Padmabhushan Dr. Vasantraodada Patil Mahavidyala, Tasgaon, Department of Mathematics

Sub: Linear Algebra [Paper - XIV] (MCQ)

Practice Questions Paper

Q) Select the con	rect alternative	e for each of	the following	g:
1) The number	er of vectors in	any basis of	f a vector spa	ce V is called of V.
i) Rank	ii) Nullity	iii) order	iv) dimens	ion
2) If dim(V) =	= m , dim (W)	= n then din	1 (V,W) =	
i) <i>m</i>	ii) n iii)	m n	iv) $m + n$	
3) Inner produ	ict space over i	eal field is c	called	
i) null spa	ce ii) subspac	e iii) Eucli	dean space	iv) Unitary space.
4) If T: V→W	is a linear trai	nsformation	and if dim V	=10, dim kernel T = 6 then
dim range T =				
i) 4	ii) 6	ii) 10	iv) 5	j
5) If $A = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ then the 0	characteristi	c polynomial	of A is
$i) x^2 + 1$	ii) x ² -1	iii) x	² + x	iv) $x^2 + 2x + 1$
6) If S is an G	Orthonormal se	et then for α	€ S	
i) $\ \alpha\ > 2$	ii)	$ \alpha = 0$ iii	i) $\ \alpha\ < 1$	iv) $\ \alpha\ = 1$
7) The norm	of vector $\mathbf{u} = (4)$	4, -3, 0, 1) is		
i) 30	ii) $\sqrt{30}$	iii) 26	iv) $\sqrt{26}$	
8) A non-zero	vector is alwa	nys		
i) Linearly independent			ii) linearly dependent	
iii) Both i) and ii)			iv) All of these.	
9) Which of the	following is no	ot vector spa	ce ?	
i) R (R)	ii) C(C)	iii) R(C)	iv)C(R)

10) Let V(F) be a vector space,	$\alpha,\beta\in F$ and x , $y\in V$.Then which of the following		
is incorrect?			
i) $\alpha(x-y) = \alpha x - \alpha y$	ii) $(\alpha + \beta)$ (x+y) = $(\alpha - \beta)$ (x - y)		
iii) $(\alpha + \beta) x = \alpha x + \beta x$	iv) $\alpha(-x) = -(\alpha x) = (-\alpha) x$		
11) If S is set of linear independ	dent vector then		
i) 0∈S	ii) 0 may or may not be in S		
iii) 0 ∉S	iv) none of these		
12) If V is vector space over fie	eld F, then the elements of F are called		
i) Scalars	ii) vectors		
iii) unit vectors	iv) numerical constants		
13) The norm of v is			
i) length of v ii) \parallel v \parallel			
iii) non-negative real nur	mber iv) All of these		
14) If $A = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$ then charcaterstic polynomial of A is			
i) x^2 ii) x^2	$+1$ iii) x^2-1 iv) $(x-1)^2$		
15) Finite dimensional vector s	pace are isomorphic if and only if they have		
i) different dimensions ii) zero dimensions			
iii) same dimensions	iv) none of these.		
16) Let $\lambda = 4$ is eigen value of invertible operator T then eigen value of T^{-1} is			
i) 4 ii) ½ iii) 2	iv) -2		
17)If T: $V \rightarrow W$ and S: $W \rightarrow U$ a	re two linear transformation such that ST is one-one		
then			
i) S is one-one	ii) T is one-one		
iii) S is onto	iv) T is onto.		

18) The norm of vector u =	= (1,-3, 5) is		
i) √35	ii) 35		
iii)√34	iv) √30		
19) A zero vector is always	•••••		
i) Linearly Dependent	ii) Linearly Independent		
iii) Both (i) and (ii)	iv) none of these		
20) If T: V→W is a linear t	ransformation and if dim V=8, Rank T= 5 then nullity		
T=			
i) 3	ii) 8		
ii) 5	iv) 1		
21) If $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ then the characteristic polynomial of A is			
i) $(x+1)^2$	ii) $(x-1)^2$		
iii) $(x-2)^2$	iv) $(x+2)^2$		
22) If S is an Orthonormal set then for $\alpha \in S$,			
i) $\ \alpha\ = 1$	ii) $\ \alpha\ = 0$		
iii) $\ \alpha\ < 1$	iv) $\ \alpha\ > 2$		
23) If dim $V= n$ and $S = \{v\}$	v_1, v_2, \dots, v_n spans V then S is		
i) Basis of V	ii) subspace of V		
iii) not basis of V	iv) none of these		
24) if V and W are vector	spaces over the field F then Hom (V,W) is called dual		
space of V over F, If			
i) V=F	ii) W=F		
iii) V=W	iv) V≠ W		
25)A zero vector is always			
i) Linearly Independent ii) Linearly Dependent			
iii) Both (i) & (ii)	iv) None of these		

26) If T: V —> W is a li	near transformation	n and if dim $V = 28$	and dim Range T =
20 then dim Ke	r T=		
i) 8	ii) 6	iii) 9	iv)10
27) A linear transform i) Ker T = {0}		is said to be non-si	ngular if
iii) T is Invertible	iv)All Of these		
28) V is linearly indepe	ndent iff		
i) V=0 29) dim (M _{mxn} (F)) =	<i>,</i>	iii) V=W	iv) V≠W
i) mn	ii) m	iii) n	iv)None of these
30) Inner product space	over complex field	is called	
i] Null space	ii] Euclidean spac	ce iii] Unitary space	iv] Subspace
31) The sum of two subs	spaces is		
i] a group	ii] a field	iii] a ring	iv] Subspace
32] Let T: $U \rightarrow V$ be ho	momorphism then	kernel of T is	
i] Subspace of V	ii] Subspace of U	iii] Quotient space	e of X iv] {0}
33] In the vector space V ∈ F is given by		tiplication (\propto f) (x)	for all $x \in V(F)$, \propto
$i] \propto f(x)$	$ii] \propto + f(x)$	iii] \propto - f(x)	$iv] \propto + x$
34] A non empty subset	W of a vector space	e V (F) is subspace	e of V If f
A] $\alpha x \in \mathcal{C}$	V B	$] \alpha x + \beta y \in w$	
C] $\alpha x \cdot \beta y$	$y \in W$ D] none of them	

35] Let T: $V \rightarrow U$ be a homomorphism then ker T = $\{0\}$
A] T is one one B] T is onto
C] T is one one and onto D] None of them
36] If $S = \{ V_1, V_2, \dots, V_n \}$ is basis of V then every element of V can be expressed
as a linear combination of
A] V_1, V_2, V_{n+1} B] V_1, V_2, V_n
C] linear dependent vectors D] None of them
37] Any two basis of finite dimensional vector space of V have
A] finite number of elements
B] same number of elements
C] infinite number of elements
D] none of them
38] Finite dimensional vector space V has dimension n i f f
A] n is maximum no of L .I.
B] n is maximum no of L.D elements
C] n is zero elements of L.I
D] None of them
39] If V is finite dim. vector space , { V_1, V_2, V_r is a L.I subset of V then
A] r is max.no L.I elements
B] it can be extended to form basis
C] it can not be extended to form basis
D] none of them
40] Two finite dimensional vector space over F are isomorphic iff they have
A] finite dimension
B] disjoint dimension
C] Same 1.D elements
D1 same dimension

41] Let S be orthogonal set of non zero vectors in an inner product space V then

A] S is L.I set

B] S is L.D set

C] S is empty set

D] none of them