then its graph must
cross the x-axis. Discuss in class why this is true. Then
discuss why a cubic equation will always have at least
one real root while a quadratic equation may not.

5. Discuss in class whether a quartic (i.e., a fourth-degree)
equation will always have a real root. Look at some
examples. What about p(x) = x4 + 1? What about
x4 − 2x2 + 1?

6. Use Cardano’s method to find a root of the polynomial
x3 − x− 6.

7. Use Cardano’s method to find a root of the polynomial
3x3 − 10x2 + 9.

8. Can you write down a polynomial whose roots are−1, 3, 5?

9. Can you give an example of a polynomial of degree 2
that has no real roots? How about degree 4?

10. Explain why a polynomial of odd degree at least 1 will
always have at least one real root.
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Chapter 6

René Descartes and the Idea of
Coordinates

6.0 Introductory Remarks

The idea of coordinates is an old one. Apollo’nius of Per’ga (about 200
B.C.E.) set up a special coordinate system on the cone in order to study
conic sections (Figure 6.1). Hipparchus (about 150 B.C.E.) and Marinus
of Tyre (about 150 C.E.) used a version of latitude and longitude for
purposes of navigation and astronomy. The idea of locating the real
numbers on a number line is also an old one.

But it was René Descartes who conceived the idea of unifying algebra
and geometry with a rectangular coordinate system on the plane.1 In
particular, it was Descartes who created the idea of graphing a function.
John Stuart Mill said that this was “the greatest single step ever made
in the exact sciences.” Certainly the idea of rectangular coordinates
has had a profound influence on all of modern science, engineering, and
mathematics.

Today, in analytical thinking, we use many types of coordinate sys-
tems. For some types of problems, the traditional cartesian coordinates
are well-suited. For others, a coordinate system with some circular sym-
metry (such as polar coordinates or cylindrical coordinates or spherical
coordinates2) are more appropriate. For certain problems in cosmology

1In fact legend has it that Descartes was lying on his back in bed, staring at the
shadow that a window screen cast on the ceiling, when the idea for his coordinates

struck him.
2The Schwarzchild model for general relativity is calculated in spherical coordinates.
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Figure 6.1. Coordinates of Apollo’nius.

and higher-dimensional geometry, more abstract curvilinear coordinate
systems are what best suits the task at hand.

In the present chapter we shall learn about coordinate systems, and
about the synthesis between geometry and algebra that Descartes created
with his profound idea.

6.1 The Life of René Descartes

René Descartes was born on March 31, 1596 in La Haye, Touraine,
France. In fact the town is now names “Descartes” in his honor. He
died on February 11, 1650. Descartes was educated at the Jesuit College
of La Flèche in Anjou. In fact he was only eight years of age when he
entered the college, just a few months after it opened its doors. Young
René studied there from 1604 until 1612. He concentrated on classics,
logic, and traditional Artistotelian philosophy. In addition he learned
mathematics from the books of Cavius. His health was poor in those
days, and he obtained special permission to remain abed each day until
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11:00am. He maintained that habit for his entire adult life, and usually
spent the morning hours in bed thinking.

School impressed on Descartes how little he knew. Of all his areas
of study, he found mathematics to be the most satisfying, as it gave him
some sense of closure. His mathematical studies became the basis for
all his future investigations—in mathematics, in philosophy, and in the
natural sciences.

After the Jesuit College, Descartes spent some time in Paris—primarily
keeping his own counsel. Then he studied at the University of Poitiers,
where he received a law degree in 1616. After that he enlisted in the
military school at Breda. After two years he began studying mathemat-
ics in earnest under the direction of the Dutch scientist Isaac Beeckman.
Descartes’s goal was to find a unified science of nature.

In 1619 Descartes joined the Bavarian Army. From 1620 to 1629
Descartes traveled throughout Europe. He spent time in Bohemia, Hun-
gary, Germany, Holland, and France. In 1623 Descartes found himself
in Paris, where he was able to spend time with Mersenne. The latter
proved to be an important liaison who kept Descartes abreast of scientific
developments for many years.

By 1628 Descartes was tired of traveling and determined to settle
down. He chose Holland for his residence. This turned out to be a good
choice for Descartes, and he immediately began work on his physics
treatise entitled Le Monde, ou Traité de la Lumière. This ambitious
work was near completion when Descartes received word of Galileo’s
house arrest (for his scientific ideas about the planets). Descartes decided
on the basis of this news not to risk publication, and in fact his book
on physics was published, and only in part, after his death. Descartes
decided then to concentrate his efforts on more abstract issues (which
were less likely to upset the powers that be). He used these words to
express his thoughts:

. . . in order to express my judgment more freely,
without being called upon to assent to, or to refute
the opinions of the learned, I resolved to leave all
this world to them and to speak solely of what
would happen in a new world, if God were now to
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create . . . and allow her to act in accordance with
the laws He had established.

Descartes maintained a number of scientific contacts while in Hol-
land, and was actually quite cordial with many of them. Among these
were Mersenne (in Paris), Mydorge, Hortensius, Huygens, and Frans van
Schooten (the elder). These allies encouraged Descartes to publish his
ideas. He was firm in not wishing to publish Le Monde, but he instead
published a tract on science with the title Discourse de la méthode pour
bien conduire sa raison et chercher la vérité dans les sciences. This book
had three important Appendices entitled La Dioptrique, Les Météores,
and La Géométrie. Descartes’s book was published in Leiden in 1637.

The first of the Appendices is a work on optics, and the second a
work on meteorology. Although Descartes’s scientific method was flawed,
and he made a number of incorrect assertions, he nonetheless laid the
foundations for future work in these fields.

Certainly the third Appendix, on geometry, is the most important.
In this tract Descartes lays the foundations for the theory of geometric
invariants, and particularly for the connections between algebra and pla-
nar geometry. Although Descartes’s thoughts are inspired by Oresme,
there is much here that is original.

Descartes’s first major philosophical work, entitled Meditations on
First Philosophy, was published in 1641. The book consisted of six “med-
itations”:

• Of the Things that we may doubt;

• Of the Nature of the Human Mind;

• Of God: that He exists;

• Of Truth and Error;

• Of the Essence of Material Things;

• Of the Existence of Material Things and of the Real
Distinction between the Mind and the Body of Man.
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Unfortunately many prominent scientists, including Arnauld, Hobbes,
and Gassendi, were opposed to the ideas expressed in this book.

René Descartes most comprehensive work was Principia Philosophiae,
published in Amsterdam in 1644. The book has four parts:

• The Principles of Human Knowledge;

• The Principles of Material Things;

• Of the Visible World;

• The Earth.

Following the philosophical principles that Descartes put in place when
he was a student, Descartes endeavors in this work to put the entire
universe on a mathematical foundation, reducing the study to one of
mechanics. Descartes’s study had some strange features. He did not
believe in action at a distance. Therefore he could not account for gravity.
Descartes believed instead that the universe is filled with matter which,
due to some initial motion, has settled down into a system of vortices
which carry the sun, the stars, the planets, and the comets in their paths.
Descartes’s theories held sway for more than one hundred years, even
after Isaac Newton showed that the theory was impossible and replaced
it with his universal law of gravitation.

In the year 1644, the date of the publication of Descartes’s Medi-
tations, René Descartes visited France. He returned again to France in
1647, when he established contact with Blaise Pascal. In fact he endeav-
ored to convince Pascal that a vacuum could not exist (again bearing
out his idea that no force can act at a distance). He returned once more
to France in 1648.

Descartes was a solitary figure with many eccentricities. René Descartes
was a short (5’0” dripping wet), irascible Frenchman who was also one of
our greatest philosophers and mathematicians. He thought very highly
of himself and his abilities, and he had little patience along with a blaz-
ing temper. He enjoyed staying in bed naked each day until 11:00am.
He would think about philosophical and mathematical issues during his
sojourns abed. In fact he conceived his ideas about coordinates in the
plane during one of his bed sessions.
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0 1 2 3 41234- ---

Figure 6.2. Beginnings of the real number line.

Descartes gave up mathematics when he was still a young man be-
cause, he said, he’d gone as far in mathematics as a human being could
go. He read many romance novels and novels of chivalry; Descartes had
an active fantasy life. He had a particular fetish for cross–eyed women.

Among his more unusual beliefs was the contention that animals
were “senseless machines”. Even so, Descartes had a pet dog named
“Monsieur Grat” or “Mr. Scratch” of which he was very fond.

Descartes used to play cards and gamble with his friend Blaise Pascal
(1623 C.E.–1662 C.E.). It is said that Descartes made a lot of money
thereby.

Descartes’s ideas were widely read and highly influential. In 1649,
Queen Christina of Sweden persuaded him to travel to Stockholm to
tutor her. One of the Queen’s eccentricities was that she wanted to draw
tangents at 5:00am. Descartes reluctantly broke his lifetime habit of
sleeping late. Unfortunately the new routine of walking to the palace so
early every morning, in the dark and cold, led to Descartes contracting
pneumonia. He died as a result.

6.2 The Real Number Line

Now we shall study some of the mathematical ideas of René Descartes.
We begin by laying out the integers in a linear pattern on a fixed straight
line (Figure 6.2). Notice that numbers to the left of 0 are negative, and
the further left we go the more negative the numbers become. Likewise,
numbers to the right of 0 are positive, and the further right we go the
more positive the numbers become.

Now it makes sense to interpolate rational numbers in between the
integers. Of course a fraction, such as 2/3, is easy to locate because it is
just two thirds of the way from 0 to 1. We exhibit a couple of rational
numbers in Figure 6.3.

For practical purposes, in everyday life, the rational numbers will
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Figure 6.3. Location of some rational numbers.
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Figure 6.4. Location of some irrational numbers.

suffice. When we speak of quantities to the butcher or the baker or the
doctor, we use rational numbers—sometimes as decimals and sometimes
as fractions. We ask for 2.5 pounds of beef, or 10 gallons of gas, or a pint
of blood. Numbers like

√
2 or π never come up in ordinary conversation.

Why are they needed at all?

We learned in Chapter 2 that there are very concrete numbers, that
come up in ordinary measurement, that are not rational. For example,
the diagonal of a square of side 1 has length

√
2. The circumference of a

circle of diameter 1 is π. These strange, irrational numbers, really exist
and they really apply to quite tangible, rather tactile, quantities.

We can picture irrational numbers on the number line by using their
decimal approximations. Your pocket calculator will tell you that

√
2 ≈

1.414 and π ≈ 3.14159. A few irrational numbers are depicted on the
number line in Figure 6.4.

The real number line is a useful mnemonic for picturing the rela-
tive locations of real numbers. It is particularly helpful when we try to
understand sets of real numbers. For example, the set

S = {x ∈ R : −3 ≤ x < 2}

is shown in Figure 6.5. The slightly more subtle set

T = {x ∈ R : |x− 1| < 2}
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Figure 6.5. Graph of an interval.

0 1 2 3 41234- ---

Figure 6.6. Graph of an interval.

is shown in Figure 6.6. Observe that we use a solid dot to indicate that
an endpoint is included in the set; a hollow dot denotes that the endpoint
is excluded.

It is important now to understand Descartes’s contribution in the
context of the history of mathematics. The great driving force in the
subject, since the time of the ancient Greeks, had been geometry in the
plane. That is, people had been studying the geometry of triangles and
circles and other planar figures for a long, long time. Euclid’s axiom-
atization of geometry, which is the blueprint for the way that we do
mathematics today, was an effort to put this geometry on a rigorous
footing. Cartesian coordinates injected an entirely new set of tools into
this great tradition. It provided a unification of algebra (the other great
theoretical flow in the mathematical tradition) and geometry. And it
provided a technique for graphing and picturing functions. In the next
section we begin to explore this new circle of ideas.

6.3 The Cartesian Plane

Consider the layout of two perpendicular coordinate lines as shown in
Figure 6.7.

We locate a point in the plane by specifying its position in the left-to-
right direction and then its position in the up-and-down direction. Put in
other words, we write down an ordered pair of numbers consisting of the
displacement from the vertical axis followed by the displacement from
the horizontal axis. See Figure 6.8. The exhibited point has coordinates
(3, 4).
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Figure 6.7. The basis for cartesian coordinates.



160 Chapter 6: René Descartes and the Idea of Coordinates

0 1 2 3 41234- ---

1

2

3

4
(3,4)

Figure 6.8. Cartesian coordinates of a point.
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Figure 6.9. Several points plotted in the cartesian plane.

The first coordinate of a point is called the x-coordinate (or abscissa).
The second coordinate is called the y-coordinate (or ordinate). The point
in Figure 6.8 has x-coordinate 3 and y-coordinate 4. Figure 6.9 exhibits
several points on a cartesian coordinate plane. Notice that the points
with negative x-coordinate lie to the left of the y-axis. The points with
negative y-coordinate lie below the x-axis.

We conclude this section by plotting a simple locus. Consider the
equation

y = 3x+ 1 .

It is useful to form a chart of values:



162 Chapter 6: René Descartes and the Idea of Coordinates

x y = 3x + 1

-3 -8
-2 -5
-1 -2
0 1
1 4
2 7
3 10

Chart of Values for y = 3x+ 1.

We plot each of these points on the same set of axes and connect
them in a plausible manner. The result is the line exhibited in Figure
6.10.

Example 6.1

One of Descartes’s great insights was that his new coordinate
system could be used to envision the graph of a function. As a
simple example, plot the graph of f(x) = x2.

SOLUTION We begin with a table of values for the function:

x f(x) = x2

-3 9
-2 4
-1 1
0 0
1 1
2 4
3 9

Chart of values for f(x) = x2.

Plotting these values on a set of axes, we obtain Figure 6.11.

Connecting these points in a plausible manner gives the familiar graph of a
parabola—Figure 6.12.
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Figure 6.10. The plot of a line.
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Figure 6.11

Figure 6.12
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A

B C

Figure 6.13

6.4 The Use of Cartesian Coordinates to Study Euclidean
Geometry

One of the big innovations that René Descartes introduced was the idea
of studying questions of classical Euclidean geometry using his new co-
ordinate system. We illustrate this idea with a few examples.

Example 6.2

Consider the triangle shown in Figure 6.13. The horizontal seg-
ment I halfway up the figure connects the midpoints of the two
sides AB and AC. We claim that the length of I is half the length
of BC.

In fact it is not difficult to prove this assertion synthetically,
by classical methods of Euclidean geometry. But our purpose here
is to see how to use cartesian coordinates to achieve the result.
Glance at Figure 6.14, where we have placed the triangle on a set
of coordinate axes and labeled the coordinates of A, B, and C
respectively. Notice that A = (0, a), B = (b, 0), and C = (c, 0).
Then the endpoints of I are (b/2, a/2) and (c/2, a/2). It follows
that the length of I is c/2− b/2 = [c− b]/2. But this is just half
the length of BC, which is c−b. That is the result that we wished
to establish.
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A

B C

(0,a)

(b,0) (c,0)

(c/2, a/2)(b/2, a/2)

Figure 6.14

Example 6.3

Let 4ABC be an isosceles triangle as in Figure 6.15. So AB =
AC. Let AD be the median passing between the two equal sides.
Then AD is perpendicular to the base BC. Prove this using
cartesian coordinates.

SOLUTION We configure the triangle on a pair of axes as in Figure 6.16. Co-
ordinates are assigned to each of the relevant points. Notice that the point D is at
the origin.

Now the line determined by pointsB andC has slope 0. And the line determined
by A andD has slope∞. Thus the two lines are perpendicular, as was to be proved.

Example 6.4

It is a classical result of Euclidean geometry that the three me-
dians of a triangle (here a median is the segment connecting a
vertex to the midpoint of the opposite side) intersect at a single
point. Use cartesian coordinates to give a proof of this fact.
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A

B CD

Figure 6.16
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A

B C

= (0,a)

= (b,0) = (c,0)

= (c/2, a/2)= (b/2, a/2)

= ([b+c]/2,0)

Figure 6.17

SOLUTION Examine the triangle in Figure 6.17 that is exhibited on a set of
coordinate axes. The vertices are A = (0, a), B = (b, 0), and C = (c, 0). Now
the medians are α = (b/2 + c/2, 0), β = (c/2, a/2), and γ = (b/2, a/2).

The line through α and A has slope

m1 =
a− 0

0 − (b/2 + c/2)
=
−2a

b+ c
.

The corresponding median then has equation

y − a =
−2a

b+ c
· (x− 0) .

The line through β and B has slope

m2 =
a/2 − 0

c/2 − b =
a

c− 2b
.
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The corresponding median then has equation

y − 0 =
a

c− 2b
· (x− b) .

The line through γ and C has slope

m3 =
0 − a/2
c − b/2 =

a

b− 2c
.

The corresponding median then has equation

y − 0 =
a

b− 2c
· (x− c) .

Now, by elementary algebra, the first two lines intersect at the point

x =
b+ c

3
, y =

a

3
.

The second two lines also intersect at this point.
We conclude that the unique point of intersection of the three medians is

P =

(
b+ c

3
,
a

3

)
.

For You to Try: Use cartesian coordinates to demonstrate that a
rhombus (a quadrilateral with sides of equal length) has diagonals that
are perpendicular.

For You to Try: Use cartesian coordinates to demonstrate that an
isosceles triangle has two medians of equal length.

6.5 Coordinates in Three-Dimensional Space

To locate a point in the 2-dimensional plane requires two coordinates.
By analogy, to locate a point in the 3-dimensional plane requires three
coordinates. Figure 6.18 indicates how this is done. There are three
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(x, y, z)

x

y

z

Figure 6.18

axes: the x-axis, the y-axis, and the z-axis. The indicated point has
coordinates (x, y, z). The first coordinate indicates displacement along
the direction of the x-axis. The second coordinate indicates displacement
along the direction of the y-axis. And the third coordinate indicates
displacement along the direction of the z-axis.

Example 6.5

Sketch the point (3, 1, 2) on a 3-dimensional set of axes.

SOLUTION Examine Figure 6.19. You will see that we have drawn a box to
show how the point is situated in space. The box aids in our perspective of the
geometry. The side lengths of the box indicate the magnitude of each coordinate,
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(3, 1, 2)

x

y

z

Figure 6.19

and the orientation of the box shows the sign of each coordinate.

Example 6.6

Sketch the point (−2,−4, 3) on a 3-dimensional set of axes.

SOLUTION Examine Figure 6.20. You will see that we have drawn a box to
show how the point is situated in space. The side lengths of the box indicate the
magnitude of each coordinate, and the orientation of the box shows the sign of each
coordinate.
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x

y

z

(-2, -4, 3)

Figure 6.20

You know that, when we graph the locus of points in the 2-dimensional
plane that satisfies a given equation, then the result is usually a curve
in the plane. This makes good intuitive sense, since the imposition of
a condition given by one equation removes 1 degree of freedom, hence
removes 1 dimension. Since we begin with 2 dimensions, the result is a
1-dimensional object—or a curve.

Likewise, if we impose an equation on 3-dimensional space, then we
remove 1 degree of freedom. Hence there should be a loss of 1 dimension,
and the result should be a 2-dimensional surface.

Example 6.7

Sketch the surface in 3-dimensional space that is defined by the
equation

x2 + y2 + z2 = 1 . (∗)

SOLUTION Examine Figure 6.21. It shows that the distance of the point
(x, y, z) to the origin is

√
x2 + y2 + z2. Write X = (x, y, z) and 0 = (0, 0, 0).
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(x, y, z)

x

y

z

x

y

z

x   + y   + z2 2 2

Figure 6.21

Then we set

d(X, 0) =
√
x2 + y2 + z2 .

The equation (∗) may then be written schematically as

[d(X, 0)]2 = 1 ,

or

d(X, 0) = 1 .

Thus we see that our equation describes the set of all points X in space that
have distance 1 from the origin. This is a sphere. The surface is shown in Figure
6.22.
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x
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z

Figure 6.22

Example 6.8

Sketch the surface in 3-dimensional space that is defined by the
equation

x+ y + z = 4 . (?)

SOLUTION Recall that, in the plane, an equation of the form

ax+ by = c

gives rise to a line. It is plausible, therefore, that the equation (?) will describe a
“linear” object. In fact observe that if (x, y, z) is a point that satisfies (?) then also
the point (x−2t, y+t, z+t) for any t will satisfy (?). Likewise, (x+t, y−2t, z+t)
will satisfy (?) for any t. And (x+ t, y + t, z − 2t) will satisfy (?) for any t.

We see, therefore, that three lines pointing in three different directions all lie in
the surface defined by (?). We conclude that (?) describes a plane. Notice that the
points (4, 0, 0) and (0, 4, 0) and (0, 0, 4) all satisfy the equation and hence all must
lie on the plane. The resulting picture is shown in Figure 6.23.
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Figure 6.23

Exercises

1. On a single set of axes, sketch the points in the plane
that satisfy

|x|+ |y| = 1 .

2. On a single set of axes, sketch the points in the plane
that satisfy

|x+ y| = 1 .

3. On a single set of axes, sketch the points in the plane
that satisfy

|x| − |y| = 1 .

4. Sketch the points in 3-dimensional space that satisfy

(x− 1)2 + (y − 2)2 + (z − 3)2 = 4 .
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5. Sketch the points in 3-dimensional space that satisfy

x− 2y + 5z = 10 .

6. Use cartesian coordinates to verify that if 4ABC is an
isosceles triangle with equals sides AB and AC then
the median from the vertex A to the side BC will be
perpendicular to the segment BC.

7. Use cartesian coordinates to verify that three non-collinear
points will uniquely determine a circle.

8. On a single set of axes, sketch those points in the plane
that satisfy

x2 = y3 .

9. Sketch the points in 3-dimensional space that satisfy

z2 = x2 + y2 .

10. Find the equation of the line in the plane that passes
through the points (1, 2) and (−3, 1).

11. Find the equation of the plane in 3-dimensional space
that passes through the points (1, 0, 0), (0, 1, 0) and
(0, 0, 2).

12. Describe in words the set of points in 3-dimensional
space given by

{(x, y, z) : |x| < 1, |y| < 1, |z| < 1} .



Chapter 7

Pierre de Fermat and the
Invention of Differential Calculus

7.1 The Life of Fermat

Pierre de Fermat (1601 C.E.-1665 C.E.) was one of the most remarkable
mathematicians who ever lived. He spent his entire adult life as a magis-
trate or judge in the city of Toulouse, France. His career was marked by
prudence, honesty, and scrupulous fairness. He led a quiet and produc-
tive life. His special passion was for mathematics. Fermat was perhaps
the most talented amateur mathematician in history.

Fermat is remembered today by a large statue that is in the basement
of the Hôtel de Ville in Toulouse. The statue depicts Fermat, dressed
in formal attire, and seated. There is a sign, etched in stone and part
of the statue, that says, “Pierre de Fermat, the father of differential
calculus.” Seated in Fermat’s lap is a scantily clad muse showing her
ample appreciation for Fermat’s powers.

Pierre Fermat had a brother and two sisters and was almost certainly
brought up in the town (Beaumont-de-Lomagne) of his birth. Although
there is little evidence concerning his school education it must have been
at the local Franciscan monastery.

He attended the University of Toulouse before moving to Bordeaux
in the second half of the 1620s. In Bordeaux he began his first serious
mathematical researches and in 1629 he gave a copy of his restoration
of Apollonius’s Plane loci to one of the mathematicians there. Certainly
in Bordeaux he was in contact with Beaugrand and during this time
he produced important work on maxima and minima which he gave

177
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to Étienne d’Espagnet who clearly shared mathematical interests with
Fermat.

From Bordeaux, Fermat went to Orléans where he studied law at the
University. He received a degree in civil law and he purchased the offices
of councillor at the parliament in Toulouse. So by 1631 Fermat was a
lawyer and government official in Toulouse and because of the office he
now held he became entitled to change his name from Pierre Fermat to
Pierre de Fermat.

For the remainder of his life he lived in Toulouse but, as well as
working there, he also worked in his home town of Beaumont-de-Lomagne
and a nearby town of Castres. The plague struck the region in the early
1650s, meaning that many of the older men died. Fermat himself was
struck down by the plague and in 1653 his death was wrongly reported,
then corrected:

I informed you earlier of the death of Fermat. He
is alive, and we no longer fear for his health, even
though we had counted him among the dead a
short time ago.

The period from 1643 to 1654 was one when Fermat was out of touch
with his scientific colleagues in Paris. There are a number of reasons for
this. First, pressure of work kept him from devoting so much time to
mathematics. Secondly the Fronde, a civil war in France, took place and
from 1648 Toulouse was greatly affected. Finally there was the plague of
1651 which must have had great consequences both on life in Toulouse
and of course its near fatal consequences on Fermat himself. However it
was during this time that Fermat worked on the theory of numbers.

Fermat is best remembered for this work in number theory, in partic-
ular for Fermat’s Last Theorem. This theorem states that the equation

xn + yn = zn

has no non-zero integer solutions x, y and z when the integer exponent
n > 2. Fermat wrote, in the margin of Bachet’s translation of Diophan-
tus’s Arithmetica

I have discovered a truly remarkable proof which
this margin is too small to contain.
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These marginal notes only became known after Fermat’s death, when his
son Samuel published an edition of Bachet’s translation of Diophantus’s
Arithmetica with his father’s notes in 1670.

It is now believed that Fermat’s “proof” was wrong although it is
impossible to be completely certain. The truth of Fermat’s assertion
was proved in June, 1993 by the British mathematician Andrew Wiles,
but Wiles withdrew the claim when problems emerged later in 1993. In
November, 1994 Wiles again claimed to have a correct proof which has
now been accepted. Unsuccessful attempts to prove the theorem over a
300 year period led to the discovery of commutative ring theory and a
wealth of other mathematical developments. Wiles himself has said in a
public lecture that he thinks that Fermat probably made a mistake in
claiming that he could prove the “last theorem”. He allows, however,
that Fermat made few mistakes.

Fermat’s correspondence with the Paris mathematicians restarted
in 1654 when Blaise Pascal, Étienne Pascal’s son, wrote to him to ask
for confirmation about his ideas on probability. Blaise Pascal knew of
Fermat through his father, who had died three years before, and was
well aware of Fermat’s outstanding mathematical abilities. Their short
correspondence set up the theory of probability and from this they are
now regarded as joint founders of the subject.

It was Fermat’s habit to solve problems and then pose them to the
community of mathematicians. Some of these were quite deep and diffi-
cult, and people found them aggravating. One problem that he posed was
that the sum of two cubes cannot be a cube (a special case of Fermat’s
Last Theorem which may indicate that by this time Fermat realized that
his proof of the general result was incorrect), that there are exactly two
integer solutions of x2 + 4 = y3, and that the equation x2 + 2 = y3 has
only one integer solution. He posed problems directly to the English.
Everyone failed to see that Fermat had been hoping his specific prob-
lems would lead them to discover, as he had done, deeper theoretical
results.

Fermat has been described by some historical scholars as

Secretive and taciturn, he did not like to talk
about himself and was loath to reveal too much
about his thinking. ... His thought, however orig-
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P

C

Figure 7.1

inal or novel, operated within a range of possibil-
ities limited by that time [1600 -1650] and that
place [France].

7.2 Fermat’s Method

One of the fundamental ideas of calculus is to calculate the tangent line
to a given curve. Figure 7.1 exhibits the familiar idea of the tangent line
to a circle. This is a particularly simple situation. In classical geometry
texts, we are told that the tangent line to a circle C at a point P of the
circle is that line which passes through P and is perpendicular to the
radius at P . The figure amply illustrates this idea.

For a more general curve—say the graph of a function—we have an
intuitive idea of what the tangent line to a point on the curve might be
(Figure 7.2), but it is hard to define the idea precisely. How can we say
analytically what the tangent line is supposed to be? For the curve in the
figure, there is no notion of radius. The only thing that we know about
the tangent line is that it passes through P and “touches” the curve at
P . How can we come up with a precise formulation of “touches”?
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P

y = f(x)

Figure 7.2

Fermat’s idea, a precursor of the full-bore version of calculus that
Newton and Leibniz developed some years later, was this: the tangent
line has the special feature that it only intersects the curve at one point.
This idea is not foolproof—for example, the tangent line to the curve in
Figure 7.2 actually intersects the curve in two points. Nonetheless, in
many examples Fermat’s idea gives us just what we are looking for.

In order to actually implement Fermat’s idea, we shall need the con-
cept of slope. Recall that if we are given a line ` in the plane and two
points (p1, q1) and (p2, q2) on that line, then the slope of the line is

m =
q2 − q1
p2 − p1

.

Figure 7.3 illustrates the idea of slope. The number m represents the
ratio of “rise” over “run” for this line. It tells us how fast the line is
rising or falling.
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Figure 7.3

Example 7.1

Use Fermat’s idea to find the tangent line to the curve y = x2 at
the point (2, 4).

SOLUTION Refer to Figure 7.4 as you read along. Let us consider the equation
of a line passing through (2, 4). Say that it has slope m. Then the line is

y − 4 = m(x− 2) . (†)

We calculate the intersection of the line with the curve y = x2. Our equations are
then

y = 4 +m(x− 2)

y = x2 .

Equating the two expressions for y, we find that

x2 = 4 +m(x− 2) .
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In the more familiar format of a quadratic equation, this is

x2 −mx+ (2m− 4) = 0 .

Using the quadratic formula, we find that

x =
m±

√
m2 − 4 · 1 · (2m− 4)

2
.

We may rewrite this as

x =
m±

√
m2 − 8m+ 16

2
.

We are in luck. The expression under the square root sign is a perfect square:
the square of (m− 4). Thus our solution becomes

x =
m± (m− 4)

2
. (∗)

Now we are looking for a choice of m so that the line only intersects the curve in
one point. So we want the system of equations to have only one solution. But (∗)
certainly looks like two solutions. The only way to make this reduce to just one is to
have the expression coming from the square root go away. In other words, we want
(m− 4) = 0. In conclusion, we want to choose m = 4.

What we have learned is that the only line that passes through the point (2, 4)
and intersects the curve y = x2 just once is the line with slope m = 4 (recall our
discussion in connection with equation (†)). It has equation

y − 4 = 4(x− 2) .

The line and the curve are exhibited in Figure 7.4.

7.3 More Advanced Ideas of Calculus: The Derivative and
the Tangent Line

There is little doubt that Fermat’s work was one of the seminal inspira-
tions for the huge subject that today is known as differential calculus.
Thanks to his efforts, and to the work of Descartes, Newton, Leibniz,
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(2,4)

y = x2

Figure 7.4

and many others, we now have a body of mathematical machinery for
calculating tangents, finding maxima and minima of functions, and per-
forming many other important operations in analysis and mechanics.

We now give an idea of the general approach provided by calculus
for calculating the tangent line to the graph of a function f at a point
P = (p, f(p)) on it graph. As we saw in the example of the last section,
what this comes down to is finding the slope of the tangent line. Examine
Figure 7.5.

Now let us consider slope. Look at the graph of the function y = f(x)
in Figure 7.5. We wish to determine the “slope” of the graph at the point
x = c. This is the same as determining the slope of the tangent line to
the graph of f at x = c, where the tangent line is the line that best
approximates the graph at that point. See Figure 7.6. What could this
mean? After all, it takes two points to determine the slope of a line,
yet we are only given the point (c, f(c)) on the graph. One reasonable
interpretation of the slope at (c, f(c)) is that it is the limit of the slopes of
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x = c

( c , f(c))
y = f(x)

Figure 7.5

secant lines1 determined by (c, f(c)) and nearby points (c+ h, f(c+ h)).
See the dotted line in Figure 7.6. When we say “limit”, we mean to
consider the behavior of the expression as h tends to 0. Let us calculate
this limit:

lim
h→0

f(c+ h)− f(c)

(c+ h)− c = lim
h→0

f(c + h)− f(c)

h
.

Now this last limit is what we shall call the derivative of f at c. We
denote the derivative by f ′(c). When the limit exists, we say that the
function f is differentiable at c.

Notice that the definition of “derivative” involves the important lim-
iting process. We calculate the limit of the so-called Newton quotient

f(c+ h)− f(c)

h
.

This means that we consider the behavior of the quotient as h tends to
zero. The theory of the limit is deep and subtle. It was considered by the

1In simple terms, a “secant line” is a line connecting two different points on the

curve.
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(c,f(c))

x = c

(c+h,f(c+h))

x = c+h

Figure 7.6
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ancients, more than two thousand years ago, and they never got it right.
Isaac Newton himself used limits (with trepidation), but he never really
understood them. It is only in the past 150 years that we have developed
an accurate and rigorous way to think about limits. In the present book
we treat limits intuitively. As you will see in the first example, we write
out every step of our calculation so that the procedure of taking the limit
becomes transparent.

Now let us return to the concept of derivative. We have learned the
following:

Let f be a differentiable function on an interval
(a, b). Let c ∈ (a, b). Then the slope of the tan-
gent line to the graph of f at c is f ′(c).

Example 7.2

Calculate the slope of the tangent line to the graph of y = f(x) =
x3− 3x at x = −2. Write the equation of the tangent line. Draw
a figure illustrating these ideas.

SOLUTION We know that the desired slope is equal to f ′(−2). We
calculate

f ′(−2) = lim
h→0

f(−2 + h)− f(−2)

h

= lim
h→0

[(−2 + h)3 − 3(−2 + h)]− [(−2)3 − 3(−2)]

h

= lim
h→0

[(−8 + 12h− 6h2 + h3) + (6 − 3h)] + [2]

h

= lim
h→0

h3 − 6h2 + 9h

h

= lim
h→0

[h2 − 6h+ 9]

= 9 .

Notice that, in the last equality, we have observed that h2 tends to 0 and
6h tend to 0 as h→ 0.
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y + 2 = 9(x + 2)

y = x  - 3x3

Figure 7.7

We conclude that the slope of the tangent line to the graph of y =
x3 − 3x at x = −2 is 9. The tangent line passes through (−2, f(−2)) =
(−2,−2) and has slope 9. Thus it has equation

y − (−2) = 9(x− (−2)) .

The graph of the function and the tangent line are exhibited in Figure
7.7.

For You to Try: Calculate the tangent line to the graph of f(x) =
4x2 − 5x+ 2 at the point where x = 2.

The process that we have been describing has a number of important
interpretations. Another one of these is in terms of velocity. Suppose
that the position of a moving body at time t is given by p(t). This
position could be measured, for example, in feet. And time t could be
measured in seconds (of course other choices are possible). Now the
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average velocity over a time interval [t, t + h] is given by “change in
position” divided by “change in time”. This quantity is

(average velocity) =
p(t+ h)− p(t)

h
.

The limit as h → 0 of this quantity is declared to be the instantaneous
velocity at time t. Of course this limit is just the derivative p′(t). We
conclude the following:

If the position of a moving body is represented by
the differentiable function p(t) then the instanta-
neous velocity of the motion at time t is p′(t).

Example 7.3

Calculate the instantaneous velocity at time t = 5 of the moving
body whose position at time t seconds is given by g(t) = t3+4t2 +
10 feet.

SOLUTION We know that the required instantaneous velocity is g′(5).
We calculate

g′(5) = lim
h→0

g(5 + h)− g(5)
h

= lim
h→0

[(5 + h)3 + 4(5 + h)2 + 10]− [53 + 4 · 52 + 10]

h

= lim
h→0

[(125 + 75h + 15h2 + h3) + 4 · (25 + 10h+ h2) + 10)

h

−(125 + 100 + 10)

h

= lim
h→0

115h + 19h2 + h3

h

= lim
h→0

115 + 19h + h2

= 115 .
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We conclude that the instantaneous velocity of the moving body at time
t = 5 is g′(5) = 115 ft/sec.

Remark: Since position (or distance) is measured in feet, and time in
seconds, then we measure velocity in “feet per second”.

Example 7.4

A rubber balloon is losing air steadily. At time t seconds the
balloon contains 75 − 10t2 + t cubic inches of air. What is the
rate of loss of air in the balloon at time t = 1?

SOLUTION Let ψ(t) = 75− 10t2 + t. Of course the rate of loss of air
is given by ψ′(1). We therefore calculate

ψ′(1) = lim
h→0

ψ(1 + h)− ψ(1)

h

= lim
h→0

[75− 10(1 + h)2 + (1 + h)]− [75− 10 · 12 + 1]

h

= lim
h→0

[75− (10 + 20h + 10h2) + (1 + h)]− [66]

h

= lim
h→0

−19h− 10h2

h

= lim
h→0
−19− 10h

= −19 .

In conclusion, the rate of air loss in the balloon at time t = 1 is ψ′(1) =
−19 cu. in./sec. Observe that the negative sign in this answer indicates
that the change is negative, i.e., that the quantity is decreasing.

For You to Try: The amount of water in a leaky tank is given by
W (t) = 50 − 5t2 + t gallons. Here time t is measured in minutes. What
is the rate of leakage of the water at time t = 2?
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P = (p, f(p))

Q = (q,f(q))

Figure 7.8

Remark: We have noted that the derivative may be used to describe
a rate of change and also to denote the slope of the tangent line to a
graph. These are really two different manifestations of the same thing,
for a slope is the rate of change of rise with respect to run (see the dis-
cussion of Figure 7.3).

7.4 Fermat’s Lemma and Maximum/Minimum Problems

Fermat’s lemma is based on a simple geometric observation about dif-
ferentiable functions. Examine the graph exhibited in Figure 7.8. The
points P and Q on the graph are special. Notice that, if we compare P
to points nearby on the graph, then we see that the point P is vertically
higher than its neighbors (see the blowup in Figure 7.9). We say that P
is a local maximum. Likewise, if we compare Q to points nearby on the
graph, then we see that the point Q is vertically lower than its neighbors
(see the blowup in Figure 7.10). We say that Q is a local minimum.

From the point of view of calculus, what is special about the point P
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P

Figure 7.9

Q
Figure 7.10
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is that the graph goes neither uphill nor downhill there. In other words,
the tangent line is horizontal. That means that its slope is zero. Thus

The derivative of a function at a point of differen-
tiability where the function assumes a local max-
imum is 0.

From the point of view of calculus, what is special about the point Q
is that the graph goes neither uphill nor downhill there. In other words,
the tangent line is horizontal. That means that its slope is zero. Thus

The derivative of a function at a point of differen-
tiability where the function assumes a local mini-
mum is 0.

These two displayed rules are the content of Fermat’s lemma. For the
sake of the present discussion, let us (inspired by Fermat) call a point
x a critical point for the function f if f ′(x) = 0. We illustrate, with
a simple example, how Fermat’s lemma can be used to gain important
information about a function.

In fact it is worth considering this matter in a bit more detail. Let
f be a function and x a point of its domain. Calculate the derivative
f ′(x). If f ′(x) > 0 then this says that the approximating quotients (or
Newton quotients)

f(x+ h)− f(x)

h

are positive. As Figure 7.11 shows, the graph is going uphill at x. If
instead f ′(x) < 0 then we see that the approximating quotients (or
Newton quotients)

f(x+ h)− f(x)

h

are negative. As Figure 7.12 shows, the graph is going downhill at x. Fi-
nally, if f ′(x) = 0, then we have seen that the graph is (instantaneously)
horizontal—neither uphill nor downhill—at x. These simple observations
will be useful in our discussions below.

Example 7.5
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x x + h

(x, f(x))

(x+h, f(x+h))

Figure 7.11

x x + h

(x, f(x))

(x+h, f(x+h))

Figure 7.12
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Sketch the graph of the function

f(x) = 2x3 − 3x2 − 12x + 4 .

SOLUTION We have seen cubic curves like this one in the past. When the
leading coefficient is positive, the graph will go up, then down, then up. So it will
have a local maximum and a local minimum. If we can find those two special points,
then we can draw a useful and compelling graph of f . We use the derivative, and
Fermat’s lemma, to do so.

We calculate, for any point (x, f(x)) on the curve, that

f ′(x) = lim
h→0

f(x + h)− f(x)

h

= lim
h→0

[2(x+ h)3 − 3(x+ h)2 − 12(x+ h) + 4]− [2x3 − 3x2 − 12x + 4]

h

= lim
h→0

[(2x3 + 6x2h+ 6xh2 + 2h3)− (3x2 + 6xh+ 3h2)− (12x + 12h) + 4]

h

− [2x3 − 3x2 − 12x+ 4]

h

= lim
h→0

(6x2h+ 6xh2 + 2h3)− (6xh + 3h2)− (12h)

h

= lim
h→0

(
6x2 + 6xh+ 2h2 − 6x− 3h− 12

)

= 6x2 − 6x− 12 .

We are interested in points where f ′(x) = 0. So we must solve the equation

0 = f ′(x) = 6x2 − 6x− 12 .

In fact the quadratic equation factors:

0 = 6(x+ 1)(x− 2) .

So we find that x = −1 or x = 2.
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Figure 7.13

Let us examine points on either side of x = −1. Since f ′(−3/2) = 21/2 and
f ′(−1/2) = −15/2, we see that the graph is going uphill to the left of x = −1
and downhill to the right of x = −1. Thus x = −1 is the location of a local
maximum. See Figure 7.13.

Now let us examine points on either side of x = 2. Likewise, f ′(3/2) = −15/2
and f ′(5/2) = 21/2. So we see that the graph is going downhill to the left of x = 2
and uphill to the right of x = 2. Thus x = 2 is the location of a local minimum.
See Figure 7.14.

Noting that f(−1) = 11 and f(2) = −16, we can assemble all our information
and produce the graph shown in Figure 7.15.

Example 7.6

A box is to be made from a sheet of cardboard that measures
12′′ × 12′′. The construction will be achieved by cutting a square
from each corner of the sheet and then folding up the sides (see
Figure 7.16). What is the box of greatest volume that can be
constructed in this fashion?
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Figure 7.14

SOLUTION It is important in a problem of this kind to introduce a
variable. Let x be the side length of each of the squares that are to be
cut from the sheet of cardboard. Then the side length of the resulting
box will be 12− 2x (see Figure 7.17). Also the height of the box will be
x. As a result, the volume of the box will be

V (x) = x · (12 − 2x) · (12 − 2x) = 144x − 48x2 + 4x3 .

Our job is to maximize this function V .
Now

V ′(x) = lim
h→0

[144(x + h)− 48(x+ h)2 + 4(x+ h)3]− [144x − 48x2 + 4x3]

h

= lim
h→0

[(144x + 144h) − (48x2 + 96xh + 48h2)

h

+(4x3 + 12x2h+ 12xh2 + 4h3)]− [144x− 48x2 + 4x3]

h
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(-1,11)

Figure 7.15

x

x

Figure 7.16
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12 - 2x

x

Figure 7.17

= lim
h→0

144h − 96xh − 48h2 + 12x2h+ 12xh2 + 4h3

h

= lim
h→0

144 − 96x − 48h + 12x2 + 12xh + 4h2

= 144 − 96x+ 12x2 .

In summary, the derivative of the volume function is V ′(x) = 144 −
96x + 12x2. We may solve the quadratic equation

144 − 96x + 12x2 = 0

to find the critical points for this problem. Using the quadratic formula,
we find that x = 2 and x = 6 are the points that we seek (i.e., the
potential maximum or minimum).

Of course V ′(2) = 0. A little to the left of 2, we see that V ′(1.5) = 27.
A little to the right of 2, we see that V ′(2.5) = −21. We conclude that
x = 2 is a maximum.

We conclude that if squares of side 2′′ are cut from the sheet of
cardboard then a box of maximum volume will result.

Observe in passing that if squares of side 6′′ are cut from the sheet
then (there will be no cardboard left!) the resulting box will have zero
volume. This value for x gives a minimum for the problem.



200 Chapter 7: The Invention of Differential Calculus

100 - 2x

x

garage

x

Figure 7.18

Example 7.7

A rectangular garden is to be constructed against the side of a
garage. The gardener has 100 feet of fencing, and will construct a
three-sided fence; the side of the garage will form the fourth side.
What dimensions will give the garden of greatest area?

SOLUTION Look at Figure 7.18. Let x denote the side of the garden
that is perpendicular to the side of the garage. Then the resulting garden
has width x feet and length 100 − 2x feet. The area of the garden is

A(x) = x · (100 − 2x) = 100x − 2x2 .

We calculate

A′(x) = lim
h→0

[100(x+ h)− 2(x+ h)2]− [100x − 2x2]

h

= lim
h→0

[100x+ 100h − 2x2 − 4xh− 2h2]− [100x− 2x2]

h

= lim
h→0

100h − 4xh− 2h2

h
= lim

h→0
100 − 4x− 2h

= 100 − 4x

and solve the equation 0 = A′(x) = 100 − 4x. We find that the only
critical point for the problem is x = 25. By inspection, we see that the
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graph of A is a downward-opening parabola. So x = 25 must be the
global maximum that we seek. The optimal dimensions for the garden
are

width = 25 ft. length = 50 ft.

For You to Try: A cylindrical tin can is to be designed to hold 96
cubic inches of stewed tomatoes. What dimensions will minimize the
amount of material used to construct the can?

For You to Try: The sum of two numbers is 100. How can we choose
them so as to maximize their product?

Exercises

1. What is the slope of the curve f(x) = 3x2 − 4x + 7 at
the point where x = 2?

2. What is the slope of the curve g(x) = 4x3 − x at the
point (−2,−30)?

3. The height in feet of a falling body at time t seconds is
given by p(t) = −16t2 + 20t + 34. At what rate is the
body falling when t = 1? At what time t does the body
hit the ground? What is its velocity at that time?

4. Write the equation of the tangent line to the curve in
Exercise 2 at the given point.

5. Write the equation of the line in Exercise 2 that is per-
pendicular to the given curve at the given point. Recall
that two lines are perpendicular if the product of their
slopes is −1.

6. Find all local maxima and minima of the curve h(x) =
−3x3 + 6x2 − 4x+ 6.
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Figure 7.19

7. Of all the rectangles with perimeter 20, find the one of
greatest area.

8. A cylinder is to be inscribed inside a sphere of radius
5, as shown in Figure 7.19. What dimensions of the
cylinder will result in the cylinder of greatest volume?

9. If you endeavor to calculate the slope of the tangent line
to the curve y =

√
4 − x2 at x = 2, you get an unpleas-

ant answer. What does it mean? What is the geometric
significance of your answer? You should be able to an-
swer this question without doing any calculations.

10. An arrow is shot into the air, and its path describes a
parabolic arc. The equation for the height in feet of the
arrow at time t in seconds is h(t) = −16t2 + 42t + 100.
What is the greatest height that the arrow reaches? At
what time t does the arrow hit the ground? What is
the terminal velocity of the arrow?
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11. The volume of a ball of radius r inches is V = [4/3]πr3

cubic inches. What is the rate of change of volume with
respect to the radius when r = 4?

12. The position of a moving body at time t seconds is given
by p(t) = 4t3 − 7t2 + 18t − 5 feet . Focus on the time
range 0 ≤ t ≤ 4. At what time t is the velocity greatest?
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Chapter 8

The Complex Numbers and the
Fundamental Theorem of Algebra

8.1 A New Number System

What is remarkable about the discussion we are about to provide is that
we are going to construct the complex numbers. We shall not say, “Let us
pretend that the number −1 has a square root and we’ll build a number
system around it.” That is the sort of thinking that can lead to contra-
dictions and paradoxes, and is best avoided. We will instead construct
our new number system with tools that we have at hand. Such a con-
structivist approach gives our mathematics a solid foundation that we
can rely on, and that we can be certain will not lead to later conundrums.

8.2 Progenitors of the Complex Number System

The complex numbers evolved over a period of several centuries. They
did not spring at once from the mind of any particular individual. This
number system arose from a need to have solutions to all polynomials.
While a polynomial like

p(x) = x2 − 5x+ 6

has roots x = 2 (that is to say, p(2) = 22− 5 · 2+6 = 0) and x = 3 (that
is to say, p(3) = 32 − 5 · 3 + 6 = 0), the polynomial

q(x) = x2 + x+ 1

has no evident real roots. In fact it requires a larger number system—the
complex numbers—in which to find roots of the polynomial q.

205
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We shall say a few words here about some of the people who con-
tributed to the development of the complex numbers.

8.2.1 Cardano

We have treated the life of Girolamo Cardano (1501 C.E.–1576 C.E.)
elsewhere in this book. Cardano did not understand the complex num-
bers very well. But he was the first to use them to solve polynomial
equations. For example, Cardano would have understood what it meant
to say that 1+ i and 1− i are roots of the polynomial p(x) = x2−2x+2.

8.2.2 Euler

Leonhard Euler (1707 C.E.–1783 C.E.) was born in Basel, but the family
moved to Riehen when he was only one year old. Euler’s father Paul
attended lectures of Jacob Bernoulli and lived in Bernoulli’s house when
he was a student. He was good friends with Johann Bernoulli (Jacob’s
brother). But in fact the father became a Protestant minister. Paul’s
strong mathematical background served the young Euler in good stead,
for he was able to provide some mathematical training for his young son.

Leonhard Euler was sent to the University of Basel in 1720, at the
age of fourteen. His father expected him to enter the ministry. The level
of education in Basel was very poor, and there was no mathematics.
So Euler engaged in general studies. He did study mathematics on his
own, and he took some private lessons. It was thus a matter of great
good fortune that Johann Bernoulli discovered Euler’s talents. Euler’s
remarks on the matter were

. . . I soon found an opportunity to be introduced
to a famous professor Johann Bernoulli. . . . True,
he was very busy and so refused flatly to give me
private lessons; but he gave me much more valu-
able advice to start reading more difficult math-
ematical books on my own and to study them as
diligently as I could; if I came across some obstacle
or difficulty, I was given permission to visit him
freely every Sunday afternoon and he kindly ex-
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plained to me everything I could not understand
. . .

In 1723 Euler wrote a thesis comparing the philosophical ideas of
Descartes and Newton. He thus earned his Masters Degree. He then
engaged in exclusive studies of theology. In fact Euler found the study of
theology, Hebrew, and Greek to be unsatisfying. With Johann Bernoulli’s
help, he obtained his father’s permission to switch his studies to mathe-
matics. By 1726 Euler had completed his studies, and actually published
a paper. His second article, in 1727, won second prize in a contest for
new ideas in shipbuilding.

Euler needed an academic post, and the position of Nicolaus Bernoulli
in St. Petersburg happened to open up at the time. Euler was lucky
enough to secure the position, but he deferred his acceptance because
he was also applying for a physics position in Basel. He failed to obtain
the latter post, and so found himself in St. Peterburg in May, 1727. He
joined the St. Petersburg Academy of Sciences two years after it was
founded by Catherine I, wife of Peter the Great. Daniell Bernouli and
Jakob Hermann arranged for Euler to be appointed to the mathematical-
physical division of the Academy rather than to the physiology post that
he originally had been offered. This certainly suited his talents nicely.

St. Petersburg offered Euler quite a number of brilliant and stimu-
lating colleagues, including

• Jakob Hermann (geometry);

• Daniel Bernoulli (geometry, applied mathematics);

• Christian Goldbach (analysis, number theory);

• F. Maier (trigonometry);

• J.-N. Delisle (astronomy and geography).

Euler began his time in Russia by serving as a medical lieutenant in the
Russian Navy. He actually assumed his Professorship in 1730. He was
then a full member of the Academy, and was thus able to relinquish his
Navy post.
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Daniel Bernoulli held the Senior Chair in Mathematics in St. Peters-
burg. But he was unhappy in Russia and departed in 1733. At that time
Euler assumed the Senior Chair. The resulting financial enhancement
enabled Euler to marry Katharina Gsell, daughter of a painter from the
St. Petersburg Gymnasium. Leonhard and Katharina had a total of 13
children, although only 5 of them survived infancy. Euler liked to observe
that he made a number of his most notable discoveries while holding a
baby in his arms with others playing at his feet.

Leonhard Euler began having health problems in 1735. He had a
severe fever which threatened his life. In 1740 he lost an eye, possi-
bly because of eyestrain brought on by cartographic work. Euler won
the grand prize of the Paris Academy both in 1738 and 1740. As a re-
sult, his reputation was at the highest level in those days. At the same
time, political conditions for foreigners in Russia were becoming quite
uncomfortable. As a result Euler accepted a position at the Academy
of Science in Berlin. In fact Euler was Director of Mathematics for the
new Academy. In a letter to a friend, Euler indicated that the King was
his special benefactor, and he had complete freedom to spend his pro-
fessional time as he wished. He received salaries both from Russia and
from Germany. He was able to spend some of his funds to help equip his
former Academy in St. Petersburg.

Euler spent twenty-five years at the Berlin Academy. During that
time he wrote 380 scientific papers and several books. Among these
latter were:

• a book on the calculus of variations;

• a book on the calculation of planetary orbits;

• a book on artillery and ballistics;

• a book on analysis;

• a book on shipbuilding and navigation;

• a book on the motion of the moon;

• a book on differential calculus;
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• a book containing a popular exposition of scientific ideas.

In 1759 Leonhard Euler became the President of the entire Berlin
Academy. He served in that position for four years, but was rather
alarmed when Frederick the Great then planned to appoint d’Alembert
to that post (Euler and D’Alembert had had professional disagreements).
d’Alambert declined the offer, but Euler decided that it was time for
him to leave Berlin. He returned to a position in St. Petersburg, much
to the chagrin of Frederick. In 1766, then, it came about that Euler
returned to Russia. Soon after, Euler became almost entirely blind; also
his house was destroyed by fire. He was able to save only himself and
his mathematical manuscripts. In spite of the loss of his sight, Euler
continued his work on optics, algebra, and lunar motion. Remarkably,
he produced almost half of his total scientific output after going blind.

Of course, without sight, Euler required help in order to do his work.
His son Johann Albrecht Euler was Chair of Physics at the Academy
in St. Petersburg. Christoph Euler had a military career. The other
members of the academy, including W. L. Krafft, A. J. Lexell, and N.
Fuss, were generous with their time and assistance. Fuss was in fact
Euler’s grandson-in-law; he became the great man’s formal assistant in
1776. It should be stressed that Fuss’s work was not merely clerical; he
was in many ways a scientific consultant and collaborator.

Euler died of a brain hemorrhage on September 18, 1783. He had a
full day of scientific activity, including vigorous discussions of the newly-
discovered planet Uranus. But he was struck down, and lost conscious-
ness, at 5:00pm with the cry “I am dying.” He expired at 11:00pm.

Leonhard Euler was one of the most prolific scientists of all time.
The St. Petersburg academy continued to publish Euler’s unpublished
manuscripts for 50 years after he died. He had an impact on almost all
parts of modern mathematics, and many parts of engineering, astronomy,
and physics as well.

Of particular interest to us are Euler’s contributions to complex anal-
ysis. He published his theory of logarithms of complex numbers in 1751.
He investigated analytic functions of a complex variable in several differ-
ent contexts, including the study of orthogonal trajectories and cartog-
raphy. He discovered the important Cauchy-Riemann equations in 1777
(although it seems that he was anticipated here by d’Alembert in 1752).
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It may be noted here that Euler’s theory of the complex logarithm in-
teracts very nicely with Argand’s geometric theory of complex numbers
(see below). As is often the case in mathematics, different streams of
thought flow together and create new synergies.

8.2.3 Argand

Jean-Robert Argand (1768–1822) was an accountant and bookkeeper in
Paris. His interest in mathematics was strictly as an amateur. Very little
is known about his childhood or his education. His parents were named
Jacques and Eves.

Argand had two children: a boy who lived his adult life in Paris
and a girl named Jeanne-Françoise-Dorothée-Marie-Elizabeth. The lat-
ter married and moved to Stuttgart, Germany.

Argand is remembered for providing us with geometric interpreta-
tions of the complex numbers. As we shall see below, we can think of a
complex number as an ordered pair of real numbers. Thus we can asso-
ciate to the complex number a point in the plane. This is now known
as the Argand plane, and the resulting picture is called an Argand di-
agram. Perhaps more interesting, and certainly more profound, is the
fact that multiplication by the complex number i can be interpreted as
rotation through an angle of +90◦. We see this because if z = x+iy then
iz = −y + ix. Certainly the vector 〈−y, x〉 is perpendicular to 〈x, y〉.
And a moment’s thought shows that in fact iz is a 90◦ rotation of z in the
counterclockwise direction (just try a specific example, let z = 1 + 1i).

Since Argand was not a regular academic, he was not plugged into
the regular academic system of publication and accreditation. In fact
it is through an interesting sequence of accidents that we now associate
Argand’s name with this collection of ideas.

It is notable that the first publication of the geometric interpretation
of the complex numbers was authored by Caspar Wessel. In fact Wessel
notes the concept in a (unpublished) work of 1787 but it appeared in
published form, under Wessel’s byline, in a paper of 1797. That paper
actually appeared in print in 1799. The paper received scant attention
from the mathematical community.

In fact it was not until 1895, when Juel drew attention to the work
and Sophus Lie actually republished it that Wessel began to receive some
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credit for these ideas. Like Argand himself, Wessel was not an academic
mathematician. He was in fact a surveyor. So it is not surprising that
he was not a part of the flow of scholarly discourse.

Argand in fact published his own ideas in a small book—published
at his own expense!—in 1806. Such publications generally are not widely
noticed; by contrast, Wessel’s work was published by the Royal Danish
Academy. To make matters worse, Argand’s name did not appear on his
own book, so that even those few who noticed the work had no idea to
whom to attribute it.

As luck would have it, a copy of Argand’s work was sent to the
noted mathematician Adrien-Marie Legendre. He, in turn, sent it to
François Français. Still, neither man knew the identity of the author
of this privately published volume. When François Français died, his
brother Jacques came to be in charge of his papers. Finding Argand’s
book, Jacques took a great interest in geometric representations of the
complex numbers. In 1813 he published a tract describing these ideas.
He could easily have claimed them to be his own, but he did not. In
fact he announced in the work that the ideas came from the work of an
unknown mathematician and he asked that that mathematician come
forward and claim credit.

Jacques Français’s article appeared in Gergonne’s journal Annales de
mathématiques, and Argand read it. He responded, acknowledged that
he was the author of the ideas, and submitted to that same journal a
revised and updated version of his ideas. The upshot of these publishing
events was a public row, and there is nothing like clamourous dissension
to gain real publicity for a set of ideas.

For the mathematician Servois claimed that complex numbers should
not be viewed geometrically. The only correct way to think about the
complex number system is algebraically. Argand and Français disagreed.
In the end, the geometric viewpoint won out, and has proved to be a
valuable source of ideas and powerful tools in modern mathematics.

Although Argand is certainly best known, and best remembered, for
his contributions to the geometric theory of complex analysis, he in fact
published a number of other works. He was the first to formulate a ver-
sion of the fundamental theorem of algebra for general polynomials (i.e.,
polynomials with complex coefficients). His proof, although it contained
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a few defects, was very close to a modern proof of this important theo-
rem. He published several papers amplifying his theory of the geometric
interpretation of complex numbers, and he published several commen-
taries on the work of other mathematicians. His final publication, in
1816, was about combinatorics and counting.

Argand is remembered as a gifted amateur mathematician who made
significant contributions that received only belated recognition. His work
was significant and timely and has had lasting value.

8.2.4 Cauchy

Augustin Louis Cauchy (1789 C.E.–1857 C.E.) was born in Paris during
a tumultuous period of French history. His father feared for the family’s
safety because of the political events connected with the French revolu-
tion, so he moved the family to Arcueil. There life was hard. The family
often did not have adequate food.

We shall treat the details of Cauchy’s life in Chapter 10. Suffice it for
now to say that Cauchy had a profound influence over the development of
complex analysis. The Cauchy-Riemann equations, the Cauchy integral
theorem, and the Cauchy integral formula are all named after him. These
are among the most central and far-reaching ideas in the subject. In
modern treatments, all the key ideas of complex analysis flow from the
Cauchy integral formula.

Cauchy led a chaotic and unsatisfying personal life. But his influence
over modern mathematics continues to be profound.

8.2.5 Riemann

Bernhard Riemann (1826 C.E.–1866 C.E.) was born into a poor fam-
ily with a Lutheran minister father. He was tormented by disease and
poverty all his life, and he died at the young age of forty. We treat his
life in greater detail in Chapter 13.

Even so, Riemann achieved a great many mathematical triumphs
during his short time on earth. He discovered the Cauchy-Riemann equa-
tions, created Riemann surfaces, and developed the Riemann mapping
theorem. Much of the geometric theory of complex analysis is due to Rie-
mann. The Riemann zeta function arises from considerations of complex
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analysis, but has become of seminal importance in number theory. The
distribution of the zeros of the Riemann zeta function contains profound
information about the distribution of the prime numbers. Riemannian
geometry was created by Riemann as part of his oral examinations for
Gauss; but in fact this idea of geometry now plays a major role in mod-
ern research on complex variables. We shall say more on this matter in
Chapter 13.

Riemann certainly left his mark on complex analysis. But he also
studied geometry, partial differential equations, calculus, Abelian func-
tions, Fourier series, and many other parts of mathematics. His contri-
butions are still the basis for much modern research.

8.3 Complex Number Basics

We are already familiar with the real numbers R. Just to review, these
are all numbers given by decimal expansions. These include the whole
numbers or integers (denoted by Z), the fractions or rational numbers
(denoted by Q), and the irrational numbers. An integer has a decimal
expansion with no non-zero digits to the right of the decimal point.
Examples of integers are 2.0, −6.0, 15.0. A rational number has just
finitely many non-zero digits to the right of the decimal point, or else
finitely many digits that repeat infinitely often. Examples of rational
numbers are

3

4
= 0.75

9

10
= 0.9

1

3
= 0.33333 . . .

125

999
= .125125125 . . . ,

where the overbar indicates that the designated string is repeated in-
finitely often.

An irrational number has a decimal expansion that goes on indef-
initely and never repeats. These are the most subtle numbers in the
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0 2 4 624- -

3

1

2

Figure 8.1

system, and they are difficult to identify (although, in our chapter on
Pythagoras, we learned for instance that

√
2 is irrational). The decimal

expansion for
√

2 is √
2 = 1.414213562 . . . ,

where the dots indicate that the string of integers in the decimal ex-
pansion goes on indefinitely but there is no repetition (because

√
2 is

irrational).
Another irrational number is π. Its decimal expansion is

π = 3.141592654 . . . ,

where again the dots indicate that the decimal expansion goes on indef-
initely but there is no repetition (because the number π is irrational).

All of these numbers taken together constitute the real number sys-
tem R. We typically picture the real number system as a number line
(Figure 8.1).

Now we will begin our construction of the complex number system.
We will create a new number system C consisting of all ordered pairs
of real numbers. Thus an element of C is a pair (x, y) of real numbers.
As examples, (3,−2), (−6, 1.74), and (π,−

√
2) are complex numbers.

Now, in order to have a useful system of numbers, we need to know the
arithmetic operations on C.

If (a, b) and (c, d) are complex numbers then we define

(a, b) + (c, d) = (a+ c, b+ d) .

As an example,

(−3, 6) + (2, 4) = (−3 + 2, 6 + 4) = (−1, 10) .

We define subtraction similarly:

(a, b)− (c, d) = (a− c, b− d) .
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For instance,

(−3, 6)− (2, 4) = (−3− 2, 6 − 4) = (−5, 2) .

Observe that the number 0 = (0, 0) is the additive identity in our
new number system. This means that if you add this 0 to any complex
number then that number is reproduced:

(a, b) + (0, 0) = (a+ 0, b+ 0) = (a, b) .

Now multiplication is more complicated. It would be a mistake to
define

(a, b) · (c, d) = (ac, bd) . (∗)

Why is this a mistake? It seems so obvious that we should do mul-
tiplication like this. But with the definition (∗), it would hold that
(1, 0) · (0, 1) = (0, 0). And we do not want the product of two non-zero
numbers to be zero. So definition (∗) will not do.

Thus our definition of multiplication will be non-obvious. But, as
you will see, it will get the job done in a very nice way. If (a, b) and (c, d)
are complex numbers then we set

(a, b) · (c, d) = (ac− bd, ad+ bc) . (∗∗)

Let us look at a couple of examples to be sure we understand the idea.
First,

(−3, 2) · (4, 6) = ((−3) · 4 − 2 · 6, (−3) · 6 + 2 · 4) = (−24,−10) .

Second,

(2, 8) · (1,−9) = (2 · 1 − 8 · (−9), 2 · (−9) + 8 · 1) = (74,−10) .

Now the justification for the rather exotic1 definition in (∗∗) of mul-
tiplication is that it gives us the results that we want. First of all, we
want to have a complex number that plays the role of “1”. This is the

1Certainly Leonhard Euler (1707 C.E.–1783 C.E.) knew how to multiply complex
numbers. But it was William Rowan Hamilton (1805 C.E.–1865 C.E.) who came up

with the algebraic formalism that we are using here.
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multiplicative identity. If you multiply any number by 1 then you should
get that number back again. The complex number that will play this
role for us is (1, 0). Let us see why. Let (a, b) be any other complex
number. Then, according to (∗∗),

(1, 0) · (a, b) = (1 · a− 0 · b, 1 · b+ 0 · a) = (a, b) .

So we see explicitly that multiplication by 1 = (1, 0) reproduces any com-
plex number. For a specific example, take the complex number (−3, 7).
Then

(1, 0) · (−3, 7) = (1 · −3 − 0 · 7, 1 · 7 + 0 · −3) = (−3, 7) .

It is also the case—and this is a very important property of the com-
plex numbers—that any non-zero complex number has a multiplicative
inverse. This means that, given a non-zero complex number (a, b), we can
find another complex number whose product with (a, b) is the unit (1, 0).
In fact—and again you may find this a bit surprising—the multiplicative
inverse of (a, b) is (

a

a2 + b2
,
−b

a2 + b2

)
.

Let us test this out using rule (∗∗):

(a, b) ·
(

a

a2 + b2
,
−b

a2 + b2

)

=

(
a · a

a2 + b2
− b · −b

a2 + b2
, a · −b

a2 + b2
+ b · a

a2 + b2

)

=

(
a2 + b2

a2 + b2
, 0

)
= (1, 0) .

For a concrete example of multiplicative inverse, consider the com-
plex number (−2, 1). According to what we have just said, its multi-
plicative inverse should be (−2/5,−1/5). Let us test this assertion:

(−2, 1) ·
(−2

5
,
−1

5

)
=
(
−2 · −2

5
− 1 · −1

5
,−2 · −1

5
+ 1 · −2

5

)

=
(

5

5
, 0
)

= (1, 0) .
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Finally, we can divide complex numbers. Let us divide (a, b) by (c, d):

(a, b)

(c, d)
= (a, b) · 1

(c, d)
.

Of course we know what the multiplicative inverse of (c, d) is, and we
use that information now. Thus

(a, b)

(c, d)
= (a, b) · 1

(c, d)

= (a, b) ·
(

c

c2 + d2
,
−d

c2 + d2

)

=

(
a · c

c2 + d2
− b · −d

c2 + d2
, a · −d

c2 + d2
+ b · c

c2 + d2

)

=

(
ac+ bd

c2 + d2
,
−ad+ bc

c2 + d2

)
.

It always helps to look at a concrete example: The quotient

(2,−5)

(1, 6)
= (2,−5) · 1

(1, 6)

= (2,−5) ·
(

1

37
,
−6

37

)

=
(
2 · 1

37
− (−5) · −6

37
, 2 · −6

37
+ (−5) · 1

37

)

=
(−28

37
,
−17

37

)
.

And the wonderful thing about mathematics is that we can check our
work: If

(2,−5)

(1, 6)
=
(−28

37
,
−17

37

)

then it should be the case that

(1, 6) ·
(−28

37
,
−17

37

)
= (2,−5) .

Let us try it and see:

(1, 6) ·
(−28

37
,
−17

37

)
=
(
1 · −28

37
− 6 · −17

37
, 1 · −17

37
+ 6 · −28

37

)

=
(−28 + 102

37
,
−185

37

)
= (2,−5) .
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So now we have a working number system: We can add, subtract,
multiply, and divide. In the next section we shall return to Gauss’s
Fundamental Theorem of Algebra, and get an idea of why it is actually
true that every non-constant polynomial has a root.

Before we turn to that task, let us note a special feature—for some
purposes the most important feature—of the complex number system.
In the complex numbers, the number −1 has a square root. Now our
number 1, the unity, is (1, 0). And therefore −1 is (−1, 0). Its square
root is in fact (0, 1). Let us verify this claim:

(0, 1) · (0, 1) = (0 · 0− 1 · 1, 0 · 1 + 1 · 0) = (−1, 0) ,

as claimed.
In practice, when we use the complex numbers, we use the simpler

symbol 1 to denote (1, 0) and the special symbol i to denote (0, 1). This
means that we can write any complex number (a, b) as

(a, b) = a · (1, 0) + b · (0, 1) = a · 1 + b · i = a+ bi .

If you consult mathematics books2 about the complex numbers, this is
how you will find them written. Observe that, in this new notation,
i · i = −1.

Just for practice, let us add two complex numbers using our new
notation:

(3 − 9i) + (4 + 6i) = (3 + 4) + i((−9) + 6) = 7 − 3i .

Now let us multiply two complex numbers using the new notation:

(3 − 9i) · (4 + 6i) = 3 · 4 + 3 · 6i− 9i · 4− 9i · 6i
= 12 + 18i− 36i − 54i2

= 12 − 18i− 54 · (−1)

= 66 − 18i .

2It is worth noting that electrical engineers use the letter j to denote the square root
of −1. This rarely gives rise to any confusion, since one can tell from context whether

one is dealing with mathematicians or engineers.
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For You to Try: Verify that the complex numbers 7− i and 7 + i are
both roots of the polynomial equation p(x) = x3 − 15x2 + 64x − 50.

For You to Try: Calculate the reciprocal of the complex number
z = 4− 5i using the x+ iy notation for complex numbers.

8.4 The Fundamental Theorem of Algebra

Gauss’s theorem (the celebrated Fundamental Theorem of Algebra) is
that any polynomial with real coefficients

p(z) = a0 + a1z + a2z
2 + · · · ak−1z

k−1 + akz
k ,

aj ∈ R, of degree at least one has a complex root. To get an idea of why
this is true, let us return to our original definition of complex numbers
in the last section: ordered pairs (x, y) of real numbers. It is natural to
picture the complex numbers in a plane. [This is called, for historical
reasons, an Argand diagram.] See Figure 8.2. Now we will think of the
polynomial function p as mapping the complex plane to itself. We may
suppose that the constant term a0 of the polynomial is non-zero—for
otherwise 0 itself would be a root of the polynomial and there would be
nothing more to prove.

Now we think of the complex plane as a union of circles centered at
the origin—Figure 8.3. If we consider the action of p on a very large
circle—with some huge radius R—then of course the term of the poly-
nomial that is most significant is the top degree term akz

k. It dwarfs all
the other terms when it is applied to a complex number on that circle
of the huge radius R (Figure 8.4). And what it does to that huge circle
is it wraps it around itself k times. The image of the circle of radius R
under that top-order monomial is another huge circle of radius |ak|Rk.
See Figure 8.5.

Let us instead now consider the action of the polynomial p on a very
tiny circle, with some very small (much less than 1) radius r, centered
at the origin (Figure 8.6). Now larger powers of the variable, lying on
this little circle, will make it even smaller. So the most significant terms
in the action of p on this circle are the zero-degree term a0 and the
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2 + 3i

-4 - i

Figure 8.2

Figure 8.3
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R

Figure 8.4

first-degree term a1z. The image of the little circle centered at the origin
under a0+a1z is another circle of radius |a1|r—centered at a0. See Figure
8.7.

Now the important thing to notice, as you examine Figures 8.4, 8.5,
8.6 and 8.7, is that the one circle of radius R is mapped to a circle that
surrounds the origin, and the other circle of radius r is mapped to a
circle that does not surround the origin. All the circles in between—as
the radius ranges from R to r will have images that vary continuously
between the two images that we have just described—Figure 8.8. And
therefore, as the figure illustrates, one of those images will have to pass
through the origin. But that means that the polynomial p maps some
point to the origin. Which means that there is a root.

The last paragraph is the nub of the argument, and bears repeating.
As circles in the domain of the polynomial vary continuously, so will
their images vary continuously. We have identified some circles in the
domain whose images surround the origin. And we have identified some
other circles whose images do not surround the origin. By continuous
variation of the images, some image of some circle must pass through the
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Ra
k

k

Figure 8.5

radius r

Figure 8.6
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center  a
0

radius a
1
r

Figure 8.7

origin. But that means that the polynomial takes the value 0. We have
thus found a root.

It should be stressed that the argument we have just presented is
rather abstract. It demonstrates the existence of a root, but gives no
hint as to how to find that root. We shall discuss the latter issue below.

Example 8.1

Find all roots of the polynomial z2 + 2z + 5.

SOLUTION We use the quadratic formula with a = 1, b = 2, and c = 5. The
result is

z =
−2±

√
22 − 4 · 1 · 5
2 · 1 =

−2±
√
−16

2
=
−2± 4i

2
= −1 ± 2i .

Thus the roots of the polynomial are −1 + 2i and −1− 2i.

For You to Try: Find all roots of the polynomial z2 + 6z + 10.
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Figure 8.8

Now let us return to our general discussion of the fundamental the-
orem of algebra. We have shown that the polynomial

p(z) = a0 + a1z + a2z
2 + · · ·+ ak−1z

k−1 + akz
k

of degree k ≥ 1 must have a root, even though we cannot say how to find
it. Let us call this root r1. Now we divide the polynomial p by (z − r1).
Of course there will be a quotient q1, and there will be a remainder. And
the remainder will have to be of degree lower than the degree of (z− r1),
otherwise we could keep on dividing. In other words, the remainder is
some constant c1. Thus

p(z) = (z − r1) · q1(z) + c1 .

Now let z = r1. Thus

0 = p(r1) = (r1 − r1) · q1(r1) + c1

or

0 = c1 .
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We find that the remainder (the constant) c1 is 0. Thus

p(z) = (z − r1) · q1(z) .

In other words, (z − r1) divides evenly into p.

Now if the quotient q1 is not constant (i.e., is a polynomial of degree
at least 1), then we may apply the Fundamental Theorem of Algebra to
q1. And find a root r2. And, by the reasoning we just used, (z− r2) will
evenly divide q1 with some quotient q2. Thus we may now write

p(z) = (z − r1) · (z − r2) · q2(z) .

We may continue this reasoning, producing additional roots, until the
degree of the polynomial is exhausted. The result is

p(z) = ak(z − r1) · (z − r2) · · · (z − rk) ,

where ak is the leading coefficient of the polynomial p. This calculation
produces such an important result that we now enunciate it formally:

Theorem 8.1

Let

p(z) = a0 + a1z + a2z
2 + · · ·+ ak−1z

k−1 + akz
k

be a polynomial. Then there are k roots r1, r2, . . . , rk of this polynomial.
[Some of the roots may be repeated.] The polynomial may be factored
in terms of these roots as:

p(z) = ak(z − r1) · (z − r2) · · · (z − rk) .

We call this the factorization of p into linear factors.

This is the standard factorization of a polynomial. Note that the
roots rj are, in general, complex. And they may not be distinct. For
example, the polynomial p(z) = z3 +3z2−4 factors as p(z) = (z−1)(z+
2)(z + 2).
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8.5 Finding the Roots of a Polynomial

Once the degree of a polynomial exceeds four, it is quite difficult to find
the roots. There are many algebra and computer techniques for finding
these roots. In the present section we will present one elegant little trick
which is often useful.

Suppose that p is a polynomial with integer coefficients. And suppose
that we want see whether p has any roots that are rational numbers. Let
us guess a solution of the form r = c/d. We may as well suppose that the
fraction c/d is reduced to lowest terms, so that c and d have no common
prime factors. In order to keep things simple, let us suppose that our
polynomial has degree 2 (the same reasoning will apply to a polynomial
of any degree). So the polynomial has the form

p(z) = αz2 + βz + γ , (?)

where α, β, and γ are integers. Let us substitute our guess into equation
(?). Thus

0 = p(r) = α
(
c

d

)2

+ β
(
c

d

)
+ γ .

Multiplying through by d2 yields

0 = αc2 + βcd+ γd2 .

Let us rearrange this equation as

γd2 = −αc2 − βcd = −c(αc+ βd) .

We notice that c divides the righthand side, so cmust divide the lefthand
side. But c certainly does not divide d. So c must divide γ.

Reasoning similarly, let us now rearrange the equation as

αc2 = −γd2 − βcd = −d(γd + βc) .

We notice that d divides the righthand side, so dmust divide the lefthand
side. But d certainly does not divide c. So d must divide α.

We have discovered this algorithm (we only reasoned for second-
degree polynomials, but the argument works for polynomials of any de-
gree): If

p(z) = a0 + a1z + a2z
2 + · · ·+ ak−1z

k−1 + akz
k
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is a polynomial with integer coefficients, then any rational root r = c/d
of p, reduced to lowest terms, must satisfy

• The numerator c divides a0 evenly.

• The denominator d divides ak evenly.

Example 8.2

Find the rational roots of

p(z) = 2 − 7z + 6z2 .

SOLUTION The factors of the constant term are ±1,±2. The factors of the
top-order (second-degree) terms are ±1,±2,±3. Therefore the possible rational
roots of p are

±1

1
,±1

2
,±1

3
,±2

1
,±2

2
,±2

3
.

It is a simple matter to plug these values into the polynomial and see whether any
of them gives the value 0. We find that 1/2 and 2/3 are roots of the polynomial p.

For You to Try: Use the method just developed to find all the rational
roots of the polynomial

p(z) = 1− 6z − 24z2 + 64z3 .

Exercises

1. Find all roots (three of them!) of the polynomial p(z) =
z3 − 5z − 2z2 + 6.

2. Find all roots (three of them!) of the polynomial q(z) =
z3−3z2+z−3. [Hint: Some of the roots will be complex
numbers.

3. Consider the polynomial

q(z) = z3 − 6z2 + 13z − 20 .
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Given that 1 − 2i is a root (verify this claim!), find all
three roots of q. Notice that two of them are complex.
Further notice that one of these complex root is the
conjugate of the other in the sense that one has the
form a+ ib with a, b ∈ R while the other has the form
a− ib.

4. Refer to Exercise 3. Suppose that

p(z) = a0 + a1z + a2z
2 + · · ·+ akz

k

is a polynomial with all the coefficients aj real numbers.
Assume that the complex number α = a+ ib is a root
of p. Then verify that α = a− ib will also be a root of
p. We call α the conjugate of α.

5. Let β = 1 + i. Let β ′ = β2 and β ′′ = β3. Find a
polynomial p of degree 3 such that β, β ′, β′′ are all roots
of p.

6. The polynomial q(z) = z5− z4− 13z3 +23z2− 14z+24
factors as a cubic polynomial times a quadratic polyno-
mial. Find that factorization. Now find all the roots of
q that you can. Discuss this problem in class.

7. The roots of the polynomial z3 − 1 will be the “cube
roots of unity”. Find those three numbers, and verify
directly that the cube of each one is equal to 1.

8. Write the complex number 1/[3− 7i] in the form a+ ib.

9. Write the complex number

α =
3 − 2i

4 + 7i

in the form a+ ib.

10. Find all the (complex) roots of the polynomial

p(z) = z3 + (1 − i)z2 + (2i− 1)z + (i+ 3) .

[Hint: One of the roots is z = i.]
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11. The polynomial

q(z) = z3 + (1− 3i)z2 + (−8− 2i)z + (2 + 6i)

has the complex number z = i as a double root. Explain
what this statement means, and verify that it is true.

12. What are all the complex roots of the polynomial equa-
tion z5 + 1?

13. Give a justification for the statement

If α is a complex number then there is another
complex number β such that β2 = α.

Can you suggest a method for finding β once α is given?
Discuss this problem in class. Can you enlist the com-
puter to help? Is β unique? How many such β are
there?
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Chapter 9

Sophie Germain and the Attack on
Fermat’s Last Problem

9.1 Birth of an Inspired and Unlikely Child

Marie-Sophie Germain (1776–1831) was one of the most profound and
remarkable figures in all of modern mathematics. Born in Paris the year
of the American revolution, she was a young teenager during the time of
the French revolution. It is possible that some of the revolutionary spirit
got into her blood, for she was an independent thinker from an early age.
Sophie’s home was a meeting place for liberal reform aficionados, so she
was exposed to political and philosophical discussions at an early age.

Sophie Germain was born into a prosperous mercantile family, but
her mental sophistication was in no way tainted by ordinary middle-class
values. Because her mother was named Marie, and so was her sister,
Marie-Sophie became known as “Sophie”.

For her safety, Sophie’s parents kept her at home, and away from
school, during the most violent times of the French revolution. She
diverted herself, and fought the tedium of being home alone, by reading
the books in her father’s library. She was particularly fascinated by the
story of Archimedes. Of particular interest to the young girl was the
account of Archimedes’s untimely demise.

According to legend, when invading Roman troops marauded Syra-
cuse, where Archimedes was living, he contented himself with his mathe-
matics. Marcellus (268 B.C.E.–208 B.C.E.), the general who commanded
the conquering troops, commanded that the great scientist Archimedes
should be protected. Archimedes’s first intimation that the city had

231
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been sacked was the shadow of a Roman soldier falling across his dia-
gram in the soil. One version of the story is that the heathen stepped
on Archimedes’s diagram, causing the mild-mannered scholar to become
angry and exclaim, “Don’t disturb my circles!” Enraged, the soldier
drew his sword and slew Archimedes.

Sophie Germain was fascinated with the notion that a person could
be so absorbed in anything that he would ignore a soldier and then die
as a result. She concluded that mathematics must be quite a worthwhile
subject, and she determined to study it.

Sophie began, as was appropriate, by studying geometry. She also
learned Latin and Greek so that she could read the classical texts. Un-
fortunately, Sophie’s rather mundane parents did not approve of her
scholarly plan. It was commonly held by the bourgeoisie of the time
that advanced education was inappropriate for young women (although
a certain amount of sophistication in upper class women was tolerated—
just because it lent spice to their social conversation). This was not
just a matter of amused disapprobation. Sophie Germain’s parents were
frankly mortified that she would have a mathematical bent.

But Sophie was determined. She quietly studied her mathematics at
night, after her parents had retired. When her parents discovered the
subterfuge, they were outraged. They took away all Sophie’s clothing,
took away her lamps, and turned off the heat. Now, they figured, all
she could do was bundle up in her bedclothes and sleep. But not Sophie
Germain.

Sophie smuggled candles into her room, wrapped herself in quilts,
and studied her books under the cover of some bedding. In this way she
was able to learn her beloved mathematics. Eventually Sophie’s parents
realized that this is what she truly wanted to do. They declared her
to be “incurable”, and they reluctantly bestowed their blessing. With
the largesse of her parents, Sophie Germain spent the time of the Reign
of Terror studying differential calculus—and all without the aid of a
tutor! Sophie Germain never married, and certainly never obtained a
professional position. Her father supported her financially throughout
her life.

In 1794 the very distinguished École Polytechnique was founded in
Paris. Designed to educate the best minds in the country to become
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“mathematicians and scientists in the service of France,” this institution
remains to this day one of the finest universities in the world. Women
were not allowed to enroll in the Polytechnique. But, through her in-
domitable determination, Sophie Germain managed to obtain copies
of the notes from the courses. She studied them assiduously, and she
was particularly enthralled with the teachings of Joseph-Louis Lagrange
(1736–1813). She learned the name of a former student of Lagrange (M.
LeBlanc), and at the end of the term submitted a paper on analysis to
Lagrange using LeBlanc’s name. Professor Lagrange was so impressed
by the work that he demanded to meet the student who had written
it. You can imagine his surprise to learn that said student was a young
woman!

It is to Lagrange’s credit that he did not let the common social prej-
udices affect his judgment. He not only approved of Sophie Germain’s
work, but he agreed to become her mentor. This development had sig-
nificance on several levels. Not only did Lagrange share with Sophie his
scientific erudition, but he was able to gain access for her to the top circle
of scientists and scholars of the day. Until this point, Sophie had been
inhibited in her scholastic growth not only because she was a woman,
but also because her social status (middle class) denied her access to the
most sophisticated scholarly circles. It still must be said that Sophie
Germain’s education was never very formal. It was, in fact, disorganized
and haphazard; this feature hampered her scientific progress throughout
her life.

Sophie never lacked for initiative and daring. After reading his Essai
sur le Théorie des Nombres, she initiated a correspondence with Adrien-
Marie Legendre about some of the problems posed therein. The subse-
quent exchange of ideas can be considered as no less than a collaboration.
In fact Legendre included some of her results in a supplement to the sec-
ond edition of his Essai.

After Carl Friedrich Gauss published his book Disquisitiones Arith-
meticae in 1804, Sophie Germain became fascinated by the subject of
number theory. At the age of 28, Sophie Germain began corresponding
with the great man. Gauss was not only the most distinguished mathe-
matician of the day—he was perhaps the greatest mathematician of all
time. Commonly hailed as the “Prince of Mathematics”, Gauss held a
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god-like status in scientific circles. His accomplishments were copious
and, indeed, earthshaking. Just as one instance, Gauss was the person
who had finally proved the Fundamental Theorem of Algebra—in fact
he offered five different proofs in his doctoral dissertation. Recall that
we discussed this central theorem of algebra in Chapter 8 of the present
text.

Painfully aware of the social tenor of the times, Sophie Germain
conducted her correspondence with Gauss under the pseudonym “J.
LeBlanc”. She sent Gauss some of her results in number theory. A
vigorous and lively correspondence was the result. In fact, between 1804
and 1809, she wrote a dozen letters to Gauss. Gauss gave Germain’s
work high praise, and even repeated that praise to his colleagues. In
1807, Gauss learned that his talented correspondent was a woman only
because of the French occupation of his hometown of Braunschweig. Re-
calling the nasty fate that befell Archimedes, and fearing for Gauss’s
life, Sophie Germain contacted a French commander who was a friend
of her family and asked for protection for Professor Gauss. When Gauss
learned of Sophie’s intervention on his behalf, he was lavishly grateful.

On learning that his talented mathematical correspondent was a
woman, Professor Gauss was both delighted and thrilled.1 Gauss’s let-
ter to Germain, after he discovered her true identity, reveals something
about the man:

But how can I describe my astonishment and ad-
miration on seeing my esteemed correspondent Mon-
sieur LeBlanc metamorphosed into this celebrated
person, yielding a copy so brilliant it is hard to be-
lieve? The taste for the abstract sciences in gen-
eral and, above all, for the mysteries of numbers, is
very rare: this is not surprising, since the charms
of this sublime science in all their beauty reveal
themselves only to those who have the courage to
fathom them. But when a woman, because of her

1This eventuality is really to Gauss’s credit. In spite of his many fine attributes,
Gauss was not noted for lending support to struggling young mathematicians. But

he made special efforts on behalf of Sophie Germain.
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sex, our customs and prejudices, encounters in-
finitely more obstacles than men, in familiarizing
herself with their knotty problems, yet overcomes
these fetters and penetrates that which is most
hidden, she doubtless has the most noble courage,
extraordinary talent, and superior genius. Noth-
ing could prove to me in a more flattering and less
equivocal way that the attractions of that science,
which have added so much joy to my life, are not
chimerical, than the favour with which you have
honoured it.

Gauss did provide Sophie Germain with notable guidance for her
research. But it was around this time that he accepted a position as
Professor of Astronomy at the University of Göttingen, and his interest
in number theory had waned. As previously mentioned, she subsequently
initiated contact with Adrien-Marie Legendre, and sent him a description
of what would turn out to be some of her most seminal work in the
subject of number theory. Her communications with Legendre became
quite sophisticated and extensive.

The assertion that if p and 2p + 1 are both prime then any solution
of xp +yp = zp must satisfy the conclusion p divides at least one of x, y, z
is known as Sophie Germain’s theorem.2 It was included in a letter from
Germain to Legendre in the early 1820s, and he presented it in a paper
to the French Academy of Sciences in 1823.

As noted earlier in this book, Pierre de Fermat (1601–1665) was
perhaps the most talented mathematical amateur of all time. We say
“amateur” not to downgrade his efforts in any way, but instead to ac-
knowledge the fact that he was a judge in Toulouse—that was his full-
time avocation. He practiced his mathematics strictly as a hobby. But
his work was so profound that he was part of the most distinguished sci-
entific circles, and he corresponded with the important mathematicians
of his day. In the late 1630s, Fermat wrote a marginal note in his copy of

2It must be noted that a prime number p such that 2p + 1 is also prime is known to
this day as a “Sophie Germain prime”. This is an important idea in modern number

theory.
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Claude Bachet’s Latin translation of Diophantus’s Arithmetica that, it
would turn out, intrigued mathematicians for the next 360 years. Such
eminent scholars as Euler, Legendre, Gauss, Abel, Dirichlet, Kummer,
Cauchy, and of course Sophie Germain herself worked on this problem.

What Fermat said in the margin of his text was

It is impossible to separate a cube into two cubes,
or a biquadrate into two biquadrates, or in general
any power higher than the second into two powers
of like degree; I have discovered a truly remarkable
proof which this margin is too small to contain.

In modern language—language, in fact, which Fermat could not have
known—we can express Fermat’s marginal assertion as follows:

The equation xn +yn = zn has no positive integer
solutions x, y, z when the integer exponent n > 2.

We know from our studies in Chapter 1 of the present text that, when
n = 2, the equation has infinitely many triples (x, y, z) of solutions. It
was Sophie Germain who proved one of the very first general results
about Fermat’s problem.3

In any event, Sophie Germain studied Fermat’s problem and made
this contribution:

If x, y, z are positive integers and x5 + y5 = z5

then one of x, y, or z must be divisible by 5.

Sophie later generalized this result to all exponents less than 100. Again,
this was one of the first truly general results about Fermat’s problem.

3It must be clearly understood here that Fermat never published nor communicated
the details of his idea. His credibilty was so strong that scholars of subsequent gen-

erations believed that he must have, indeed, had a solution to the problem. Fermat
did in fact use his method of infinite descent to prove the result when n = 4. Those

details were made public. But his general solution has never been seen.
The problem was finally solved by Andrew Wiles—he announced his solution in

1993 and published it in 1995 (see [WIL]). Wiles’s solution is so complex, and so
sophisticated, that it really suggests that Fermat must have been mistaken. And in

fact Wiles himself has said that he believes that Fermat made an error.
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It was the best work in the area until the contributions of Kummer in
1840.

We will discuss some of the details of Fermat’s last problem, and of
Sophie Germain’s particular contributions to it, in a later section. For
now we will continue with the story of her life.

Sophie Germain’s education was erratic and uneven. Yet she never
feared to forge into unknown territory. In 1808, the German physicist
Ernst F. F. Chladni visited Paris; there he conducted experiments on vi-
brating plates, exhibiting the so-called Chladni figures. Subsequently the
Institut de France set a prize competition with the following challenge:

Formulate a mathematical theory of elastic sur-
faces and indicate just how it agrees with empiri-
cal evidence.

The Academy set a two-year deadline for contest submissions. Most
mathematicians were frightened away from Chladni’s problem because
the great Lagrange had declared that the available methods were inade-
quate to attack such a situation. Thus in 1811 Sophie Germain submitted
the one and only entry to the contest. In spite of her great raw talent,
Sophie lacked the sophistication that would have been the product of a
true formal education. She had no training in physics and did not know
the calculus of variations. Her naivete and inexperience showed in her
written work, and the judges downgraded it. The fact that she submitted
the paper anonymously may have worked against her also. She was not
awarded the prize. Clearly Sophie had much to learn. But the judges
extended the term for the contest. She still had a chance to make her
mark.

Her friend Professor Lagrange was in fact one of the judges for the
French Prize, and he could see the merit and originality in her work.
He came to Sophie’s aid, and he helped her to correct various errors
and to bring the paper up to acceptable scientific quality. She again
submitted her efforts to the French Prize Committee. She was able to
demonstrate that Lagrange’s equation (from the calculus of variations)
did yield Chladni’s patterns in several instances, but she was unable to
give a satisfactory derivation of the particular Lagrange equation for this
physical problem from the first principles of the physics of elasticity. This
time she received an Honorable Mention.
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In 1816 Sophie Germain made a third submission to the French
Academy’s Mathematical Physics Contest. This time she won with her
paper entitled Memoir on the Vibrations of Elastic Plates. She was
awarded one kilogram of gold.

This was one of the seminal scientific achievements of Sophie’s scien-
tific career. Sadly, she did not attend the awards ceremony as she feared
for the scandal that might result. Still, she was heartened by the recog-
nition. The judges were still firm in pointing out that the paper had
shortcomings, and many of these shortcomings would not be corrected
for decades to come. Some highly placed scientists were still exceedingly
critical; Poisson (1781–1840), for example, altogether rejected her efforts.

As one biographer phrases it:

Although it was Germain who first attempted to
solve a difficult problem, when others of more
training, ability and contact built upon her work,
and elasticity became an important scientific topic,
she was closed out. Women were simply not taken
seriously.

Sophie continued her research in the subject area, and published
several more memoirs. She had considerable impact on the field. In
fact the research of Sophie Germain is applied today in the construction
of skyscrapers, and it also has applications in acoustics and elasticity.
Sophie sensed that the judges did not fully appreciate her work. She
also felt that the scientific community did not accord her the respect
that she was due. Siméon Poisson was one of the judges for the prize,
and he was particularly diffident in offering any appreciation for her
insights.

In fact Sophie Germain submitted in 1825 a paper to a commission of
the Institut de France. The membership at that time included Poisson,
Gaspard Clair François Marie Riche de Prony (1755–1839), and Pierre-
Simon Laplace (1749–1827). The work was due some criticisms, but
the editorial board did not report these to the author. Instead it just
ignored the submission. The paper did not see the light of day until it
was recovered from the papers of de Prony and published in 1880.

One of the important consequences of Sophie’s prize is that it in-
troduced her into the first rank of academic circles. With the help of
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Jean-Baptiste Fourier, she became the first woman who was not the wife
of an academy member (and therefore a courtesy guest) to be allowed
to attend the sessions of the Academy of Sciences. She received praise
and attention from the Institut de France and was also invited to attend
their meetings. This was in fact the highest honor that the Institut ever
bestowed on a woman.

Sophie Germain died at the age of 55 from complications due to
breast cancer. Just before her death, Gauss had convinced the University
of Göttingen to grant her an honorary degree. Sadly, she died before she
was able to receive the honor.

Sophie Germain worked on mathematics and physics until the time
of her death. Not long before she got sick and died, she outlined a philo-
sophical essay entitled Considé rations générales sur l’é tat des sciences
ed des lettres. The work was published posthumously in the journal
Oeuvres philosophiques. The paper was most highly praised by August
Comte (1798–1857) Even after she was diagnosed with breast cancer in
1829, Sophie Germain continued her work on number theory and the
curvature of surfaces. She completed papers in both fields before her
passing.

It is heartening to note that Sophie Germain has received perhaps
more recognition for her work in recent times than during her brief life-
time. The street Rue Sophie Germain in Paris is named for her, as is
the École Sophie Germain. There is a statue of Sophie standing in the
courtyard of that institution of learning. There is also a Sophie Germain
Hotel standing on the street named after her. The house in which she
died, at 13 rue de Savoie, has been designated a historical landmark. Per-
haps most significant for a mathematician, certain prime numbers—the
prime numbers p such that 2p+ 1 is also prime—are now called “Sophie
Germain primes”. As examples, 2, 5, 11, 23 are Sophie Germain prime
numbers.

Sophie Germain died in June 1831, and her death certificate listed
her not as mathematician or scientist, but rentier (property holder).

9.2 Sophie Germain’s Work on Fermat’s Problem

We begin with some foundational ideas.
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It was realized early on that Fermat’s Last Problem need only be
studied for prime number exponents. In studying the equation

xn + yn = zn (∗)

from Fermat’s point of view (the point of view of Diophantine equations,
that is, equations for which we seek only integer roots), it is sufficient to
consider only prime number exponents n. For if the equation (∗) has a
set of integer roots x, y, z for some composite number exponent n, then
say that n = p · r, with p prime. We may write

(xr)p + (yr)p = (zr)p

thus revealing that the equation

αp + βp = γp (∗∗)

has the integer roots xr, yr, zr. Thus, if we can show that (∗∗) has no
solutions, the it follows that (∗) has no solutions.

We have already noted that Fermat published a proof of his problem,
using the method of infinite descent, for the case n = 4. In fact what
Fermat showed more precisely is that if T is a right triangle, all of whose
sides have rational length, then twice the area of the triangle cannot be
a perfect square. Let us examine this assertion. Consider Figure 9.1.
Let the lengths of the sides of the triangle be a/b, c/d, e/f—all rational
numbers. Since the triangle is a right angle, we know that

(
a

b

)2

+
(
c

d

)2

=

(
e

f

)2

. (?)

If it were the case that twice the area of the triangle is a perfect
square, then we would have

2 ·
[
1

2
· a
b
· c
d

]
= α2

for some integer α. But then

a

b
= α2 · d

c
.
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a/b

c/de/f

Figure 9.1

Substituting this last identity into equation (?) gives

α4

(
d

c

)2

+
(
c

d

)2

=

(
e

f

)2

.

Multiplying through by (c/d)2 and simplifying gives

α4 +
(
c

d

)4

=

(
ce

df

)2

.

We may multiply through by d4f4 to obtain

(αdf)4 + (cf)4 = (cdef)2 .

But this just says that the equation

m4 + n4 = p2

has a set of integer solutions—namely m = α2d2f2, n = c2f2, p = cdef .
And that in turn says that the equation

m4 + n4 = q4 (??)
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has a set of integer solutions. For we simply let e = cdf and then the
integer solutions to (??) are m = α2d2f2, n = c2f2, and q = cdf . Of
course the argument can be reversed. Hence Fermat’s statement about
right triangles with rational sides is equivalent to Fermat’s last problem
for the exponent n = 4.

In 1770 Leonhard Euler (1707 C.E.–1783 C.E.) published a proof of
Fermat’s last theorem for n = 3, but it was considered to be incomplete
(i.e., there was an error about divisibility properties of certain integers).
Gauss also produced a proof for n = 3 that was published posthumously.
What Sophie Germain wrote to Carl Friedrich Gauss on November 21,
1804 was:

I add to this art some other considerations which
relate to the famous equation of Fermat xn +yn =
zn whose impossibility in integers has still only
been proved for n = 3 and n = 4; I think I have
been able to prove it for n = p−1, p being a prime
number of the form 8k + 7. I shall take the lib-
erty of submitting this attempt to your judgment,
persuaded that you will not disdain to help with
your advice an enthusiastic amateur in the science
which you have cultivated with such brilliant suc-
cess.

There is no extant record of either Sophie’s proof or of Gauss’s reply. It
is possible that her proof was in error, and the result hence forgotten.

Many years later, in a letter penned in May of 1819, Sophie wrote
to Gauss that

Although I have labored for some time on the the-
ory of vibrating surfaces (to which I have much to
add if I had the satisfaction of making some ex-
periments on cylindrical surfaces I have in mind),
I have never ceased to think of the theory of num-
bers . . . A long time before our Academy proposed
as the subject of a prize the proof of the impossi-
bility of Fermat’s equation, this challenge . . . has
often tormented me.
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Sophie Germain was corresponding with Legendre at about this same
time. In one of her letters to Legendre from the early 1820s, she proved
that if p is a “Sophie Germain prime” then any solution of Fermat’s
equation with exponent p must have the property that one of x, y, or
z is divisible by p. As a concrete instance, if p = 11 then 2p + 1 = 23.
Since 23 is prime, we see that 11 is a Sophie Germain prime. Thus if
x, y, z are integer solutions of the equation

x11 + y11 = z11

then one of x, y, z must be divisible by 11.
In fact what she proved was a bit more, and a bit more sophisticated:

Theorem: Let p be an odd prime. If there is
another prime q with the properties that

(1) The equation xp + yp + zp = 0 mod q implies
that either x or y or z has residue 0 mod q;

(2) The equation np = p mod q is impossible for
any integer n;

then any integer solutions x, y, z of xp + yp = zp

has the property that one of x, y, z is divisible by
p.

Let us consider why this more general result implies the theorem
that we attributed above to Sophie Germain. A classical result known
as “Fermat’s Little Theorem” says that if q is prime and 0 < a < q then
aq−1 = 1 mod q. We will discuss why Fermat’s Little Theorem is true in
just a little while. If we take Fermat’s result for granted, then we may
reason as follows.

First of all, Fermat tells us that, with q = 2p + 1 with p and q both
primes, and if 0 < a < q, then

(ap)2 = a2p = aq−1 = 1 mod q .

As a result,

(ap − 1)(ap + 1) = a2p − 1 = 1− 1 = 0 mod q .
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We conclude that ap = ±1 mod q. Thus, if x, y, and z are not congruent
to 0 mod q then we may think of these three numbers as lying between
0 and q (mod q) and hence

xp + yp + zp = ±1± 1 ± 1

which certainly cannot equal 0 mod q. This establishes the simpler ver-
sion of Sophie Germain’s theorem that we discussed above.

For each odd prime p less than 100, Sophie Germain gave a prime q
to which the more general version of her theorem applies. For instance

Value of p Value of q

3 7
5 11
7 29
11 23

13 53
17 137
19 191

Exercises

1. Add some meat to the discussion in the text: If a, b, c
were solutions to the Fermat-type equation

x18 + y18 = z18 ,

then there would also exist solutions to the equations

x9 + y9 = z9

and

x6 + y6 = z6

and

x3 + y3 = z3 .

Discuss this problem in class.
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2. A Diophantine equation is a polynomial equation for
which we seek integer solutions. Such equations are
named after Diophantus, who considered problems of
this type more than 2000 years ago.

Certainly Pythagoras’s equation

x2 + y2 = z2

is an instance of a Diophantine equation. Another ex-
ample is

2x+ y2 = z2 . (∗)
How many solutions can you find to (∗)? Are there
infinitely many? Discuss this question in class.

3. Refer to problem 2 for terminology. One of the most
famous Diophantine equations is Pell’s equation. This
is an equation of the form

x2 − dy2 = 1 .

The idea is to fix an integer value for d and then seek
solutions x, y. In the present exercise we explore what
happens when d is a perfect square. Discuss this prob-
lem in class.

Say that d = n2, for n some positive integer. Then
Pell’s equation becomes

x2 − n2y2 = 1 .

We may factor the lefthand side as

(x− ny)(x+ ny) = 1 .

Now the only way that the product of two integers can
equal 1 is if they are both equal to +1 or they are both
equal to −1. In either event, we have

x− ny = x+ ny .
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From this we conclude that ny = 0. But then x2 = 1 so
x = ±1. Thus the problem is solved and the solution is
trivial

4. We learned in Exercise 3 that there is no interest to
study Pell’s equation x2 − dy2 = 1 when d is a perfect
square. So let us examine some other cases.

Consider the Pell equation for d = 5. Verify that x =
9, y = 4 is a solution. It happens that there is also a
solution when x = 161. Can you find it? There are also
solutions when x = 2889 and when x = 51841 and when
x = 930248. Use the computer to aid your search.

Now examine the Pell equation for d = 7. There are
solutions when x = 8 and also when x = 127. See
whether you can find them.

5. The Waring problem, which was ultimately solved by
David Hilbert in 1909, asserts that every positive inte-
ger can be written as the sum of at most four perfect
squares. As an example, 22 = 42 +22 +12 +12. We dis-
cussed this problem in Exercise 9 of Chapter 2. Find a
positive integer that has two different Waring decompo-
sitions (i.e., decompositions as the sum of at most four
perfect squares). Can you find a positive integer that
has three Waring decompositions?

6. In 1964, J. M. Gandhi proposed that the Diophantine
equation

x5 + y5 = 2z5

will only have solutions when x = y or x = −y. Ex-
plain why there will always be solutions under these
conditions. What about the equation

x3 + y3 = 2z3 ?

7. Consider the Diophantine equation

x2 + xy + y2 = z2 . (?)
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Verify that x = −7, y = 15, z = 13 is a solution. It is
known that if an equation of type (?) has one solution
then it has infinitely many. Can you find any other
solutions of (?)?

8. Andrew Wiles’s solution to Fermat’s last problem as-
serts that the Diophantine equation

xn + yn = zn

has no integer solutions x, y, z when the exponent n is
any integer greater than 2. In particular, the equation

x3 + y3 = z3

has no integer solutions. But there are some near misses.
For example, the equation

30863 + 215883 = 216093

is only off by 1. Do the calculation and explain what
this means.

Now verify the equation

(9u3 + 1)3 + (9u4)3 = (9u4 + 3u)3 + 1

for u a positive integer. Explain why this will gener-
ate infinitely many “near misses” for Fermat’s equation
with exponent 3.

9. The television show The Simpsons, in the “Treehouse
of Horror” episode from the sixth season, revealed the
following counterexample to Fermat’s Last Theorem:

Take your TI-83 calculator and compute

[
178212 + 184112

]1/12
.

You will find the answer to be 1922. Thus

178212 + 184112 = 192212 .
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This apparently contradicts Andrew Wiles’s result that
Fermat’s equation with exponent 12 has no solutions.

The example illustrates why calculators must be used
with caution—especially when you are dealing with large
numbers. Because the calculator has the capacity to
handle only so many digits—so it rounds off the an-
swers. The conundrum described in this problem is the
result of roundoff error.

Discuss this problem in class.

10. A variant of Pell’s equation (see Exercises 3 and 4) is

x2 − dy2 = −4 . (†)

Show that equation (†) has a solution when d = 8.
What can you determine when d = 20 or d = 40? It
turns out that the Pell-type equation

x2 − dy2 = −1

has no solution in these cases. Discuss the situation in
class.



Chapter 10

Cauchy and the Foundations of
Analysis

10.1 Introduction

Augustin Louis Cauchy (1789–1857) was born in Paris during a tumul-
tuous period of French history. His father feared for the family’s safety
because of the political events connected with the French revolution, so
he moved the family to Arcueil. There life was hard. The family often
did not have adequate food.

As a consequence, the family moved back to Paris. This was good
for young Cauchy, as his father (in addition to educating the young man
himself) had Laplace and Lagrange as regular guests in the Cauchy home.
Lagrange especially took a special interest in young Cauchy’s develop-
ment. He advised the senior Cauchy that his son should learn languages
before engaging in mathematics. Thus August Cauchy enrolled in 1802
in the École Centrale du Panthéon. He spent two years on the study of
classical languages. Beginning in 1804, young Cauchy began his study
of mathematics. He took the entrance exam for the École Polytechnique
in 1805; he managed to place second. Cauchy graduated in 1807 and
then entered engineering training at the École des Ponts et Chaussées.
Cauchy excelled at engineering, and graduated in 1810. He then took
up his first job in Cherbourg to develop the port facilities for Napoleon’s
English invasion fleet. Cauchy nevertheless maintained his interest in
mathematics; he kept with him a copy of Laplace’s Mécanique Céleste
and one of Langrange’s Théorie des Fonctions.

Cauchy was very busy in these days. He was also a devout Catholic,

249
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and devoted time to his religion. Evidently his religious beliefs were
causing him trouble in his relationships with others. He wrote to his
mother

So they are claiming that my devotion is causing
me to become proud, arrogant and self-infatuated.
. . . I am now left alone about religion and nobody
mentions it to me anymore . . .

Cauchy’s continued devotion to mathematics led to some original
research, and in 1811 he proved that the angles of a convex polyhedron
are determined by its faces. Legendre and Malus encouraged him; he
submitted that paper, and in 1812 produced another on the same topic.

Cauchy felt that if he was to further his mathematical career then
he must return to Paris. This he did in 1812. He was ill at the time,
though it appears that this illness was psychosomatic and stemmed from
depression. Cauchy did manage to continue his mathematical activities,
and he produced more papers. He was expected to return to Cherbourg
after he recovered from his illness. But this was not consistent with
Cauchy’s mathematical ambitions. He was able to arrange to instead
stay in Paris and work on the Ourcq Canal project. He applied for an
associate professorship at the École des Ponts et Chausées but failed.

Cauchy continued to do strong research in mathematics, but his sev-
eral applications for academic posts failed. In 1814 Cauchy published a
tract on definite integrals that later became the basis for his theory of
complex functions.

In 1815 Cauchy finally got lucky. He failed to obtain the mechan-
ics chair at the École Polytechnique, but instead landed an assistant
professorship. The following year he won the Grand Prix of the French
Academy of Sciences for a research paper on waves. He really established
his reputation when he wrote a paper solving one of Fermat’s problems
on polygonal numbers. Cauchy managed to obtain membership in the
National Academy of Sciences when Carnot and Monge fell from political
favor and were dismissed.

In 1817, Biot left Paris for a scientific expedition; thus Cauchy was
able to fill his position at the Collége de France. At this time Cauchy
engaged in detailed and rigorous studies of analysis—both of a real vari-



10.1 Introduction 251

able and a complex variable. He published a number of important tracts,
and gave many lectures on different parts of the subject.

Cauchy did not have good relations with other mathematicians and
scientists. His strict Catholic views put him on the side of the Jesuits
against the Académie des Sciences. He would bring religion into his
scientific work; for instance, he did so in a report on a paper on the
theory of light in 1824. He attacked the author for his view that Newton
had not believed that people had souls. He was described by a journalist
who said:-

. . . it is certainly a curious thing to see an academi-
cian who seemed to fulfil the respectable functions
of a missionary preaching to the heathens. An ex-
ample of how Cauchy treated colleagues is given
by Poncelet whose work on projective geometry
had, in 1820, been criticised by Cauchy:-

. . . I managed to approach my too rigid judge at
his residence . . . just as he was leaving . . . During
this very short and very rapid walk, I quickly per-
ceived that I had in no way earned his regards or
his respect as a scientist . . . without allowing me
to say anything else, he abruptly walked off, re-
ferring me to the forthcoming publication of his
Leçons à l’École Polytechnique where, according
to him, ‘the question would be very properly ex-
plored.’

His relationship with Galois and Abel during this period was unfor-
tunate. Abel, who visited the Institute in 1826, wrote of him:-

Cauchy is mad and there is nothing that can be
done about him, although, right now, he is the
only one who knows how mathematics should be
done.

By 1830 the political events in Paris and his many years of hard work
had taken their toll. Augustin Cauchy decided to take a break. He left
Paris in September 1830, after the revolution of July, and spent a short
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time in Switzerland. There he was an important assistant in setting up
the Académie Helvétique, but this project collapsed as it became caught
up in political events.

Political events in France meant that Cauchy was now required to
swear an oath of allegiance to the new regime and when he failed to
return to Paris to do so he lost all his positions there. In 1831 Cauchy
went to Turin and after some time there he accepted an offer from the
King of Piedmont of a chair of theoretical physics. He taught in Turin
from 1832. Menabrea attended these courses in Turin and described
them as follows:

were very confused, skipping suddenly from one
idea to another, from one formula to the next,
with no attempt to give a connection between
them. His presentations were obscure clouds, il-
luminated from time to time by flashes of pure
genius. . . . of the thirty who enrolled with me, I
was the only one to see it through.

In 1833 Cauchy went from Turin to Prague in order to follow Charles
X and to tutor his grandson. However he was not very successful in
teaching the prince:

. . . exams were given each Saturday. . . .When ques-
tioned by Cauchy on a problem in descriptive ge-
ometry, the prince was confused and hesitant. . . .
There was also material on physics and chemistry.
As with mathematics, the prince showed very lit-
tle interest in these subjects. Cauchy became an-
noyed and screamed and yelled. The queen some-
times said to him, soothingly, smilingly, “too loud,
not so loud.”

Cauchy had meetings with Bolzano in 1834, and this evidently had
some influence over his definition of continuity. He returned to Paris in
1838. Cauchy continued to refuse to take the oath of allegiance, and this
worked to his detriment. He could not teach, could not attend meetings,
and could not draw a salary (even though he had a position). Cauchy
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was a candidate for a chair at the Collége de France, but failed because
of his political and religious beliefs. Although Cauchy’s mathematical
output was diminished during this period, he did important work on
differential equations, mathematical physics, and astronomy.

King Louis Philippe was overthrown in 1848 and Cauchy regained
his university position. But he continued to be a thorn in the side of his
colleagues. Liouville beat him out for an important chair, and Cauchy
was quite bitter. Their relationship suffered.

Unfortunately the final period of Cauchy’s life was marred by a dis-
pute with Duhamel over the priority to a discovery concerning shock
waves. Poncelet sided with Duhamel, and Cauchy was proved to be
wrong. But he would never admit his error, and he went to his grave
bitter over the matter.

Cauchy’s final hour is described by his daughter as follows:

Having remained fully alert, in complete control
of his mental powers, until 3.30 a.m.. my father
suddenly uttered the blessed names of Jesus, Mary
and Joseph. For the first time, he seemed to be
aware of the gravity of his condition. At about
four o’clock, his soul went to God. He met his
death with such calm that made us ashamed of
our unhappiness.

Augustin Cauchy’s life was somewhat chaotic. But his effect on
mathematics was profound and undeniable. He worked on complex vari-
ables, the foundations of calculus and analysis, and many other areas of
mathematics and physics.

Cauchy is often credited with making calculus rigorous. His difficult
and profound work laid to rest 150 years of doubts about the foundations
of Newton and Leibniz’s seminal new tool. But nobody is perfect. Ga-
lois’s personal torment was due in no small part to the fact that Cauchy
failed to promote the young man’s work—as he had promised to do.
Some of Abel’s failures and frustrations can similarly be laid at the feet
of Cauchy.

In the present chapter we shall explore some of Cauchy’s ideas about
the structure of the real number system.
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1

1

2

Figure 10.1

10.2 Why Do We Need the Real Numbers?

In everyday life—buying groceries, or machining a dowel, or keeping
the books for a business, or building a bookshelf—the rational number
system is more than adequate for our needs. You would never walk into
the hardware store and say, “I need a board that is

√
3 feet long” or “I

need a bolt of length 2/π centimeters.” In the first place, nobody would
know what you were talking about. In the second place, there is nothing
in our sentient world that requires that kind of precision. So why are
mathematicians not content with the rational numbers?

There are at least two reasons, and we have seen one of them already.
One reason is that there are very elementary constructions in geometry
that give rise to numbers that are not rational. For example (see Figure
10.1), the diagonal of a square of side 1 has diagonal with length that is
not rational. In fact, we showed in Chapter 1 that its length is

√
2 and

that
√

2 is an irrational number.

The more profound and subtle reason that we find the rational num-
bers inadequate has to do with the notion of completeness. Consider the
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sequence of rational numbers

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, . . . .

In fact these numbers represent the decimal expansion of
√

2. They
converge (i.e., become ever closer to)

√
2. But we know that

√
2 is not

rational. And that is the rub: it is possible for a sequence of rational
numbers to become ever closer together, to seem to converge to some
number—but the number is not there! It is not part of the rational
number system.

Of course the same problem occurs with the sequence of rational
numbers (i.e., the decimal expansion) that represents

√
7 or π or any

number of other irrational numbers.1 In calculus, and more generally in
mathematical analysis, we frequently find ourselves wanting to pass to
limits. We need to know that the number which will play the role of
limit will actually be there waiting. We cannot have gaps in the number
system. This is why we need the real numbers.

In fact, historically, mathematicians used the real numbers before
they actually knew what they were or how to construct them. Today
we have a much firmer grasp of why the real numbers exist. Part of the
purpose of this chapter is to share these ideas with you.

10.3 How to Construct the Real Numbers

In Chapter 8 we constructed the complex numbers. This was a little
tricky, but it could be done in a page or so. The construction of the
reals is quite a bit more difficult. We cannot give a completely rigorous
treatment here, but shall content ourselves with a heuristic description
of the process. And it is, truly, a matter of necessity being the mother
of invention. We shall use the fault of the rational numbers that we have
just described as the foothold on which to build our new number system.

We begin by considering the collection of all sequences of rational
numbers that “appear to” tend to a limit. Thus the sequence

1,
1

2
,
1

3
, . . .

1We shall learn in Chapter 13 that there are, in a precise sense, more irrational
numbers than rational. So the irrational numbers are something that we must reckon

with.
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is one that we shall want to treat while the sequence

1,−1, 1,−1, . . .

is not.
A sequence will be denoted, in short form, as {aj} = {aj}∞j=1. This

stands for the list

a1, a2, a3, . . . .

A sequence is said to be Cauchy, or to satisfy the Cauchy condition, if
its elements seem to get closer and closer together. So, for instance, the
sequence

1,
1

2
,
1

3
, . . .

is certainly Cauchy. Also the sequence

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . .

is Cauchy. Notice that the notion of being Cauchy has nothing to do
with whether the sequence actually has a limit. All we care about is
whether the sequence is getting close together—and therefore seems to
demand a limit. Whether or not the limit is actually there is a separate
issue.

We will say that two Cauchy sequences are equivalent it they seem
to tend to the same limit. A convenient way to say this precisely is that
{aj} and {bj} are equivalent if aj−bj → 0. As an example, the sequences

1,
1

2
,
1

3
,
1

4
, . . .

and

1,
1

2
,
1

4
,
1

8
,

1

16
, . . .

are equivalent. We can see this precisely because the jth term of the
first sequence is aj = 1/j and the jth term of the second sequence is
bj = 1/2j−1 and

aj − bj =
1

j
− 1

2j−1
−→ 0 .
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Now we form equivalence classes of sequences. An equivalence class
of sequences is a collection of sequences, all of which are equivalent to
one another. It is most convenient to describe an equivalence class in
this way:

Let A be the collection of sequences which are
equivalent to

1, 0, 0, 0, . . . .

What other sequences are in A? Well, the sequence

1, 2, 3, 0, 0, 0, . . .

is certainly in A (check this for yourself). The sequence

1,
1

2
,
1

3
,
1

4
, . . .

is in A. In fact any sequence that tends to 0 is in A.
Another equivalence class is the set B of all sequences that are equiv-

alent to

1, 1, 1, 1, 1, . . . .

Which other sequences are in B? Well, the sequence

1 + 1, 1 +
1

2
, 1 +

1

3
, 1 +

1

4
, . . .

lies in B. In fact any sequence that tends to 1 lies in B.
Let us give the collection of equivalence classes that we have been

describing a name. Let us call the collection R. We claim that R forms
a number system. And the number system R has operations of addition,
subtraction, multiplication, and division. That number system contains
the rational numbers. And it contains some interesting new numbers as
well. Finally, the number system R (unlike the rational number system)
has no holes in it (as we shall learn below). In fact the new number
system R has the important feature that any sequence in it that seems
to tend to a limit actually has a limit in that number system. We say
that R is complete.



258 Chapter 10: Cauchy and the Foundations of Analysis

Let us now verify some of these assertions. Let A denote the equiv-
alence class containing the sequence {aj} and let B denote the equiva-
lence class containing {bj}. Then we add these two equivalence classes
according to the rule that A+B is the equivalence class of all sequences
equivalent to {aj + bj}. Likewise:

• The difference of these two equivalence classes, A− B,
is the equivalence class of all sequences equivalent to
{aj − bj}.

• The product of these two equivalence classes,A·B, is the
equivalence class of all sequences equivalent to {aj · bj}.

• If the elements bj tend to a non-zero limit, then A/B
is the equivalence class of all sequences equivalent to
{aj/bj}.

In mathematics we say that the arithmetic operations are defined on
sequences termwise. So R forms a number system.

We have asserted that R contains the rational numbers. In fact we
will exhibit a mapping

Φ : Q 7−→ R

that takes each rational number to a unique representative in our new
number system. Let q ∈ Q. Define Φ(q) to be the collection of all
sequences equivalent to {q, q, q, . . .}. So q is represented in our new num-
ber system by the sequences that are equivalent to a constant sequence
modeled on q. The mapping Φ gives us a means to think of the rational
numbers as a “sub-number-system” of the real numbers.

We have also asserted that R will contain new numbers—besides the
rationals. An example of such a “new number” is the collection of all
sequences equivalent to

{1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, . . .} .

This equivalence class does not correspond to any rational number—in
the manner we have just indicated. In fact, as we know from earlier
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discussions, it corresponds to
√

2. Another example of a “new number”
is the equivalence class corresponding to

{3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, 3.1415926, 3.14159265, . . .} .

This equivalence class corresponds to π. Of course there are many more
examples.

Let us conclude this discussion by saying a few words about com-
pleteness. This is a subtle matter, and we cannot tell the whole story.

Let A1, A2, A3, . . . be a sequence of elements of the set R. So each
Aj is an equivalence class of sequences. And assume that the Aj are
getting closer and closer together—in the sense that when j and k are
large then the terms of Aj and Ak are getting very close together. Then
we would like to say that there is a limiting sequence. Where would we
find such a sequence? We can produce it by taking the first term of a
sequence in A1, the second term of a sequence in A2, the third term of a
sequence in A3, and so forth. Call this manufactured sequence X . Then
it will be the case that

Aj −→ X .

So we have achieved our goal: Our new number system R has no
holes in it. Sequences that are getting closer and closer together always
converge; in other words, the number system is complete. We honor our
achievement by calling this new number system the real numbers and
denoting it by the special letter R.

It is well to review the subtle construction that we have just per-
formed:

• We first observed that the rational number system Q is
inadequate because it is not complete. This means that
it has holes: there are sequences of rational numbers
that get ever closer together but that tend to no limit
within the rational numbers.

• We constructed a new number system by considering
equivalence classes of sequences of rational numbers that
seem to get ever closer together.
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• We confirmed that this new collection of objects has
operations of addition, subtraction, multiplication, and
divison. It is a number system.

• Our new collection of objects also has the special fea-
ture that any sequence of these objects that seems to
get ever closer together will actually have a limit (unlike
the rational numbers) in that number system. Thus the
new number system repairs the flaw that the rational
number system Q suffered. This development is so im-
portant that we give the new number system a name.
We call these the real numbers R.

10.4 Properties of the Real Number System

Most any construction of the real number system is rather opaque. The
main thing for you to understand is that we now have a number system
that

(a) Contains the rational numbers Q;

(b) Is an ordered field;

(c) Is complete in the sense that every Cauchy sequence has
a limit in the number system.

In fact the real number system is the minimal ordered field that satisfies
these properties, and it is unique.

In practice, when we use the real numbers, we do not think about
how they were constructed. We just use them. Classical mathematicians
like Cauchy and Weierstrass and Gauss also used the real numbers with
such blissful abandon; but they did not know how the real numbers were
constructed. They were not sure of the axioms of the real numbers.
In other words, they were not certain of the fundamental properties of
this number system. As a result, they were frequently hamstrung by
paradoxes and contradictions. Our rigorous construction of the reals
puts our study on a firm foundation and avoids logical traps and pitfalls.

In the present section we shall explore some of the deeper and more
important properties of the real number systems. Some of these will
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have foundations in “intuitively obvious” statements that you have used
(perhaps rather vaguely) in the past. Others will be new to you. We
begin with a property of sequences that will be key to all of our other
results.

10.4.1 Bounded Sequences

One of the key operations in mathematical analysis is to extract a con-
vergent subsequence from a given sequence. It is here that the special
properties of the real numbers (especially completeness) play a role. We
will use the result of this subsection in all of our further discussions.

In what follows we shall use the concept of subsequence. If {xj} is
a given sequence of numbers, then a subsequence is denoted by {xjk

}.
This is a list of numbers taken from the original sequence in order (but
omitting some terms). A concrete example makes the idea clear:

{
1

j

}
=

1

1
,

1

2
,

1

3
, . . .

is a sequence of real numbers. An example of a subsequence—one of
many possible—is

1

2
,

1

5
,

1

13
,

1

47
, . . . .

Notice that the subsequence contains certain elements of the original
sequence—in order—but not necessarily all of the original elements.

Theorem 10.1

Let [a, b] be a closed, bounded interval. Let {xj} be a sequence contained
in [a, b]. Then there is a subsequence xj1 , xj2, . . . and a limit point ` ∈
[a, b] such that

lim
k→∞

xjk
= ` .

The reasoning behind this result is very natural. Let us assume for
simplicity that the interval is actually [0, 1]. So {xj} is a sequence that
lies in [0, 1]. Now divide the interval into two pieces: [0, 1] = [0, 1/2] ∪
[1/2, 1]. Clearly one of those pieces must contain infinitely many elements
of the sequence. Say it is the first piece [0, 1/2]. Now divide this piece
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0 1

Figure 10.2

into two further pieces: [0, 1/2] = [0, 1/4] ∪ [1/4, 1/2]. Since there are
infinitely many elements of the sequence in [0, 1/2], therefore one of the
two pieces [0, 1/4] or [1/4, 1/2] must contain infinitely many elements of
the sequence. Say that it is [1/4, 1/2]. For the third step, subdivide the
interval again. And continue.

We end up with a nested, decreasing collection of intervals whose
intersection is the limit point ` that we seek. See Figure 10.2.

In the next subsection we shall immediately see a dramatic applica-
tion of Theorem 10.1.

10.4.2 Maxima and Minima

Let f be a function with domain the closed interval [a, b]. Is there a
point M such that f takes its maximal value at M (i.e., f(M) is as large
as possible)? Is there a point m such that f takes its minimal value at
m (i.e., f(m) is as small as possible)?

In general, the answer to these questions is “no”. Have a look at
figure 11.3. It shows a function with domain [0, 1] that has no maximum
and no minimum. Often in mathematics, if we look hard at what is
going wrong, we can figure out how to make it right. We realize that the
function exhibited in Figure 10.3 is not the sort of function that we want
to be thinking about. We wish to consider functions whose graphs do
not have jumps or gaps. In other words, we want functions whose graphs
can be drawn in an uninterrupted sweep, without lifting the pencil from
the paper. These are the continuous functions. The theorem is:

Theorem 10.2

Let f be a continuous function with domain the closed, bounded interval
[a, b]. Then there is a point m ∈ [a, b] such that

f(m) ≤ f(x)
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Figure 10.3

for every x ∈ [a, b]. Also there is a point M ∈ [a, b] such that

f(M) ≥ f(x)

for every x ∈ [a, b]. See Figure 10.4.

We should like to discuss how the special properties of the real num-
ber system make this result true.

Now let us give an algorithm for finding M . First, it simplifies our
notation and helps us to see things more clearly if we assume that the
interval is [0, 1]. Consider the net of two points {0, 1}. Choose the one
of these two points at which f takes the greater value. Call it x1. Refer
to Figure 10.5.

Now look at the net {0, 1/2, 1}. Choose the one of these three points
at which f takes the greater value. Call it x2. Refer to Figure 10.6.

Now look at the net {0, 1/4, 1/2, 3/4, 1}. Choose the one of these
three points at which f takes the greater value. Call it x3. Refer to
Figure 10.7.

Continue in this manner. The result is a sequence {xj}. We may
now apply Theorem 10.1 to obtain a subsequence {xjk

} that converges
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Figure 10.8

to a limit point M in [a, b]. That is the point where f takes its maximum
value.

Of course a completely analogous discussion produces the point m
where f takes its minimum value.

Example 10.1

The continuous function f(x) = x3 − 3x2 − 8x+ 2 on the closed,
bounded interval [0, 4] takes its minimum value on the interval at
the point m = 1 +

√
33/3 and its maximum value on the interval

at the point M = 0. Neither of these statement is at all obvious
(they require ideas from calculus). But our theorem guarantees
that m and M will exist. And these are their values. See Figure
10.8.

For You to Try: In fact we learned some of the basic ideas of calculus
in Section 7.3. One of the more useful techniques was Fermat’s test. Use
that test now to confirm the values for m and M in Example 10.1.

For You to Try: Consider the continuous function g(x) = x sin[1/x]
on the interval [0, π] (where it is understood that g(0) = 0). Discuss
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(a,    )

(b,    )

y = f(x)

Figure 10.9

in class where g will take its minimum value and where g will take its
maximum value.

10.4.3 The Intermediate Value Property

Let f be a function with domain the interval [a, b]. Say that f(a) = α
and f(b) = β. See Figure 10.9. Let γ be a number that lies between α
and β. Is there a number c between a and b such that f(c) = γ?

In general, the answer to this question is “no”. See Figure 10.10. But,
as before, if we look hard at what is going wrong then we can sometimes
see how to make it right. The function in Figure 10.11 is clearly not
the sort of function that we want to be considering. The graph has a
break, or jump, in it. That is to say, the function is discontinuous. What
we want is a function whose graph is unbroken, one whose graph can be
drawn without lifting our pencil from the paper. The correct statement
of the Intermediate Value Property is as follows:

Theorem 10.3

Let f be a continuous function with domain the interval [a, b]. Let f(a) =
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(a,    )

(b,    )

Figure 10.10

Figure 10.11
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1

x x
1 2

1 1

Figure 10.12

α and f(b) = β. If γ is a number between α and β then there is a number
c between a and b such that f(c) = γ.

We should like to give an indication of why this result is true; par-
ticularly, we want to see why the special properties of the real number
system—especially completeness—play a role. For convenience and sim-
plicity, let us suppose that α < γ < β. We shall use the same mechanism
that we used to find maxima and minima.

First, it simplifies our notation and helps us to see things more clearly
if we assume that the interval is [0, 1]. Consider the net of two points
{0, 1}. Moving from left to right, choose the last one of these two points
at which f takes a value less than γ. Call it x1

1. The next point in the net
will be a point where f takes a value greater than γ. Call it x1

2. Refer to
Figure 10.12. [In fact for this simple, two-point net, it will certainly be
true that x1

1 = 0 and x1
2 = 1. There are no other choices; and certainly

f(0) = α < γ and f(1) = β > γ.]

Now look at the net {0, 1/2, 1}. Moving from left to right, choose
the last one of these three points at which f takes a value less than γ.
Call it x2

1. The next value in the net will be a point where f takes a
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1

x x
1 2

2 2

Figure 10.13

value greater than γ. Call it x2
2. Refer to Figure 10.13.

Now look at the net {0, 1/4, 1/2, 3/4, 1}. Moving from left to right,
choose the last one of these five points at which f takes a value less than
γ. Call it x3

1. The next value in the net will be a point where f takes a
value greater than γ. Refer to Figure 10.14.

Continue in this manner. The result is a pair of sequences {x1
j} and

{x2
j} in [0, 1]. By Theorem 10.1, we may find a subsequence of {x1

j}
that converges to a point c. Correspondingly, there is a subsequence of
{x2

j} that converges to c. By the way that we chose these points, these
sequences are clamping down on a point (namely c) at which f takes
the intermediate value γ. [This is where we are using the fact that f is
continuous.]

The intermediate value theorem is particularly satisfying and clear
when it is used in practice. So let us look at some examples.

Example 10.2

Explain why every positive real number has a square root.

SOLUTION Let r be a fixed, positive real number. Consider the function
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1

x x
1 2

3 3

Figure 10.14

f(x) = x2 − r. Then f(0) = −r < 0. And f(r + 1) = [r2 + 2r + 1] − r =
r2 +r+1 > 0. By the intermediate value property, there is some number c between
0 and r + 1 such that f(c) = 0. But this says that c2 − r = 0 or c2 = r. We
have produced the required square root for r.

For You to Try: Let k be a positive integer. Show that every positive
real number has a kth root.

It must be stressed that the square root that we produced in Ex-
ample 10.2, and the kth root that you produced in the last For You
to Try are determined by way of existence proofs. Our arguments are
nonconstructive, and give no clue of the actual values of the roots.

Example 10.3

Show that the polynomial p(x) = x5−3x2 +1 has a root between
0 and 1.

SOLUTION We notice that p(0) = 1 > 0 and p(1) = −1 < 0. By the
intermediate value property, there is a number c between 0 and 1 such that p(c) = 0.
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That is the required result.

For You to Try: Show that the function f(x) = x11 − 9x7 + 5x3 + 2
has at least one real root.

Remark: In our discussion of the Brouwer fixed point theorem in Sec-
tion 16.4 we shall use the Intermediate Value Property to prove that
if f : [0, 1] → [0, 1] is continuous then there is a fixed point p ∈ [0, 1]
such that f(p) = p. This is a dramatic geometric application of the idea.

Exercises

1. The product of two rational numbers is always ratio-
nal. But the product of two irrational numbers need
not be irrational. Explain these two statements, and
give examples where appropriate.

2. The sum of two rational numbers is always rational.
But the sum of two irrational numbers need not be ir-
rational. Explain these two statements, and give exam-
ples where appropriate.

3. The quotient of two rational numbers is always rational.
But the quotient of two irrational numbers need not
be irrational. Explain these two statements, and give
examples where appropriate.

4. Prove that the sum of a rational number and an irra-
tional number is irrational.

5. Prove that the product of a non-zero rational number
and an irrational number is irrational.

6. A version of Gauss’s lemma states that if a positive,
whole number has a rational square root then it fact it
has a whole number (integer) square root. Explain this
statement.
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7. The square root of a rational number can be irrational;
give an example. Can the square root of an irrational
number be rational?

8. Show that there is a number x > 0 such that x2 = sinx.

9. Suppose that f is a continuous function with domain
[0, 1] and range [0, 1]. Show that there is a point c ∈
[0, 1] such that f(c) = c. [Hint: Consider the function
g(x) = f(x) − x and apply the intermediate value the-
orem in an appropriate manner.] We will discuss this
fixed point result of Brouwer and its generalizations in
Chapter 16.

10. A certain business has assets that begin at time t =
0 by equaling 0. After a certain amount of time, at
time t = K, the business goes bust and the total assets
are again zero. By applying the maximum/minimum
theorem to the asset function A(t) on the interval [0,K],
we may conclude that there is a time when the assets
are a maximum. Explain this reasoning. What are the
guaranteed points where the assets A are a minimum?

11. Prove that between every two irrational numbers on the
line there is a rational number. [Hint: Observe that√

2 < 2 <
√

5.]

12. Prove that between every two rational numbers on the
line there is an irrational number. [Hint: Observe that
1 <
√

2 < 2.]
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Chapter 11

The Prime Numbers

11.1 The Sieve of Eratosthenes

The prime numbers are the units of arithmetic. A prime number is
defined to be a positive whole number (i.e., an integer) that has no
divisors except 1 and itself. By convention, we do not consider 1 to be a
prime. Thus

• 2 is prime because the only divisors of 2 are 1 and 2.

• 3 is prime because the only divisors of 3 are 1 and 3.

• 4 is not prime because 2 divides 4.

• 5 is prime because the only divisors of 5 are 1 and 5.

• 6 is not prime because 3 divides 6.

• 7 is prime because the only divisors of 7 are 1 and 7.

• 8 is not prime because 2 divides 8.

• 9 is not prime because 3 divides 9.

and so forth. The Fundamental Theorem of Arithmetic states that every
positive integer can be factored into primes in one and only one way. For
example,

98 = 2 · 72

and
12745656 = 23 · 32 · 7 · 113 · 19 .

275
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Except for rearranging the order of the factors, there is no other way to
factor either of these two numbers.

The ancient Greeks had a particular fascination with the primes.
One such was Eratosthenes (276 B.C.E.–194 B. C.). Eratosthenes was
born in Cyrene, Libya, North Africa. His teachers included Lysanias
of Cyrene and Ariston of Chios. The latter made Eratosthenes part of
the stoic school of philosophy. Around 240 B.C.E., Eratosthenes became
the third librarian of the great library of Alexandria (this library was
later destroyed by invading hordes). One of Eratosthenes’s most impor-
tant works was the Platonicus, a tract that dealt with the mathematics
underlying Plato’s Republic.

Eratosthenes devised a sieve for creating a list of the primes. In fact
sieve methods are still used today to attack such celebrated problems as
the Goldbach conjecture.1 Here is how Eratosthenes’s method works.

We begin with an array of the positive integers:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

. . .

First we cross out 1. Then we cross out all the multiples of 2 (but not 2
itself):

1— 2 3 4— 5 6— 7 8— 9 10— 11 12— 13 14— 15 16—
17 18— 19 20— 21 22— 23 24— 25 26— 27 28— 29 30— 31 32—
33 34— 35 36— 37 38— 39 40— 41 42— 43 44— 45 46— 47 48—
49 50— 51 52— 53 54— 55 56— 57 58— 59 60— 61 62— 63 64—
65 66— 67 68— 69 70— 71 72— 73 74— 75 76— 77 78— 79 80—
81 82— 83 84— 85 86— 87 88— 89 90— 91 92— 93 94— 95 96—

. . .

1The Goldbach conjecture is the problem of showing that any even number greater
than 4 can be written as the sum of two odd primes. It is one of the great unsolved

problems of modern number theory.
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Now we proceed by crossing out all the multiples of 3 (but not 3 itself):

1— 2 3 4— 5 6— 7 8— 9— 10— 11 12— 13 14— 15— 16—
17 18— 19 20— 21— 22— 23 24— 25 26— 27— 28— 29 30— 31 32—
33— 34— 35 36— 37 38— 39— 40— 41 42— 43 44— 45— 46— 47 48—
49 50— 51— 52— 53 54— 55 56— 57— 58— 59 60— 61 62— 63— 64—
65 66— 67 68— 69— 70— 71 72— 73 74— 75— 76— 77 78— 79 80—
81— 82— 83 84— 85 86— 87— 88— 89 90— 91 92— 93— 94— 95 96—

. . .

You can see that the numbers we are crossing out cannot be prime since,
in the first instance, they are divisible by 2, and in the second instance,
they are divisible by 3. Now we will cross out all the numbers that are
divisible by 5 (why did we skip 4?) but not 5 itself. The result is:

1— 2 3 4— 5 6— 7 8— 9— 10— 11 12— 13 14— 15— 16—
17 18— 19 20— 21— 22— 23 24— 25— 26— 27— 28— 29 30— 31 32—
33— 34— 35— 36— 37 38— 39— 40— 41 42— 43 44— 45— 46— 47 48—
49 50— 51— 52— 53 54— 55— 56— 57— 58— 59 60— 61 62— 63— 64—
65— 66— 67 68— 69— 70— 71 72— 73 74— 75— 76— 77 78— 79 80—
81— 82— 83 84— 85— 86— 87— 88— 89 90— 91 92— 93— 94— 95— 96—

. . .

Let us perform this procedure just one more time, by crossing out all
multiples of 7 (why can we safely skip 6?), but not 7 itself:

1— 2 3 4— 5 6— 7 8— 9— 10— 11 12— 13 14— 15— 16—
17 18— 19 20— 21— 22— 23 24— 25— 26— 27— 28— 29 30— 31 32—
33— 34— 35— 36— 37 38— 39— 40— 41 42— 43 44— 45— 46— 47 48—
49— 50— 51— 52— 53 54— 55— 56— 57— 58— 59 60— 61 62— 63— 64—
65— 66— 67 68— 69— 70— 71 72— 73 74— 75— 76— 77— 78— 79 80—
81— 82— 83 84— 85— 86— 87— 88— 89 90— 91— 92— 93— 94— 95— 96—

. . .

And now here is the punchline: The numbers that remain (i.e., that
are not crossed out) are those that are not multiples of 2, nor multiples
of 3, nor multiples of 5, nor multiples of 7. In fact those that remain are
not multiples of anything. They are the primes:

2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 ,
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47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 . . .

And on it goes. No prime was missed. The sieve of Eratosthenes will
find them all.

But a number of interesting questions arise. We notice that our
list contains a number of prime pairs: {3, 5}, {5, 7}, {11, 13}, {17, 19},
{29, 31}, {41, 43}, {71, 73}. These are primes in sequence that differ
by just 2. How many such pairs are there? Could there be infinitely
many prime pairs? To date, nobody knows the answer to this question.
Another old problem is whether the list of primes contains arbitrarily
long arithmetic sequences, that is, sequences that are evenly spaced. For
example, 3, 5, 7 is a list of primes that is evenly spaced (by units of 2).
Also 41, 47, 53, 59 is evenly spaced (by units of 6). It was only just proved
in 2004 by Green and Tao [TAG] that the primes do contain arbitrarily
long arithmetic sequences.

An even more fundamental question is this: How many prime num-
bers are there altogether? Perhaps 100? Or 1000? Or 1,000,000? In fact
it was Euclid (330–275 B.C.E.) who determined that there are infinitely
many prime numbers. We shall discuss his argument in the next section.

11.2 The Infinitude of the Primes

Euclid’s reasoning constitutes one of the earliest number-theoretic proofs
in all of mathematics. Furthermore, it was a proof by contradiction—
a method that did not take a firm hold in mathematics until the late
nineteenth century (thanks to David Hilbert).

It is worth contemplating the significance of what Euclid did. He
wanted to prove something rather abstract: that the collection of all
primes is not finite. In the language of Georg Cantor (see Chapter 14),
which was not developed until 2000 years later, one might achieve this
goal by setting up a one-to-one correspondence with another set that is
known to be infinite. But this technique did not exist in Euclid’s time.
What he did was quite daring: he played a game of chess2 with the
universe. Euclid hypothesized that the collection of all prime integers is

2In chess one sometimes threatents to sacrifice his queen in order to gain an advan-
tage and win the game. Euclid took this a step further and threatened to sacrifice

everything.
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finite, and he showed that that led to a contradiction. The conclusion
that one can derive from this argument is that if one adjoins to all the
known assertions of mathematics the statement

There are only finitely many prime integers.

then there results a contradiction. If we take it for granted that the
known body of mathematics is consistent and correct, then the only pos-
sible result is that the contradiction lies in the sentence that we adjoined.
That is a rather simple sentence. The only thing that could be wrong
with it is that it is false. Thus there must be infinitely many primes. We
now provide the details of Euclid’s proof.

What Euclid said is this: Suppose to the contrary that there are only
finitely many primes. Call them p1, p2, . . . , pK. This is alleged to be a
complete list of all the primes. But now consider the number

p∗ = p1 · p2 · · · · · pK−1 · pK + 1 .

Then p∗ is greater than all the primes we have listed. So p∗ cannot be a
prime. Thus it must be what we call a composite number. That means
that it factors into primes. So it is divisible by some of our primes. Well,
if we divide p∗ by p1 then p1 goes evenly into p1 · p2 · · · · · pK−1 · pK , but
there is a remainder because of the +1. So, when we divide p∗ by p1 there
is a remainder 1. Thus p1 is not a prime factor of p∗. Likewise, when we
divide p∗ by p2 there is a remainder 1. So p2 is not a prime factor of p∗.
Proceeding iteratively, we see in fact that none of the primes on our list is
a prime factor of p∗. And those are all the primes that there are! Thus p∗

is not composite. It must be prime. But that is a contradiction, because
we claimed at the outset to have listed all the primes as p1, . . . , pK . The
only possible conclusion is that there are infinitely many primes.

The reader will want to review this proof a few times in order to
become comfortable with it. At first it all seems like a trick. But it is
definitely not. It is strict and rigorous mathematical reasoning. And it
shows that there is an unlimited supply of prime numbers.

11.3 More Prime Thoughts

The prime numbers have inspired mountains of research by mathemati-
cians. How are they distributed? What are their relationships? Today,
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the theory of prime numbers plays a decisive role in the making and
breaking of secret codes (see Chapter 20).

We give in this section an example of one of the first profound facts
that was ever discovered about the primes. Its author was our old friend
Fermat. Fermat’s result says this. Let p be any prime. Let n be any
integer greater than 1. Then p evenly divides np − n. In fact Fermat
stated this result but did not prove it. A formal proof was given years
later by Gottfried Wilhelm von Leibniz (1646–1716) around 1683. We
shall give a very elementary verification of the fact here, using little more
than high school algebra. The one big idea that we shall invoke is the
binomial expansion. Let us review it now.

We learn early on in algebra that if a and b are numbers then

(a+ b)2 = a2 + 2ab+ b2 .

After we become a bit more sophisticated, we might be called upon to
calculate (a+ b)3. The answer is

(a+b)3 = (a+b) ·(a+b)2 = (a+b) ·(a2+2ab+b2) = a3+3a2b+3ab2+b3 .

With greater effort, one can learn that

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4 .

All these calculations beg the question of how one can calculate (a+
b)n for any positive integer n. The classical and well-known answer (Isaac
Newton knew this formula, for example, and extended it to the case of
n non-integral—even negative) is

(a+ b)n = an +
n

1
an−1b+

n · (n− 1)

2 · 1 an−2b2

+
n · (n − 1) · (n− 2)

3 · 2 · 1
an−3b3

+
n · (n − 1) · (n− 2) · (n− 3)

4 · 3 · 2 · 1 an−4b4

+ · · · + n · (n− 1) · (n− 2) · · · · · 3
(n− 2) · (n − 3) · · · · · 2 · 1 a2bn−2
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+
n · (n − 1) · (n− 2) · · · · · 3 · 2

(n− 1) · (n− 2) · · · · · 2 · 1 abn−1

+
n · (n − 1) · (n− 2) · · · · · 2 · 1

n · (n− 1) · · · · · 2 · 1 bn .

We invite the reader to try this formula out for n = 2, n = 3, n = 4 to
see that it reproduces the answers we have already provided above. It
is important to notice, and we will use this fact below, that each of the
coefficients in this binomial expansion is an integer.

Each of the coefficients in the binomial expansion has a special role
in mathematics. The coefficient of an−jbj is denoted

(
n

j

)
=

n!

(n− j)!j! .

This number is of interest for many reasons. For example, the number
of different ways to select j objects from among n is

(
n
j

)
. Why is that?

To take a specific instance, suppose we wish to choose 2 objects from
among n. For the first pick, we may take any of the n objects. So there
are n possibilities. For the second pick, we may select any of the (n− 1)
remaining objects. So there are (n − 1) possibilities. It is tempting to
conclude, then, that the total number of possible ways to choose two
objects from among n is n(n − 1). But wait! We are forgetting that we
are counting every possible choice twice, because two particular objects
may be chosen in two different orders. So the correct total of the number
of ways to choose 2 from n is

n(n− 1)

2
=

n!

(n− 2)!2!
=

(
n

2

)
.

Now let us turn our attention to Fermat’s little result. First let us
test it out for n = 2. Fix any prime p. The claim is that p divides 2p−2.
It is convenient to write

2p − 2 = (1 + 1)p − 2

and then to apply the binomial theorem. Thus

2p − 2 =
[
1p + p · 1p−1 · 1 +

p · (p− 1)

2 · 1 · 1p−2 · 12
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+
p · (p − 1) · (p− 2)

3 · 2 · 1 · 1p−3 · 13

+ · · ·+ p · (p − 1) · (p − 2) · · · · · 4 · 3
(p − 2) · (p− 1) · · · · · 3 · 2 · 1 · 1

2 · 1p−2

+
p · (p − 1) · (p− 2) · · · · · 4 · 3 · 2
(p− 1) · (p − 2) · · · · · · 3 · 2 · 1 · 1

1 · 1p−1

+
p · (p − 1) · (p− 2) · · · · · 3 · 2 · 1
p · (p − 1) · (p− 2) · · · · · · 3 · 2 · 1

· 1 · 1p
]
− 2 .

Now we perform some simple arithmetic to rewrite this as

2p − 2 =
[
1 + p · 1 +

p · (p − 1)

2 · 1
· 1

+
p · (p− 1) · (p − 2)

3 · 2 · 1 · 1

+ · · · + p · (p − 1)

2 · 1
· 1 +

p

1
· 1 + 1

]
− 2 .

Of course the two additive 1s and the 2 cancel. We are left with

2p − 2 = p +
p · (p − 1)

2 · 1
+
p · (p − 1) · (p − 2)

3 · 2 · 1
+ · · ·+ p · (p− 1)

2 · 1
+
p

1
.

Lo and behold, each summand on the right is a binomial coefficient
and hence (as previously noted) a whole number. And each is divisible
by p. In fact the factor of p appears explicitly in each term. Thus the
righthand side is divisible by p, hence so is the left.

Will this trick work again for n = 3? Let us try. We calculate

3p − 3 = (2 + 1)p − 3

=
[
2p + p · 2p−1 · 1 +

p · (p− 1)

2 · 1 · 2p−2 · 12

+
p · (p − 1) · (p− 2)

3 · 2 · 1 · 2p−313

+ · · ·+ p · (p− 1) · (p − 2) · · · · · 4 · 3
(p − 2) · (p− 1) · · · · · 3 · 2 · 1 · 2

2 · 1p−2
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+
p · (p − 1) · (p− 2) · · · · · 4 · 3 · 2
(p− 1) · (p − 2) · · · · · · 3 · 2 · 1 · 2

1 · 1p−1

+
p · (p − 1) · (p− 2) · · · · · 3 · 2 · 1
p · (p − 1) · (p− 2) · · · · · · 3 · 2 · 1 · 1

p
]
− 3 .

Now we perform some simple arithmetic to rewrite this as

3p − 3 =
[
2p + p · 2p−1 +

p · (p − 1)

2 · 1
· 2p−2

+
p · (p− 1) · (p − 2)

3 · 2 · 1
· 2p−3

+ · · · + p · (p − 1)

2 · 1 · 22 +
p

1
· 2 + 1

]
− 3 .

We may rearrange this in order to take advantage of our result for n = 2.
The result is

3p − 3 =
[
2p − 2

]
+
[
p · 2p−1 +

p · (p− 1)

2 · 1 · 2p−2

+
p · (p − 1) · (p − 2)

3 · 2 · 1 · 2p−3

+ · · ·+ p · (p− 1)

2 · 1
· 22 +

p

1
· 2
]
.

Now of course 2p−2 is divisible by p because we have already proved
that result. And all the other terms on the right have plainly exhibited a
factor of p. Thus the righthand side is divisible by p. We conclude that
3p − 3 is divisible by p.

Let us try this one more time with n = 4. We calculate that

4p − 4 = (3 + 1)p − 4

=
[
3p + p · 3p−1 · 1 +

p · (p− 1)

2 · 1
· 3p−2 · 12

+
p · (p − 1) · (p− 2)

3 · 2 · 1
· 3p−313
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+ · · ·+ p · (p− 1) · (p − 2) · · · · · 4 · 3
(p − 2) · (p− 1) · · · · · 3 · 2 · 1 · 3

2 · 1p−2

+
p · (p − 1) · (p− 2) · · · · · 4 · 3 · 2
(p− 1) · (p − 2) · · · · · · 3 · 2 · 1 · 3

1 · 1p−1

+
p · (p − 1) · (p− 2) · · · · · 3 · 2 · 1
p · (p − 1) · (p− 2) · · · · · · 3 · 2 · 1 · 1

p
]
− 4 .

Now we perform some simple arithmetic to rewrite this as

4p − 4 =
[
3p + p · 3p−1 +

p · (p − 1)

2 · 1
· 3p−2

+
p · (p− 1) · (p − 2)

3 · 2 · 1
· 3p−3

+ · · · + p · (p − 1)

2 · 1 · 32 +
p

1
· 3 + 1

]
− 4 .

We may rearrange this in order to take advantage of our result for n = 3.
The result is

4p − 4 =
[
3p − 3

]
+
[
p · 3p−1 +

p · (p− 1)

2 · 1 · 3p−2

+
p · (p − 1) · (p − 2)

3 · 2 · 1 · 3p−3

+ · · ·+ p · (p− 1)

2 · 1 · 32 +
p

1
· 3
]
.

Now of course 3p−3 is divisible by p because we have already proved
that result. And all the other terms on the right have plainly exhibited a
factor of p. Thus the righthand side is divisible by p. We conclude that
4p − 4 is divisible by p.

The pattern is becoming painfully clear, is it not? If we want to prove
Fermat’s result for n+1, that is, that (n+1)p−(n+1) is divisible by p, we
apply the binomial expansion to enable us to use the result for n that we
have already established. This methodology is a time-honored technique
of mathematics that is known as mathematical induction. Formulated a
bit more precisely, mathematical induction goes like this:
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We wish to prove a proposition P (n) for each pos-
itive integer n. We do so by first proving P (1) and
then proving the syllogism

P (n)⇒ P (n+ 1) .

Then we may conclude that P (n) is valid for all
n.

We shall treat mathematical induction, and other methods of proof
as well, in Chapter 19. Pause a minute now to review the reasoning of this
section and to realize that we have the perfect setup—in the context of
Fermat’s theorem—for applying mathematical induction. Our statement
P (n) is that np − n is divisible by p. The assertion for n = 1 is trivial
since 1p − 1 = 0. Now all we need to do is formalize the reduction
procedure that we have already performed for n = 1, n = 2, n = 3, and
n = 4. We will assume that the result is known for n. And we will use
that hypothesis to prove the result for n+ 1. Now let us carry out these
steps.

We calculate that

(n + 1)p − (n+ 1) =
[
np + p · np−1 · 1 +

p · (p − 1)

2 · 1 · np−2 · 12

+
p · (p − 1) · (p− 2)

3 · 2 · 1 · np−n1n

+ · · ·+ p · (p− 1) · (p − 2) · · · · · 4 · n
(p − 2) · (p − 1) · · · · · 3 · 2 · 1 · n

2 · 1p−2

+
p · (p − 1) · (p− 2) · · · · · 4 · 3 · 2
(p− 1) · (p − 2) · · · · · · 3 · 2 · 1 · n

1 · 1p−1

+
p · (p − 1) · (p− 2) · · · · · 3 · 2 · 1
p · (p − 1) · (p− 2) · · · · · · 3 · 2 · 1 · 1

p
]
− (n+ 1) .

Now we perform some simple arithmetic to rewrite this as

(n+ 1)p − (n+ 1) =
[
np + p · np−1 +

p · (p − 1)

2 · 1 · np−2
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+
p · (p− 1) · (p − 2)

3 · 2 · 1 · np−3

+ · · · + p · (p − 1)

2 · 1 · n2 +
p

1
· n+ 1

]
− (n + 1) .

We may rearrange this in order to take advantage of our result for n.
The result is

(n + 1)p − (n+ 1) =
[
np − n

]
+
[
p · np−1 +

p · (p− 1)

2 · 1 · np−2

+
p · (p − 1) · (p− 2)

3 · 2 · 1 · np−3

+ · · ·+ p · (p− 1)

2 · 1 · n2 +
p

1
· n
]
.

Now of course np−n is divisible by p because we have assumed that
result to be true. And all the other terms on the right have plainly
exhibited a factor of p. Thus the righthand side is divisible by p. We
conclude that (n+ 1)p − (n + 1) is divisible by p. The inductive step is
complete, and we have proved Fermat’s theorem for all n.

For You to Try: Use mathematical induction to prove that, for each
positive integer n, the number n2 + 7n + 12 is even.

For You to Try: Use mathematical induction to prove that, for any
positive integer n,

1 + 2 + · · ·+ (n− 1) + n =
n(n + 1)

2
.

Exercises

1. Prove that if p is a prime number then p2 + p is not a
prime number.

2. Prove that it is impossible to have a sequence of integers
k, k + 1, k + 2 all of which are primes.
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3. If k is a prime number greater than 2 then k2 + 1 is
not a prime number. Prove the assertion. Discuss this
question in class.

4. It is a recent spectacular result of Green and Tao that
the prime numbers contain arbitrarily long arithmetic
sequences. Thus, for any N > 0, there are lists of inte-
gers n1, n2, n3, . . . , nN such that the nj are evenly spaced
apart and all the nj are primes. As a simple example,
5, 11, 17 are all prime numbers that are spaced 6 apart.
Find an example of four prime numbers (other than the
one given in the text) that are evenly spaced. Find
an example of five. Find an example of six. Use the
computer to assist your search if you like. Discuss this
question in class.

5. How many examples can you give of numbers of the
form k(k + 1) + 1 that are prime? Are there infinitely
many of these? Why?

6. The celebrated Prime Number Theorem—due to Hadamard
and de la Vallee Poussin—states that the number of
primes less than or equal to N is approximatelyN/ lnN .
Thus the number of primes less than or equal to 1,000,000
is about 1, 000, 000/ ln 1, 000, 000 ≈ 72.382. This is an
astonishing statement. How many primes are there less
than or equal to 1000? How does this information fit
with the prediction provided by the Prime Number The-
orem? How many primes are there less than or equal to
10,000? How does this information fit with the predic-
tion provided by the Prime Number Theorem? Use a
computer to aid your searches if you wish. Discuss this
problem in class.

7. A conjecture that has been researched is that any inte-
ger with all digits 1 is a prime. Well, 1 is not a prime
by definition. But 11 is prime. Certainly 111 is prime.
What about 1111 or 11111? Investigate this question.
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Use the computer if you find it convenient. What is
the largest prime with all digits 1 that you can find?
Discuss this question in class.

8. Use mathematical induction to prove that the sum of
the first N perfect squares: 12 + 22 + · · · +N2 is equal
to

2N3 + 3N2 +N

6
.

9. Refer to Exercise 8. Find a formula for the sum of the
first N perfect cubes. Verify using induction that it is
correct. Discuss this problem in class.

10. Prove that if n is a positive integer then n2 + 3n + 2 is
even. Use mathematical induction.

11. A stronger form of mathematical induction is this:

Let P (j) be a statement for each positive in-
teger j. If

(i) P (1) is true;
(ii) Whenever P (1), . . . P (k − 1) is true then
P (k) is true;

then P (j) is true for all j.

Use this “strong form of mathematical induction” to
show that every positive integer has a decomposition
into a product of prime factors.

12. Is the difference of two primes ever a prime? Discuss
this question in class.



Chapter 12

Dirichlet and How to Count

12.1 The Life of Dirichlet

Peter Gustav Lejeune Dirichlet (1805–1859) was one of the great number
theorists of the nineteenth century. His father’s first name was Lejeune,
coming from “Le jeune de Richelet”. This means “young from Richelet.”
The Dirichlet family came from the neighborhood of Liége in Belgium.
The father was postmaster of Düren, the town where young Peter was
born. At a young age Dirichlet developed a passion for mathematics; he
spent his pocket money on mathematics books. He entered the Gymna-
sium in Bonn at the age of 12. There he was a model pupil. He exhibited
an interest in history as well as mathematics.

After two years at the Gymnasium Dirichlet’s parents decided that
they would rather have him at the Jesuit College in Cologne. There he
fell under the tutelage of the distinguished scientist Ohm. By age 16,
Dirichlet had completed his school work and was ready for the university.
German Universities were not very good, nor did they have very high
standards, at the time. Hence Peter Dirichlet decided to study in Paris.
It is worth noting that several years later the German Universities would
set the worldwide standard for excellence; Dirichlet himself would play
a significant role in establishing this pre-eminence.

Dirichlet always carried with him a copy of Gauss’s Disquisitiones
arithmeticae,1 a work that he revered and kept at his side much as other
people might keep the Bible. Thus he came equipped for his studies in

1This book, on the subject of number theory, was Gauss’s masterpiece. It is still

read today for its deep insights.

289
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Paris. Dirichlet contracted smallpox soon after his arrival in Paris. But
he would not let this deter him from attending lectures at the Colléege
de France and the Faculté des Sciences. He enjoyed the teaching of some
of the leading scientists of the time, including Biot, Fourier, Francoeur,
Hachette, Laplace, Lacroix, Legendre, and Poisson.

Beginning in the summer of 1823, Dirichlet lived in the house of the
retired General Maximilien Sébastian Foy. Dirichlet taught German to
General Foy’s wife and children. Dirichlet was treated very well by the
Foy family, and he had time to study his mathematics. It was at this
time that he published his first paper, and it brought him instant fame.
For it dealt with Fermat’s last theorem. The problem, as we know, is to
show that the Diophantine equation

xn + yn = zn

has no integer solutions x, y, z when n is a positive integer greater than
2. The cases n = 3, 4 had already been handled by Euler and by Fermat
himself. Dirichlet decided to attack the case n = 5. This case divides into
two subcases, and Dirichlet was able to dispatch Subcase 1. Legendre
was a referee of the paper, and he was able, after reading Dirichlet’s
work, to treat Subcase 2. Thus a paper was published in 1825 that
completely settled the case n = 5 of Fermat’s last theorem. Dirichlet
himself was subsequently able to develop his own proof of Subcase 2
using an extension of his techniques for Subcase 1. Later on Dirichlet
was also able to treat the case n = 14.

General Foy died in November of 1825 and Dirichlet decided to return
to Germany. However, in spite of support from Alexander von Humboldt,
he could not assume a position in a German university since he had not
submitted an Habilitation thesis. Dirichlet’s mathematical achievements
were certainly adequate for such a thesis, but he was not allowed to
submit because (i) he did not hold a doctorate and (ii) he did not speak
Latin.

The University of Cologne interceded and awarded Dirichlet an hon-
orary doctorate. He submitted his Habilitation on polynomials with
prime divisors and obtained a position at the University of Breslau.
Dirichlet’s appointment was still considered to be controversial, and there
was much discussion among the faculty of the merits of the case.
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Standards at the University of Breslau were still rather low, and
Dirichlet was not satisfied with his position. He arranged to transfer,
again with Humboldt’s help, to the Military College in Berlin. He also
had an agreement that he could teach at the University of Berlin, which
was really one of the premiere institutions of the time. Eventually, in
1828, he obtained a regular professorship at the University of Berlin.
He taught there until 1855. Since he retained his position at the Mil-
itary College, he was saddled with an unusual amount of teaching and
administrative duties.

Dirichlet also earned an appointment at the Berlin Academy in 1831.
His improved financial circumstances then allowed him to marry Re-
becca Mendelssohn, the sister of the noted composer Felix Mendelssohn.
Dirichlet obtained an eighteen-month leave from the University of Berlin
to spend time in Italy with Jacobi (who was there for reasons of his
health).

Dirichlet returned to his duties at the University of Berlin and the
Military College, He continued to find his duties at both schools to be
a considerable burden, and complained to his student Kronecker. It
was quite a relief when, on Gauss’s death in 1855, Dirichlet was offered
Gauss’s distinguished chair at the University in Göttingen.

Dirichlet endeavored to use the new offer as leverage to obtain better
conditions in Berlin. But that was not to be, and he moved to Göttingen
directly. There he enjoyed a quieter life with some outstanding research
students. Unfortunately the new blissful conditions were not to be en-
joyed for long. Dirichlet suffered a heart attack in 1858, and his wife
died of a stroke shortly thereafter.

Dirichlet’s contributions to mathematics were monumental. We have
already described some of his work on Fermat’s last problem. He also
made contributions to the study of Gauss’s quadratic reciprocity law.
It can be said that Dirichlet was the father of the subject of analytic
number theory. In particular, he proved foundational results about prime
numbers occurring in arithmetic progression.

Dirichlet did further work on what was later to become (in the hands
of Emmy Noether—see Chapter 18) the theory of ideals. He created
Dirichlet series, which are today a powerful tool for analytic number
theorists. And he laid some of the foundations for the theory of class
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numbers (later to be developed by Emil Artin).

Dirichlet is remembered for giving one of the first rigorous definitions
of the idea of function. He was also the first to define precisely what it
means for a series to converge. He is noted as one of the fathers of the
theory of Fourier series.

Dirichlet had a number of historically important students, includ-
ing Kronecker and Riemann (see the next chapter). Riemann went on
to make seminal contributions to complex variables, Fourier series, and
geometry.

12.2 The Pigeonhole Principle

Today combinatorics and number theory and finite mathematics are
thriving enterprises. Cryptography, coding theory, queuing theory, and
theoretical computer science all make use of counting techniques. But
the idea of “counting”, as a science, is relatively new.

One of the first masters of the theory of counting was Peter Gustav
Lejeune Dirichlet. And one of his principal counting techniques, the one
for which he is most vividly remembered, is that which was originally
called the “Dirichletscher Schubfachschluss” (Dirichlet’s drawer-shutting
principle). Today we call it the “pigeonhole principle”. It is a remarkably
simple idea that has profound consequences.

Suppose that (n + 1) letters are put into n mail-
boxes. Then one mailbox must contain at least
two letters.

This paradigm is so significant that we shall provide a couple of
different proofs.

But, before we do, let us introduce some notation. Let

N∑

j=1

aj

mean

a1 + a2 + · · ·+ aN .
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For instance,

6∑

j=1

[j2 + j] = [12 + 1] + [22 + 2] + [32 + 3] + [42 + 4] + [52 + 5] + [62 + 6] .

Another example is

5∑

j=1

sin j = sin 1 + sin 2 + sin 3 + sin 4 + sin 5 + sin 6 .

It is also possible to begin the summation at an index other than 1:

8∑

j=3

j + 1

2
=

4

2
+

5

2
+

6

2
+

7

2
+

8

2
+

9

2
.

Now we turn to the pigeonhole principle:

First Proof of the Pigeonhole Principle: Suppose that the principle
is not true. Then each mailbox contains either 0 or 1 letters.

Returning to the statement of the pigeonhole principle, let us suppose
that the n mailboxes are numbered 1 through n. We now have

(total number of letters) =
n∑

j=1

(number of letters in mailbox # j)

≤
n∑

j=1

1 = n .

But this says there are at most n letters, and that is incorrect. So the
hypothesis is false and some mailbox must contain at least two letters.

Second Proof of the Pigeonhole Principle: We proceed by induc-
tion. Our statement P (n) is “If (n + 1) letters are distributed to n
mailboxes then some mailbox must contain at least two letters. Now
P (1) is clearly true: If 2 letters are distributed among 1 mailbox then
some mailbox (indeed, the only mailbox) must contain two letters.

Now suppose that P (n) is true. We need to prove P (n + 1). So we
have n+ 1 mailboxes and n + 2 = (n + 1) + 1 letters and we distribute
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them among the mailboxes. If the last mailbox contains 2 letters then
we are done. If not, then it contains 0 or 1 letter. So there are at least
n+1 letters remaining and these are distributed among the first n mail-
boxes. By the inductive hypothesis, one of these must therefore contain
two letters. That establishes P (n + 1) (assuming P (n)) and completes
the inductive argument.

One of the earliest, and most dramatic, applications of Dirichlet’s
pigeonhole principle is to prove Dirichlet’s theorem in number theory.
This result has been extremely influential in the study of irrational and
transcendental numbers (we shall say more about these types of numbers
in Chapter 15). It considers how closely an irrational number may be
approximated by a fraction of the form m/n. The result is this:

Theorem 12.1

Let ξ be a real number. If n > 0 is an integer then there are integers p, q
such that 0 ≤ q ≤ n and ∣∣∣∣∣

p

q
− ξ

∣∣∣∣∣ <
1

q2
. (†)

Example 12.1

As an instance of the last theorem, let ξ =
√

2 and n = 5. Then
the numbers p = 7 and q = 5 satisfying the conclusion of the
statement. For p/q = 1.4 and

∣∣∣∣∣
p

q
− ξ

∣∣∣∣∣ = |1.4− 1.414 . . . | = |0.014 . . . | < 0.25 =
1

52
.

For You to Try: Illustrate the conclusion of Theorem 12.1 when ξ = π
and n = 6.

What should be noticed here is that we are making an assertion
about how rapidly ξ can be approximated by rational numbers—and the
rate of approximation is expressed in terms of the rational number itself
(i.e., its denominator). The theorem is of particular interest when ξ is
an irrational number. Now we shall present a very classical proof (due
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to Dirichlet) of this result:

Proof of Theorem 12.1: Let ε > 0 and set Q = b1/εc + 1. Here
bxc stands for the “greatest integer in x”. For instance, [3/2] = 1 and
[−4/3] = −2.

If λ is any real number then let (λ) = λ − [λ]. Then (λ) is the
fractional part of λ. Now consider the Q+ 1 numbers

0, (ξ), (2ξ), . . . , (Qξ) . (?)

These are Q+1 numbers in the interval [0, 1]. Now we divide the interval
[0, 1] into the subintervals

[
j

Q
,
j + 1

Q

)
, j = 0, 1, 2, . . . , Q− 1 . (??)

The Q+ 1 points listed in (?) are distributed among the Q intervals (or
“pigeonholes”) in (??). Thus one of these intervals must contain two of
the points.

As a result, we find integers q1, q2 (both not greater than Q) such
that

|(q1ξ) − (q2ξ)| <
1

Q
.

Assuming as we may that q1 < q2, and setting q = q2 − q1, we thus see
that 0 < q ≤ Q and |qξ| < 1/Q. [Here we use the overbar to denote
distance to the nearest integer.] It follows that there is an integer p such
that

|qξ − p| < 1

Q
.

We conclude that there are integers p, q such that

q ≤
⌊
1

ε

⌋
+ 1 and

∣∣∣∣∣
p

q
− ξ

∣∣∣∣∣ ≤
1/Q

q
<
ε

q
.

In particular, ∣∣∣∣∣
p

q
− ξ

∣∣∣∣∣ <
1

qQ
≤ 1

q2
.
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It may be noted—we shall not prove the result here—that when ξ is
rational then there are only finitely many p/q which satisfy (†). For ξ
irrational it is the case that (†) holds for infinitely many p/q.

12.3 Other Types of Counting

There are many analytical situations—probability theory is one—in which
counting is the key to our problems. In the present section we shall ex-
plore some of these ideas.

Let {P1, P2, P3, . . . , Pk} be a collection of objects. There are k of
them. The natural order of these objects, given the way that they are
numbered, is

P1 P2 P3 · · · Pk .

In how many different ways can they be re-ordered?
In order to understand this situation, let us begin with a special case.

Consider just three objects {P1, P2, P3}. The possible orderings are

P1 P2 P3

P1 P3 P2

P2 P1 P3

P2 P3 P1

P3 P1 P2

P3 P2 P1

We have arranged these so that it is easy to see how the enumeration
process is organized. The first possibility for the first position is P1.
After that the next element is either P2 or P3; the third element is then
determined. The next possibility for the first position is P2. After that
the next element is either P1 or P3; the third element is then determined.
The last possiblity for the first position is P3. After that the next element
is either P1 or P2; the third element is then determined.

We have a total of six possible arrangements of three objects. Now
let us return to the general situation of k objects. There are k possible
choices for what to put in the first position—either P1 or P2 or . . . up to
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k  choices for
first position

(k-1)  choices for
second position

Figure 12.1

Pk. After an object is chosen for the first position, then we must choose
an object for the second position. There are k − 1 objects remaining.
Any of those may go in the second position. Let us review what we have:

We may put any of the k objects in the first
position;

For each of those possible k objects in the first
position, there are k − 1 choices for the second
position. Refer to Figure 12.1.

Now we examine the third position. There are k− 2 objects remain-
ing, and any of those may be put in the third slot. So, for each of the
k(k − 1) possible configurations of the first two positions, we have k − 2
choices for the third position. Altogether, then, there are

k(k − 1)(k − 2)

possibities for the first three positions. See Figure 12.2.
Continuing in this manner, we see that there are

k(k − 1)(k − 2)(k − 3)
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k  choices for
first position

(k-1)  choices for
second position

(k-2) choices for
third position

Figure 12.2

possibilities for the first four positions. And

k(k − 1)(k − 2)(k − 3)(k − 4)

possibilities for the first five positions. And so forth. Coming down to
the last, or kth position, we see that there are

k · (k − 1) · (k − 2) · (k − 3) · (k − 4) · · · · · 3 · 2 · 1

possible arrangements for all k positions.
The number

k · (k − 1) · (k − 2) · (k − 3) · (k − 4) · · · · · 3 · 2 · 1

arises so frequently in counting arguments (such as the binomial theorem)
that we give it a special name. It is called “k factorial”, and written k!.
Thus

5! = 5 · 4 · 3 · 2 · 1 = 120 ,

7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040 ,

10! = 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 518, 400 .
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It is worth noting in passing that the factorial expression arises in the
important binomial coefficents that we have seen before (these in turn
play a pivotal role in the binomial theorem). Recall that, for 0 < k ≤ n
integers,
(
n

k

)
= the number of ways to choose k objects from n =

n!

(n− k)!k! .

Now imagine that we are playing cards with a deck of six cards.
These cards are numbered 1 through 6. How many different hands of 3
cards can one form from this deck? Let us use the reasoning that has
been effective for us so far:

For the first card in our hand, we can choose
any of the six cards.

For the second card in our hand, we may choose
any of the five remaining cards.

For the third card in our hand, we may choose
any of the four remaining cards.

Thus the total number of possible 3-card hands is 6·5·4 = 120. However,
this is not the final answer. Because we did not take into account the
fact that any given hand may be drawn in six possible different orders
(remember that 3! = 6). So the correct answer is 120/6 = 20. This is
remarkable, for it would be quite tedious and time consuming to write
out all the possibilities. But, with a little mathematical reasoning, we
were able to get a grip on the problem fairly easily.

We will now propose an alternative method of counting the hands
that will be useful and expedient in practice. Let us consider all possible
rearrangements of the 6 cards, and choose as our hand the first three of
them. Well, there are 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720 possible rearrangements
of the six cards. For each such rearrangement, we may select the first 3
cards. This seems to give 720 different 3-card hands.

This is a different answer from the one that we obtained above. What
accounts for the difference? It is this:

3 6 4 2 1 5
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and

3 6 4 1 5 2

are different rearrangements of the 6 cards, but if we choose the first 3
elements as our hand then we get the same hand. Also

3 6 4 2 1 5

and

6 4 3 2 1 5

are different rearrangements of the 6 cards, but if we choose the first 3
elements as our hand then we get the same hand. The first redundancy
can be accounted for by noting that we are counting every choice (of
the last three cards) a total of 3! times—for the 3! possible different
arrangements of the last three cards. The second redundancy can be
accounted for by noting that we are counting every choice (of the first
three cards) a total of 3! times—for the 3! possible different arrangements
of the first three cards.

Thus the correct way to think about this second method of counting
the hands of 3 cards, chosen from a deck of 6, is that it is not 6!, but
rather

6!

3! · 3! = 20 .

More generally, the number of different ways to choose a hand of k
cards from a deck of n cards is

n!

k! · (n − k)! . (∗)

Again, the reasoning is that we consider all n! possible rearrangements of
the deck of n cards. And we choose the first k of them for our hand. But
we must eliminate the redundancies from the possible rearrangements of
the last n − k cards (so we divide by (n − k)!) and we must eliminate
the redundancies from the possible rearrangements of the first k cards
(so we divide by k!). The result is the expression in (∗).

In fact the numerical expression in (∗) is so prevalent, and so im-
portant, that we give it a name. It is called “n choose k”, or sometimes
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“the n-k binomial coefficient”, and it is written
(
n

k

)
.

We now consider some examples involving a standard deck of 52
playing cards. Recall that such a deck has four suits—clubs ♣, diamonds
♦, hearts ♥, and spades ♠. Each deck has cards with denominations
A, 2, 3, . . . , 10, J,Q,K.

Example 12.2

How many five-card poker hands are there in a standard deck of
52 playing cards?

SOLUTION According to the analysis we did above, the answer is
(

52

5

)
=

52!

5!(52 − 5)!
=

52!

5!47!
= 2, 598, 960 .

Example 12.3

In a standard deck of 52 playing cards, how many different pos-
sible five-card poker hands will contain “four of a kind”? When
you are dealt your hand, what is the probability that you will
hold four of a kind?

SOLUTION There are thirteen possible ways to get four of a kind: namely, four
aces, or four 2s. or four 3s, . . . , or four queens, or four kings. But things are a bit
more complicated than that.

Suppose you have four aces. There is a fifth card in your hand. What could it
be? It could be any of the other 48 cards. So there are in fact 48 different hands with
four aces. And, likewise, there are 48 different hands with four 2s. And so fourth.

In sum, the total number of hands with four of some card is

13 · 48 = 624 .

The probability that your hand will hold four of a kind is a fraction between 0
and 1: it is the number of possible hands with four of a kind divided by the number
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of possible hands altogether. We know the number of possible hands with four of a
kind from the last paragraph. And we know the total number of possible hands from
the last example. Thus the fraction that we seek is

624

2598960
≈ 0.000240096 .

The probability is roughly twenty-five in one hundred thousand.

For You to Try: How many different 5-card poker hands hold “three
of a kind”? What is the probability of being dealt a poker hand with
three of a kind?

For You to Try: A jar contains 50 white marbles and 50 black mar-
bles. You draw out four marbles at random. What is the probability
that at least three of them are white?

Exercises

1. How many people do you need in a room in order to be
sure that at least three of the people know each other
or three of the people do not know each other? [Hint:
Try some experiments. If you wish, use a computer to
try out the possibilities. You can represent each person
as a dot on the page, and connect two people when they
know each other (and do not connect them when they
do not know each other). Discuss this problem in class.]

2. If you have 23 people in the room then the probability
is greater than 0.5 that two of them were born on the
same day of the year. Discuss this problem in class.
Verify the assertion.

3. Let ξ =
√

2 and n = 10. Find integers p and q that
satisfy the conclusion of Dirichlet’s Theorem 12.1.

4. Let ξ = 3/2 and n = 7. Find integers p and q that
satisfy the conclusion of Dirichlet’s Theorem 12.1.
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5. Suppose that you deliver n + 2 letters to n mailboxes.
Can you be sure that some mailbox contains 3 letters?
Why or why not?

6. You deliver 10,000 letters to 9,000 mailboxes. What is
the greatest number of mailboxes that could contain 3
letters? What is the greatest number of mailboxes that
could contain 2 letters?

7. In a five-card poker hand, what is the probability that
you hold a pair (i.e., two of a kind)?

8. In poker, a royal flush is the 10 − J − Q − K − A of
a single suit. How many different royal flush hands are
there? What is the probability, with a standard deck
of 52 cards, of being dealt a royal flush? What is the
probability of being dealt a hand that differs from a
royal flush by just one card?

9. A jar contains 50 black marbles and 50 white marbles.
You choose three marbles at random. What is the prob-
ability that all three of them are white? What is the
probability that at least two of them are white? Discuss
this problem in class.

10. A woman distributes 15 letters among 10 mailboxes.
She knows that 2 of the mailboxes each contain 3 letters.
What can she say about the distribution of letters in the
remaining mailboxes?

11. You have 6 white marbles and 6 black marbles and you
will give 3 marbles to each of four children. How many
different ways are there to perform this task? Discuss
the problem in class.

12. In a five-card poker hand, what is the probability that
all of the cards are of different denominations? [Hint:
Ignore the suits. Just pay attention to the values of the
cards.]
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Chapter 13

Riemann and the Geometry of
Surfaces

13.0 Introduction

Bernhard Riemann (1826–1866) had a father (Friedrich) who was a
Lutheran minister. Bernhard was the second of six children. Their fa-
ther taught all the children, and in particular Bernhard, until he was ten
years old. At that point a local teacher named Schulz assisted in the
education.

In 1840, at the age of fourteen, Bernhard Riemann entered the third
class at the Lyceum in Hanover. He lived there with his grandmother.
In 1842 the grandmother died, and Riemann transferred to the Johan-
neum Gymnasium in Lüneburg. Young Bernhard was a solid but not
outstanding student who studied classical subjects like Hebrew and the-
ology. He did show a particular interest in mathematics, and was allowed
to borrow books from the Gymnasium director’s personal library. One
of these was Legendre’s number theory, and he devoured it in six days.

In 1846 Riemann enrolled at the University in Göttingen. This in-
stitution was later, especially under the guidance of Hilbert, to become
the premiere mathematics institution in all of Germany. At the time
when Riemann was a student it was not. Riemann’s father had in mind
for young Riemann to study theology, but Bernhard petitioned him to
instead study mathematics. Fortunately for all of us, the elder Friedrich
granted his permission. Riemann was fortunate to take courses from
Moritz Stern and Carl Friedrich Gauss. Gauss was teaching only ele-
mentary courses in those days, and had no opportunity to observe Rie-

305
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mann’s special talents. Stern, however, was quite impressed by Riemann.
He said that Bernhard Riemann

. . . already sang like a canary.

Riemann moved from Göttingen to the University of Berlin in 1847.
There he enjoyed classes from Steiner, Jacobi, Dirichlet, and Eisenstein.
The chief influences on Riemann at this time were Eisenstein and espe-
cially Dirichlet. Riemann adopted Dirichlet’s style of basing his mathe-
matics in a strong intuitive foundation. At this time he worked out his
theory of complex variables; this in turn formed the basis of some of his
most important later work.

In 1849 Riemann returned to Göttingen. His thesis, under the su-
pervision of Gauss, was submitted in 1851. Riemann was also strongly
influenced by Weber and Listing who were professors of physics. In par-
ticular, they gave him important ideas from topology. This would affect
his later development of the theory of Riemann surfaces.

Riemann’s doctoral dissertation was certainly one of the most re-
markably original pieces of work ever to appear in a thesis. It contains
foundational ideas of the geometric and topological theory of complex
variables, including the basic ideas of Riemann surfaces. His ideas built
on earlier work of Cauchy, Puiseaux, and of course Dirichlet. Even the
rather austere and distant Gauss reported on the thesis that Riemann
had

. . . a gloriously fertile originality.

Gauss recommended Riemann to a post in Göttingen, and Riemann
was thereby able to work on his Habilitation. The subject of the Habil-
itation was trigonometric series and the functions that they represent.
Here Riemann laid the foundations for what we now call the Riemann
integral. He also developed special ideas about Fourier series that are
today studied in their own right.

A seminal part of the Habilitation is a ceremonial lecture. Riemann’s
major professor, Gauss, was allowed to choose the topic (from among a
predetermined list that included electricity and geometry). Riemann
was surprised when Gauss asked to hear about geometry. On June 10,
1854, he delivered the now-famous lecture entitled “Über die Hypothesen
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welche der Geometrie zu Grunde liegen,” which translates to “On the
hypotheses that lie at the foundations of geometry.” In this lecture
Riemann completely reinvented how geometry should be conceived. In
particular, he created a toolkit for producing a variety of important non-
Euclidean geometries. One expert has described Riemann’s delivery as

It possesses shortest lines, now called geodesics,
which resemble ordinary straight lines. In fact, at
first approximation in a geodesic coordinate sys-
tem such a metric is flat Euclidean, in the same
way that a curved surface up to higher-order terms
looks like its tangent plane. Beings living on the
surface may discover the curvature of their world
and compute it at any point as a consequence of
observed deviations from Pythagoras’ theorem.

It has further been written that

Among Riemann’s audience, only Gauss was able
to appreciate the depth of Riemann’s thoughts.
. . . The lecture exceeded all his expectations and
greatly surprised him. Returning to the faculty
meeting, he spoke with the greatest praise and
rare enthusiasm to Wilhelm Weber about the depth
of the thoughts that Riemann had presented.

It must be noted, in fact, that Albert Einstein found in Riemann’s
work the mathematical framework to fit his ideas of general relativity.
The basics of cosmology and cosmogony arise from Riemann’s geomet-
rical ideas. Riemann gave to physics the concept of a metric structure
determined by data.

Riemann, with Gauss’s help, obtained a post in Göttingen on the
strength of his Habilitation work. Riemann continued to do brilliant
work. We have noted that, on his death, Gauss’s chair in Göttingen
was filled by Dirichlet. There was a movement to obtain a second chair
for Riemann, but this failed. However, two years later, Riemann was
appointed to a Professorship in Göttingen. In 1857 Riemann published
his pathbreaking work on abelian functions. This masterwork was based
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on lectures he had given to a small audience in 1855–1856. One of the
three who listened to Riemann was Richard Dedekind. Dedekind in fact
published an amplified version of Riemann’s lectures after his untimely
demise.

Riemann’s paper contained an overwhelming number of new ideas.
This included ideas about Riemann surfaces, the Dirichlet principle, and
conformal mapping. The paper appeared in Crelle’s Journal, volume
54. In fact Weierstrass was so impressed by Riemann’s work that he
withdrew his own paper on the subject and published no more for the
remainder of his life.

In 1859, Dirichlet died and Riemann was awarded his chair at Göttingen.
A few days later he was elected to the Berlin Academy of Sciences. The
nomination by Kummer, Borchardt, and Weierstrass read as follows:

Prior to the appearance of his most recent work
[Theory of abelian functions], Riemann was al-
most unknown to mathematicians. This circum-
stance excuses somewhat the necessity of a more
detailed examination of his works as a basis of
our presentation. We considered it our duty to
turn the attention of the Academy to our colleague
whom we recommend not as a young talent which
gives great hope, but rather as a fully mature and
independent investigator in our area of science,
whose progress he in significant measure has pro-
moted.

As part of his induction into the Berlin Academy, Riemann was re-
quired to give a lecture on his latest work. He spoke of the zeta function
(now called the “Riemann zeta function”) and the location of its zeros.
He reported that it has infinitely many zeros and asserted that it is prob-
able that they all lie on a particular vertical line in the right half of the
complex plane. This last claim remains unproved to this day. It is an
important cornerstone of analytic number theory known as the Riemann
hypothesis.

In June of 1862 Riemann married Elise Koch, a friend of his sister.
They had one daughter. Not long after the marriage Riemann contracted



13.1 How to Measure the Length of a Curve 309

Figure 13.1

a serious cold which turned to tuberculosis. Unfortunately his health
suffered a serious decline after that, and it ultimately led to his demise.
Riemann had always suffered from poor health, and now things were
catching up to him. He traveled several times to Italy hoping that the
warmer climate would improve his health and disposition. But to no
avail. His strength declined rapidly and he died in 1866.

Next we turn to the mathematical description of some of Bernhard
Riemann’s ideas.

13.1 How to Measure the Length of a Curve

We first begin by describing an important paradox about arc length.
Consider the unit square depicted in Figure 13.1. We wish to determine
the length of the diagonal.

Now, in point of fact, we discussed this matter in Chapter 2, and
we determined (using the Pythagorean theorem) that it is

√
2. But now

let us set that result aside and take a new geometric approach to the
question. We examine a blown-up picture of the square, and approximate
the diagonal with a piecewise linear curve γ1 (Figure 13.2). As you can
see, this piecewise linear curve is composed of four segments, and each
of these has length 1/2. We conclude that γ1 has length about 2.

Now we consider a finer approximation γ2 (Figure 13.3). As you
can see, this piecewise linear curve is composed of eight segments, each
of length 1/4. We conclude that γ2 has length about 2 (only now the
approximation is more accurate!).
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Figure 13.2

Figure 13.3
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Figure 13.4

1

1

2?

Figure 13.5

Now we can continue this procedure indefinitely. By using an ap-
proximating, piecewise linear curve with enough bends in it, we may
approximate the diagonal very closely (Figure 13.4). Yet all these ap-
proximations have length 2. The conclusion, then, is that the diagonal
itself must have length 2.

But this result is inconsistent with our earlier discussions, and it
also seems absurd on the face of it. After all, the length of two sides of
the square is 2 (Figure 13.5). And surely that curve (in boldface in the
figure) is longer than the diagonal. How could the diagonal itself have
length 2?

What we have described here is a visual conundrum. The jagged,
piecewise linear curve approximates the diagonal visually, that is to say,
it gets very close to the diagonal in a reasonable sense. But the length
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Figure 13.6

of this approximating curve does not in fact approximate the length of
the diagonal.

Now let us give a more effective, and in fact a correct, method for
approximating the length of a curve. Examine Figure 13.6. What we do
is to approximate the curve by secants to the curve. These segments are
not only visually close to the curve in question, they are also (as can be
proved using calculus) close in length.

Riemann’s idea for creating new geometries (non-Euclidean geome-
tries, in fact) was to approximate the length of a curve in a new way. He
would use the approximation scheme in Figure 13.6, but he would as-
sign new lengths—not Euclidean lengths—to each of the approximating
secants.

The rigorous way to carry out Riemann’s scheme is to use the integral—
another idea from calculus. Since that technique is too advanced for the
present text, we will use a more intuitive approach to the matter.

13.2 Riemann’s Method for Measuring Arc Length

Consider the curve shown in Figure 13.7. We can estimate its arc length,
following the model described in the last section, by dividing up the x-
axis as indicated in Figure 13.8. Then the approximating linear segments
are shown in Figure 13.9. Let us analyze just one of those segments—see
Figure 13.10.

We see that the length of the segment is determined by the Pythagorean
theorem. It is

` =
√

(∆x)2 + (∆y)2 .
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Figure 13.7
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Figure 13.8
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(0,0)

(1,1)

(1 2/3, 1 + 1/  18)

(2, 1 + 1/  18 + 1/  72)

(2 1/6, 1 + 1/  18 + 1/  72 + 1/  288)

(2 1/4, 1 + 1/  18 + 1/  72 + 1/  288 + 1/  1152)

Figure 13.9
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Thus the first segment, connecting the points (0, 0) and (1, 1), has length√
2. The second segment, connecting the points (1, 1) and (1+ 2

3
, 1+ 1√

18
),

has length
√

2/2. The third segment, connecting the points (1+2
3
, 1+ 1√

18
)

and (2, 1+ 1√
18

+ 1√
72

), has length
√

2/4. The fourth segment, connecting

the points (2, 1+ 1√
18

+ 1√
72

) and (2+ 1
6
, 1+ 1√

18
+ 1√

72
+ 1√

288
), has length√

2/8. The fifth segment, connecting the points (2+1
6
, 1+ 1√

18
+ 1√

72
+ 1√

288
)

and (2 + 1
4
, 1 + 1√

18
+ 1√

72
+ 1√

288
+ 1√

1152
) has length

√
2/16.

We see, then, that the total length of the curve, over the portion of
the x-axis from 0 to 2.25, is about

√
2 ·
(
1 +

1

2
+

1

4
+

1

8
+

1

16

)
. (∗)

If we were to add pieces to the curve, then the length would be augmented
in an obvious way by adding terms to this series.1 The sum tends to√

2 · 2, even if infinitely many pieces are added. The curve terminates
when x = 7/3.

Now Riemann’s idea is to approximate the length of the curve by the
sum of the lengths of the segments, but to reckon the length of a segment
diffently in different parts of space. Thus imagine viewing the segments
through a strange telescope from the vantage point of the point (1, 1)
in the plane. The further a segment is to that base point, the longer it
seems to be. As a result of these considerations, we assign to the first
segment the length 1 · (Euclidean length) or 1. We assign to the second
segment the length 2·(Euclidean length). We assign to the third segment
the length 4 · (Euclidean length). We assign to the fourth segment the
length 8 · (Euclidean length). We assign to the fifth segment the length
16 · (Euclidean length). Now the sum of the Riemannian lengths of all
the little segments is then

√
2 · (1 + 1 + 1 + 1 + 1) = 5

√
2 .

If we were to add pieces to the curve, then the length would be aug-
mented in the obvious way by adding terms to this series. Each of those

1The reader will have noted that this example is rather contrived. We chose the

curve, and the points on it, so that the numbers in line (∗) would come out nicely.
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terms would be
√

2. Thus, even though the curve obviously has finite Eu-
clidean length (as our earlier calculation shows), the Riemannian length
is infinite.

13.3 The Hyperbolic Disc

One of the most famous, and most studied, examples of a Riemannian
geometry is the hyperbolic disc. This is the unit disc

D = {z ∈ C : |z| =
√
x2 + y2 < 1} .

Of course the ordinary Euclidean notion of distance makes perfectly good
sense on D. But our goal now is to equip D with a special metric so
that the distance from any point in D to the boundary is in fact infinite.
This metric is of special interest because it is the unique metric on the
disc that is invariant under certain special types of complex maps or
functions. The metric is frequently termed the Poincaré metric.

We approach this metric, following the philosophy of Riemann, by
assigning length in a special way. We proceed by breaking the disc up
into annular pieces. Set

Aj = {z ∈ D : 1 − 2−j+1 < |z| ≤ 1 − 2−j} , j = 1, 2, . . . .

These are exhibited in Figure 13.11.
Now if γ is a curve in the disc then we break γ up into pieces:

γ =
∞⋃

j=0

γj ,

where
γj = γ ∩Aj

is the intersection of γ with Aj. We define the length of γj to be

`(γj) = 2j · ‖γj‖ ,

where ‖γj‖ denotes the ordinary Euclidean length of γj, as we discussed
earlier in this chapter. Finally, we set

`(γ) =
∞∑

j=0

`(γj) .
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Figure 13.11

This is a somewhat convoluted definition, but it captures the spirit
that we measure length according to how far we are from the boundary.
Let us now calculate a specific example to show precisely what we have
achieved:

Example 13.1

Let γ be the straight line segment inD that travels from the origin
out to the boundary point (1, 0). See Figure 13.12. Calculate its
length.

Solution: We break γ up into pieces as indicated in our paradigm for
calculating length. The Euclidean length of the jth piece is 2−j . And we
are to multiply that by 2j . So the contribution to length of the jth piece
is 1. Thus we see that the overall Poincaré length of γ is

∞∑

j=0

1 = +∞ .

Although we shall not provide the details, it can be seen that the length
of any curve stretching from an interior point of D to the boundary will
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Figure 13.12

be +∞. The technical terminology for this situation is that the disc is
complete in the Poincaré metric.

The point of interest here is that the boundary is infinitely far away
from any point in the interior. At first this observation is counterintu-
itive. If instead we were living in the plane, then it makes good sense
that the boundary is infinitely far away. See Figure 13.13.

Exercises

1. Imitate the construction of the Poincaré metric on the
unit disc to produce a metric on the interval (0, 1) in
the real line which makes this interval complete. This
means that the distance from any interior point of the
interval to the boundary is infinity.

2. Imitate the construction of the Poincaré metric on the
unit disc to produce a metric on the unit ball

B(0, 1) = {(x1, . . . , xN ) ∈ RN : x2
1 + x2

2 + · · · x2
N < 1} .

in N -dimensional Euclidean space which makes this ball
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Boundary is
infinitely far
away.

Figure 13.13

complete. This means that the distance from any inte-
rior point of the ball to the boundary is infinity.

3. Let γ(t) = (t, 2t) be a curve in the unit disc. Estimate
its length in the Poincaré metric by dividing it up into
pieces (using the Aj) and estimating the length of each
piece.

4. If A and B are diametrically opposite points in the disc
D then the geodesic, or curve of shortest length in the
Poincaré metric connecting A and B, is a straight line
segment (see Figure 13.14). Provide an argument that
suggests why this is so.

But if C and D are points which are far apart in the
Euclidean sense but both near the boundary, then the
geodisic in the Poincaré metric that connects C and D
is an arc of a circle (Figure 13.15). Provide an argument
that suggests why this is so.

5. If we modify the definition of the Poincaré metric so
that

`(γj) = 2j/2 · ‖γj‖ ,
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A B

Figure 13.14

C

D

Figure 13.15
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then the metric is no longer complete. Explain why this
is so.

6. Describe a metric on the annulus A = {(x, y) ∈ R2 :
1/4 < x2 + y2 < 4} so that the curve γ(t) = (t, 0),
1/2 < t < 2, is of infinite length.

7. Refer to the metric on the annulus that you constructed
in Exercise 6. What can you say about the lengths of
the circles

•
{
(x, y) : x2 + y2 =

1

3

}
;

•
{
(x, y) : x2 + y2 =

1

2

}
;

•
{
(x, y) : x2 + y2 = 1

}
;

•
{
(x, y) : x2 + y2 = 2

}
;

•
{
(x, y) : x2 + y2 = 3

}
;

•
{
(x, y) : x2 + y2 =

7

2

}
.
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Chapter 14

Georg Cantor and the Orders of
Infinity

14.1 Introductory Remarks

Georg Ferdinand Ludwig Philipp Cantor (1845–1918) was born to a mer-
chant father in St. Petersburg and a talented violinist mother. He in-
herited considerable musical and artistic talent. For his first ten years
young Cantor was educated at home by a private tutor. After that he
attended primary school in St. Petersburg. In 1856 the family moved to
Germany, and Cantor lived there for the rest of his life. He said that he
never felt comfortable in Germany, and he remembered his early years
in Russia with great nostalgia.

Cantor was one of the true geniuses of modern mathematics. Whereas
most mathematical ideas, indeed most ideas in the world, can be said
to have developed from earlier ones—from constructs that were already
in the air—Cantor’s theory of sets and the infinite seems to have been a
wholly original creation. Even the ideas of calculus, for which Newton
and Leibniz are justly revered and celebrated, can be said to have fol-
lowed from earlier constructions of Archimedes, Descartes, and Fermat.
Not so with Cantor’s theory; it sprang in full blossom directly from the
great man’s cranium.

Yet poor Cantor suffered for his genius. The notion of infinity is
one of those special ideas that occupy the collective unconscious of all
human beings. Pretend to be some Übermensch who actually under-
stands infinity—and not a philosopher or a man of the cloth but a
lowly mathematician—and you court public criticism, damnation, and

323
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ostracism. Cantor spent a significant part of his adult life in sanitaria in
his agonized attempts to deal with all the flak he got for his ideas.

In fact, just as thirty years later people from philosophy and the-
ology and other non-technical fields picked up on (and in some cases
ran with) the Heisenberg uncertainty principle, so it happened to Can-
tor that various theologians endeavored to show that his ideas provided
a rock-solid proof that God exists. One such gentleman used the idea
of cardinal numbers and set-theoretic isomorphism (see our discussion
below) to give a proof of the existence of the holy trinity.

Cantor’s father suffered from poor health, and the family moved to
Germany seeking a climate that was warmer than St. Petersburg’s harsh
winters. Cantor studied at the Realschule in Darmstadt, the Höhere
Gewerbeschule in Darmstadt, and finally the Polytechnic of Zurich. Al-
though Cantor’s father originally wanted him to study engineering, he
ultimately consented to let Georg study mathematics. It is sad that his
studies in Zurich were cut short by his father’s untimely death in 1863.

Cantor moved to the University of Berlin, where he studied with
Weierstrass, Kummer, and Kronecker. He was friends with fellow stu-
dent Hermann Schwarz. He graduated with a doctorate in number theory
in 1867 and went to work at a girls’ school. In 1868 he joined the Schell-
bach Seminar for mathematics teachers. He was appointed to a position
at the University of Halle in 1869, and immediately sought to do his Ha-
bilitation. Cantor’s director of research at this time was Heine, and his
tastes were moving from number theory to analysis. Heine recognized
Cantor’s talent and challenged him to attack a famous unsolved problem:
to prove the uniqueness of representation of a function by a trigonomet-
ric series. Cantor solved the problem in 1870. He published further
papers in the subject between 1870 and 1872. Cantor was promoted to
Extraordinary Professor at Halle in 1873.

At this time Cantor began his seminal research on infinity and the
concept of cardinal number. Of all Cantor’s ideas, this was the one for
which he would be most remembered, and for which (during his lifetime)
he would be most persecuted. During this period his communications
with Richard Dedekind were of central importance.

In 1874 Cantor became engaged to Vally Guttmann, a friend of his
sister. They married in the same year, and spent their honeymoon in
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Interlaken, Switzerland. Cantor spent a part of his honeymoon discussing
mathematics with Dedekind.

By 1877, thanks in part to ideas developed with Dedekind, Cantor
fulfilled a long quest and proved that the points in an interval can be
put in one-to-one correspondence with the points of a cube in any di-
mensional space. This is a profound and shocking result, with significant
consequences for geometry, analysis, and the philosophy of mathematics.
And it was at this time that Cantor’s former teacher and mentor Leopold
Kronecker began to attack Cantor. In fact Kronecker tried to block the
publication of some of Cantor’s work.

Cantor was in 1879 promoted to a full Professorship. But he longed
for a chair at a more prestigious university. Beginning in 1879 Cantor’s
relations with several important mathematicians became strained, and
ultimately ended. This included his friendly relations with Weber and
Dedekind. At least part of the problem was that other mathematicians
were unsure of the directions that Cantor’s research was taking. On the
positive side, Cantor began a correspondence with Mittag-Leffler, and
began to publish in the latter’s important journal Acta Mathematica.

In May of 1884 Cantor had his first known attack of clinical depres-
sion. He recovered in just a few weeks, but suffered a loss of confidence.
Cantor took a vacation in the Harz mountains, and made an effort to
mend his relationship with Kronecker. Here he enjoyed some success.

Cantor embarked on a bold new direction in his mathematics, at-
tempting to prove what has become known as the “continuum hypoth-
esis”. The problem was to show that the order of infinity of the real
number was the next one after the order of infinity of the natural num-
bers. This problem literally drove him crazy. One day he would think he
had proved it true and the next he would think he had proved it false. At
the same time, Cantor’s friend Mittag-Leffler brought him up short by
attempting to persuade Cantor to withdraw one of his papers—at the
proof stage—from Acta Mathematica. Mittag-Leffler claimed that the
paper was simply too far ahead of its time. Cantor later joked about the
matter, but he was clearly very unhappy. Cantor ceased his correspon-
dence with Mittag-Leffler at this time, and his flood of new ideas nearly
stopped.

In 1886, Cantor bought a fine new house on Händelstrasse, a street
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named after the German composer Handel. By the end of the year the
Cantors had a new son, completing the family to six children. Can-
tor’s interests shifted at this time and he became involved with philo-
sophical issues as well as the founding of the Deutsche Mathematiker-
Vereinigung—a German mathematical society. Cantor invited his old
teacher/nemesis Kronecker to address the first meeting of the society,
but Kronecker was unable to accept because his wife became injured
and then died in a mountain-climbing accident.

Cantor was elected president of the new mathematical society. He
held the post until 1893. In 1897 Georg Cantor attended the first meet-
ing of the International Congress of Mathematicians in Zurich. Hurwitz
and Hadamard praised Cantor’s work in their talks at that august meet-
ing. One positive outcome of the meeting is that Cantor rekindled his
friendship with Dedekind.

But Cantor’s mathematics was taking some strange new turns. He
continued to struggle with the continuum hypothesis, and he would never
resolve it. Of course Cantor had no idea that it would take Kurt Gödel
and Paul Cohen, using powerful new ideas of abstract logic, to resolve this
knotty problem. In fact they proved that the continuum hypothesis is
independent of the axioms of set theory. He also began to learn of various
paradoxes of set theory (such as Russell’s Paradox). These really shook
Cantor, for he felt that set theory was the fundament of his contribution
to mathematics. These difficulties caused Cantor to turn away from
mathematics and to instead concentrate on philosophy and Elizabethan
literature. In fact one of Cantor’s passions at that time was to prove
that Francis Bacon had written the works of Shakespeare.

In 1911, after some years of mental turbulence, Cantor was delighted
to be invited to the University of St. Andrews to be a distinguished
foreign scholar at their 500th anniversary celebration. Unfortunately
he was distracted by his own ill health and his son’s failing health (his
youngest son soon died). His behavior at the celebration was erratic.

Cantor retired in 1913 and spent his last years with little food be-
cause of World War I. He was ill for much of his final time. A major
event was planned in 1915 to celebrate Cantor’s 70th birthday; unfor-
tunately the war prevented it being held. But a smaller event was held
near Cantor’s home. In June of 1917 Cantor entered a sanitorium. This
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was not to his liking, and he continually wrote to his wife to be allowed
to go home. He died there, of a heart attack, in 1918.

By the end of his life, Cantor and Kronecker had finally mended
some of their differences, and Cantor was receiving some of the honor
and recognition he had so long deserved. In fact no less a light than
David Hilbert, arguably one of the great spokesmen for twentieth century
mathematics, described Cantor’s transfinite arithmetics as “the most
astonishing product of mathematical thought, one of the most beautiful
realizations of human activity in the domain of the purely intelligible.”

14.2 What is a Number?

In the 1960s there was a major educational movement in the United
States called “The New Math”. Formulated by prominent mathemati-
cal scholars at Stanford, Yale, and other distinguished universities, this
paradigm for grade school education promulgated the idea that children
should be taught mathematics axiomatically. That is to say, they should
begin at age 6 learning the axioms of set theory and the construction of
the number systems. They should learn first-order logic and methods of
proof.

You can decide for yourself whether this program was a good idea.
It was not very successful—in part because the teachers (who had been
trained the old-fashioned way) could not understand it well enough to
teach it and in part because the parents could not understand it well
enough to be able to help their kids with their homework.

Be that as it may, we will take one of the famous questions from
The New Math as the inspiration for our discussion of Cantor. Namely,
the students were asked to muse about the difference between “num-
ber” and “numeral”. In practice, the average person does not draw a
formal distinction—at least could not precisely articulate a distinction—
between the symbol 5 and the idea that it represents. But that is what
the New Math question asks us to do. What is a cogent answer?

For this we need Cantor’s idea of set and of set equivalence. A set is
a collection of objects. For example,

{2, 3, 5, 9, 13, 24, 48}

is a set. The objects in the set are called elements of the set. Notice that
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we surround the elements with curly braces. We generally denote a set
with a capital roman letter. So we write, for instance,

A = {2, 3, 5, 9, 13, 24, 48}

and refer to the set as A. Observe that 2, 3, 5, 9, 13, 24, and 48 are all
elements of the set A. We write 2 ∈ A, 9 ∈ A, and so forth.

If A and B are sets then we say that B is a subset of A, and we write
B ⊂ A, if every element of B is also an element of A. As an example, let
A = {1, 2, 3, 4} and let B = {2, 3, 4}. Then B is a subset of A. There is
a special set called the empty set that has no elements. We denote the
empty set by ∅. The empty set is a subset of every set.

Now let A and B be sets. We say that A is equivalent to B (for the
purposes of counting), and we write A ∼= B, if the elements of A and of
B can be matched up one-to-one. Let us look at an example to illustrate
the point.

Example 14.1

Let A = {1, 3, 5, 7, 9, 11} and B = {α, β, γ, δ, ε, ζ}. Then the
correspondence

1←→ α
3←→ β
5←→ γ
7←→ δ
9←→ ε

11←→ ζ

shows that A and B are equivalent, i.e., A ∼= B.

This notion of “equivalence” formalizes the idea of what it means for
two sets to have the same number of elements. The sets do not have to
be sets of numbers: they could be sets of fish, or sets of donuts, or sets
of Michael Jackson CDs.

Now, to answer the “new math question”: A numeral is a typograph-
ical symbol like 5. That symbol, 5, stands for the idea of a number. The
number that it stands for is the collection of all sets that are equivalent
to {1, 2, 3, 4, 5}. In English, the numeral 5 stands for the collection of
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all sets that are equivalent to to {1, 2, 3, 4, 5}—in other words, for the
collection of all sets having five elements.

So far this sounds like the pointless abstractification of fairly simple
ideas that we have all known (in much simpler terms) since childhood.
One point that should be noticed right away is this: If A is a set in
the collection that is described by the numeral 4 and B is a set in the
collection that is described by the numeral 5 then A is not equivalent to
B. To see this, notice that A is in fact equivalent to a proper subset of
B, consisting of the first four elements of B. And B certainly cannot
be equivalent to a proper subset of itself. Of course the same comments
apply to any other distinct pairs of numerals. Thus the different numerals
denote completely distinct collections of sets.

All of this reasoning becomes much more interesting if we follow
Georg Cantor’s model and apply the ideas to infinite sets. Let

A = {1, 2, 3, 4, . . .}

and

B = {2, 4, 6, 8, . . .} .

Then of course B ⊂ A and B 6= A. In other words, B is a proper subset
of A. But the correspondence

A 3 n←→ 2n ∈ B

matches all the elements ofA in a one-to-one fashion with all the elements
of B. No element of A is omitted and no element of B is omitted. Thus
A and B are equivalent, even though one is a proper subset of the other.
This is quite astonishing!!

The set {1, 2, 3, 4, . . .} is commonly called the natural numbers, and
is denoted by N. Any set that is equivalent to the natural numbers we
call countable. Thus, according to our last example, the set of positive,
even numbers is countable.

When two sets A and B are equivalent, in the sense that we have just
been discussing, then we say that A and B have the same cardinality. If
A has the same cardinality as N, then we say that A is countable.
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For You to Try: Demonstrate that the set

B = {1, 3, 5, . . .}

of positive, odd integers has the same cardinality as the entire set N of
positive integers. Thus the odd, positive numbers form a countable set.

For You to Try: Demonstrate that the set

C = {3, 7, 11, 15, . . .}

has the same cardinality as the set of natural numbers N. Thus C is
countable.

In fact there are many different countable sets.

Example 14.2

Let us verify that the full set of integers has the same cardinality
as the natural numbers. In other words, the set Z of integers is
countable.

To see this, examine the correspondence

N : . . . 9 7 5 3 1 2 4 6 8 . . .
Z : . . . −4 −3 −2 −1 0 1 2 3 4 . . .

You can see that the strategy is to bounce from left to right so that
the positive and negative integers are systematically exhausted.

It is clear that all the integers, both plus and minus, are
enumerated in this way. Thus the integers Z form a countable
set.

Example 14.3

Let S = Qp, the set of positive rational numbers. And let T = N,
the set of natural numbers (or positive integers). Then S and T
have the same cardinality.

To see this, we lay out the rational numbers in a tableau
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(Figure 14.1).
1
1

1
2

1
3

1
4
· · ·

2
1

2
2

2
3

2
4
· · ·

3
1

3
2

3
3

3
4
· · ·

4
1

4
2

4
3

4
4
· · ·

· · · · · ·

Figure 14.1

We now associate positive integers in a one-to-one fashion
with the numbers in this tableau. We do so by beginning in
the upper-left-and corner and then proceeding along diagonals
stretching from the lower left to the upper right (Figure 14.2):

↗1
1
↗1

2
↗1

3
↗1

4
· · ·

↗2
1
↗2

2
↗2

3
↗2

4
· · ·

↗3
1
↗3

2
↗3

3
↗3

4
· · ·

↗4
1
↗4

2
↗4

3
↗4

4
· · ·

· · · · · ·

Figure 14.2

This scheme clearly associates one positive integer to each
fraction, and the association is one-to-one and onto:

1 2 3 4 5 6 7 8 9 10 · · ·

1
1

2
1

1
2

3
1

2
2

1
3

4
1

3
2

2
3

1
4
· · ·

Note that every fraction is counted multiple times, because
the fraction 1

2
also appears as 2

4
and 3

6
and so on. But we can skip

the repeats, and the counting scheme still works.

The preceding example is even more startling than the one before,
because the positive integers form (apparently) a quite small subset of
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the positive rational numbers. Yet we are showing that the two sets have
precisely the same number of elements. And we do so in a very graphic
manner, exhibiting the correspondence quite explicitly. We commonly
say that the argument in the last example enumerates the positive ra-
tional numbers. We have enumerated the positive rationals.

For You to Try: Demonstrate that the set of all rational numbers—
both positive and negative—has the same cardinality as the set of posi-
tive integers. In other words, enumerate all the rational numbers.

14.2.1 An Uncountable Set

It is natural to wonder whether every infinite set can be placed in one-
to-one correspondence with the positive integers. The answer is “no.” In
fact, the set of all sequences of 0’s and 1’s forms a strictly larger infinite
set, as the next example shows. In this example we shall be looking at
objects like

0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, . . .

1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, . . .

0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, . . .

Each of these is a sequence of 0’s and 1’s. We shall consider the set of
all such sequences.

Example 14.4

Let S be the set of all sequences of 0’s and 1’s. We claim that
S does not have the same cardinality as N, the set of all positive
integers.

The argument is by contradiction. Suppose, to the contrary,
that there is a one-to-one correspondence between the set N of
all positive integers and the set S of all sequences of 0’s and 1’s.
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Thus we can make a list:

(1) a1
1 a1

2 a1
3 a1

4 . . .

(2) a2
1 a2

2 a2
3 a2

4 . . .

(3) a3
1 a3

2 a3
3 a3

4 . . .

(4) a4
1 a4

2 a4
3 a4

4 . . .

· · · · · · · · ·
To be sure that this is clear, note that

a1
1 , a

1
2 , a

1
3 , a

1
4 , a

1
5 , . . .

is a sequence of 0’s and 1’s, and

a2
1 , a

2
2 , a

2
3 , a

2
4 , a

2
5 , . . .

is a sequence of 0’s and 1’s, and

a3
1 , a

3
2 , a

3
3 , a

3
4 , a

3
5 , . . .

is a sequence of 0’s and 1’s, and so forth.
Thus each ak

j is either a 0 or a 1. Thus the first row is the
sequence of 0’s and 1’s (the element of S) corresponding to 1 ∈ N;
the second row is the sequence of 0’s and 1’s (the element of S)
corresponding to 2 ∈ N; the third row is the sequence of 0’s and
1’s (the element of S) corresponding to 3 ∈ N; and so forth. We
claim to have explicitly exhibited a one-to-one correspondence
between the set of positive integers and the collection S of all
sequences of 0’s and 1’s.

But now we will find that this enumeration is in error. In
fact, no matter how cleverly we think we have enumerated all the
elements of S, there will always be a sequence of 0’s and 1’s that
has been omitted from the list. That sequence is:

The first element is 0 if a1
1 is 1 and is 1 if a1

1 is 0.

The second element is 0 if a2
2 is 1 and is 1 if a2

2 is
0.

The third element is 0 if a3
3 is 1 and is 1 if a3

3 is 0.

The fourth element is 0 if a4
4 is 1 and is 1 if a4

4 is
0.

. . . And so forth . . .
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In other words, we are constructing a new sequence that dif-
fers from the first in the list in the first entry, differs from the
second in the list in the second entry, differs from the third in the
list in the third entry, and so forth. Certainly the sequence we
have now constructed cannot be on the list, so our claim to have
enumerated all sequences of 0’s and 1’s cannot be true. That is a
contradiction.

We conclude that the collection of all sequences of 0’s and 1’s
cannot be enumerated.

For You to Try: Demonstrate that the set of all real numbers cannot
be enumerated. [Hint: Consider only those real numbers with decimal
expansions containing just the digits 0 and 1. Can you put those real
numbers in one-to-one correspondence with the set of sequences consid-
ered in the last example?]

14.2.2 Countable and Uncountable

If a set S has the same cardinality as the set N of positive integers,
then we say that S is countable. Thus it is immediate that the set N
of positive integers is countable. A simple argument (see Example 14.2)
shows that the set of all integers is countable, and the set of even integers
is countable, and the set of odd integers is countable. The set of positive
rational numbers is also countable (see Example 14.3). Example 14.3
shows that the set of sequences of 0’s and 1’s is not countable. It also
follows that the set of real numbers is not countable, for any real number
has a unique binary expansion (analogous to a decimal expansion but in
base 2). And that is nothing other than a sequence of 0’s and 1’s.

If a set is infinite but is not countable, then we say it is uncountable.

Example 14.5

Let S be the set of all subsets of the positive integers. Then S is
uncountable.

To see this, observe that we can associate to any subset of the
positive integers a sequence of 0’s and 1’s. We do so as follows.
Let X be such a subset. If 1 ∈ X, then the first element of the
associated sequence is 1, otherwise it is 0. If 2 ∈ X, then the
second element of the associated sequence is 1, otherwise it is 0.
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If 3 ∈ X, then the third element of the associated sequence is 1,
otherwise it is 0, and so forth.

Just to be concrete, suppose that X = {1, 3, 5}. Then the
sequence associated to this set is

1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , · · · .

If instead the set X = {2, 4, 6, 8, . . .} then the associated sequence
is

0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , · · · .
In this way, every subset X ⊂ S has associated to it a se-

quence of 0’s and 1’s (what amounts to the “indicator function”
of the set) and vice versa. Since the set of all such sequences is
uncountable, then so is the set of subsets of the positive integers
uncountable.

For You to Try: Consider the set of all real numbers of the form
j + k

√
2 for j, k ∈ N. Is this set countable or uncountable?

For You to Try: Let S be the set of all polynomials whose coefficients
are integer roots of positive integers (i.e.,

√
2, 4
√

5, 3
√

4, etc.). Is this set
countable or uncountable?

Proposition 14.1

If S and T are each countable sets then so is

S × T = {(s, t) : s ∈ S, t ∈ T}.

PROOF Since S is countable there is a bijection f from S to N. Likewise there
is a bijection g from T to N. Therefore the function

(f × g)(s, t) = (f(s), g(t))

is a bijection of S×T with N×N, the set of ordered pairs of positive integers. But
exactly the same argument as in Example 14.3 shows that the latter is a countable
set. Hence so is S × T.
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Proposition 14.2

Let S b a countable set. If S ′ is a subset of S then S ′ is either empty
or finite or countable.

Proof: This is really an exercise in logic.
If S ′ is neither empty nor finite then S ′ is infinite. Let s1, s2, . . . be

an enumeration of the elements of S. Now let sj1 be the first element
of S that lies in S ′. Let sj2 with j2 > j1 be the second element of S
that lies in S ′. Continue in this manner. Since we are working with an
enumeration of S, we shall certainly exhaust all the elements of S with
our new counting process. Thus we shall also exhaust all the elements of
S ′. It follows that {sjk

}∞k=1 is an enumeration of S ′. So S ′ is countable.

Theorem 14.1

Let S1, S2 be countable sets. Set S = S1 ∪ S2. Then S is countable.

PROOF Let us write
S1 = {s1

1, s
1
2, . . .}

S2 = {s2
1, s

2
2, . . .}.

If S1 and S2 are disjoint, then the function

sk
j 7→ (j, k)

is a bijection of S with a subset of {(j, k) : j, k ∈ N}. Then Proposition 14.2 shows
that the set of ordered pairs of elements of N is countable. Thus S is equivalent to
a subset of a countable set. It follows that S must be countable.

If there exist elements which are common to S1, S2 then discard any duplicates.
The same argument shows that S is countable.

Corollary 14.1

If S1, S2, . . . , Sk are each countable sets then so is the set

S1 × S2 × · · · × Sk = {(s1, . . . , sk) : s1 ∈ S1, . . . , sk ∈ Sk}

consisting of all ordered k-tuples (s1, s2, . . . , sk) with sj ∈ Sj.
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PROOF We may think of S1 × S2 × S3 as (S1 × S2)× S3. Since S1 × S2

is countable (by the Proposition) and S3 is countable, then so is (S1×S2)×S3 =
S1 × S2 × S3 countable. Continuing in this fashion (i.e., inductively), we can see
that any finite product of countable sets is also a countable set.

Corollary 14.2

Let A1, A2, A3, . . . each be countable sets. Let A be the union of all
these sets:

A = {a : a ∈ Aj for some j} .

Then A is countablee.

PROOF Let A1, A2, . . . each be countable sets. If the elements of Aj are enu-
merated as {aj

k}∞k=1 and if the sets Aj are pairwise disjoint then the correspondence

aj
k ←→ (j, k)

is one-to-one between the union A of the sets Aj and the countable set N× N. By
Proposition 14.1, this proves the result when the sets Aj have no common element.
If some of the Aj have elements in common then we discard duplicates and proceed
as before.

For You to Try: Show that if B is countable and A is finite then the
set of all functions from A to B is countable. Discuss this problem in
class.

14.3 The Existence of Transcendental Numbers

An algebraic number is a number that is the root of a polynomial equa-
tion with integer coefficients. For example,

√
2 is algebraic because it

is the root of x2 − 2 = 0. If a number is not algebraic then it is called
transcendental.

Example 14.6

Demonstrate that the number
√

2 +
√

3 is algebraic.
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SOLUTION Set α =
√

2 +
√

3. Then we may calculate that

α2 = 5 + 2
√

6 ,

α3 = 9
√

3 + 11
√

2 ,

and

α4 = 49 + 20
√

6 .

Thus it is natural to notice that

α4 − 10α2 = [49 + 20
√

6]− 10 · [5 + 2
√

6] = −1 .

We conclude that α satisfies the polynomial equation

x4 − 10x2 + 1 = 0 .

It is extremely difficult to identify particular transcendental numbers.
It can be proved that π = 3.14159 . . ., for example, is a transcendental
number. But the proof is far beyond the scope of this text. Also the
number e = 2.71828 . . . is transcendental; again, the proof is extremely
technical and difficult. In this section we shall use methods of Cantor
to show that most real numbers are transcendental—without actually
identifying any particular one of them.

Proposition 14.3

The collectionP of all polynomials p(x) with integer coefficients is count-
able.

PROOF Let Pk be the set of polynomials of degree k with integer coefficients.
A polynomial p of degree k has the form

p(x) = p0 + p1x+ p2x
2 + · · ·+ pkx

k.

The identification
p(x)←→ (p0, p1, . . . , pk)
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identifies the elements of Pk with the (k + 1)-tuples of integers. By Corollary 14.1,
it follows that Pk is countable. But then Corollary 14.2 implies that

P =
∞⋃

j=0

Pj

is countable.

Proposition 14.4

The set of all algebraic real numbers is countable. The set of all tran-
scendental numbers is uncountable.

PROOF Let P be the collection of all polynomials with integer coefficients.
We have already noted in Proposition 14.3 that P is a countable set. If p ∈ P then
let Sp denote the set of real roots of p. Of course Sp is finite, and the number of
elements in Sp does not exceed the degree of p. Then the set A of algebraic real
numbers may be written as

A = ∪p∈P Sp .

This is the countable union of finite sets so of course it is countable. We have demon-
strated that the set of algebraic real numbers is countable.

Now that we know that the set of algebraic numbers is countable, we can notice
that the set T of transcendental numbers must be uncountable. For R = A ∪ T .
If T were countable then, since A is countable, it would follow that R is countable.
But that is not so.

For You to Try: Take it for granted that the sum of two algebraic
numbers is algebraic (it actually requires advanced ideas to prove this
assertion). It is unknown whether e + π is algebraic. It is also un-
known whether e − π is algebraic. But in fact one of them must be
transcendental—we just do not know which one! Explain why.

For You to Try: The square root of any positive integer is algebraic.
In fact any integer root of any positive integer is algebraic. More subtle
is that the sum of any two of these numbers is algebraic. Discuss in class
why this claim is true.
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Exercises

1. What is the cardinality of each of the following sets
(i.e., is it countable or uncountable?)? Discuss these
problems in class.

(a) N×Q
(b) N×N
(c) R×Q
(d) P(Q) (i.e., the set of all subsets of Q)

(e) C
(f) R\N (i.e., the elements of R which are not natural

numbers)

(g) Q\N (i.e., the elements of Q which are not natural
numbers)

(h) The set of all decimal expansions, terminating or
non-terminating, that include only the digits 3 and
7.

(i) The set of all terminating decimal expansions that
include only the digits 3 and 7.

(j) The set of all solutions of all quadratic polynomials
with integer coefficients.

(k) The set of all solutions of all quadratic polynomials
with real coefficients.

(l) The set of all subsets of N that have at least three
and not more than eight elements.

(m) The set of all subsets of Z with at least six ele-
ments.

2. Explain why every infinite set contains a countable sub-
set. Discuss this problem in class.
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3. Let S be a set. The power set of S is the collection of
all subsets of S. For example, if S = {a, b, c} then the
power set of S is

P(S) =
{
{a}, {b}, {c}, {a, b}, {a, c}, {b, c},{a, b, c}, ∅

}
.

Calculate the power set of {1, 2, 3, 4}.

4. Without attempting a rigorous proof, explain why if
S is a set then the power set of S (see Exercise 3 for
terminology) will have more elements than S. Discuss
this problem in class. Examine the question when S =
{1, 2, 3}, when S = {1, 2, 3, 4, 5, 6}, and when S = Z.

5. Refer to Exercise 3 for terminology. If S is a finite set
with k elements then the power set of S has 2k elements.
Test out this statement for a set with 2 elements, and a
set with 3 elements, and a set with 4 elements. Attempt
an explanation for why this assertion is true in general.

6. Refer to Exercise 3 for terminology. Let S be the set
of all positive integers. Consider the power set of S.
Write down several elements of the power set. How
many elements are in the power set? Is it countable or
uncountable? Discuss this example in class.

7. Recall that ∅ is the set with no elements. If A is any
other set, then confirm that A∪ ∅ = A. Also show that
A ∩ ∅ = ∅. Finally, check that ∅ ⊆ ∅. Discuss these
statements in class.

8. Let S and T be sets. Under what circumstances is it
true that S ∩ T = ∅? Under what circumstances is it
true that S ∪ T = ∅? Under what circumstances is it
true that S × T = ∅?

9. Let S be a set with k elements. Then how many ele-
ments are in S × ∅?
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10. Is it possible to write the set R of real numbers as the
countable union of closed, bounded intervals [a, b]? Is
it possible to write the set R of real numbers as the
countable union of open, bounded intervals (a, b)? Is
it possible to write the set R of real numbers as the
countable union of countable sets?

11. Let S and T be uncountable sets. What can you say
about the cardinality of S ∪ T ? About the cardinality
of S ∩ T ? About the cardinality of S × T ?

12. Let
S1 = {1} ,

S2 = {1, 2} ,

S3 = {1, 2, 3} ,

S4 = {1, 2, 3, 4} ,

etc. . What can you say about the cardinality of S1 ×
S2 × · · ·?



Chapter 15

The Number Systems

In everyday life, the numbers that we use most often are the whole
numbers (the integers) and fractions (the rational numbers). If you go
into a grocery store and request a quantity of chicken, or of carrots, or of
flour, you express your needs in the form “Give me two and half pounds
of xyz.” If you go to a lumber yard a place an order for wood, you ask
for so many board feet of 12 × 1 pine. If you go to a bank for some
money, you ask for a certain number of dollars and a certain number of
cents—which of course is a rational number (of dollars).

The history of our number systems is a fascinating one. It is often
said that primitive man counted, “One, two, three, many.” Ancient cave
paintings that depict the life of those times support this claim. In those
days commerce was quite simple. Nobody owned more than a few pigs or
cows or tunics. If a trade were to take place, it would most likely involve
one or two or three items. On those rare occasions when a goodly number
of pigs were involved, it was sufficient to say “many pigs”. It was a long
time later that man conceived for a need for numbers beyond three. And
for a notation for writing those numbers down. And it was a long time
after that before there was any notion that fractions were needed.

Much more fascinating is the history of zero, and of negative num-
bers. As you can imagine, it was impossible for people prior to 500 years
ago—people whose lives were imbued with, and dominated by, religion—
to consider zero and negative numbers in the absence of religious over-
tones. To talk about zero was to talk about nothing. And how could one
do that? Was this not sacrilegious?

The beginnings of the idea of zero go back to the Sumerians of about

343



344 Chapter 15: The Number Systems

5,000 to 6,000 years ago and the Babylonians of about 4,000 years ago.
The question of zero was intimately bound up with issues of place value.
The Babylonian notation of 2000 B.C.E. did not distinguish between the
integer 2106 and the integer 216. It was not until about 400 B.C.E. that
a symbol was devised to mark a placeholder (where we would now put a
zero).

In the Middle Ages, zero was disparaged as a mark of infidel sor-
cery, the sign of the Devil himself, the canceller of all meaning. For the
Mayans, Zero was the Death God among their lords of the underworld,
and men adopting the persona of Zero were ritualistically sacrificed in
hopes of staving off the day of zero, the time when time itself would stop.
Yet, over time, various unaviodable mathematical questions demanded
that the idea of zero, and the idea of negative number, be addressed. In
later years, zero was reinterpreted as a symbol of God’s power to create
a great deal out of naught.

For a long time, number systems were treated as languages that
mathematical scientists just cooked up. But people eventually realized
that this was not a dependable way to create mathematics. It could
lead to paradoxes and contradictions. In the twentieth century we have
realized that it is most rigorous, and minimizes the chance of error, to
actually construct our number systems.

The purpose of the present chapter is to describe the twentieth-
century methodology for creating and studying number systems. It is
a fascinating journey, and will bring us into contact with a number of
captivating people as well as ideas.

An important point to note, and we have discussed this idea else-
where, is that the formalization of our number systems helped to remove
them from religious considerations. The fact that we have an abstract
construction for the integers means in particular that we need no longer
worry that zero is a construct of the devil. We may now safely feel that
the number systems are constructs of man; they are part of our mathe-
matical machinery, that we ourselves have created to treat problems at
hand.



15.1 The Natural Numbers 345

15.1 The Natural Numbers

15.1.1 Introductory Remarks

It is in fact quite difficult to construct—from first principles—a system
of natural numbers in which the arithmetic operations are workable.
Multiplication is particularly troublesome. In many treatments, an extra
axiom is added in order to make multiplication have the properties that
we want it to have (see [SUP, p. 136]). In other treatments, the natural
numbers are taken as undefinables. We will take a third approach, which
adheres more closely to the philosophy of ordinal numbers.

15.1.2 Construction of the Natural Numbers

Recall that ∅ is the empty set, that is the set with no elements (see
Section 14.2). We inductively construct numbers as follows

0 = ∅
1 = {∅}
2 = {∅, {∅}}
. . .

n + 1 = n ∪ {n}
. . . .

These are the natural numbers. The set of natural numbers is denoted
by N. We commonly enumerate them as 0, 1, 2, . . . .

What is important about the natural numbers, indeed about any
number system, is its closure under certain arithmetic operations. Our
particular construction of the natural numbers lends itself well to veri-
fying this property for addition. We define addition inductively:

n+ 1 = n ∪ {n};
n+ 2 = (n+ 1) + 1

etc.
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For example,

2 + 2 = 2 + (1 + 1) = (2 + 1) + 1 =
[
{∅, {∅}} ∪

{
{∅, {∅}}

}]
+ 1

=
{
∅, {∅}, {∅, {∅}}

}
∪
{{
∅, {∅}, {∅, {∅}}

}}

=
{
∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}

}

= 4.

It is convenient in the logical construction of the natural numbers to
include zero as a natural number. In particular, our definition makes the
additive law

n+ 0 = n ∪ 0 = n ∪ ∅ = n

very natural. But the reader should be warned that, in common math-
ematical parlance, the name “natural numbers” and the symbol N are
generally reserved for the set {1, 2, 3, . . .} of positive integers. In common
mathematical discourse, the set {0, 1, 2, . . .} is generally denoted by Z+

and is called “the nonnegative integers.”

15.1.3 Axiomatic Treatment of the Natural Numbers

In practice, it is most convenient to treat the natural numbers axiomat-
ically. Guiseppe Peano (1858–1932) formulated the axiomatic theory of
the natural numbers that we still use today. His axioms are these:

1. Each natural number has a unique successor.

2. There is a natural number 1 that is not the successor of
any natural number.

3. Two distinct integers cannot have the same successor.

4. If M is a set of natural numbers such that 1 ∈ M and
such that if a natural number n is in M then its suc-
cessor is also in M , then every natural number is in
M .
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Observe that the first axiom guarantees that there are infinitely many
natural numbers, and they are the the ones we expect. Axiom 2 guaran-
tees that there is a first natural number. Axiom 3 guarantees that the
natural numbers are linearly ordered. Axiom 4 amounts to the principle
of mathematical induction.

Peano’s axiomatic system is simple and complete. But it does not
provide the machinery for addition or multiplication. In fact it is an
as yet unresolved problem to determine definitively how to perform the
usual arithmetic operations in Peano’s system. The customary method
for handling addition and multiplication is to add some other axioms.
We will not explore the details here, but refer the reader to [SUP, p. 136].

15.2 The Integers

15.2.1 Lack of Closure in the Natural Numbers

The natural numbers are closed under addition and multiplication. If
you add or multiply any two natural numbers then you will certainly
obtain another natural number as your answer. They are not closed
under subtraction (for example, 3 − 5 is not an element of the natural
numbers). To achieve closure under that new operation, we must expand
the number system as follows.

Let

X = {(m,n) : m,n ∈ N} ≡ N× N.

We define a relation on X by

(m,n) ∼ (m′, n′) if and only if m+ n′ = m′ + n.

It turns out that this relation partitions X into disjoint subcollections.
For example

S(1,1) = {(m,n) : (m,n) ∼ (1, 1)}

is one such subcollection. These are all the ordered pairs of natural
numbers that are related to (1, 1). They include (2, 2), (3, 3), (4, 4), and
in fact all the ordered pairs (k, k) for k ∈ N. Another such subcollection
is

S(1,2) = {(m,n) : (m,n) ∼ (1, 2)} .
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These are all the ordered pairs of natural numbers that are related to
(1, 2). They include (2, 3), (3, 4), (4, 5), and in fact all the pairs (k, k+1)
for k ∈ N.

We call each of these subcollections an “equivalence class”. The
entire set X is the disjoint union of these equivalence classes.

15.2.2 The Integers as a Set of Equivalence Classes

Now the set of equivalence classes of X (we denote the set of equivalence
classes by X/ ∼), under this equivalence relation, is the new number
system that we will call the integers (denoted by Z, from the German
word Zahl for number). In fact, we think of the integer that we commonly
denote by k (for k ≥ 0) as the equivalence class {(m,n) : m ∈ N, n ∈
N,m+ k = n}. For k < 0 (assuming that the reader is familiar with the
ordinary arithmetic of negative integers), we think of k as the equivalence
class {(m,n) : m ∈ N, n ∈ N,m+k = n}. Our rules of arithmetic in this
new number system are

• [(m,n)] + [(k, `)] = [(m+ k, n+ `)];

• [(m,n)]− [(k, `)] = [(m+ `, n + k)];

• [(m,n)] · [(k, `)] = [(m`+ nk, n`+mk)].

15.2.3 Examples of Integer Arithmetic

These definitions are best understood by way of some examples:

3 + (−5) = [(1, 4)] + [(9, 4)] = [(1 + 9, 4 + 4)] = [(10, 8)] = −2

4− 8 = [(2, 6)]− [(1, 9)] = [(2 + 9, 6 + 1)] = [(11, 7)] = −4

3 · (−6) = [(2, 5)] · [(10, 4)] = [(2 · 4 + 5 · 10, 2 · 10 + 5 · 4)]
= [(58, 40)] = −18.

The definition of multiplication used here may seem unnecessarily com-
plicated, or perhaps unnatural. But, in the backs of our minds, we are
thinking of the pair (m,n) as representing the difference (n−m) and we
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are thinking of the pair (k, `) as representing the difference (` − k). So
our “product rule” derives from the ordinary algebraic product of these
two expressions.

It is important to notice in each of these examples that we need not
engage in any hocus pocus to explain the arithmetic of negative numbers.
Their properties are built in to the number system an its operations. In
particular, 3 · (−6) = −18 because that is the way things are. That is
how we have defined integer multiplication.

15.2.4 Arithmetic Properties of the Integers

The satisfying thing about the construction given here is that the stan-
dard arithmetic properties of negative numbers are automatic—they are
built into the way we have defined our new number system. Observe
that the additive identity is 0 = [(1, 1)] and, indeed, n + 0 = n for any
integer n. We may check this claim in detail:

n + 0 = [(1, n+ 1)] + [(n, n)] = [(n+ 1, 2n + 1)] = n .

Also the multiplicative identity is 1 = [(1, 2)], and one may check
that 1 · n = n for any n. In point of fact,

1·n = [(1, 2)]·[(1, n+1)] = [(1·(n+1)+2·1, 2·(n+1)+1·1)] = [(n+3, 2n+3)] = n .

15.3 The Rational Numbers

15.3.1 Lack of Closure in the Integers

The number system Z of integers is closed under addition, subtraction,
and multiplication; but it is not closed under division. For example, 5÷7
makes no sense in the integers. In order to achieve the desired closure
property, we enlarge the system of integers as follows:

Let

Y = {(p, q) : p, q ∈ Z, q 6= 0}.

We define a relation on Y by

(p, q) ∼ (p′, q′) if and only if p · q′ = p′ · q.
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15.3.2 The Rational Numbers as a Set of Equivalence Classes

Now the set of equivalence classes of Y (we denote this set by Y/ ∼),
under this equivalence relation, is the new number system that we will
call the rational numbers (denoted by Q, where Q should be considered
to be an abbreviation for “quotient”). In fact, we think of the rational
number that we commonly denote by p/q (in lowest terms) as the equiv-
alence class {(pk, qk) : k ∈ Z, k 6= 0}. Our rules of arithmetic in this
new number system are:

• [(p, q)] + [(r, s)] = [(ps+ qr, qs)];

• [(p, q)] · [(r, s)] = [(pr, qs)].

Notice that the rule for addition may seem counterintuitive. But, in
the backs of our minds, we are thinking of adding p/q to r/s and we are
following the ordinary rubric for putting the fractions over a common de-
nominator and then adding. Multiplication is of course more straightfor-
ward: one simply multiplies the numerators together and then multiplies
the denominators together.

15.3.3 Examples of Rational Arithmetic

These definitions are best understood by way of some examples.

3

5
+

2

7
= [(3, 5)] + [(2, 7)] = [(3 · 7 + 5 · 2, 5 · 7)]

= [(31, 35)] =
31

35

−4

9
+

2

5
= [(−4, 9)] + [(2, 5)] = [((−4) · 5 + 9 · 2, 9 · 5)]

= [(−2, 45)] =
−2

45

−3

11
· 5

13
= [(−3, 11)] · [(5, 13)] = [(−15, 143)]

=
−15

143
.
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15.3.4 Subtraction and Division of Rational Numbers

The operations of subtraction and division on the rationals are already
implicit in addition and multiplication. For completeness, however, we
record them here:

• [(p, q)]− [(r, s)] = [(ps− qr, qs)];

• [(p, q)]÷ [(r, s)] = [(ps, qr)], provided r 6= 0.

Example 15.1

Let x be the rational number [(2, 3)] and y be the rational number
[(5, 7)]. (We think of these as 2/3 and 5/7 respectively.) Then
the difference of these two numbers is

y − x = [(5, 7)]− [(2, 3)] = [(5 · 3 − 7 · 2, 7 · 3)] = [(1, 21)] .

The quotient of these two numbers is

y ÷ x = [(5, 7)]÷ [(2, 3)] = [(5 · 3, 7 · 2)] = [(15, 14)] .

15.4 The Real Numbers

15.4.1 Lack of Closure in the Rational Numbers

The set Q of rational numbers is closed under the standard arithmetic
operations of +,−,×,÷. In fact, Q is what we call a field. From a strictly
algebraic perspective, this number system is completely satisfactory for
elementary purposes, and in fact it is the rational numbers that are used
in everyday commerce, engineering, and science.

However, from a more advanced point of view, the rational numbers
are not completely satisfactory. This assertion was first discovered by
the Pythagoreans more than 2000 years ago (Subsection 1.1.1). Indeed,
they determined that there is no rational number whose square is 2.
More generally, a positive integer has a rational square root if and only
if it has an integer square root. Thus we find that a broader class of
numbers is more desirable.

The modern point of view is that the rational numbers are deficient
from the point of view of metric topology. More precisely, the sequence
of rational numbers given (for instance) by

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . .
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gives better and better approximations to the ratio of the circumference
of a circle to its diameter. These numbers are becoming and staying
closer and closer together, and appear to converge to some value. But,
as it turns out, that value cannot be rational. In fact, the value is π, and
it is known that π is not rational. By the same token, the numbers

1, 1.4, 1.41, 1.414, 1.4142, . . .

give better and better approximations to the length of the diagonal of
a square of side 1, and that number is known to be irrational. In sum-
mary, we require a system of numbers that is still closed under the basic
arithmetic operations, but is also closed under the limiting processes just
described.

15.4.2 Axiomatic Treatment of the Real Numbers

In fact, the system of real numbers will fill the need just described. It is
rather complicated to give a formal construction of the real numbers R,
and we refer the reader to [KRA1], [RUD], and [STR] for details. We
content ourselves here with enunciating an axiom system for the reals
(these are taken from [STR]). We state once and for all that it is possi-
ble to present an explicit model for a number system that satisfies these
axioms (constructed, for example, by the method of Dedekind cuts—see
[KRA1]). In fact we have already given a particular, hands-on construc-
tion of the real numbers in Section 10.3. We shall take it for granted
that a model exists, and we shall have no compunctions about using the
real numbers elsewhere in this book.

The real numbers are a field of numbers equipped with a notion of
distance that makes the field operations (addition + and multiplication ·
) continuous. With this notion of distance (or metric), the real numbers
are complete. The detailed axioms are these:

Axiom 1 (Commutative Laws) For all x, y ∈ R,

x+ y = y + x and x · y = y · x.

Axiom 2 (Associative Laws) For all x, y, z ∈ R,

x+(y+z) = (x+y)+z and x ·(y ·z) = (x ·y) ·z.
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Axiom 3 (Distributive Law) For all x, y, z ∈ R,

x · (y + z) = x · y + x · z.

Axiom 4 (Identity Elements) There exist two distinct el-
ements 0 and 1 in R such that, for all x ∈ R,

0 + x = x and 1 · x = x.

Axiom 5 (Inverse Elements) If x ∈ R, then there exists
a unique −x ∈ R such that

x+ (−x) = 0.

If x ∈ R and x 6= 0, then there is a unique element
x−1 ∈ R such that

x · x−1 = 1.

Axiom 6 (Positive Numbers) The real number system R
has a distinguished subset P (the positive numbers) that
induces an ordering on R. The three sets P, {0}, and
−P = {−x : x ∈ P} are pairwise disjoint and their
union is all of R. We write a < b in case b− a ∈ P.

Axiom 7 (Closure Properties of P) If x, y ∈ P, then x+
y ∈ P and x · y ∈ P.

Axiom 8 (Dedekind Completeness) LetA and B be sub-
sets of R such that

(i) A 6= ∅ and B 6= ∅;
(ii) A ∪ B = R;

(iii) a ∈ A and b ∈ B imply that a < b.

Then there exists exactly one element x ∈ R such that

(iv) If u ∈ R and u < x, then u ∈ A;
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(v) If v ∈ R and x < v, then v ∈ B.

Plainly, the number x described in Axiom 8 must be either in A or
in B but not in both. Thus B = R \A and either A = {u ∈ R : u ≤ x}
or A = {u ∈ R : u < x}.

The first seven axioms of the real numbers are also satisfied by the
rational numbers. It is these first seven axioms that constitute the pos-
tulates for a field. (In some treatments, Axioms 1, 2, 4, and 5 are each
split into two; so it is common to say that there are eleven field axioms.)

It is Axiom 8 that makes the real numbers special. It says, in effect,
that the real numbers have no gaps or holes in them. In other word, the
reals are complete.

We invite the reader at this time to review Chapter 10, especially
Section 10.4, to see all the special properties that the real numbers en-
joy because of their completeness. It is the real numbers that are the
foundation for all scientific computing and reasoning, and for all theo-
retical mathematics in the real world. Other number systems, such as
the complex numbers, are built on the reals. See the next section.

15.5 The Complex Numbers

15.5.1 Intuitive View of the Complex Numbers

Intuitive treatments of the complex numbers are unsatisfactory because
they posit (without substantiation) the existence of a number that plays
the role of the square root of −1. With the formalism developed thus far
in this book, we were actually able to construct the complex numbers in
Section 8.1. Here we shall review some of their key properties as part of
our general consideration of number systems.

15.5.2 Definition of the Complex Numbers

We let
C = {(x, y) : x ∈ R, y ∈ R}.

We equip C with the following operations:

(x, y) + (x′, y′) = (x+ x′, y + y′)

(x, y) · (x′, y′) = (xx′ − yy′, xy′ + x′y).
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Notice that C is not a set of equivalence classes; it is merely a set of
ordered pairs. The rule for multiplication may seem artificial, but it is
the rule that is needed to turn C into a field.

15.5.3 The Distinguished Complex Numbers 1 and i

We denote the complex number (1, 0) by 1. Notice that if (x, y) is any
other complex number, then

(1, 0) · (x, y) = (1 · x− 0 · y, 1 · y + 0 · x) = (x, y).

Thus 1 ≡ (1, 0) is the multiplicative identity. We commonly denote the
complex number (0, 1) by i. Observe that

i · i = (0, 1) · (0, 1) = (0 · 0− 1 · 1, 0 · 1 + 1 · 0) = (−1, 0) = −(1, 0) = −1.

Thus i is a bona fide square root of −1, but this property is built into
the arithmetic of C; it is not achieved by fiat.

It is common to write the complex number (x, y) as x·1+y·i = x+iy.

15.5.4 Algebraic Closure of the Complex Numbers

The most important property of the complex numbers is that of algebraic
closure: any polynomial p(z) = a0 + a1z + · · · + an−1z

n−1 + anz
n with

complex coefficients has precisely n complex roots (counting multiplici-
ties). This profound fact is due to Gauss, and he produced five distinct
proofs. Today there are several dozen proofs of this, the Fundamental
Theorem of Algebra. We provided our own proof of the Fundamental
Theorem in Section 8.2.

Exercises

1. Use our definition of addition in the integers to verify
that m+ n = n +m for any integers m and n.

2. Use our definition of multipliction in the integers to ver-
ify that m · n = n ·m for any integers m and n.

3. Explain why, if n is an integer, if k is any nonzero inte-
ger, and if n · k = 0, then n = 0.
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4. Suppose that q is a rational number n is an integer, and
q + n is an integer. What can you conclude about q?

5. Suppose that q is a rational number, n is a nonzero
integer, and qṅ is an integer. What can you conclude
about q. [Hint: Be careful. The correct answer is not
that q is an integer.]

6. Suppose that q and r are rational numbers. Give a pre-
cise explanation of what a lowest common denominator
for q and r would be. Describe a method for finding the
lowest common denominator. Discuss this problem in
class.

7. If k and n are natural numbers then say precisely what
the greatest common divisor of k and n is. Describe a
method for finding the greatest common divisor. Dis-
cuss this problem in class.

8. If r is a real number and s is another real number, then
offer an explanation of what rs should mean. Discuss
this problem in class.

9. Find a square root for the complex number 1 + i by
solving the equation (x+ iy)2 = 1 + iy.

10. Sometimes in high school we “discover” the arithmetic
laws for the integers with the following sort of reasoning:

Say that we want to understand what value −3+1 must
have. Consider the expression

6 + (−3 + 1) = (6 + (−3)) + 1 = 3 + 1 = 4 .

The only possible conclusion is that −33 + 1 = −2.

With similar reasoning, suppose that we want to under-
stand the value of −2 · 4. Consider the expression

(−2 + 5) · 4 = [(−2) · 4] + [5 · 4] .
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We may simplify the expression on the left and the sec-
ond expression on the right. The result is

3 · 4 = [(−2) · 4] + 20

or
12 = [(−2) · 4] + 20 .

We conclude that

−[(−2) · 4] = 8

or
(−2) · 4 = −8 .

The arguments that we have just presented are not in-
correct, but they ignore a fundamental issue. What is
the gap?

11. Explain why
√

2 exists as a real number but not as a
rational number. Discuss in class.

12. Explain why π exists as a real number but not as a
rational number. Discuss in class.
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Chapter 16

Henri Poincaré, Child Prodigy

16.1 Introductory Remarks

Jules Henri Poincaré (1854–1912) is considered to have been one of the
great geniuses of twentieth century mathematics. Even while he was a
child his special gifts were recognized, and the entire country of France
watched in awe as he grew up to be a brilliant and creative man of
science. There were other distinguished individuals in Henri Poincaré’s
family. Poincaré’s father’s brother’s son Raymond was prime minister of
France several times and president of the French Republic during World
War I. The second son of that same uncle was a distinguished and high-
ranking university administrator.

Young Henri Poincaré was so gifted that he was a hero in all of
France. From a physical point of view, he was described in this way:

. . . ambidextrous and was nearsighted; during his
childhood he had poor muscular coordination and
was seriously ill for a time with diphtheria. He
received special instruction from his gifted mother
and excelled in written composition while still in
elementary school.

Poincaré studied at the Lycée—today called the Lycée Henri Poincaré.
He was the top student in every subject that he undertook. One of his
instructors called him a “monster of mathematics”.

Young Henri enrolled at the École Polytechnique in 1873 and grad-
uated in 1875. He was vastly ahead of all the other students in math-
ematics. But in other subject areas, such as athletics and art, he did

359
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poorly. His deleterious physical coordination held him back in activities
which were not cerebral. In fact his eyesight was so poor that he could
not see what his teachers wrote on the blackboard. This failure helped
him to develop his visual imagination.

After the École Polytechnique, Poincaré spent some time as a mining
engineer at the École des Mines. At the same time he studied mathe-
matics under the direction of Charles Hermite. He earned his doctorate
in 1879. The examiners were not entirely happy with the thesis, for
they found the presentation obscure and the organization confusing. Yet
they acknowledged that this was a difficult subject area, and that the
candidate had demonstrated great talent. So he was awarded the degree.

Poincaré’s first academic position was teaching mathematics at the
University of Caen. His lectures were criticized for their lack of orga-
nization. He remained at Caen for only two years, and then he moved
to a chair at the Faculty of Sciences in Paris in 1881. In 1886 Poincaré
was nominated, with the support of Hermite, to the chair of mathemat-
ical physics and probability at the Sorbonne. Hermite also promoted
Poincaré for a chair at the École Polytechnique. These were the two
most prestigious professorships in all of France, and so a measure of
Poincaré’s prestige and recognition. He was to remain in Paris for the
remainder of his career, and he lectured on a different subject every year
until his untimely death at the age of 58.

Poincaré was remarkable for his work habits. He engaged in math-
ematical research each day from 10:00am until noon and from 5:00pm
until 7:00pm. He would read mathematical papers in the evening. Rather
than build new ideas on earlier work, Poincaré preferred always to work
from first principles. He operated in this fashion both in his lectures and
in his writing. One expert described Poincaré’s method for organizing a
paper as follows:

. . . does not make an overall plan when he writes
a paper. He will normally start without know-
ing where it will end. . . . Starting is usually easy.
Then the work seems to lead him on without him
making a wilful effort. At that stage it is difficult
to distract him. When he searches, he often writes
a formula automatically to awaken some associa-
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tion of ideas. If beginning is painful, Poincaré
does not persist but abandons the work.

Poincaré also believed that his best ideas would come when he stopped
concentrating on a problem, when he was actually at rest:

Poincaré proceeds by sudden blows, taking up and
abandoning a subject. During intervals he as-
sumes . . . that his unconscious continues the work
of reflection. Stopping the work is difficult if there
is not a sufficiently strong distraction, especially
when he judges that it is not complete . . . For this
reason Poincaré never does any important work in
the evening in order not to trouble his sleep.

In 1894 Poincaré published his important Analysis Situs. This semi-
nal work laid the foundations for topology, especially algebraic topology.
He defined the fundamental group—which is an important device for
detecting holes of different dimensions in surfaces and other geometric
objects. He proved the foundational result that a 2-dimensional surface
having the same homotopy as the sphere is in fact topologically equiv-
alent to the sphere. He conjectured that a similar result is true in 3
dimensions, and ultimately in all dimensions. This question has become
known as the Poincaré Conjecture, and it is one of the most important
questions of twentieth century mathematics. It is a curious fact that the
Poincaré Conjecture was proved for dimensions 5 and higher by Stephen
Smale in 1961 (see [SMA]) and in dimension 4 by Michael Freedman
in 1982 (see [FRE]). But the fundamental question of dimension 3 still
remained open. In the year 2003 Grigori Perelman of St. Petersburg,
Russia distributed three papers which appear to finally prove the Pio-
ncaré conjecture in dimension 3. Notable in this work is that Perelman
does not confine himself to methods of topology. He uses partial differ-
ential equations and differential geometry in powerful new ways. In 2006
Perelman was awarded the Fields Medal, the highest honor in mathe-
matics, for this work. Sadly, he declined the honor.

Poincaré is also remembered as the founder of the analytic theory of
functions of several complex variables. He did important work in number



362 Chapter 16: Henri Poincaré, Child Prodigy

theory. Poincaré maintained his interest in physics, and made contribu-
tions to optics, electricity, telegraphy, capillarity, elasticity, thermody-
namics, potential theory, quantum theory, relativity, and cosmology.

Of particular historical interest is Poincaré’s participation in an 1887
competition that the King of Norway and Sweden initiated to celebrate
his sixtieth birthday. Poincaré’s paper on the 3-body problem1 solved
an important problem in celestial mechanics. Even though this paper
was ultimately discovered to contain an error, it won the prize and has
been very influential in twentieth century mathematics. In particular,
the theory of dynamical systems (which ultimately led to fractal geom-
etry and chaos) was founded in this paper. The paper was ultimately
corrected and published in 1890.

Poincaré lived in a time when the general public was not partic-
ularly interested in science. Nonetheless, after he had established his
pre-eminence as a research scientist, he turned his considerable talent
to the writing of expository works for the general public. Among his
major works describing science and mathematics for the general public
were Science and Hypothesis (1901), The Value of Science (1905), and
Science and Method (1908).

Poincaré believed passionately in the separate roles of intuition and
rigor. The first was for finding ideas; the second was for establishing
those ideas. In Poincaré’s words:

It is by logic we prove, it is by intuition that we
invent.

He went on, in a later article, to say that

Logic, therefore, remains barren unless fertilised
by intuition.

Poincaré was prescient in many ways. He predicted that non-Euclidean
geometry would be the correct geometry to use to understand physical

1The three body problem asks about the long-term motion of three planets (say the

sun, the earth, and the earth’s moon) acting on each other with the force of gravity.
This has been an open problem for well over one hundred years. Today a great deal

is known about what might happen to three planets in these circumstances, but the
problem is far from being completely understood. The corresponding problem for n

planets—called, appropriately enough, the “n-body problem”—is still open.
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space (thus anticipating Einstein’s general relativity). He claimed that
mathematics could not be completely axiomatized, as Bertrand Russell
and others had endeavored to do. In particular, Poincaré asserted that
the method of mathematical induction could never be proved. He also
claimed that arithmetic could never be proved to be consistent if it were
defined by a system of axioms. These ideas were later fleshed out and
proved to be correct by Kurt Gödel and other geniuses of twentieth cen-
tury logic.

A curious feature of Poincaré’s career is that he never founded his
own school since he never had any students. Poincaré’s contemporaries
used his results, but not his techniques. He certainly had considerable
influence over the mathematics of his day (and on into the present day).
He achieved many honors during his lifetime. In 1887 he was elected
to the Académie des Sciences and in 1906 was elected President of that
Academy. His research covered such a broad scope that he was the only
scientist ever elected to each one of the five sections of the Academy: ge-
ometry, mechanics, physics, geography, and navigation. In 1908 Poincaré
was elected to the Académie Française and he was chosen to be director
of that august body in the year of his death 1912. He was made Chevalier
of the Légion d’Honneur, and he received honors from numerous learned
societies around the world.

It is not generally well known that Poincaré discovered special rela-
tivity at just about the same time as Einstein. He gave a lecture on the
subject at Washington University in St. Louis, on the occasion of the
1904 World’s Fair, a full year before Einstein’s ideas appeared in print.
In fact Poincaré and Einstein had a considerable rivalry in this matter,
and they never acknowledged each other’s work. Poincaré’s ideas appear
in a journal called The Monist, and they bear a remarkable similarity to
textbook treatments of relativity that we see today.

Poincaré is arguably the father of topology (popularly known as “rub-
ber sheet geometry”) and also of the currently very active area of dynam-
ical systems. He made decisive contributions to differential equations,
to geometry, to complex analysis, and to many other central parts of
mathematics.

We shall begin this chapter by exploring the subject of topology.
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S T

Figure 16.1

16.2 Rubber Sheet Geometry

A common joke among mathematicians is that a topologist is a person
who does not know his/her coffee cup from his/her donut. What could
this possibly mean? By the end of this section you should know the
answer.

Let A and B be sets. In topology we say that A and B are home-
omorphic if A can be continuously deformed into B. Put a bit more
technically, A and B are homeomorphic if there is a function f : A→ B
that is a one-to-one correspondence and is continuous with a continuous
inverse.

Example 16.1

The regions S and T exhibited in Figure 16.1 are homeomorphic.
Figure 16.2 shows how S can be continuously deformed into

T .

One of the pleasures of this subject is that we frequently do not
endeavor to actually write down the function f that realizes the homeo-
morphism. In many instances, a picture will suffice.

The next example exhibits another two-dimensional instance of home-
omorphism.
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Figure 16.2

Figure 16.3

Example 16.2

The annulus and the square frame in Figure 16.3 are homeomor-
phic.

Figure 16.4 shows how to deform one into the other.

16.3 The Idea of Homotopy

Of course the notion of homeomorphism would not be interesting if just
any old two geometric figures were homeomorphic. In point of fact, some

Figure 16.4
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Figure 16.5

Figure 16.6

pairs of objects are not homeomorphic, as the next example illustrates.

Example 16.3

The two-dimensional geometric objects in Figure 16.5 are not
homeomorphic.

The justification for this assertion is very interesting, and is
one of Henri Poincaré’s great inventions: the idea of homotopy.
Examine Figure 16.6. It shows a closed, dotted curve in the an-
nulus. Now think of the annulus as rigidly fixed, and imagine
moving the dotted curve around inside the annulus. Is it possible
to transform the curve to a point?

The answer, of course, is “no”—just because the hole in the
annulus prevents the curve from being shrunk any smaller than
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Figure 16.7

Figure 16.8

the hole itself—Figure 16.7.
On the other hand, a similar dotted curve in the disc on the

righthand side of Figure 16.5 is easily transformed to a point. See
Figure 16.8.

Since the property of being able to transform a curve to a
point would clearly be preserved under deformation of the do-
mains, we see that it is not possible to deform the annulus to the
disc (see Lemma 16.1 for a more precise formulation).

16.4 The Brouwer Fixed Point Theorem

One of the most fascinating and important theorems of twentieth cen-
tury mathematics is the Brouwer Fixed Point Theorem. Proving this
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theorem established Brouwer as one of the pre-eminent topologists of his
day. But he refused to lecture on the subject, and in fact he ultimately
rejected this (his own!) work. The reason for this strange behavior is
that L. E. J. Brouwer (1882–1966) became a convert to constructivism
or intuitionism. He rejected the Aristotelian dialectic (that a statement
is either true or false and there is no alternative), at least in the con-
text of existence proofs, and therefore rejected the concept of “proof by
contradiction”. Brouwer believed that the only valid proofs are those in
which we construct the asserted objects being discussed.

As we shall see below, the Brouwer fixed point theorem asserts the
existence of a “fixed point” for a continuous mapping. We demonstrate
that the fixed point exists by assuming that it does not exist and deriving
thereby a contradiction. This is Brouwer’s original method of proof,
but the methodology flies in the faces of the intuitionism that he later
adopted.

Let us begin by discussing the general idea of the Brouwer fixed point
theorem. We proceed by considering a “toy” version of the question in
one dimension. Consider a continuous function f from the interval [0, 1]
to [0, 1]. Figure 16.9 exhibits the graph of such a function.

Note here that the word “continuous” refers to a function that has
no breaks in the graph. Some like to say that the graph of a continuous
function “can be drawn without lifting the pencil from the paper.” Al-
though there are more mathematically rigorous definitions of continuity,
this one will suffice for our purposes. The question is whether there is a
point p ∈ [0, 1] such that f(p) = p. Such a point p is called a fixed point
for the function f . Figure 16.10 shows how complicated a continuous
function from [0, 1] to [0, 1] can be. In each instance it is not completely
obvious whether there is a fixed point or not. But in fact Figure 16.11
exhibits the fixed point in each case.

If course it is one thing to draw a few pictures and quite another
to establish once and for all that, no matter what the choice of the
continuous function f : [0, 1] → [0, 1], there is a fixed point p. What is
required now is a mathematical proof. Now here is a formal enunciation
and proof of our result:
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1

1

Figure 16.9

Theorem 16.1

Let f : [0, 1] → [0, 1] be a continuous function. Then there is a point
p ∈ [0, 1] such that f(p) = p.

PROOF We may as well suppose that f(0) 6= 0 (otherwise 0 is our fixed point
and we are done). Thus f(0) > 0. We also may as well suppose that f(1) 6= 1
(otherwise 1 is our fixed point and we are done). Thus f(1) < 1.

Consider the auxiliary function g(x) = f(x) − x. By the observations in the
last paragraph, g(0) > 0 and g(1) < 0. Look at Figure 16.12. We see that a
continuous function with these properties must have a point p in between 0 and 1
such that g(p) = 0. But this just says that f(p) = p.

Now we turn to the higher-dimensional, particularly the 2-dimensional,
version of the Brouwer fixed point theorem. This is the formulation that
caused such interest and excitement when Brouwer first proved the result
over eighty years ago. Before we proceed, we must establish an auxil-
iary topological fact. And it is for this purpose that we are going to use
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Figure 16.10
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Figure 16.11
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p0

1

Figure 16.12

Poincaré’s homotopy theory.

Lemma 16.1

Let U , V be geometric figures and g : U → V be a continuous function.
If γ ⊆ U is a closed curve that can be continuously deformed to a point,
then f(γ) ⊆ V is also a closed curve that can be continuously deformed
to a point.

This statement makes good sense. Obviously a continuous function
will not take a closed curve and open it up into an unclosed curve; that
is antithetical to the notion of continuity. And if we imagine a flow of
curves, beginning with γ, that merge to a point in U then of course their
images under f will be a flow of curves in V that merge to a point in V .

Definition 16.1 Let D be the closed unit disc (i.e., the unit disc together
with its boundary) as shown in Figure 16.13. Let C denote the boundary
of D. A continuous function h : D → C that fixes each point of C is
called a retraction of D onto C. See Figure 16.14.

Proposition 16.1

There does not exist any retraction from D to C.

For the reasoning, consider Figure 16.15. We assume that there is a
retraction r : D → C. The function u is just the inclusion map from C
into D. Now let γ be the curve in C that just wraps once around the
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D

Figure 16.13

D C

Figure 16.14
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DC C

u r

Figure 16.15

Figure 16.16

circle—Figure 16.16. Then the composition r ◦ u obviously just takes γ
to itself. On the other hand, u must take γ to a curve u(γ) ⊆ D that is
shrinkable to a point—since all curves in D shrink to a point. And, by
the lemma, r in turn must take i(γ) to another curve that shrinks to a
point.

But now we have a problem: On the one hand, r ◦u takes γ to itself,
and thus r ◦ u(γ) cannot be shrunk to a point. On the other hand, we
just argued that r◦u(γ) can be shrunk to a point. It is impossible to have
both statements be true. That is our contradiction. So the retraction
cannot exist.

And now here is Brouwer’s famous theorem:
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Figure 16.17

Theorem 16.2

Let D be the closed unit disc. Let f : D → D be a continuous function.
Then there is a point P ∈ D such that f(P ) = P .

At the risk of offending Brouwer himself, we provide a proof by con-
tradiction. Suppose that there is such a map f that does not possess a
fixed point. Then, for each point x ∈ D, f(x) 6= x. But then we can use
f to construct a retraction of D to C as follows. Examine Figure 16.17.
You can see that the segment that begins at f(x), passes through x, and
ends at a point h(x) in C gives us a mapping

x 7−→ h(x)

from D to C.
This mapping is evidently continuous, as a small perturbation in x

will result in a small perturbation in f(x) and hence a small perturba-
tion in h(x). Furthermore, each element of C is mapped, under h, to
itself. So in fact h is a retraction of D to C. Note that the reason that
we can construct this retraction is that f(x) 6= x; it is because of that
inequality that we know how to draw the segment that defines h(x). But
we know, by the proposition, that that is impossible. Thus it cannot be
that f(x) 6= x for all x. As a result, some point P is fixed by f . And
that is the end of our proof. We have established Brouwer’s fixed point
theorem using non-existence of a retraction from D to C, which in turn
uses Poincaré’s homotopy theory.
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Figure 16.18

Figure 16.19

In popular discussions of the Brouwer fixed point theorem, it is com-
mon for the teacher to suggest that we consider putting grated cheese
across the top of a bowl of soup. See Figures 16.18 and 16.19. We are to
imagine the entire surface of our creamed tomato soup covered by grains
of ground parmesan. Then we stir up the soup (so that the cheese still
remains on the surface) and the assertion is—can you anticipate?—that
some grain of cheese ends up where it began! Refer to Figures 16.20 and
16.21.

16.5 The Generalized Ham Sandwich Theorem

16.5.1 Classical Ham Sandwiches

In this section we are going to discuss a far-reaching generalization of the
Brouwer Fixed Point Theorem. Our treatment will be almost entirely
intuitive, as it must be. But it serves to show that mathematical ideas
are not stagnant. Any good insight gives rise to further investigation
and further discoveries. The “generalized ham sandwich theorem” is one
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Figure 16.20

Figure 16.21
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Bread

Bread

Cheese

Ham

Figure 16.22

of these.
First, let us define a classical ham sandwich. Such a sandwich con-

sists of two square pieces of bread and a square slice of ham (assuming
that we are using packaged ham) and a square slice of cheese (assuming
that we are using packaged cheese). See Figure 16.22.

Now it is easy to see that, with a single planar slice of the knife, it
is possible to cut the sandwich in such a way that

• the bread is sliced in half,

• the cheese is sliced in half,

• the ham is sliced in half.

Figure 16.23 illustrates one such cut. Figure 16.24 illustrates another.
In fact there are infinitely many ways to perform a planar cut of the

classical ham sandwich that will bisect each of the bread, the cheese, and
the ham.

In the next subsection we shall define a “generalized ham sandwich”
and discuss an analogous but considerably more surprising result.

16.5.2 Generalized Ham Sandwiches

A generalized ham sandwich consists of some ham, some cheese, and
some bread. But the ham could be in several pieces, and in quite arbitrary
shapes. Similarly for the cheese and the bread. Figure 16.25 illustrates
a generalized ham sandwich.
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Figure 16.23

Figure 16.24
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=  Ham =  Bread =  Cheese

Figure 16.25

Please remember that these ham sandwiches live in 3-dimensional
space. The generalized ham sandwich shown in Figure 16.25 is a 3-
dimensional ham sandwich. Each of the ham, the cheese, and the bread
is a solid, 3-dimensional, object.

Now we have the following astonishing theorem:

Theorem 16.3

Let S be a generalized ham sandwich in 3-dimensional space. Then there
is a single planar knife cut that

• bisects the bread,

• bisects the cheese,

• bisects the ham.

See Figure 16.26. The proof, which is too complicated to present here,
is a generalization of the intermediate value property that we used to
prove the fixed point theorem in dimension 1.

In fact it is worth pondering this matter a bit further. Let us consider
the generalized ham sandwich theorem in dimension 2. In this situation
we cannot allow the generalized ham sandwich to have three ingredients.
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Figure 16.26

In fact, in dimension 2, the generalized ham sandwich has only bread
and ham. No cheese. Then the same result is true: a single linear cut
will bisect the ham and bisect the bread. Examine Figure 16.27 and
convince yourself that, with ham and cheese and bread configured as
shown in dimension 2 there is no linear cut that will bisect all three
quantities. But there is a certainly a linear cut that will bisect the ham
and the cheese, or the bread and the cheese, or the ham and the bread.

In dimension 4, we can add a fourth ingredient to the generalized
ham sandwich—such as turkey. And then there is a single hyper-planar
slice that will bisect each of the four quantities: turkey, ham, cheese,
and bread. This is all pretty abstract, and we cannot discuss the details
here. But you should talk this up in class.

Exercises

1. Compare the two domains shown in Figure 16.28. Use
the idea of homotopy to establish that the two domains
cannot be topologically equivalent. Discuss this ques-
tion in class.

2. Examine the knot in Figure 16.29. This is a classic tre-
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Figure 16.27

Figure 16.28



16.5 The Generalized Ham Sandwich Theorem 383

Figure 16.29

Figure 16.30

foil knot—the knot that most people know how to tie,
and is used to tie one’s shoe. Knot theory is an ac-
tive area of mathematical investigation. Indeed, knot
theory is used today in theoretical physics, mathemat-
ical analysis, and topology. A mathematician thinks of
a knot as an exotic embedding of the circle (a simple
loop) into space. See figure 16.30. Explain why the
knotted curve and the unknotted curve in Figure 16.30
are homeomorphic.

3. The function f(x) = 1/x gives a homeomorphism be-
tween the bounded interval (0, 1) and the unbounded
interval (1,∞). Draw a picture to explain how this
homeomorphism works. Discuss the question in class.

4. The circle (not the disc) and the (open) annulus have
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Figure 16.31

the same homotopy—see Figure 16.31. That is to say,
there is a natural correspondence between loops in the
circle and loops in the annulus. But the circle and the
annulus are not homeomorphic. Explain these state-
ments. Discuss the questions in class.

5. The mapping

(x, y) 7−→
(

x

x2 + y2
,

y

x2 + y2

)

gives a homeomorphism between the punctured disc

D̂ = {(x, y) : 0 < x2 + y2 < 1}

and the set

U = {(x, y) : 1 < x2 + y2 <∞} .

One of these sets is bounded and the other unbounded.
Explain the nature of this homeomorphism. Draw some
curves in D̂ and show to what curves they correspond
in U .

6. Not all sets have the fixed point property. Consider the
circle

S = {(x, y) : x2 + y2 = 1} .
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The mapping (x, y) 7→ (−y, x) is a 90-degree rotation of
this circle. It is certainly a continuous function of the
circle to itself, and it is also one-to-one and onto. Yet
it has no fixed points.

Now consider the unit sphere in 3-dimensional space.
Describe a continuous function of the sphere to itself
that has no fixed points.

7. Refer to Exercise 6. Describe a continuous function
from the open unit interval (0, 1) to itself that has no
fixed points. Describe a continuous function from the
entire real line to itself that has no fixed points.

8. Give an example of a continouos function from the closed
unit interval I = [0, 1] to itself that has two distinct
fixed points.

9. Refer to Exercise 8. Give an example of a continuous
function from the closed unit disc {(x, y) : x2 + y2 ≤ 1}
to itself that has two distinct fixed points.

10. Examine the 2-dimensional generalized ham sandwich—
containing only bread and ham—in Figure 16.32. De-
scribe how to find a linear cut that will bisect the ham
and bisect the bread.

11. Let A be the finite set of points exhibited in the left
part of Figure 16.33 and B be the finite set of points
exhibited in the right part of Figure 16.33. Describe
a homeomorphism of the plane to itself that takes the
points of A to the points of B (in a one-to-one, onto
fashion, of course).
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=  Ham =  Bread

Figure 16.32

Figure 16.33



Chapter 17

Sonya Kovalevskaya and the
Mathematics of Mechanics

17.1 The Life of Sonya Kovalevskaya

Sophie Vasilyevna Kovalevskaya (1850–1891) was the middle child in a
family of minor nobility. The family name was Korvin-Krukovsky (“Ko-
valevskaya” was a married name that she adopted later). Her father was,
among other things, an artillery general. Sophie was raised in plush sur-
roundings by a strict governess who expended her efforts to turn little
Sophie into a young lady. Sophie felt ignored in favor of her much-
admired older sister Anyuta and her younger brother, who was of course
the male heir. As a result, she was a nervous child having a withdrawn
personality; these characteristics stuck with her throughout her life. So-
phie was often called “Sonya” by her friends. Modern mathematicians
know her by this name, so that is the name that we shall use in this
discussion.

Sonya was educated by tutors and governesses. The family was well
off and moved in high social circles. Among the esteemed members of
her family’s acquaintance was the author Dostoevsky.

Sonya Korvin-Krukovsky was attracted to mathematics at a very
young age. In her autobiography/diary she wrote

The meaning of these concepts I naturally could
not yet grasp, but they acted on my imagination,
instilling in me a reverence for mathematics as an
exalted and mysterious science which opens up to

387
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its initiates a new world of wonders, inaccessible
to ordinary mortals.

When Sonya’s father retired from the military, he moved the family to
an estate called Palibino near the Lithuanian border. When Sonya was
only 11 years old, it was arranged for the walls of her bedroom to be
papered with pages from Ostrogradski’s lectures on differential and inte-
gral analysis (one explanation was that there was a shortage of wallpaper
at the time). Unlike Sophie Germain, little Sonya found her family to
be most supportive of her quest to master mathematics. She learned
calculus by studying her nursery wallpaper! She also studied her father’s
old calculus notes. Her uncle Peter (Fyodor) spent time talking to her
about mathematics and explaining the subtleties of various abstractions.
Her uncle Vasily, though less well schooled, also made some effort to talk
to little Sonya about squaring the circle and other topics of interest.

The Korvin-Krukovsky family tutor, Y. I. Malevich, mentored Sonya
in her formal study of mathematics. She gives him much credit for her
development, and indeed she wrote

I began to feel an attraction for my mathemat-
ics so intense that I started to neglect my other
studies.

It was when Sonya obtained a copy of Bourdeu’s Algebra, and would
study it late at night after the rest of the family had gone to bed, that her
father began to object to her mathematical avocation. He ran into resis-
tance not only from his daughter but from his acquaintance and neighbor
Professor Tyrtov. Tyrtov presented the Korvin-Krukovsky family with a
copy of his new, recently penned, physics textbook. Immediately Sonya
began to read it. She struggled with the trigonometry in the text, and
found that she had to work out many of the basic ideas from scratch
herself. Tyrtov was impressed that her development of the sine function
was quite similar to the way that the ideas had been developed histor-
ically, since the time of the Greeks. Tyrtov called her “a new Pascal”.
He argued vehemently with Mr. Korvin-Krukovsky that the bright young
girl should be allowed to pursue her matheamatical studies. It was only
several years later that the rather conservative general finally acceded.
At Tyrtov’s insistence, it was agreed that Sonya would be allowed to go
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to St. Petersburg to continue her studies under the tutelage of Professor
Alexander Strannoliusky.

After St. Petersburg, Sonya Kovalvskaya determined to continue her
studies at the university level. The closest universities that were open
to women were in Switzerland. In the late nineteenth century, a Russian
woman could not live apart from her family without the express per-
mission of either her father or her husband. In order that she could go
abroad to pursue a higher education, Sonya in 1868 entered into a “nom-
inal marriage” with Vladimir Kovalevski (note that the man’s name has
the male ending while the woman’s name has a different, feminine, end-
ing). The marriage lasted fifteen years, but it was not a happy one. There
were frequent quarrels and misunderstandings and the tension interfered
greatly with Sonya’s studies.

The Kovalvskis spent the first few months of their marriage in St.
Petersburg. In 1869 Sonya Kovalevskaya traveled to Heidelberg to study
mathematics and science. She was disappointed to learn that women
were not allowed to matriculate at the university. She was eventually al-
lowed to attend lectures on an unofficial basis, but she had to obtain the
express permission of each individual lecturer. Sonya attended courses
for three semesters, and made a strong impression on her professors.
One of her fellow students noted that especially professors Königsberger
(1837–1921) (mathematics) and Kirchhoff (1824–1887) (chemistry) were
“ecstatic over their gifted student and spoke about her as an extraordi-
nary phenomenon.” It may not be out of place here to note that Sonya
was an exceptionally beautiful woman. Her physical attraction no doubt
contributed to her appeal.

In 1871 Sonya Kovalevskaya moved to Berlin to study with Karl
Weierstrass (1815–1897), who had been Königsberger’s teacher. Unfor-
tunately, the university in Berlin simply would not allow her to attend
classes—because she was a woman. It is ironic that this dreadfully un-
fair turn of events worked in Kovalevskaya’s favor; for instead Weierstrass
spent four years tutoring her privately.

By Spring of 1874 Kobalevskaya had completed three papers. One of
these papers was about partial differential equations, one about Abelian
integrals, and one about the rings of Saturn. Weierstrass was quite
impressed by this work and recommended her for a doctorate. In fact
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in 1874 Sonya was granted her doctorate, summa cum laude (but in
absentia), from the University of Göttingen. Sonya Kovalevskaya was
the first woman to receive her doctorate in mathematics.

Unfortunately after that—as we have seen with other talented woman
mathematicians—she was unable to obtain any academic position. Sonya
took this so badly that, for a period of six years, she ceased doing re-
search and would not respond to Weierstrass’s letters. The one job that
she did find was to teach arithmetic to school girls, and she reacted to
this offer bitterly:

I was unfortunately weak in the multiplication ta-
ble.

Sonya and her husband returned home to Palobino to be with her
family. Shortly thereafter, her father died. During this period of sorrow,
Sonya and her husband grew closer. In 1878 they produced a daughter.
During this period, Sonya neglected her work in mathematics and instead
developed her literary skills. She gave some effort to fiction, theater
reviews, and science articles for a newspaper.

From 1880, however, Sonya returned to her mathematics. She began
a study of the refraction of light, and wrote three articles on the sub-
ject. Years later, in 1916, Vito Volterra (1860–1940) discovered that Ko-
valevskaya had made a classical mistake originally due to Gabriel Lamé
(1795–1870)—a scientist on whose work she had based her studies. Her
work still had considerable value because it contained a thoroughgoing
explanation of Weierstrass’s theory of integrating certain partial differ-
ential equations.

In 1883, Sonya’s husband Vladimir (from whom she had been sep-
arated for two years) committed suicide. His business ventures had all
failed and he despaired. Sonya was deeply affected by this tragedy, and
she attempted to deal with the situation by immersing herself in her
mathematics. Gösta Mittag-Leffler (1846–1927), who had himself been
a student of Weierstrass, championed her cause; he obtained for her a
privat docent position in Stockholm.

Before Sonya moved to Sweden, she secretly visited Weierstrass in
Berlin and rekindled her passion for mathematical research. Now that
she was a single mother, she had to arrange to leave her daughter Sofya
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Vladimirovna in the care of friends so that she could pursue her newly
reinvigorated mathematical career in Stockholm.

She began her lectures in Stockholm in 1884, and made such an
impression that she was appointed to an Extraordinary Professorship in
June of that year. After Sonya was sure of her position at the university
in Stockholm, she brought her daughter to Sweden to live with her.

In June of 1889 Sonya Kovalevskaya became the first woman since
Laura Bassi (1711–1778, physics) and Maria Gaetana Agnesi (1718–1799,
mathematics) to hold a chair (in Mechanics) at a European university. It
was during this time that Sonya also co-authored the play The Struggle
for Happiness with her friend Anna Leffler.

During her time in Stockholm, Sonya Kovalevskaya blossomed into a
mathematician of international renown. She conducted the most impor-
tant research of her career. She became an editor of Mittag-Leffler’s new
journal Acta Mathematica (today one of the oldest and most prestigious
mathematics journals). She organized international conferences. Sonya
also had a great interest in literature, and she wrote some rather striking
dramas and reminiscences at this time.

In fact it is not well known that Sonya Kovalevskaya was a talented
writer of fiction and cultural works. Her book Recollections of Child-
hood is but a slight indication of her considerable skills. One appreciator
of Sonya’s writing said, “The Russian and Scandinavian literary crit-
ics have been unanimous in declaring that Sophie Kovalevskaya [Sonya
Kowalevskaya] was the equal of the best writers of Russian literature,
in style as well as in subject matter.” Her early death cut short her
plans for various literary projects. In particular, she had planned to
write “The Razhevski Sisters during the Commune”, a reminiscence of
her trip to Paris in 1871. Kowalewska found writing to be a cathartic
escape from her intense periods of work on mathematics. She wrote in
her memoirs that, “At twelve years old I was thoroughly convinced I was
born a poet.” She also recalls rather fondly her uncle buying math books
for her, and speaking to her about the quadrature of the circle.

In 1886 the prize topic for the Prix Bordin was announced to be sig-
nificant contributions to the study of rigid bodies. Sonya Kovalevskaya
entered her paper Mémoire sur un cas particulier du problème de le rota-
tion d’un corps pesant autour d’un point fixe, ou l’intégration s’effectue
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à l’aide des fonctions ultraelliptiques du temps. Around this time Sonya
also had a torrid affair with Russian lawyer Maxim Kovalevsky (unre-
lated to her late departed husband). It was a rocky relationship, evi-
dently because each was too passionate about his/her work to give it
up for the other. Maxim’s work took him away from Stockholm, and he
wanted her to give up her mathematical career to go with him and be his
wife. Sonya flatly rejected the proposal, but was heartbroken as a result.
She spent the summer in France with Maxim, but ended up falling into
one of her frequent depressions. While in France, she returned to her
writing. She completed work on Recollections of Childhood.

In order to ensure fairness, the fifteen papers submitted for the Bor-
din Prize were submitted anonymously. Each author wrote a quote on
their paper to be used for later identification (see Sonya’s quote at the
end of this article about her life). The judges chose Sonya Kovalevskaya’s
paper without knowing that it was written by a woman. The judges were
so impressed by this work that they increased the prize amount from 3000
to 5000 francs. They were later much surprised to learn that their much-
honored winner was a female. After receiving the prize, Sonya was feted
and celebrated almost without cease. She was immensely happy, and
finally felt that her work was properly appreciated.

In 1889 Sonya Kovalevskaya also won a prize from the Swedish
Academy of Sciences. In the same year, on the recommendation of
Chebychev, she was elected a corresponding member of the Russian Im-
perial Academy of Sciences. In fact the rules were changed to allow for
Kovalevskaya’s election.

Sonya developed a rather strong relationship with Mittag-Leffler dur-
ing these years, and lived in his home for a time. That Kowalewska lived
in Gösta Mittag-Leffler’s home, and that they enjoyed an intense relation-
ship (even though they were not married) is well known. An indication
of the situation is given by Kowalewska herself: “Yesterday was a rough
day for me, for big M [Mittag-Leffler] . . . left in the evening. If he had
stayed here I do not know how I would have been able to work. He is
so tall, so powerfully built, that he manages to take up a great deal of
room, not only on a sofa, but also in my thoughts and I would never
have been able in his presence to think of anything but him.”

Winning the Bordin Prize was a great triumph for Sonya Kovalevskaya.
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She was in Paris, and was honored and invited everywhere. She was in
her glory, and completely happy. Mittag-Leffler came to join her. How-
ever, the good times came abruptly to an end. With her demands and her
tyrannical and jealous love, she expected a great deal of Mittag-Leffler.
She thought that his admiration for her did not measure up to her love
for him. Further, she was unwilling to give up her mathematical career
and become simply the wife of this man whom she so loved and admired.
[Mittag-Leffler was of course married at the time, and the quality of his
life depended on his wife’s fortune.] Thus it was that they frequently
separated; there was much bitterness and vituperation. Unable to live
with him or without him, exhausted, torn by the incessant strife of their
relationship, Kowalewska finally became ill with influenza complicated
by pneumonia and died in 1891. She was at the height of her mathemati-
cal and scientific powers at the time, and enjoying an immense worldwide
reputation. Her last paper, on properties of the potential function of a
homogeneous body, was published right before her death.

Sonya Kovalevskaya’s view of life is perhaps summarized by her re-
markable statement

Say what you know, do what you must, come what
may.

She is remembered today in many ways. She was the first female Ph.D.
and the first female professor anywhere. There is a lunar crater named
after her, and also a minor planet (an asteroid) named after her.

17.2 The Scientific Work of Sonya Kovalevskaya

17.2.1 Partial Differential Equations

Most of Kovalevskaya’s scientific work is too technical to be discussed
in any detail in these pages. We content ourselves with some informal
descriptions of what she accomplished.

Perhaps the most widely cited result of Sonya Kovalevskaya is the
so-called Cauchy-Kovalevskaya theorem in the theory of partial differen-
tial equations. A partial differential equation is an equation involving
a function of several variables and its derivatives. Most of the laws of
nature are formulated in terms of partial differential equations.
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Kovalevskaya studied partial differential equations in which the co-
efficient functions are functions that have convergent power series ex-
pansions (that is to say, the coefficients are functions that can be writ-
ten as infinite sums of powers of x and y). We shall say more about
power series below. Thus—if we let ∂/∂x denote the derivative in the
x-variable (holding the y-variable fixed) and also ∂/∂y the derivative in
the y-variable (holding the x-variable fixed)—it holds that

a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
+ c(x, y)

∂2u

∂x∂y
= f(x, y)

is such an equation, provided that the functions a, b, c, f have convergent
power series expansions. Her theorem is that there exists a solution of
such a differential equation, and that solution will also have a convergent
power series expansion.

The method of majorization that is used to prove the Cauchy-Kovalevskaya
theorem is of wide utility in the mathematical sciences. Also, the result
is frequently cited. It is the only truly general result about solvability in
the entire literature of partial differential equations.

17.2.2 A Few Words About Power Series

We have already mentioned that Sonya Kovalevskaya made powerful con-
tributions to the theory of power series in the context of differential equa-
tions. In fact power series are one of the oldest and most fundamental
ideas in modern mathematics. In the present subsection we shall give a
brief introduction to power series.

A power series is a sum—usually an infinite sum—of powers of x. We
are allowed to put coefficients in front of the powers of x. Thus a power
series is like a “generalized polynomial”—instead of having finitely many
summands it has infinitely many summands.

Power series can be used to generate a vast and rich array of different
functions.

Example 17.1

Consider the series

f(x) =
∞∑

j=0

xj = 1 + x+ x2 + x3 + · · · .
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We learned in Chapter 1 about series of this kind. This is a
geometric series. The terms are all powers of the fixed number x.
Thus we know from Section 2.6 that

f(x) =
1

1 − x .

Notice that this is a new concept. We have added up in-
finitely many monomials—1 and x and x2 and x3 and so forth—
and produced a new function. That new function turns out to
be 1/[1 − x]. Of course the summation process only makes sense
when the series converges, and we learned in Chapter 1 that that
is true precisely when −1 < x < 1. Put in other words, we have
the series representation

1

1 − x = 1 + x+ x2 + x3 + · · · ,

valid for −1 < x < 1.

Example 17.2

Consider the power series

g(x) =
∞∑

j=0

(−1)jx2j+1

(2j + 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+− · · · .

It turns out—this involves advanced ideas that we cannot treat
here— that this series converges for all values of x. And it defines
the function sinx.

You may have encountered the sine function in your earlier
studies. Traditionally, we learn about sine in the context of a
triangle (Figure 17.1).

The sine of the angle x is defined to be the ratio of the height
of the triangle to the hypotenuse. It is a remarkable fact that this
simple geometric quantity can be expressed in terms of a power
series.

It is a deep theorem of mathematical analysis that a power
series can be differentiated termwise. Thus

sinx = x− x3

3!
+
x5

5!
− x7

7!
+− · · ·

so

[sinx]′ = 1− x2

2!
+
x4

4!
− x6

6!
+− · · · .
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x

sin x
1

Figure 17.1

This last power series is known to represent the cosine function.
So power series give us a way to re-discover the important fact
that

[sinx]′ = cos x .

For You to Try: Verify that the function

y(x) =
∞∑

j=0

(−1)j x
2j

(2j)!

is a solution of the differential equation

y′′ + y = 0 .

The power series that Sonya Kovalevskaya considered in her cele-
brated theorem with Cauchy (discussed abover) were power series of two
variables. Such a power series has the form

∞∑

j,k=0

aj,kx
jyk .

A concrete example is

f(x, y) =
∞∑

j,k=0

(−1)j 2
−(j+2k)xjy2k

j!(k!)2
.
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This is a subtle and quite general and flexible way to define new func-
tions. The method of power series is in considerable use today for finding
solutions of differential equations and for solving other physical problems.
Sonya Kovalevskaya was one of the pioneers in this technique.

17.2.3 The Mechanics of a Spinning Gyroscope and the Influence of
Gravity

Kovalevskaya studied the rotations of a rigid body about a fixed point.
The foundational work in the subject was done by Leonhard Euler (1701–
1783). He considered a freely tumbling body without an influence of grav-
ity. He established that angular momentum and energy are conserved.
Euler described the motion of the body by specifying the rotation ma-
trix that changes spatial coordinates into body coordinates. He derived
a set of nine differential equations. Of these nine, three turned out to be
fundamental for the problem:

dx+
c2 − b2

a2
yz dt = 0 ;

dy +
a2 − c2

b2
zx dt = 0 ;

dz +
b2 − a2

c2
xy dt = 0 .

Here the quantities a2, b2, c2 are the moments of inertia of the body
about its principal axes. The variables x, y, z are the coordinates of a
point on the body. Euler considered in detail the motion of a body on
which no external torque is acting and showed that the entries of the
rotation matrix can be expressed as elliptic integrals. He further showed
that these entries reduced to elementary functions if two of the three
principal moments of inertia are equal.

The second case, studied by J. L. Lagrange (1736–1813), considers
a body with the symmetries of a spinning top. In particular, Lagrange
studied the general case of motion of a body having equal moments of
inertia about two of its principal axes. He noted that the center of gravity
lay on the third principal axis provided the external torque acting on the
body resulted purely from gravitational attraction. Lagrange’s analysis is
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the one most commonly seen in the literature; in the nineteenth century
it was referred to as the case of a “heavy body”.

For a long time, the analyses of Euler and of Lagrange were the only
two known situations in which the system was known to be “integrable”,
that is, that key physical constants are preserved.

Another piece of foundational work, which had considerable influence
on Kovalevskaya, was that of Jacobi. For he showed how to integrate
complicated mechanical systems using elliptic functions.

Kovalevskaya found a third system that is completely integrable.
She realized that the general case of the motion of a heavy body about
a fixed point was vastly too complicated for study. So she imposed some
additional conditions. In her case, the moments of inertia of the body
are related in a new and subtle way. Her method of analysis, using very
delicate integrations of hyperelliptic functions, was a tour de force of
mathematical analysis. It won her the Bordin Prize. It is worth quoting
from the judges’ report:

The author has done more than merely adding a
result of very high interest to those bequeathed to
us by Euler and Lagrange; he has made a profound
study of his result in which the resources of the
modern theory of theta functions of two indepen-
dent variables make it possible to give the solution
in the most precise and elegant form. The result
is a new and memorable example of a mechanical
problem involving these transcendental functions,
whose applications had previously been confined
to pure analysis and geometry.

In a later paper Sonya Kovalevskaya studied the profile shape and
equilibrium stability of a single gravitating ring around an attractive
center. This work later proved to be decisive in her study of the rings of
the planet Saturn.

17.2.4 The Rings of Saturn

In spite of some errors in her reasoning, Sonya Kovalevskaya’s analysis
of Saturn’s rings, and of related ideas, turned out to be a foundational
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work of lasting importance. It helped to define the theory of rotating
celestial body potentials. It is useful in the study of rotating fluid mass.
Her method of integrating hyperelliptic functions has been particularly
influential.

The early works by Galileo (1610–1616), Huygens (1655), Cassini
(1675), Kant (1755), Laplace (1789–1798), and Maxwell (1859) set the
stage for Kovalevskaya’s discoveries. Sonya determined that Laplace’s
calculations were only accurate to first order; she was able to produce a
more accurate mathematical model for the rings of Saturn.

In fact Kovalevskaya based her study on Laplace’s work. Like Laplace,
she assumed that the shape of the cross-section of the ring orbiting the
planet was determined by assuming that a thin layer of liquid on the
surface would be in equilibrium. Which is not to say that Kovalevskaya
assumed that the ring was actually a liquid. The hypothesis was a way
of saying that no shear stresses were acting on the ring as a result of
the gravitational attraction of the planet. Laplace had assumed that the
ring had an elliptical cross-section. Kovalevskaya took the cross section
to satisfy the equation

r(θ) = m0 +m1 cos θ +m2 cos 2θ + · · · .

Here θ is the angular variable and θ the radial variable. The hypothesis
of Laplace was that only the first two terms on the right were relevant.
For Kovalevskaya, the higher order terms on the right were significant
correction terms. Using numerical methods—a first for her—she was
able to calculate the m2 term and get a much more accurate idea of the
shape of the ring.

17.2.5 The Lamé Equations

Right before her death, in collaboration with her teacher Weierstrass,
Kovalevskaya studied Lamé’s differential equations for the propagation
of a wave in a solid medium. She rejected Lamé’s unrealistic physi-
cal model for the problem, and succeeded in finding a solution for her
more physically realistic model. Weierstrass was unwell at the time and
delayed publication of the paper. He ultimately consented to the ap-
pearance of the work in Acta Mathematica, just so long as there were
quotation marks around the portion of the work that was due to him.
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The paper was held in very high esteem at the time of its publication.
Later, Vito Volterra (1860–1940) endeavored to apply the mathematical
model to a physical problem. He discovered errors, and was forced to
publish a retraction to the Kovalevskaya paper in the same issue of Acta
that contained an obituary of Kovalevskaya.

17.2.6 Bruns’s Theorem

E. H. Bruns (1848–1919) was famous for having proved that the dif-
ferential equations governing the three-body problem (e.g., the problem
of analyzing the motion of the sun, the earth, and the earth’s moon)
have a ten-dimensional space of algebraic integrals. He also proved that
the potential of a body bounded by a surface given by a power series is
itself given by a power series at each regular point of the surface. Ko-
valevskaya was able to give a new derivation of these facts using the
Cauchy-Kovalevskaya theorem. This is an impressive application of her
earlier work.

17.3 Afterward on Sonya Kovalevskaya

Sonya Kovalevskaya is remembered as the first female Ph.D. and the first
female professor since the Renaissance. She not only fought formidable
social strictures against women in order to achieve her scientific goals; she
also expended considerable effort to help other women. Mittag-Leffler,
her friend, supporter, and confidante, remembers her as follows:

. . . it is perhaps neither as a mathematician nor
writer that one should properly appreciate or judge
this woman of so much spirit and originality. As
a person she was even more remarkable than one
would judge from her works. All those who knew
her and were near to hear, to whatever circle or
part of the world they belonged, will remain for-
ever under the lively and powerful impression which
her personality produced.

Mittag-Leffler’s house in Djurshom, Sweden lives on today in the
mathematical community as the Mittag-Leffler Institute. It is a home
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for visiting mathematicians and a locale for mathematics conferences
and gatherings. The house is much as Mittag-Leffler left it: his books
are still on the shelves, his correspondence still out in the open in his
files, his scrapbooks still available for perusal, and his many boxes of
personal photographs sit out in the library on the first floor. Among the
personal photographs are dozens of picturs of Sonya Kovalevskaya—at
parties, dressed in constumes, interacting with the family. She was a
lovely person, and is remembered fondly for the many contributions she
made during her short life.

Exercises

1. Consider the power series

1 + x2 + x4 + x6 + · · · .

For which x does the series converge? Can you write a
closed form expression for the function defined by this
series?

2. If

sinx = x− x3

3!
+
x5

5!
− x7

7!
+− · · ·

and

cosx = 1 − x2

2!
+
x4

4!
− x6

6!
+− · · · ,

then can you write a power series expression for tan x =
sin x/ cos x? [Hint: Use long division. Discuss this prob-
lem in class.]

3. Use the power series expansions for sine and cosine that
we discussed in Exercise 2 to verify the formula

sin2 x+ cos2 x = 1 .

4. Use the power series expansions for sine and cosine that
we discussed in Exercise 2 to verify the formula

sin 2x = 2 sin x cosx .
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5. It is a fact—which we cannot derive here—that

log(1 + x) = x− x2

2!
+
x3

3!
− x4

3!
+− · · · .

Use this power series expansion to obtain an approxi-
mation to the value of log 1.5. Use a calculator if you
need to (but do not push the logarithm button!).

5. It is a fact—which we cannot derive here—that

(1+x)a = 1+ax+
a(a− 1)

2!
x2+

a(a− 1)(a− 2)

3!
x3+· · · .

This is Newton’s generalized binomial theorem. Use this
formula to derive an approximate value for

√
2 (but do

not push the square root button on your calculator!).

6. One of the great classical problems of classical mechan-
ics (that was solved by Bernoulli and Newton) was the
so-called brachistochrone. This is the question of, given
two points A and B in space, to determine the curve
connecting them down which a bead will slide the fastest.
See Figure 17.2. The solution turns out to be the famous
cycloid curve. This last assertion was proved by Isaac
Newton, who read the problem as posed by Bernoulli in
a periodical. Newton had just come home from a long
day at the British Mint (where he worked after he gave
up his scientific work). He solved the problem in a few
hours, and submitted his solution anonymously. But
Bernoulli said he knew it was Newton; he “recognized
the lion by his claw.”

What is a cycloid curve? Take a disc and put a spot
on the edge of it. Now roll the disc. The curve traced
by the spot is a cycloid. See Figure 17.3. Use some
trigonometry to write the parametric equations x =
ϕ(t), y = ψ(t) of a cycloid curve.

7. Refer to Exercise 6. It turns out that the brachis-
tochrone curve is also the tautochrone. That is a curve
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Figure 17.2

Figure 17.3
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Figure 17.4

(if one exists!) with the property that, no matter at
what point a bead is released, it will reach the bottom
of the curve in the same time. See Figure 17.4.

Explain in physical language why a straight curve will
not satisfy this property. The technical language for
your answer could be in terms of potential and kinetic
energy. But an intuitive answer will suffice.

8. Suppose that you swing a weight on the end of a string.
See Figure 17.5.

At some moment you release the string, and the weight
flys off. Explain in what direction, and along what sort
of path, the weight will travel? What will be its initial
velocity upon its release?

9. Suppose that you shoot an arrow into the air—Figure
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Figure 17.5

17.6. What will be shape of the path? Discuss this
question in class. Perform some experiments. This is a
curve that you know!

10. Suppose that you suspend a heavy chain from two points.
What shape will the chain assume? The answer is a
catenary. See Figure 17.7. Read about the catenary on
the Web site

http://mathworld.wolfram.com/Catenary.html

Huygens (1629–1695) was the first to discuss the catenary—
in correspondence with Leibniz (1646–1716). If you roll
a parabola along a straight line, its focus traces out a
catenary. See Figure 17.8. Try this last experiment
yourself to generate the curve.
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Figure 17.6

Figure 17.7
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Figure 17.8
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Chapter 18

Emmy Noether and the Birth of
Modern Algebra

18.1 The Life of Emmy Noether

Emmy Amalie Noether (1882–1935) was the daughter of Max Noether, a
distinguished German mathematician and professor at Erlangen. Emmy’s
mother was Ida Kaufmann, scion of a wealthy Cologne family. The fam-
ily was Jewish, and Emmy had three male siblings. Her brother Fritz
also made a career as a mathematician. The other two brothers died in
childhood.

Emmy Noether attended school in Erlangen, where she studied En-
glish, French, and arithmetic. She also took piano lessons. She took
particular pleasure in dancing, and loved to attend parties with other
university children. Her aim during her school days was to be a lan-
guage teacher. Indeed, she ultimately took the examinations of the State
of Bavaria and, in 1900, became a certified teacher of English and French
for Bavarian girls’ schools.

Emmy Noether never actually became a language teacher. She in-
stead decided on an unusual and difficult course for a woman of her
day: She decided to study university mathematics. In those days (the
early twentieth century), women were allowed to attend the university
unofficially. Professors had to give individual permission, on a case-by-
case basis, for women to attend their courses. [We have seen similar
phenomena in the context of Kobalevsky’s life.]

Emmy Noether attended courses at the University of Erlangen from
1900 to 1902. She passed the matriculation examination in Nürnberg

409
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in 1903 (she was allowed to matriculate in 1904), and then went on to
the University of Göttingen—the premiere German institution for the
study of mathematics since the time of Gauss. In the period 1903–1904,
Emmy attended lectures in Göttingen by Blumenthal, Hilbert, Klein,
and Minkowski. In 1907 Emmy Noether earned her doctorate under
the direction of Paul Gordan. In her thesis she studied constructive
approaches to the Hilbert basis theorem.

The ordinary career path for a man in Emmy Noether’s position in
1907 would have been the Habilitation (which is a sort of apprenticeship
under a full Professor, resulting in a second thesis). But this course was
denied to a woman. So Emmy stayed in Erlangen assisting her father;
because of his physical disabilities, Max Noether was grateful for her aid.
But Emmy Noether was never paid for her work. Emmy continued to
work on her own research, and was influenced by Professor Fischer, who
was Paul Gordan’s successor since 1911. Fischer succeeded in weaning
Emmy away from Gordan’s constructive approach to algebraic invari-
ants, and instead instilled in her an appreciation for the new abstract
approach.

When Emmy Noether’s papers began to appear, her mathematical
reputation was quickly established. In 1908 she was elected to the Circolo
Mathematico di Palermo, and in 1909 she was invited to membership of
the Deutsche Mathematiker-Vereinigung. Also in 1909 she was invited
to address the annual meeting of the Scientific Society in Salzburg. In
1913 she gave an invited lecture in Vienna.

A real triumph for Emmy Noether was that, in 1915, David Hilbert
and Felix Klein (1849–1925) invited her to return to Göttingen. They
were working on developing some of Einstein’s ideas, and felt that Noether’s
expertise in invariant theory would be valuable for their research pro-
gram. Ultimately, her ideas about symmetry and conservation laws
proved to be of seminal importance in the subject of relativity.

Hilbert and Klein convinced Noether to stay in Göttingen while they
battled to have her officially on the faculty (for in those days women
were not allowed). As late as 1919, Hilbert was arguing for Emmy’s
qualifications as a faculty member in Göttingen. His strongest opponents
were the philologists and the historians. At one point he addressed the
council of the university with these words: “I do not see why the sex
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of the candidate should be an argument against her appointment as
Privatdozent; after all, we are not a bath-house . . . ”

Finally in 1919 Emmy Noether was allowed to obtain her Habilitation
at the University of Göttingen. In the interim, Hilbert had allowed
Emmy to lecture by advertising her courses under his own name. A
typical example of Hilbert’s subterfuge was a course that appeared in
the 1916–1917 university catalog for the Winter semester as

Mathematical Physics Seminar: Professor Hilbert,
with the assistance of Dr. E. Noether, Mondays
from 4:00 to 6:00, no tuition.

Eventually, Emmy Noether was granted permission to offer courses
under her own name in Göttingen. At first she was not paid for her
work, but at least she gained the recognition that her accomplishments
merited. After several years, because of the efforts of Hilbert and Klein
on her behalf, she finally received a small stipend.

Emmy Noether had quite a following among the students in Göttingen.
Indeed, her crowd of acolytes became known as “Noether’s boys”. They
traveled from as far away as Russia to study with her. Emmy was a warm
and caring person who, unlike most German professors, was willing to
listen to students’ personal problems as well as their mathematical prob-
lems. She considered her students to be like her family, and treated them
accordingly. She was particularly good at planting ideas in the minds of
her eager young followers, and she produced a number of excellent Ph.D.
students, among them Ernst Witt.

The first piece of scientific work that Emmy Noether produced in
Göttingen was a paper in 1915 that proved a relationship between sym-
metries in physics and certain conservation principles. Einstein himself
praised this result, and in a letter to Hilbert spoke of Noether’s “penetrat-
ing mathematical thinking”. Apparently Emmy’s expertise in invariants
led her to formulate several important concepts for Einstein’s general
theory of relativity.

After 1919, Emmy Noether spent her time in Göttingen working on
ring theory, particularly the theory of ideals in rings. She developed an
abstract set of ideas that helped to make ring theory into a cornerstone
of modern algebra. The “ascending chain” condition that she formu-
lated has led to certain rings being called Noetherian rings. Her paper
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Idealtheorie in Ringbereichen, which appeared in 1921, gave a decompo-
sition theorem for ideals that has proved influential to this day.

In 1924, the Dutch mathematician B. L. van der Waerden came to
Göttingen to study with Noether. When he returned to Amsterdam
he wrote his seminal two-volume book Moderne Algebra. This book has
become one of the cornerstones of modern algebra, and is still used today.
The second volume of that important work is based on ideas of Emmy
Noether.

Emmy Noether had important collaborations with Helmut Hasse and
Richard Brauer. She had considerable influence on her students and
colleagues. Indeed, many of her important ideas appear in the work of
others, without any attribution to her.

Emmy Noether was invited to address the International Congress of
Mathematicians, both in 1928 and 1932. In 1932 she received, jointly
with Emil Artin, the Alfred Ackermann-Teubner Memorial Prize for the
Advancement of Mathematical Knowledge. In 1930 she was a visiting
Professor both at the University of Moscow and the University of Frank-
furt.

In 1933 the Nazis dismissed Emmy Noether from her post in Göttingen—
just because she was Jewish. Her brother Fritz, who was also a professor
at the time, moved to Siberia. Emmy could have moved to Moscow, but
she decided to move to the United States. She was able to land a visiting
faculty position at Bryn Mawr College outside Philadelphia, and she also
spent time at the Institute for Advanced Study in Princeton.

Teaching at a women’s college like Bryn Mawr was a new experi-
ence for Emmy Noether. For the first time she had colleagues who were
women. The Head of the Mathematics Department at the time was Anna
Pell Wheeler. She became a great friend of Emmy’s. Wheeler had full
knowledge, and truly understood, the struggles of a woman mathemati-
cian in the German system. She also empathized with the difficulties
of being uprooted from her homeland. Even in her new environment at
Bryn Mawr, Emmy Noether was a caring and compassionate teacher.
Sometimes, when she had trouble getting her ideas across, she would
lapse into German. But the students loved her.

Emmy Noether died young, of complications from uterine cancer.
Only her good friend Anna Wheeler knew of the illness. Noether’s ashes
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are buried near Bryn Mawr’s library. She is memorialized by a coeduca-
tional high school in mathematics that is named after her.

Emmy Noether is remembered glowingly both for her deep mathe-
matical insights and for her inspiring work with students and colleagues.
She was particularly, and almost uniquely, comfortable with abstraction
in algebra. Hermann Weyl said, in his Memorial Address:

Her significance for algebra cannot be read en-
tirely from her own papers, she had great stimu-
lating power and many of her suggestions took
shape only in the works of her pupils and co-
workers.

B. L. van der Waerden wrote

For Emmy Noether, relationships among numbers,
functions, and operations became transparent, amenable
to generalisation, and productive only after they
have been dissociated from any particular objects
and have been reduced to general conceptual re-
lationships.

18.2 Emmy Noether and Abstract Algebra: Groups

The most basic algebraic structure is the group. A group is a collection
of objects (i.e., a set) equipped with a binary operation that we usually
think of as addition (denoted +) or multiplication (denoted ·). We
require these properties of the operation:

(1) The operation is associative: x · (y · z) = (x · y) · z (or
x+ (y + z) = (x+ y) + z) for all x, y, z in the group.

(2) There is a multiplicative/additive identity element e (or
0) which satisfies e ·x = x · e = x (or 0+x = x+0 = x)
for every element x in the group.

(3) For each element x in the group there is a multiplica-
tive/additive inverse x−1 (or−x) which satisfies x·x−1 =
x−1 · x = e (or x+ (−x) = (−x) + x = 0).
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An essential point here is that when we combine two group elements
using the binary operation then the result is also a group element. This
property is called closure of the group under the binary operation.

We usually denote a group with the symbol G. As already noted,
the binary operation is denoted either by + (in case the group is com-
mutative) or ·. The examples below will make this notation clear.

Groups were first invented by Evariste Galois (1811–1832) and Au-
gustin Cauchy (1789–1857), but it was Noether and others who later
developed the subject of group theory into full bloom.

An abstract concept like “group” is best understood by way of ex-
amples. We now provide several.

Example 18.1

Let G be the set Z of all integers and let the binary operation
be ordinary arithmetic addition, denoted by +. Certainly, as
we know from our past experience, addition is associative. The
additive identity is the number 0. For if x ∈ G is any integer then
x+ 0 = 0 + x = x.

Finally, if x is any element of this group then−x is its additive
inverse. That is to say, x+ (−x) = (−x) + x = 0. For example,
the number 5 is in our group. Its additive inverse is −5. Likewise,
the number −3 is in our group. Its additive inverse is 3.

Example 18.2

Let G be the collection of all positive rational numbers. Let the
binary operation be multiplication, denoted by ·. Certainly mul-
tiplication is associative, so we shall say no more about that prop-
erty. The multiplicative identity is the number 1. That is to say,
if x ∈ G then 1 · x = x · 1 = x.

Finally, if x is any element of this group then 1/x (the recip-
rocal) is the multiplicative inverse. That is to say, x · (1/x) =
(1/x) · x = 1. For example, the number 3/4 is in our group. Its
multiplicative inverse is 4/3. Likewise, the number 11/3 is in our
group. Its multiplicative inverse is 3/11.

Example 18.3

Let G be the collection of positive integers and let the binary op-
eration be multiplication. Certainly this operation is associative.
And the multiplicative identity is 1. However, this G is not a
group. For example, the number 7 ∈ G does not have a multi-
plicative inverse (it ought to be 1/7, but the number 1/7 does not
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lie in G).

Example 18.4

Consider the collection of 2 × 2 matrices. These are displays of
the form

M =

(
a b
c d

)
.

A matrix is said to be non-singular if ad−bc 6= 0. We will consider
how to make the collection of non-singular 2 × 2 matrices into a
group.

First, we multiply two such matrices

(
a b
c d

)
·
(
a′ b′

c′ d′

)
.

by the following rule. The upper left entry of the product is
obtained from the componentwise products of the elements of the
first row in the first matrix and the first column in the second
matrix:

product =



aa′ + bc′ *

* *


 .

The upper right entry of the product is obtained from the com-
ponentwise products of the elements of the first row in the first
matrix and the second column in the second matrix:

product =

(
* ab′ + bd′

* *

)
.

The lower left entry of the product is obtained from the compo-
nentwise products of the elements of the second row in the first
matrix and the first column in the second matrix:

product =

(
* *

ca′ + dc′ *

)
.

Finally, the lower right entry of the product is obtained from the
componentwise products of the elements of the second row in the
first matrix and the second row in the second matrix:

product =

(
* *
* cb′ + dd′

)
.
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As an example of matrix multiplication, we have

(
3 −5
−2 1

)
·
(
−4 6
5 9

)
=




3 · (−4) + (−5) · 5 3 · 6 + (−5) · 9

(−2) · (−4) + 1 · 5 (−2) · 6 + 1 · 9


 =

(
−37 −27
13 −3

)
.

Thus we have a binary operation. It is associative, as can be
checked by a tedious calculation. The multiplicative identity is
the matrix

I =

(
1 0
0 1

)
.

In fact, for any matrix

M =

(
a b
c d

)

we have

I ·M =

(
1 0
0 1

)
·
(
a b
c d

)

=




1 · a+ 0 · c 1 · b+ 0 · d

0 · a+ 1 · c 0 · b+ 1 · d




=

(
a b
c d

)

=M .

The issue of multiplicative inverse is a bit more complex. If

M =

(
a b
c d

)

is a 2× 2 matrix such that D = ad− bc 6= 0 then we set

M−1 =

(
d/D −b/D
−c/D a/D

)
.

Notice that

(d/D) · (a/D) − (−c/D) · (−b/D) = [ad− bc]/D 6= 0 .
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So the new matrix M−1 is still an element of the group. Further-
more, we invite the reader to check by hand that

M ·M−1 = M−1 ·M = I .

So, indeed, M−1 is a multiplicative inverse.

There are infinitely many examples of groups. An interesting feature
of the last example (the 2 × 2 matrices) is that it is not commutative.
That is to say, M ·N 6= N ·M in general.

What is important about an abstract structure like “group” is that
we can deal with all groups at once and therefore simultaneously establish
properties for many different collections of objects. We now provide just
one simple example:

Proposition 18.1

If G is a group and x, y ∈ G then

(xy)−1 = y−1 · x−1 .

PROOF What we are claiming is that the multiplicative inverse of xy is given
by y−1x−1. We may verify this claim directly:

(y−1x−1) · (xy) = y−1 · [x−1 · (xy)]
= y−1 · [(x−1 · x] · y]
= y−1 · [e · y]
= y−1 · y
= e ,

just as was claimed. Notice that, in the first two equalities, we used the associative
property of group multiplication. In the next equality we used the definition of
multiplicative inverse. In the next we used the defining property of the multiplicative
identity. And in the last we used the definition of multiplicative inverse.

We leave it to the reader to check that (xy) · (y−1x−1) = e.
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18.3 Emmy Noether and Abstract Algebra: Rings

While Emmy Noether made contributions to all parts of modern algebra,
she is particularly remembered for her ideas about ring theory. In the
present section we shall discuss rings and give a number of examples.

A ring is a collection of objects (a set) with two binary operations:
addition and multiplication. We require that the operation of addition
induce a commutative group. Of course we require that the ring be
closed under addition and multiplication. We require that multiplication
be associative. Finally, we require that there be a distributive law:

x · (y + z) = x · y + x · z .

Rather than engage in extensive discussion of the formalities of the def-
inition of a ring, we instead concentrate on some examples.

Example 18.5

Consider R the set of all integers. The addition operation will be
the usual arithmetic notion of addition, and likewise the multipli-
cation operation will be the usual arithmetic operation of multi-
plication.

Certainly, as we have already noted in Example 18.1, the
integers form a group under addition. Obviously multiplication
is associative. And we have the distributive law

x · (y + z) = x · y + x · z .
Thus R is a ring.

Example 18.6

Consider R the set of all polynomials with real number coeffi-
cients. Such a polynomial has the form

p(x) = a0 + a1x+ a2x
2 + · · ·+ akx

k .

Each coefficient aj here is a real number.
The addition operation is the ordinary algebraic notion of

addition of polynomials. For example,

(3− 2x+ x2) + (5 + 6x2 + 9x3) = 8 − 2x + 7x2 + 9x3 .

The multiplication operation is the ordinary algebraic operation
of multiplication of polynomials. For example,

(3 − 2x+ x2) · (5 + 6x2 + 9x3) = 9x5 − 12x4 + 15x3 + 23x2 − 10x + 15 .
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Clearly R is closed under these two operations. The distributive
law holds. Thus R is a ring.

Example 18.7

Consider R the set of all 2× 2 matrices with real number entries.
The addition operation is ordinary componentwise addition of
matrices: (

a b
c d

)
+

(
a′ b′

c′ d′

)
=

(
a+ a′ b+ b′

c+ c′ d+ d′

)
.

The multiplication operation is just as we defined it in Example
18.4. Then R forms a ring.

18.3.1 The Idea of an Ideal

Emmy Noether was particularly noted for her contributions to the theory
of ideals. Let us say a few words about what an ideal is and how we can
recognize an ideal.

Let R be a ring. An ideal is the collection of elements in R obtained
by taking a subcollection L ⊆ R and considering all expressions of the
form

a1`1 + a2`2 + · · ·+ ak`k ,

where the `j are elements of L and the aj are arbitrary elements of R.
It is clear that an ideal is closed under addition and multiplication. It
is also closed under multiplication on the left by any element of R. We
call L the generating set for the ideal. We will frequently denote an ideal
with the letter I.

Example 18.8

Let R be the ring of all polynomials in the variable x, with coeffi-
cients taken from the real numbers. Then the set of all multiples
of x2 forms an ideal I.

Observe that this ideal may be described as the set of all
polynomials with no constant term and no linear term. In other
words, it is the set of all polynomials of the form

p(x) = a2x
2 + a3x

3 + · · ·+ akx
k .

This set I is obviously closed under addition and multiplication.
It is also clear that if p ∈ I and r ∈ R then r ·p ∈ I. For example,
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let p(x) = x2− x3 + 4x4 and r(x) = 3 + 5x− x2. Then p ∈ I and
r is an arbitrary element of R. Thus

p(x) · r(x) = 3x2 + 2x3 + 6x4 + 21x5 − 4x6 .

Clearly this product is an element of I.

Example 18.9

Let R be the ring of all integers. Let I be the ideal generated by
L = {6, 15}. Then the ideal consists of all integers of the form

m = 6 · a+ 15 · b ,

where a and b are integers.
We notice that 3 divides both 6 and 15. More importantly, 3

is the greatest common divisor of 6 and 15, so we may express 3
in terms of 6 and 15:

3 = 1 · 15 + (−2) · 6 .

Thus 3 ∈ I. So in fact the ideal may be described more elegantly
as the one that is generated by L̃ = {3}.

For You to Try: The ring of integers is an important example
of what is known as a principal ideal domain. This means that each
ideal in Z is generated by just one element. As an exercise, the reader
should determine the single generator for the ideal generated by the set
L = {14, 21, 35}.

Example 18.10

Let R be the set of polynomials in the two variables x, y with real
variable coefficients. Consider the ideal I generated by {x, y}.
This is simply the set of polynomials of the form

p(x, y) = a10x+ a01y + a11xy + a21x
2y + a12xy

2 + · · ·+ amnx
myn .

In other words, it is the set of polynomials with no constant term.
It is clear that I is closed under addition and multiplication.

It is also obvious that if p ∈ I and r ∈ R then r · p ∈ I. But
notice that there is no single polynomial that will generate the
entire ideal I. It requires a minimum of two elements (such as x
and y) to generate I. Thus I is not a principal ideal domain.
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The set of ideals in a ring tell us a great deal about the structure of
that ring. The subject of algebraic geometry, which concerns itself with
the zero sets of polynomials, is studied today largely with an algebraic
language. That language centers about rings and ideals.

Exercises

1. Consider the set of all 2×2 matrices with integer entries.
Verify that this set forms a group under matrix addition.

2. Consider the set of all 2×2 matrices with integer entries.
Verify that this set does not form a group under matrix
multiplication. Which group property fails? Discuss
this problem in class.

3. Consider the set of all 2×2 matrices with integer entries.
We learned in Exercise 2 that this set does not form
a group under matrix multiplication. But now restrict
attention to those matrices which are nonsingular. Does
this help? Now you can form the multiplicative inverse
of any matrix. But something new goes wrong. What
is it?

4. Refer to Exercise 3. Consider now the set of all 2×2 ma-
trices with rational number entries and which are non-
singular. This does form a group under multiplication.
Discuss this matter in class, and verify the assertion.

5. Consider the set of all 3 × 3 matrices of the form




1 x z
0 1 y
0 0 1


 ,

where x, y, and z are real numbers. Verify that this set
is a group under multiplication.
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6. Consider the ring of all 2 × 2 matrices with real coeffi-
cients. Verify that the set of all matrices of the form

(
0 x
0 0

)

does not form an ideal. What goes wrong? Which prop-
erty fails?

7. Consider the ring of all 2 × 2 matrices with integer co-
efficients. Verify that the set of all matrices of the form

(
2m 2n
2k 2`

)
,

for m,n, k, ` integers, forms an ideal.

8. The collection of all polynomials with real coefficients
in the single variable x forms a principal ideal domain.
To illustrate this point, find the single generator for the
ideal generated by x+ 1, x2− 4, and x3 + x. This ideal
is special. Why is that?

9. Consider the ideal of all integers that are divisible by
both 2 and 3. Why is this an ideal? What single number
will generate this ideal? Is the generator unique? Can
you find more than one generator?



Chapter 19

Methods of Proof

Part and parcel of the modern method of doing mathematics is proofs.
It is quite amazing, really, because proofs are quite foreign to everyday
discourse. Listen to politicians bickering, or to religious fanatics arguing,
or even to discussions in your own family. There is more emotion and
less reason than any of us would like to admit.

Mathematics is different. The entire subject hinges on logic. We
cannot begin any discussion without first defining our terms. After we
define the terms then we set up certain rules or “axioms”. After that, we
prove that certain relations or facts are true. This is how the discourse of
mathematics proceeds. It is a rigorous discipline, and one that is rock-
solid in its reliability and reproducibility. Throughout this book we have
used proofs to establish the various mathematical truths that we have
studied.

It is a fairly recent development—from the past two hundred years—
that generally accepted methods for mathematical proof have been es-
tablished. And the methodology and language for writing those proofs
down has been rigorized and made stable and generally accepted. A
mathematical proof generated in France today will be just like a math-
ematical proof created in Japan or Italy or in the United States. This
common language makes mathematics an international language, and a
unifying enterprise for all peoples.

In fact it was the Pythagoreans, in the time of ancience Greece, who
first insisted on the role of rigorous proof in mathematics. Prior to their
time, mathematical assertions were “established” by way of plausibility
arguments and examples and pictures. Euclidean geometry—with its

423
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axiomatic system, strict format for statements of theorems, and highly
structured proofs—developed this important idea and created a template
for how modern mathematics is studied. Euclid was the father of the
axiomatic method and the systematic use of rigorous proof that follows
a strict paradigm of formal logic.

In modern times—beginning in the seventeenth century let us say—
the tradition of establishing mathematical facts by way of rigorous proof
lived on. But there was little agreement on what constituted a rigorous
proof, and there was no established format or mechanism for recording
proofs.

At the beginning of the twentieth century it is safe to say that the
heartbeat of mathematics was in France and Germany. In each of these
countries, movements began to put mathematics on a more rigorous foot-
ing. In Germany, David Hilbert and his school observed that Euclidean
geometry, number theory, and other parts of mathematics were a chaotic
mish-mash: it was difficult to sort out the assumptions from the theo-
rems. In France, under the guidance of André Weil and others, a different
sort of movement arose.

In the mid-1930’s, a cabal of French mathematicians was formed
with the purpose of writing definitive texts in the basic subject areas of
mathematics. They ultimately decided to publish their books under the
nom de plume Nicolas Bourbaki. In fact the inspiration for their name
was an obscure French general named Charles Denis Sauter Bourbaki.
This general, so it is told, was once offered the chance to be King of
Greece but (for unknown reasons) he declined the honor. Later, after
suffering an embarrassing retreat in the Franco-Prussian War, Bourbaki
tried to shoot himself in the head—but he missed. He was quite the
buffoon, and the authors of these mathematical texts decided that he
was the perfect foil for their purposes.

In fact the founding mathematicians in this group—André Weil (1906–
1998), Jean Dieudonné (1906–1992), Jean Delsarte (1903–1968), Henri
Cartan (1904– ), Claude Chevalley (1909–1984), and some others—
came from the tradition of the École Normale Supérieure. This is perhaps
the most elite university in all of France, but it also has a long-standing
tradition of practical joking. Weil himself tells of one particularly delight-
ful story. In 1916, Paul Painlevé (1863–1933) was a young and extremely
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brilliant Professor at the Sorbonne. He was also an examiner for admis-
sion to the École Normale Supérieure. Each candidate for admission had
to undergo a rigorous oral exam, and Painlevé was on the committee. So
the candidates came early in the morning and stood around the hall out-
side the examination room awaiting their turn. On one particular day,
some of the more advanced students of the École began to chat with the
novices. They told the youngsters about the fine tradition of practical
joking at the school. They said that one of the standard hoaxes was that
some student would impersonate an examiner, and then ridicule and hu-
miliate the student being examined. The students should be forewarned.

Armed with this information, one of the students went in to take
the exam. He sat down before the extremely youthful-looking Painlevé
and blurted out, “You can’t put this over on me!” Painlevé, bewildered,
replied, “What do you mean? What are you talking about?” So the
candidate smirked and said, “Oh, I know the whole story, I understand
the joke perfectly, you are an impostor.” The student sat back with his
arms folded and waited for a reply. And Painlevé said, “I’m Professor
Painlevé, I’m the examiner, . . . ”

Things went from bad to worse. Finally Painlevé had to go ask the
Director of the École Normale to come in and vouch for him.

When André Weil used to tell this story, he would virtually collapse
in hysterics.

In any event, we have Hilbert and Bourbaki to thank for our modern
notion of mathematical rigor, and for the modern paradigm of what a
proof should be. Today there is little doubt of what constitutes a cor-
rect mathematical proof, or what are the proper modes of mathematical
discourse.

In the present chapter we shall become acquainted with some of the
most standard methods of mathematical proof. Along the way, we shall
learn a number of interesting mathematical facts and some important
mathematical techniques.
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19.1 Axiomatics

19.1.1 Undefinables

The basic elements of mathematics are “undefinables”. Since every new
piece of terminology is defined in terms of old pieces of terminology, we
must begin with certain terms that have no definition. Most commonly,
the terms “set” and “element of” are taken to be undefinables. We
simply say that a set S is a collection of objects and x is an element of S
if it is one of those objects. We denote a set with a capital roman letter
like S or T or U and we write x ∈ S to mean that x is an element of S.

19.1.2 Definitions

From this beginning, we formulate more complex definitions. For exam-
ple, if A and B are sets, then we can define A×B to be all ordered pairs
(a, b) such that a ∈ A and b ∈ B. Of course, this presupposes that we
have defined ∈ (“element of”) and “ordered pair.” Then we can define
a function from A to B to be a certain type of subset of A×B. And so
forth.

19.1.3 Axioms

Once a collection of definitions is put in place, then we can formulate ax-
ioms. An axiom is a statement whose truth we take as given. The axiom
uses terminology that consists of undefinables plus terms introduced in
the definitions. An axiom usually has a subject, a verb, and an object.
For example, a famous axiom from Euclidean geometry1 says

For each line ` and each point P that does not lie
on ` there is a unique line `′ through P such that
`′ is parallel to `.

Figure 19.1 illustrates this postulate (the famous Parallel Postulate, in
Playfair’s formulation) of classical geometry.

1This axiom is known as the “Parallel Postulate”, and was the subject of intense

study for over 2000 years. We discussed the Parallel Postulate in Chapter 1.
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P

l

l

Figure 19.1

Following the spirit of Occam’s Razor,2 we generally endeavor to
have as few axioms as possible. Euclidean geometry has just five axioms.
Group theory has three axioms, and field theory has eleven axioms. The
natural numbers have five axioms. There are eight axioms for the real
numbers.

19.1.4 Theorems, ModusPonendoPonens, and
ModusTollens

Next, we begin to formulate theorems. A theorem is a statement that
we derive from the axioms using rules of logic. There is really only one
fundamental rule of logic, and it is this:

modus ponendo ponens:

If A and (A ⇒ B), then B.

Although the terminology is less frequently encountered in the liter-
ature, some books refer to a rule called modus tollens. It is the contra-
positive form of modus ponendo ponens:

2This is an old tenet of philosophy posited in the fourteenth century (by William of
Occam (1288 C.E.–1348 C.E.)). It asserts that we should work with as few definitions

and hypotheses as possible.
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modus tollens:

If B and (∼ A⇒∼ B), then A.

Even though there is only one rule of logic, there are several different
proof strategies. The purpose of this chapter is to enunciate, discuss, and
illustrate some of the most prominent and useful of these.

19.2 Proof by Induction

The word “induction” is used in ordinary parlance to describe any method
of inference. In mathematics it has a very specific meaning, which is
summarized as follows.

19.2.1 Mathematical Induction

Mathematical Induction: For each n ∈ N, let
P (n) be a statement. If

(1) P (1) is true;

(2) P (j)⇒ P (j+1) for every natural number j;

then P (n) is true for every n.

The method of induction is best understood by way of several examples.

19.2.2 Examples of Inductive Proof

Example 19.1

Prove that, if n is a positive integer, then

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

Proof: Let P (n) be the statement

P(n): 1 + 2 + · · ·+ n =
n(n+ 1)

2
.
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Then P (1) is the simple equation

1 =
1 · 2
2
.

This is certainly true, so we have established step (1) of the in-
duction process.

The second step is the more subtle. We assume P (j), which
is

1 + 2 + · · ·+ j =
j(j + 1)

2
, (∗j)

and we use it to prove P (j + 1), which is

1 + 2 + · · ·+ (j + 1) =
(j + 1)(j + 2)

2
. (∗j+1)

To accomplish this goal, we add the quantity (j + 1) to both
sides of (∗j). Thus we have

[1 + 2 + · · ·+ j] + (j + 1) =
j(j + 1)

2
+ (j + 1). (†)

The righthand side can be simplified as follows:

j(j + 1)

2
+ (j + 1) =

j2 + j + (2j + 2)

2

=
j2 + 3j + 2

2
=

(j + 1)(j + 2)

2
.

As a result of this calculation, we may rewrite (†) as

1 + 2 + · · ·+ (j + 1) =
(j + 1)(j + 2)

2
.

But this is precisely (∗j+1).
We have assumed P (j) and used it to prove P (j + 1). That

is step (2) of the induction method. Our proof is complete.

Example 19.2

Prove that, for any positive integer n, the quantity n2 + 3n+ 2 is
even.

Proof: Obviously the statement P (n) must be
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P(n): The quantity n2 + 3n + 2 is even.

Observe that P (1) is the assertion that 12 + 3 · 1 + 2 = 6 is even.
That is obviously true.

Now assume P (j) (i.e., that j2 +3j+2 is even). We must use
this hypothesis to prove P (j +1) (i.e., that (j+1)2 +3(j+1)+2
is even). Now

(j + 1)2 + 3(j + 1) + 2 = (j2 + 2j + 1) + (3j + 3) + 2

= [j2 + 3j + 2] + [2j + 4]

= [j2 + 3j + 2] + 2[j + 2].

The number j2 +3j +2 is even by the inductive hypothesis P (j).
And 2[j + 2] is even since it is a multiple of 2. The sum of two
even numbers is even, because each will be a multiple of 2. So we
see that (j+1)2 +3(j+1)+2 is even. That establishes P (j+1),
assuming P (j). The inductive proof is complete.

The next example illustrates a mathematical device, due to Peter
Gustav Lejeune Dirichlet (1805–1859), known as the the pigeonhole prin-
ciple. In early days it was known as the Dirichletscher Schubfachschluss.
Refer to our discussion of this idea in Chapter 12.

Example 19.3

Prove that if n + 1 letters are placed in n mailboxes, then some
mailbox will contain (at least) two letters.

Proof: Let P (n) be the statement

P(n): If n+1 letters are put in nmailboxes, then
some mailbox will contain (at least) two letters.

Then P (1) is the simple assertion that if two letters are placed
in one mailbox, then some mailbox contains at least two letters.
This is trivial: there is just one mailbox and it indeed contains
two letters.

Now we suppose that P (j) is true and we use that statement
to prove P (j + 1). Now suppose that j + 2 letters are placed into
j + 1 mailboxes. There are three possibilities:
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• If the last mailbox contains no letter, then all
of the letters actually go into the first j mailboxes.
And there are j + 2 such letters (even more than
j + 1). So the inductive hypothesis P (j) applies.
Therefore some mailbox contains at least two let-
ters.
• If the last mailbox contains only one letter,
then j + 1 letters have gone into the first j mail-
boxes, and the inductive hypothesis P (j) applies.
So some mailbox contains at least two letters.
• If the last mailbox contains (at least) two let-
ters, then we have identified a box with two let-
ters.

Thus, by breaking the proof into three cases, we have established
P (j + 1) (assuming P (j)). The proof is complete.

If S is a set then we call T a subset of S if T is also a set and each
element of T is also an element of S. For example, if S = {1, 3, 5, 7} then
T = {3, 5} is a subset of S.

Example 19.4

Let us prove that a set with n elements has 2n subsets (see also
Exercise 5 of Chapter 14).

Proof: Our inductive statement is

P(n): P (n): A set with n elements has
2n subsets.

Now P (1) is clearly true: A set with 1 element has 2 = 21 subsets,
namely the empty set and the set itself.

Suppose inductively that P (j) has been established. Consider
now a set A = {a1, . . . , aj+1} with j + 1 elements. Write A =
{a1, . . . , aj} ∪ {aj+1} ≡ A′ ∪ {aj+1}. Now A′ is a set with j
elements, so the inductive hypothesis applies to it. The set A′

therefore has 2j subsets. These are also, of course, subsets of A.
The additional subsets of A are obtained by adjoining the element
aj+1 to each of the subsets of A′. That gives 2j more subsets of
A, for a total of 2j + 2j subsets.

We conclude that A has 2j+1 = 2j + 2j subsets. That com-
pletes the inductive step, and the proof.
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For You to Try: Use induction to prove that the number of different
orderings of n objects is n!

For You to Try: Use induction to prove that

(a+b)n = an+nan−1b+
n(n− 1)

2
an−2b2+· · ·+(n(n− 1)

2
a2bn−2+n·abn−1+bn .

19.3 Proof by Contradiction

Proof by contradiction is predicated on the classical “law of the excluded
middle”—an idea that goes back to Aristotle.3 The substance of the
proof strategy is that an idea is either true or false. There is no “mid-
dle” status. With this premise in mind, we can prove that something is
true by excluding the possibility that it is false. The way that we exclude
the possibility that the assertion is false is to assume it is false and show
that such an assumption leads to an untenable position (i.e., a contra-
diction). The only possible conclusion therefore is that the assertion is
true. We now illustrate with some examples.

19.3.1 Examples of Proof by Contradiction

We begin by revisiting the pigeonhole principle.

Example 19.5

Prove that if n + 1 letters are placed in n mailboxes, then one
mailbox must contain (at least) two letters.

Proof: Seeking a contradiction, we suppose the contrary. Thus
we have a way to put n + 1 letters into n mailboxes so that each
mailbox contains only 0 or 1 letter. Let mj be the number of
letters in the jth mailbox. Then

n+ 1 =
n∑

j=1

mj ≤
n∑

j=1

1 = n.

3The law of the excluded middle is sometimes referred to as tertium non datur.
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Under our hypothesis, we have derived the absurd statement that
n + 1 ≤ n. That is a contradiction. As a result, our hypothe-
sis must be false, and some mailbox must contain (at least) two
letters.

Example 19.6

Prove that if n is a positive integer, then n2 + 3n + 2 is even.

Proof: If not, then n2 + 3n + 2 is odd for some n. Any odd
number has the form 2m+ 1 for some integer m. Hence

n2 + 3n+ 2 = 2m+ 1.

But then
n2 + 3n − 2m = −1,

or
n(n+ 3) − 2m = −1.

Now, if n is even, then n+3 is odd and if n is odd, then n+3
is even. In either case, n(n + 3) will be the product of an even
and an odd number and will thus be even. So n(n + 3) = 2k for
some integer k. As a result we have

2k − 2m = −1

or
2(k −m) = −1.

But this shows that the number−1 is even, and that is impos-
sible. We conclude that our initial hypothesis is false: n2 +2n+3
cannot be odd; it must be even.

We already saw the following result in Chapter 1, but it is well worth
repeating at this time. We now examine a different proof of the fact.

Example 19.7

Theorem (Pythagoras): There is no rational number whose
square is 2.

Proof: Assume to the contrary that there is a rational number
α whose square is 2. Write α = p/q, where p and q are integers
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having no common prime factor. Let the prime factorization of
p be p = p1 · p2 · · · pk and the prime factorization of q be q =
q1 · q2 · · · qm. Note that if any prime factor is repeated we simply
list it several times.

Thus our hypothesis is that

2 = α2 =

(
p

q

)2

=

(
p1 · p2 · · · pk

q1 · q2 · · · qm

)2

.

Clearing denominators, we see that

2 ·
(
q1 · q2 · · · qm

)2

=
(
p1 · p2 · · · pk

)2

.

We may rewrite this as

2 · q2
1 · q2

2 · · · q2
m = p2

1 · p2
2 · p2

k .

But now we have a problem. Because every prime factor is
repeated except the 2 on the left. There is no lone prime factor
on the right to correspond to it. And that is a contradiction. So
α cannot exist and 2 cannot have a rational square root.

For You to Try: Prove that it is impossible for two integers in se-
quence, both greater than 2, to be prime.

For You to Try: Prove that if γ is a closed loop in the plane having
length 2` then the area inside the loop cannot be more than `2. See
Figure 19.2.

19.4 Direct Proof

A direct proof is one in which a sequence of logical steps leading ever
closer to the desired conclusion is produced. There are no additional
logical tricks, such as induction or proof by contradiction. The concept
is best illustrated through examples.
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2l

Figure 19.2

19.4.1 Examples of Direct Proof

Example 19.8

Prove that, if n is a positive integer, then the quantity n2 +3n+2
is even.

Proof: Denote the quantity n2 + 3n+ 2 by K. Observe that

K = n2 + 3n + 2 = (n+ 1)(n+ 2).

Thus K is the product of two successive integers: n+1 and n+2.
One of those two integers must be even. So it is a multiple of 2.
Therefore K itself is a multiple of 2. Hence, K must be even.

Example 19.9

Prove that the sum of an even integer and an odd integer is odd.

Proof: An even integer e is divisible by 2, so it may be written
in the form e = 2m, where m is an integer. An odd integer o has
remainder 1 when divided by 2, so it may be written in the form
o = 2k + 1, where k is an integer. The sum of these is

e+ o = 2m+ (2k + 1) = 2(m + k) + 1.
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Thus we see that the sum of an even and an odd integer will have
remainder 1 when it is divided by 2. As a result, the sum is odd.

Example 19.10

Prove that every even integer may be written as the sum of two
odd integers.

Proof: Let the even integer be K = 2m, for m an integer. If m
is odd, then we write

K = 2m = m+m

and we have writtenK as the sum of two odd integers. If, instead,
m is even, then we write

K = 2m = (m− 1) + (m+ 1).

Since m is even, then both m − 1 and m + 1 are odd. So again
we have written K as the sum of two odd integers.

Example 19.11

Prove the Pythagorean theorem.

Remark: Of course we discussed the Pythagorean theorem in
some detail in Chapter 1. But we have come a long distance since
then, and learned quite a lot of mathematics. It is well to review
those ideas now.

Proof: Examine Figure 19.3. It shows a square of side b inscribed
inside a square of side a+ b. Thus, on the one hand, the area of
the larger square is (a+ b)2. On the other hand, the area of the
larger square is the area of the smaller square plus the area of the
four triangles. Thus we have

(a+ b)2 = c2 + 4 · ab
2
.

Simplifying this equation gives the Pythagorean theorem.
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Figure 19.3

For You to Try: Prove that if n is an integer greater than 3 then
(n + 1)3 < n4.

For You to Try: Prove that if X,Y,Z are points in the plane then

dist(X,Y ) ≤ dist(X,Z) + dist(Z, Y ) .

19.5 Other Methods of Proof

Induction, contradiction, and direct proof are the three most common
proof techniques. Almost any proof can be shoehorned into one of these
three paradigms. But there are other techniques that should be men-
tioned. One of these is enumeration, or counting. We illustrate this
method with some examples.

19.5.1 Examples of Counting Arguments

Example 19.12

Show that if there are 23 people in a room, then the odds are
better than even that two of them have the same birthday.
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Proof: The best strategy is to calculate the odds that no two of
the people have the same birthday, and then to take complements.

Let us label the people p1, p2, . . . , p23. Then, assuming that
none of the pj have the same birthday, we see that p1 can have a
birthday on any of the 365 days in the year, p2 can then have a
birthday on any of the remaining 364 days, p3 can have a birthday
on any of the remaining 363 days, and so forth. Thus the number
of different ways that 23 people can all have different birthdays is

365 · 364 · 363 · · · 345 · 344 · 343.
On the other hand, the number of ways that birthdays could be
distributed (with no restrictions) among 23 people is

365 · 365 · 365 · · · 365︸ ︷︷ ︸
23 times

= 36523.

Thus, the probability that the 23 people all have different birth-
days is

p =
365 · 364 · 363 · · · 343

36523
.

A quick calculation with a pocket calculator shows that p ∼
0.4927 < .5. Taking the complement, we see that the proba-
bility that at least two people will have the same birthday is
1 − p ∼ 0.5073 > 0.5. That is the desired result.

Example 19.13

Show that if there are six people in a room, then either three of
them know each other or three of them do not know each other.
(Here three people know each other if each of the three pairs has
met. Three people do not know each other if each of the three
pairs has not met.)

Proof: The tedious way to do this problem is to write out all
possible “acquaintance assignments” for six people.

We now describe a more efficient, and more satisfying, strat-
egy. Call one of the people Bob. There are five others. Either
Bob knows three of them, or he does not know three of them.

Say that Bob knows three of the others. If any two of those
three are acquainted, then those two and Bob form a mutually
acquainted threesome. If no two of those three know each other,
then those three are a mutually unacquainted threesome.

Now suppose that Bob does not know three of the others. If
any two of those three are unacquainted, then those two and Bob
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form an unacquainted threesome. If all pairs among the three are
instead acquainted, then those three form a mutually acquainted
threesome.

We have covered all possibilities, and in every instance come
up either with a mutually acquainted threesome or a mutually
unacquainted threesome. That ends the proof.

It may be worth noting that five people is insufficient to guaran-
tee either a mutually acquainted threesome or a mutually unacquainted
threesome. We leave it to the reader to provide a suitable counterexam-
ple.4 It is quite difficult to determine the minimal number of people to
solve the problem when “threesome” is replaced by “foursome.” When
“foursome” is replaced by five people, the problem is considered to be
grossly intractable. This problem is a simple example from the mathe-
matical subject known as Ramsey theory.

Example 19.14

Jill is dealt a poker hand of five cards from a standard deck of 52.
What is the probability that she holds a straight flush?

SOLUTION A straight flush is five cards, all from the same suit, in sequence.
Thus a straight flush could be

2, 3, 4, 5, 6 of spades

3, 4, 5, 6, 7 of hearts

10, J, Q, K, A of hearts

and so forth. Clearly, in any given suit, a straight could begin with 2, 3, 4, 5,
6, 7, 8, 9, or 10. So there are nine straight flushes in each suit and 36 straight
flushes altogether. Since there are 2598960 possible poker hands altogether (see our
discussions in Chapter 12), we see that the probability of being dealt a straight flush

4It is useful to think of people as points in the plane. If two people are acquainted
then they are connected by a segment; otherwise not. In this language, your coun-

terexample for five people will have something to do with a star.
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is

p =
36

2598960
≈ 0.00001385 .

The last example is not quite a proof by contradiction and not quite
a proof by exhaustion.

Example 19.15

Let us show that there exist irrational numbers a and b such that
ab is rational.

Let α =
√

2 and β =
√

2. If αβ is rational, then we are done,
using a = α and b = β. If αβ is irrational, then observe that

(
αβ
)√2

= α[β·
√

2] = α2 = [
√

2]2 = 2.

Thus, with a = αβ and b =
√

2 we have found two irrational
numbers a, b such that ab = 2 is rational.

Curiously, in this last example, we are unable to say which two irrational
numbers do the job. But we have proved that two such numbers exist.

For You to Try: Let Tk consist of all the point in the first quadrant
of the plane (i.e., points (m,n) with m ≥ 0, n ≥ 0) having integer coor-
dinates and satisfying m+ n ≤ k. Show that the number of points in Tk

is (k + 1)(k + 2)/2.

For You to Try: Show that the sum of the first k positive, even
integers is k(k + 1).

Exercises

1. Show that the number of disjoint discs of radius 2 that
can be contained in the disc in the plane with center
the origin and radius R cannot exceed R2/4.
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2. Show that

12 + 22 + 32 + · · ·+N2 =
2N3 + 3N2 +N

6
.

3. Show that

13 + 23 + 33 + · · ·+N3 =
N4 + 2N3 +N2

4
.

4. Show that the area inside a regular hexagon of side 1 is
3
√

3/2.

5. Take five points in the plane which are not all colinear.
Show that there is some line that passes through only
two of them.

6. Show that, among all the rectangles in the plane with
perimeter equal to 20, the square of side 5 has the great-
est area.

7. Let C be a circle in the plane of radius 3. Let S be a
square whose four corners lie on the circle. Calculate
the area of S.

8. Let C be a circle in the plane of radius 3. Let T be an
equilateral triangle whose three corners lie on the circle.
Calculate the area of T .

9. Prove that the sum of the three angles in a triangle will
always add up to π radians (or 180 degrees).

14. Prove that the product of two odd natural numbers
must be odd.

11. Prove that if n is an even natural number and if m is
any natural number then n ·m must be even.

12. Prove that the sum of the first k odd natural numbers
is k2.
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13. Prove that if n red letters and n blue letters are dis-
tributed among n mailboxes then either some mailbox
contains at least two red letters or some mailbox con-
tains at least two blue letters or else some mailbox con-
tains at least one red and one blue letter.

14. Prove that if m is a power of 3 and n is a power of 3
then m+ n is never a power of 3.

15. Prove that if the natural number n is a perfect square
then n + 1 will never be a perfect square.

16. Prove that if the product of two integers is even then
one of them must be even.

17. Prove that if the product of two integers is odd then
both of them must be odd.

18. Prove that any integer can be written as the sum of
at most two odd integers. Is the same true if “odd” is
replaced by “even”?



Chapter 20

Alan Turing and Cryptography

20.0 Background on Alan Turing

Alan Mathison Turing was born in 1912 in London, England. He died
tragically in 1954 in Wilmslow, Cheshire, England. Today Turing is
considered to have been one of the great mathematical minds of the
twentieth century. He did not invent cryptography (as we shall see, even
Julius Caesar engaged in cryptography). But he ushered cryptography
into the modern age. The current vigorous interaction of cryptography
with computer science owes its genesis in significant part to the work
of Turing. Turing also played a decisive role in many of the key ideas
of modern logic. It is arguable that Turing had the decisive ideas for
inventing the stored program computer (although it was John von Neu-
mann (1903–1957), another twentieth-century mathematical genius, who
together with Herman Goldstine (1913– ) actually carried out the ideas).

Turing had difficulty fitting in at the British “public schools” which
he attended. [Note that a “public school” in Britain is what we in Amer-
ica would call a private school and vice versa.] Young Turing was more
interested in pursuing his own thoughts than in applying himself to the
dreary school tasks that were designed for average students. At the Sher-
borne School, Turing had little patience for the tedious math techniques
that the teachers taught. Yet he won almost every mathematics prize at
the school. He was given poor marks in penmanship, and he struggled
with English.

Turing had a passion for science beginning at a very young age. He
later said that the book Natural Wonders Every Child Should Know had
had a seminal influence on him. When he was still quite young, he read

443
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Einstein’s papers on relativity and he read Arthur Eddington’s account
of quantum mechanics in the book The Nature of the Physical World.

In 1928, at the Sherborne School, Alan Turing became friends with
Christopher Morcom. Now he had someone in whom he could confide,
and with whom he could share scientific ideas and inquiries. Turing had
never derived such intellectual companionship from either his classmates
or his rather diffident schoolteachers. Sadly, Morcom died suddenly in
1930. This event had a shattering effect on the young Alan Turing. The
loss of his companion led Turing to consider spiritual matters, and over
time this led him to an interest in physics.

It may be mentioned that Turing developed early on an interest in
sports. He was a very talented athlete—almost at the Olympic level—
and he particularly excelled in running. He maintained an interest in
sports throughout his life.

In 1931 Alan Turing entered King’s College at Cambridge University.
Turing earned a distinguished degree at King’s in 1934, followed by a
fellowship at King’s. In 1936 he won the Smith Prize for his work in
probability theory. In particular, Turing was one of the independent
discoverers of the Central Limit Theorem.

In 1935 Turing took a course from Max Newman on the foundations
of mathematics. Thus his scientific interests took an abrupt shift. The
hot ideas of the time were Gödel’s incompleteness theorem—which says
that virtually any mathematical theory will have true statements in it
that cannot be proved—and (what is closely related) David Hilbert’s
questions about decidability.

In 1936 Alan Turing published his seminal paper “On Computable
Numbers, with an application to the Entscheidungsproblem.” Here the
Entscheidungsproblem is the fundamental question of how to decide—in a
manner that can be executed by a machine—when a given mathematical
question is provable. In this paper Turing first described his idea for
what has now become known as the Turing machine. We now take a
mathematical detour to talk about Turing machines.
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1 0 1 11 0

Figure 20.1

20.1 The Turing Machine

A Turing machine is a device for performing effectively computable op-
erations. It consists of a machine through which a bi-infinite paper tape
is fed. The tape is divided into an infinite sequence of congruent boxes
(Figure 20.1). Each box has either a numeral 0 or a numeral 1 in it. The
Turing machine has finitely many “states” S1, S2, . . . , Sn. In any given
state of the Turing machine, one of the boxes is being scanned.

After scanning the designated box, the Turing machine does one of
three things:

(1) It either erases the numeral 1 that appears in the scanned
box and replaces it with a 0, or it erases the numeral 0
that appears in the scanned box and replaces it with a
1, or it leaves the box unchanged.

(2) It moves the tape one box (or one unit) to the left or to
the right.

(3) It goes from its current state Sj into a new state Sk.

It turns out that every logical procedure, every algorithm, every
mathematical proof, every computer program can be realized as a Tur-
ing machine. The Turing machine is a “universal logical device”. The
next section contains a simple instance of a Turing machine. In effect,
Turing had designed a computer before technology had made it possible
to actually build one.

20.1.1 An Example of a Turing Machine

Here is an example of a Turing machine for calculating x+ y:
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Old New Move New
State Value Value (l. or r.) State Explanation

0 1 1 R 0 pass over x
0 0 1 R 1 fill gap

1 1 1 R 1 pass over y
1 0 0 L 2 end of y
2 1 0 L 3 erase a 1

3 1 0 L 4 erase another 1

4 1 1 L 4 back up

4 0 0 R 5 halt

For You to Try: If you look hard at the logic of this Turing machine,
you will see that it thinks of x as a certain number of 1s, and it thinks
of y as a certain number of 1s. It scans the x units, and writes a 1 to the
right of these; then it scans y units, and writes a 1 to the right of these.
The two blocks of 1s are joined into a single block (by erasing the space
in between) and then the two extra 1s are erased. The result is x + y.
Provide the details of this argument.

20.2 More on the Life of Alan Turing

The celebrated logician Alonzo Church published a paper closely related
to Turing’s at about the same time. As a result, Church and Turing
ended up communicating and sharing ideas. Subsequently, in 1936, Tur-
ing went to Princeton for graduate study under Church’s direction.

When Turing returned to Cambridge in 1938, he commenced work
on actually building a computer. It was designed to be a rather crude,
mechanical device, with a great many gears and wheels. In fact Turing
had a very specific purpose in mind for his machine.

One of the great mathematical problems of the day (and it is still a
hot open problem as of this writing) was to prove the Riemann hypoth-
esis. The Riemann hypothesis, posed by Bernhard Riemann in 1859,
concerns the location of the zeros of a certain complex function (the
celebrated Riemann zeta function). An affirmative answer to the Rie-
mann hypothesis would tell us a great deal about the distribution of
prime numbers and have profound consequences for number theory and
for cryptography.
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According to Andrew Hodges (1949– ), the Turing biographer,

Apparently [Turing] had decided that the Rie-
mann Hypothesis was probably false, if only be-
cause such great efforts have failed to prove it.
Its falsity would mean that the zeta function did
take the value zero at some point which was off
the special line, in which case this point could be
located by brute force, just by calculating enough
values of the zeta function.

Turing did his own engineering work, hence he got involved in all the
fine details of constructing this machine. He planned on eighty meshing
gearwheels with weights attached at specific distances from their centers.
The different moments of inertia would contribute different factors to the
calculation, and the result would be the location of and an enumeration
of the zeros of ζ.

Visits to Turing’s apartment would find the guest greeted by heaps of
gear wheels and axles and other junk strewn about the place. Although
Turing got a good start cutting the gears and getting ready to assemble
the machine, more pressing events (such as World War II) interrupted
his efforts. His untimely death prevented the completion of the project.

When war broke out in 1939, Turing went to work for the Gov-
ernment Code and Cypher School at Bletchley Park. Turing played a
seminal role in breaking German secret codes, and it has been said that
his work saved more lives during the war than that of any other person.
One of his great achievements during this time was the construction of
the Bombe machine, a device for cracking all the encoded messages gener-
ated by the dreaded German Enigma machine. In fact Turing used ideas
from abstract logic, together with some earlier contributions of Polish
mathematicians, to design the Bombe. Turing’s important contributions
to the war effort were recognized with the award of an O.B.E. (Order of
the British Empire) in 1945.

After the war Turing was invited by the National Physical Labora-
tory in London specifically to design a computer. He wrote a detailed
proposal for the Automatic Computing Machine in 1946, and that doc-
ument is in fact a discursive prospectus for a stored-program computer.
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The project that Turing proposed turned out to be too grandiose for
practical implementation, and it was shelved.

Turing’s interests turned to topics outside of mathematics, including
neurology and physiology. But he maintained his passion for computers.
In 1948 he accepted a position at the University of Manchester. There he
became involved in a project, along with F. C. Williams and T. Kilburn,
to construct a computing machine.

In 1951 Alan Turing was elected a Fellow of the Royal Society—
the highest honor that can be bestowed upon a British scientist. This
accolade was largely in recognition of his work on Turing machines.

Turing had a turbulent personal life. In 1952 he was arrested for
violation of the British homosexuality statutes. He was convicted, and
sentenced to take the drug oestrogen for one year. Turing subsequently
re-dedicated himself to his scientific work, concentrating particularly on
spinors and relatively theory. Unfortunately, because of his legal dif-
ficulties, Turing lost his security clearance and was labeled something
of a “security risk”. He had continued working with the cypher school
at Bletchley, but his loss of clearance forced that collaboration to end.
These events had a profound and saddening effect on Alan Turing.

Turing died in 1954 of potassium cyanide poisoning while conducting
electrolysis experiments. The cyanide was found on a half-eaten apple.
The police concluded that the death was a suicide, though people close
to Turing argue that it was an accident.

20.3 What is Cryptography?

We use Alan Turing’s contributions as a touchstone for our study of
cryptography. Cryptography is currently a very hot field, due in part to
the availability of high speed digital computers to carry out decryption
algorithms, in part to new and exciting connections between cryptogra-
phy and number theory and logic, and in part to the need for practical
coding methods both in industry and in government.

The discussion of cryptography that appears below is inspired by
the lovely book [KOB]. We refer the reader to that source for additional
ideas and further reading.

As we always do in mathematics, let us begin by introducing some
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terminology. Cryptography is the study of methods for sending text
messages in disguised form in such a manner that only the intended
recipient can remove the disguise and read the message. The original
message that we wish to send is called the plaintext and the disguised
message is called the ciphertext. We shall always assume that both our
plaintext and our ciphertext are written in the standard roman alphabet
(i.e., the letters A through Z) together perhaps with some additional
symbols like “blank space ( )”, “question mark (?)”, and so forth. The
process of translating a plaintext message into a ciphertext message is
called encoding or enciphering or encrypting. The process of translating
an encoded message back to a plaintext message is called deciphering or
sometimes de-encryting.

For convenience, we usually break up both the plaintext message
and the ciphertext message into blocks or units of characters. We call
these pieces the message units, but we may think of them as “words”
(but they are not necessarily English words). Sometimes we will de-
clare in advance that all units are just single letters, or perhaps pairs of
letters (these are called digraphs) or sometimes triples of letters (called
trigraphs). Other times we will let the units be of varying sizes—just
as the words in any body of text have varying sizes. An enciphering
transformation is a function that assigns to each plaintext unit a cipher-
text unit. The deciphering transformation is the inverse mapping that
recovers the plaintext unit from the ciphertext unit. Any setup as we
have just described is called a cryptosystem.

In general it is awkward to mathematically manipulate the letters of
the alphabet. We have no notions of addition or multiplication on these
letters. So it is convenient to associate to each letter a number. Then
we can manipulate the numbers. For instance, it will be convenient to
make the assignment

A ↔ 0

B ↔ 1

C ↔ 2

· · ·
X ↔ 23

Y ↔ 24
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Z ↔ 25 .

Thus if we see the message

22 7 0 19 12 4 22 14 17 17 24

then we can immediately translate this to

WHATMEWORRY

or

WHAT ME WORRY

Notice that, in cryptography, we generally do not worry about capital
and lowercase letters. Everything is uppercase. Second, if we do not
have a symbol for “blank space”, then messages are awkward to read.

One device of which we will make frequent and consistent use is
modular arithmetic. Recall that if n and k are an integers then n mod k
is that unique integer n′ between 0 and k − 1 inclusive such that n − n′

is divisible by k. For example,

13 mod 5 = 3

−23 mod 7 = 5

82 mod 14 = 12

10 mod 3 = 1 .

How do we calculate these values? Look at the first of these. To
determine 13 mod 5, we divide 5 into 13: Of course 5 goes into 13 with
quotient 2 and remainder 3. It is the remainder that we seek. Thus

13 mod 5 = 3 .

It is similar with the other examples. To determine 82 mod 14, divide 14
into 82. It goes 5 times with remainder 12. Hence

82 mod 14 = 12 .
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It is convenient that modular arithmetic respects the arithmetic op-
erations. For example,

8× 7 = 56 and 56 mod 6 = 2 .

But
8 mod 6 = 2 and 7 mod 6 = 1 and 2 × 1 = 2 .

So it does not matter whether we pass to mod 6 before multiplying or after
multiplying. Either way we obtain the same result 2. Similar properties
hold for addition and subtraction. One must be a bit more cautious with
division, as we shall see below.

We supply some further examples:

[3 mod 5]× [8 mod 5] = 24 mod 5 = 4 ;

[7 mod 9] + [5 mod 9] = 12 mod 9 = 3 ;

[4 mod 11]− [9 mod 11] = −5 mod 11 = 6 .

Now we begin to learn some cryptography by way of examples.

Example 20.1

We use the ordinary 26-letter Roman alphabet A–Z, with the
numbers 0-25 assigned to the letters as indicated above. Let S =
{0, 1, 2, . . . , 25}. We will consider units consisting of single letters.
Thus our cryptosystem will consist of a function f : S → S which
assigns to each unit of plaintext a new unit of ciphertext. In
particular, let us consider the specific example

f(P ) =

{
P + 5 if P < 21
P − 21 if P ≥ 21 .

Put in other words,

f(P ) = P + 5 mod 26 . (∗)

Next let us use this cryptosystem to encode the message

GOAWAY

or
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GO AWAY .

The first step is that we transliterate the letters into numbers
(because, as noted earlier, numbers are easier to manipulate).
Thus GOAWAY becomes 6 14 0 22 0 24 .

Now we apply the ‘shift encryption” (∗) to this sequence of
numbers. Notice that

f(6) = 6 + 5 mod 26 = 11 mod 26 = 11 ,

f(14) = 14 + 5 mod 26 = 19 ,

f(0) = 0 + 5 mod 26 = 5 ,

f(22) = 22 + 5 mod 26 = 1 ,

f(0) = 0 + 5 mod 26 = 5 ,

f(24) = 24 + 5 mod 26 = 3 .

Thus our ciphertext is 11 19 5 1 5 3 . In practice, we may
convert this ciphertext back to roman letters using our standard
correspondence (A↔ 0, B ↔ 1, etc.). The result is LTFBFD .
Thus the encryption of “GO AWAY” is “LTFBFD”. Notice that
we have no coding for a blank space, so we ignore it.

This is a very simple example of a cryptosystem. It is said
that Julius Caesar used this system with 26 letters and a shift of
3. We call this encryption system a “shift transformation”.

Now let us use this same cryptosystem to encode the word “BRAVO”.
First, we translate our plaintext word to numbers:

1 17 0 21 14 .

Now we add 5 mod 26 to each numerical entry. The result is

6 22 5 0 19 .

Notice that the fourth entry is 0 because

21 + 5 mod 26 = 26 mod 26 = 0 mod 26 .

Thus if we wanted to send the message “BRAVO” in encrypted form,
we would send 6 22 5 0 19. We can translate the encrypted message to
roman letters as “GWFAT”.



20.3 What is Cryptography? 453

Conversely, we decrypt a message by subtracting 5 mod 26. Suppose,
for instance, that you receive the encrypted message

24 12 5 18 15 3 19 25 .

We decrypt applying the function f−1(Q) = Q− 5 mod 26. The result is

19 7 0 13 10 24 14 20 .

This easily translates to

THANKYOU

or

THANK YOU .

In a typical, real-life circumstance, you receive an encrypted message
and you do not know the method of encryption. It is your job to figure
out how to decode the message. We call this process breaking the code,
and the science of codebreaking is called cryptoanalysis.

Example 20.2

If the codebreaker happens to know that the message he/she has
received is encrypted using a shift transformation, then there is
a reasonable method to proceed. Imagine that you receive the
message

CQNKNJCUNBOXANENA

Looks like nonsense. But the cryptographer has reason to believe
that this message has been encoded using a shift transformation
on single letters of the 26-letter alphabet. It remains to find the
numerical value of the shift.

We use a method called frequency analysis. The idea of this
technique is that it is known that “E” is the most frequently
occurring letter in the English language. Thus we may suppose
that the most frequently occuring character in the ciphertext is
the encryption of “E” (not “E” itself). In fact we see that the
character “N” occurs five times in the ciphertext, and that is
certainly the most frequently occurring letter. If we hypothesize
that “N” is the encryption of “E”, then we see that “4” has been
translated to “13” in the encryption. Thus the encryption key
is P 7→ P + 9 mod 26. And therefore the decryption scheme
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is P 7→ P − 9 mod 26. If this putative decryption scheme gives
a sensible message, then it is likely the correct choice (as any
other decryption scheme will likely give nonsense). Let us try
this scheme and see what result it gives. We have

CQNKNJCUNBOXANENA

has numerical realization

2 16 13 10 13 9 2 20 13 1 14 23 0 13 4 13 0 .

Under our decryption scheme, this translates to

19 7 4 1 4 0 19 11 4 18 5 14 17 4 21 4 17

which has textual realization

THEBEATLESFOREVER .

In other words, the secret message is

THE BEATLES FOREVER .

The trouble with the shift transformation is that it is just too simple-
minded. It is too easy to break. There are variants that make it slightly
more sophisticated. For example, suppose that the East Coast and the
West Coast branches of National Widget Corporation cook up a system
for sending secret messages back and forth. They will use a shift trans-
formation, but in each week of the year they will use a different shift.
This adds a level of complexity to the process. But the fact remains
that, using a frequency analysis, the code can likely be broken in any
given week.

20.4 Encryption by Way of Affine Transformations

We can add a genuine level of sophistication to the encryption process by
adding some new mathematics. Instead of considering a simple shift of
the form P 7→ P+b for some fixed integer b, we instead consider an affine
transformation of the form P 7→ aP + b. Now we are both multiplying
(or dilating) the element P by an integer a and then translating it by b.
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20.4.1 Division in Modular Arithmetic

There is a subtlety in the application of the affine transformation method
that we must consider before we can look at an example. If the encryp-
tion scheme is P 7→ Q ≡ aP + b, then the decryption scheme must be
the inverse function. In other words, we solve for P in terms of Q. This
just involves elementary algebra, and we find that

P = [1/a](Q− b) mod 26 .

We see that decryption, in the context of an affine transformation, in-
volves division in arithmetic modulo 26. This is a new idea, and we
should look at a couple of simple examples before we proceed with our
cryptographic considerations.

We want to consider division modulo 26. Thus if a and b are whole
numbers, then we want to calculate b/a and we want the answer to be
another whole number modulo 26. This is possible only because we are
cancelling multiples of 26, and it will only work when a has no common
prime factors with 26. Let us consider some examples.

First let us calculate 4/7 mod 26. What does this mean? We are
dividing the whole number 4 by the whole number 7, and this looks like
a fraction. But things are a bit different in modular arithmetic. We seek
a number k such that

4

7
mod 26 = k

or
4 = 7 · k mod 26

or
4 − 7 · k is divisible by 26 .

We simply try different values for k, and we find with k = 8 that

4− 7 · 8 = 4− 56 = −52 is indeed divisible by 26 .

In conclusion,
4

7
mod 26 = 8 .

We see the somewhat surprising conclusion that the fraction 4/7 can
be realized as a whole number in arithmetic modulo 26.
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Next let us try to calculate 1/4 mod 26. This is doomed to fail,
because 4 and 26 have the prime factor 2 in common. We seek an integer
k such that

1 = 4 · k mod 26 ,

or in other words
1 − 4k is a multiple of 26 .

But of course 4k will always be even so 1 − 4k will always be odd—
it cannot be a multiple of the even number 26. This division problem
cannot be solved.
For You to Try: We conclude this brief discussion with the example
2/9 mod 26. We invite the reader to discover that the answer is 6 mod 26.

There is in fact a mathematical device for performing division in
modular arithmetic. It is the classical Euclidean algorithm. This simple
idea is one of the most powerful in all of number theory. It says this: If
n and d are integers then d divides into n some whole number q times
with some remainder r, and 0 ≤ r < d. In other words,

n = d · q + r .

You have been using this idea all your life when you calculate a long
division problem (not using a calculator, of course). We shall see in the
next example that the Euclidean algorithm is a device for organizing
information so that we can directly perform long division in modular
arithmetic.

Example 20.3

Let us calculate 1/20 in arithmetic mod 57. We apply the Eu-
clidean algorithm to 57 and 20. Thus we begin with

57 = 2 · 20 + 17 .

We continue by repeatedly applying the Euclidean algorithm to
divide the divisor by the remainder:

20 = 1 · 17 + 3
17 = 5 · 3 + 2
3 = 1 · 2 + 1
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Now, as previously indicated, we utilize this Euclidean algo-
rithm information to organize our calculations. Begin with the
last line to write

1 = 3 − 1 · 2
= 3 − 1 · (17 − 5 · 3)
= [20 − 17]− 1 · ([57− 2 · 20]− 5 · [20 − 17])

= 20 · 8 + 17 · (−6)− 57

= 20 · 8 + (57− 2 · 20) · (−6)− 57
= 20 · 20 − 7 · 57 .

This calculation tells us that 1 = 20 · 20 mod 57. In other words,
1/20 = 20 mod 57.

For You to Try: We offer the reader the exercise of calculating
1/25 mod 64 using the Euclidean algorithm.

20.4.2 Instances of the Affine Transformation Encryption

Example 20.4

Let us encrypt the message “GO AWAY” using the affine trans-
formation P 7→ 5P + 6 mod 26. As usual,

GO AWAY has numerical realization 6 14 0 22 0 24 .

Under the affine transformation, we obtain the new numerical
realization

10 24 6 12 6 22 .

In roman letters, the message has become the ciphertext

KYGMGW .

In order to decrypt the message, we must use the inverse
affine transformation. If R = 5P +6 mod 26, then P = [1/5](R−
6) mod 26. Using modular arithmetic, we see that 10 corresponds
to

[1/5](10 − 6) = [1/5] · 4 = 6 mod 26

(because 5 · 6 mod 26 = 30 mod 26 = 4 mod 26). Likewise 24
corresponds to

[1/5](24 − 6) = [1/5] · 18 = 14 mod 26
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(because 5 · 14 mod 26 = 70 mod 26 = 18 mod 26). We calculate
the rest of the correspondences:

[1/5](6 − 6) = [1/5] · 0 = 0 mod 26

(because 5 · 0 mod 26 = 0 mod 26). Next,

[1/5](12 − 6) = [1/5] · 6 = 22 mod 26

(because 5 · 22 mod 26 = 110 mod 26 = 6 mod 26). Again,

[1/5](6 − 6) = [1/5] · 0 = 0 mod 26 .

And, finally,

[1/5](22 − 6) = [1/5] · 16 = 24 mod 26

(because 5 · 24 mod 26 = 16 mod 26).
In sum, we have applied our decryption algorithm to recover

the message

6 14 0 22 0 24 .

This transliterates to

GOAWAY

or

GO AWAY .

In a real-life situation—if we were endeavoring to decrypt a message—
we would not know in advance which affine transformation was used for
the encoding. We now give an example to illustrate how to deal with
such a situation.

Example 20.5

We continue to work with the 26-letter Roman alphabet. We
receive a block of ciphertext and wish to decode it. We notice
that the most frequently occurring character in the ciphertext
is “M” and the second most frequently occurring character in
the ciphertext is “R”. It is well known that, in ordinary English,
the most commonly occurring letter is “E” and the second most
commonly occurring letter is “T”. So it is natural to hypothesize
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that we are dealing with an affine transformation that assigns “E”
to “M” and “T” to “R”.

This means that we seek an affine transformation f(P ) =
aP + b such that f(4) = 12 mod 26 and f(19) = 17 mod 26.
All arithmetic is, as usual, modulo 26. We are led then to the
equations

12 = a · 4 + b mod 26
17 = a · 19 + b mod26 .

We subtract these two equations to eliminate b and obtain

−5 = a · (−15) mod 26

or
a = [−5/(−15)] mod 26 .

The solution is a = 9. Substituting this value into the first equa-
tion gives b = −24 = 2 mod 26.

Thus our affine encoding transformation is (we hope) f(P ) =
9P +2. It is also easy to determine that the inverse (or decoding)
transformation is f−1(Q) = [Q− 2]/9.

For You to Try: Use the affine decryption scheme in the last example
to decode the message “ZMDEMRILMRRMZ”.

Next we present an example in which an expanded alphabet is used.

Example 20.6

Consider the standard Roman alphabet of 26 characters along
with the additional characters “blank space” (denoted  ), “ques-
tion mark” (?), “period (.)”, and “exclamation point (!)”. So
now we have 30 characters, and arithmetic will be module 30. As
usual, we assign a positive integer to each of our characters. Thus
we have

A ↔ 0
B ↔ 1
C ↔ 2
· · ·

X ↔ 23
Y ↔ 24
Z ↔ 25
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 ↔ 26
? ↔ 27
. ↔ 28
! ↔ 29

Because there are now 30 different characters, we also use 30
different numerical codes—the numbers from 0 to 29.

Imagine that we receive a block of ciphertext, and that we
wish to decode it. We notice that the most commonly used char-
acters in the ciphertext are “D” and “!”. It is known that the most
commonly used characters in ordinary English are “ ” and “E”.1

If we assume that the ciphertext was encrypted with an affine
transformation, then we seek an affine mapping f(P ) = aP + B
such that f( ) = D and f(E) =!. Thus we are led to f(26) = 3
and f(4) = 29 and then to the system of equations

3 = a · 26 + b mod30
29 = a · 4 + b mod 30 .

As before, we subtract the equations to eliminate b. The result is

−26 = 22a mod 30 .

This equation is equivalent (dividing by 2) to

−13 = 11a mod 30 .

Since 11 and 30 have no factors in common, we may easily find
the unique solution a = 7. Substituting this value in the second
equation gives b = 1. We conclude that our affine transformation
is f(P ) = 7P + 1.

If the ciphertext we have received is

21 7 29 3 14 29 12 14 7 14 19 18 29 24

then we can apply f−1(Q) = [Q − 1]/7 to obtain the plaintext
message

20 18 4 26 19 4 23 19 26 18 19 24 11 4 29 .

This transliterates to

USE TEXT STYLE!

A nice feature of this example is that the spaces and the punctua-
tion are built into our system of characters. Hence the translated
message is quite clear, and requires no further massaging.

1We formerly said that “E” was the most commonly used letter. But that was before

we added the blank space  to our alphabet.
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20.5 Digraph Transformations

Just to give an indication of how cryptographers think, we shall now
consider digraphs. Instead of thinking of our message units as single
characters, we will now have units that are pairs of characters. Put
in other words, the plaintext message is broken up into two-character
segments or words. [It should be stressed that these will not, in general,
correspond to English words. Certainly words from the English language
are generally longer than two letters. Here, when we say “word”, we
simply mean a unit of information.]

In case the plaintext message has an odd number of characters, then
of course we cannot break it up evenly into units of two characters. In
this instance we add a “dummy” character like “X” to the end of the
message so that an even number of characters will result. Any English
message will still be readable if an “X” is tacked on the end.

LetK be the number of elements in our alphabet (in earlier examples,
we have seen alphabets with 26 characters and also alphabets with 30
characters). Suppose now that MN is a digraph (i.e., an ordered pair
of characters from our alphabet). Let x be the numerical equivalent
of M and let y be the numerical equivalent of N . Then we assign to
the digraph MN the number x ·K + y. Roughly speaking, we are now
working in base-K arithmetic.

Example 20.7

Let us work in the familiar Roman alphabet of 26 characters. A
common digraph in English is “th”. Notice that the numerical
equivalent of “T” is 19 and the numerical equivalent of “H” is
7. According to our scheme, we assign to this digraph the single
number 19 · 26 + 7 = 501.

It is not difficult to see that each positive integer corresponds
to a unique digraph. Consider the number 358. Then 26 divides
into 358 a total of 13 times with a remainder of 20. We conclude
that 358 corresponds to the digraph with numberical equivalents
13 20. This is the digraph “NU”.

It is straightforward to see that the greatest integer that can arise in
this labeling scheme for digraphs is for the digraph ΩΩ, where Ω is the
last character in our alphabet. If the first character is assigned to 0 (as
we have done in the past) then the last character is assigned to K − 1
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(where K is the number of characters in the alphabet). The numerical
label is then (K − 1) ·K + (K − 1) = K ·K − 1. So it is safe to say that
K2 − 1 is an upper bound for numerical labels in our digraph system.

We conclude, then, that an enciphering transformation is a function
that consists of a rearrangement of the integers {0, 1, 2, . . . ,K2 − 1}.
One of the simplest such transformations is an affine transformation on
{0, 1, 2, . . . ,K2 − 1}. We think of this set of integers as Z modulo K2.
So the encryption has the form f(P ) = aP + b modK2. As usual, the
integer a must have no prime factors in common with K2 (and hence no
prime factors in common with K).

Example 20.8

We work as usual with the 26-letter Roman alphabet. There are
then 26× 26 digraphs, and these are enumerated by means of the
integers 0, 1, 2, . . . , 262−1. In other words, we work in arithmetic
modulo 676, where of course 676 = 262. The digraph “ME” has
letters “M” corresponding to “12” and “E” corresponding to “4”.
Thus we assign the digraph number 12 · 26 + 4 = 316 mod 676.

If our affine enciphering transformation is f(P ) = 97 · P +
230 then the digraph “ME” is encrypted as 97 · 316 + 230 =
462 mod 676.

If instead we consider the digraph “EM” then we assign the
integer 4·26+12 = 116. And now the encryption is 97·116+230 =
666 mod 676.

Example 20.9

Suppose that we want to break a digraphic encryption system
that uses an affine transformation. So we need to determine a
and b. This will require two pieces of information.

Let us attempt a frequency analysis. From statistical studies,
it is known that the some of the most common digraphs are “TH”,
“HE”, and “EA”. The most common ones that include the “blank
space” character are “E ”, “S ”, and “ T”. If we examine a good-
sized block of ciphertext and notice the most commonly occurring
digraphs, then we might suppose that those are the encryptions
of “TH”or “HE” or “EA”. Consider for example the ciphertext
(based on the 27-character alphabet consisting of the usual 26
letters of the Roman alphabet plus the blank space, and numbered
0 through 26)

XIHZYIQHRCZJSDXIDCYIQHPS .
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We notice that the digraphs “XI”, “YI”, and “QH” each occur
twice in the message. We might suppose that one of these is
the encryption of “TH”, one is the encryption of “HE”, and one
is the encryption of “EA” (although, as indicated above, there
are other possibilities). Let us attempt to directly solve for the
affine transformation that will decript our ciphertext. The affine
transformation will have the form f−1(Q) = a′Q+ b′ and our job
is to find a′ and b′.

To be specific, let us guess that

TH encrypts as YI

HE encrypts as XI .

This means that we have the numerical correspondences

520↔ 656

and
193↔ 629 .

So we have the algebraic equations

520 = a′ · 656 + b′ mod729
193 = a′ · 629 + b′ mod729 .

Subracting the equations as usual (to eliminate b′), we see that

327 = a′ · 27 mod 729 .

Unfortunately this equation does not have a unique solution, be-
cause 27 and 729 have prime factors in common (such as 3).

We make another guess. Let us suppose that

TH encrypts as QH

HE encrypts as YI .

This means that we have the numerical correspondences

520↔ 439

and
193↔ 656 .

So we have the algebraic equations

520 = a′ · 439 + b′ mod729
193 = a′ · 656 + b′ mod729 .
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Subracting the equations as usual (to eliminate b′), we see that

327 = a′ · 217 mod 729 .

Now 217 and 729 have no prime factors in common, so we may
solve for a′ uniquely. The answer is a′ = 408. Substituting into
our first equation gives b′ = 13. So our decryption algorithm is

f−1(Q) = 408Q + 13 . (∗)

We apply this rule to the ciphertext

XIHZYIQHRCZJSDXIDCYIQHPS .

For example, the digraph “XI” has numerical equivalent 629. It
translates, with decryption rule (∗), to 37. This in turn corre-
sponds to the plaintext digraph “BK”. We can already tell we are
in trouble, because there is no word in the English language that
contains the two letters “BK” in sequence.

It is our job then to try all the other possible correspondences
of encrypted digraphs“XI”, “YI”, and “QH” to the plaintext di-
graphs. We shall not work them all out here. It turns out that
the one that does the trick is

XI is the encryption of TH

and
QH is the encryption of EA .

Let us try it and see that it succesfully decrypts our secret mes-
sage.

The proposed correspondences have numerical interpretation

629↔ 520

and
439↔ 108 .

This leads to the equations

520 = a′ · 629 + b′ mod729
108 = a′ · 439 + b′ mod729 .

Subtracting as usual, we obtain

412 = a′ · 190 mod 729 .
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Since 190 and 729 have no prime factors in common, we can cer-
tainly divide by 190 and solve for a′. We find that a′ = 547. Sub-
stituting into the second equation gives b′ = 545. In conclusion,
the decrypting transformation is f−1(Q) = 547Q+ 545 mod 729.

Now we can systematically apply this affine transformation to
the digraphs in the ciphertext and recover the original message.
Let us begin:

XI → 629
f−1

−→ 520→ TH ,

HZ → 214
f−1

−→ 234→ IS ,

The calculations continue, and the end result is the original plain-
text message

THIS HEART OR THAT HEADX

As you can see, an “X” is affixed to the end to force the message
to have an even number of characters (counting blank spaces) so
that the digraph method will work.

One important point that the last example illustrates is that cryp-
tography will always entail a certain amount of (organized) guesswork.

Exercises

1. Use the shift encryption system given by P 7→ P − 3 to
encrypt the message

BYE BYE, BIRDIE .

2. Use the shift decription scheme P 7→ P − 12 to decrypt
the code EAXAZSNMNK .

3. Use a frequency analysis on the ciphertext ZRRGZRURER
to determine the shift encryption scheme. Then decrypt
the message.

4. Use the affine encryption system given by P 7→ 3P +11
to encrypt the message

HELLO MY HONEY .
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5. Use the affine decryption scheme P 7→ [P − 3]/7 to
decrypt the code RDQYPHZYDQYP .

6. Use a frequency analysis on the ciphertext VQNXZA-
VQDURLX to determine the affine encryption scheme.
Then decrypt the message. Discuss this problem in
class.

7. Break the message

THIS WAS NOT THE END

up into two-character digraphs. Now tranlate each di-
graph into a pair of numbers, and then encrypt each
digraph according to the rule P 7→ 13P + 29. Now
translate back to a new encrypted word expressed with
roman characters.

8. Use the digraph technique and the affine transformation
P 7→ 11P − 5 to encrypt the message

NO GOOD WILL COME OF IT.

Your answer should be a string of roman characters.

9. It is known that the ciphertext PZCAILRNSXVC was
obtained from a certain message with the digraph method
using the affine transformation P 7→ 9P + 3. Find the
original message.

10. A certain message is broken up into digraphs and con-
verted to a sequence of numerical expressions in the
standard fashion described in the text. Then it is en-
crypted with an affine transformation. The resulting ci-
phertext is GGANFTNXCQNDSKQC. Use a frequency
analysis to discover the affine transformation and then
decipher the text to a standard English sentence. Dis-
cuss this problem in class.
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11. Consider the message

NOW IS THE TIME FOR FUN.

Transliterate this to a list of numerals, one character
at a time, in the usual way. Now apply the encryption
algorithm

P 7→ 5P 2 + P mod 26 .

What ciphertext results?

12. The ciphertext

AUACCEE

results from applying the encryption scheme

P 7−→ 3P 2 − P + 2

to a certain 7-letter text. The trouble with this encryp-
tion scheme is that it is not one-to-one. It encrypts
more than one letter in the same way. For example,
both G and T get encrypted as A. In spite of this liabil-
ity, determine what the original message was. Discuss
the problem in class.



468 Chapter 20: Alan Turing and Cryptography



References
[BOM] C. B. Boyer and U. Merzbach, History of Mathematics,

John Wiley & Sons, New York, 1988.

[DZI] M. Dzielska, Hypatia of Alexandria, Harvard University
Press, Cambridge, MA, 1995.

[EUC] Euclid, The Elements, 2nd ed., Cambridge University
Press, Cambridge, 1926.

[FRE] M. Freedman, The topology of four-dimensional mani-
folds, J. Diff. Geom. 17(1982), 357–453.

[GIL] C. C. Gillespie, Dictionary of Scientific Biography, Scrib-
ners, New York, 1981.

[GLE] J. Gleick, Isaac Newton, Pantheon Press, New York,
2003.

[TAG] B. Green and T. Tao, The primes contain arbitrarily
long arithmetic progressions, Annals of Math., to ap-
pear.

[KAP1] R. Kaplan, The Nothing that Is: A Natural History of
Zero, Oxford University Press, Oxford, UK, 2000.

[KAP2] R. Kaplan, The Art of the Infinite: The Pleasures of
Mathematics, Oxford UniversityPress, Oxford, UK, 2003.

[KAT] V. Katz, A History of Mathematics: An Introduction,
Addison-Wesley, Reading, MA, 1998.

469



470 Chapter 20: Alan Turing and Cryptography

[KOB] N. Koblitz, A Course in Number Theory and Cryptog-
raphy, Springer-Verlag, New York, 1987.

[KRA1] S. G. Krantz, Real Analysis and Foundations, 2nd ed.,
CRC Press, Boca Raton, Florida, 2005.

[KRA2] S. G. Krantz, Calculus Demystified, McGraw-Hill, New
York, 2002.

[KRP] S. G. Krantz and H. R. Parks, The Implicit Function
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