Introduction To *K*-theory and Some Applications*

By

Aderemi Kuku Department of Mathematics University of Iowa Iowa City, USA

1. GENERAL INTRODUCTION AND OVERVIEW

1.1 What is *K*-theory?

1.1.1 Roughly speaking, *K*-theory is the study of functors (bridges)

 $K_{n \in \mathbf{Z}}$: (Nice categories) \rightarrow (category of Abelian groups

$$\mathbf{C} \to K_n \mathbf{C}$$

(See 2.4 (ii) for a formal definition of a functor).

Note: For $n \le 0$, we have Negative *K*-theory For $n \le 2$, we have Classical *K*-theory For $n \ge 3$, Higher *K*-theory

1.1.2 Some Historical Remarks

K-theory was so christened in 1957 by A. Grotherdieck who first studied $K_0(C)$ (then written K(C)) where for a scheme *X*, *C* is the category P(X) of locally free sheaves of O_X -modules. Because $K_0(C)$ classifies the isomorphism classes in *C* and he wanted the name of the theory to reflect 'class', he used the first letter '*K*' in 'Klass' the German word meaning 'class'.

Next, M.F. Atiyah and F. Hirzebruch, in 1959 studied $K_0(C)$ where C is the category $\operatorname{Vect}_{\boldsymbol{c}}(X)$ of finite dimensional complex vector bundles over a compact space X yielding what became known as topological K-theory. It is usual to denote $K_0(\operatorname{Vect}_{\boldsymbol{c}}(X))$ by KU(X) or $K_{top}^0(X)$.

In 1962, R.G. Swan proved that for a compact space X, the category $\operatorname{Vect}_{\mathbf{C}}(X)$ is equivalent to the category $\mathsf{P}(C(X))$ of finitely generated projective modules over the ring C(X) of complex valued functios on X.

i.e.,

$$\operatorname{Vect}_{\boldsymbol{C}}(X) \approx \mathsf{P}(C(X)). \text{ So } K_0(\operatorname{Vect}_{\boldsymbol{C}}(X)) \approx K_0(\mathsf{P}(\boldsymbol{C}(X))).$$

Thereafter, H. Bass, R.G. Swan, etc. started replacing C(X) by arbitrary rings A and studied $K_0(\mathsf{P}(A))$ for various rings A leading to the birth of Algebraic K-theory. Here $\mathsf{P}(A)$ denotes the category of finitely generated projective modules over any ring A. It is usual to denote $K_0(\mathsf{P}(A))$ by $K_0(A)$ for any ring A. $K_1(A)$ of a ring A was defined by H. Bass and $K_2(A)$ by J. Milnor. (see [3], [58] and [79]). In 1970, D. Quillen came up with the definitions of all $K_n(C)$ for all $n \ge 0$ in such a way that $K_0(P(A))$ coincides with $K_n(A) \quad \forall n \ge 0$.

1.1.3 Some Features of $K_n(C)$

(1) $K_n(C)$ sometimes reflects the structure of objects of *C*.

For example,

(i) Let *F* be a field, G a finite group, M(FG) the category of finitely generated *FG*-modules. Then $K_0(M(FG)) := G_0(FG)$ classifies representations of *G* in P(*F*) whose P(*F*) is the category of finitedimensional vector spaces (see [42]),

(ii) $K_0(ZG)$ contains topological / geometric invariants. E.g., Swan-Well Invariants (see 2.7.1) (iii) $K_i(ZG)$ contains Whitehead torsion – a topological

invariant (see

[3.2.3] or [57]).

(2) Each $K_n(C)$ yields a theory which could map or coincide with other theories.

For example,

- (i) Galois, etale or Motivic cohomology theories (see [37]).
- (ii) De Rham, cyclic cohomology (see [7] or [9, 10])
- (iii) Representation theory, e.g., $K_0(M(FG)) \approx G_0(FG)$ concides with Abelian group of characters of G (see [8, 42] or 2.3 vii).

(3) $K_n(C)$ satisfies various exact sequences connecting K_n, K_{n-1} , etc. For example, Localization sequences, Mayer-victories sequence, etc. These sequences are useful for computations (see [42] or [62]).

1.1.4 A Basic problem in this field is to understand and compute the Abelian groups $K_n(C)$ for various categories 'C'.

Two important examples of 'nice' categories are 'Abelian categories' and 'exact categories'. We now formally define these categories with copious examples and also develop notations for $K_n(C)$ for various *C*.

1.2 Abelian and Exact Categories – Definitions, Examples and Notations

1.2.1 A category consists of a class C of objects together with a set $\operatorname{Hom}_{C}(X,Y)$ of morphisms from X to Y, for each ordered pair (X,Y) of objects of C such that (1) For each triple (X,Y,Z) of objects of C, we have

composition $\operatorname{Hom}_{\mathsf{C}}(Y,Z) \times \operatorname{Hom}_{\mathsf{C}}(X,Y) \to \operatorname{Hom}_{\mathsf{C}}(X,Z)$.

(2) Composition of morphisms is associative i.e., for composable morphisms f.g.h g(hf) = (gh)f

(3) There exists identity $1_X \in \text{Hom}(X, X)$ such that if $g \in \text{Hom}_{C}(X, Y)$ and $h \in \text{Hom}_{C}(Z, X)$, $g1_X = g$, and $1_X h = h$. **Examples:**

(i) Sp:=category of topological spaces, ob(Sp) = topological spaces, Hom_{Sp}(X,Y) = {continuous maps X → Y}.
(ii) Gp:=category of groups. ob(Gp) are groups Hom_{Gp}(G,H) = groups homomorphisms G → G'.
For more examples (see [55]).

1.2.2 Examples of Abelian Categories (for motivation)

- (1) A b or -Mod := category of Abelian groups.
 ob (Ab) = Abelian groups
 . Morphisms are Abelian group homomorphism.
- (2) F a field; F-Mod := category of vector spaces over F.
- ob (F Mod) := vector spacesMorphisms are linear transformation (3) R a ring with identity. (R - Mod) := category of R-modules Morphisms are R-module homomorphisms.

1.2.3 Definitions of an Abelian Category

A category A is called an Abelian category if

- (1) it is an Addictive category, that is:
 - (a) There exists a zero object '0' in A
 - (b) Direct sum (= direct product) of any two objects of A exists in A.
 - (c) $\operatorname{Hom}_{A}(M,N)$ is an Abelian group such that composition distributes over addition.
- (2) Every morphism in *A* has a kernel and a cokernel.
- (3) For any morphism f, coker (ker f) = ker (coker f).

1.2.4 Note: A morphism $g: K \to M$ is called a kernel of a morphism $f: M \to N$ if for any morphism $h: P \to M$ with $f \cdot h = 0$, there exists a unique arrow $\kappa: P \to K$ such that $h = g \circ k$

$$K \xrightarrow{g} M \xrightarrow{f} N$$

$$k \xrightarrow{k} f$$

$$h$$

Equivalently: given an object P in A, we have an exact sequence

 $0 \to \hom_{A}(P, K) \xrightarrow{s_{\kappa}} \hom_{A}(P, M) \xrightarrow{f_{p}} \hom_{A}(P, N)$ is exact.

Analogously, a morphism $g: N \to C$ is called a cokernel of $f: M \to N$ if for any $P \in 0b$ A

 $0 \to \hom_A(C, P) \to \hom_A(N, P) \xrightarrow{f^{\wedge}} \hom_A(M, P)$ is exact.

Note: A sequence $A \xrightarrow{f} B \xrightarrow{g} C$ is said to be exact at *B* if ker(g) = Im(f).

1.2.5 Definition of an Exact Category

An exact category is a small additive category C (embeddable in an Abelian category A) together with a family E of short exact sequences $0 \rightarrow C' \rightarrow C \rightarrow C'' \rightarrow 0$ (I) such that

(i) *E* is the class of sequences in *C* that are exact in *A*(ii) *C* is closed under extensions i.e., for any exact sequence 0 → C' → C → C'' → 0 in *A* with C', C'' in *C*, we also have C ∈ C.

Before giving a construction of K_n (*C*) $n \ge 0$, we give some relevant examples of *C* and develop notations for K_n (*C*).

1.2.6 Examples

1. An Abelian category is an exact category when it is considered together with a family of short exact sequences.

2. Let *A* be any ring with identity $C = \mathbf{P}(A)$ (resp. $\mathbf{M}(A)$) the category of finitely generated projective (resp. finitely generated) A-modules. Write $K_n(A)$ for $K_n(\mathbf{P}(A)$ and $G_n(A)$ for $K_n(\mathbf{M}(A))$ For $n \ge 0$, e.g.,

- (i) A = , , , .
 (ii) A = integral domain, R. A = F (a field, - could be quotient field of R) A = D (a division ring)
 (iii) G any discrete group (could be finite) A = G, RG, G, G, G (in the notation of (i) or (ii). - These are group-rings.
- (iv) G a finite group, ZG is an example of a Z-order in the semi-simple algebra QG.

(v) **Definition**

Let *R* be a Dedekind domain with quotient field *F* (e.g., R = Z (resp. Z_p), F = Q(resp Q_p)

p a rational prime or more generally $\hat{R}_{\underline{p}}, F_{\underline{p}}$ (\underline{p} a prime ideal of *R*). An *R*-order Λ in semi-simple *F*-algebra Σ is a subring of Σ such that *R* is contained in the centre of Λ , Λ is a finitely generated *R*-module and

 $F \otimes_R \Lambda = \Sigma$, (E.g., $\Lambda = ZG, Z_pG, RG, R_pG$ G a finite group).

(vi) Let *A* be a ring (with 1), $\alpha: A \to A$ an automorphism of *A*, $A_{\alpha}(T) =$

 $A_{\alpha}(t, t^{-1}) := \alpha$ -twisted Laurent series ring over A (i.e., Additively $A_{\alpha}[T] = A[T]$, with multiplication given by $(at^{i}) \cdot (bt^{i})$ $= a \alpha^{-1}(b) t^{i+j}$ for $a, b \in A$). Let $A_{\alpha}[t]$ be the subring of $A_{\alpha}(T)$ generated by A and t. **Note:** If $\Lambda = RG$, $\Lambda_{\alpha}[T] = RV$ where $V = G \underset{\alpha}{\times} | T$ is a virtually infinite cyclic group and *G* is a finite group, α an automorphism of *G* and the action of the infinite cyclic group

 $T = \langle t \rangle$ on G is given by $\alpha(g) = tgt^{-1}$ for all $g \in G$.

(3) X a compact topological space, F = or, $\operatorname{Vect}_F(X) :=$ category of finite dimensional vector bundles on X. (See [2]). Write $K_n^F(X)$ for K_n (Vect_F(X).

Theorem (Swan): There exists an equivalence of categories $\operatorname{Vect}_{C}(X) \approx P(X)$ where X is the ring of complex-valued functions on X. Hence

 $K^0(X)$: = $K_n(\operatorname{Vect}_F(X) \approx K_n((X)) = K_n(C(X))$ (I) Note: (I) gives the first connection between topological and Algebraic *K*-theory. (See [7]) Gelford-Naimark theorem says that any unital commutative C^* algebra A has the form $A \approx C(X)$ for some compact space X. If A is a non-commulative C[^]-algebra, then K-theory of A leads to "noncommutative geometry" in the sense that A could be conceived as ring of functions on a "non-commutative or quantum" space. Note that any not necessarily unital commutative C-algebra A has the form $C_0(X)$ where X is a locally compact space and $X^+ = X \{ p_\infty \}$, the one point compactification of X. When X is compact $C_0(X) = C(X)$.

Note that $C_0(X) = \{ \alpha : X^+ \to \mathbf{C} \mid \alpha \text{ continuous and } \alpha(C_0) = 0 \}.$

(4) Let X be a scheme (e.g., an affine or projective algebraic variety). (See [8] or below). Let P(X) be the category of locally free sheaves of O_X -modules. Write $K_n(X)$ for $K_n(P(X))$. Let $\mathbf{M}(X)$ be the category of coherent sheaves of O_X -modules. Write $G_n(X)$ for $K_n(\mathbf{M}(X))$. Note that if X = Spec(A), A commutative ring we recover $K_n(A)$ and $G_n(A)$.

Recall (Definition of Affine and Projective Varieties)

(a) Let *K* be an algebraically closed field (e.g., or algebraic closure of a finite field. Can regard polynomials in $A = A_n = K[t_1, ..., t_n]$ as functions $f: K^n \to K$. An algebraic set in $K^n = \{x \in K^n \text{ satisfying } f_i(x) = 0 \ 1 \le i \le r, f_i \in A\}$.

• If $S \subset A, V(S) = \{x \in K^n | f(x) = 0 \forall f \in S\}$ define closed sets for a topology (Zariski topology) on the affine space K^n , also denoted $\mathbf{A}^n(K)$.

Note that $(V(S_1) - V(S_2)) = V(S_1S_2)$ $\bigcap_{i \in I} V(S_i) = V(S_j), V(A) = \phi, V(\phi) = K^n$.

- Also if $E \subset K^n$, $I(E) = \{ f \in A | f(x) = 0 \quad \forall x \in E \}$ is an ideal in A.
- Let $X \subset K^n$ be an algebraic set. A function $\varphi: X \to K$ is said to be regular if $\varphi = f|_X$ for some $f \in A$.
- The regular functions on A form a K-algebra K[X] and $K[X] \cong A/\underline{a}$ where $\underline{a} = I(X)$.
- Call $(X_1K[X])$ an affine algebraic variety where $K[X] = O_X(X)$.

- (b) Let $V \in P(K)$, P(V) = set of lines (i.e., 1-dim subspaces) of V. Write $P_n(K)$ for $P(K^n)$. Elements of $P_n(K)$ are classes of (n + 1)-tangles $[x_0, x_1, \dots, x_n]$ where $[x_0, \dots, x_n] \cong [\lambda x_0, \dots, \lambda x_n]$ if $\lambda \neq 0$ in K.
 - If $S \subset K[t_0, ..., t_n]$ is a set of homogeneous polynomials $V(S) = \{x \in P_n(K) | f(x) = 0 \quad \forall \quad f \in S\}$. The V(S) are closed sets for Zariski topology on $P_n(K)$.
 - A projective algebraic variety X is a closed subspace of $P_n(K)$ together with its induced structure sheaf $O_X = O_{P_n}|_X$.

- (5) Let *G* be an algebraic group over a field *F*, (a closed subgroup of $GL_n(F)$) e.g., $SL_n(F)$, $O_n(F)$ and *X* a *G*-scheme, i.e., there exists an action $\theta: G \underset{F}{\times} X \to X$. Let $\mathbf{M}(G,X)$ be the category of G-modules *M* over *X*. (i.e., *M* is a coherent O_X -module together with an isomorphism of $O_{G \underset{F}{\times} X}$ -module $\theta *(M) = p_2^*$ (*M*), with $p_2: G \underset{F}{\times} X \to X$; satisfying some co-cycle conditions) (see [83]). Write $G_n(G, X)$ for $K_n(\mathbf{M}(G, X))$.
 - Let P(G,X) be the full subcategory of M(G,X) consisting of locally free O_X-modules. Write K_n(G,X) for K_n(P(G,X)). (see [43]).

(6) Let \widetilde{G} be a semi-simple, connected, and simply connected algebraic group over a field F. $\overline{T} \subset \widetilde{G}$ a maximal G-split torus of \widetilde{G} , $\widetilde{P} \subset \widetilde{G}$ a parabolic subgroup of \widetilde{G} containing the torus \widetilde{T} .

The factor variety $\widetilde{G}/\widetilde{F}$ is smooth and projective. Call **F** = $\widetilde{G}/\widetilde{P}$ a flag variety.

E.g.,

$$\widetilde{G} = SL_n \quad \widetilde{P} = \left\{ \begin{pmatrix} \underline{a} & \underline{b} \\ 0 & \underline{c} \end{pmatrix} \det \underline{a} \det \underline{c} = 1 \quad \underline{a} \in GL_n \quad \underline{c} \in GL_{n-k} \right\}.$$

Then $F = \widetilde{G}/\widetilde{P}$ is the Grassmanian variety of *k*-dimensional linear subspaces of an *n*-dimensional vector space. Write $K_n(G,F)$ for $K_n(P(G,F))$. (See [43])

6. Let *F* be a field and *B* a separable *F*-algebra, *X* a smooth projective variety equipped with the action of an affine algebraic group *G* over *F*. Let $VB_G(X_1B)$ be the category of vector bundles on *X* equipped with left *B*-module structure. Write $K_n(X, B)$ for $K_n(VB_G(X, B))$. In particular, in the notation of (5), we write $K_n(\mathbf{F}, B)$ for $K_n(VB_G(\mathbf{F}, B))$. (See [43])

7. Let *G* be a finite group, *S* a *G*-set. Let \underline{S} be a category defined by $ob \underline{S} = \{\text{elements of } S\}; \underline{S}(s.,t) = \{(g,s) | g \in G, g s = t\}$. Let *C* be an exact category. [\underline{S}, C] the category of functors $\xi : \underline{S} \to C$ Then [\underline{S}, C] is also an exact category where a sequence

 $0 \to \xi' \to \xi \to \xi'' \to 0 \text{ is said to be exact in } [S, C] \text{ if } \\ 0 \to \xi'(s) \to \xi(s) \to \xi''(s) \to 0 \text{ is exact in } C. \text{ Write } \\ K_n^G(\underline{S}, \mathbb{C}) \text{ for } K_n([\underline{S}, \mathbb{C}]).$

E.g., C = M(A), A a commutative ring,

S = G/H, then $[G/H, \mathsf{M}(A))] = \mathsf{M}(AH)$.

• $[G/H, P(A)] = P_A(AH) = \text{category of finitely generated } AH$ modules that are projective over A. (i.e., AH lattices)

 $K_n(G/H, \mathsf{M}(A)) \coloneqq G_n(AH).$ If A is regular, then $G_n(A, H) \cong G_n(AH).$ (See [25])

2. $K_{\theta}(C)$, C AN EXACT CATEGORY: DEFINITIONS AND EXAMPLES

2.1 Define the Grathendieck group $K_0(C)$ of an exact category C as the Abelian group generated by isomorphism classes (C) of C-objects subject to the relations (C') + (C'') = (C) wherever $0 \rightarrow C' \rightarrow C \rightarrow C'' \rightarrow 0$ is exact in C.

2.2 Remarks

(i) $K_0(\mathbb{C}) \cong \mathbb{F}/\mathbb{R}$ where F is the free Abelian group on the isomorphism classes (C) of C -objects and R is the subgroup generated by all (C') + (C'') - (C) for each short exact sequence $0 \to C' \to C \to C'' \to 0$ in C. Denote by [C] the class of (C) in $K_0(\mathbb{C})$.

- (ii) The construction in 2.1 satisfies a universal property. If $\chi \ C \to A$ is a map from *C* to an Abelian group *A*, given that $\chi(C)$ depends only on the isomorphism class of *C* and $\chi(C'') + \chi(C') = \chi(C)$ for any exact sequence $0 \to C' \to C \to C'' \to 0$, then there exists, a unique homomorphism $\chi': K_0(C) \to A$ such that $\chi(C) = \chi'(C)$ for any *C*-object *C*.
- (i) Let $F: C \to \mathsf{Dbe}$ an exact functor between two exact categories C, D (i.e., F is additive and takes short exact sequences in C to short exact sequences in D). Then F induces a group homomorphism $K_0(C) \to K_0(\mathsf{D})$.
- (ii) Note that an Abelian category A is also an exact category and the definition of $K_0(A)$ is the same as in definition 2.1.

If C is an exact category in which every s.e.s (i) $0 \to C' \to C \to C'' \to 0$ splits. E.g., $\mathsf{P}(A)$, $\operatorname{Vect}_{\mathsf{C}}(X)$, then $K_0(C)$ is the Abelian group on isomorphism classes of Cobjects with relation $(C') + (C'') = (C' \oplus C')$. In this case, (C, \oplus) is an example of a "symmetric monoidal category" with one property that the isomorphism classes of objects of C form an Abelian monoid and $K_0(C)$ is then the 'group completion' or 'Grathendiuk group' of such a monoid (see [42], Chapter 1, 1.2, 1.3). In fact, this construction generalizes standard procedure of constructing integers from the natural numbers.

2.3 Examples

- (i) If *A* is a field or division ring or a local ring or a principal ideal domain, then $K_0(A) \cong \mathbb{Z}$. This follows from the fact that every $P \in \mathsf{P}(A)$ is free (i.e., $P \cong A^s$ for some *s*) and moreover, *A* satisfies the invariant bases property i.e., $A^r \cong A^s \Rightarrow r = s$.
- (ii) Let A be a (left) Noetherian ring (i.e., every left ideal is finitely generated). Then the category (M(A) of finitely generated (left)-A-modules is an exact category and we denote $K_0(M(A))$ by $G_0(A)$. The inclusion functor $P(A) \rightarrow M(A)$ induces a map $K_0(A) \rightarrow G_0(A)$ called the Cartan map. For example, A = RG (*R* a Dedekind domain, *G* a finite group) yields a Cartan map $K_0(RG) \rightarrow G_0(RG)$.

If Λ is left Artinian i.e., the left ideals of Λ satisfy descending chain condition, then $G_0(\Lambda)$ is free Abelian on $[S_1], \dots, [S_r]$ where the $[S_i]$ are distinct classes of simple Λ modules, while $K_0(\Lambda)$ is free Abelian on $[I_1], \dots, [I_t]$ and tho I_i are distinct classes of indecomposable projective Λ modules (see [8]). So, the map $K_0(A) \rightarrow G_0(\Lambda)$ gives matrix (a_{ij}) where a_{ij} = the number of times S_j occurs in a composition series for I_i . This matrix is known as the Cartan matrix.

If Λ is left regular (i.e., every finitely generated left Λ -module has finite resolution by finitely generated projective left Λ -modules), then it is well known that the Cartan map is an isomorphism.

- (iii) Recall also that a maximal *R*-order Γ in Σ is an order that is not contained in any other R-order. Note that Γ is regular. So, as in (ii) above, we have Cartan maps $K_0(\Gamma) \rightarrow G_0(\Gamma)$ and when Γ is a maximal order, we have $K_0(\Gamma) \cong G_0(\Gamma)$.
- (i) Let *R* be a commutative ring with identity. Λ an *R*-algebra. Let $P_{R}(\Lambda)$ be the category of left Λ -modules that are finitely generated and projective as *R*-modules (i.e., Λ lattices). Then $P_{R}(\Lambda)$ is an exact category and we write $G_0(R,\Lambda)$ for $K_0(\mathsf{P}_R(A))$. If $\Lambda = RG$, G a finite group, we write $P_R(G)$ for $P_R(RG)$ and also write $G_0(R,G)$ for $G_0(R, RG)$. If $M, N \in \mathsf{P}_R(\Lambda)$, then, so is $(M \otimes_R N)$, and hence the multiplication given in $G_0(R,G)$ by $[M][N] = (M \otimes_R N)$ makes $G_0(R,G)$ a commutative ring with identity.

- (v) If *R* is a commutative regular ring and Λ is an *R*-algebra that is finitely generated and projective as an *R*-modules (e.g., $\Lambda = RG$, *G* a finite group or *R* is a Dedekind domain with quotient field *F*, and Λ is an *R*-order in a semi-simple *F*-algebra), then $G_0R,\Lambda) \cong G_0(\Lambda)$
- (i) Let *F* be a field, *G* a finite group. A representation of *G* in P(F) is a group homomorphism $p: G \to \operatorname{Aut}(V) \quad V \in \mathsf{P}(F)$. Call *V* a representation space for ρ . The dimension of *V* over *F* is called the degree of ρ .

Note:

- ρ determines a *G*-action on *V* i.e., $G \times V \to V$ $(g,v) \to \rho(g)v = gv$ and vice versa.
- Two representations $(V_1\rho)$ and $(V'_1\rho')$ are said to be equivalent if there exists an *F*-isomomorphism $\beta: V \cong V'$ such that $\rho'(g) = \beta \rho(g)$

- There exists, 1 1 correspondence between representations of *P* in P(F) and *FG*-modules.
- Can write a representation of G in P(F) as a pair $(V_1\rho)$. $V \in P(F)$ and $\rho: G \to Aut(V)$.
- If C is any category and G a group. A representation of G in C (or a G-object in C) is a pair (X, ρ) X ∈ obC, ρ: G → Aut(X) a group-homomorphism.

The *G*-objects in *C* forms a category C_G where for $(X, \rho), (X', \rho'), \operatorname{mor}_{C_G}(X, \rho), (X', \rho')$ is the set of all C - morphisms $\alpha : X \to X'$ such that for each $g \in G$, the diagram

Let G be a finite group, S a G-set, \underline{S} the category associated (vii) to S, C an exact category, $[\underline{S}, C]$ the category of covariant functors $\varsigma : \underline{S} \to \mathsf{C}$. We write ς_s for $\varsigma(s), s \in S$. Then, $[S, \mathsf{C}]$ is exact category where the sequence an $0 \rightarrow \varsigma' \rightarrow \varsigma \rightarrow \varsigma'' \rightarrow 0$ in [S, C] is defined to be exact if $0 \to \varsigma'_s \to \varsigma_s \to \varsigma''_s \to 0$ is exact in C for all $s \in S$. Denote by $K_0^G(S, \mathbb{C})$ the K_0 of $[S, \mathbb{C}]$. Then $K_0^G(-, \mathbb{C}): G \operatorname{Set} \to \operatorname{Ab}$ is a functor called 'Mackey' functor. We also note the fact that $K_n^G(-,C), n \ge 0$ is also a 'Mackey' functor. (See [42]) If $\underline{S} = \underline{G/G}$, then $[G/G, \mathbf{C}] \cong \mathbf{C}_{G}$ analogous constructions to the one above can be done for G, a profinite group, and compact Lie groups (see [42], [28], [35]).

Now if *R* is a commutative Noetherian ring with identity, we have $[\underline{G/G}, \mathsf{P}(R)] \cong \mathsf{P}(R)_G \cong \mathsf{P}_R(RG)$, and so, $K_0^G(\underline{G/G}, P(R)) \cong G_0(R, G) \cong G_0(RG)$. This provides an initial connection between *K*-theory of the group ring *RG* and Representation theory. As observed in (iv) above $G_0(R, G)$ is also a ring.

In particular, when R = C, P(C) = M(C), and $K_0(P(C)_G) \cong G_0(C, G) = G_0(CG)$ is the Abelian group of characters, $\chi: G \to C$ (see [30]), as already observed in this paper. If the exact category *C* has a pairing $C \times C \rightarrow C$, which is naturally associative and commutative, and there exists $E \in C$ such that (E,M) = (M,E) = M for all $M \in C$, then $K_0^G(-,C)$ is a Green functor and moreover, for all $n \ge 0$, $K_n^G(-,C)$ is a module over $K_0^G(-,C)$. (See [42])

2.4 K_{θ} of Schemes

- (i) More Examples of Abelian Categories: Functor Categories and Sheaves
 - Let B be a small category i.e., (*ob* B is a set), A an Abelian category. Then the category of functors B → A is also an Abelian category denoted by A^B.
 Note: *ob* A^B = {functors : B → A) Morphisms are natural transformations of functors.

• *Recall.* Let *C*, *D* be two categories. A covariant (resp. contravarient) functor from *C* to *D* is an assignment to each object $C \in ob(C)$ an object F(C) in *D* as well as an assignment to each morphism $f, C \to C'$, a *D*-morphism $F(f): F(C) \to F(C')$ (resp. $F(C') \to F(C)$) such that 1. $F(1_C) = 1_{F(C)}$ for any $C \in C$;

2.
$$F(gf) = (F(g)F(f) \text{ (resp. } F(gf) = F(f) F(s) \text{.}$$

Example:

1. *R* a commutative ring, $F : R \operatorname{-Mod} \to \operatorname{-Mod}$ given by $F = \operatorname{Hom}_{R}(-, N)$

N fixed in R-Mod. F is contravariant $F' = \text{Hom}_R(M-)$ is covariant.

In fact $\operatorname{Hom}_{R}(-,-)$ is a bifunctor $R-\operatorname{\mathsf{M}} od \times R-\operatorname{\mathsf{M}} od \to -\operatorname{\mathsf{M}} od$ $(M, N) \to \operatorname{Hom}_{R}(M, N)$ covariant in N and contravarient in M.

2.
$$F: (\text{Groups}) \rightarrow -\text{mod}$$

 $G \rightarrow G/[G,G]$

is covariant – called Abelianization functor.

• Let F, F' be two functors - from C to D. A natural transformation from F to F' is an assignment to an object $C \in \mathbb{C}$ a D-morphisms $\eta_C : F(C) \to F(C)$ such that if $\alpha : C \to C'$ is a C-morphism, then the diagram

$$FC \xrightarrow{\eta_{C}} F'C$$

$$\downarrow F(\alpha) \qquad \qquad \downarrow F'(\alpha) \qquad \text{commutes}$$

$$FC' \xrightarrow{\eta_{C'}} F'C'$$
- Note: A functor (roughly speaking) is a 'bridge' for crossing from one category to another.
- Any partially ordered set (*E*,≤) has the structure of a category where

ob(E) = elements of E

 $\hom_E(x, y) = \phi \text{ unless } x \le y.$

• Let X be a topological space, U the poset of open subsets of X. A contravariant functor $F: U \rightarrow A$ (A an Abelian category) is called a *presheaf* on X.

Note: The presheaves on X form an Abelian category denoted by Presh (X).

A sheaf on *X* is a presheaf *F* satisfying:

If $\{U_i\}$ is an open covering of a subset $U \subset X$, then we have an exact sequence:

$$0 \to F(U) \to \Pi F(U_i) \rightrightarrows \prod_{i < j} F(U_i \cap U_j)$$

(i.e., if $f_i \in F(U_i)$ are such that f_i and f_j agree on $F(U_i \cap U_j)$, then there exists, a unique $f \in F(U)$ that maps to every f_i under $F(U) \to F(U_i)$.

Note: Sh(X) is also an Abelian category. (See [93] or [18])

- (i) A ringed space (X, O_X) is a topological space X together with a sheaf O_X of rings on X.
- (ii) An O_X -module is a sheaf M together with a sheaf morphism $O_X \times M \to M$ s.t for each $U \subset X$, M(U) is a unitary $O_X(U)$ -module.

(ii) Let *R* be a commutative ring with identity Spec(*R*) = {prime ideals of *R*}

A subset $Y \subset \operatorname{Spec}(R)$ is closed off

$$Y = V(I) = \{ \underline{p} \in \operatorname{Spec}(R) \mid \underline{p} \supset I \}, I \text{ an ideal of } R.$$

One could view *R* as the ring of functions on Spec (*R*) and V[I] as the set of points $y \in \text{Spec}(R)$ at which all the functions in I vanish. If $f \in R$ is viewed as a function on Spec (*R*), its value at $y \in \text{Spec}(R)$ is its image in the residue class field k(y) := the field of fractions of R/y.

If X = Spec(R), there exists a sheaf of rings O_X on X where O_X(U) = S⁻¹R and S = {f ∈ R | ∀ y ∈ U, f ∉ y} O_X(X) = R. Call the ringed space Spec(X,O_X) an affine scheme.

(iii) A scheme is a topological space X together with a sheaf of rings on X such that $X = U_i$, $(U_i \text{ open in } X)$ and $(U_i, O_X | U_i)$ is an affine scheme.

A morphism of schemes $f, X \to Y$ is a continuous map of the underlying topological space together with (for each open set $U \subset Y$) a ring homomorphism $f_U^*: O_Y(U_i) \to O_X(f^{-1}U)$ compatible with the restriction maps for each $V \subset U$. In addition, we require hat for $x \in f^{-1}(U) g \in O_Y(U)$, if g vanishes on f(x), then $f^*(y) \in O_X(f^{-1}U)$ vanishes at x. **Note:** Say that $f \in O_Y(U)$ vanishes at a point $y \in U$ if given any affine neighbourhood W of y, the image of f in $O_W(U \cap W)$ lies in the prime ideal corresponding to y.

Recall: $k[X] = k[t_1, ..., t_n] / \underline{a}_X$. View $f \in k[X]$ as a function on the set of points of *X*.

(iv) A scheme X over Z is a morphism of schemes $X \to Z$ Let X_1, Y , be schemes over Z

$$\begin{array}{ccccc} X \times Y & \to & Y \\ \downarrow & & \downarrow g & (I) \text{ pull back} \\ X & \xrightarrow{f} & Z \end{array}$$

 $X \underset{Z}{\times} Y$ is the fibre product in the category of schemes over Z given by the diagram (I).

 $X \underset{Z}{\times} Y$ is the fibre product in the category of schemes over Z given by the diagram (I).

• If
$$X = \operatorname{Spec}(A), Y = \operatorname{Spec}(B) Z = \operatorname{Spec}(C)$$

 $X \underset{Z}{\times} Y = \operatorname{Spec}(A \underset{C}{\otimes} B)$
• Put $A_X^n = \operatorname{Spec}(Z[t_1, \dots, t_n])$
 $A_X^n = A_Z \underset{\operatorname{Spec}(Z)}{\times} X$

(v) Let X be a scheme. Define an algebraic bundle on X as a morphism of schemes $\pi: E \to X$ together with maps

$$s: E \underset{X}{\times} E \to E$$
$$\mu: A^{1}_{Z} \underset{\text{Spec}(Z)}{\times} E \to E$$

(satisfying axioms similar to those of a topological vector bundles) together with local triviality: i.e., there exists an open covering $X = U_{\alpha}$ of X together with isomorphism

$$E\big|_{U_{\alpha}} \cong \pi^{-1}(U_{\alpha}) \cong \mathbf{A}^{n}$$

Recall that a topological vector bundle *E* over *X* consists of continuous maps $\pi : E \to X$ and $\mathbb{C} \times E \to E$ (scalar multiplicator), $\rho : E \underset{X}{\times} E \to E$ (addition) satisfying (1) for $\lambda \in \mathbb{C}$, $v \in E$, $\pi(\lambda \cdot (v)) = \pi(v)$, $\pi(\rho(v, w)) = \pi(v)$ (2) $= \pi(w)$ (3) If $E_x = \pi'(x)$, $\mu : \mathbb{C} \times E_x \to E_x$, $\sigma_x : E_x \times E_x \to E_x$ makes E_x into a complex vector space. (vi) It is usual to view a vector bundle $\pi: E \to X$ via its sheaf of sections $E(U) = \{\text{maps } s: X \to E \text{ s.t } \pi \circ s = id \}$ i.e., *E* is required to be a locally free sheaf of O_X -modules i.e., there exists an open cover $X = U_{\alpha}$ such that

$$\mathsf{E}\big|_{U_{\alpha}} \cong A_{U_{\alpha}}^{n_{\alpha}} \text{ for each } n_{\alpha} \in \mathbf{N} .$$

A morphism of bundles is just an O_X -linear map $f : \mathsf{E} \to \mathsf{F}$ i.e., for each open set $U \subset X$ we have an $O_X(U)$ -linear map of modules $f|_U$ $\mathsf{E}(U) \to \mathsf{E}(U)$ at for $V \subset U$, the map $|Q_X(U)| = |f| |Q_X(U)|$

- $\mathsf{E}(U) \to \mathsf{F}(U)$ s.t for $V \subset U$, the map $\rho_{vu} f|_U = f|_V \rho_{VU}$.
- (i) If X is a scheme. Define $K_0(X) := K_0(\mathsf{P}(X))$. If E is a vector bundle, E a locally free sheaf with

 $[E] = [E] \in K_0(X)$ $[E] \cdot [F] = \begin{bmatrix} E \otimes_{O_X} F \end{bmatrix} \quad (\text{product} \quad \text{in} \quad K_0(X) \text{ where}$ $(E \otimes F)(U) = E(U) \otimes_{O_X} F(U).$ So $K_0(X)$ is a commutative ring.

• If $f: X \to Y$ is a morphism of schemes, there exists an exact functor $f^*: \mathsf{P}(Y) \to \mathsf{P}(X): \mathsf{E} \to f^*\mathsf{E}$

Note: If $U \subset X$, $V \subset Y$, are affine open sets with $f(U) \subset V$, then $f^*: K_0(Y) \to K_0(X)$

So K_0 is a contravarient functor (schemes) \longrightarrow (commutative rings)

(iii) If X is a smooth projective curve over a field k, (see [18]) then

 $K_0(X) \approx Z \oplus \operatorname{Pic}(X)$ $[E] \to rk(E) \oplus \left(\Lambda^{rk(E)}E\right)$

where Pic(X) = group of isomomorphism classes of line bundles (i.e., variant bundles of rank 1) over *X*.

(iv)
$$K_0(\boldsymbol{P}_k^n) \cong \boldsymbol{Z}^{n+1}$$

(v) If X is a regular scheme (i.e., any coherent sheaf of O_X -modules has a finite global resolution by locally free sheaves) then $K_0(X) \cong G_0(X)$.

2.5 Some Topological *K*-theory

2.5.1 Let X be a compact space.

Recall: $K^0_{\boldsymbol{c}}(X) := K_0(\operatorname{Vect}_{\boldsymbol{c}}(X)) \cong K_0(\boldsymbol{C}X)$. $K^0_{\boldsymbol{c}}(X)$ is also written $K^0_{tor}(X)$ or KU(X).

$$K_{\mathbf{R}}^{0}(X) := K_{0} \big(\operatorname{Vect}_{\mathbf{R}}(X) \big).$$

Write KO(X) for $K_0(\operatorname{Vect}_{\mathbf{R}}(X))$.

Note: $K_{tor}^0(X)$ as a generalized cohomology theory arises as homotopy groups of spectra. We now introduce the notion of spectra.

2.5.2 An Ω -spectrum \underline{E} is a set of pointed spaces $\{E^0, E^1, \cdots\}$ each of which has the homotopy type of a CW-complex such that each map $E^i \to \Omega(E^{i+1})$ is a homotopy equivalence i.e., we have a 'sequence of homotopy equivalences $E^0 \cong \Omega E^1 \cong \Omega^2 E^2 \cong \cdots \cong \Omega^n E^n$.

2.5.3 Theorem (see [2]).

Let \underline{E} be an Ω -spectrum. For any topological space $A \subset X$, put $h_E^n(X, A) = [(X, A), E^n] \quad n \ge 0$.

Then $(X, A) \rightarrow h_{\underline{E}}^*(X, A)$ is a generalized cohomology theory, namely, it satisfies all of the Eulenberg-Steenrod axioms except that its value at a point $(*, \phi)$ may not be that of ordinary cohomology. So,

(1) $h_E^*(-)$ is a functor (Topological pairs) \rightarrow (Graded Abelian groups),

(2) For each $n \ge 0$, and each pair (X, A) of spaces, there exists, a functorial connecting homomorphism

$$\alpha: h_{\underline{E}}^n(A) \to h_{\underline{E}}^{n+1}(X,A)$$

(3) The connecting homomorphisms in (2) determine long exact sequence for every pair (X, A).

(4) $h_{\underline{E}}^{n}(-)$ satisfies excision i.e., for every pair (X, A) and every subspace $U \subset A$ s.t. $\overline{U} \subset \text{Int}(A)$ $h_{\underline{E}}^{*}(X, A) \cong h_{\underline{E}}^{m}(X - U, A - U)$

Note: Above, $h_{\underline{E}}^{\infty}(X) := h_{\underline{E}}^{*}(X, \phi) = h_{\underline{E}}^{*}(X_{+}, *)$ where X_{+} is the disjoint union of X and a point *.

2.5.4 $KO_{ton}^{*}(-), K_{ton}^{*}(-) = KU(-)$ are the generalized cohomology theories associated to the Ω -spectrum given by $BO \times \mathbb{Z}$ and $BU \times \mathbb{Z}$ i.e.,

$$K_{ton}^{2j}(X) = [X_i BU \times \mathbf{Z}]$$
$$K_{ton}^{2j-1}(X) = [X, U]; K.$$

2.5.5 Bott Periology

1. $BO \times \mathbf{Z} \sim \Omega^8 (BO \times \mathbf{Z})$

Moreover, the homotopy groups $\pi_i(BO \times \mathbb{Z}) \cong KO^i$ are given by $\mathbb{Z}, \mathbb{Z}/2, \mathbb{Z}/2, 0, \mathbb{Z}, 0, 0, 0$ respectively for $i \equiv 0, 1, 2, 3, 4, 5, 6, 7 \pmod{8}$

2.
$$BU \times Z \sim \Omega^2 (BU \times \mathbf{Z})$$
 and $\pi_i (BU \times \mathbf{Z}) = \begin{cases} Z \text{ if } i \text{ is even} \\ 0 \text{ if } i \text{ is odd} \end{cases}$.

3. For any topological space *X*, and any $i \ge 0$, we have a natural homomorphism

$$\boldsymbol{\beta}: K_{top}^{-1}(X) \to K_{top}^{-i-2}(X)$$

Note:

For
$$i \in Z$$
, $K_{top}^{i}(X) = \begin{cases} K_{top}^{0}(X) \text{ for } i \text{ even} \\ \\ K_{top}^{-1}(X) \text{ for } i \text{ odd} \end{cases}$,
Let $S^{0} = (*,*) = *.$

Then

$$K_{\text{top}}^{n}(*) = \begin{cases} \mathbf{Z} \text{ if } n \text{ is even} \\ 0 \text{ if } n \text{ is odd} \end{cases}$$

$$K_{\text{top}}^{i}(S^{n}) = \begin{cases} \mathbf{Z} \text{ if } n+n \text{ is even} \\ 0 \text{ if } n \text{ is odd} \end{cases}$$

2.6 *K*-theory of C^* -algebras

2.6.1 A C^* -algebra is a Banach algebra satisfying $|a * a| = |a|^2$ for all $a \in A$. Let A be a C^* -algebra. Define $K_i^{\text{ton}}(A) := \pi_i (BGL(A)) = \pi_{i-1} (GL(A)) \cdot (GLA)$ is a topological group). **Note:** $K_0(A) = K_0(P(A)) \approx K_0^{\text{ton}}(A) = \pi_0(GL(A))$. $K_i(A) := GL(A)/GL_0(A)$ where $GL_0(A)$ of the connected component of the identity in GL(A) ... Bott periodicity is also satisfied i.e., $K_n^{ton}(A) = K_{n+2}(A) \quad \forall n \ge 0$ and so, the theory is \mathbb{Z}_2 -graded having only $K_0^{ton}(A) = K_0(A)$ and $K_1^{ton}(A)$.

2.6.2 Example

1. Let *G* be a discrete groups, $\ell^2(G)$ the Hilbert space of square summable complex-valued functions on *G*, i.e., any element of $f \in \ell^2(G)$ can be written as

$$f = \sum_{g \in G} \lambda_g \ g, \lambda_g \in \mathbf{C}, \sum_{g \in G} (\lambda_g)^2 < \infty.$$

The group algebra C *G* is a subspace of $\ell^2(G)$. There exists a left regular representation λ_G of *G* on the space $\ell^2(G)$ given by

$$\lambda_G(g)\left(\sum_{h\in G}\lambda_h h\right) = \sum_{g\in G}\lambda_G gh$$

where $g \in G$ and

$$\sum \lambda_h h \in \ell^2 G.$$

This unitary representation extends linearly to \boldsymbol{C} G.

Now define reduced C^* -algebra $C^*_r G$ of G by the image of $\lambda_G(\mathbf{C}G)$ in the C^* -algebra of bounded operators on $\ell^2(G)$.

• If G is finite, the $C_r^{\alpha}(G) = \mathbf{C} G$ and $K_0(\mathbf{C} G) = R(G)$ the additive groups of representation ring of G.

(i) $K_0(\mathbf{C}) = \mathbf{Z}, K_1(\mathbf{C}) = \pi_G GL(\mathbf{C}) = 0$ such that $GL(\mathbf{C})$ is connected.

(ii) $HG = \mathbb{Z}/2, \ K_0(C_r^*(G)) \cong K_0(\mathbb{C}) \oplus K_0(\mathbb{C}) \cong \mathbb{Z} \oplus \mathbb{Z}$ since $C_r^n G \cong \mathbb{C} \ G = \mathbb{C} \oplus \mathbb{C}$.

2.7 Some Applications of $K_{\theta}(C)$

2.7.1 Geometric and Topological Invarients

Let $R = \mathbf{Z}\pi_1(X)$, the integral grouping of the fundamental group of a space of the homotopy type of a *CW*-complex.

Theorem (Wall) [87]

1. Let $C = (C_*, d)$ be a chain complex of projective *R*-modules that is homotopic to a chain complex of finite type of projective *R*-modules. Then $C = (C_*, d)$ is chain homotopic to a chain complex of finite type of free *R*-modules iff the Euler characteristics $\chi(C) = 0$ in $K_0(R)$. **Note:** A bounded chain complex $C = (C_r, d)$ of *R*-modules is of finite type if all C_i are finitely generated. The Euler character of $C = (C_r, d)$ is given by $\chi(C) = \sum_{i=-\infty}^{\alpha} (-1)^r [C_i] \in K_0(R)$.

2. Computation of the group (SSP)

The calculation of $G_0(RG)$, *G* Abelian is connected to the calculation of the group (SSF) which houses obstructions constructed by Shub and Franks in their study of Morse-Smele diffeomorphisms.

3. Dynamical Systems

Dynamical systems can be classified by means of K_0 of C*-algebras.

2.7.2 Some other Miscellaneous Applications

1. Several classical problems in topology were solved via *K*-theory e.g., finding the number of independent vector fields on the *n*-space.

2. Index of Elliptic Operators

Let *M* be a closed manifold and $D: C^{\infty}(E) \to C^{\infty}(E)$ be an elliptic differential operator between two bundles *E*, *F* on *M*. Let $\widetilde{M} \to M$ be a normal covering of *M* with deck transformation group *G* (see [7]). Then, we can lift *D* to \widetilde{M} and obtain an elliptic *G*-equivalent differential operators $\overline{D}: C^{\infty}(\widetilde{E}) \to C^{\infty}(\overline{F})$ where $\overline{E}, \widetilde{F}$ are bundles on \overline{M} . Since the action is free, one can define an analytic index $\operatorname{ind}_{G}(\widetilde{D})$ in $K_{0}(C_{r}^{s} G)$ (see [7]).

3. THE FUNCTORS K_1, K_2 - BRIEF REVIEW

We shall follow the historical development of the subject by briefly discussing k_1, K_2 of rings and their classical formulations.

3.1 *K*₁ of a Ring – Definition and Basic Properties

 ∞

3.1.1 Let *R* be a ring with identity $GL_n(R)$ the group of invertible $n \times n$ matrices over R. Note that $GL_n(R) \subset GL_{n+1}(R) \land A \rightarrow \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$

Put
$$GL(R) = \lim_{n \to \infty} GL_n(R) = GL_n(R)$$
.

Let $E_n(R)$ be the subgroup of $GL_n(R)$ generated by the elementary matrices, $e_{ij}(a)$ where

 $e_{ij}(a)$ is the $n \times n$ matrix with 1's along the diagonal, a in the (i, j)-position with $i \neq j$ and zeros elsewhere. Put $E(R) = \varinjlim E_n(R)$.

3.1.2 Note that the matrices $e_{ij}(a)$ satisfy the following.

(i)
$$e_{ij}(a) e_{ij}(b) = e_{ij}(a+b) \quad \forall \quad a,b \in R$$

(ii) $\left[e_{ij}(a), e_{jk}(b)\right] = e_{ik}(ab) \quad \forall \quad i \neq k, \ a,b \in R$
(iii) $\left[e_{ij}(a), e_{kl}(b)\right] = 1 \quad \forall \quad i \neq l, \ j \neq k$.

3.1.3 Whitehead Lemma

(i)
$$E(R) = [E(R), E(R)]$$
 i.e., $E(R)$ is perfect

(ii)
$$E(R) = [GL(R)], GL(R)].$$

3.1.4 Definition

$$K_1(R) := GL(R) / E(R) = GL(R) / [GL(R), GL(R)]$$
$$= H_1(GL(R))$$

- **3.1.5** Note that:
- (i) K_1 is functorial in R i.e., $R \to R'$ is a ring homomorphism, we have $K_1(R) \to K_1(R')$
- (ii) $K_1(R) \cong K_1(M_n(R))$ for any positive integer *n* and any ring *R*

(iii)
$$K_1(R) \cong K_1(\mathsf{P}(R))$$
.

3.1.6 If R is a commutative ring with identity, the determinant map det : $GL_n(R) \to R^*$ commutes with $GL_n(R) \to GL_{n+1}(R)$ and hence defined a map det : $GL(R) \to R^*$ which is surjective since given $a \in R^*$ there exists $A = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$ such that det(A) = a.

We also have an induced map

$$\det : GL(R)/[GL(R), GL(R)] \to R^*$$

i.e., $\det K_1(R) \to R^*$ that is split by a map
 $\alpha : R'^* \to K_1(R) : a \to \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$
i.e., $\det \alpha = 1_R$. So $K_1(R) \cong R^* \oplus SK_1(R)$ where
 $SK_1(R) := \ker(\det : K_1(R) \to R^*);$

• Note that
$$SK_1(R) = SL(R)/E(R)$$
 where
 $SL(R) = \underline{\lim}SL_n(R)$ and $SL_n(R) = \{x \in GL_n(R)/\det x = 1\}$.

3.1.6 Examples

- (i) If *R* is a field $F, SK_1(F) = 0$ and $K_1(F) \cong F^*$
- (ii) If R is a divisin ring $K_1(R) \cong R^* / [R^*, R^*]$.

3.1.7 Stability for K_1

Stability results are useful for reducing computations of $K_1(R)$ to computations of matrices of manageable size.

Definition: Let *A* be a ring with identity. An integer n is said to satisfy stable range condition (SR_n) for GL(A) if whenever r > n, and $(a_1, a_2, ..., a_r)$ generates the unit ideal $\Sigma A_{ai} = A$, then there exists $b_1, b_2, ..., b_{r-1} \in A$ such that

$$(a_1 + a_r b, a_2 + a_r b_b, \dots, a_{r-1} + a_r b_{r-1})$$
 also

generates the unit ideal i.e.,

$$\sum A(a_i + a_r b_i) = A$$

E.g., a semi-local ring (i.e., a ring with a finite number of maximal ideals satisfy SR_2).

3.1.8 Theorem

If SR_n is satisfied, then

(a) $GL_m(A)/E_m(A) \to GL(A)/E(A)$ is onto for $m \ge n$ and injective for all m > n.

(b)
$$E_m(A)\Delta GL_m(A)$$
 for $m \ge n_t 1$

(c)
$$GL_m(A)/E_m(A)$$
 is Abelian for $m > n$.

3.2 K₁, SK₁ of Orders and Group-rings

3.2.1 Let *R* be a Dedekind domain with quoted field *F*, Λ an *R*-order in a semi-simple *F*-algebra. Put $SK_1(\Lambda) := \ker[K_1(\Lambda) \to K_1(\Sigma)]$. Hence understanding $K_1(\Lambda)$ reduces to understanding $SK_1(\Lambda)$ and $K_1(\Sigma)$. Now $\Sigma = \prod M_n(D_i)$. D_i a division ring.

- So $K_i(\Sigma) \cong \Pi K_1(D_i)$.
- One way of understanding $SK_1(\Lambda)$ is via reduced norm which generalizes the notion of determinant.

3.2.2 Let *R* be the ring of integers in a number field or *p*-adii field *F*. then there exists an extension *E* of *F* since that *E* is a splitting field of Σ i.e., $E \otimes_F \Sigma$ is a direct sum of metric algebras over *E* i.e.,

$$E\otimes_F \Sigma \cong \oplus M_{n_i}(E).$$

Let *C* be the centre of Σ .

If $a \in \Sigma$, $|\otimes a \in E \otimes_F \Sigma$ can be represented as a direct sum of matrices over *E* and so we have a map $nr : GL(\Sigma) \to C^*$. If

$$\Sigma = \bigoplus \Sigma_i = \bigoplus_{i=1}^{\infty} M_{n_i}(E)$$
, and $C = \bigoplus_{i=1}^{\infty} C_i$.

We could compute nr(a) component-wise $v_{ia}GL(\Sigma_i) \rightarrow C_i$. Since C^n is Abelian, we have

$$nr: K_1(\Sigma) \to C^*.$$

•
$$SK_1(\Lambda) = \left\{ x \in K_1(\Lambda) | nr(x) = 1 \right\}.$$

Hence we have access to $SK_1(RG)$ where G is any finite group.

3.2.3 Applications

1. Whitehead Torsion

J.H.C. Whitehead observed that if X is a topological space, with fundamental group π ,(X) = G, then the elementary row and column transformation of matrices over **Z**G have some topological meaning.

To enable him study homotopy between spaces, he introduce the group $Wh(G) = K_1(\mathbb{Z}G)/w(\pm G)$ where *w* is the map $G \to GL_1(\mathbb{Z}G) \to GL(\mathbb{Z}G) \to K_1(\mathbb{Z}G)$ such that if $f: X \to Y$ is a homotopy equivalence, then there exists an invariant $\tau(f) \in Wh(G)$ such that $\tau(f) = 0$ iff *f* is induced by elementary deformations transforming *X* to *Y*. The invariant $\tau(f)$ is called Whitehead torsion. (see [57])

• $K_1(\mathbb{Z}G) \cong (\pm 1) \times G^{ab} \times SK_1(\mathbb{Z}G)$ and so rank $K_1(\mathbb{Z}G) = \operatorname{rank} Wh(G)$ and $SK_1(\mathbb{Z}G)$ is the full torsion subgroup of Wh(G). So, computations of $\operatorname{Tor}(K_1(\mathbb{Z}G))$ reduces to computation of $SK_1(\mathbb{Z}G)$. For information on computations of $SK_1(\mathbb{Z}G)$ (see [8], [60]).

3.3 K_2 of Rings and Fields

3.3.1 Let *A* be a ring with identity. The Stenberg group of order $n \ (n \ge 1)$ over *A*, denoted $St_n(A)$ is the group generated by $x_{lij}(a) \ i \ne j, \ 1 \le i, \ j \le n, \ a \in A$, with relations

(i)
$$x_{ij}(a) x_{ij}(b) = x_{ij}(a+b)$$

(ii)
$$[x_{ij}(a), x_{kl}(b)] = 1, j \neq k, i \neq l$$

(iii)
$$\left[x_{ij}(a), x_{jk}(b)\right] = x_{ik}(ab), i, j, k \text{ distant}$$

(iv)
$$[x_{ij}(a), x_{jk}(b)] = x_{ij}(-ba), j \neq k.$$

Note: Since the generator $e_{ij}(a)$ of $E_n(A)$ satisfies relations (i) to (iv) above, we have a unique surjective homomorphism $\varphi_n : St_n(A) \to E_n(A)$ given by $\varphi_i(x_{ij}(a)) = e_{ij}(a)$. Moreover the relations for $St_{n+l}(A)$ include those of $St_n(A)$ and so, there are maps $St_n(A) \rightarrow St_{n+l}(A)$. Then we have a conical map

 $St(A) \to E(A).$

3.3.2 Define $K_2^M(A) := \ker \operatorname{St}(A) \to E(A)$.

3.3.3 Theorem: $K_2^M(A)$ is an Abelian group and is the centre of St(A). Hence St(A) is a central extension of E(A). i.e., we have a exact sequence $1 \rightarrow K_2^M(A) \rightarrow St(A) \rightarrow E(A) \rightarrow 1$.

3.3.4 Definition: An exact sequence of groups of the form $1 \rightarrow A \rightarrow E \xrightarrow{\varphi} G \rightarrow 1$ is called a central extension of *G* by *A* if *A* is central in *E*. Write the extension as (E, φ) . A central extension (E, φ) of *G* by *A* is said to be universal if for any other central extension (E', φ') of *G*, there is a unique morphism $(E, \varphi) \rightarrow (E', \varphi')$.

3.3.5 St(A) is the universal central extension of E(A). Hence there exists a natural isomorphism $K_2^M(A) \cong H_2(E(A), \mathbb{Z})$.

Note: The last statement follows from the fact that G (in this case, E(A), the kernel of the universal central extension (E, φ) (in this case $(St(A), \varphi)$ is isomorphism to $H_2(G, \mathbb{Z})$ (in this case $H_2(E(A), \mathbb{Z})$.

3.3.6 Examples

(i)
$$K_2 \mathbf{Z}$$
 is a cyclic group of order 2

(ii)
$$K_2(\mathbf{Z}(i)) = 1$$
, so is $K_2(\mathbf{Z}\sqrt{-7})$

(iii) $K_2(\mathbf{F}_q) = 1$ where \mathbf{F}_q is a finite field with q elements

(i) If *F* is a field, $K_2(F[t]) \cong K_2(F)$ more generally $K_2(R[t]) \cong K_2(R)$ if *R* is a regular ring.

Note: $K_2^M(A) \cong K_2(\mathsf{P}(A)) = K_2(A)$.

3.3.7 Let *A* be a commutative ring with 1, $a \in A^*$. Put $x_{ij}(u) x_{ji}(-u^{-1}) x_{ij}(u)$. Define $h_{ij}(u) = w_{ij}(u) w_{ij}(-)$. For $u, v \in A^r$, one can easily check hat $\varphi([h_{12}(u), h_{13}(u)]) = 1$ and so, $[h_{12}(u), h_{13}(v)] \in K_2(A)$. One can also show that $[h_{12}(u), h_{13}(v)]$ is independent of $[h_{12}(u), h_{13}(v)]$ and call this the Stenberg symbol.

3.3.8 Theorem

Let *A* be a commutative ring with 1. The Stenberg symbol $\{,\}: A^* \times A \to K_2(A)$ is skew symmetric and bilinear i.e., $\{u,v\} = \{u,v\}^{-1}; \{u,u_2,v\} = \{u_1,v\} \{u_2,v\}.$

3.3.9 Theorem (Matsumoto)

Let *F* be a field. Then $K_2^M(F)$ is generated by $\{u, v\}, u, v \in F^*$ with relations

(i)
$$\{u \ u^1, v\} = \{u, v\} \{u^1, v\}$$

(ii)
$$\{u, v v^1\} = \{u, v\} \{u, v^1\}$$

(iii) $\{u, 1-u\} = 1$

i.e., $K_2^M(F)$ is the quotient of $F^* \otimes_{\mathbf{Z}} F^*$ by the subgroup generated by the elements $x \otimes (1-x), x \in F^*$.

3.4 Connections of K₂ with Brauer Groups of Fields and Galois Cohomology

3.4.1 Let *F* be a field and Br(F) the Brauer group of *F* i.e., the group of stable isomorphism classes of central simple *F*-algebras with multiplication given by tensor product of algebras (see [7]).

A central simple *F*-algebra is said to be split by an extension *E* of *F* of $E \otimes A$ is E-isomorphic to Mr(E) for some positive integer *r*.

It is well known that such E can be taken as some finite Galois extension of F.

Let Br(F, E) be the group of stable isomorphism classes of E-split central simple F-algebras. Then $Br(F) := Br(F, F_s)$ where F_s is the separable closure of F.

3.4.3 For any m > 0, let μ_m be a group of m^{th} rods of 1, $G = \text{Gil}(F_s)(F)$. Then we have a Kummer sequence of G-modules $0 \rightarrow \mu_m \rightarrow F_s^* \rightarrow 0$ from which we obtain an exact sequence of Galois cohomology groups

$$F^* \rightarrow F^* \rightarrow H^1(F, \mu_m) \rightarrow H^1(F, F_s^*) \rightarrow 0$$

where $H^1(F, F_s^*) = 0$ by Hilbert theorem 90 so, we obtain homomorphism

$$\boldsymbol{\chi}_m: F^*/mF^* \cong F^* \otimes \boldsymbol{Z} / m \to H'(F, \boldsymbol{\mu}_m).$$

Now, the composite

$$F^* \otimes_{\mathbf{Z}} F^* \to (F^* \otimes_{\mathbf{Z}} F^*) \otimes \mathbf{Z} / m \to H^1(F, \mu_m) \otimes H^1(F, \mu_m) \to H^2(F, \mu_m) \to H^2(F$$
is given by $a \otimes b \to \chi_m(a)$ $\chi_m(b)$ (where is a cup product) which can be shown to be a Stanberg symbol inducing a homomorphism

$$g_{2,m}: K_2(F) \otimes \mathbb{Z} / m \mathbb{Z} \to H^2(F, \mu_m^{\otimes^2})$$
(I)

we then have the following result

Theorem 3.4.4: Let *F* be a field, m an integer > 0 such that the characteristic of *F* is prime to *m*. Then the map

$$g_{2,m}: K_2(F)/m K_2(P) \rightarrow H^2(F, \mu_m^{\otimes^2})$$

is an isomorphism where $H^2(F, \mu_m^{\otimes^2})$ can be identified with m torsion subgroup of Br(F).

Remark 3.4.5: J. Milnov defined 'higher Milnov K-groups' $K_n^M(F)$ $(n \ge 1)$ fields as follows: **Definition**

 $K_n^M(F) \coloneqq F^* \otimes F^* \otimes \cdots \otimes F^* / \{a_1 \otimes \cdots \otimes a_n | a_i + a_j = 1 \text{ for some } i \neq j, a_i \in i.e., K_n^M(F) \text{ is the quotient of } F^* \otimes F^* \cdots F^* \text{ (n times) by the subgroup generated by all } a_1 \otimes a_2 \otimes \cdots \otimes a_n, a_i \in F \text{ such that} a_i + a_j = 1.$

Note: $\bigoplus_{n>0}^{\infty} K_n^M(F)$ is a ring.

Remarks 3.4.6: By generalizing the process outlined in 3.4.3, we obtain a map,

$$g_{n,m}: K_n^m(F)/_m K_n^m(F) \to H^n(F, \mu_m^{\otimes^n}),$$

- It is a conjecture of Bloch-Kato hat g_{n.m} is an isomorphism for all F, m, n.
- Theorem 3.4.4 above due to A. Merkurjev and A. Suslin, is the $g_{z,m}$ case of Bloch-Kato conjecture when m is prime to the characteristic of *F*.
- A Merkurjev proved that theorem 3.4.4 holds without any restriction of *F* with respect to *m*.
- It is also a conjecture of Milnor that $g_{n,z}$ is an isomorphism. In 1996, V. Voevodsky proved that $g_{n,2^r}$ is an isomorphism for any *r*, leading to his being awarded a Fields medal.
- It is now believed that M. Rost and V. Voeodsky have now proved the Bloch-Kato conjective.

3.5 Applications

1. K₂ and Pseudo-isotopy

Let $R = \mathbb{Z}G$, G a group. For $u \in R^*$ put $w_{ij}(u) := x_{ij}(u)x_{ji}(-u^{-1})x_{ij}(u)$. Let W_{ij} be the subgroup of St(R) generated by all $w_{ij}(g)$, $g \in G$.

Now, let M be a smooth n-dimensional compact connected manifold without boundary. Two diffeomorphisms h_0, h , of M are said to be isotopic of they lie in the same path component of the diffeomorphism group. Say that h_0, h_1 are pseudo-isotopic if there is a diffeormorphism of the cylinder $M \times [0,1]$ restricted to h_0 on $M \times (0)$ and to h_1 on $M \times \{1\}$. Let P(M) be the pseudo-isotopy space of M, i.e., the group of diffeomorphism L of $M \times [0,1]$ restricting to the identity on $M \times (0)$. Computation of $\pi_0(P(M^2))$ helps to understand the differences between isotopes to and we have the following result due to A. Hatcher and J. Wagover.

Theorem: Let *M* be an n-dimensional $(n \ge 3)$ smooth compact manifold with boundary. Then there exists a subjective map

 $\pi_0(P(M) \to Wh_2(\pi_1(M)))$

where $\pi_1(M)$ is the fundamental group of *M*.

4. HIGHER ALGEBRAIC *K*-THEORY

4.1 The Plus Construction for $K_n(A)$

4.1.1 The plus construction of K_n of a ring A with identity makes use of the following theorem of Quillen.

Theorem 4.1.2: Let X be a connected CW-complex N a perfect normal subgroup of $\pi_1(X)$. Then there exists a CW-complex X^+ (depending on N) and a map $X \to X^+$ such that

(i)
$$i: \pi_1(X) \to \pi_1(X^+)$$
 is the quotient
map $\pi_1(X) \to \pi_1 X/N = \pi_1(X^+)$

- (i) For any $\pi_1(X)/N$ -module *L*, there is an isomorphism $i_a: H_a(X, i^*L) \to H_i(X^+, L)$ where i^*L is *L* considered as a $\pi_1(X)$ -module.
- (ii) The space X^+ is universal in the sense that if Y is a CWcomplex and $f: X \to Y$ is a map such that $f_*: \pi_1(X) \to \pi_1(Y)$ such that $f_{\alpha}(N) = 0$ then there exists a unique map $f^+, X^+ \to Y$ such that $f^+i = f$.

Definition 4.1.3

Let *A* be a ring, X = BGL(A) the classifying space of the group GL(A), (a CW-complex characterized by the property that $\pi_1 BGL(A) = GL(A)$ and $\pi_i BGL(A) = 0$ for $i \neq 1$). Then $\pi_i BGL(A) = GL(A)$ contains E(A) as a perfect normal subgroup. Hence, by theorem 4.1.2, there exists a $BGL(A)^+$. Define $K_n(A) = \pi_n (BL(A)^+)$.

Example/Remarks 4.1.4

- (i) For $n = 1, 2, K_n(A)$ as defined above can be identified with the classical definition.
- (ii) $\pi_1 BGL(A)^H = GL(A)/E(A) = K_1(A)$.
- (iii) $BE(A)^+$ is the universal covering space of $BGL(A)^+$ and so, we have $\pi_2 BGL(A)^+ \cong \pi_2 (BE(A)^+) \cong H_2 (BE(A)^+) \cong H_2 (BE(A))$ $\cong H_2 (E(A)) \cong K_2 (A).$
- (iv) $K_3(A) \cong H_3(St(A))$ (see [42])
- (v) If A is a finite ring, $K_n(A)$ is finite see [31] or [42]
- (vi) For a finite field \mathbf{F}_q with q elements

$$K_{2n}(\mathbf{F}_{q}) = 0 \text{ and } K_{2n-1}(\mathbf{F}_{q}) = \mathbf{Z}/(q_{n-1}).$$

4.2 Classifying Spaces and Simplical Objects

4.2.1 Definition

Let Δ be a category defined as follows: $ob(\Delta) := \{\underline{n} = \{0 < 1 < \dots < n\}\}$ Hom_{Δ} $(\underline{m}, \underline{n}) = \{$ monotone maps $f, \underline{m} \to \underline{n} \text{ i.e.}, f(i \le f(j) \text{ for } i < j\}.$

4.2.2 For any category A, a simplical object in A is a contravariant functor.

 $X: \Delta \to \mathsf{A}$. Write X_n for $X(\underline{n})$

A cosimplical object in A is a covariant functor $X : \Delta \to A$.

Equivalently, one could define a simplical object in a category A as a set of objects X_n(n≥0) in A and a set of morphisms δ_i: X_n → X_{n-1} (0≤i≤n) called face maps as well as a set morphisms s_i: X_n → X_{n+1} (0≤j≤n) called degeneracies satisfying certain simplical identities (see [93]).

• The geometric n-simplex is the topological space

$$\hat{\Delta}^n = \{ (x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1} | 0 \le x_i \le \forall i \text{ and } \Sigma x_i = 1 \}$$

A functor $\hat{\Delta} : \Lambda \rightarrow \text{spaces} : \underline{n} \rightarrow \hat{\Delta}^n$ is a co-simplical space..

4.2.4 Definition: Let X_n be a simplical scl. The geometric realization of X_n , written $|X_n|$ is defined by

$$|X_n| = X \underset{\Delta}{\times} \Delta = \left(X_n \times \hat{\Delta}_n \right) / \cong$$

where the equivalence relations \cong is generated by $(x, \varphi_n(y)) \cong (\varphi^n(x), y)$ for any $x \in X_n$ $y \in Y_n$ and $\varphi: \underline{m} \to \underline{n} \in \Delta$ and where $X_n \times \Delta^n$ is given the product topology and x_n is considered as a discrete space.

4.2.5 Definition

Now let A be a small category. The Nerve of A, written NA, is the simplical set whose n-simplices are diagrams

$$A_n = \left\{ A_0 \xrightarrow{f_1} A_1 \xrightarrow{f_n} A_n \right\}$$

where the A_i 's are A-objects and the f_i are A-morphisms. The classifying space of A is defined as |NA| and denoted by BA.

Remarks: *BA* is a CW-complex whose *n*-cells are in one-one correspondence with the diagrams A_n above.

4.2.6 Definition

Now let *C* be an exact category. We form a new category *Q*C such that ob(QC) = ob C and morphisms from *M* to *P*, say is an isomorphism class of diagrams $M \leftarrow \stackrel{j}{\longrightarrow} N \stackrel{i}{\longrightarrow} P$ where *i* an admissible monomorphism (or inflation) and *j* is an admissible *epi* morphism or deflation) in *C* i.e., *i* and *j* are part of some exact sequences $0 \longrightarrow N \stackrel{i}{\longrightarrow} P \longrightarrow P' \rightarrow 0$ and $0 \longrightarrow N'' \stackrel{i}{\longrightarrow} N \stackrel{j}{\longrightarrow} M \rightarrow 0$, respectively.

Composition is also well defined (see [62]).

Definition 4.2.7: For $n \ge 0$, define $K_n(C) := \pi_{n+1}(BQC, 0)$ $n \ge 0$.

Examples: Recall earlier examples.

(A) (1)
$$C = P(A), \quad K_n(C) := K_n(A) \quad n \ge 0$$

 $C = M(A), \quad K_n(C) = G_n(A) \quad n \ge 0$
Note that $K_n(P(A)) \cong \pi_n(BGL(A^+))$ for $n \ge 1$

We shall be interested in various rings A.

(i)
$$A = \mathbf{Z}, \mathbf{Q}, \mathbf{R}, \mathbf{C}$$

(ii)
$$A =$$
Integral domain R

(iii) A = F (field possibly quotient field of *R*)

(iv)
$$A = D$$
 a dunsion ring

(v)
$$A = \mathbf{Z}G, RG, \mathbf{Q}G, \mathbf{R}G, \mathbf{C}G$$
 (a finite group)

(vi) R = integers in a number field or *p*-adii field, A = RG, G finite group or more generally A = *r*-order Λ in a semi-simple F-algebra Σ

(vii) $A = \Lambda_{\alpha}(T)$ where Λ is as in (vi) When $A = RG, A = \Lambda_{\alpha}(T) = RV$ where $V = G \times T$ is virtually α cyclic group.

4.3 Some Sample Finiteness Results for K(C)-

 $(\mathbf{C} = \mathbf{P}(\mathbf{A}), \mathbf{M}(\mathbf{A}))$

4.3.1 Theorem

Let *R* be the ring of integers in a number field *F*, Λ any *R*-order in a semi-simple *F*-algebra Σ . Then,

- (i) For all $n \ge 1, K_n(\Lambda), G_n(\Lambda)$ are finitely generated Abelian group (Kuku, J. algebra 1984, AMS contemp. Math, 1986).
- (ii) For all $n \ge 1$, $K_{2n}(\Lambda)$, $G_{2n}(\Lambda)$ are finite Abelian groups, Kuku (*K*-theory 2005).
- (iii) If F is totally real, then G_{2m+2}(Λ) is also finite for all odd m≥1
 (Algebras and Rep. Theory to appear)

- (i) For all $n \ge 1, G_{2n}(\Lambda_{\alpha}(T))$ is a finitely generated Abelian group where $\Lambda_{\alpha}(T)$ is the twisted Laurent series ring over Λ . (Kuku (2007): Algebras and Rep theory - to appear)
- (ii) There exists isomorphism $Q \otimes K_n(\Lambda_\alpha(T)) \approx Q \otimes G_n(\Lambda_\alpha(T)) \cong Q \otimes K_n(\Sigma_\alpha(T)) \forall n \ge$ (Kuku (2007): Algebras and Rep. theory - to appear)
- (iii) If A is a finite ring, then $K_n(A)$, $G_n(A)$ are finite for all $n \ge 1$ (Kuku AMS Cont. Mp. Math 1986).

Note: Above results (i), (ii), (iii) apply to $\Lambda = RG$ (*G* a finite group) while (iv) and (v) apply to $\Lambda_{\alpha}(T) = (RG)_{\alpha}(T) = RV$ where $V = G \underset{\alpha}{\times} T$ is a virtually infinite cyclic group. (i) generalizes classical results known for n = 0, 1 to higher dimensions.

4.3.2 K_n , SK_n of Orders and Group rings

Let *R* be a Dederkind domain (i.e., an integral domain in which every ideal is projective or equivalently *R* is Noetherian integrally closed and every prime ideal is maximal or equivalently every non-zero ideal <u>a</u> in *R* is invertible i.e., $\underline{a}\underline{a}^{-1} = R$ where $\underline{a}^{-1} = \{x \in F \mid x\underline{a} \subset R\}$. Let Λ be any *R*-order in a semi-simple Falgebra Σ . For $n \ge 0$, let $SK_n(\Lambda) := \ker(K_n(\Lambda)) \to K_n(\Sigma)$ and $SG_n(\Lambda) = \ker(G_n(\Lambda)) \to G_n(\Sigma) \cong K_n(\Sigma)$. Note that for any regular ring R (e.g., Σ), $K_n(R) \cong G_n(R)$.

As observed earlier, when $\Lambda = RG$ (R integers in a number field, *G* a finite group), $SK_0(RG)$ $SK_1(RG)$ contain topological invariants – respectively, e.g., Swan in variants and Whitehead torsion). We have the following:

4.3.3 Theorem: (see Kuku Math. Zeit (1979) or Ku-Bk (2007).

Let *p* be a rational prime. *F* a *p*-adii field with ring of integers *R*, Γ a maximal *R*-order in a semi-simple *F*-algebra Σ , Then for all $n \ge 1$.

(a) $SK_{2n}(\Gamma) = 0$

(b) $SK_{2n-1}(\Gamma) = 0$ iff Σ is unified over its centre i.e., iff Σ is a direct product of matrix algebras over fields.

Note: Above result applies to $\Gamma = RG$ where (|G|, p) = 1.

4.3.4 Theorem: See Ku-Bk (2007) or Kuku (1984) Jalgebra; Kuku (1986) AMS Cont. Math; Kuku (2006) K-theory

Let *R* be the ring of integers in a number field *F*, Λ any *R*-order in a semi-simple *F*-algebra Σ . Then

(a) $SK_n(\Lambda), SG_n(\Lambda)$ are finite groups and $SG_{2n}(\Lambda) = 0$ for all $n \ge 1$

(b) $SK_n(\hat{\Lambda}_p), SG_n(\hat{\Lambda}_p)$ are finite groups and

(c) If $\Lambda = \mathbf{Z}G$ where *G* is a finite *p*-group, then $SK_{2n-1}(\mathbf{Z}G)$, and $SK_{2n-1}(\hat{\mathbf{Z}}_{\mathbf{P}}G)$ are finite *p*-groups.

4.4 Higher Dimensional Class Groups of Orders and

Group rings

Let *R* be the ring of integers in a number field *F*, Λ any *R*-order in a semi-simple *F*-algebra Σ . The higher class groups $Cl_n(\Lambda)$ of Λ are defined for all $n \ge 0$ by $C\ln(\Lambda) := \ker(SK_n(\Lambda)) \to \bigoplus SK_n(\hat{\Lambda}_1)$. Note that $Cl_n(\Lambda)$ coincides with the usual class group $Cl(\Lambda)$ of Λ which in turn generalizes the notion of class groups of integers in a number field. (see Ku-Bk (2007). For results on class groups of Λ (see Curtis/Reiner (1987) [8]).

Note also that computations of $Cl_1(\Lambda)$ which we already observed reduces to computation of Whitehead torsion (see Oliver (1988) [60]).

We now state known results for $Cl_n(\Lambda) n \ge 1$.

4.4.2 Theorem

Let *R* be the ring of integers in a number field *F*, Λ any R-order in a semi-simple *F*-algebra Σ . Then

- (i) For all $n \ge 1$, $Cl_n(\Lambda)$ is a finite group (see Ku-Bk (2007) or Kuku (1986) AMS Cont. Math.)
- (ii) For all $n \ge 1$, p-torsion in $Cl_{2n-1}(\Lambda)$ can occur only for primes p lying above prime ideals <u>p</u> at which $\hat{\Lambda}_{\underline{p}}$ is not maximal. Hence for any finite group G, for all $n \ge 1$, the only p-torsion possible in $Cl_{2n-1}(RG)$ is for those primes p dividing the order of G. (see Kolster/Laubenbacher (1988) Math. Zeit).
- (iii) Let *F* be a number field with ring of integers *R*, Λ a hereditary *R*-order in a semi-simple *F*-algebra or and Eichler order in a quatermon algebra. Then the only *p*-torsion possible is for those primes p lying below the prime ideals <u>*p*</u> at which $\Lambda_{\underline{p}}$ is not maximal. (see Ku-Bk (2007) or Guo/Kuku (2005) Comm. in Alg.).

(i) Let S_n be a symmetric group of degree n. Then $Cl_{2n-1}(ZS_2)$ is a finite z-torsion group (see Kolster /Lauben bacher (1998) Math. Zeit).

4.5 Higher *K*-theory of Schemes

4.5.1 Recall: If X is a scheme, we write $K_n(X)$ for $K_n(\mathsf{P}(X))$ and when X is a Neotherian scheme, we write $G_n(X)$ for $K_n(\mathsf{M}(X))$.

If G is an algebraic group over a field F, and X is a G-scheme, we write $K_n(G, X)$ for $K_n(\mathsf{P}(G, X))$ are $G_n(G, X)$ for $K_n(\mathsf{M}(G, X))$.

Note:

(a) If G is trivial group
$$G_n(G, X) = G_n(X)$$
 and
 $K_n(G, X) = K_n(X)$.

- (a) $G_n(G,-)$ is contravariant with respect to *G*-maps.
- (b) $G_n(G,-)$ is covariant with respect to projective *G*-maps.
- (c) $K_n(G,-)$ is contravariant with respect to any *G*-map.
- (d) $G_n(-,X)$ is contravariant w.r.t. any group homomorphism.
- (e) $K_n(-, X)$ is covariant w.r.t group homomorphisms. (see Thomason (1987) *K*-theory Proc. Princeton.

4.5.2 Recall: Let *B* be a finite dimensional separate *F*-algebra. *X* a smooth projective variety equipped with the action of an affine algebraic group *G* over *F*, γX the twisted form of *X* with respect to a cocycle γ : Gal $F_{sep}/F \rightarrow G(F_{sep})$. Let $VB_G(r, B)$ be the category of vector bundle on γX equipped with left *B*-module structure. We write $K_n(\gamma X, B)$ for $K_n(VB_G(\gamma X, B))$. (See Panin (1994) K-theory; Merurjer (preprint).

We now have the following results.

4.5.3 Theorem: Kuku (2007) MPIM – Bonn, preprint

Let \tilde{G} be a semi-simple simply, connected and connected *F*-split algebraic group over a field *F*, \tilde{P} a parabolic subgroup of G, $F = \tilde{G}/\tilde{P}$ the flag variety and γF the twisted form of **F**, *B* a finitedimensional separable *F*-algebra.

(a) Let *F* be a number field, then for all $n \ge 1$ (i) $K_{2n+1}(\gamma F, B)$ is a finitely generated Abelian group; (ii) $K_{2n}(\gamma F, B)$ is a torsion group and has no non-trivial dunsible subgroups.

(b) Let *F* be a *p*-adii field, ℓ a rational prime such that $\ell \neq p$. Then for all $n \ge 1$ and any separate *F*-algebra B, $K_n(\gamma F, B)_{\ell}$ is a finite group.

4.5.4 Theorem: (Kuku (2007) MPIM-Bonn (preprint))

Let V be a Brauer-Severi variety over a field F.

- (a) If *F* is a number field, then $K_{2n+1}(V)$ is a finitely generated Abelian group for all $n \ge 1$.
- (b) If *F* is a *p*-adii field, then for all $n \ge 1$, $K_n(V)_{\ell}$ is a finite group if ℓ is a prime $\ne p$.

4.6 **Mod**-*m* Higher K-theory of exact Categories, Schemes and Orders

4.6.1 Let X be an H-space, m a positive integer M_m^n an n-dimensional **m**od-m Moore space is the space obtained from S^{n-1} by attaching an n-cell via a map of degree m, (See Ku-Bk (2007) or Niesendorfer 1980/ AMS Memoir).

•). Write

$$\pi_n(X, \mathbb{Z}/m) \text{ for } [M_m^n, X] \quad n \ge 2$$

$$\pi_1(X, \mathbb{Z}/m) \text{ for } \pi_1(X) \otimes \mathbb{Z}/m.$$

The cofibration sequence

$$S^{n-1} \xrightarrow{m} S^{n-1} \xrightarrow{\beta} M_m^n \xrightarrow{\alpha} S^n \xrightarrow{m} S^n$$

yields an exact sequence

$$\pi_n(X) \xrightarrow{m} \pi_n(X) \xrightarrow{\beta} \pi_n(X, Z/m) \xrightarrow{\alpha} \pi_{n-1}(X) \xrightarrow{m} \pi_{n-1}(X)$$

and hence the following exact sequence

$$0 \to \pi_{\ell}(X) / m \to \pi_n(X, Z / m) \to \pi_{n-1}(X)[m] \to 0$$

where

$$\pi_{n-1}(X)[m] = \left\{ x \in \pi_{n-1}(X) \middle| mx = 0 \right\}.$$

Example 4.6.2

(i) If *C* is an exact category, write
$$K_n(C, \mathbb{Z}/m)$$
 for $\pi_{n+1}(BQC, \mathbb{Z}/m); n \ge 1$ and write $K_0(C, \mathbb{Z}/m)$ for $K_0(C) \otimes \mathbb{Z}/m$.

(ii) If C = P(A), a ring with 1, write $K_n(A, \mathbb{Z}/m)$ for $K_n(P(A), \mathbb{Z}/m)$;

- (iii) If X is a scheme, and C = P(X), write $K_n(X, \mathbb{Z}/m)$ for $K_n(P(X), \mathbb{Z}/m)$. Note that if X = Spec(A), A commutative, we recover $K_n(A, \mathbb{Z}/m)$.
- (iv) Let *A* be a Noetherian ring. If C = M(A), we write $G_n(A, \mathbb{Z}/m)$ for $K_n(M(A), \mathbb{Z}/m)$.
- (v) Let X be Noetherian scheme, C = M(X). We write $G_n(X, \mathbb{Z}/m)$ for $K_n(M(X), \mathbb{Z}/m)$. If X = Spec(A), we recover $G_n(A, \mathbb{Z}/m)$.
- (vi) Let G be an Abelian group over a field F, X a G-scheme, C = M(G, X). $G_n((G, X), \mathbb{Z} / m \text{ for } K_n(M(G, X), \mathbb{Z} / m))$.
- (vii) Let G be an algebraic group over a field F,X a G-scheme; C = P(G,X). We write $K_n((G,X), \mathbb{Z} / m \text{ for } K_n(P(G,X), \mathbb{Z} / m))$.
- (viii) Let G be an algebraic group over a field F, X a G-scheme, B a finite dimensional separable F-algebra, $_{r}X$ the twisted form of X via a 1-cocycle r, $C = VB_{G}(_{r}X,B)$. We write $K_{n}((_{r}X,B), \mathbb{Z} / m \text{ for } K_{n}((_{r}X,B),\mathbb{Z} / m))$.

4.6.2 Theorem: Kuku (2007) MPIM-Bonn Preprint

Let C, C' be exact categories and $f: C \to C'$ an exact factor which induces Abelian group homomorphism $f_0: K_n(C) \to K_n(C')$ for each $n \ge 0$. Let ℓ be a rational prime

- (a) Suppose that f_1 is injective (resp. surjective, resp. bijective), then so is $\bar{f}_1 : K_n(\mathsf{C}, \mathbf{Z} / m) \to K_n(\mathsf{C}', \mathbf{Z} / m)$;
- (b) If f_{α} is split surjective (resp. split injective), then so is $\overline{f}: K_n(\mathbb{C}, \mathbb{Z}/m) \to K_n(\mathbb{C}', \mathbb{Z}/m)$.

4.7 Profinite Higher K-theory of Exact Categories, Schemes and Orders

4.7.1 Let *C* be an exact category, ℓ a rational prime, s a positive integer, put $M_{\ell^{\infty}}^{n+1} = \underline{\lim} M_{\ell^{s}}^{n+1}$. We define the profinite *K*-theory of *C* by $K_{n}^{pr}(C, \hat{Z}_{\ell}) = [M_{\ell^{\infty}}^{n+1}, BQC]$. We also write $K_{n}(C, \hat{Z}_{\ell})$ for $\underline{\lim}(C, \mathbb{Z}/\ell^{s})$. **Note:** For all $n \ge 2$, we have an exact sequence

$$0 \to \underline{\lim}^{1} K_{2n+1} \left(\mathbf{C}, \mathbf{Z} / \ell^{s} \right) \to K_{n}^{pr} \left(\mathbf{C}, \hat{\mathbf{Z}}_{\ell} \right) \to K_{n} \left(\mathbf{C}, \hat{\mathbf{Z}}_{\ell} \right) \to 0.$$

For more information on this construction, see Ku-Bk (2007), chapter 8 or [42].

Example 4.7.2

(i) Let
$$\mathbf{C} = \mathbf{P}(A)$$
, A a ring with 1. We write
 $K_n^{pr} \left(A, \hat{\mathbf{Z}}_t \right)$ for $K_n \left(\mathbf{P}(A), \hat{\mathbf{Z}}_t \right)$ and $K_n \left(\mathbf{P}(A), \hat{\mathbf{Z}}_t \right)$ for $K_n \left(\mathbf{P}(A), \hat{\mathbf{Z}}_t \right)$.

(ii) If X is a scheme and
$$\mathbf{C} = \mathbf{P}(X)$$
, we write
 $K_n^{pr} \left(X, \hat{\mathbf{Z}}_t \right)$ for $K_n^{pr} \left(\mathbf{P}(X), \hat{\mathbf{Z}}_t \right)$ and $K_n \left((X), \hat{\mathbf{Z}}_t \right)$ for $K_n \left(\mathbf{P}(X), \hat{\mathbf{Z}}_t \right)$.

(iii) Let
$$\mathbf{C} = \mathbf{M}(A)$$
, write
 $G_n^{pr} \left(A, \hat{\mathbf{Z}}_t \right)$ for $G_n^{pr} \left(\mathbf{M}(A), \hat{\mathbf{Z}}_t \right)$ and $G_n \left((A), \hat{\mathbf{Z}}_t \right)$ for $K_n \left(\mathbf{M}(A), \hat{\mathbf{Z}}_t \right)$.

(iv) If
$$\mathbf{C} = \mathbf{M}(X)$$
, X a scheme, write
 $G_n^{pr}(X, \hat{\mathbf{Z}}_t)$ for $K_n^{pr}(\mathbf{M}(X), \hat{\mathbf{Z}}_t)$ and $G_n(X, \hat{\mathbf{Z}}_t)$ for $K_n(\mathbf{M}(X), \hat{\mathbf{Z}}_t)$. If
 $X = \operatorname{Spec}(A)$ recover $G_n^{pr}(A, \hat{\mathbf{Z}}_t)$ and $G_n(A, \hat{\mathbf{Z}}_t)$.

(v) Let *G* be an algebraic group over a field *F*, *X* a *G*-scheme, C = M(G, X). We write $G_n^{pr} ((G, X), \hat{Z}_t)$ for $G_n^{pr} (M(G, X), \hat{Z}_t)$.

(vi) Let *G* be an algebraic group over a field *F*, *X* a G-scheme, C = P(G, X), we write $K_n^{pr} ((G, X), \hat{Z}_t)$ for $K_n^{pr} (P(G, X), \hat{Z}_t)$.

(vii) Let *G* be an algebraic group over a field *F*, *X* a G-scheme, γX the twisted form of *X* and *B* a finite-dimensional separable algebraic over *F*. If $\mathbf{C} = VB_G((_r X, B), \hat{\mathbf{Z}}_t)$, we write $K_n^{pr}((_r X, B), \hat{\mathbf{Z}}_t)$ for $K_n^{pr}(VB_G, (_r X, B), \hat{\mathbf{Z}}_t)$

Theorem 4.7.3: Kuku (2007) MPIM –Bonn preprint

Let C, C' be exact categories and $f: C \to C'$ an exact factor which induces an Abelian group homomorphism $f_n, K_n(C) \to K_n(C')$ for $n \ge 0$. Let ℓ be a rational prime, s a positive integer. Suppose that f_{α} is injective (resp. surjective; resp. bjective), then so is

$$f_{\alpha}: K_n^{pr}\left(\mathbf{C}, \hat{\mathbf{Z}}_{\ell}\right) \rightarrow K_n^{pr}\left(\mathbf{C}', \hat{\mathbf{Z}}_{\ell}\right).$$

Theorem 4.7.4: Kuku (2007) MPIM-Bonn Preprint

Let *F* be a number field, \widetilde{G} a semi-simple connected, simply connected split algebraic group over *F*, \widetilde{P} a parabolic subgroup of $\widetilde{G}, \mathsf{F} = \widetilde{G}/\widetilde{P}, \ \gamma$ a 1-cocycle : $\operatorname{Gal}(F_{\operatorname{sep}}/F) \to \widetilde{G}(F_{\operatorname{sep}}), \ \gamma \mathsf{F}$ the γ twisted form of *F*, *B* a finite-dimensional separable *F*-algebra. Then for all $n \ge 1$,

(i) $K_{2n}^{pr}((\gamma F, B), \hat{\boldsymbol{Z}}_{\ell})$ is an ℓ -complete Abelian group;

(ii) div
$$K_n^{pr}((\mathsf{F},B), \hat{Z}_t) = 0.$$

Theorem 4.7.5: Kuku (2007 – MPIM-Bonn Preprint

Let p be a rational prime, F a p-adii field, \tilde{G} a semi-simple connected and simply connected split algebraic group over F, \tilde{P} a parabolic subgroup of \tilde{G} , $\bar{F} = \tilde{G}/\tilde{P}$ the flag variety, γ a 1-cocycle $\operatorname{Gal}(F_{\operatorname{sep}}/F) \to G(F_{\operatorname{sep}})$, γF the γ -twisted form of **F**, B a finitedimensional separable F-algebra, ℓ a rational prime such that $\ell \neq p$. Then for all $n \geq 2$.

(i)
$$K_n^{pr}((\gamma \mathsf{F}, B) \hat{\mathbf{Z}}_\ell)$$
 is an ℓ -complete profinite Abelian group.

(ii)
$$K_n^{pr} | (\gamma \mathsf{F}, B) \hat{\mathbf{Z}}_t | = K_n | (\gamma \mathsf{F}, B) \hat{\mathbf{Z}}_t |$$

(iii) The map $\varphi: K_n(\gamma \mathsf{F}, B) \to K_n^{pr}((\gamma \mathsf{F}, B), \hat{\mathbf{Z}}_t)$ induces isomorphiss

-
$$K_n(\gamma \mathsf{F}, B), [\ell] \cong K_n^{pr}((\gamma \mathsf{F}, B), \hat{\mathbf{Z}}_{\ell}), [\ell^s]$$

-
$$K_n(\gamma \mathsf{F}, B), /\ell^s \cong K_n^{pr}((\gamma \mathsf{F}, B), \hat{\mathbf{Z}}_\ell)/\ell^s$$
.

(iv) Kernel and cokernel of $K_n({}_r\mathsf{F},B) \to K_n^{pr}(({}_r\mathsf{F},B),\hat{\mathbf{Z}}_t)$ are uniquely ℓ -divisible.

(v) div
$$K_n^{pr}(({}_r \mathsf{F}, B), \hat{\mathbf{Z}}_t) = 0$$
 for $n \ge 2$.

5. Equivariant Higher K-theory Together with Relative Generalizations

In this section, we exploit representation theoretic techniques (especially induction theory) to define and study equivarient higher *K*-theory and their relative generalizatins. Induction theory has always aimed at computing various invariants of a group *G* in terms of corresponding invariants of subgroups of *G*. For lack of time and space, we discuss here finite group actions and note that analogous results exist for pro-finite group and compact lie group actions (see Ku-Bk (2007) chapter 9–13).

5.1 Equivariant Higher *K*-theory for Exact Categories for Finite Group Actions

5.1.1 Definition

Let B be a category with finite sums final object and finite pullbacks (and hence finite products) e.g., category G-set of (finite) G-Sets, where G is a finite groups, D an Abelian category (e.g., R-Mod)

A pair of functors (M_{α}, M^{α}) : B \rightarrow D is called a Marchey functor if

(i) M_α: B → D is covariant, M^{*}: B → D contravariant and M_α(X) = M^α(X) = M(X) ∀ X ∈ ob B.
 (ii) For any pull-back diagram

(iii) M^{α} transforms finite coproducts in **B** into finite products in **D** i.e., the embeddings $X_i \to \underset{i=1}{\lambda} X_i$ induces an isomomorphism $M(X_i \wr X_2 \cdots \wr X_n) \cong M(X_1) \times \cdots \times M(X_n)$.

5.1.2 Note that (ii) above is an axiomatization of the Mackey subgroup theorem in classical representation theory (Put B = G-Set, $A_1 = G/H$; $A_2 = G/H'$ $G/H \times G/H'$ can be identified with the set $D(H, H') = \{HgH' | g \in G\}$ of double cosets of H and H' in G. (see [8] for a statement of Mackey subgroup theorem).

5.1.3 We shall concentrate on exact categories in this section but observe that analogous theories exist for symmetric monoidal and Wildhanser category (see Ku-Bk (2007) chapters 9, 10, 13).

So, let *C* be an exact category, *S* a *G*-set, *G* a finite group, <u>*S*</u> the translation category of *S*. Recall that the category [<u>*S*</u>, C] of covariant functors from <u>*S*</u> to *C* is also an exact category where a sequence $0 \rightarrow S' \rightarrow S \rightarrow S'' \rightarrow 0$ in [<u>*S*</u>, C] is said to be exact if $0 \rightarrow S'(S) \rightarrow S(S) \rightarrow S''(S) \rightarrow 0$ is exact in *C*.

5.1.3 Definition

Let $K_n^G(S, \mathbb{C})$ be the n^{th} algebraic *K*-group associated with the exact category [<u>S</u>, C] with respect to fibre-wise exact sequences.

Theorem 5.1.4

 $K_n^G(-, \mathbb{C})$: GSet $\rightarrow \mathbb{Z}$ - Mod is a Mackey functor. (For proof see Ku-Bk (2007) or Dress/Kuku Comm. in Alg. (1981).

5.1.5 Note: We want to turn $K_n^G(-,C)$ into a 'Green' functor and see that for suitable category C, $K_n^G(-,C)$ is a module over $K_n^G(-,C)$. We first define these notions of 'Green' functor and modules over 'Green' functors.

5.1.6 Definition

A Green functor $G: B \to R - M \text{ od is}$ a Mackey functor together with a pairing $G \times G \to G$ such that for any *B*-object *X*, the *R*bilinear map $G(X) \to G(X)$ makes G(X) into an *R*-algebra with a unit $1 \in G(X)$ such that for any morphism $f: X \to Y$, we have $f^*(1_{G(Y)}) = 1_{G(X)}$.

A left (resp. right) G-module is a Mackey functor $M: B \rightarrow R - M \text{ od together}$ with a pairing $G \times M \rightarrow M$ (resp. $M \times G \rightarrow M$) such that for any *B*-object *X*, $\mathbf{M}(X)$ becomes a left (resp. right) unitary $\mathbf{G}(X)$ -module we shall refer to left *G*-modules just as *G*-modules.

5.1.7 Definition

Let C_1, C_2, C_3 be exact categories. An exact pairing (,). $C_1 \times C_2 \to C_3$ given by $(X_1, X_2) \to (X_1 \circ X_2)$ is a covariant functor such that

 $\operatorname{Hom}[(X_1, X_2), (X_1', X_2')] = \operatorname{Hom}(X_1, X_1') \times \operatorname{Hom}(X_2, X_2') \to \operatorname{Hom}(X_1 \circ X_2), (X_1' \circ X_2')$

is bi-additive and bi-exact (see Ku-Bk (2007) or [87]).

5.1.8 Theorem (for Proof see Ku-Bk (200) or Dress/Kuku. Comm. in Alg. (1981)

Let C_1, C_2, C_3 be exact categories and $C_1 \times C_2 \to C_3$ an exact pairing of exact categories, *S* a *G*-Set. Then the pairing induces a pairing $[\underline{S}, C_1] \times [\underline{S}, C_2] \to [\underline{S}, C_3]$ and hence a pairing $K_n^G(S, C_1) \times K_n^G(S, C_2) \to K_n^G(S, C_3)$. Suppose that *C* is an exact category such that the pairing $C \times C \rightarrow C$ is naturually associative and commutative and there exists $E \in C$ such that $[E \circ N] = [N \circ E] = [N] \forall N \in C$. Then $K_n^G(-,C)$ is a Green functor and $K_n^G(-,C)$ is a unitary $K_n^G(-,C)$ -module.

5.1.9 Definition/Remarks

If $M: GSet \to \mathbb{Z}$ -**M**od is any Mackey functor, $X ext{ a } G$ -set, define a Mackey functor $M_X: GSet \to \mathbb{Z}$ - Mod by $M_X(Y) = M(X \times Y)$. The projection map $pr: X \times Y \to Y$ defines a natural transformation $\theta_X: M_X \to M$ where $\theta_X(Y) = pr_1 M(X \times Y \to M(Y))$. M is said to be X-projective if θ_X is split surjective i.e., there exists a national transformation $\varphi: M \to M_X$ such that $O_X \varphi = id_M$.

Now define a defect base D_M of M by $D_M = \{H \le G | X^H \ne \phi\}$ where X is a G-set (called defect set of M) such that M is Y-projective iff there is a G-map $f, X \rightarrow Y$ (See Ku-Bk (2007) Prop. 9.1.1).

If *M* is a module over a Green functor **G**, then *M* is *X*-projective iff *G* is *X*-projective iff the induction map $G(X) \rightarrow G(G/G)$ is surjective (see Ku-Bk. Theorem 9.3.1).

• In general, proving induction results reduce to determining *G*-sets *X* for where $G(X) \rightarrow G(G/G)$ is surjective and this in turn reduces to computing D_G (see Ku-Bk 9.6.1).

Hence one could apply induction techniques to obtain results on higher *K*-groups $K_n^G(-, \mathbb{C})$ which are modules over Green functors $K_n^G(-, \mathbb{C})$.
5.2 Relative Equivalent Higher Algebraic k-theory

Definition 5.2.1 Let S, T be G-Sets. Then the projection $S \times T \xrightarrow{\varphi} S$ gives rise to a functor $S \times T \xrightarrow{\varphi} S$. Suppose that C is an exact category. If $\zeta \in [\underline{S}, \mathbf{C}]$, we write ζ' for $\varsigma \circ \varphi : \underline{S \times T} \xrightarrow{\varphi} \underline{S} \xrightarrow{\varsigma} C$. Then a sequence $\varsigma_1 \to \varsigma_2 \to \varsigma 3$ of functors in [S,C] is said to be *T*-exact if the sequence $\zeta_1' \to \zeta_2' \to \zeta_3'$ of restricted functors $\underline{S} \times \underline{T} \xrightarrow{\varphi} \underline{S} \xrightarrow{\varsigma} C$ is split exact. If $\varphi: S_2 \to S_1$ is a G-map, and $\zeta_1 \to \zeta_2 \to \zeta_3$ is a T-exact sequence in $[\underline{S}, \mathbf{C}]$, and we put $\hat{\zeta}_i = \boldsymbol{\varphi} \circ \boldsymbol{\zeta}_i$, then $\hat{\zeta}_1 \rightarrow \hat{\zeta}_2 \rightarrow \hat{\zeta}_3$ is Texact in $[\underline{S}_1, \mathbf{C}]$. Let $K_n^G(S, \mathbf{C}, T)$ be the *n*th algebraic K-group associated to the exact category [S, C] with respect to T-exact sequence.

Remarks: The use of the restriction functors $\zeta', \hat{\zeta}$ in 5.2.1 constitute a special case of the following general situation. Let ζ be an exact category and B, B' any small categories. We define exactress in [B,C] relative to some covariant functor $\delta: B' \to B$.

Thus a sequence $\zeta_1 \rightarrow \zeta_2 \rightarrow \zeta_3$ of functors in [B,C] is said to be exact relative to $\delta: B' \rightarrow B$ if it is exact fibrewise and if the sequence $\zeta'_1 \rightarrow \zeta'_2 \rightarrow \zeta'_3$ of restricted functors $\zeta'_1 := \zeta_i \circ \delta': B' \xrightarrow{\delta} B \xrightarrow{c} C$ is split exact. Let $K_n^G(S, C, T)$ be the nth algebraic *K*-group associated to the exact category [S,C] w.r.t exact sequences.

5.2.3 Definition

Let *S*, *T* be *G*-Sets. A functor $\zeta \in [\underline{S}, \mathbb{C}]$ is said to be *T*-projective if any *T*-exact sequence $\zeta_1 \to \zeta_2 \to \zeta$ is exact. Let $[\underline{S}, \mathbb{C}]_T$ be the additive category of *T*-projective functors in $[\underline{S}, \mathbb{C}]$ considered as an exact category with respect to split exact sequences. Note that the restriction functor associated to $S_1 \xrightarrow{\psi} S_2$ carries *T*projective functors $\zeta \in [\underline{S}_2, \mathbb{C}]$ into *T*-projective functors $\zeta \circ \psi \in [\underline{S}_2, \mathbb{C}]$. Define $P_n^G(S, C, T)$ as the nth algebraic K-group associated to the exact category $[\underline{S}, \mathbb{C}]_T$, with respect to split exact sequences.

5.2.3 Theorem

 $K_n^G(-,C,T)$ and $P_n^G(-,C,T)$ are Mackey functors from *GSet* to *Ab* for all $n \ge 0$. If the pairing $C \times C \to C$ is naturally associative and commutative and contains a natural unit, then $K_n^G(-,C,T): GSet \to Ab$ is a Green functor, and $K_n^G(-,C,T)$ and $P_n^G(-,C,T)$ are $K_0^G(-,C,T)$ -modules.

Also, the induction functor $\psi_* : [\underline{S}_1, \mathbf{C}] \to [\underline{S}_2, \mathbf{C}]$ associated to $\psi: S_1 \to S_2$ preserves *T*-exact sequences and *T*-projective functors and hence induces homomorphism $K_n^G(\psi, C, T)_* : K_n^G(S_1, C, T) \to K_n^G(S_2, C, T)$ and $P_n^G(\psi, C, T)_* : P_n^G(S_1, C, T) \to P_n^G(S_2, C, T)$, thus making $K_n^G(-, C, T)$ and $P_n^G(S_1, C, T)$ covariant functors. Other properties of Mackey functors can be easily verified.

Observe that for any GSet T, the pairing $[\underline{S}_1, \mathbf{C}] \times [\underline{S}_2, \mathbf{C}] \rightarrow [\underline{S}_3, \mathbf{C}]$ takes T-exact sequences into T-exact sequences, and so, if $[\underline{S}_i, \mathbf{C}], i = 1,2$ are considered as exact categories with respect to Texact sequences, then we have a pairing $K_{0}^{G}(S, C_{1}, T) \times K_{n}^{G}(S, C_{2}, T) \rightarrow K_{n}^{G}(S, C_{3}, T)$. Also if ζ_{3} is Tprojective, so is $\langle \varsigma_1, \varsigma_2 \rangle$. Hence, if $[\underline{S}, C_1]$ is considered as an exact category with respect to T-exact sequences, we have an induced pairing $K_0^G(S, C_1, T) \times P_n^G(S, C_2, T) \to P_n^G(S, C_3, T)$. Now, if we put $C_1 = C_2 = C_3 = C$ such that the pairing $C \times C \rightarrow C$ is naturally associative and commutative and C has a natural unit, then, as in theorem 5.1.8 $K_0^G(-,C,T)$ is a Green functor and it is clear from the above that $K_n^G(-,C,T)$ and $P_n^G(-,C,T)$ are $K_0^G(-,C,T)$ modules.

5.2.4 Remarks

- (i) In the notation of theorem 5.2.3, we have the following natural transformation of functors: $P_n^G(-, C, T) \rightarrow K_n^G(-, C, T) \rightarrow K_n^G(-, C)$, where *T* is any *G*-set, *G* a finite group, and *C* an exact category. Note that the first map is the 'Cartan' map.
- (ii) If there exists a *G*-map $T_2 \rightarrow T_1$, we also have the following natural transformations $P_n^G(-, \mathbb{C}, T_2) \rightarrow P_n^G(-, \mathbb{C}, T_1)$ and $K_n^G(-, \mathbb{C}, T_1) \rightarrow K_n^G(-, \mathbb{C}, T_2)$ since, in this case, any T_1 exact sequence is T_2 -exact.

5.3 Interpretation in Terms of Group-rings

In this subsection, we discuss how to interpret the theories in previous sections in terms of group-rings.

5.3.1 Recall that any *G*-set *S* can be written as a finite as a finite disjoint union of transitive *G*-sets, each of which is isomorphic to a quotient set G/H for some subgroup *H* of *G*. Since Mackey functors, by definition, take finite disjoint unions into finite direct sums, it will be enough to consider exact categories [G/H,C] where *C* is an exact category.

For any ring A, let M (*A*) be the category of finitely generated Amodules and P(*A*) the category of finitely generated projective Amodules. Recall from ... that if G is a finite group, H a subgroup of G, A a commutative ring, then there exists and equivalence of exact categories $[\underline{G/H}, M(A)] \rightarrow M(AH)$. Under this experience, $[\underline{G/H}, P(A)]$ is identified with the category of finitely generated A-projective left AH-modules, i.e., $[G/H, P(A)] \cong P_A(AH)$. We now observe that a sequence of functors $\zeta_1 \rightarrow \zeta_2 \rightarrow \zeta_3 \in [G/H, M(A)]$ or [G/H, P(A)] is exact if the corresponding sequence $\zeta_1(H) \rightarrow \zeta_2(H) \rightarrow \zeta_3(H)$ of AH-modules is exact.

Remarks 5.3.2

(i) It follows that for every $n \ge 0, K_n^G[G/H, P(A)]$ can be identified with the nth algebraic *K*-group of the category of finitely generated *A*-projective *AH*-modules while $K_n^G[G/H, P(A)] = G_n(AH)$ if *A* is Noetherian. It is well known that $K_n^G[G/H, P(A)] = K_n^G[G/H, M(A)]$ is an isomorphism when *A* is regular.

- Let $\varphi: G/H_1 \to G/H_2$ be a G-map for $H_1 \leq H_2 \leq G$. We (i) may restrict ourselves to the case $H_2 = G$, and so, we have $\varphi^*[G/G, \mathsf{M}(A)] \rightarrow [G/H, \mathsf{M}(A)]$ corresponding to the restriction functor $M(AG) \rightarrow M(AH)$, while $\varphi_*: [G/H, \mathsf{M}(A)] \rightarrow [G/G, \mathsf{M}(A)]$ corresponds to the induction functor $M(AH) \rightarrow M(AG)$ given by $N \rightarrow AG \otimes_{AN} N$. Similar situations hold for functor categories involving P(A). So, we have corresponding restriction and induction homomorphisms for the respective K-groups.
- (ii) If C = P(A) and A is commutative, then the tensor product defines a naturally associative and commutative pairing $P(A) \times P(A) \rightarrow P(A)$ with a natural unit, and so, $K_n^G(-, P(A))$ are $K_0^G(-, P(A))$ -modules.

5.3.3 We now interpret the relative situation. So let *T* be a *G*-set. Note that a sequence $\zeta_1 \rightarrow \zeta_2 \rightarrow \zeta_3$ of functors in $[\underline{G/H}, \mathsf{M}(A)]$ or $[\underline{G/H}, \mathsf{P}(A)]$ is said to be T-exact if $\zeta_1(H) \rightarrow \zeta_2(H) \rightarrow \zeta_3(H)$ is *AH'*-split exac for all $H' \leq H$ such that $T^{H'} \neq \emptyset$ where $T^{H'} \rightarrow \{t \in T' \mid gt = t \quad \forall g \in H'\}$. In particular, the sequence of *G/H*-exact (resp. *G/G*-exact) if an only if the corresponding sequence of *AH*-modules (resp. *A/G*-modules) is split exact. If ε is the trivial subgroup of *G*, it is *G/\varepsilon*-exact if it is split exact as a sequence of *A*-modules.

So, $K_n^G(G/H, P(A), T)$ (resp. $K_n^G(G/H, M(A), T)$ is the nth algebraic K-group of the category of finitely generated Aprojective AH-modules (resp. category of finitely generated AHmodules) with respect to exact sequences that split when restricted to the various subgroups H' of H such that $T^{H'} \neq \emptyset$ with respect to exact sequences. In particular, $K_n^G(G/H, P(A), G/\varepsilon) = K_n(AH)$. If A is commutative, then $K_n^G(-, P(A), T)$ is a Green functor, and $K_n^G(-, P(A), T)$ and $P_n^G(-, P(A), T)$ are $K_0^G(-, P(A), T)$ -modules. Now, let us interpret the map, associated to *G*-maps $S_1 \rightarrow S_2$. We may specialize to maps $\varphi: G/H_1 \rightarrow G/H_2$ for $H_1 \leq H_2 \leq G$, and for convenience we may restrict ourselves to the case $H_2 = G$, which we write $H_1 = H$. In this case, $\varphi^*: [G/G, M(A)] \rightarrow [G/H, M(A)]$ corresponds to the restriction of *AG*-modules to *AH*-modules, and $\varphi_*: [G/H, M(A)]$ corresponds to the induction of *AH*-modules to *AG*-modules.

Since any *G*-set *S* can be written as a disjoint union of transitive *G*-sets isomorphic to some coset-set G/H, and since all the above *K*-functors satisfy the additiveity condition, the above identification extend to *K*-groups, defined on an arbitrary *G*-set *S*.

5.4 Some Applications

5.4.1 We are now in position to draw various conclusions just by quoting well-established induction theorems concerning $K_0^G(-, \mathsf{P}(A))$ and $K_0^G(-, \mathsf{P}(A), T)$, and more generally $R \otimes_Z K_0^G(-, \mathsf{P}(A))$ and $R \otimes_Z K_0^G(-, \mathsf{P}(A), T)$ for *R*, a subring of *Q*, or just any commutative ring (see ...) Since any exact sequence in $\mathsf{P}(A)$ is split exact, we have a canonical identification $K_0^G(-, \mathsf{P}(A), T) = K_0^G(-, \mathsf{P}(A), G/\varepsilon)$ (ε the trivial subgroup of *G*) and thus may direct our attention to the relative case only.

So, let *T* be a *G*-set. For *p* a prime and *q* a prime or 0, let D(p,T,q) denote the set of subgroups $H \le G$ such that the smallest normal subgroup H_1 of H with a *q*-factor group has a normal Sylow-subgroup H_2 with $T^{H_2} \ne \emptyset$ and a cyclic factor group H_1/H_2 . Let H_q denote the set of subgroups $H \le G$, which are *q*-hyperelementary, i.e., have a cyclic normal subgroup with a *q*-factor group (or are cyclic for q = 0).

For *A* and *R* being commutative rings, let D(A,T,R) denote the union of all D(p,T,q) with $pA \neq A$ and $qR \neq R$, and let H_R denote the set of all H_q with $qR \neq R$. Then, it has been proved (see [11], [44]) $R \otimes_Z K_0^G(-, P(A),T)$ is *S*-projective for some *G*-set *S* if $S^H \neq \emptyset \quad \forall H \in D(A,T,R) \quad H_R$. Moreover, if *A* is a field of characteristic $p \neq 0$, then $K_0^G(-, P(A),T)$ is *S*-projective already if $S^H \neq \emptyset \quad \forall H \in D(A,T,R)$. (Also see Ku-Bk).

5.4.2 Among the many possible applications of these results, we discuss just one special case. Let A = k be a field of characteristic $p \neq 0$, let $R = \mathbb{Z}(\frac{1}{p})$, and let $S = \bigcup_{H \in D(k,T,R)} G/H$. Then, $R \otimes_{Z} K_{n}^{G}(-, \mathsf{P}(k), T)$ are S-projective. Moreover, the Cartan map $K_n^G(-, \mathsf{P}(k), T) \to K_n^G(-, \mathsf{P}(k), T)$ is an isomorphism for any G-set S for which the Sylow-p-subgroups H of the stabilizers of the elements in X have a non-empty fixed point set $T^{H} \in T$, since in this case T-exact sequences over X are split exact and thus all functors $\zeta: X \to \mathsf{P}(k)$ are *T*-projective, i.e., $[X, \mathsf{P}(k)]_{\tau}$ $[X, \mathsf{P}(k)]$ is an isomomorphism if [X, P(A)] is taken to be exact with respect to T-exact and thus split exact sequences. This implies in particular that for G-sets X, the Cartan map

 $P_n^G(X \times S, \mathsf{P}(k), T) \to K_n^G(X \times S, \mathsf{P}(k), T)$

is an isomorphism since any stabilizer group of an element in $X \times S$ is a subgroup of a stabilizer group of an element in S, and thus, by the very definition of S and $D(k,T,\mathbf{Z}(\frac{1}{p}))$, has a Sylow-*p*-subgroup H with $T^H \neq \emptyset$. This finally implies that $P_n^G(-, \mathsf{P}(k), T)s \to K_n^G(-, \mathsf{P}(k), T)s$ is an isomorphism. So, by the general theory of Mackey funcors,

$$\boldsymbol{Z}\left(\frac{1}{p}\right) \otimes P_n^G\left(-, \boldsymbol{\mathsf{P}}(k)T\right) \to \boldsymbol{Z}\left(\frac{1}{p}\right) \otimes K_0^G\left(-, \boldsymbol{\mathsf{P}}(k)T\right)$$

is an isomorphism. The special case $(T = G/\varepsilon) P_n^G(-, P(k), G/\varepsilon)$, just the *K*-theory of finitely generated projective *kG*-modules and $K_n^G(-, P(k), G/\varepsilon)$ the *K*-theory of finitely generated *kG*-modules with respect to exact sequences. Thus we have proved the following.

Theorem 5.4.3

Let *k* be a filed of characteristics *p*, *G* a finite group. Then, for all $n \ge 0$, the Cartan map $K_n(kG) \rightarrow G_n(kG)$ induces isomorphisms

$$\mathbf{Z}\left(\frac{1}{p}\right) \otimes K_n(kG) \to \mathbf{Z}\left(\frac{1}{p}\right) \otimes G_n(kG)$$

Here are some applications of theorem 5.4.3. These applications are due to A.O. Kuku (see [42]).

Theorem 5.4.4

Let *p* be a rational prime, *k* a field of characteristic *p*, *G* a finite group. Then for all $n \ge 1$.

(i) $K_{2n}(kG)$ is a finite *p*-group. (ii) The Cartan homomorphism $\varphi_{2n-1}: K_{2n-1}(kG) \to G_{2n-1}(kG)$ is surjective, and ker φ_{2n-1} is the Sylow-*p*-subgroup of $K_{2n-1}(kG)$.

Corollary 5.4.5

Let *k* be a field of characteristic *p*, *C* a finite *E*1 category. Then, for all $n \ge 0$, the Cartan homomorphism $K_n(k\mathbb{C}) \rightarrow G_n(k\mathbb{C})$ induces isomorphism

$$\mathbf{Z}\left(\frac{1}{p}\right) \otimes K_n(k\mathbf{C}) \cong \mathbf{Z}\left(\frac{1}{p}\right) \otimes G_n(k\mathbf{C}).$$

Corollary 5.4.6

Let *R* be the ring of integers in a number field *F*, *m* a prime ideal of *R* lying over a rational prime *p*. then for all, $n \ge 1$,

- (a) the Cartan map $K_n((R/m)C) \rightarrow G_n((R/m)C)$ is surjective;
- (b) $K_{2n}((R/m)C)$ is a finite *p*-group

Finally, with the identification of Mackey functors: $GSet \rightarrow Ab$ with Green's *G*-functors $\underline{\delta}G \rightarrow Ab$ as in [42] and above interpretations of our equivariant theory in terms of grouprings, we now have, from the forgoing, the following result, which says that higher algebraic *K*-groups are hyperelementary computable. First, we define this concept.

Definition 5.4.7

Let *G* be a finite group, *U* a collection of subgroups of *G* closed under subgroups and isomorphic images, *A* a commutative ring with identity. Then a Mackey functor $M : \delta G \to A - M$ od is said to be U-compatible if the restriction maps $M(G) \to \prod_{H \in U} M(H)$ induces an isomorphism $M(G) \cong \lim_{H \in U} M(H)$ where $\lim_{H \in U} M(H)$ is the subgroup of all $(x) \in \prod_{H \in U} M(H)$ such that for any $H, H' \in U$ and $g \in G$ with $gH'g^- \subseteq H$, $\varphi: H' \to H$ given by $h \to ghg^{-1}$, then $M(\varphi)(x_H) = x_H$. Now, if *A* is a commutative ring with identity, $M: \delta G \to \mathbb{Z}$ - M od a Mackey functor, then $A \otimes M(H)$. Now, let *P* be a set of rational primes, $\mathbb{Z}_{P} = Z \Big[\frac{1}{q} \mid q \notin P \Big], C(G)$ the collection of all cyclic subgroups of $G, h_{P}C(G)$ the collection of all *P*-hyperelementary subgroups of *G*, i.e.,

 $h_pC(G) = \{ H \le G \mid \exists H' \le H, H' \in (G), H/H' \text{ a } p \text{ - group for some } p \in \mathsf{F} \}$

Then we have the following theorem,

Theorem 5.4.7

Let *R* be a Dedekind ring, *G* a finite group, *M* any of the Green modules $K_n(k-1), G_n(k-1) SK_n(k-1), SG_n(R-1), Cl_n(R-1)$ over $G_0(R-1)$ then $\mathbb{Z}_P \otimes M$ is $h_P(C(G))$ -computable.

References

[1] J.F. Adams. Vector Fields on Spheres. Ann. Math 25 (1962),
 603 - 622.

- [2] M.F. Atiyah, K-theory. W.A. Benjamin (1967).
- [3] H. Bass Algebraic K-theory W.A. Benjamin (1968).
- [4] H. Bass, Lenstra's Calculation of $G_0(R\pi)$ and Application to Morse-Smale Diffeomophisms. Lecture Notes in Math 88, Springer, 1981, 287 – 291.
- [5] H. Bass, A.O. Kuku and C. Pedrini (eds), Algebraic K-theory and its Applications. ICTP K-theory Proceedings. **World Scientific (1999)**.
- [6] W. Browder, Algebraic K-theory with Coefficients \mathbf{Z}/p . Lecture Noes in Math 657. Springer. 40 – 84.

[7] A. Connes, Non-Commutative Geometry. Academic Press NY/London, 1994.

- [8] C.W. Curtis and I. Reiner, Methods of Representation theory I and II. Wiley (1982); (1987).
- [9] D.N. Diep, A.O. Kuku and N.Q, Tho, Non-Commutative Chern Characters of Compact Lie group C-Algebras. K-theory 17, (1999) 195 – 205.
- [10] D.N. Diep, A.O. Kuku and N.Q. Tho, Non-commutative Chern Characters of Compact Quantum Groups. J. Algebra 226 (2000), 311 – 331.
- [11] A.W.M. Dress, Contributions to the Theory of Induces Representations. Lecture Notes in Math. Springer 1973, 183 – 240.
- [12] A.W.M. Dress, Induction and Structure Theorems for Orthogonal Representations of Finite Groups, Ann. Math 102 (1975) 291 – 325.
- [13] A.W.M. Dress and A.O. Kuku, The Cartan Map for Equivalent Higher K-groups. Comm. in Algebra, 9 (1981), 727 – 747.

- [14] A.W.M. Dress and A.O. Kuku, A Convariant Setting for Equivariant Higher Algebraic K-theory. Lecture Notes in Math. 966, Springer (1986) 58 – 68.
- [15] D. Goswami and A.O. Kuku, A Complete Formulation of the Baun-Gomes Conjecture for the action of Discrete Quantum Groups. K-theory 936), 2003, 341 363.
- [16] X. Guo and A.O. Kuku, Higher Class Groups of Generalised Eichler Orders. **Comm. in Algebra 33 (2005), 709 718**.
- [17] X. Guo and A.O. Kuku, Wild Kernels for Higher K-theory of Division and Semi-simple Algebras, Beitrage Zür Algebra und Geometric, 47 (2006) (1), 1 – 14.
- [18] R. Hartshone, Algebraic Geometry. Springer, NY 1977.
- [19] M. Karoubi, K-theory: An Introduction. Springer 1978.
- [20] M. Karoubi, A.O. Kuku and C. Pedrini (eds), Contemporary Developments in Algebraic K-theory. **ICTP Lecture Notes Series, 15 (2003).**

- [21] M.E. Keating. Values of Tame Symbols in Division Algebras.J. Lond. Math Soc. 2 (14), 1976, 25 30.
- [22] A.O. Kuku. Some Algebraic K-theory Application of LF and NF Functors. **Proc. AMS (37) (2) 1973, 36 365.**
- [23] A.O. Kuku, Whitehead Group of Orders in *p*-adii Semi-simple Algebras.
 J. Algebra 25 (1973), 415 418.
- [24] A.O. Kuku, Some Finiteness Theorems in the K-theory of Orders in *p*-adii Algebras. J. Lond. Math. Soc (13) (1) 1976, 122 – 128.
- [25] A.O. Kuku, SK_n of Orders and G_n of Finite Rings, Lect. Notes in Math. 51, **Springer-Verlag (1976) 60 68**.

[26] A.O. Kuku, SG_n of Orders and Group Rings, Math. Z. 165 (1979) 291 – 295.

- [27] A.O. Kuku, Higher Algebraic K-theory of Group Rings and Orders in Algebras over number fields, Comm. Algebra 10(8) (1982) 805 – 816.
- [28] A.O. Kuku, Equivalent K-theory and the cohomology of profinite groups, Lect. Notes in Math. 1046 (1984), Springer-Verlag, 234 244.
- [29] A.O. Kuku, K-theory of group rings of finite groups over maximal orders in division algebras, J. Algebra 91 (1) 1984) 18 31.
- [30] A.O. Kuku, Axiomatic theory of induced representations of finite groups, Les cours du CIMPA, No. 5, Nice, France, 1985.
- [31] A.O. Kuku, K_n , SK_n of integral group rings and orders, Contemp. Math. AMS 55 (1986) 333 – 338.

- [32] A.O. Kuku, Some finiteness results in the higher K-theory of orders and group-rings, **Topology Appl. 25 (1987) 185 191.**
- [33] A.O. Kuku, Higher K-theory of modules over *EI* categories, Africa Mat. 3 (1996) 15 – 27.
- [34] A.O. Kuku, Ranks of K_n and G_n of orders and group rings of finite groups over integers in number fields, J. Pure Appl. Algebra 138 (1999), 39 44.
- [35] A.O. Kuku, Equivariant higher K-theory for compact Lie-group actions. **Bietrage zür Algebra and Geometric 41 (1) (2000),** 141 150.
- [36] A.O. Kuku, Profinite and continuous higher K-theory of exact categories, orders and group-rings, K-theory 22 (2001) 367 392.
- [37] A.O. Kuku, Classical Algebraic K-theory: the functors K_0, K_1, K_2 . Handbook of Algebra 3 (2003) Elsevier, 157 196.

- [38] A.O. Kuku, K-theory and Representation Theory –
 Contemporary developments in Algebraic K-theory, ICTP
 Lect. Series, No. 15 (2003) 259 356.
- [39] A.O. Kuku, Higher Algebraic K-theory, Handbook of Algebra, **4 (2006) Elsevier, 3 74.**
- [40] A.O. Kuku, Finiteness of higher K-groups of orders and grouprings **K-theory (2005), (36) 51 – 58.**
- [41] A.O. Kuku, Equivariant higher algebraic K-theory for Waldhausen categories, Bietage sür Algebra und Geometridc contributions to Algebra and Geometry. Vol. 47, (2) 583 – 601 (2006).
- [42] A.O. Kuku, Representation theory and higher Algebrai K-theory **Chapman and Hall (2007).**
- [43] A.O. Kuku, Profinie equivariant higher algebraic K-theory for action of algebraic goups (preprint).

- [44] A.O. Kuku, Higher Algebraic K-theory for twisted Laurent series rings over orders and semi-simple algebras. Algebras and Representation theory (to appear).
- [45] A.O. Kuku and G. Fang, Higher K-theory of group-rings of virtually inifiite cyclic groups. Math. Ann 322 (2003) 711 725.
- [46] A.O. Kuku and M. Mahdavi-Hezeveli. Subgroups of $GL_n(R)$ for local rings *R*. Comm. in Algebra 32 (15) 2004 1805 1902.
- [47] A.O. Kuku and G. Tang, An explicit computation of "bar" homology groups of a non-unital ring. **Beitrage zür Algebra und Geometric 44 (2) 2003, 375 – 382**.
- [48] T.Y. Lam, Induction techniques for Grothendieck groups and Whitehead group of finite groups. Ann. Sc. Ecole. Norm Sup.
 Paris 1 (1968) 91 – 148.

- [49] T.Y. Lam and I. Rienes, Relative Grothendieck groups. J. Algebra 11 (1969) 213 242.
- [50] R.C. Laubenbacker and D. Webb. On SG_n of order. J. Algebra 133 (1990) 125 131.
- [51] R. Lee and R.H. Szearba, The group $K_3 \mathbf{Z}$ is cyclic of order. 48 Ann Math. 104 (1976) 31 – 60.
- [52] H.W. Lenstra, Grothendieck groups of Abalian group-rings. J.Pure. App. Alg. 20 (1981) 173 193.
- [53] J.L. Loday, K-theory Algebrique et representations de group. Ana Sci. Ecole Norm Superior, 9, (4) 1978 309 – 377.
- [54] J.L. Loday. Cyclic homology. Springer-Verlag 1978 309 –
 377.

[55] S. Maclare, Categories for the working mathematician, **Springer-Verlag (1971).**

- [56] J.S. Milre. Etale cohomology. **Princeton 1980.**
- [57] J. Milnor, Whitehead torsion. Bull. Amer. Math Soc. (72) 1966, 358 426.
- [58] J. Milnor, Introduction Algebraic K-theory. Princeton (1971).
- [59] Neisendorfer, Primary Homotopy theory. Menir Amer. Math. Soc. 232 AMS (1980).
- [60] R. Oliver, Whitehead groups of finite groups. **Cambridge Univ. Press (1988).**
- [61] D. Quillen, On the cohomology K-theory of the general linear groups of a finite field. Ann Math 96 (1972) 552 586.
- [62] D. Quillen, Higher algebraic K-theory. Lecture Notes in Math. Springer-Verlag (1973) 85 147.

- [63] D. Quillen, Finite generation of the K-groups of algebraic integers. Lecture Notes in Math. 341 Springer-Verlag (1973), 195 – 214.
- [64] J. Rognes. $K_4(\mathbf{Z})$ is the trivial group. **Topology 39 (2000).**
- [65] Rosenberg. Algebraic K-theory and its applications. Springer-Verlag (1994).
- [66] G. Segal, Equivalent K-theory. Publ. Math IHES, 34 (1968).
- [67] G. Segal, Representation ring of compact Lie-groups, IHES(34) 1968 113 128.
- [68] J.P. Serre, Linear representations of finite group. Springer-Verlag, (1977).
- [69] J.P. Serre, Local fields. Springer-Verlag, Berlin (1979).
- [70] E.A. Spancer, Algebraic topology. Mcgraw-Hill (1966).

- [71] V. Srinivas, Algebraic K-theory. **Progress in Math 90**.
- [72] A.A. Suslin, Algebraic K-theory of fields. **Proceedings of the** ICM, Berkely (1986) AMS (1987) 222 – 244.
- [73] A.A. Suslin, Excision in Algebraic K-theory. **Proc. Staklov** Inst. Math 208 (1998) 255 – 279.
- [74] A.A. Suslin, Homology of GL_n , characteristic classes and Milnor K-theory. Lecture Notes in Mate (Springer-Verlag) 1046 (1984) 357 – 375.
- [75] A.A. Suslin, Stability in Algebraic K-theory. Lect. Notes in Math. 966 Springer-Verlag (1982) 304 333.
- [76] A.A. Suslin, Projective modules over polynomial rings. Dokl.
 Aked. Nauk 219 (1976) 221 238.
- [77] A.A. Suslin and A.V. Yufsyakov, K-theory of local division algebras. Soviet Math. Docklady 33 (1986) 794 798.

- [78] A.A. Suslin and M. Wodziki, Excision in algebraic K-theory. Ann. Math (2) 136 (1) 1992 51 – 122.
- [79] R.G. Swan, Vector bundles and projective modules. Trans AMS 105 (1962) 264 – 277.
- [80] R.G. Swan, Excision in Algebraic K-theory. J. Pure. Appl. Alg.
 (1) (1971) 221 252.
- [81] R.G. Swan, K-theory of finite groups and order. Springer-Verlag, Lecture Notes 149 (1979).
- [82] R.G. Swan, Algebraic K-theory. Lecture Notes in Math 76 Springer-Verlag (1968).
- [83] R.W. Thomson, Algebraic K-theory of group scheme actions.
 In algebraic topology and algebraic K-theory. Proceedings Princeton, NJ (1987) 539 – 563.
- [84] T. Tom-Dieck, Equivariant homology and Mackey functors. Math. Ann 1973.

- [85] T. Tom-Dieck, Transformation groups.
- [86] J.B. Wagoner, Continuous cohomology and *p*-adii K-theory. Lecture Notes in Math 551, Springer-Verlag 241 – 248.
- [87] F.Waldhausen, Algebraic K-theory of generalized free products. Ann Math 108 (1978) 135 – 256.
- [88] C.T.C. Wall, Finiteness conditions for CW-complexes. Ann Math. 81 (1965) 56 – 69.
- [89] C.T.C. Wall, Norms of units of group rings. Proc. Lond. Math. Soc (1974) 593 – 632.
- [90] D. Webb, Grothendieck groups of dihedral and quantermon groups. J. Pure Appl. Alge. (35) (1985) 197 223.
- [91] D. Webb, The Lestra map on classifying spaces and G-theory. Invent. Math. 84 (1980) 73 – 89.

- [92] D. Webb and D. Yao, A simple counter-example to the Hamilton-Taylor-Williams conjecture **K-theory. 7(6) (1991)** 575 -578.
- [93] C. Weibel, Introduction to Homological Algebra. Cambridge Univ. Press (1908).
- [94] G.W. Whitehead, Elements of homotopy theory. Springer-Verlag, NY 1978.
- [95] J.H.C. Whitehead, Simple homotopy types. Am. J. Math 72 (1950) 1 57.