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To the Student

These notes are provided for your benefit as an attempt to organise the salient points of the course. They
are a very terse account of the main ideas of the course, and are to be used mostly to refer to central
definitions and theorems. The number of examples is minimal, and here you will find few exercises.
The motivation or informal ideas of looking at a certain topic, the ideas linking a topic with another, the
worked-out examples, etc., are given in class. Hence these notes are not a substitute to lectures: you
must always attend to lectures. The order of the notes may not necessarily be the order followed in
the class.

There is a certain algebraic fluency that is necessary for a course at this level. These algebraic
prerequisites would be difficult to codify here, as they vary depending on class response and the topic
lectured. If at any stage you stumble in Algebra, seek help! I am here to help you!

Tutoring can sometimes help, but bear in mind that whoever tutors you may not be familiar with
my conventions. Again, I am here to help! On the same vein, other books may help, but the approach
presented here is at times unorthodox and finding alternative sources might be difficult.

Here are more recommendations:
¢ Read a section before class discussion, in particular, read the definitions.

e Class provides the informal discussion, and you will profit from the comments of your classmates,
as well as gain confidence by providing your insights and interpretations of a topic. Don’t be
absent!

e Once the lecture of a particular topic has been given, take a fresh look at the notes of the lecture
topic.

¢ Try to understand a single example well, rather than ill-digest multiple examples.
e Start working on the distributed homework ahead of time.

e Ask questions during the lecture. There are two main types of questions that you are likely to
ask.

1. Questions of Correction: Is that a minus sign there? If you think that, for example, I have missed
out a minus sign or wrote P where it should have been Q,! then by all means, ask. No one
likes to carry an error till line XLV because the audience failed to point out an error on line I.
Don’t wait till the end of the class to point out an error. Do it when there is still time to correct
it!

2. Questions of Understanding: I don’t get it! Admitting that you do not understand something is
an act requiring utmost courage. But if you don't, it is likely that many others in the audience
also don’t. On the same vein, if you feel you can explain a point to an inquiring classmate, I
will allow you time in the lecture to do so. The best way to ask a question is something like:
“How did you get from the second step to the third step?” or “What does it mean to complete
the square?” Asseverations like “I don’t understand” do not help me answer your queries. If
I consider that you are asking the same questions too many times, it may be that you need
extra help, in which case we will settle what to do outside the lecture.

e Don't fall behind! The sequence of topics is closely interrelated, with one topic leading to another.

e The use of calculators is allowed, especially in the occasional lengthy calculations. However, when
graphing, you will need to provide algebraic/analytic/geometric support of your arguments. The
questions on assignments and exams will be posed in such a way that it will be of no advantage to
have a graphing calculator.

e Presentation is critical. Clearly outline your ideas. When writing solutions, outline major steps and
write in complete sentences. As a guide, you may try to emulate the style presented in the scant
examples furnished in these notes.

1My doctoral adviser used to say “I said A, I wrote B, I meant C and it should have been D!
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Preliminaries

1.1 Sets and Notation

1 Definition We will mean by a set a collection of well defined members or elements.

2 Definition The following sets have special symbols.

N={0,1,2,3,...} denotes the set of natural numbers.

zZ={..,—3,—2,—1,0,1,2,3,...} denotes the set of integers.

Q denotes the set of rational numbers.
R denotes the set of real numbers.

C denotes the set of complex numbers.
o} denotes the empty set.

3 Definition (Implications) The symbol — is read “implies”, and the symbol < is read “if and only if.”
4 Example Prove that between any two rational numbers there is always a rational number.

Solution: » Let (a,c) € Z2, (b,d) € (N\{0})?, £ < £. Then da < be. Now

a—+c
b+d’
+c ¢
b+d d

ab+ad<ab+bc = a(b+d)<b(a+c) = %<
a

da+dc<cb+cd = d(a+c)<c(b+d) =

. a+c . a c
whence the rational number b lies between o and 5 <

|:| We can also argue that the average of two distinct numbers lies between the numbers and

4T
! 2 lies between them.

so if r1 < v are rational numbers, then

5 Definition Let A be a set. If a belongs to the set A, then we write a € A, read “a is an element of A.” If
a does not belong to the set A, we write a € A, read “a is not an element of A.”



2 Chapter 1

6 Definition (Conjunction, Disjunction, and Negation) The symbol V is read “or” (disjunction), the symbol
/\ is read “and” (conjunction), and the symbol — is read “not.”

7 Definition (Quantifiers) The symbol V is read “for all” (the universal quantifier), and the symbol 3 is read
“there exists” (the existential quantifier).

We have
—(vx € A,P(x)) & (€ A,—P(x)) (1.1)

—(3€eA,P(x)) & (Vx € A,—P(x)) (1.2)
8 Definition (Subset) If Va € A we have a € B, then we write A C B, which we read “A is a subset of B.”
In particular, notice that for any set A, @ C A and A C A. Also
NCZCQCRCC.
|:| A=B &< (ACB)A(BCA).
9 Definition The union of two sets A and B, is the set

AUB={x:(x€eA) V (xeB).

This is read “A union B.” See figure 1.1.

10 Definition The intersection of two sets A and B, is
ANB={x:(xe A) N\ (x € B)}.

This is read “A intersection B.” See figure 1.2.

11 Definition The difference of two sets A and B, is
A\B={x:(x € A) AN(x € B)}.

This is read “A set minus B.” See figure 1.3.

7, ) O

A B A B A B

Figure 1.1: AUB Figure 1.2: ANB Figure 1.3: A\ B

12 Example Prove by means of set inclusion that

(AUB)NC=(ANnC)Uu(BnNnC).
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Solution: » We have,

xe (AuB)NC x€e (AUB)AxeC
xeAVxeB)AxeC
xeAAxeC)VixeBAxe(C)

xeANC)V(xeBNC(C)

I 11107

xe (ANC)u (BNCQC),

which establishes the equality. «

13 Definition Let A1,A5,..., A, be sets. The Cartesian Product of these n sets is defined and denoted

by
Al XAz X+ X An={(as,az,...,aq) : ax € Ay},

that is, the set of all ordered n-tuples whose elements belong to the given sets.

|:| In the particular case when all the A are equal to a set A, we write
Al XAz X -+ XA, =A™

Ifa € Aandb € A we write (a,b) € AZ.

14 Definition Let x € R. The absolute value of x—denoted by |x|—is defined by

—x if x<0,
x| =
X if x > 0.
It follows from the definition that for x € R,
— x| <x < [x].

t>0 = <t & —t<x<t
YVaeR — Va?=]al

15 Theorem (Triangle Inequality) Let (a,b) € R%. Then

la +b| < |a] + [b].

Proof: From 1.3, by addition,
—lal < a < al

to
—[b] < b < [b|

we obtain
—(lal +1b]) < a+b < (laf + [b]),

whence the theorem follows by 1.4. O

(1.3)
(1.4
(1.5)

(1.6)
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|Homework |

Problem 1.1.1 Prove that between any two rational
numbers there is an irrational number.

Problem 1.1.2 Prove that X\ (X\ A) =XNA.

Problem 1.1.3 Prove that
X\ (AUB)=(X\A)N(X\B).

Problem 1.1.4 Prove that
X\ (ANB)=(X\A)U (X\B).

Problem 1.1.5 Prove that

(AUB)\(ANB)=(A\B)U(B\A).

Problem 1.1.6 Write the union A U B U C as a disjoint
union of sets.

Problem 1.1.7 Prove that a set with n > 0 elements has
2" subsets.

Problem 1.1.8 Let (a,b) € R?. Prove that

llal —[bll < |la —bl.

1.2 Partitions and Equivalence Relations

16 Definition Let S # & be a set. A partition of S is a collection of non-empty, pairwise disjoint subsets of

S whose union is S.

17 Example Let

27 ={...,—6,—4,—2,0,2,4,6,...}=0

be the set of even integers and let

2Z+1={...,—5,—3,—1,1,3,5,...}=1

be the set of odd integers. Then
(2Z2) U (2Z +1) = Z,

and so {2Z,2Z + 1} is a partition of Z.

18 Example Let
3Z=A{...

be the integral multiples of 3, let

(2Z) N (2Z+1) = 2,

-9,,—6,-3,0,3,6,9,...}=0

3Z+1={...,—8,-5,-2,1,47,..}=1

be the integers leaving remainder 1 upon division by 3, and let

32+2={...,—7,—4,—1,2,58,...}=2

be integers leaving remainder 2 upon division by 3. Then

(3Z)U(3Z+1)U(BZ+2) =7,
B3Z)N(BZ+1) =92, BZ)N(3Z+2)=2,(3Z+1)N(3Z+2) =2,

and so {3Z,3Z + 1,3Z + 2} is a partition of Z.

|:| Notice that 0 and 1 do not mean the same in examples 17 and 18. Whenever we make use
of this notation, the integral divisor must be made explicit.

19 Example Observe

R=(Q) U (R\Q),

2 =(Q)N(R\Q),

which means that the real numbers can be partitioned into the rational and irrational numbers.
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20 Definition Let A, B be sets. A relation R is a subset of the Cartesian product A x B. We write the fact
that (x,y) € Rasx ~y.

21 Definition Let A be a set and R be a relation on A X A. Then R is said to be
e reflexive if (Vx € A),x ~x,
e symmetric if (V(x,y) € A?),x~y — y ~x,
e anti-symmetric if (V(x,y) € A?),(x~y) A (y~x) = x=y,
e tramsitive if (V(x,y,z) € A3),(x~y)A(y~z) = (x~z).

A relation R which is reflexive, symmetric and transitive is called an equivalence relation on A. A relation
R which is reflexive, anti-symmetric and transitive is called a partial order on A.

22 Example Let S ={All Human Beings}, and define ~ on S as a ~ b if and only if a and b have the same
mother. Then a ~ a since any human a has the same mother as himself. Similarly, a ~b = b ~a
and (a ~b) A (b~c) = (a~ c). Therefore ~ is an equivalence relation.

23 Example Let L be the set of all lines on the plane and write 1; ~ 1, if 14|[12 (the line 1; is parallel to the
line 1;). Then ~ is an equivalence relation on L.

24 Example In Q define the relation % ~ 3 & ay = bx, where we will always assume that the

denominators are non-zero. Then ~ is an equivalence relation. For § ~ ¢ since ab = ab. Clearly

a x X a
—~— = ay=bx = xb=ya = —~ —.
b vy y b

Finally, if § ~ % and % ~ 1 then we have ay = bx and xt = sy. Multiplying these two equalities
ayxt = bxsy. This gives
ayxt —bxsy =0 = xy(at —bs) =0.

Now if x = 0, we will have a = s = 0, in which case trivially at = bs. Otherwise we must have at — bs = 0

a S
and so vt

25 Example Let X be a collection of sets. Write A ~ B if A C B. Then ~ is a partial order on X.

26 Example For (a,b) € R? define
a~bsea®+b?s2.

Determine, with proof, whether ~ is reflexive, symmetric, and/or transitive. Is ~ an equivalence relation?

Solution: » Since 02 + 02 # 2, we have 0 ~ 0 and so ~ is not reflexive. Now,

a~b & a*+b?
& b2+ a?
& b~a,
so ~ is symmetric. Also 0 ~ 3 since 0> + 3% > 2 and 3 ~ 1 since 32 + 12 > 2. But 0 = 1 since

0% 4+ 12 # 2. Thus the relation is not transitive. The relation, therefore, is not an equivalence
relation.

<
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27 Definition Let ~ be an equivalence relation on a set S. Then the equivalence class of a is defined and

denoted by

[al={x € S:x ~ a}.

28 Lemma Let ~ be an equivalence relation on a set S. Then two equivalence classes are either identical

or disjoint.

Proof:

We prove that if (a,b) € S$2, and [a] N
Nowx € [a] = x~a = a ~ x, by symmetry. Similarly, x € [

[b] +# & then[a] =

]. Suppose that x € [a] N [b].

[b
b] = x ~ b. By transitivity

(a~x)A(x~b) = a~b.

Now, ify € [b] thenb ~ y. Again by transitivity, a ~ y. This means thaty € [a]. We have shewn
thaty € [b] = y € [a] and so[b] C [a]. In a similar fashion, we may prove that[a] C [b]. This

establishes the result. O

29 Theorem Let S & & be a set. Any equivalence relation on S induces a partition of S. Conversely,
given a partition of S into disjoint, non-empty subsets, we can define an equivalence relation on S whose

equivalence classes are precisely these subsets.

Proof:

By Lemma 28, if ~ is an equivalence relation on S then

S= U[a])

aes

and [a] N [b] = @ if a = b. This proves the first half of the theorem.

Conversely, let

S=JS«» SanSp=2 ifa+B,

29

be a partition of S. We define the relation =~ on S by letting a = b if and only if they belong to
the same S. Since the S, are mutually disjoint, it is clear that = is an equivalence relation on

S and that for a € S, we have[a] = S,. 0

|Homework |

Problem 1.2.1 For (a,b) € (Q\{0})? define the relation
~ as follows: a ~ b & § € Z. Determine whether this
relation is reflexive, symmetric, and/or transitive.

Problem 1.2.2 Give an example of a relation on Z \ {0}
which is reflexive, but is neither symmetric nor transi-
tive.

1.3 Binary Operations

Problem 1.2.3 Define the relation ~in Rbyx ~y &
xeY = ye*. Prove that ~ is an equivalence relation.

Problem 1.2.4 Define the relation ~in Q by x ~y <~
Jh € Z such that x = 3Y +h.

equivalence relation. [B] Determine [x], the equivalence
ofx € Q. [C]Is 5 ~ 22

[A] Prove that ~ is an

30 Definition Let S, T be sets. A binary operation is a function

SxS
R
(a,b)

— T

— (a,b)
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We usually use the “infix” notation a ® b rather than the “prefix” notation ®(a,b). If S =T then we say
that the binary operation is internal or closed and if S # T then we say that it is external. If

a®®b=bRa
then we say that the operation ® is commutative and if
a®((b®c)=(a®b)®c,
we say that it is associative. If ® is associative, then we can write
a®(b®c)=(a®b)®c=a®bRc,
without ambiguity.

|:| We usually omit the sign ® and use juxtaposition to indicate the operation Q. Thus we write
ab instead of a ® b.

31 Example The operation + (ordinary addition) on the set Z X Z is a commutative and associative closed
binary operation.

32 Example The operation — (ordinary subtraction) on the set N X N is a non-commutative, non-
associative non-closed binary operation.

33 Example The operation ® defined by a ® b = 1 4+ ab on the set Z X Z is a commutative but non-
associative internal binary operation. For

a®@b=1+ab=1+ba=>a,

proving commutativity. Also, 1® (2®3) =1Q® (7) = 8and (1®2)®3 = (3) ® 3 = 10, evincing
non-associativity.

34 Definition Let S be a set and ® : S X S — S be a closed binary operation. The couple (S, ®) is called
an algebra.

|:| When we desire to drop the sign ® and indicate the binary operation by juxtaposition, we
simply speak of the “algebra S.”

35 Example Both (Z, +) and (Q, -) are algebras. Here + is the standard addition of real numbers and -
is the standard multiplication.

36 Example (Z,—) is a non-commutative, non-associative algebra. Here — is the standard subtraction
operation on the real numbers

37 Example (Putnam Exam, 1972) Let S be a set and let % be a binary operation of S satisfying the laws
V(x,y) € §?
x* (x*y) =y, (1.7)

(Yy*x)xx=uy. (1.8)

Shew that * is commutative, but not necessarily associative.

Solution: » By (1.8)
x*Yy=((x*y)*xx)*x.
By (1.8) again
((xxy)sx)xx=((x*y)*((x*y)*y)) *x.
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By (1.7)
((xxy) = ((x*y)*xy)) *x=(y)*xx=y=*x,

which is what we wanted to prove.

To shew that the operation is not necessarily associative, specialise S =7Z andx xy = —x — y
(the opposite of x minus y). Then clearly in this case = is commutative, and satisfies (1.7) and
(1.8) but

Ox(0%x1)=0%(—0—1)=0x(—1)=—0—(—1) =1,

and
(0%x0)%1=(—0—0)%1=(0)*1=—0—1=—1,

evincing that the operation is not associative. 4

38 Definition Let S be an algebra. Then 1 € S is called a left identity if Vs € S we have ls = s. Similarly
r € S is called a right identity if Vs € S we have sr = s.

39 Theorem If an algebra S possesses a left identity 1 and a right identity r then 1 = r.

Proof: Sincel is a left identity

r=1r
Since r is a right identity
L=1r.
Combining these two, we gather
r=1Ilr=1,

whence the theorem follows. [

40 Example In (Z, +) the element 0 € Z acts as an identity, and in (Q, -) the element 1 € Q acts as an
identity.

41 Definition Let S be an algebra. An element a € S is said to be left-cancellable or left-regular if V(x,y) €
SZ

ax=ay — x=1.
Similarly, element b € S is said to be right-cancellable or right-regular if V(x,y) € S?

xb=yb = x=1y.

Finally, we say an element c¢ € S is cancellable or regular if it is both left and right cancellable.

42 Definition Let (S, ®) and (S, T) be algebras. We say that T is left-distributive with respect to ® if
V(x,y,2) € 3, xT(y®z) = (xTy) ® (xTz).

Similarly, we say that T is right-distributive with respect to ® if
V(x,y,2) €S3 (Y®2z)Tx=(yTx) ® (zTx).

We say that T is distributive with respect to ® if it is both left and right distributive with respect to ®.

|Homework |
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Problem 1.3.1 Let
S={xeZ:3(a,b) € Z*x=a®+1b>+c> —3abc}.

Prove that S is closed under multiplication, that is, if
x € Sand y € S thenxy € S.

Problem 1.3.2 Let (S, ®) be an associative algebra, let
a € S be a fixed element and define the closed binary
operation T by

xTy=x®a®uy.

Prove that T is also associative over S x S.

Problem 1.3.3 On QN] — 1;1[ define the a binary opera-

tion ®
a+b

1+ ab’
where juxtaposition means ordinary multiplication and
+ is the ordinary addition of real numbers. Prove that

a®b=

O Prove that ® is a closed binary operation on

QN]— 151
0 Prove that ® is both commutative and associative.

0 Find an element e € R such that (Va € QN] —
1;1) (e® a=a).

O Given e as above and an arbitrary element a €
QnN]— 1;1[, solve the equation a ® b = e for b.

1.4 Z,

Problem 1.3.4 On R \ {1} define the a binary operation
®
a®b=a+b—ab,

where juxtaposition means ordinary multiplication and
+ is the ordinary addition of real numbers. Clearly ® is
a closed binary operation. Prove that

0 Prove that ® is both commutative and associative.

0 Find an element e € R \ {1} such that (Va €
RA\{1}) (e®a=a).

O Given e as above and an arbitrary element a €
R\ {1}, solve the equation a ® b = e for b.

Problem 1.3.5 (Putnam Exam, 1971) Let S be a set
and let o be a binary operation on S satisfying the two
laws

(Wx € S)(x ox =x%),

and
(V(x,y,2z) € $°)((xoy)oz=(yoz)ox).
Shew that o is commutative.
Problem 1.3.6 Define the symmetric difference of the

sets A,B as AAB = (A\ B) U (B\ A). Prove that A
is commutative and associative.

43 Theorem (Division Algorithm) Let n > 0 be an integer. Then for any integer a there exist unique integers
q (called the quotient) and r (called the remainder) such thata=qn+rand 0 < r«<q.

Proof:

In the proof of this theorem, we use the following property of the integers, called the

well-ordering principle: any non-empty set of non-negative integers has a smallest element.

Consider the set

S={a—bn:be€ZAa>bnh.

Then S is a collection of nonnegative integers and S ¥ @ as +a — 0 -n € S and this is non-
negative for one choice of sign. By the Well-Ordering Principle, S has a least element, say r.
Now, there must be some q € Z such that r = a — qn sincer € S. By construction, r > 0. Let
us prove that r < n. For assume thatr > n. Thenr>r—n=a—qn—m=a—(q+1)n > 0,
sincer —n > 0. Butthena — (q + 1)n € S and a — (q + 1)n < r which contradicts the fact that
r is the smallest member of S. Thus we must have 0 < r < n. To prove that r and q are unique,
assumethatqimm+ri=a=qn—+712,0<r1<n,0<r2<n. Thenr; —r1 =n(q1 — q2), that
is, n divides (r2 — r1). But [r2 — r1| < n, whence r; = ry. From this it also follows that q1 = (2.

This completes the proof. [

44 Example If n = 5 the Division Algorithm says that we can arrange all the integers in five columns as
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follows:

-10 —9 -8 —7 —6

5 —4 —3 —2 —1

The arrangement above shews that any integer comes in one of 5 flavours: those leaving remainder O
upon division by 5, those leaving remainder 1 upon division by 5, etc. We let

57 ={...,—15,-10,—5,0,5,10,15,...} = 0,
524+1=1{...,—14,—9,—4,1,6,11,16,...} =1,
524+2=1{...,—13,—8,—-3,2,7,12,17,...} = 2,
52+3=1{...,—12,-7,—-2,3,8,13,18,...} = 3,
524+4=1{...,—11,—6,—1,4,9,14,19,...} = 4,

and

ZS :{0»1>2»3>4}'

Let n be a fixed positive integer. Define the relation = by x = y if and only if they leave the same
remainder upon division by n. Then clearly = is an equivalence relation. As such it partitions the set of
integers Z into disjoint equivalence classes by Theorem 29. This motivates the following definition.

45 Definition Let n be a positive integer. The n residue classes upon division by n are
0=mZ, 1=mZ+1, 2=mZ~+2, ..., n—1=nZ+n—1.
The set of residue classes modulo n is

Zn =1{0,1,...,n— 1}

Our interest is now to define some sort of “addition” and some sort of “multiplication” in Zr,.
46 Theorem (Addition and Multiplication Modulo n) Let n be a positive integer. For (a,b) € (Zn)? define
a+ b =T, where r is the remainder of a + b upon division by n. and a - b =, where t is the remainder

of ab upon division by n. Then these operations are well defined.

Proof: We need to prove that given arbitrary representatives of the residue classes, we always
obtain the same result from our operations. That is, if a = a’ and b = b’ then we have a + b =
a’+b’anda-b=a’-b’.

Now

3(q,q")ezZ*>,reNa=qn+r, a’=gm+r, 0<r<n,

B=F, - El(q1,q1') EZz,h eNb=qin+ry, b'=q1'n+r1, 0<ry<n.




Hence
a+b=(q+qi)n+r+r;, a’ +b' =(q"+q;)n+r+r,

meaning that both a+b and a’+ b’ leave the same remainder upon division by n, and therefore

a+b=a+b=a’+b’=a’"+b"

Similarly
ab = (qqin+qri +rqi)n+rry, a’d’ =(q'qm+q’'ri +rq;)n+rry,

and so both ab and a’b’ leave the same remainder upon division by n, and therefore

a-b-ab-ab -a b

This proves the theorem. [

47 Example Let

ZG ={O,1,2,3,4,5}

be the residue classes modulo 6. Construct the natural addition + table for Z¢. Also, construct the
natural multiplication - table for Zg.

Solution: » The required tables are given in tables 1.1 and 1.2. <

+0|1|2]|3]4]|5 0(1(2|3|4]|5
0110|1(2|3]4]|5 0o(ofojof0|0|0
1T(1(2|3|4|5]|0 1T(0(1|2(3|4]|5
22|3(4|5|0]|1 2(10(2|4(0(2]|4
313|4(5|0[1]|2 3(10(3|0(3]0]3
414/5/0(1(2]|3 4(10(4]2(0|4]|2
5(5/0(1|2(3|4 5(0(5|4(3[2]|1
Table 1.1: Addition table for Ze. Table 1.2: Multiplication table for Zg.

We notice that even though 2 # 0 and 3 # 0 we have 2 -3 = 0 in Z¢. This prompts the following
definition.

48 Definition (Zero Divisor) An element a # 0 of Z, is called a zero divisor if ab = 0 for some b € Z,,.
We will extend the concept of zero divisor later on to various algebras.

49 Example Let

Z7 ={0)132)334)536}

be the residue classes modulo 7. Construct the natural addition + table for Z,. Also, construct the
natural multiplication - table for Z7
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+|0|T|2|3|4|5]|6 0|1]2|3|4|5]|6
00|1T]2|3]|4|5]|6 ofojojojo0|0|0]|0
1(1(2|3|4(5]|6]|0 1/0(1|2|3|4|5|6
2(2(|3|4|5|6|0]|1 210(2(4|6|1|3]|5
313|4/5/6]/0|1]2 3/l0(3|6[2|5|1|4
414|5/6/0[1|2]|3 4/0(4|1|5|2|6|3
5(5(6[0(1[2]3]|4 5/0(5(3|1T|6|4|2
6(6/0[1/2/3|4]|5 60654321
Table 1.3: Addition table for Zy. Table 1.4: Multiplication table for Z7.

Solution: » The required tables are given in tables 1.3 and 1.4. 4

50 Example Solve the equation

5x =3
in Z11.
Solution: » Multiplying by 9 on both sides
45x = 27,
that is, 3
x = 5.
<

We will use the following result in the next section.

51 Definition Let a, b be integers with one of them different from 0. The greatest common divisor d of
a, b, denoted by d = ged(a, b) is the largest positive integer that divides both a and b.

52 Theorem (Bachet-Bezout Theorem) The greatest common divisor of any two integers a, b can be writ-
ten as a linear combination of a and b, i.e., there are integers x, y with

ged(a,b) = ax + by.

Proof: LetA ={ax+by:ax+by>0,x,y € Z}. Clearly one of +a,tb isin A, asoneof a,b is
not zero. By the Well Ordering Principle, A has a smallest element, say d. Therefore, there are
X0, Yo such that d = axp + byo. We prove that d = ged(a, b). To do this we prove that d divides
a and b and that if t divides a and b, then t must also divide then d.

We first prove that d divides a. By the Division Algorithm, we can find integers q,r,0 < r<d
such that a = dq + r. Then
r=a—dq=a(l —qgxo) — byo.
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Ifr > 0, thenr € A is smaller than the smaller element of A, namely d, a contradiction. Thus
r = 0. This entails dq = a, i.e. d divides a. We can similarly prove that d divides b.

Assume that t divides a and b. Then a = tm, b = tn for integers m,n. Hence d = axo + bxg =
t(mxo + nyo), that is, t divides d. The theorem is thus proved. U

|Homework |

Problem 1.4.1 Write the addition and multiplication ta-
bles of Zi1 under natural addition and multiplication
modulo 11.

Problem 1.4.2 Solve the equation 3x*> —5x + 1 = 0 in
711.

Problem 1.4.3 Solve the equation
5x* =3

1.5 Fields

in Z11.

Problem 1.4.4 Prove that if n > 0 is a composite integer,
Zn has zero divisors.

Problem 1.4.5 How many solutions does the equation
x* +x*> +x* +x+1=0have in Z1?

53 Definition Let F be a set having at least two elements Or and 1 (Or + 15) together with two operations
- (multiplication, which we usually represent via juxtaposition) and + (addition). A field (F,-,+) is a
triplet satisfying the following axioms V(a, b, ¢) € F3:

F1 Addition and multiplication are associative:

(a+b)+c=a-+ (b+c),

F2 Addition and multiplication are commutative:

a+b=b+a,

F3 The multiplicative operation distributes over addition:

F4 Oy is the additive identity:

F5 1y is the multiplicative identity:

F6 Every element has an additive inverse:

d—a€F, a+ (—a)=

F7 Every non-zero element has a multiplicative inverse: if a & Oy

(ab)e = a(be) (1.9)

ab = ba (1.10)
a(b+c)=ab + ac (1.11)
Or+a=a+0r=a (1.12)
Tra=algp=a (1.13)
(—a) +a=0r (1.14)

aa '=ala=1p (1.15)

Ja ' €F,
The elements of a field are called scalars.

An important property of fields is the following.

54 Theorem A field does not have zero divisors.
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Proof: Assume that ab = Or. If a # O then it has a multiplicative inverse a~'. We deduce
alab=a"0p = b =05

This means that the only way of obtaining a zero product is if one of the factors is Op. [

55 Example (Q,-,+), (R,-,+), and (C, -, +) are all fields. The multiplicative identity in each case is 1
and the additive identity is 0.

56 Example Let
Q(v2) ={a+ v2b: (a,b) € Q%}

and define addition on this set as
(a+VvV2b) + (c++2d) = (a+¢) + V2(b + d),

and multiplication as
(a +v2b)(c+ v2d) = (ac + 2bd) + V2(ad + be).

Then {(Q + V2Q,, +) is a field. Observe O = 0, 1y = 1, that the additive inverse of a + V2bis —a — v/2b,
and the multiplicative inverse of a + v/2b, (a,b) # (0, 0) is

1 a—+2b a V2b

a+ v2b T aZ_2v2 a2 —_2b2 a2 —_2p2

(a+v2b) ' =
Here a? — 2b? /0 since /2 is irrational.

57 Theorem If p is a prime, (Zp, -, +) is a field under - multiplication modulo p and + addition modulo
p-

Proof: Clearly the additive identity is 0 and the multiplicative identity is 1. The additive
inverse of a is p — a. We must prove that every @ € Zp \ {0} has a multiplicative inverse. Such
an a satisfies ged(a, p) = 1 and by the Bachet-Bezout Theorem 52, there exist integers x, y with
px + ay = 1. In such case we have

T-prFay-ay-a-y,

whence (@)~ =y. 0

58 Definition A field is said to be of characteristic p + 0 if for some positive integer p we have Va € F, pa =
Or, and no positive integer smaller than p enjoys this property.

If the field does not have characteristic p # 0 then we say that it is of characteristic 0. Clearly Q,R and
C are of characteristic 0, while Z, for prime p, is of characteristic p.

59 Theorem The characteristic of a field is either O or a prime.

Proof: If the characteristic of the field is 0, there is nothing to prove. Let p be the least positive
integer for which Va € F, pa = Oy. Let us prove that p must be a prime. Assume that instead we
had p = st with integers s > 1,t > 1. Take a = 1p. Then we must have (st)1y = Op, which entails
(s1r)(t1y) = Or. But in a field there are no zero-divisors by Theorem 54, hence either s1y = Or or
t1r = Op. But either of these equalities contradicts the minimality of p. Hence p is a prime. [
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|Homework |

Problem 1.5.1 Consider the set of numbers
Q(v2,v3,v6) ={a+bvV2+cV3+dVv6: (a,b,c,d) € Q*}.
Assume that Q(v/2, v/3, V6) is a field under ordinary addition and multiplication. What is the multiplicative inverse
of the element v/2 + 2v/3 + 362
Problem 1.5.2 Let F be a field and a, b two non-zero elements of F. Prove that
—(ab ") = (—a)b ' =a(—b"").

Problem 1.5.3 Let F be a field and a +#0r. Prove that

(—a) ' =—(a ).

Problem 1.5.4 Let F be a field and a, b two non-zero elements of F. Prove that
ab™' = (—a)(—=b7").

1.6 Functions

60 Definition By a function or a mapping from one set to another, we mean a rule or mechanism that
assigns to every input element of the first set a unique output element of the second set. We shall call
the set of inputs the domain of the function, the set of possible outputs the target set of the function,
and the set of actual outputs the image of the function.

We will generally refer to a function with the following notation:

D - T
x = f(x)

Here f is the name of the function, D is its domain, T is its target set, x is the name of a typical input
and f(x) is the output or image of x under f. We call the assignment x — f(x) the assignment rule of the
function. Sometimes x is also called the independent variable. The set f(D) = {f(a)|a € D} is called the
image of f. Observe that f(D) C T.

o
Te 2 Te B
2e 8 2e 2
3e 4 3
Figure 1.4: An injection. Figure 1.5: Not an injection
X = Y
61 Definition A function f: is said to be injective or one-to-one if V(a,b) € X%, we have

a7b = f(a) #f(b).
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This is equivalent to saying that
f(a) =f(b) = a=b.

62 Example The function « in the diagram 1.4 is an injective function. The function B represented by
the diagram 1.5, however, is not injective, 3(3) = (1) =4, but 3 #1.

63 Example Prove that
RAA{T} — RA\A{1}

t:
x4+ 1
X —
x—1
is an injection.
Solution: » Assume t(a) = t(b). Then
a—+1 b+1
t = t(b = -
(@) = tb) = — —
= (a+1)(b—1) = (b+1)(a—1)
= ab—a+b—1 = ab—b+a—1
= 2a = 2b

We have proved that t(a) = t(b) = a = b, which shews that t is injective. <«

Figure 1.6: A surjection Figure 1.7: Not a surjection

64 Definition A function f: A — B is said to be surjective or onto if (Vb € B) (Ja € A) : f(a) = b. That is,
each element of B has a pre-image in A.

|:| A function is surjective if its image coincides with its target set. It is easy to see that a
graphical criterion for a_function to be surjective is that every horizontal line passing through a
point of the target set (a subset of the y-axis) of the function must also meet the curve.

65 Example The function  represented by diagram 1.6 is surjective. The function y represented by
diagram 1.7 is not surjective as 8 does not have a preimage.

R —- R
66 Example Prove that t : is a surjection.

Xi—)Xs
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Solution: » Since the graph of t is that of a cubic polynomial with only one zero, every horizontal
line passing through a point in R will eventually meet the graph of g, whence t is surjective. To
prove this analytically, proceed as follows. We must prove that (V b € R) (3a) such that
t(a) = b. We choose a so that a = b'/3. Then

t(a) =t(b"/3) = (b'/3)3 =b.

Our choice of a works and hence the function is surjective. <«

67 Definition A function is bijective if it is both injective and surjective.

|Homework |

Problem 1.6.1 Prove that

R — R
h:
X - x
is an injection.
Problem 1.6.2 Shew that
R\ {ﬁ} — R\ {3}
f: 2
X 6x
2x—3

is a bijection.
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Matrices and Matrix Operations

2.1 The Algebra of Matrices

68 Definition Let (F, -, +) be a field. An m X n (m by n) matrix A with m rows and n columns with entries
over F is a rectangular array of the form

an iz -+ Qin

azq Qzz2 -+ Q2n
A= R

am1 Am2 - Amn

where V(i,j) € {1,2,...,m} x {1,2,...,n}, aj €F.

|:| As a shortcut, we often use the notation A = [ay;] to denote the matrix A with entries a;.
Notice that when we refer to the matrix we put parentheses—as in ‘{ay;],” and when we refer to
a specific entry we do not use the surrounding parentheses—as in “aj;.”

69 Example
o —1 1
A=
1 2 3
is a 2 X 3 matrix and
-2 1
B=11 2
0 3

is a 3 x 2 matrix.

70 Example Write out explicitly the 4 x 4 matrix A =[a;;] where a;; = i2 — j2.

18
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Solution: » This is

3212 3222 3

<

2 _

]2_11 ]2_22 12_32

22_12 22_22 22_32

42_12 42_22 42_32

12 _ 42
22 _ 42
32 _42
42 _ 42

15 12 7 0

71 Definition Let (F,-,+) be a field. We denote by M, xn (F) the set of all m x n matrices with entries
over F. My, xn (F) is, in particular, the set of all square matrices of size n with entries over F.

72 Definition The m X n zero matrix O xn € M xn(F) is the matrix with Op’s everywhere,

Omxn =

When m = n we write 0,, as a shortcut for O

Or
Or

Or

Or

Or
Or

Or

Or

nxn-

O
Or

O

Or

O
Or

O

Or

73 Definition The n x n identity matrix I, € M;,xn (F) is the matrix with 15’s on the main diagonal and

Or’s everywhere else,

I, =

Tg
Or

Or

Or

O
Tg

Or

Or

O
Or

Tg

Or

Or
Or

Or

Tg

74 Definition (Matrix Addition and Multiplication of a Matrix by a Scalar) Let A = [aij] € My xn(F), B =
[bij] € Minxn(F) and o € F. The matrix A + B is the matrix C € My, x«(F) with entries C = [ci;] where

Cij = Q4j + Oébij.
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1 1 -1 1

75 Example For A= |_1 1| andB=| 2 1 | we have
0o 2 0 -1

76 Theorem Let (A,B,C) € (M, xn(F))? and («, ) € F2. Then

M1 M, xn(F) is close under matrix addition and scalar multiplication

A+ B € My «n(F), oA € My, xn(F)

M2 Addition of matrices is commutative
A+B=B+A

M3 Addition of matrices is associative

A+B+C)=(A+B)+C

M4 There is a matrix 0., xn such that
A+ Omxn

M5 There is a matrix —A such that

A+ (—A) = (—A) + A = Opxn

M6 Distributive law
a(A + B) = A + aB

M7 Distributive law
(x +B)A =axA + BB

MS8
TFA = A

M9
x(BA) = (aB)A

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

Proof: The theorem follows at once by reducing each statement to an entry-wise and appealing

to the field axioms. O

|Homework |

Problem 2.1.1 Write out explicitly the 3 X 3 matrix A = [ay;] where ai; = V.

Problem 2.1.2 Write out explicitly the 3 X 3 matrix A = [ay;] where ai; = ij.
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Problem 2.1.3 Let

a —2a ¢ 1 2a c
M=1 o —a b|>» N=| a b—a -0
a+b 0 —1 a—D>b 0 —1

be square matrices with entries over R. Find M + N and 2M.

Problem 2.1.4 Determine x and y such that

Problem 2.1.5 Determine 2 X 2 matrices A and B such that

Problem 2.1.6 Let A =[aij] € Mnxn(R). Prove that

min max a;; > maxmin a;;.
) 1 1 )

Problem 2.1.7 A person goes along the rows of a movie theater and asks the tallest person of each row to stand
up. Then he selects the shortest of these people, who we will call the shortest giant. Another person goes along the
rows and asks the shortest person to stand up and from these he selects the tallest, which we will call the tallest
midget. Who is taller, the tallest midget or the shortest giant?

Problem 2.1.8 (Putnam Exam, 1959) Choose five elements from the matrix

11 17 25 19 16
24 10 13 15 3
12 5 14 2 18}>
23 4 1 8 22

6 20 7 21 9

no two coming from the same row or column, so that the minimum of these five elements is as large as possible.
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2.2 Matrix Multiplication

77 Definition Let A = [aij] € My xn(F) and B = [byj] € Muxp(F). Then the matrix product AB is defined
as the matrix C = [cij] € M xp (F) with entries ¢i; = Z{; aitby:

ar a2z -+ Qn Ci1 -+ Cip
az1 Qzz -+ Qzn| [by1 --+ by o --- by €21 -+ C2p
b2 b2; b2p ~
ai1 ai2 -+ Qin
_bn1 bn) bnp_
_am1 Am2 - amn_ _Cm1 te Cmp_

|:| Observe that we use juxtaposition rather than a special symbol to denote matrix multipli-
cation. This will simplify notation.In order to obtain the ij-th entry of the matrix AB we multiply
elementwise the i-th row of A by the j-th column of B. Observe that AB is am X p matrix.

1 2 5 6
78 Example Let M = and N = be matrices over R. Then
3 4 7 8
1 2(|5 6 1-5+2.-7 1-6+2-8 19 22
MN = = - )
3 4| |7 8 3.-54+4-7 3-6+4-8 43 50
and ) o } ) } ) }
5 6|1 2 5-14+6-3 5-2+6-4 23 34
NM = = =
7 8| |3 4 7-1+8.3 7-2+8-4 31 46

Hence, in particular, matrix multiplication is not necessarily commutative.

79 Example We have

over R. Observe then that the product of two non-zero matrices may be the zero matrix.

80 Example Consider the matrix

>

I
ol NI
= =
= Wl

|
|
ol
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with entries over Zs. Then

273273
A2 = 10T 70T T
230770
70 2
- 2071
33 7

|:| Even though matrix multiplication is not necessarily commutative, it is associative.

81 Theorem If (A,B,C) € M xn(F) X My xr(F) X M, (F) we have
(AB)C = A(BC),

i.e., matrix multiplication is associative.

Proof: To shew this we only need to consider the ij-th entry of each side, appeal to the
associativity of the underlying field F and verify that both sides are indeed equal to

n

.
Z Z ik by Crrj.

k=1 k’=1
O

|:| By virtue of associativity, a square matrix commutes with its powers, that is, if A €
M, «n(F), and (r,s) € N2, then (A")(AS) = (AS)(A") = AT+,

82 Example Let A € M3y 3(R) be given by

111
A=11 1 1
111

Demonstrate, using induction, that A™ =3"'A forn € N,n > 1.

Solution: » The assertion is trivial for n = 1. Assume its truth for n — 1, that is, assume
A™1 =3"~2A_ Observe that

Now
A" = AAM T = A(3"2A) =3M2A2 =3 23A =3 A

and so the assertion is proved by induction. <«
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83 Theorem Let A € M, (F). Then there is a unique identity matrix. That is, if E € My xn (F) is such
that AE=EA = A, thenE=1,.

Proof: It is clear that for any A € M, x,(F), AL, = I,A = A. Now because E is an identity,
EI, =I,,. Because I,, is an identity, EI,, = E. Whence

demonstrating uniqueness. U
84 Example Let A =[ai;] € Mnxn(R) be such that a;; =0 for i>j and ai; = 1if i <j. Find A%
Solution: » Let A2 = B = [by;]. Then
n
bij = Z aikakj.
k=1

Observe that the i-th row of A has i — 1 0’s followed by n — i+ 1 1’s, and the j-th column of A
has j 1’s followed by n —j 0’s. Therefore ifi — 1> j, thenby; =0. Ifi <j + 1, then

j
by =) aag =j—1i+1.

k=i
This means that i i
1 2 3 4 n—1 n
0123 .- n—2 n—1
A2 0 01 2 n—3 n—2
0 00O 1 2
0 00O 0 1
<
|Homework |
Problem 2.2.1 Determine the product
T =1 |1-2 1 1 1
1 1 o 1111 2
1 0 0 a b c

Problem 2.2.2 LetA= |1 1 0|, B=|c a bl|.Find AB and BA.
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1 2 311 1 1] |a a a

Problem 2.2.3 Finda+b+cif [ 3 1 2 2 2=1b b bl-

31 21|13 3 3 c ¢ ¢

0 —2 -3 —4

Problem 2.2.4 Let N = . Find N2°08,

Problem 2.2.5 Let

2 3 41 T 111

12 3 4 T 111
A= , B=

4 1 2 3 T 111

341 2 T 111

be matrices in Msx4(Zs) . Find the products AB and BA.

Problem 2.2.6 Let x be a real number, and put

1 0 X

2

mx)=|_x 1 —%
0 0 1

If a, b are real numbers, prove that
1. m(a)m(b) =m(a+b).
2. m(a)m(—a) = I3, the 3 x 3 identity matrix.

Problem 2.2.7 A square matrix X is called idempotent if X* = X. Prove that if AB = A and BA = B then A and B are
idempotent.

Problem 2.2.8 Let

1
OEO
1
A=|_
2OO
1
002

Calculate the value of the infinite series
L+A+A +A% ...,

Problem 2.2.9 Solve the equation
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over R.
Problem 2.2.10 Prove or disprove! If (A, B) € (Mnxn(F))? are such that AB = 0,,, then also BA = 0,,.

Problem 2.2.11 Prove or disprove! For all matrices (A, B) € (Mnxn(F))?,

(A +B)(A —B) =A% — B>

1 2
Problem 2.2.12 Consider the matrix A = , Where x is a real number. Find the value of x such that there are
3 x
0 0
non-zero 2 X 2 matrices B such that AB =
0 0

Problem 2.2.13 Prove, using mathematical induction, that

Problem 2.2.14 Let M = . Find M®.

Problem 2.2.15 Let A = . Find, with proof, A%°%3,

Problem 2.2.16 Let (A,B,C) € Mixm (F) X Mimxn(F) X Mpmxna(F) and « € F. Prove that
A(B+ C)=AB + AC,
(A+B)C=AC+ BC,
x(AB) = (¢A)B = A(aB).

Problem 2.2.17 Let A € M:x2(R) be given by

cosx —sina
A =

sinx cosa

Demonstrate, using induction, that forn € Nyn > 1.

cosnx —sinna
A" =

sinna cosna

Problem 2.2.18 A matrix A = [aij] € Maxn(R) is said to be checkered if ai; = 0 when (j — i) is odd. Prove that the
sum and the product of two checkered matrices is checkered.
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Problem 2.2.19 Let A € Ms3x3(R),

Prove that

Problem 2.2.20
B =0.,.

Problem 2.2.21

Problem 2.2.22

Problem 2.2.23

Problem 2.2.24

Problem 2.2.25

Problem 2.2.26

Let (A,B) € (Mnxn(F))? and k be a positive integer such that A*

a b

Let A = . Demonstrate that

c d

Let A € Mz(F) and let k € Z,k > 2. Prove that A* = 0, if and only if A% = 0.

A? — (a+ d)A + (ad — be)Iz = 0,

n(n+1)
2

Find all matrices A € Mzx2(R) such that A% = 0,

Find all matrices A € Mz2x2(R) such that A2 = I,

Find a solution X € M2x2(R) for

X2 —2X =

—1

6

0

3

Find, with proof, a 4 X 4 non-zero matrix A such that

0

0

0

0

On.

If AB = B prove that
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Problem 2.2.28 Prove, by means of induction that for the following n X n we have

- -3 - -

111 .. 1 13 6 ... notl

o1 1 «-- 1 o1 3 ... (“—%
= (n—2)(n—1)

0 0 1 1 0o 0 1 = 2“

0 0 0 1 0o 0 O 1

Problem 2.2.29 Let

Conjecture a formula for A™ and prove it using induction.

2.3 Trace and Transpose

85 Definition Let A = [aij] € My xn(F). Then the trace of A, denoted by tr (A) is the sum of the diagonal
elements of A, that is

tr (A) = Z Axk.
k=1

86 Theorem Let A =[aij] € Muxn(F), B =[bij] € Muxn(F). Then
tr(A+B)=tr(A) +tr(B), (2.10)

tr (AB) =tr (BA). (2.11)

Proof: The first assertion is trivial. To prove the second, observe that AB = (}_;_; aixby;) and
BA = (3}, bixay;). Then

n
tr(AB) =) ) awbki=) ) buai =tr(BA),

n n o n
i=1 k=1 k=1 i=1

whence the theorem follows. O

87 Example Let A € M,,x»(R). Shew that A can be written as the sum of two matrices whose trace is
different from 0.

Solution: » Write
A= (A—qaol,) + ol,.

tr (A
Now, tr (A — ol,,) = tr (A) — nx and tr («l,,) = n. Thus it suffices to take & L, o 0.
n

Since R has infinitely many elements, we can find such an «.
<
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88 Example Let A, B be square matrices of the same size and over the same field of characteristic 0. Is
it possible that AB — BA = I1,,? Prove or disprove!

Solution: » This is impossible. For if, taking traces on both sides
O=tr(AB) —tr (BA)=tr (AB—BA) =tr(I,)=n

a contradiction, sincen > 0. «

89 Definition The transpose of a matrix of a matrix A = [ai;] € My xn(F) is the matrix AT =B = [by] €
M, xm (F), where by; = aji.

90 Example If

a b c
M=lda e f|>
g h i
with entries in R, then
a dg

91 Theorem Let

A= [aij] € My xn(F), B= [bij] € Minwxn(F), C=[cij] € Mpuy,(F), x € F,u e N.

Then
ATT - A (2.12)
(A+aB)T = AT + aB”, (2.13)
(AC)T = CTAT, (2.14)
(AY)T = (AT, (2.15)

Proof: The first two assertions are obvious, and the fourth follows from the third by using
induction. To prove the third put AT = (&), oy = aji, CT = (vi5), vij = ¢i, AC = (uy) and
CTAT = (vyj). Then

n n n
Uiy = Z AikCxj = Z KkiYjk = Z Yik&ki = Vji,
k=1 k=1 k=1
whence the theorem follows. O

92 Definition A square matrix A € M, xn(F) is symmetric if AT = A. A matrix B € M, x,(F) is skew-
symmetric if BT = —B.

93 Example Let A, B be square matrices of the same size, with A symmetric and B skew-symmetric.
Prove that the matrix A’BA? is skew-symmetric.

Solution: » We have

(A’BA%)T = (AH)T(B)T(A%)T = A?(—B)A? = —A’BA~.
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94 Theorem Let F be a field of characteristic different from 2. Then any square matrix A can be written
as the sum of a symmetric and a skew-symmetric matrix.

Proof: Observe that
(A+ANT=AT + ATT AT + A

and so A + AT is symmetric. Also,
(A—ANT=AT —ATT = —(A—AT),
and so A — A" is skew-symmetric. We only need to write A as
A=2"HA+AH)+2 A=A

to prove the assertion. [

95 Example Find, with proof, a square matrix A with entries in Z, such A is not the sum of a symmetric
and and anti-symmetric matrix.

Solution: » In7Z, every symmetric matrix is also anti-symmetric, since —x = x. Thus it is enough

01
to take a non-symmetric matrix, for example, take A = . <
00
|Homework |
Problem 2.3.1 Write Problem 2.3.4 Let (A,B) € (Mzx2(R))? be symmetric
matrices. Must their product AB be symmetric? Prove
1 2 3 or disprove!
A=12 3 1| €Msx3(R) Problem 2.3.5 Given square matrices (A,B) (S
(M7x7(R))? such that tr (A%) = tr (B*) =1, and
31 2 5
(A - B) = 317»
as the sum of two 3 X 3 matrices Eq, E,, with tr (E,) = 10. find tr (BA).
Problem 2.3.2 Give an example of two matrices A €
M:x2(R) and B € M2x2(R) that simultaneously satisfy a b
the following properties: Problem 2.3.6 Consider the matrix A = €
c d
0 0 0 0 . . N
1. A« and B ¥ . M:x2(R). Find neceszsary and Sl,;fﬁClel’lt conditions on
0 0 0 0 a,b,c,d so that tr (A%) = (tr (A))?.
Problem 2.3.7 Given a square matrix A € Masxs(R)
0 0 0 0 2
9. AB - and BA - ) such that tr (A%) = —4, and
00 00 (A —14)* = 3L,
3. tr (A)=tr(B) = 2. find tr (A).

4. A=AT and B=B".
Problem 2.3.8 Prove or disprove! If A B are square
Problem 2.3.3 Shew that there are no matrices | matrices of the same size, then it is always true that
(A,B,C,D) € (Mnxn(R))* such that tr (AB) =tr (A) tr (B).

AC + DB =14,
Problem 2.3.9 Prove or disprove! If (A,B,C) €
CA + BD = 0. (Msx3(F))? then tr (ABC) = tr (BAC).
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Problem 2.3.10 Let A be a square matrix. Prove that
the matrix AAT is symmetric.

Problem 2.3.11 Let A, B be square matrices of the same
size, with A symmetric and B skew-symmetric. Prove
that the matrix AB — BA is symmetric.

Problem 2.3.12 Let A € Muxn(F), A = [ay]. Prove that

2.4 Special Matrices

96 Definition The main diagonal of a square matrix A = [ai;] € Mpxn(F) is the set {ay;

tr(AAT) =31, 30, af

Problem 2.3.13 Let X € Mnxn(R). Prove that if XX7 =
0,, then X = 0;,.

Problem 2.3.14 Let m,n, p be positive integers and A €
Munxn(R), B € Muxp(R), C € Mpxm(R). Prove that
(BA)TA = (CA)TA = BA =CA.

:i < n}. The

counter diagonal of a square matrix A = [aij] € Mpxn(F) is the set {am—i11)i :1 < nh

97 Example The main diagonal of the matrix

is the set {0, 2, 7}. The counter diagonal of A is the set {5, 2, 9}.

98 Definition A square matrix is a diagonal matrix if every entry off its main diagonal is Op.

99 Example The matrix

is a diagonal matrix.

100 Definition A square matrix is a scalar matrix if it is of the form «l,, for some scalar «.

101 Example The matrix

4 0 0
A=10 4 0| =4
0 0 4

is a scalar matrix.

102 Definition A € M,,, x» (F) is said to be upper triangular if
(V(l,]) € {1»2> e )n}z)a (1 > j» aij = OF)»
that is, every element below the main diagonal is Or. Similarly, A is lower triangular if

(V(l,]) € {1»2>"' )n}z)a (i<j$ aij =OF)»

that is, every element above the main diagonal is O.
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103 Example The matrix A € M3x4(R) shewn is upper triangular and B € My 4(R) is lower triangular.

10 00
1 a b ¢
1 a 00
A=1]lo 2 3 o| B=
02 30
0 0 01
1T 1 t 1
104 Definition The Kronecker delta &;; is defined by
1p ifi=j
Op ifi+j

105 Definition The set of matrices Eij; € My xn(F), Eij; = (ers) such that ei; = 1r and ey/5. = Op, (i’,j’) #
(i,j) is called the set of elementary matrices. Observe that in fact e;s = 8i8s;.

Elementary matrices have interesting effects when we pre-multiply and post-multiply a matrix by them.

106 Example Let

- . 0 00
1 2 3 4

0 0 1

A=|5 6 7 8|, Em=

0 00
9 10 11 12
} - 0 00

Then

0O 0 0 0 00 2

ExA=19 10 11 12|, AEz3=10 0 6

0 0 0 0 0 0 10

107 Theorem (Multiplication by Elementary Matrices) Let Ei; € M;,,xn(F) be an elementary matrix, and
let A € M;,xm(F). Then Ei;A has as its i-th row the j-th row of A and Or’s everywhere else. Similarly,
AE;j; has as its j-th column the i-th column of A and Or’s everywhere else.

Proof: Put (o) = EijA. To obtain Ei;A we multiply the rows of Eij by the columns of A. Now
n n
Kyy = Z €ux gy = Z 6uiskj Axy = 6uiajv-
k=1 k=1

Therefore, for u # i, o, = Or, i.e., off of the i-th row the entries of Ei;A are Op, and &y = oy,
that is, the i-th row of Ej;A is the j-th row of A. The case for AE;;j is similarly argued.l

The following corollary is immediate.
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108 Corollary Let (Eij, Ex1) € (M xn(F))?, be square elementary matrices. Then

Ei;Ex1 = 8jxEu.

109 Example Let M € M, x»(F) be a matrix such that AM = MA for all matrices A € M, xn(F).
Demonstrate that M = al,, for some a € F, i.e. M is a scalar matrix.

Solution: » Assume (s,t) € {1,2,...,n}%.
commutes with Es; we have

0

My

0

0

M2

0

Min

0

=E;M = MEg; =

00

00

Mg

Mn-1)s

mTlS

Let M = (my;) and Eg; € Mpxn(F).

0

0

Since M

For arbitrary s +# t we have shown that mg; = mys = 0, and that mgs = myt. Thus the entries off
the main diagonal are zero and the diagonal entries are all equal to one another, whence M is a

scalar matrix. <«

110 Definition Let A € F and Ei; € Muxn(F). A square matrix in My xn (F) of the form I, 4 AEj; is called

a transvection.

111 Example The matrix

is a transvection. Observe that if

then

that is, pre-multiplication by T adds 4 times the

T=I3+4
A=

1 0 4

010

0 0 1

1T 11
5 6 7
1 2 3

E13= |0

1 2 3

third row of

0 4
1 0
0 1
5 9 13
=15 6 7

1 2 3

1 1 5
=15 6 27
1 2 7

A to the first row of A. Similarly,
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that is, post-multiplication by T adds 4 times the first column of A to the third row of A.

In general, we have the following theorem.

112 Theorem (Multiplication by a Transvection Matrix) Let I, + AEi; € M« (F) be a transvection and let
A € My xm(F). Then (I, + AE;j)A adds the j-th row of A to its i-th row and leaves the other rows
unchanged. Similarly, if B € Mpxn(F), B(I, + AE;i;) adds the i-th column of B to the j-th column and
leaves the other columns unchanged.

Proof: Simply observe that (I, +AEij)A = A+ AE;jA and A(I, + AEij) = A+ AAE;; and apply
Theorem 107. O

Observe that the particular transvection I,, + (A — 15)Eii € M, x (F) consists of a diagonal matrix with
1r’s everywhere on the diagonal, except on the ii-th position, where it has a A.

113 Definition If A # Op, we call the matrix I, + (A — 1r)E;; a dilatation matrix.

114 Example The matrix

I
o
o

S=L+(@—-1En=|0 1 0

o
o
—

is a dilatation matrix. Observe that if

then

that is, post-multiplication by S multiplies by 4 the first column of A.

115 Theorem (Multiplication by a Dilatation Matrix) Pre-multiplication of

the matrixA € M, xm (F) by the dilatation matrix I, + (A — Tg)Eii € Muxn (F) multiplies the i-th row of
A by A and leaves the other rows of A unchanged. Similarly, if B € My, x« (F) post-multiplication of B by
I, + (A — 1p)Ey; multiplies the i-th column of B by A and leaves the other columns of B unchanged.
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Proof: This follows by direct application of Theorem 112. [J

116 Definition We write I) for the matrix which permutes the i-th row with the j-th row of the identity
matrix. We call I a transposition matrix.

117 Example We have

(23

If

92 10 11 12

13 14 15 16

then

9 10 11 12
I,'A = :

13 14 15 16

and

AL =
9 11 10 12

13 15 14 16

118 Theorem (Multiplication by a Transposition Matrix) If A € M,,«m (F), then IHA is the matrix obtained
from A permuting the the i-th row with the j-th row of A. Similarly, if B € M}« (F), then BIV is the
matrix obtained from B by permuting the i-th column with the j-th column of B.

Proof: We must prove that IJA exchanges the i-th and j-th rows but leaves the other rows
unchanged. But this follows upon observing that

IJ = I, + E;; + E;; — Ei; — Ej;

and appealing to Theorem 107.
O
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119 Definition A square matrix which is either a transvection matrix, a dilatation matrix or a transposi-
tion matrix is called an elimination matrix.

|:| In a very loose way, we may associate pre-multiplication of a matrix A by another matrix
with an operation on the rows of A, and post-multiplication of a matrix A by another with an
operation on the columns of A.

|Homework |
Problem 2.4.1 Consider the matrices is transformed into the matrix
1 o 1 0 4 -2 4 2 h—g g i
B = —
0 1 01 o 1 o0 1 e—d d f
A= , B= .
—1 1 11 11 -1 1 Zb—2a 2a 2
1 -1 1 1 1 -1 1 1 by a series of row and column operations. Find explicit
L J L J permutation matrices P, P’, an explicit dilatation matrix

D, and an explicit transvection matrix T such that
Find a specific dilatation matrix D, a specific transposi-

tion matrix P, and a specific transvection matrix T such B = DPAP'T.
that B = TDAP.

Problem 2.4.3 Let A € M, xn(F). Prove that if

VX € Mnxn(F)), (tr (AX) = tr (BX)),
Problem 2.4.2 The matrix ( < xn(E)), (tr ) (BX)

then A = B.
a b c
Problem 2.4.4 Let A € M. xx(R) be such that
Al et (VX € Muxn(R)), ((XA)? = 0).
g h i Prove that A = 0,,.

2.5 Matrix Inversion

120 Definition Let A € M, «x»(F). Then A is said to be left-invertible if 3L € M, xm () such that LA =1,,.
A is said to be right-invertible if 3R € M, xm (F) such that AR = I,;,. A matrix is said to be invertible if it
possesses a right and a left inverse. A matrix which is not invertible is said to be singular.

121 Example The matrix A € M2y«3(R)

100
A =
010
has infinitely many right-inverses of the form
10
Ry =10 1
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For

a b a b 0
1 00

c d =lc d 0f>
010

f g f g O

which will never give I3 regardless of the values of a, b, ¢, d, f, g.

122 Example If A # 0, then the scalar matrix AL, is invertible, for

ALy (A 'Ly) =1, = (A7 'Ly) (AL,).
123 Example The zero matrix 0y, is singular.

124 Theorem Let A € M, «»(F) a square matrix possessing a left inverse L and a right inverse R. Then
L = R. Thus an invertible square matrix possesses a unique inverse.

Proof: Observe that we have LA =1,, = AR. Then
L=LI,=L(AR)=(LA)R=I,R =R.
O

125 Definition The subset of M,,x« (F) of all invertible n x n matrices is denoted by GL, (F), read “the
linear group of rank n over F.”

126 Corollary Let (A,B) € (GL,,(F))?. Then AB is also invertible and
(AB) ' =B A

Proof: Since AB is a square matrix, it suffices to notice that
B 'A"'(AB)=(AB)B'A ' -1,

and that since the inverse of a square matrix is unique, we must have B"'A~! = (AB)~'. 0

127 Corollary If a square matrix S € M, «,(F) is invertible, then S~' is also invertible and (S7')~! = S,
in view of the uniqueness of the inverses of square matrices.

128 Corollary If a square matrix A € M, «n(F) is invertible, then A" is also invertible and (A7)~ =
(AT
Proof: We claim that (AT)~' = (A—")'. For
AAT =1, = (AA )T =1l = (A")TAT=1,,

where we have used Theorem 91. [




38 Chapter 2

The next few theorems will prove that elimination matrices are invertible matrices.
129 Theorem (Invertibility of Transvections) Let I, +AE;; € M, (F) be a transvection, and let i #j. Then

(In + AEy) ' =1, — AEy;.

Proof: Expanding the product
(In + AEyj) (In — AEj) = I, + AEy; — AEy; — A2EyEy;
= I, —A28Ey

= I,
sincei #j. O

130 Example By Theorem 129, we have

o
o
—_
o
o
—
o
o
—

131 Theorem (Invertibility of Dilatations) Let A =/ Or. Then

(In+A—=1p)Ey) ' =L, + (A" — 1p)Ey;.

Proof: Expanding the product

(In+ A—1p)Ei)(In + (A" —1p)Ei) = Ln+ (A—15)Ey

+A—=T1x) (A" —1p)Ey
= In+ (A—1p)Ey
+(A7" —1p)Ey
+(A—=1p) (A" —1))Ey
= L+ A—=Tp+A"" =1+ 15
—A—A""—1p))Ey
.

proving the assertion. [
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132 Example By Theorem 131, we have

Y
o
o
Y
o
o
Y
o
o

N|=

o
o
—_
o
o
—
o
o
—_

Repeated applications of Theorem 131 gives the following corollary.

133 Corollary If A;AzA3 --- A, #Op, then

_m 0 0 0 --- o_

0 A2 0 O 0

0 0 A3 O 0

0 0 0 0 An

is invertible and

i o1 . ]
MO0 0O 0 A0 0 0 0
0 A, 0 0 0 0 A 0 o0 0
0 0 A3 O 0 =0 0 A3' 0 0
0 0 0 0 -+ Ay 0 0 0 0 --- Ay

134 Theorem (Invertibility of Permutation Matrices) Let T € S,, be a permutation. Then

(L)~ =(@H.

Proof: By Theorem 118 pre-multiplication of I!) by Il exchanges the i-th row with the j-th row,
meaning that they return to the original position inI,. Observe in particular thatT¥ = (IVJ )T, and
soIJ(I)T =1,,. O

135 Example By Theorem 134, we have

136 Corollary If a square matrix can be represented as the product of elimination matrices of the same
size, then it is invertible.
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Proof: This follows from Corollary 126, and Theorems 129, 131, and 134. 0

137 Example Observe that

is the transvection I3 + 4E;3 followed by the dilatation of the second column of this transvection by 3.
Thus

Y
o
o
—_
o
o
—_
o
o

o
w
N

Il
o
-
N
o
w
o

0 0 1 0O 0 1[0 0 1
and so
-1 _ -1 -1
1 0 0 1 0 0 1 00
0 3 4 = |10 3 0 01 4
0 0 1 0 0 1 0 0 1

10 0
= 1 4
0 3 —3
o 0 1

138 Example We have
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hence

1T 11 1 00 110
01 1 = 10 1 1 010
0 01 0 01 0 0 1

1T —1 0
= 0 1 -1
0 0 1

In the next section we will give a general method that will permit us to find the inverse of a square
matrix when it exists.

a b
139 Example Let T = € M2«2(R). Then

c d

a b d —b 1 0
= (ad — bc)
c d| [—c a 01
Thus if ad — bc # 0 we see that
d b
T_1 ad—bc " ad—bc

140 Example If
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then A is invertible, for an easy computation shews that

A? = =41y,

whence the inverse sought is

1T 1 1 1 1/4 1/4 1/4  1/4
PR RS (RS (| 1/4 1/4 —1/4 —1/4
1T -1 1 —1 1/4 —1/4 1/4 —1/4

1T -1 —1 1 1/4 —1/4 —1/4 1/4

141 Example A matrix A € M, x»(R) is said to be nilpotent of index k if satisfies A #0,,AZ #0,, ..., AT +
0, and A = 0, for integer k > 1. Prove that if A is nilpotent, then I, —A is invertible and find its inverse.

Solution: » To motivate the solution, think that instead of a matrix, we had a real number x
with |x| < 1. Then the inverse of 1 — x is

]
(1—x)_1=1—=1+x+x2+x3+---.

Notice now that since A¥ = 0,,, then AP = 0,, for p > k. We conjecture thus that
(In—A) " =Li+A+A%+ ... + AFT,

The conjecture is easily verified, as

(In—A)In+A+A?+--- + A ) = L+ A+AZ+ ...+ A

—(A+AZ+ A3 +... +AK)

and

(In +A+AZ+ ...+ A1, —A) I, —-A+A—-AZ+A3 A4 ...

s ARTZ AT L AT Ak
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142 Example The inverse of A € M3x3(Zs5),

is

as

NI
ol
ol

AA~!

ol
[9Y]]
ol

ol
ol
L

ol NI

ol

ol ol W

Wi

ol

ol

(o]
ol

(9]
ol

ol
el

(o]
ol

NI
ol

ol
|

ol
ol
=
ol
ol

NI
(o]
ol
=
(o]

ol
|
ol
ol
=

143 Example (Puthnam Exam, 1991) Let A and B be different n x n matrices with real entries. If A3 = B3
and A%B = B?A, prove that A% + B? is not invertible.

Solution: » Observe that

(A2 +B?)(A—B)=A3—A?B+B?A—B3>=0,.

If A% 4+ B? were invertible, then we would have

A—B=(A?2+B?) " "(A? +B?)(A —B) =0,,

contradicting the fact that A and B are different matrices. «

144 Lemma If A € M,,x« (F) has a row or a column consisting all of Og’s, then A is singular.

Proof:

If A were invertible, the (i,1)-th entry of the product of its inverse with A would be 1.

But if the i-th row of A is all Or’s, then }__; aixbxi = Or, so the (i, 1) entry of any matrix product

with A is Or, and never 1g. [

Problem 2.5.1 The inverse of the matrix A = |1

is the matrix A~' = 1 |. Determine a and b.

Problem 2.5.2 A square matrix A satisfies A*> 0, but
A?* = 0,,. Demonstrate that I, + A is invertible and find,
with proof, its inverse.

Problem 2.5.3 Prove or disprove! If (A,B,A + B)
(GLn(R))? then (A+B) ' =A""+B "

€

Problem 2.5.4 Let S € GL,(F), (A,B) € (Mnxn(F))?,
and k a positive integer. Prove that if B = SAS™' then
B* = SAkS™'.

Problem 2.5.5 Let A € M. xx(F) and let k be a positive




44

Chapter 2

integer. Prove that A is invertible if and only if A¥ is
invertible.

Problem 2.5.6 Let S € GL.(C), A € Mnxn(C) with
A¥ = 0, for some positive integer k. Prove that both
I. — SAS ! and I, — S"'AS are invertible and find their
inverses.

Problem 2.5.7 Let A and B be square matrices of the
same size such that both A — B and A + B are invertible.
Put C= (A —B)~' + (A + B)~'. Prove that

ACA — ACB + BCA — BCB = 2A.

Problem 2.5.8 Let A,B,C be non-zero square matri-
ces of the same size over the same field and such that
ABC = 0,,. Prove that at least two of these three matri-
ces are not invertible.

Problem 2.5.9 Let (A,B) € (Mnxn(F))? be such that
A% =B? = (AB)? = I,.. Prove that AB = BA.

2.6 Block Matrices

a b b b

b a b b
Problem 2.5.10 Let A = b b a --- b €

b b b .- a

Mnxn(F), n > 1, (a,b) € F2. D-etermine when A is in-
vertible and find this inverse when it exists.

Problem 2.5.11 Let (A,B) € (Myxn(F))? be matrices
such that A + B = AB. Demonstrate that A — I, is in-
vertible and find this inverse.

Problem 2.5.12 Let S € GL.(F) and A € Muxn(F).
Prove that tr (A) = tr (SAS™").

Problem 2.5.13 Let A € M, xn(R) be a skew-symmetric
matrix. Prove that I, + A is invertible. Furthermore, if
B=(I. —A)(I, + A)~', prove that B~' = B".

Problem 2.5.14 A matrix A € Muxn(F) is said to be a
magic square if the sum of each individual row equals
the sum of each individual column. Assume that A is
a magic square and invertible. Prove that A~ is also a
magic square.

145 Definition Let A € M, xn(F), B € My xs(F), C € My xn(F), D € M, «s(F). We use the notation

for the block matrix L € M(mr)x (n+s) (F).

[] If(A,A) € (M (F))?, (B,B’) € (Mmxn(F))? (C,C’) € (Mnxm(F))?, (D,D’) € (Mm(F))?,

and
A | B
S = ) )
C|D
then it is easy to verify that
AA’+BC’ | AB’ + BD’
ST =
CA’+DC’ | CB' 4+ DD’
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146 Lemma Let L € M(;n41) x (m+r) (F) be the square block matrix

O:xm | B

with square matrices A € M, (F) and B € M, (F), and a matrix C € My, x+(F). Then L is invertible if
and only if A and B are, in which case

] Al ‘—A”CB_1
L= ' =

O xm ‘ B!

Proof: Assume first that A, and B are invertible. Direct calculation yields

A ‘C Al ‘—/\_1CB_1 AA~!

—AA'CB~ ! + CB!

0:xm ‘ B| |Orxm ‘ B! Orxm ‘ BB~

= Lmir.
E|H
Assume now that L is invertible, L= = , WithE € M\, (F) and K € M, «(F), but that,
J|IK
say, B is singular. Then
- LL~’

Oer‘B I‘K

AE+CI‘AH+BK

)

BJ ‘ BK

which gives BK =1, i.e., B is invertible, a contradiction. [

2.7 Rank of a Matrix

147 Definition Let (A,B) € (M xn(F))%. We say that A is row-equivalent to B if there exists a matrix
R € GL, (F) such that B = RA. Similarly, we say that A is column-equivalent to B if there exists a matrix
C € GL,(F) such that B = AC. We say that A and B are equivalent if 3(P, Q) € GL,(F) X GL,(F) such
that B = PAQ.
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148 Theorem Row equivalence, column equivalence, and equivalence are equivalence relations.

Proof: We prove the result for row equivalence. The result for column equivalence, and
equivalence are analogously proved.

Since I, € GL(F) and A = I,,A, row equivalence is a reflexive relation. Assume (A,B) €
(Mimxn(F))? and that 3P € GL,(F) such that B = PA. Then A = P~ 'B and since P~ €
GL,, (F), we see that row equivalence is a symmetric relation. Finally assume (A,B,C) €
(M xn(F))2 and that 3P € GL, (F), 3P’ € GL(F) such that A = PB,B = P’C. Then A = PP'C.
But PP’ € GL,,, (F) in view of Corollary 126. This completes the proof. [

149 Theorem Let A € My, «xn(F). Then A can be reduced, by means of pre-multiplication and post-
multiplication by elimination matrices, to a unique matrix of the form

Ir ‘ orx(n—r) (2 16)

Dm,n,r =

o(m—r) Xr o(m—r) X (n—r)

called the Hermite normal form of A. Thus there exist P € GL\n (F), Q € GLy (F) such that Dy n,r = PAQ.
The integer r > 0 is called the rank of the matrix A which we denote by rank (A).

Proof: IfA is the m X n zero matrix, then the theorem is obvious, taking r = 0. Assume hence
that A is not the zero matrix. We proceed as follows using the Gauf3-Jordan Algorithm.

GJ-1 Since A is a non-zero matrix, it has a non-zero column. By means of permutation matrices
we move this column to the first column.

GJ-2 Since this column is a non-zero column, it must have an entry a + Or. Again, by means of
permutation matrices, we move the row on which this entry is to the first row.

GJ-3 By means of a dilatation matrix with scale factor a~', we malke this new (1,1) entry into a
Tp.

GJ-4 By means of transvections (adding various multiples of row 1 to the other rows) we now
annihilate every entry below the entry (1,1).

This process ends up in a matrix of the form

_111«“ * * e * _
Or | b2z bz .-+ boy
P1iAQ1 = |0z | b3, b3z --- bsn|- (2.17)
Op
OF | bm2z bmz -+ bmn

Here the asterisks represent unknown entries. Observe that the b’s forma (m—1) x (n — 1)
matrix.

GJ-5 Apply GJ-1 through GJ-4 to the matrix of the b’s.
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Observe that this results in a matrix of the form

1][4‘ * %

O]F 1]5' %

P2AQ2=0r 0p| c33

Or

Or Or | Cm3

C3n

Cmn

(2.18)

GJ-6 Add the appropriate multiple of column 1 to column 2, that is, apply a transvection, in order

to make the entry in the (1, 2) position Og.

This now gives a matrix of the form

1][«‘ O]F *

O]F 1]5' *

P3AQs = |0z Op | c33
Or

Or Or | Cm3

The matrix of the ¢’s has size (m — 2) X (n — 2).

GJ-7 Apply GJ-1 through GJ-6 to the matrix of the c’s, etc.

C3n

Cmn

(2.19)

Observe that this process eventually stops, and in fact, it is clear that rank (A) < min(m,n).

Suppose now that A were equivalent to a matrix Dy n s with s > r. Since matrix equivalence
is an equivalence relation, Dm n,s and Dy n,+ would be equivalent, and so there would be

R € GLn(F), S € GL,(F), such that RDmn+S = Dman,s, that is, RDmnr

Partition R and S~ as follows

S11
R11 | Ri2 ;
R = , ST = S>1
R21 | R22
S31

S12 Si3
S22 Sa3
S32 S33

with (R11, $11)2 € (Myx+(F))?, S22 € M(5_r)x (s—r) (F). We have

R11

RDm,n,r =

Ri12 I, ‘ o(mfr)xr

R4

R21 | R22| |Om—r)xr

orx(mfr)

R2;

= Dm,n,s 8_1 .
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and

I Orx(s_1) O, (n—s) S11 | S1z2 Sis

-1
Dimn,sS N O(s—r)xr | P O(s—r)x(n—s) S21 | S22 S23

Om—_s)xr | Om—s)x(s—r) Oim—s)xn—s)| [S31 | S32 S33

S1q Si2 Si3

= S S22 S23

O(mfs)xr o(mfs)x(sfr) o(mfs)x(nfs)

Since we are assuming

S11 Si2 S13

= S2q S2s S23 ’

_o(m—s) Xr o(m—s) X(s—r) o(m—s) X (n—s)_

we must have S12 = 0y (s—r), $13 = Orx(n—s), S22 = O(s—r)x(s—1)» $23 = O(s_r)x (n—s). Hence

Sﬂ orx(s—r) orx(n—s)
-1 _
S - SZ1 o(s—r)x(s—‘r) O(S—T')X(TI—S)
_831 532 833 ]

The matrix

O(Sfr)x(sfr) ‘ o(sfr)x(nfs)

S32 ‘ S33

is non-invertible, by virtue of Lemma 144. This entails that S~ is non-invertible by virtue of
Lemma 146. This is a contradiction, since S is assumed invertible, and hence S—' must also be
invertible. O

|:| Albeit the rank of a matrix is unique, the matrices P and Q appearing in Theorem 149 are
not necessarily unique. For example, the matrix

has rank 2, the matrix
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is invertible, and an easy computation shews that

1 0 x| |1 O

0 1 yj| ([0 1

00 110 0

regardless of the values of x and y.

150 Corollary Let A € Mmxn(F). Then rank (A) = rank (AT).

Proof:

PAQ = Dm,n,r == QTATPT

Let P, Q, D n.r as in Theorem 149. Observe that PT, QT are invertible. Then
=Dt

m,n,r

= Dn,m,r»

and since this last matrix has the same number of 15’s as Dm n . the corollary is proven. [

151 Example Shew that

0 2
A=

010

3

has rank (A) = 2 and find invertible matrices P € GL;(R) and Q € GL3(R) such that

10
PAQ -

0 1

0

0

Solution: » We first transpose the first and third columns by effecting

0 0 1
0 2 3

01 0|7
010

1 00

We now subtract twice the second row from the first, by effecting

—_
|
N
w
N

0

o
—_
o
—_

0
Finally, we divide the first row by 3,

1/3 0| (3 0 O
0O 1110 1 0 .
We conclude that
0
1/3 0| (1 =2 (0 2 3
0

3

0

0

1

0

0
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from where we may take

1/3 o| |1 —2 1/3 —2/3

P -
0 1] (0 1 0 1
and
_0 0 1_
Q=101 0
_1 0 0_
<

In practice it is easier to do away with the multiplication by elimination matrices and perform row
and column operations on the augmented (m + n) x (m 4+ n) matrix

ITI OTIXTn

152 Definition Denote the rows of a matrix A € My, xn (F) by R1, Rz, ..., Ry, and its columns by Cq, Ca, ..., Cy.
The elimination operations will be denoted as follows.

e Exchanging the i-th row with the j-th row, which we denote by R; < Rj, and the s-th column by
the t-th column by Cs « Cs.

e A dilatation of the i-th row by a non-zero scalar « € I \ {Or}, we will denote by «R; — Rj. Similarly,
BC; — Cj denotes the dilatation of the j-th column by the non-zero scalar §.

e A transvection on the rows will be denoted by R;+«Rj — Rj, and one on the columns by Cs+pC¢ —
Cs.

153 Example Find the Hermite normal form of

-1 0

0 0
A=

1 1

1 2

Solution: » First observe that rank (A) < min(4,2) = 2, so the rank can be either 1 or 2 (why
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not 0?). Form the augmented matrix

Perform Rs + R3 — Rs and Rg + R3 — Rg s

Perform Rg — 2R5 — Rg

Perform R4 & Rj5

1 0/(0 0 0 O
0 1]0 0 0 O
-1 0|1 0 0 0
0 0|0 1T 0O
1 10 01 0
1 2(0 0 0 1

uccessively, obtaining

1 0/0 0 0 0
0 10000
—1 0/1 00 0
0 0l01 00
0 1|1 010
0 2|1 00 1
1 oooo_
0 0 0 0 O
—1 1.0 0 0
0 01 0 0
0 1 0 1 0
0 ~1 0 =2 1
1 oooo_
0 0 0 0 0
—1 1.0 0 0
0 1.0 1 0
0 01 0 0
0 10 =2 1
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Finally, perform —R3 — R3

We conclude that

<

154 Theorem Let A € My, xn(F), B € My xp(F). Then

rank (AB) < min(rank (A),rank (B)).

Proof: We prove that rank (A) > rank (AB). The proof that rank (B) > rank (AB) is similar
and left to the reader. Put r = rank (A),s = rank (AB). There exist matrices P € GL,(F),
Q € GL,(F), S € GLw(F), T € GL, (F) such that

PAQ =Dmn,r, SABT-= Dim,p,s-
Now

Dm,p,s = SABT = SP" "D 0 rQ ' BT,

from where it follows that

PS*1 Dm,p,s = Dm,n,r Q71 BT.

Now the proof is analogous to the uniqueness proof of Theorem 149. Put U = PS™! € GL,(R)
andV=Q 'BT € M, x (F), and partition U and V as follows:

U11 U12 v11 v12
u-= , V=
U.21 UZz v21 v22

with U7 € Mg (F), V11 € M« (F). Then

Uyq

u12 IS ‘ osx(pfs)

UDm,p,s = S mep(IF)a

Uz1 | Uzz| |Om—s)xs | Om—s)x(p—s)
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and

Vi2

I ‘ O0rx(n—r) Vi1

Dm,p,sv= S mep(F)'

Om—r)xr | Om—r)x(n—r) V21 | V22

From the equality of these two m X p matrices, it follows that

Uy Os 5 (p—s) Vi1 ‘ Vi2

u21 o(m—s)x(p—s) o(m—r)xr o(m—r)x(n—r)

If s > r then (i) U7 would have at least one row of Or’s meaning that Uy, is non-invertible by
Lemma 144. (i) U271 = O(m—s)xs. Thus from (i) and (ii) and from Lemma 146, U is not invertible,
which is a contradiction. [

155 Corollary Let A € My xn(F), B € Mpyp(F). If A is invertible then rank (AB) = rank (B). If B is
invertible then rank (AB) = rank (A).

Proof: Using Theorem 154, if A is invertible
rank (AB) < rank (B) =rank (A" 'AB) < rank (AB),

and sorank (B) = rank (AB). A similar argument works when B is invertible.
O

156 Example Study the various possibilities for the rank of the matrix

A=lb+c c+a a+b

bc ca ab

Solution: » Performing R; — (b + ¢)Ry — Rz and R3 — bcRy — R3, we find

0 a—b> a—c
0 0 (b—c)(a—rc)

Performing C; — C; — C2 and C3 — Cy — C3, we find

0 a—b> a—c
0 0 (b——c)(a—rc)

We now examine the various ways of getting rows consisting only of 0’s. If a = b = c, the last
two rows are 0-rows and so rank (A) = 1. If exactly two of a, b, ¢ are equal, the last row is a
0-row, but the middle one is not, and so rank (A) = 2 in this case. If none of a, b, c are equal,
then the rank is clearly 3. 4
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|Homework |

Problem 2.7.1 On a symmetric matrix A € Muxn(R) with n > 3,

successively followed by

are performed. Is the resulting matrix still symmetric?

Problem 2.7.2 Find the rank of

a—+1

a—+2

a—+3

a+4

Problem 2.7.3 Let A, B be arbitrary n X n matrices over R. Prove or disprove! rank (AB) = rank (BA) .

Problem 2.7.4 Determine the rank of the matrix

Problem 2.7.5 Suppose that the matrix

a—+2

a+3

a+4

a—+5

R3 —3R1 — R3

C3 —3C1 — C3

a+3

a+4

a+5

a+6

a+4

a+5

a+6

a+7

(VY
1 1
2 2
0 2

a+5

a+6

a+7

a+8

€ Msx5(R).

€ M:x2(R) has rank 1. How many possible values can x assume?

Problem 2.7.6 Demonstrate that a non-zero n X n matrix A over a field F has rank 1 if and only if A can be factored
as A = XY, where X € M, x1(F) and Y € Mjxn(F).

Problem 2.7.7 Study the various possibilities for the rank of the matrix

when (a,b) € R2.

1
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Problem 2.7.8 Find the rank of as a function of m € C.

a’? ab ab b?

ab a®* b? ab
Problem 2.7.9 Determine the rank of the matrix

ab b?* a* ab

b? ab ab a?

Problem 2.7.10 Determine the rank of the matrix

ac bc ad bd

Problem 2.7.11 Let A € M3x2(R), B € M2x2(R), and C € Mzx3(R) be suchthat ABC= |_»  1|. Findx.

1T =2 1

Problem 2.7.12 Let B be the matrix obtained by adjoining a row (or column) to a matrix A. Prove that either
rank (B) = rank (A) or rank (B) = rank (A) + 1.

Problem 2.7.13 Let A € Muxn(R). Prove that rank (A) = rank (AAT). Find a counterexample in the case A €
M, «n(C).

Problem 2.7.14 Prove that the rank of a skew-symmetric matrix with real number entries is an even number.

2.8 Rank and Invertibility

157 Theorem A matrix A € My, xn(F) is left-invertible if and only if rank (A) = n. A matrix A € My, xn(F)
is right-invertible if and only if rank (A) = m.

Proof: Observe that we always have rank (A) < n. If A is left invertible, then L € M, xm (F)
such that LA =1,,. By Theorem 154,

n =rank (I,,) =rank (LA) < rank (A),

whence the two inequalities give rank (A) = n.

Conwersely, assume that rank (A) = n. Then rank (AT) = n by Corollary 150, and so by
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Theorem 149 there exist P € GL, (F), Q € GL,(F), such that

PAQ = , QTATPT - [1

o(m—n)xn

n onx(m—n)] :

This gives

QTATPTPAQ -1, — ATPTPA-=(Q")'Q"’

= (QNHT'Q " 'TATPTPA=1,,

and so ((QT)"1Q")"TATPTP is a left inverse for A.

The right-invertibility case is argued similarly. [

By combining Theorem 157 and Theorem 124, the following corollary is thus immediate.
158 Corollary If A € M,,,x« (F) possesses a left inverse L and a right inverse R then m =nand L = R.

We use Gauf3-Jordan Reduction to find the inverse of A € GL,, (). We form the augmented matrix
T = [A]I,] which is obtained by putting A side by side with the identity matrix I,. We perform permissible
row operations on T until instead of A we obtain I, which will appear if the matrix is invertible. The
matrix on the right will be A~'. We finish with [I,|A~"].

|:| If A € M« (R) is non-invertible, then the left hand side in the procedure above will not
reduce to I,,.

159 Example Find the inverse of the matrix B € M3x3(Z7),

Nl
ol
=

=
(o]
=
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Solution: » We have
6 0 1|1 0 0 10 1/0 01
o |- - _ R71&R3 o = -
32 0/0 1 0 ~ 32 0/0 1 0
10 1|0 01 6 0 1T|/T 0 O
10 71/0 01
Rg*ER]*)Rg _ — —_ — — —
- 0 2 4/0 1 4
R2—3R1—)R2
00 2|1 01
50 0/1T 0 6
R2—2R3—)R2 _ _ — — — —
5R; 4 Rs—R, 0 2 0|5 1 2
00 2/1T 01
10 0(3 0 4
gR]‘}Rj;ZR\g‘}Rg _ _ _ _ _ _
_ 01 06 4 1
4R2‘>R2
00 1/4 0 4
We conclude that
_ -1 _ _
6 0 1 30 4
320 =631
101 4 0 4
|
1 —1
160 Example Use Gauf3-Jordan reduction to find the inverse of the matrix A = -3 4 . Also,
-3 4

find A2007,
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Solution: » Operating on the augmented matrix

Thus we deduce that

0
Rz—R3—}R2
O sy
1
R3—3R2—)R3
VY
R3+3R;—R3
s
R1+R3—R;
s
Rj—R2
s
0 1
Al=14 3
3 -3

4

—1[1 0 0
010 1 —1
4000 1
101 0 o)
oo 1 —1
4 [0 =3 4|
—1{1 0 0
0olo 1 —1
113 -3 4
ola —3 4]
oo 1 —1
113 =3 4|
olo 1 _1]
0|4 —3 4
113 =3 4|

FromA~! = A we deduce A% = I,. Hence A2°°° = (A2)1000 _ 71000 _ 1 aqnd A200T = A(A2000) —

Al, =A. «

161 Example Find the inverse of the triangular matrix A € M, xn(R),

1

1
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Solution: » Form the augmented matrix

1 11 111 0 0 0
011 110 1 0 0
0 01 110 0 1 ol >
0 00 110 0 0 1
and perform Ry — Rx4+1 — Ry successively fork =1,2,...,n — 1, obtaining
1 00 o1 -1 0 0
01 0 oo 1 —1 0
0 01 00 o0 1 ol >
0 00 0 0 0 1
whence
1T —1 0 0
o 1 -1 0
ATl=10 0 1 of
0 0 0 1

that is, the inverse of A has 1’s on the diagonal and —1’s on the superdiagonal. <«

162 Theorem Let A € M, «n (F) be a triangular matrix such that a;1az2 - - - ann #Or. Then A is invertible.

Proof:

Since the entry axx # Or we multiply the k-th row by ‘11:13 and then proceed to subtract

the appropriate multiples of the preceding k — 1 rows at each stage. [

163 Example (Putnam Exam, 1969) Let A and B be matrices of size 3 x 2 and 2 x 3 respectively. Suppose

that their product AB is given by
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Demonstrate that the product BA is given by

9 0
BA =
0 9
Solution: » Observe that
8 2 —2||8 2 —2 72 18 —18
(AB)2=|2 5 4 2 5 4|=|18 45 36 | =9AB.
2 4 5||—2 4 5 —18 36 45

and so rank (AB) = 2. This entails that rank ((AB)?) = 2. Now, since BA is a 2 x 2 matrix.
rank (BA) < 2. Also

2 =rank ((AB)?) = rank (ABAB) < rank (ABA) < rank (BA),

and we must conclude that rank (BA) = 2. This means that BA is invertible and so

(AB)2=9AB —> A(BA —9L,)B - 0;
—  BA(BA — 91,)BA = B03A
— BA(BA —91,)BA =0,
—  (BA)"'BA(BA — 91,)BA(BA)~" = (BA)~10,(BA)~"
— BA_9L,-0,
<4
|Homework |

Problem 2.8.1 Find the inverse of the matrix

=
Nl
(9]

€ Mzx3(Z7).

Nl
(9]
=

(9]
=
Nl
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Problem 2.8.2 Let (A, B) € Mzx3(R) be given by

Find B~! and prove that AT = BAB~'.

10 0

Problem 2.8.3 Let A= |1 | (| wherex #0 is a real number. Find A~'.

1T 1 x
1T 0 1 0o —1 0
Problem 2.8.4 If the inverse of the matrix M = | _1 o (] is the matrix M = -1 -1 al,find (a,b).
0o 1 1 1 1 b
1T 0 0

Problem 2.8.5 Let A= |1 1| (]| and letn> 0 be an integer. Find (A™)".

1 11

Problem 2.8.6 Give an example of a 2 X 2 invertible matrix A over R such that A + A~! is the zero matrix.

Problem 2.8.7 Find all the values of the parameter a for which the matrix B given below is not invertible.

-1 a+2 2
B=10 «a 1
2 1 a

Problem 2.8.8 Find the inverse of the triangular matrix

a 2a 3a

0 b 2b| € Mzx3(R)

0 o0 c

assuming that abc 0.
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Problem 2.8.9 Under what conditions is the matrix

invertible? Find the inverse under these conditions.

a O
0 a
c b

Problem 2.8.10 Let A and B be n X n matrices over a field F such that AB is invertible. Prove that both A and B

must be invertible.

Problem 2.8.11 Find the inverse of the matrix

1+a 1
1 1+b
1 1
Problem 2.8.12 Prove that for the n X n (n > 1) matrix
— - —1 —
o1 1 ... 1 2—n
1 0 1 1 1
1
1 1 0 1 “h—1 1
1T 1 1 0 1
Problem 2.8.13 Prove that the n X n (n > 1) matrix
T1+a 1 1
1 T1+a 1
1 1 T1+a
1 1 1
has inverse )
T—m—a 1
1 T—m—a
1
a(n+ a) 1 1

1

1+a

1T—m—a
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Problem 2.8.14 Prove that

1 3 5 7 2n—1)
2n—1) 1 3 5 (2n — 3)
2n—-3) 2n—1) 1 3 (2n—5)
3 5 7 9 1
has inverse
2—n? 2+n? 2 2 2
2 2—n? 2+4n? 2 2
1
3 2 2 2—n? 2+4n? 2
2+n? 2 2 2 2—n
Problem 2.8.15 Prove that the n X n (n > 1) matrix
T4+ aq 1 1 1
1 1+ a2 1 1
1 1 1+ a3 1
1 1 1 1+ an
has inverse
[1—ass 1 1 1 ]
a3 aiaz araz aian
1 1 — azs 1 1
aza; a? azaz azan
1 1 1 1— ass 1
s asza; asaz a2 azain
1 1 1 T — ans
L anaq anQz anas az

where s =1+ - + - + - + .

ay an

Problem 2.8.16 Let A € Msxs(R). Shew that if rank (A?) <5, then rank (A) < 5.

Problem 2.8.17 Let p be an odd prime. How many invertible 2 X 2 matrices are there with entries all in Z,?

Problem 2.8.18 Let A, B be matrices of the same size. Prove that rank (A + B) < rank (A) + rank (B).




64 Chapter 2

Problem 2.8.19 Let A € M3:(R) and B € M 3(R) be matrices such that AB = |1 o _—1|. Prove that

BA =IL.
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Linear Equations

3.1 Definitions

We can write a system of m linear equations in n variables over a field F
a11X1 + @12X2 + @13X3 + ++* + A1nXn = Y1,

a21X7 + @22X2 + A23%X3 + -+« + A2nXn = Y2,

Am1X1 + Qm2X2 + Qm3X3 + -+« + QmnXn = Ym,

in matrix form as

an

azq

We write the above matrix relation in the abbreviated form

Ami

aiz

azz

Am2

Y

Y2

Ym

(8.1

(3.2)

where A is the matrix of coefficients, X is the matrix of variables and Y is the matrix of constants. Most
often we will dispense with the matrix of variables X and will simply write the augmented matrix of the

system as

[AlY] =

an

azq

Ami

Y1

Y2

Ym

(3.3)

164 Definition Let AX =Y be as in 3.1. If Y = 0,,,x1, then the system is called homogeneous, otherwise it

is called inhomogeneous. The set

X eMuyx1(F) : AX =0mx1)

is called the kernel or nullspace of A and it is denoted by ker (A).
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|:| Observe that we always have 0, x1 € ker (A) € My, xn (F).

165 Definition A system of linear equations is consistent if it has a solution. If the system does not have
a solution then we say that it is inconsistent.

166 Definition If a row of a matrix is non-zero, we call the first non-zero entry of this row a pivot for this
row.

167 Definition A matrix M € M, x () is a row-echelon matrix if
e All the zero rows of M, if any, are at the bottom of M.

e For any two consecutive rows R; and Ri1, either Ri; 1 is all Og’s or the pivot of Ri; 1 is immediately
to the right of the pivot of R;.

The variables accompanying these pivots are called the leading variables. Those variables which are not
leading variables are the free parameters.

168 Example The matrices

5

1 1 o1 1
0 0 2
0 0 © 0o 00 ©0

o o0 © 0 0 00 O

are in row-echelon form, with the pivots circled, but the matrices

—1 01 1_ —1 011 _
001 2 00 0O
0011 , 0 0 01 ’

0 0 0 0] 0 0 0 0]

are not in row-echelon form.

|:| Observe that given a matrix A € My, xn (), by following Gauf3-Jordan reduction a la Theo-
rem 149, we can find a matrix P € GL, (F) such that PA = B is in row-echelon form.

169 Example Solve the system of linear equations

11 1] x| [
021 0|y —1
001 —1||z . 4
000 2] (w |6
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Solution: » Observe that the matrix of coefficients is already in row-echelon form. Clearly every
variable is a leading variable, and by back substitution

6
2w=—6 = w=—2 =3,

z—w=4 = z=4+w=4—-3=1,

1 1
2y+z=—-1 = y=—z—zz=—1,

XxX+y+z+w=-3 = x=-3—-y—z—w-=0.

The (unique) solution is thus

X 0

y —1

z . 1
_w_ __3_

<

170 Example Solve the system of linear equations

X
1T 1 1 1 -3
Y
021 0 =11
z
001 —1 4
w

Solution: » The system is already in row-echelon form, and we see that x,y,z are leading
variables while w is a free parameter. We put w = t. Using back substitution, and operating
_from the bottom up, we find

z—w=4 = z=4+w=4+41t,

1T 1 1 1 5 1

5 1 9 3
=3 =x=-3—-y—z—w=-3+-+-t—4—t—t=—<——t.
X+y+z+w X y—z—w +2+2 2 3

The solution is thus

9 3
X —z—it
5 1
Y —2z 2t
= , teR.
z 4+t
w t
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171 Example Solve the system of linear equations

Solution: » We see that x,y are leading variables, while z,w are free parameters. We put
z = s, w = t. Operating from the bottom up, we find
2y + 1 — 1T 1 1 1
z=— =—— — —z=—— — —s§,
Y L R S R
5 3
xX+y+z4+w=-3 = x=—3—y—z—w=—5—zs—t.

The solution is thus

5 3
X —2—28—’(
1 1
Y —2 28
= , (s,t) € R
z S
w t

<

172 Example Find all the solutions of the system
x+2y +2z=0,
y+2z=1,
working in Z3.

Solution: » The augmented matrix of the system is

0

Nl

1 2

1

NI

01
The system is already in row-echelon form and x,y are leading variables while z is a free
parameter. We find L
y=1—-2z=1+1z,

and

Thus
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Letting z = 0, 1, 2 successively, we find the three solutions

X

and

<

|Homework |

Problem 3.1.1 Find all the solutions in Z3 of the system

xX+y+z+w=0,

2y +w=2.

Problem 3.1.2 In Z7, given that
—1
12 3 4 2 0
237 =20 3,
31 2 04 2

find all solutions of the system

Tx + 2y + 3z =5;

2x +3y + 1z = 6;
3x + Ty +2z=0.

Problem 3.1.3 Solve in Z3:

x—2y+z=5, 2x + 2y =7, 5x —3y +4z=1.

Problem 3.1.4 Find, with proof, a polynomial p(x) with
real number coefficients and degree 3 such that

Problem 3.1.5 This problem introduces Hill block ci-
phers, which are a way of encoding information with an
encoding matrix A € Mnxn(Z2¢), where n is a strictly
positive integer. Split a plaintext into blocks of n letters,
creating a series of n X 1 matrices Py, and consider the
numerical equivalent (A =0, B=1,C =2, ..., Z = 25)
of each letter. The encoded message is the translation to
letters of the n X 1 matrices Cx = APx mod 26.

For example, suppose you want to encode the mes-
sage COMMUNISTS EAT OFFAL with the encoding ma-
trix

01 0

A=13 0 0f>

0 0 2

a 3 X 3 matrix. First, split the plaintext into groups of
three letters:

COM MUN IST SEA TOF FAL.

Form 3 X 1 matrices with each set of letters and find their
numerical equivalent, for example,
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Find the product AP; modulo 26, and translate into let- | system
ters:
xo+x1 = 0,
0 1 0f |2 14 o
Xo+x2 = 1,
AP1=13 0 of (14| =|6]| = |G|>
X0 +X3 = 2,
0 0 2112 24 Y
hence COM is encoded into OGY. Your task is to com- xo + X100 = 99
plete the encoding of the message. ’
Xo +X1 +X2+ -+ +X100 = 4949.
Problem 3.1.6 Find all solutions in Zio3, if any, to the | Hints: 04+14+2+-..:499=4950, 99.-77—103:74=1.

3.2 Existence of Solutions

We now answer the question of deciding when a system of linear equations is solvable.

173 Lemma Let A € M,,,x«»(F) be in row-echelon form, and let X € M,,«1(F) be a matrix of variables.
The homogeneous system AX = 0,1 of m linear equations in n variables has (i) a unique solution if
m = n, (ii) multiple solutions if m < n.

Proof: Ifm = n then A is a square triangular matrix whose diagonal elements are different
Jrom Op. As such, it is invertible by virtue of Theorem 162. Thus

AX=0nx1 = X=A""0nx1 = Onyx1
so there is only the unique solution X = Oy x1, called the trivial solution.
If m < n then there are n — m free variables. Letting these variables run through the elements of
the field, we obtain multiple solutions. Thus if the field has infinitely many elements, we obtain

infinitely many solutions, and if the field has k elements, we obtain k™™ solutions. Observe
that in this case there is always a non-trivial solution.

O

174 Theorem Let A € M, x» (F), and let X € M, x1 (F) be a matrix of variables. The homogeneous system
AX = O x1 of m linear equations in n variables always has a non-trivial solution if m < n.

Proof: We can find a matrix P € GL, (F) such that B = PA is in row-echelon form. Now
AX=0mx1 @ PAX=0m><‘| @ BX=0m><‘|.

That is, the systems AX = 0;,,x1 and BX = 0,,, x1 have the same set of solutions. But by Lemma
173 there is a non-trivial solution. 0

175 Theorem (Kronecker-Capelli) Let A € M, xn(F),Y € My, x1 (F) be constant matrices and X € M;, x1 (F)
be a matrix of variables. The matrix equation AX =Y is solvable if and only if

rank (A) = rank ([A]Y]) .
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Proof: Assume first that AX =Y,

X1

X2

Xn

Let the columns of [A|X] be denoted by Ci,1 < i < n. Observe that that [A|X] € My, x (n+1)(F)
and that the (n + 1)-th column of [A|X] is

X1411 +X2Q12 + -+ + XnQin

X1Q21 +X2Q22 + -+ + Xnl2n n
Cni1=AX= =Y xCi
. i=1

X1Qn1 +X20n2 + ¢+ * + XnQnn

By performing Cn+1—ZT‘:1 xjCj — Cnq1 on[A]Y] = [A|AX] we obtain[A|0nx1]. Thus rank ([A|Y]) =
rank ([A|Oy 1)) = rank (A).

Now assume that v = rank (A) = rank ([A]Y]). This means that adding an extra column to A
does not change the rank, and hence, by a sequence column operations [A|Y] is equivalent to
[A|Onx1]. Observe that none of these operations is a permutation of the columns, since the first
n columns of [A|Y] and [A|0n«1] are the same. This means that Y can be obtained from the
columns Ci, 1 < i < n of A by means of transvections and dilatations. But then

n
Y = Z Xi Ci.
i=1
The solutions sought is thus

X1

X2

Xn

O

Problem 3.2.1 Let A € Muxp(F), B € Mnxq(F) and | rank (C) <= 3P € M, (q) such that B = AP.
put C = [A B] € Mux(p+q)(F) Prove that rank (A) =

3.3 Examples of Linear Systems

176 Example Use row reduction to solve the system
x + 2y + 3z + 4w = 8
x + 2y + 4z + "Tw = 12

2x + 4y + 6z + 8w = 16
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Solution: » Form the expanded matrix of coefficients and apply row operations to obtain

1 2 3 4,8

1 2 4 7|12

2 4 6 8|16

The matrix is now in row-echelon form.
free. Setting w = s,y =t we have

1 2 3 48
Rg*ZR]*}Rg
Ry—Ry—R, 0 01 34
0 0 0 0]0

The variables x and z are the pivots, so w and y are

z =4 —3s,

x=8—4w —-3z—2y=8—4s—3(4—3s) —2t = —4 + 5s — 2t.

Hence the solution is given by

X —4 +5s — 2t
y t
z 4 —3s
w s
<
177 Example Find « € R such that the system
x+y—z=1,

2x 4+ 3y + az =3,
X+ ay +3z=2,
posses (i) no solution, (ii) infinitely many solutions, (iii) a unique solution.

Solution: » The augmented matrix of the system is

1 1 =111
2 3 « |3
1T ¢« 3 |2

0

T -1 |1

1 a+2]|1

o—1 4 1

By performing Rz — (o« — 1)R2 — R3 on this last matrix we obtain

—1 1

x+2 1

0 0 (a—2)(x+3)|x—2
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If o« = —3, we obtain no solution. If « = 2, there is an infinity of solutions

X 5t

y|=[1—4t|, tekR

If a 2 and « # 3, there is a unique solution

X 1

_ 1
Y o +3

1

z
Lo+ 3
<
178 Example Solve the system
6 0 T [x 1

98]}
Nl
ol
(=4
Il
o

for (x,y,z) € (Z7)3.

Solution: » Performing operations on the augmented matrix we have

2

Nl
ol
!
!
!
ol
!

R1<—)R3
>

(9¥]]
NI
ol
o
(9¥]]
NI
(o]
ol

!
ol
!
NI
Nl
ol
!
!

10 1|2

Rg*gRjﬂRg — — — —

g 0 2 4|1
R273R1*)R2

00 2|3

This gives

The solution is thus
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|Homework |

Problem 3.3.1 Find the general solution to the system

_1 1 11 1_ _a_ _ 1 _
1 01 0 1| |b —1
21 2 1 2y |c|=1|0
4 2 4 2 4| |d 0
_1 0 0 0 1_ _f_ I 0 |

or shew that there is no solution.

Problem 3.3.2 Find all solutions of the system

11 1 1 1| [al |3

if any.

Problem 3.3.3 Study the system
X +2my + z = 4m;

2mx +y +z = 2;
X + Yy + 2mz = 2m?,

with real parameter m. You must determine, with proof, for which m this system has (i) no solution, (ii) exactly one
solution, and (iii) infinitely many solutions.

Problem 3.3.4 Study the following system of linear equations with parameter a.
2a—T)x+ay—(a+1)z=1,

ax+y—2z=1,

2x+(3—a)y+ (2a—6)z=1.

You must determine for which a there is: (i) no solution, (i) a unique solution, (iii) infinitely many solutions.

Problem 3.3.5 Determine the values of the parameter m for which the system

X + y + (1—m)z = m+2
T+mx — y + 2z = 0
2x — my + 3z = m+2

is solvable.
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Problem 3.3.6 Determine the values of the parameter m for which the system

X + y + z + t = 4a
X -y — z + t = 4b
—-x — Yy + z + t = 4c
X -y + z — t = 4d

is solvable.

Problem 3.3.7 It is known that the system

ay + bx = ¢
cx + az = b;
bz+cy=a

possesses a unique solution. What conditions must (a, b, ¢) € R? fulfill in this case? Find this unique solution.

Problem 3.3.8 For which values of the real parameter a does the following system have (i) no solutions, (ii) exactly
one solution, (iii) infinitely many solutions?

(1T—a)x + (a+MNy 4+ (2a+2)z = a,
ax + ay = 2a + 2,
2x + (a+1y + (a—1z = a’*—2a+9.
Problem 3.3.9 Find strictly positive real numbers x, y, z such that
By2zt = 1
x*y®z2 = 2
x*y?z> = 3
Problem 3.3.10 (Leningrad Mathematical Olympiad, 1987, Grade 5) The numbers 1, 2, ..., 16 are arranged in

a 4 X 4 matrix A as shewn below. We may add 1 to all the numbers of any row or subtract 1 from all numbers of
any column. Using only the allowed operations, how can we obtain AT?

1 2 3 4
5 6 7 8
2 10 11 12

13 14 15 16

Problem 3.3.11 (International Mathematics Olympiad, 1963) Find all solutions x1, X2, X3, X4, x5 of the system
X5 + X2 = YX1;
X1 + X3 = Yx2;
X2 + X4 = Yx3;
X3 + X5 = YX4;
X3 + X1 = YXs,
where y is a parameter.
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Vector Spaces

4.1 Vector Spaces

179 Definition A vector space (V,+,-,F) over a field (F,+,) is a non-empty set V whose elements are
called vectors, possessing two operations + (vector addition), and - (scalar multiplication) which satisfy

the following axioms.
¥(d,b,7) € V3, V(a,B) € F?,

VS1 Closure under vector addition :
VS2 Closure under scalar multiplication

VS3 Commutativity

VS4 Associativity
= —
(d+b)+¢=d+(b+7)

VS5 Existence of an additive identity

30ev:d+0-d+0-d

VS6 Existence of additive inverses

3_deVv:d+(—d)=(—d)+d=0

VS7 Distributive Law

VS8 Distributive Law
(x + B)ﬁ - od + Bﬂ

VS9
1ed =d

VS10
(ap)d = a(pa)

76

4.1)

4.2)

4.3)

(4.4)

(4.5)

(4.6)

4.7)

4.8)

4.9)

(4.10)



Vector Spaces 77

180 Example If n is a positive integer, then (F", +, -, F) is a vector space by defining
(aT)aZs"')aﬂ) + (bhbls--'»bn) = (a1 —I—b1,a2—|—b2,...,an—|—bn),

Alar,az,...,aq) = (Aag,Aaz,...,Aan).

In particular, (Z3, +, -, Z2) is a vector space with only four elements and we have seen the two-dimensional
and tridimensional spaces (R?, +, -,R) and (R3, +, -, R).

181 Example (M« (F), +,-,F) is a vector space under matrix addition and scalar multiplication of
matrices.

182 Example If
Fix]={ao + a1x + axx 4+ ---+anx":a;i € F, n € N}

denotes the set of polynomials with coefficients in a field (F,+,) then (Fix], +,,F) is a vector space,
under polynomial addition and scalar multiplication of a polynomial.

183 Example If
Fulx]={ao +aix + ax + -+ ax*:a; €F, n€ Nk <n}

denotes the set of polynomials with coefficients in a field (F, +, ) and degree at most n, then (Fu[x], +, -, F)
is a vector space, under polynomial addition and scalar multiplication of a polynomial.

184 Example Let k € N and let C*(R!%:%)) denote the set of k-fold continuously differentiable real-valued
functions defined on the interval [a; b]. Then Ck (R[“M) is a vector space under addition of functions and
multiplication of a function by a scalar.

185 Example Let p €]1; +oo[. Consider the set of sequences {a,}3,, an € C,

P = {{an}?=o : i lan|P < +oo} )

n=0

Then 1P is a vector space by defining addition as termwise addition of sequences and scalar multiplica-
tion as termwise multiplication:

{an}?&o + {bn}?=o ={(an + bn)}flio»

Manfp o ={Aanln,, A€C.

All the axioms of a vector space follow trivially from the fact that we are adding complex numbers,
except that we must prove that in 1P there is closure under addition and scalar multiplication. Since
Yo olanP < 400 = Y IAaq|P < +oo closure under scalar multiplication follows easily. To prove
closure under addition, observe that if z € C then |z| € R} and so by the Minkowski Inequality Theorem
405 we have

1/p

1/p 1/p
(ZNolanl?) " + (ZNo foal?)
< (ZXolanP)P 4+ (Z2,1bulP) /P

This in turn implies that the series on the left in (4.11) converges, and so we may take the limit as
N — +o00 obtaining

(Zholan +bal?)

IN

(4.11)

oo 1/p oo 1/p oo 1/p
<Z |an +bn|‘°> < <Z |an|P> - (Z |bn|P> : (4.12)
n=0

n=0 n=0

Now (4.12) implies that the sum of two sequences in 1P is also in 1P, which demonstrates closure under
addition.
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186 Example The set
V={a+bv2+cV3:(a,b,c) € Q%)

with addition defined as
(a+bvV2+ceV3)+ (a'+b'V2+c'V3)=(a+a’)+ (b+b)V2+ (c+ c)V3,
and scalar multiplication defined as
Ala+bV2+ cV3) = (Aa) + (Ab)V2 + (Ac)V3,

constitutes a vector space over Q.

187 Theorem In any vector space (V, +, -, F),

V ax€eF, 046> =6).
Proof: We have
oc? = oc(? +6>) = oc? + oc?.
Hence
«0 — a0 = a0,
or
0 = «0,

proving the theorem. [

188 Theorem In any vector space (V, +, -, F),

VVeV 0sv=0.

Proof: We have
OV = (Op + Op)V = OV + Op V.

Therefore
OFV — OV = Op ¥/,

or
0 =05V,

proving the theorem. [

189 Theorem In any vector space (V, +,-,F), a € F, Ve,

0(7=6) - 0(=0]F vV 7=6)

Proof: Assume that « # Or. Then « possesses a multiplicative inverse o~ such that o« o =

1]]4‘. Thus -

cx7=6) = alav=a10.
H

By Theorem 188, «~' 0 - 0. Hence

cx_1cx7 =6.

Since by Axiom 4.9, we have a oV = 1]F7 = 7, and so we conclude that v = 6} O

190 Theorem In any vector space (V, +, -, F),

VaeF, VVeEV (—x)V=al—V)=—(a).
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Proof: We have
0rV = (a4 (—o))V = oV + (—a) ¥,
whence
—(aV) + 05V = (—x)V,
that is
—(aV) = (—x) V.
Similarly,
0 - a(V —V) = oV + a(—V),
whence
—(a¥) + 0 = a(—V),
that is
—(aV) = a(—V),

proving the theorem. [

|Homework |

Problem 4.1.1 Is R? with vector addition and scalar
multiplication defined as

X1 Y1 X1 + Y1 X1 Ax1

+ = , A =
X2 Y2 X2 + Y2 X2 0

a vector space?

Problem 4.1.2 Demonstrate that the commutativity ax-
iom 4.3 is redundant.

Problem 4.1.3 Let V = Rt =]0; +o0[, the positive real
numbers and F = R, the real numbers. Demonstrate that

4.2 Vector Subspaces

V is a vector space over F if vector addition is defined as
a@b=ab, (a,b) € (R")? and scalar multiplication is
defined as « @ a = a%, (x,a) € (R,RT).

Problem 4.1.4 Let C denote the complex numbers and
R denote the real numbers. Is C a vector space over R
under ordinary addition and multiplication? Is R a vector
space over C?

Problem 4.1.5 Construct a vector space with exactly 8
elements.

Problem 4.1.6 Construct a vector space with exactly 9
elements.

191 Definition Let (V, +, -, F) be a vector space. A non-empty subset U C V which is also a vector space
under the inherited operations of V is called a vector subspace of V.

192 Example Trivially, X; = {?} and X, = V are vector subspaces of V.

193 Theorem Let (V, +,,F) be a vector space. Then U C V, U + & is a subspace of V if and only if

Vo € Fand V(d, b) € U2 it is verified that

ﬁ—l—aﬁeu.

Proof:

Observe that U inherits commutativity, associativity and the distributive laws from V.

Thus a non-empty W C V is a vector subspace of V if (i) U is closed under scalar multiplication,
that is, if x € F and Vv € Uu, then Y € W; (i U is closed under vector addition, that is, if
(3,7) € U2, thend +V € U. Observe that (i) gives the existence of inverses in U, for take
a=—lpandsoVv € U = —V € U. This coupled with (ii) gives the existence of the zero-vector,

for? -V —V € U. Thus we need to prove that if a non-empty subset of V satisfies the property
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stated in the Theorem then it is closed under scalar multiplication and vector addition, and vice-
versa, if a non-empty subset of V is closed under scalar multiplication and vector addition, then
it satisfies the property stated in the Theorem. But this is trivial. 0

194 Example Shew that X = {A € My xn(F) : tr (A) = Oy} is a subspace of M, xn (F).

Solution: » Take A,B € X, x € R. Then
tr (A + aB) =tr (A) + atr (B) = Op + «(Of) = Op.

Hence A + aB € X, meaning that X is a subspace of M, xn (F). <

195 Example Let U € M, (F) be an arbitrary but fixed. Shew that
u ={A € Maxn(F) : AU =UA}

is a subspace of My, xn (F).

Solution: » Take (A,B) € (¢u)?. Then AU = UA and BU = UB. Now
(A+aB)U=AU+ oBU = UA + «UB = U(A + «B),

meaning that A + a«B € %u. Hence 6y is a subspace of M,,x» (F). %y is called the commutator
of U. «

196 Theorem Let X C V, Y C V be vector subspaces of a vector space (V, +, -, F). Then their intersection
X NY is also a vector subspace of V.

Proof: Let« € F and (ﬁ,?) € (XN Y)2. Then clearly (ﬁ,?) e X and(ﬁﬁ,?) €Y. Since X is
a vector subspace, d + ab € X and since Y is a vector subspace, d + ab €Y. Thus

d+abeXNY

and so X N'Y is a vector subspace of V by virtue of Theorem 193. [

|:| We we will soon see that the only vector subspaces of (R?, +, -, R) are the set containing the
zero-vector, any line through the origin, and R? itself. The only vector subspaces of (R3, +, -, R)
are the set containing the zero-vector, any line through the origin, any plane containing the origin
and R3 itself.

|Homework |
Problem 4.2.1 Prove that Problem 4.2.2 Prove that
a a
b 2a—3b
X = €R':a—b—-3d=0
c X = 5b :a,beR
d a-+2b
a
is a vector subspace of R?. - -
is a vector subspace of R>.
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Problem 4.2.3 Let A € Mmnxa(F) be a fixed matrix. i
Demonstrate that a
. 2 _ 3

S = (X € Mar (F) : AX = Opusr} S el b ER,ab=0, SR
is a subspace of Mn x1 (F). 0
Problem 4.2.4 Prove that the set X C My xn (F) of upper a b 5 R
triangular matrices is a subspace of My xn (F). 0 1(a,b) €R%a+Db" =0, C Mzx2(R)

0 0

Problem 4.2.5 Prove that the set X C Muxn(F) of sym-
metric matrices is a subspace of My xn (F).

Problem 4.2.6 Prove that the set X C M, xn(F) of skew-
symmetric matrices is a subspace of Mnxn (F).

Problem 4.2.7 Prove that the following subsets are not
subspaces of the given vector space. Here you must say
which of the axioms for a vector space fail.

a

0{|pl:a,beRa®+b*=1) CR?

0

4.3 Linear Independence

Problem 4.2.8 Let (V, +,:,F) be a vector space, and let
U; € Vand U, C V be vector subspaces. Prove that if
U; U U; is a vector subspace of V, then either U; C U;
or Uz g U1 .

Problem 4.2.9 Let V a vector space over a field F. If F is
infinite, show that V is not the set-theoretic union of a
finite number of proper subspaces.

Problem 4.2.10 Give an example of a finite vector space
V over a finite field F such that

V=ViUV;UVs3,

where the Vi are proper subspaces.

197 Definition Let (Aq,A2,--- ,An) € F™. Then the vectorial sum
n
> g
j=1

is said to be a linear combination of the vectors d; € V,1<i<n.

a b
198 Example Any matrix
c d
10 0 1
00 00
for
a b 1 0 0
=a +b
c d 00 0

€ M>«2(R) can be written as a linear combination of the matrices

00 00

1 0 0 1

1 00 00
+c +d

0 1 0 0 1

199 Example Any polynomial of degree at most 2, say a + bx + c¢x? € R;[x] can be written as a linear

combination of 1, x — 1, and x? — x + 2, for

a+bx+cx?=(a—c)(1)+(b+c)(x—1)+c(x? —x+2).
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Generalising the notion of two parallel vectors, we have

200 Definition The vectors d; € V, 1 < i < n, are linearly dependent or tied if

I(A1,A2,+++ ,An) € F*\ {0} such that Z)\jﬁj =6>,
j=1

that is, if there is a non-trivial linear combination of them adding to the zero vector.

201 Definition The vectors d; € V,1 < i < n, are linearly independent or free if they are not linearly
dependent. That is, if (Aq,A2,--+ ,An) € F™ then

n
ZAJ'EJ':? = M =A2:”‘:)\n:0]F-
j=1

|:| A family of vectors is linearly independent if and only if the only linear combination of them
giving the zero-vector is the trivial linear combination.

202 Example
1 4 7
2(>(5],|8
3 6 9
is a tied family of vectors in R3, since
1 4 _7 0
(M) 2] +(=2) |5/ +(1) [8] = |0
3 6 9 0

203 Example Let i/, V be linearly independent vectors in some vector space over a field F with charac-
teristic different from 2. Shew that the two new vectors X = U — v and ﬁ - U + V are also linearly
independent.

Solution: » Assume that a(d — V) +b(d + V) = 6) Then

(a+b)d +(a—b)V = 0.

Since U,V are linearly independent, the above coefficients must be O, that is, a + b = O and

a — b = Op. But this gives 2a = 2b = Oy, which implies a = b = Oy, if the characteristic of the field
is not 2. This proves the linear independence of U—VandU + V. «

204 Theorem Let A € My, «xn(F). Then the columns of A are linearly independent if and only the only
solution to the system AX = Oy, is the trivial solution.

Proof: LetA+,...,A, be the columns of A. Since
X1A7 +X2A2 + -+ - + XnAn = AX|

the result follows. O
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205 Theorem Any family

{B),ﬁ],ﬁz, see )ﬁk}

containing the zero-vector is linearly dependent.

Proof: This follows at once by observing that

1]1:6}4—0]5'?1 —0—0]5'?2 -+ ...,—|—O]1<*ﬁk =6>

is a non-trivial linear combination of these vectors equalling the zero-vector. O

|Homework |

Problem 4.3.1 Shew that

1 1 1
MERREERL
0 0 1

forms a free family of vectors in R3.

Problem 4.3.2 Prove that the set

_1_ 1 1 _1-
1 1 —1| |1
oF I Y B I I S
1| |=1] [=1| |

is a linearly independent set of vectors in R* and shew

1

2

that X = can be written as a linear combination of

1
these vectors.

Problem 4.3.3 Let (W, V) € (R")?. Prove that [UeV| =
[[||[[¥]| if and only if W and ¥ are linearly dependent.

Problem 4.3.4 Prove that

is a linearly independent family over R. Write as

a linear combination of these matrices.

Problem 4.3.5 Let {71,72,73,74} be a linearly inde-
pendent family of vectors. Prove that the family

{71 —0—72,72 +73,73 +74,74 —0-71}

is not linearly independent.

Problem 4.3.6 Let {7 1 ,72,73} be linearly independent
vectors in R. Are the vectors

?1 = 371 —0—272 —0—473,

?2 =71 +4V, + 273,

ﬁs = 9V + 4V, + 3V,

?4 =71 -+ 272 -+ 573,
linearly independent? Prove or disprove!

Problem 4.3.7 Is the family {1, v/2} linearly independent
over Q?

Problem 4.3.8 Is the family {1, v/2} linearly independent
over R?

Problem 4.3.9 Consider the vector space
V={a+bvV2+cV3:(ab,c) € Q).
1. Shew that {1, /2, v/3} are linearly independent over

Q.
2. Express
1 4 2
1—v2 V12-2

as a linear combination of {1, v2, v/3}.

Problem 4.3.10 Let f, g, h belong to C*(R®) (the space
of infinitely continuously differentiable real-valued func-
tions defined on the real line) and be given by

f(x) = e*,g(x) = e h(x) = e*.

Shew that f, g, h are linearly independent over R.

Problem 4.3.11 Let f, g, h belong to C*°(R®) be given by
f(x) = cos’ x, g(x) = sin® x, h(x) = cos 2x.

Shew that f, g, h are linearly dependent over R.
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4.4 Spanning Sets

206 Definition A family 4 ,ﬁz, e ,ﬁk, ..., } € V is said to span or generate V if every V € V can be
written as a linear combination of the ﬁj’s.

207 Theorem If {U;,U2,..., Uk,...,} C V spans V, then any superset
{W,ﬁ],ﬁz,...,ﬁk,...,}gv

also spans V.

Proof: This follows at once from

O

208 Example The family of vectors

1 0 0
y oy -
i=Jol|,i=1|1]k=10

0 0 1

spans R? since given bl € R3 we may write

209 Example Prove that the family of vectors

1 1 1
- - -
ti=|o|,t2=|1|,t3=|1

0 0 1

spans R3.
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Solution: » This follows from the identity

a 1 1 1

bl=(a=b) |o| +d—0c) |1| +c|1] =(a=b)T1+ (b—c) T2+ cts.

<

210 Example Since

c d 00 0 10 0 1

the set of matrices s a spanning set for Mz« 2(R).

0
1 0 0 1] |0 O 00
) ) , i
00 0 0| |1 © 0 1

211 Example The set

{1,%,x,x3,...,x™,...}

spans R[x], the set of polynomials with real coefficients and indeterminate x.

212 Definition The span of a family of vectors {? 7 ,ﬁ 2, ... ,ﬂk, ..., }is the set of all finite linear combina-
tions obtained from the u;’s. We denote the span of {?1, 2, ... ,ﬂk, ..., by

span(ﬁhﬁz,...,ﬁk,...,).

213 Theorem Let (V,+, -, F) be a vector space. Then
span(ﬂhﬁz,...,ﬁk,...,) cVv

is a vector subspace of V.

Proof: Let o € F and let
1 1
X =) aty, Y= bil,
k=1 k=1

be in span (ﬁ1 R TONUUET ) (some of the coefficients might be Og). Then

1
7+“j=Z(ak+0(bk)ﬁk € span (ﬁhﬁz,...,ﬁk,...,),

k=1
and so span (ﬁ1 U2, ..., Uk,...,) is asubspace of V. [0

214 Corollary span (ﬁ1 ,ﬁz, e ,ﬁk, el ,) C V is the smallest vector subspace of V (in the sense of set
inclusion) containing the set
{ﬁ])QZ)"'sﬁk)"'s}'

Proof: [fW C V is a vector subspace of V containing the set

m1)ﬁ2)"')ﬁk)"')}

then it contains every finite linear combination of them, and hence, it contains span (ﬁ1 RTER ,ﬁk, cee
O
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215 Example If A € M,42(R), A € span , , then A has the form

i.e., this family spans the set of all symmetric 2 X 2 matrices over R.

216 Theorem Let V be a vector space over a field F and let (7,7\)) € V2, y € F\ {Or}. Then
span (V, W) = span (V,yW).

Proof: The equality
av 4+ bw = aVv + (by ) (yw),

proves the statement. [

217 Theorem Let V be a vector space over a field F and let (V, W) € V2, v € F. Then
span (V, W) = span (W, V + yw) .

Proof: This follows from the equality
av +bw =a(V + yv_>v) + (b — ay)v_>v.

g
|Homework |
Problem 4.4.1 Let R3[x] denote the set of polynomials with degree at most 3 and real coefficients. Prove that the
set
1,14 (14+%x)2% (1 +x)°%}
spans R3[x].
1 1 0

Problem 4.4.2 Shew that | 1 | € span ol-1]1

—1 —1 —1

1 0 0o 0 1

Problem 4.4.3 What is span , , ?

Problem 4.4.4 Prove that

span , , , = Mz2x2(R).
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Problem 4.4.5 For the vectors in R3,

prove that

4.5 Bases

218 Definition A family {ﬁ 1 ,ﬂ 2y ,ﬁk, ...} € Vis said to be a basis of V if (i) they are linearly indepen-
dent, (ii) they span V.

219 Example The family
O

Or

o,
-
Il

Te | >

Or

Or

where there is a 1y on the i-th slot and Or’s on the other n — 1 positions, is a basis for F™.

220 Theorem Let (V,+, -, F) be a vector space and let
U={,Uz,..., Ug,...} CV

be a family of linearly independent vectors in V which is maximal in the sense that if U’ is any other
family of vectors of V properly containing U then U’ is a dependent family. Then U forms a basis for V.

Proof: Since U is a linearly independent family, we need only to prove that it spans V. Take
Vv ev. If V € U then there is nothing to prove, so assume that V. e V \ U. Consider the set
u =uu {7 }. This set properly contains U, and so, by assumption, it forms a dependent_family.
There exists scalars «gp, &1, ..., &, such that

H
ooV + o Uy + -+ antn = 0.

1

Now, &gy + O, otherwise the U; would be linearly dependent. Hence o, ' exists and we have

V= —0(51 (0(1ﬁ1 T+t “nﬁn)s
and so the U; span'V. [

|:| From Theorem 220 it follows that to shew that a vector space has a basis it is enough to
shew that it has a maximal linearly independent set of vectors. Such a proof requires something
called Zérn’s Lemma, and it is beyond our scope. We dodge the whole business by taking as an
axiom that every vector space possesses a basis.
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221 Theorem (Steinitz Replacement Theorem) Let (V, +, -, F) be a vector space and let U = {t1,U2,...} C

V. Let W = {v_)v1 ,v_)vz, e ,v—>vk} be an independent family of vectors in span (U). Then there exist k of the
Ui's, say (4,3, ..., U} which may be replaced by the Wy's in such a way that
span (7\)1 W2, Wi, Wit T, - .) =span (U).

Proof: We prove this by induction on k. If k =1, then
V_)V1 = 0(1?1 + 0(2?2 + e+ (Xnﬁn

H
Jor some n and scalars «;. There is an «; ¥ Op, since otherwise v—>v1 = 0 contrary to the
assumption that the W; are linearly independent. After reordering, we may assume that o1 + Op.

Hence
ﬁ1 = 0(1_1 (V—>\)1 — (Otzﬁz + e+ (Xnﬁn))»

and so U, € span (v—>v1,ﬁ2, ...,) and

span(v—>v1,ﬂz,...,)=span(ﬁ1,ﬁz,...,).

Assume now that the theorem is true for any set of fewer than k independent vectors. We may
thus assume that that {?1 , ...} has more than k — 1 vectors and that

span (7\)1 W2y e W1, Uiy - .) =span (U).
Since v_>vk € U we have
Wi = B1W1 + BaWs + -+« + Br_1Wk_1 + YUk + Vi1 Ukt1 + YmUm-

If all they; = O, then the W ,V’vz, e ,v_)vk} would be linearly dependent, contrary to assumption.
Thus there is a vi # O, and after reordering, we may assume that yx  Or. We have therefore

Uy = Yf (Wi — (B1W1 + B2Wa + +++ + Br_1Wk_1 + Yit1Uki1 + YmUm)).

But this means that
span (7\)1 W2, Wi, Wit T, - .) =span (U).

This finishes the proof. [

222 Corollary Let Wy ,v—>vz, e ,v—>vn} be an independent family of vectors with V = span (v—>v1 ,v—>vz, ceey W),

If we also have V = span ( TN ,ﬁv), then
1. n<v,
2. n = v if and only if the {U;, 1, ..., Y.} are a linearly independent family.

3. Any basis for V has exactly n elements.

Proof:

1. In the Steinitz Replacement Theorem 221 replace the first n Ui's by the Wi's and n < v
Jollows.

2. If ;s ,ﬂz, ..., Uy} area linearly independent family, then we may interchange the roéle of
the W; and U obtaining v < n. Conversely, if v=mn and if the U; are dependent, we could
express some ﬁi as a linear combination of the remaining v — 1 vectors, and thus we would
have shewn that some v — 1 vectors span V. From (1) in this corollary we would conclude
thatn < v — 1, contradicting n = v.

3. This follows from the definition of what a basis is and from (2) of this corollary.
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O

223 Definition The dimension of a vector space (V, +, -, F) is the number of elements of any of its bases,
and we denote it by dim V.

224 Theorem Any linearly independent family of vectors

{71 )7)2) s 37](}

in a vector space V can be completed into a family

{71 a?l» e )7k>jk+1>?k+2» . }

so that this latter family become a basis for V.

Proof: Talke any basis {?1 e ,ﬁk,ﬁkH, ..., } and use Steinitz Replacement Theorem 221.
O

225 Corollary If U C V is a vector subspace of a finite dimensional vector space V then dim U < dim V.

Proof: Since any basis of U can be extended to a basis of V, it follows that the number of
elements of the basis of U is at most as large as that for V. O

226 Example Find a basis and the dimension of the space generated by the set of symmetric matrices in
M, xn(R).

Solution: » Let Ei; € M,uxn(R) be the n X n matrix with a 1 on the ij-th position and 0’s
nn—1

everywhere else. For1 < i <j < n, consider the (72‘) = % matrices Ajj = Eij + E;ji. The
Aij have a 1 on the ij-th and ji-th position and 0’s everywhere else. They, together with the n
matrices Ei;, 1 < i < n constitute a basis for the space of symmetric matrices. The dimension of
this space is thus

nn-—1) nn+1)

—_—tn=——.

2 2

<

227 Theorem Let {1(; yoen ,ﬁn} be vectors in R™. Then the U’s form a basis if and only if the n X n matrix
A formed by taking the U's as the columns of A is invertible.

Proof: Since we have the right number of vectors, it is enough to prove that theU’s are linearly

X1

X2
independent. But if X = , then

Xn

X1U71 4+ + Xntn = AX.

If A is invertible, then AX = 0,, = X =A"'0, = 0,,, meaning that x; =x2 = -+ +x, = 0, so the
U’s are linearly independent.

Conwersely, assume that the U’'s are linearly independent. Then the equation AX = 0, has
a unique solution. Let v = rank (A) and let (P,Q) € (GL.(R))? be matrices such that A =
P~ "Dy, 0+ Q" !, where Dy . is the Hermite normal form of A. Thus
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AX=0, = P 'Dpnn:Q 'X=04 = Dun,Q 'X=0,.

Y2
PutQ'X = . Then

Yn

Dn,n,rQ_1X =0, = 91?1 + +yr?r = O,

where ?J- is the n-dimensional column vector with a 1 on the j-th slot and 0’s everywhere else.
Ifr <n then yy+1,...,Yyn can be taken arbitrarily and so there would not be a unique solution,
a contradiction. Hence r = n and A is invertible. [

|Homework |

Problem 4.5.1 In problem 4.2.2 we saw that

2a— 3b
X= 5b ta,beR
a—+2b

a

is a vector subspace of R>. Find a basis for this subspace.

Problem 4.5.2 Let {71 ,72,73,74,75} be a basis for a vector space V over a field F. Prove that
(V14 V2, V2 4+ V3, V3 + Va, Vs + V5, V5 + V1)

is also a basis for V.

Problem 4.5.3 Find a basis for the solution space of the system of n + 1 linear equations of 2n unknowns
X1 +X24+ - +%Xn =0,

X2+ X3+ +Xnp1 =0,

Xnt1 +Xng2 4+ o +x2n =0.

Problem 4.5.4 Prove that the set V of skew-symmetric n X n matrices is a subspace of Myxn(R) and find its
dimension. Exhibit a basis for V.

Problem 4.5.5 Prove that the set
X ={(a,b,c,d)[b +2c =0} CR*

is a vector subspace of R*. Find its dimension and a basis for X.

nn+1) a

3 nd

Problem 4.5.6 Prove that the dimension of the vector subspace of lower triangular n X n matrices is

find a basis for this space.
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Problem 4.5.7 Find a basis and the dimension of

X=span |vi=| |, vi=]| |, vi=
1 1 2
1 0 1
Problem 4.5.8 Find a basis and the dimension of
1 1 2
— L — L — 2
X =span | vi = , V2= y, V3=
1 1 2
1 0 2
Problem 4.5.9 Find a basis and the dimension of
R 1 0 1 0 - 01 1 -1
X = span | Vi = , V3= , Vi-= , Va4 =
01 2 0 2 0 0 0
Problem 4.5.10 Prove that the set
a b c
V= 0 d f| EMsx3(R):a+b+c=0, a+d+g=0
0 0 g

is a vector space of M3x3(R) and find a basis for it and its dimension.

4.6 Coordinates

228 Theorem Let {V1,V2,..., Vn} be a basis for a vector space V. Then any VY € Vhas a unique

representation
V= 0.171 + @ Vo4t anvn.

Proof: Let
V=b1Vi +by Vo4 4+ bV,
be another representation of V. Then
H
0=(a; —b1)V1+ (a2 —b2)Vz+ -+ (an — bn)Vn.

Since {V; ,72, e ,Vn} Jorms a basis for V, they are a linearly independent family. Thus we
must have
a; —byi=a;—by=---=an — by =0p,

that is
a; =by;a2 =ba;--- ;a0 = by,

proving uniqueness. U
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229 Definition An ordered basis {7 7 ,7 2,0 ,Vn} of a vector space V is a basis where the order of the Vi
has been fixed. Given an ordered basis «{7 1 ,7 2y ,7,1} of a vector space V, Theorem 228 ensures that
there are unique (aj, az,...,a,) € F" such that

V=aVi+ @Vt o+ anVn.

The ay’s are called the coordinates of the vector V.

]
- =
)

230 Example The standard ordered basis for R3 is . = {1, Tg

}. The vector || € R3 for example, has

)

3

coordinates (1,2,3) . If the order of the basis were changed to the ordered basis . = {?,?,7}, then

1

2| € R3 would have coordinates (1,3,2) ,.

3

|:| Usually, when we give a coordinate representation for a vector V. € R™, we assume that
we are using the standard basis.

1

231 Example Consider the vector || € R3 (given in standard representation). Since

3

2| =—Tlo| =1 |11|+3|1]>

3 0 0 1
1 1 1 1
under the ordered basis %#; = ol> 111,11 , |2| has coordinates (—1,—1,3) %, . We write
0 0 1 3
1 —1
21 = [—1
3 3
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232 Example The vectors of

1 1
%1= )

1 2

are non-parallel, and so form a basis for R?. So do the vectors

2 1
332= )
1 —1
3
Find the coordinates of in the base %4,.
4
Kz
Solution: » We are seeking x, y such that
1 1 2 1 1 1] |3 2 1 X
3 +4 =X +y = =
1 2 1 —1 1 2| |4 1T —1| |y
K@z
Thus ;
X 2 1 1 1| (3
y 1 -1 1 2| (4
B> L .
1 1
R 1 1 (3
1 2
3 3 1 2 _4
2
~ 5 1 3
1
—3 -1 |4
6
-5

3 1 1 7
3| | +4]| |- ,
4 1 20 |1
1 2, L L
6 2 1 7
-6 -5 -
-5 1 —1 11
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In general let us consider bases %, , %, for the same vector space V. We want to convert Xz, to
Y#,. We let A be the matrix formed with the column vectors of %#; in the given order an B be the matrix
formed with the column vectors of %, in the given order. Both A and B are invertible matrices since the
%’s are bases, in view of Theorem 227. Then we must have

AXz, =BYz, — Yz, =B 'AXg,.
Also,
Xz, = A" 'BYg,.
This prompts the following definition.

233 Definition Let %; = {U;,U2,...,Un} and %, = {V1,V2,..., V¥n} be two ordered bases for a vector
space V. Let A € M« (FF) be the matrix having the U’s as its columns and let B € M, «n(F) be the
matrix having the V’s as its columns. The matrix P = B~ 'A is called the transition matrix from %1 to %>
and the matrix P~7 = A~ 1B is called the transition matrix from %, to %;.

234 Example Consider the bases of R3

10 (1] |1
Br=q 111> 0] o>
11 |o| |0
1 1 2
%o = 1 |»|=1]>]0
—1 0 0

Find the transition matrix from %; to %4, and also the transition matrix from %, to %;. Also find the

1

coordinates of |2 in terms of %,.

3
Z

Solution: » Let
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The transition matrix _from % to %, is

P - B'A

> 3 1o
_—1 0 0
= |-2 =1 -0
21 3
The transition matrix from %, to % is
-1
-1 0 O —1
Pl=1_2 1 0| =|2
2 1 3 0
Nouw, i i
-1 0 0} |1
Yoz, =|—2 —1 0| |2 =
2 1 3|3 0 L

As a check, observe that in the standard basis for R3

1 1 1 1
2 =111 +2|7| +3 |0
3 1 0 0
L Jd {%] L J L J L J
—1 1 1
=—1 4 + L
—4 = 1 —1 5
LLE —1 0
z |,
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|Homework |

Problem 4.6.1

2. Find the coordinates of

3. Find the coordinates of

1. Prove that the following vectors are

linearly independent in R*

;s

,?2

sis (d1,d2, @3, d4).

sis (31,?3,?2,34).

|, e

under the ordered ba-

under the ordered ba-

1 1
1 0
0 a
1 1

Problem 4.6.2 Consider the matrix

0 Determine all a for which A(a) is not invertible.

0 Find the inverse of A(a) when A(a) is invertible.

0 Find the transition matrix from the basis

to the basis

1

1

1

1

0
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Linear Transformations

5.1 Linear Transformations

235 Definition Let (V, +, -, F) and (W, +, -, F) be vector spaces over the same field F. A linear transforma-
tion or homomorphism

vV — w
L: ,
d - L(d)
is a function which is
v

e Linear: L(d +3)) =L(d) +L(b),

¢ Homogeneous: L(ocﬁ) = ch(ﬁ), for « € F.

|:| It is clear that the above two conditions can be summarised conveniently into
L(d +ab) = L(@) + aL (D).
236 Example Let
M, xn(R) — R
A — tr(A) .
Then L is linear, for if (A,B) € M;,,x»(R), then
LA+ aB) =tr (A + aB) =tr (A) + atr (B) = L(A) + «L(B).
237 Example Let
Mixn(R) — Muxn(R)
A - AT
Then L is linear, for if (A, B) € M,,x»(R), then

LA+ aB)=(A+aB)T =AT + aB" = L(A) + «L(B).

97
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238 Example For a point (x,y) € R?, its reflexion about the y-axis is (—x, y). Prove that
R? —  R?

(xy) = (—x,y)

is linear.

Solution: » Let (x1,y1) € R?, (x2,Y2) € R?, and « € R. Then

R((x1,y1) + «(x2,y2)) = R((x1 + axz2,y1 + ay2))

(—(x1 4+ ax2),y1 + ayz)

(—x1,Y1) + a(—x2,Y2)

R((x1,yY1)) + aR((x2,Y2)),

whence R is linear. €

239 Example Let L : R? — R* be a linear transformation with

—1 2
1 1 —1 0
L = ;L =
1 2 1 2
3 3
5
Find L
3
Solution: » Since
5 1 —1
=4 — ,
3 1 1
we have - o -
—1 2 —6
5 1 —1 1 0 4
L =4L —L =4 — =
3 1 1 2 2 6
3 3 9
|

240 Theorem Let (V, +, -, F) and (W, +, -, F) be vector spaces over the same field F, andlet L : V — W be
a linear transformation. Then
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e« L(Oyv) = Ow.

e VX € V,L(—X) = —L(X).

Proof: We have
- —
hence
H
Since

we obtain the first result.

Now

Ow =L(0y) = L(X + (=X)) = L(X) + L(=%),

from where the second result follows. [

|Homework |

Problem 5.1.1 Consider L : R® — R3,

X X—y—2z
L y| = |x+y—+zf-
z z

Prove that L is linear.

Problem 5.1.2 Let A € GL,, (R) be a fixed matrix. Prove

that

M.xn(R) — M. xn(R)

H — —ATTHA™'

is a linear transformation.

Problem 5.1.3 Let V be a vector space and let S C V.
The set S is said to be convex if Va € [0;1],Vx,y € S,
(1 — x)x + ay € S, that is, for any two points in S,
the straight line joining them also belongs to S. Let
T:V — W be a linear transformation from the vector
space V to the vector space W. Prove that T maps con-
vex sets into convex sets.

5.2 Kernel and Image of a Linear Transformation

241 Definition Let (V, +, -, F) and (W, +, -, F) be vector spaces over the same field F, and

vV —

T .

w

'7 - T(V)

be a linear transformation. The kernel of T is the set

ker (T) = {V € V:T(V) = Owl.

The image of T is the set

Im (T) = (W € w: 3V € V such that T(V) = W} = T(V).

|:| Since T(B)v) =6)W by Theorem 240, we have?v € ker (T) andE)w € Im(T).
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242 Theorem Let (V,+, -, F) and (W, +, -, F) be vector spaces over the same field F, and

vV — w
T.

.7 — T(V)

be a linear transformation. Then ker (T) is a vector subspace of V and Im (T) is a vector subspace of
W.

Proof: Let (71,72) € (ker(T))? and « € F. Thgn T(71) = T(Vz) =6)v. We must prove that
V1 + oV, € ker (T), that is, that T(V1 + ov2) = Ow. But

T(71 -+ 0(72) = T(71) —+ (XT(Vz) =6>v -+ 0(6>v =6>v

proving that ker (T) is a subspace of V.

Now, let (W1, W>) € (Im(T))? and « € F. Then 3(V1,V2) € V2 such that T(V1) = Wi and
T(Vz) = W,. We must prove that Wi + oW, € Im (T), that is, that 3V such that T(V) =
W1 + ow,. But

Wi 4+ oW = T(V1) + oT(V2) = T(V1 + av2),

and so we may take V = V1 + oV 5. This proves that Im (T) is a subspace of W.
O

243 Theorem Let (V,+, -, F) and (W, +, -, F) be vector spaces over the same field F, and

vV — w
T.

Vo= T)
be a linear transformation. Then T is injective if and only if ker (T) = 6)\/.

Proof: Assume that T is injective. Then there is a unique? € V mapping to ?wi
T(X) = Ow.

— —
By Theorem 240, T(0v) = Ow, Le., a linear transformation tak_e}s the zero vector of one space
to the zero vector of the target space, and so we must have X =0 V.

Conversely, assume that ker (T) = {6)\/}, and that T(?) = T(ﬁ). We must prove that X = ﬁ But

TR) =T = TXE) T =0w
— TR-1)=0w
= (X — 1Y) €ker(T)
— X—y=0v
= X-=1,

as we wanted to shew. O
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244 Theorem (Dimension Theorem) Let (V, +,-,F) and (W, +,-,F) be vector spaces of finite dimension
over the same field F, and

vV — w
T.

Y o= T(V)
be a linear transformation. Then

dimker (T) + dimIm (T) =dim V.

Proof: Let {71 ,72, ... ,Vk} be a basis for ker (T). By virtue of Theorem 224, we may extend
this to a basis &/ = {71, 2, --,7k>7k+1,7k+2, - ,771} of V. Heren = dim V. We will now
shew that % = {T(Vk+1 ), T(7k+z), . ,T(Vn)} is a basis for Im (T). We prove that (i) & spans
Im (T), and (ii) # is a linearly independent family.

Letw € Im (T). Then 3V € V such that T(V) = W. Now since « is a basis for V we can write

n

7 = Z 0(171.
i=1
Hence N N
W=TV) =) «T(@V)= > TV,
i=1 i=k41

since T(Vi) =6>vfor1 < i< k. Thus & spans Im (T).

To prove the linear independence of the 4 assume that

Tw = > BTV =T ( > ﬁ171> .

i=k+1 i=k+1
This means that Z?:kﬂ [3171 € ker (T), which is impossible unless Bx+1 = Px+2 =+ = Pn =
Or.
O

245 Corollary If dim V = dim W < +c0, then T is injective if and only if it is surjective.

Proof: Simply observe that if T is injective then dimker (T) = 0, and if T is surjective Im (T) =
T(V)=WandIm (T) =dimW. O

246 Example Let

_ M;y2(R) — M;zx2(R)

A — AT —A

Observe that L is linear. Determine ker (L) and Im (L) .

a b
Solution: » Put A = and assume L(A) = 0;. Then
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This means that ¢ = b. Thus

a b
ker (L) = (a,b,d) € R? },
b d
0 k
Im (L) = keR
-k 0

This means that dimker (L) =3, and sodimIm (L)=4—-3=1. «

247 Example Consider the linear transformation L : Mz x> (R) — R3[X] given by

a b
L = (a+b)X? + (a—b)X3.
c d
Determine ker (L) and Im (L).
Solution: » We have
a b
0=1L =(a+b)X*+(a—b)X> = a+b=0,a—b=0, — a=b=0.
c d
Thus
0 0
ker (L) = : (c,d) € R?
c d

Thus dim ker (L) = 2 and hence dimIm (L) = 2. Now
(@a+b)X*+ (a—b)X} = a(X*+X?) +b(X* —X3).
Clearly X? + X3, and X? — X3 are linearly independent and span Im (L). Thus

Im (L) = span (X* + X3, X — X3).

<

|Homework |
Problem 5.2.1 In problem 5.1.1 we saw that L : R®* — | Problem 5.2.2 Consider the function L : R* — R? given
R3, by

x X—y—z x

Liy|=|x+y+z Ly=><+y

Z Z z xX—y

is linear. Determine ker (L) and Im (L). _W_
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1. Prove that L is linear.
2. Determine ker (L).

3. Determine Im (L).

Problem 5.2.3 Let

R* —» R*
L:
d — L(d)
satisfy
1 2
1 1
0 —1
Lio| = i Li1] = ; L
—1 0
0 0
0 0

Determine ker (L) and Im (L).

Problem 5.2.4 It is easy to see that L : R> — R3,

x+ 2y
x
L = |x+2y
Y
0

is linear. Determine ker (L) and Im (L).

Problem 5.2.5 It is easy to see that L : R> — R3,

xX—y
L = [x+vy
0

is linear. Determine ker (T) and Im (T).

Problem 5.2.6 It is easy to see that L : R® — R?,

X—Yy—2z

y—2z

is linear. Determine ker (L) and Im (L).
Problem 5.2.7 Let

L Mzx2(R) — R

A —  tr(A)

Determine ker (L) and Im (L).

Problem 5.2.8 1. Demonstrate that
L Mzx2(R) — Mz2x2(R)
A - AT4+A

is a linear transformation.
2. Find a basis for ker (L) and find dim ker (L)
3. Find a basis for Im (L) and find dimIm (L).

Problem 5.2.9 Let V be an n-dimensional vector space,
where the characteristic of the underlying field is differ-
ent from 2. A linear transformation T : V — V is idempo-
tent if T?> = T. Prove that if T is idempotent, then

O I —T is idempotent (I is the identity function).
O I + T is invertible.

O Kker(T)=Im(I—T)
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5.3 Matrix Representation

Let V, W be two vector spaces over the same field F. Assume that dim V = m and {7 i}ier1;m] is an ordered
basis for V, and that dim W =n and & = {7}\’1}16[1 :n] an ordered basis for W. Then

an

azi
— — —
L(Vi) = anwh+anWy+-- -+ anwn =

— — —
A12W1 + AQ22W2 + ¢+ -+ + Qu2Wn =

oy
<]
N

Il

— — —
L(Vm) = @mWi + @amWa2 + -+ + QumWn =

248 Definition The n X m matrix

a1 ag2 -+ Qin

azr ayz2 - a2n
M =

an1 Qp2 =+ QAnm

formed by the column vectors above is called the matrix representation of the linear map L with respect
to the bases {Vi}ig(1;m), Witici1in-

249 Example Consider L : R3 — R3,

x X—Yy—z

L Yyl T |Ix+y—+z

Clearly L is a linear transformation.

1. Find the matrix corresponding to L under the standard ordered basis.
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1 1 1
2. Find the matrix corresponding to L under the ordered basis |g|, [1]|, [0| , for both the domain
0 0 1
and the image of L.
Solution: »
1 1 0 —1 0 —1
1. The matrix will be a 3 x 3 matrix. We haveL |g| = |1|.L[1|=| 1 |.andL |o| = | 1
0 0 0 0 1 1
whence the desired matrix is
1 -1 —1
1 1 1
o o0 1
2. Call this basis </ . We have
1 1 1 1 1 0
Lio|=[1|=0o| +1|1| +0jo| =|1|
0 0 0 0 1 0
L L L4 Ly
1 0 1 1 1 -2
Lit|=12=—2o|+2|1|+0jo|=| 2| >
0 0 0 0 1 0
L L - L L 4L dy
and o o - o - -
1 0 1 1 1 -3
Lioj=12|=-3o|+2|1|tT|ol=|2]| >
1 1 0 0 1 1
L J L d L J L J L J L - ,47{

whence the desired matrix is

0o —2 -3
1 2 2
0 0 1

<

250 Example Let R,[x] denote the set of polynomials with real coefficients with degree at most n.
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1. Prove that

R3[x] — Rylx]
L:

px) = p”(x)
is a linear transformation. Here p”/(x) denotes the second derivative of p(x) with respect to x.
2. Find the matrix of L using the ordered bases {1,x,x?,x3} for R3[x] and {1, x} for R[x].
3. Find the matrix of L using the ordered bases {1,x,x?,x3} for R3[x] and {1,x + 2} for R¢[x].
4. Find a basis for ker (L) and find dim ker (L).
5. Find a basis for Im (L) and find dim Im (L).
Solution: »

1. Let (p(x), q(x)) € (R3[x])? and & € R. Then

L(p(x) + aq(x)) = (p(x) + aq(x))” = p”(x) + «q”(x) = L(p(x)) + «L(q(x)),

whence L is linear.

2. We have

d? 0
L) = 451 = 0 = om+okx) = ||,
0
d2 0
L(x) = wx = 0 = 0N +0(x) = ,
0
d? 2
L(x?) = —x? = 2 = 2(1)+0(x) = ,

dx?
0
d? 0
L(x3) = —x3 = 6x = 0(1)+6(x) = ,
dx? P

whence the matrix representation of L under the standard basis is

00 20

0 0 0 6
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3. We have -
d? 0
L(1) = —1 = 0 = 01H+0x+2) = ,
dx?
0
a2 0
L(x) = —x = 0 = 0M1H+0x+2) = ,
dx?
0
d? 2
L(x?) = —x* = 2 = 2M+0x+2) = ,
dx?
0
dZ —12
L(x3) = —x3 = 6x = —12(1)+6(x+2) = ,

whence the matrix representation of L under the standard basis is

00 2 —12

00 0 6

4. Assume that p(x) = a + bx + cx? + dx® € ker (L). Then
0=L(p(x)) =2c+ 6dx, Vx €R.
This means that ¢ = d = 0. Thus a, b are free and
ker (L) ={a+ bx: (a,b) € R?}.

Hence dim ker (L) = 2.
5. By the Dimension Theorem, dimIm (L) =4 — 2 = 2. Put q(x) = o + Bx + yx? + &6x3. Then

L(q(x)) =2y +68(x) = (2y)(1) + (68)(x).
Clearly {1, x} are linearly independent and span Im (L). Hence
Im (L) = span (1,x) = Ry[x].

<

251 Example

1. A linear transformation T : R3 — R3 is such that

It is known that
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and that

ker (T) = span 2

Argue that there must be A and p such that
2 y -
T(Kk)=AT(i) +uT(j).

2. Find A and p, and hence, the matrix representing T under the standard ordered basis.

Solution: »
- — —
1. Since T(k) € Im (T) and Im (T) is generated by T(i) and T(k) there must be (A, u) € R?

with - o ) _

2 3 2A +3u
- : -
T(k)=AT(i)+uT(j)=A|1|+mu|0|= A

1 —1 A—u

2. The matrix of T is

1

Since | 2 | € ker (T) we must have

—1

2 3 2A+3pu 1 0
1 0 A 21 =10
1 -1 A—pu —1 0
Solving the resulting system of linear equations we obtain A = 1, u = 2. The required matrix
is thus
2 3 8
1 0 1
1 -1 -1

<

|:| If the linear mapping L : V — W, dimV = n,dimW = m has matrix representation
A € M, xn(F), thendimIm (L) = rank (A).
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|Homework |

Problem 5.3.1 Let T : R* — R? be a linear transformations such that

1 1 1 —1
1 0 1 -2
1 1 1 0

1 0 0 0

Find the matrix of T with respect to the canonical bases. Find the dimensions and describe ker (T) and Im (T).

Problem 5.3.2 1. A linear transformation T : R®> — R?® has as image the plane with equation x +y + z = 0 and

as kernel the line x =y =z. If

1 a 2 3 1 —1
Ti1]=1o|> Tl1|=|v |, Tl|2/=]2
2 1 1 -5 1 c

Find a, b, c.

2. Find the matrix representation of T under the standard basis.

Problem 5.3.3 1. Prove that T : R? — R3

x+y
X
T = | x—vy
Y
2x + 3y
is a linear transformation.
2. Find a basis for ker (T) and find dim ker (T)
3. Find a basis for Im (T) and find dimIm (T).
1 1
1 1
4. Find the matrix of T under the ordered bases ./ = , of R? and % = 11510
2 3
1 —1
Problem 5.3.4 Let
RP® —» R?
L: ,
d - L(d)
where
x
x + 2y
L y| =
3x —z
z

Clearly L is linear. Find a matrix representation for L if
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1. The bases for both R® and R? are both the standard ordered bases.

1 1 1

2. The ordered basis for R* is |g|, [1], |1| and R? has the standard ordered basis .

0 0 1

1 1 1
1 1

3. The ordered basis for R*is ||, [1], |1| and the ordered basis for R? is &/ = ,

0 1

0 0 1
1 2

Problem 5.3.5 A linear transformation T : R> — R? satisfies ker (T) = Im (T), and T = . Find the matrix

1 3

representing T under the standard ordered basis.
Problem 5.3.6 Find the matrix representation for the linear map
M;x2(R) — R

L: )
A — tr(A)

under the standard basis

for MZXz(R).

Problem 5.3.7 Let A € Muxp(R), B € Mpxq(R), and C € Mgxr(R), be such that rank (B) = rank (AB). Shew that

rank (BC) = rank (ABC).
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Determinants

6.1 Permutations

252 Definition Let S be a finite set with n > 1 elements. A permutation is a bijective function t: S — S.
It is easy to see that there are n! permutations from S onto itself.

Since we are mostly concerned with the action that T exerts on S rather than with the particular names
of the elements of S, we will take S to be the set S = {1,2,3,...,n}. We indicate a permutation T by
means of the following convenient diagram

253 Definition The notation S, will denote the set of all permutations on {1,2,3,...,n}. Under this
notation, the composition of two permutations (7, o) € Sﬁ is

1 2 n 1 2 n
Too = )
(1) *(2) T(n) (1) o(2) o(n)
1 2 n
(too)(1) (roo)(2) (too)(n)
The k-fold composition of T is
Kk

TO+++O0T =T,
—_————

k compositions

|:| We usually do away with the o and write to o simply as to. This “product of permutations”
is thus simply function composition.

Given a permutation T: S — S, since T is bijective,
v !':8-8

111
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exists and is also a permutation. In fact if

1 2 n
T= )
(1) 7*(2) T(n)
then
o, |t (@) T(n)
T =
1 2 n
1

Figure 6.1: Sz are rotations and reflexions.

254 Example The set S3 has 3! = 6 elements, which are given below.
1. 1d :{1,2,3} — {1, 2,3} with

1 2 3
Id =
1 2 3
2. 11 :{1,2,3} - {1,2,3} with
1 2 3
T =
1 3 2
3. 1t2:{1,2,3} - {1,2,3} with
1 2 3
T2 =
3 21
4. t3:{1,2,3} > {1,2,3} with
1 2 3
T3 =
21 3
5. 01:{1,2,3} — {1, 2,3} with
1 2 3
01 =
2 31
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6. 02:{1,2,3} — {1,2,3} with

02 =

255 Example The compositions t; o 07 and o7 o T7 can be found as follows.

1 2 3 1 2 3 1 2 3
T1 001 = o = =T2.

1 3 2 2 31 3 21

(We read from right to left 1 — 2 — 3 (“1 goes to 2, 2 goes to 3, so 1 goes to 3”), etc. Similarly

1 2 3 1 2 3 1 2 3
010Ty = o = = T3.

2 31 1 3 2 213

Observe in particular that oy o T1 # 71 o 07. Finding all the other products we deduce the following
“multiplication table” (where the “multiplication” operation is really composition of functions).

o ||Id |1 | T2 | T3 | 01| O2

Id |Id |ty | T2 | T3 | 01 | 02

T1 T1 Id (O8] (025 T2 T3

T2 T2 (03] Id (o] T3 T1

T3 T3 (o] 02 Id T1 T2

(025 (025 T2 T3 T1 Id (O8]

(o] (o] T3 Tq T2 02 Id

The permutations in example 254 can be conveniently interpreted as follows. Consider an equilateral
triangle with vertices labelled 1, 2 and 3, as in figure 6.1. Each 1, is a reflexion (“flipping”) about
the line joining the vertex a with the midpoint of the side opposite a. For example T fixes 1 and
flips 2 and 3. Observe that two successive flips return the vertices to their original position and so
(Va € {1,2,3}) (’tf1 =1Id ). Similarly, o, is a rotation of the vertices by an angle of 120°. Three successive
rotations restore the vertices to their original position and so o3 =1Id .

256 Example To find t; ' take the representation of t1 and exchange the rows:

1 3 2
! =
1 2 3
This is more naturally written as
1 2 3
! =
1 3 2
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Observe that 77" = 17.

257 Example To find o' take the representation of o7 and exchange the rows:

2 31
oy =
1 2 3
This is more naturally written as
1 2 3
01_1 =
31 2

Observe that o' = 05.

6.2 Cycle Notation

We now present a shorthand notation for permutations by introducing the idea of a cycle. Consider in
S¢ the permutation

123 4567 89

213 6 97 8 45

We start with 1. Since 1 goes to 2 and 2 goes back to 1, we write (12). Now we continue with 3. Since 3
goes to 3, we write (3). We continue with 4. As 4 goes 6, 6 goes to 7, 7 goes 8, and 8 goes back to 4, we
write (4678). We consider now 5 which goes to 9 and 9 goes back to 5, so we write (59). We have written
T as a product of disjoint cycles

T=(12)(3)(4678)(59).

This prompts the following definition.

258 Definition Let 1 > 1 and let iy,...,1, € {1,2,...n} be distinct. We write (i; i ... i) for the element
o € S, such that o(iy) = ir41, 1 < r <1, o) =1 and o(i) =ifori & {iy,...,11}. We say that
(i1 i2 ... 1) is a cycle of length 1. The order of a cycle is its length. Observe that if T has order 1 then
T=1d.

|:| Observe that (iz ... i1 i1) = (i1 ... i1) etc., and that (1) = (2) =---= (n) =1Id . In fact, we
have

(1 ... W =01 .-+ jm)
ifand only if (1) 1 = m and if (2) 1 > 1: Ja such that Vk: ik = jkt+a med 1- Two cycles (i1,...,1i1)

and (j1,...,jm) are disjoint if {i1,..., i} N {j1,...,jm} = @. Disjoint cycles commute and if
T = 0102+ 0¢ is the product of disjoint cycles of length 14, 1,,...,l; respectively, then T has
order

lcm (11,12,...,1t) .
259 Example A cycle decomposition for o € So,

123 4567 89

187 6 23 45 9

is
(285)(3746).
The order of « is lem (3,4) = 12.
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260 Example The cycle decomposition B = (123)(567) in S¢ arises from the permutation

123 45 67 89

231 467 589

Its order is lem (3, 3) = 3.

261 Example Find a shuffle of a deck of 13 cards that requires 42 repeats to return the cards to their
original order.

Solution: » Here is one (of many possible ones). Observe that7 + 6 =13 and 7 x 6 = 42. We
take the permutation
(1234567)(8210111213)

which has order 42. This corresponds to the following shuffle: For
ie{1,2,3,4,5,6,8,9,10,11,12},

take the ith card to the (i + 1)th place, take the 7th card to the first position and the 13th card

to the 8th position. Query: Of all possible shuffles of 13 cards, which one takes the longest to

restitute the cards to their original position? <

262 Example Let a shuffle of a deck of 10 cards be made as follows: The top card is put at the bottom,
the deck is cut in half, the bottom half is placed on top of the top half, and then the resulting bottom
card is put on top. How many times must this shuffle be repeated to get the cards in the initial order?
Explain.

Solution: » Putting the top card at the bottom corresponds to

123 45 67 8 9 10

23 45 67 8 9 10 1

Cutting this new arrangement in half and putting the lower half on top corresponds to

123 4 5 6 7 8 9 10

78 9 101 2 3 45 6

Putting the bottom card of this new arrangement on top corresponds to

123 4 5 6 7 8 9 10
=(16)(27)(38)(492)(510).

6 78 9 101 2 3 4 5

The order of this permutation is lem(2,2,2,2,2) = 2, so in 2 shuffles the cards are restored to
their original position. <

The above examples illustrate the general case, given in the following theorem.

263 Theorem Every permutation in S, can be written as a product of disjoint cycles.
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Proof: Lett € S,,a; €{1,2,...,n}. Putt®(a;) = ax,1,k > 0. Letay, az, ..., as be the longest
chain with no repeats. Then we have t(as) = a;. If the {a,az,...,as} exhaust {1,2,...,n}
then we have t = (a; az ... as). If not, there existby € {1,2,...,n}\ {aq,az,...,as}. Again,
we find the longest chain of distinct by, b,,..., bt such that t(by) = b1,k =1,...,t—1
and T(by) = by. If the {a1,az,...,as,b1,b2,...,b} exhaust all the {1,2,...,n} we have t =
(aj az ... as)(by bz ... by). If not we continue the process and find

T = (a1 az ... as)(b1 bz bt)(C1 )

This process stops because we have only n elements. [

264 Definition A transposition is a cycle of length 2.*

265 Example The cycle (23468) can be written as a product of transpositions as follows
(23468) = (28)(26)(24)(23).
Notice that this decomposition as the product of transpositions is not unique. Another decomposition is

(23468) = (23)(34)(46)(68).
266 Lemma Every permutation is the product of transpositions.

Proof: It is enough to observe that
(a1 az ... as) = (a7 as)(ar as—1)--- (a7 az)
and appeal to Theorem 263. [
Let o € S, and let (i,j) € {1,2,...,n}?, i#j. Since o is a permutation, 3(a,b) € {1,2,...,n}?, a#b,
such that o(j) — o(i) = b — a. This means that

[ cw=e)|_,

1<ij<n =)

267 Definition Let o € S,,. We define the sign sgn(o) of o as
o(i) — o(j) o
sgn(o) - J] T -1y
1<ij<n —)

If sgn(o) = 1, then we say that o is an even permutation, and if sgn(o) = —1 we say that o is an odd
permutation.

|:| Notice that in fact
sgn(o) - (—1)"),

whereI(o) = #{(i,j) |11 <i<j <nand o(i) > o(j)}, i.e., I(o) is the number of inversions that o
effects to the identity permutation Id .

268 Example The transposition (1 2) has one inversion.

269 Lemma For any transposition (k 1) we have sgn((k 1)) = —1.

1A cycle of length 2 should more appropriately be called a bicycle.
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Proof: Let T be transposition that exchanges k and 1, and assume that k < 1:

1 2 ... k—1 k k+1 ... 1—-1T 1 1+1 ... n
12 ... k—1 1 k+1 ... 1—-1T kK 1+1 ... n

Let us count the number of inversions of t:

e The pairs (i,j) withi € {1,2,..., k—1}U{l,1+1,...,n} and i< j do not suffer an inversion;

e The pair (k,j) with k < j suffers an inversion if and only ifj € {k + 1,k + 2,...,1}, making
1 — k inversions;

e Ifie{k+1,k+2,...,1—1}andi<j, (i,j) suffers an inversion if and only if j = 1, giving
1l — 1 — k inversions.

This gives a total of I(t) = (1— k) + (1—1—k) =2(1 — k — 1) 4+ 1 inversions when k < 1. Since
this number is odd, we have sgn(t) = (—1)17) = —1. In general we see that the transposition
(k1) has 2|k — 1| — 1 inversions. 0

270 Theorem Let (o, T) € S2. Then
sgn (7o) = sgn(t)sgn(o).

Proof: We have
(ot)(i)—(oT)(j)
sgn(ot) = H1§i<j§n = 11—;'(” ’
(r(i))—o(*()) (i)—7()
(H1§i<j§n = Trzi)—:(;)] ) : (H151<J'Sn . 11—; : ) :

The second factor on this last equality is clearly sgn(t), we must shew that the first factor is
sgn(o). Observe now that for1 < a<b < n we have

o(a) — o(b) B o(b) —o(a)

a—Db b—a

Since o and T are permutations, 3b # a, (i) = a,*(j) = b and so o7(i) = o(a), ot(j) =b. Thus

o(t(i)) —o(x(j)) o(a) —o(b)
— T

(i () a—b
and so (t(1)) (t(3)) @ o)
o(t(l)) —olT() _ w ) |
1<igen TR —70) 1§g§n a—1b sgn (o)
0

271 Corollary The identity permutation is even. If T € S, then sgn(t) =sgn(t').
Proof: Since there are no inversions inId , we have sgn(Id ) = (—1)° = 1. Sincett' = 1d ,
we must have 1 = sgn(Id ) = sgn(tt—') = sgn(7)sgn(t') = (—1)*(=1)* ' by Theorem 270.

Since the values on the righthand of this last equality are -1, we must have sgn(t) = sgn(t—').
O

272 Lemma We have sgn(12 ... 1)) = (—1)'"1,

Proof: Simply observe that the number of inversions of (12 ... 1)isl—1.0
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273 Lemma Let (7, (i7 ... i1) € S2. Then

T(iy ... i[)’t_1 =(t(i1) ... T()),

and if o € S, is a cycle of length 1 then
sgn(o) = (—1)""

Proof: For1 < k < 1l we have (t(i1 ... i)t N(t(ix)) = ©((i1 ... i)(ix)) = T(ixe1).
Ona (t(iy ... it N (t()) = (i1 ... W) = T(i1). Fori & {t(i1) ... ©(i1)} we have
1) € {i ... W whence (iy ... i) (r7 (1)) =1 '(Q) ete.

Furthermore, write o = (i1 ... 11). Lett € S, be such that t(k) = ix for1 < k < 1. Then
o=112... )" and so we must have sgn(c) = sgn(t)sgn((1 2 ... 1))sgn(t "), which
equals sgn((12 ... 1)) by virtue of Theorem 270 and Corollary 271. The result now follows by
appealing to Lemma 272 [0

274 Corollary Let 0 = 0702 --- 0 be a product of disjoint cycles, each of length 14,...,1,, respectively.
Then

sgn(o) = (—1)Zi T,
Hence, the product of two even permutations is even, the product of two odd permutations is even, and
the product of an even permutation and an odd permutation is odd.

Proof: This follows at once from Theorem 270 and Lemma 273. [

275 Example The cycle (4678) is an odd cycle; the cycle (1) is an even cycle; the cycle (12345) is an even
cycle.

276 Corollary Every permutation can be decomposed as a product of transpositions. This decomposition
is not necessarily unique, but its parity is unique.

Proof: This follows from Theorem 263, Lemma 266, and Corollary 274. O

277 Example (The 15 puzzle) Consider a grid with 16 squares, as shewn in (6.1), where 15 squares are
numbered 1 through 15 and the 16th slot is empty.

11234
51678
(6.1)
2 (10|11 ]12
13|14 | 15

In this grid we may successively exchange the empty slot with any of its neighbours, as for example

112|314
516|738

' (6.2)
21101112

1314 15
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We ask whether through a series of valid moves we may arrive at the following position.
11234
51678
(6.3)
2110|1112
13|15 |14

Solution: » Let us shew that this is impossible. Each time we move a square to the empty
position, we make transpositions on the set{1,2,...,16}. Thus at each move, the permutation
is multiplied by a transposition and hence it changes sign. Observe that the permutation cor-
responding to the square in (6.3) is (14 15) (the positions 14th and 15th are transposed) and
hence it is an odd permutation. But we claim that the empty slot can only return to its original

position after an even permutation. To see this paint the grid as a checkerboard:

B|R|B|R
R|B|R|B
B|R|B|R
R|B|R|B

(6.4)

We see that after each move, the empty square changes from black to red, and thus after an
odd number of moves the empty slot is on a red square. Thus the empty slot cannot return to its

original position in an odd number of moves. This completes the proof. <

|Homework |

Problem 6.2.1 Decompose the permutation

1 23 45 6 7 8 9

2 3 41

as a product of disjoint cycles and find its order.

6.3 Determinants

5 8 6 7 9

There are many ways of developing the theory of determinants. We will choose a way that will allow
us to deduce the properties of determinants with ease, but has the drawback of being computationally
cumbersome. In the next section we will shew that our way of defining determinants is equivalent to a

more computationally friendly one.

It may be pertinent here to quickly review some properties of permutations. Recall thatif o € S, is a

cycle of length 1, then its signum sgn(c) = 41 depending on the parity of 1 — 1. For example, in S7,

c=(13476)

has length 5, and the parity of 5 — 1 = 4 is even, and so we write sgn(o) = 4+1. On the other hand,

t=(134765)
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has length 6, and the parity of 6 — 1 =5 is odd, and so we write sgn(t) = —1.
Recall also that if (o, 7) € S2, then
sgn(to) = sgn(t)sgn(o).
Thus from the above two examples
ot=(13476)(1347605)
has signum sgn(o)sgn(t) = (+1)(—1) = —1. Observe in particular that for the identity permutation

Id € S, we have sgn(Id ) = +1.

278 Definition Let A € M;xn(F),A = [ai;] be a square matrix. The determinant of A is defined and
denoted by the sum

det A = Z sgn(o)ammaz(y(z)---am(n).
cES,

|:| The determinantal sum has n! summands.

279 Example If n = 1, then S; has only one member, Id , where Id (1) = 1. Since Id is an even
permutation, sgn(Id ) = (4+1) Thus if A = (ay1), then

detA = a1,

280 Example If n = 2, then S; has 2! = 2 members, Id and o = (1 2). Observe that sgn(c) = —1. Thus if

aij; a2

azy az2

then
det A =sgn(Id )aia (1)0214 (2) +880(0)A16(1)A20(2) = Q171022 — Q12027

281 Example From the above formula for 2 x 2 matrices it follows that

1 2
detA = det
3 4
= (1) —-(3)(2) =-2,
-1 2
detB = det (—1)(4) —(3)(2)
3 4
= —10,
and
0 4
det(A + B) = det =(0)(8) —(6)(4) = —24.
6 8

Observe in particular that det(A + B) #det A + det B.
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282 Example If n = 3, then S, has 3! = 6 members:

Id,ty=(23),12=(13),13=(12),01=(123),02=(132).

. Observe that Id , 07, 02 are even, and t7, T2, T3 are odd. Thus if

a1 a12 Qi3
a1 Qa2 azs

asz; aszz2 ass

then

detA sgn(Id )ajmq (1)021d (2)031d (3) + SEN(T1) A1, (1)A21, (2) A3, (3)
+s8n(T2)A1+,(1)021,(2)A37,(3) + SEN(T3) A1, (1) Q21 (2)A375(3)
+sgn(01)15,(1)020,(2)A30,(3) + SEN(02)A15,(1)020,(2) 30, (3)

= 110422033 — Q17023032 — Q13022037

—a13021033 + a12023031 + A13021032.

283 Theorem (Row-Alternancy of Determinants) Let A € M, xn(F), A = [aij]. If B € My «n(F), B = [by;] is
the matrix obtained by interchanging the s-th row of A with its t-th row, then det B = —det A.

Proof: Let T be the transposition

Then ot(a) = o(a) fora € {1,2,...,n}\ {s, t}. Also, sgn(ot) = sgn(o)sgn(t) = —sgn(c). As o
ranges through all permutations of Sy, so does o=, hence

detB = } 5 sgn(o)big(1)b26(2)* bsa(s)*** bio(t) *** bro(n)
= ) ses, SEN(0)A15(1)A20(2) *** st "+ Qs * * * Ang(n)
= — 2 ses, S8N(0T)A161(1)A207(2) ** * Asor(s) *** Qtor(t) * * * Onor(n)
= _ersn sgn(A)aia(1)0a2x(2) * * * Ana(n)
= —detA.
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284 Corollary If A(;.x),1 < k < n denote the rows of A and o € S,, then

A(ro(1))

Alrio(2))
det = (sgn(o)) det A.

| Afrio(n) |

An analogous result holds for columns.

Proof: Apply the result of Theorem 283 multiple times. [

285 Theorem Let A € M, xn(F), A =[ay;]. Then
det AT = detA.

Proof: Let C = AT. By definition

detAT

det C

ZUESn sgn(0)C15(1)C2¢(2) *** Cno(n)

> ses, S8n(0)ag(1)106(2)2* ** Ao(n)n-

But the product aq(1)10g(2)2 *** Qe(n)n also appears in det A with the same signum sgn(o),
since the permutation

(1) o(2) o(n)
1 2 n
is the inverse of the permutation
1 2 n
o(1) o(2) o(n)

O

286 Corollary (Column-Alternancy of Determinants) Let A € My (F), A = [ayj]. If C € Mpyn(F), C = [cy]
is the matrix obtained by interchanging the s-th column of A with its t-th column, then det C = —det A.

Proof: This follows upon combining Theorem 283 and Theorem 285. [

287 Theorem (Row Homogeneity of Determinants) Let A € M,,xn(F),A =[ajjland @ € F. If B € My (F),B =
[bi;] is the matrix obtained by multiplying the s-th row of A by «, then

detB = adet A.

Proof: Simply observe that

$gN(0)A14(1)A20(2) *** Xlsg(s) * ** Ang(n) = ASGN(0)A14(1)A20(2) * * * Aso(s) * * * Ano(n)-
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288 Corollary (Column Homogeneity of Determinants) If C € M,y (F), C = (Cyj) is the matrix obtained
by multiplying the s-th column of A by «, then

det C = xdet A.

Proof: This follows upon using Theorem 285 and Theorem 287. [

|:| It follows from Theorem 287 and Corollary 288 that if a row (or column) of a matrix consists
of Ors only, then the determinant of this matrix is Op.

289 Example

290 Corollary

det(xA) = a" det A.
Proof: Since there are n columns, we are able to pull out one factor of « from each one. [

291 Example Recall that a matrix A is skew-symmetric if A = —AT. Let A € Mj001(R) be skew-
symmetric. Prove that det A = 0.

Solution: » We have
det A = det(—AT) = (—1)2°°7 det AT = —det A,

and so 2det A = 0, from where det A = 0. «

292 Lemma (Row-Linearity and Column-Linearity of Determinants) Let A € M;xn(F),A = [ay;]. For a
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fixed row s, suppose that as; = bsj + ¢s; for each j € [1;n]. Then

ag a2 A1n
azq az2 azn
Ais—1)1 As—1)2 A(s—1)n
det ( ) ( )
bgy + cg9 bgy + cg2 bsn + csn
A(s+1)1 A(s+1)2 A(s+1)n
L an1 an2 ann .
ag a2 A1n
azq az2 ao2n
=det Ais—1)1 Ais—1)2 As—1)n
bgq bg2 bsn
As+1)1  9(s+1)2 0 O(s+1)n
L an an2 ann -
ar a2 Ain
azq az2 az2n
a a L a
(s—1)1 (s—1)2 s—1)n
+ det (s=1) .
Cs1 Cs2 Csn
A(s+1)1 Y(s+1)2 0 A(s+1)n
L an an2 ann .
An analogous result holds for columns.
Proof: Put
arq a2 a1n
azq azz azn
S_ A(s—1)1 A(s—1)2 Q(s—1)n
- b
bgy + cgq bga + cg2 bsn + ¢csn
A(s+1)1 As+1)2 A(s+1)n
L An1 An2 ann m
ar a2 An
azq az2 az2n
T_ Cis—1)1 Qis—1)2 Ais—1)n
bgy b2 bsn
A(s+1)1  9(s+1)2 " Ys4+1)n
L %n1 An2 ann i
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and
alq a2 QA1n
azq az2 ao2n
u= Ais—1)1 Qis—1)2 A(s—1)n
€s1 Cs2 Csn
A(s+1)1 A(s+1)2 7 A(s+1)n
L %ni1 An2 ann J
Then
detS = 3 g s80(0)a15(1)020(2)  * A(s—1)o(s—1)(Dsa(s)
+csa(s))a(s+1]a(s+1) cccUnpo(n)
= 3 ses, S8n(0)15(1)826(2) *** O(s—1)o(s—1)Pso(s) A(s+1)o(s+1) * * * Cno(n)
+2 ses, S8n(0)A15(1)026(2) *** A(s—1)o(s—1)Cso(s) M(s+T)o(s+1) " * " Cno(n)

= detT + detU.

By applying the above argument to AT, we obtain the result for columns.
O

293 Lemma If two rows or two columns of A € M, xn(F), A = [ay;] are identical, then det A = Op.

Proof: Suppose as; = aij fors # t and for allj € [1;n]. In particular;, this means that for any
0 € S, we have asq (1) = Aig(t) ANd Qg (s) = Uso(s)- Let T be the transposition

Then ot(a) = o(a) fora € {1,2,...,n}\ {s,t}. Also, sgn(ot) = sgn(o)sgn(t) = —sgn(o). As
o runs through all even permutations, ot runs through all odd permutations, and viceversa.
Therefore

detA = } .5 SgN(0)A14(1)0206(2) """ Oso(s) *** Oto(t) *** Ano(n)

Y cesn  (S8N(0)A16(1)020(2) *** Uso(s) * ** Qto(t) * * * Ono(n)
sgn(o)=1

+88n(07T) U1 5r(1)0207(2) * ** Usor(s) * ** Qtor(t) ** * Onor(n))

Z cesn SgN(0) (010(1)020(2) e Qsg(s) """ Qto(t) *** Ano(n)
sgn(o)=1

—Q15(1)A26(2) *** Aso(t) " Qto(s) *** ano‘(n))

> oces, sgn(o) (a1u(1)aza(z) cerQso(s) ** " Qio(t) ** * Ano(n)
sgn(o)=1

—Q15(1)A26(2) *** QAto(t) *** Aso(s) *°* ano‘(n))

O.

Arguing on AT will yield the analogous result for the columns. [
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294 Corollary If two rows or two columns of A € M xn(F), A = [ay;] are proportional, then det A = Op.

Proof: Suppose asj = aayj fors #t and for allj € [1;n]. If B is the matrix obtained by pulling
out the factor « from the s-th row then det A = adet B. But now the s-th and the t-th rows in B
are identical, and so det B = Oy. Arguing on AT will yield the analogous result for the columns.

O

295 Example

since on the last determinant the first two columns are identical.

296 Theorem (Multilinearity of Determinants) Let A € M, xn(F),A =[ajjland « € F. If X € Mpyn(F), X =
(xij) is the matrix obtained by the row transvection Rs + aRy — R then detX = detA. Similarly,
if Y € Maxn(F),Y = (yyj) is the matrix obtained by the column transvection Cs + «C; — Cs then
detY =detA.

Proof: For the row transvection it suffices to take bsj = asj, ¢sj = aay; forj € [1;n] in Lemma
292. With the same notation as in the lemma, T = A, and so,

det X =detT + detU =det A + det U.

But U has its s-th and t-th rows proportional (s + t), and so by Corollary 294 detU = Op.
Hence det X = det A. To obtain the result for column transvections it suffices now to also apply
Theorem 285. [

297 Example Demonstrate, without actually calculating the determinant that

det |4 ¢ 8

is divisible by 13.
Solution: » Observe that 299,468 and 741 are all divisible by 13. Thus

2.9 9 2 9 299 2 9 23

C3+10C2+100C1—=C3

det |4 ¢ det |4 ¢ 468 =13det |4 ¢ 36|,

7 41 7 4 74 7 4 57
which shews that the determinant is divisible by 13. «

298 Theorem The determinant of a triangular matrix (upper or lower) is the product of its diagonal
elements.
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Proof: Let A € Muxn(F),A = [ai;] be a triangular matrix. Observe that if o # Id then

Qig(i)Ao(i)o2(i) = Or occurs in the product

A16(1)026(2) " * Ano(n)-
Thus
detA = } 5 sgn(0)ai4(1)020(2) " Gno(n)
= sgn(Id )ajiq (1)Q21d (2) *** Qnid (n) = Q11022+ * Ann.
0

299 Example The determinant of the n X n identity matrix I, over a field F is

detln=1][<‘.
300 Example Find

1 2 3

det |4 5 6

7 8 9

Solution: » We have
1 2 3 1 0 0
C,—2C1-Cy

det |4 5 ¢ T det|y _3 _g
7 8 9 7 —6 —12

= (=3)(—6)det |4 1 1

= 0,

since in this last matrix the second and third columns are identical and so Lemma 293 applies.

<

301 Theorem Let (A,B) € (M,,xn(F))?%. Then

det(AB) = (det A)(det B).

Proof: PutD = AB,D = (dij),dij = ZE=1 aikbkj- UA(C:k))D(C:k))1 S k S n denote the

columns of A and D, respectively, observe that

n
D(cx) = ZblkA(c:I)» 1<k<n
-1
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Applying Corollary 288 and Lemma 292 multiple times, we obtain

detD

det(Dc:1), D(c:2), - -+, D(einy)

PIIRD SHEFEEED SHARE TN IFEEE] SV
'det(A(c:jy)»A(c:jz)s L] sA(C:jn))-

By Lemma 293, if any two of the A (;,) are identical, the determinant on the right vanishes. So
each one of the j, is different in the non-vanishing terms and so the map

{1,2,...,n} — {1,2,...,n}
1 — j1
is a permutation. Here j, = o(1l). Therefore, for the non-vanishing

det(A(c;j,), Acija)r - Aleijn))

we have in view of Corollary 284,

det(A (c;j, ), Afcija)r - Acijn)) = (sgn(o))det(Aic1), Ac:2)y--+rA(cin))

(sgn(o))det A.

We deduce that

detD

det(AB)
= Y 1 b1ybay, by, det(Arc, ), Arcy)y - o Aejn))

= (detA)} s (sgn(o))big(1)b2g(2) - brom)

(det A)(det B),
as we wanted to shew. O

By applying the preceding theorem multiple times we obtain

302 Corollary If A € M, «,(F) and if k is a positive integer then
det A* = (det A)k.

303 Corollary If A € GL,, (F) and if k is a positive integer then det A </ O and
det A ¥ = (detA)" k.

Proof: We have AA~! =I,, and so by Theorem 301 (detA)(det A~') = 1y, from where the
result follows. [

|Homework |

Problem 6.3.1 Let
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Without expanding either determinant, prove that

Q=det g2 p2 2

Problem 6.3.2 Demonstrate that

a—b—c 2a 2a
Q =det 2b b—c—a 2b =(a+b+c)’.
2c 2c c—a—>b

Problem 6.3.3 After the indicated column operations on a 3 X3 matrix A with det A = —540, matrices A1,A3,...

are successively obtained:

C1+3C,—Cy Cy&C3 3C,—C1—C, C;—3C,—C, 2C1—Cy
A = Al 5T A, = Aj sy Ay ST A

Determine the numerical values of det A;,det A,,det A3, det A; and det As.

Problem 6.3.4 Prove, without actually expanding the determinant, that

123 7 0
6 1 5 14 1

det (s 6 1 21 3

is divisible by 1722.

)AS

Problem 6.3.5 Let A, B, C be 3 x 3 matrices with detA = 3,detB> = —8 detC = 2. Compute (i) det ABC, (ii)

det 5AC, (iii) det A’B—3C~'. Express your answers as fractions.

Problem 6.3.6 Shew that VA € Muxn(R),
3(X,Y) € (Maxn(R))?, (det X)(detY) #0

such that
A=X+Y

That is, any square matrix over R can be written as a sum of two matrices whose determinant is not zero.

Problem 6.3.7 Prove or disprove! The set X = {A € Mnxn(F) : det A = Or} is a vector subspace of My xn (F).

6.4 Laplace Expansion

We now develop a more computationally convenient approach to determinants.

Put
Cij= > (sgn(0))a14(1)020(2) *** Uno(n)-

OCESH
o(i)=j
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Then

detA = } s (sgn(o))ais(1)026(2) " Ano(n)

= Z?ﬂ aij > oe_sn_(Sgn(ﬁ))aw(nazum
o(i)-j (6.5)

Ao (i—-1)A(i+1)e(i+1) *** Ano(n)
= X a5Cy,
is the expansion of det A along the j-th column. Similarly,
detA = degn(Sgn(U))awmazc(z) ***Qno(n)
= Ya ) cr(e.?n.(Sgn(o-))a1u(1)a2(r(2)
o(i)=j

*Qi—1)o(i-1) A+ o(i+1) ** * Ano(n)
= Y. ayCy,
is the expansion of det A along the i-th row.

304 Definition Let A € M, xn(F), A = [ay;]. The ij-th minor Aj; € M,,_1(R) is the (n —1) X (n — 1) matrix
obtained by deleting the i-th row and the j-th column from A.

305 Example If

1 2 3
A=14 5 6
7 8 9
then, for example,
5 6 4 6 2 3 1 3 1 2
A = , Alz2= , Az21= , A= , As3z=
8 9 7 9 8 9 7 9 4 5

306 Theorem Let A € M;,x,(F). Then

n n
detA =) ai(—1)"TdetAy =) ay(—1)" detAy;.
j=1

i=1

Proof: It is enough to shew, in view of 6.5 that

(—1)i+j detAi,- = Cij.

Now,
Can = 2 cesa $gn(0)A145(1)A20(2) *** A(n—1)o(n—1)
o(n)=n
= 2 ces,. ,880(T)A1(1)02¢(2) - Q(n—1)7(n—1)

det A,
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since the second sum shewn is the determinant of the submatrix obtained by deleting the last
row and last column from A.

To find Cy; for general ij we perform some row and column interchanges to A in order to bring a;;
to the nn-th position. We thus bring the i-th row to the n-th row by a series of transpositions, first
swapping the i-th and the (i+ 1)-th row, then swapping the new (i+ 1)-th row and the (i+2)-th
row, and so forth until the original i-th row makes it to the n-th row. We have made thereby
n — i interchanges. To this new matrix we perform analogous interchanges to the j-th column,
thereby making n — j interchanges. We have made a total of 2n — i — j interchanges. Observe
that (—1)?"J = (=1)"J. Call the analogous quantities in the resulting matrix A’,C! A/ .
Then
Cij = Crlln = det Arlln = (—1 )i+j det Aij;

by virtue of Corollary 284.
0

|:| It is irrelevant which row or column we choose to expand a determinant of a square matrix.
We always obtain the same result. The sign pattern is given by

+ - + —
- + - +
+ - + —
307 Example Find
1 2 3
det |4 5 ¢
7 8 9
by expanding along the first row.
Solution: » We have
5 6 4 6 4 5
detA = 1(—1)"""det +2(—1)"" det +3(—1)""3 det
8 9 7 9 7 8

1(45 —48) —2(36 —42) +3(32—35) =0.

<

308 Example Evaluate the Vandermonde determinant

det | ¢ b ¢




132 Chapter 6

Solution: »

1 1T 1 1 0 0
det | ¢ b | = det|q b—a c—a
2 b2 2 2 b2—a? 2—a2

= det

1 1
= (b—a)(c—a)det
b+a c+a
= (b—a)(c—a)(c—0»b).
<
309 Example Evaluate the determinant
1 2 3 4 ... 2000
2 1 2 3 -ee 1999
3 2 1 2 ... 1998
det A = det
4 3 2 1 ... 1997
2000 1999 1998 1997 ... 1

Solution: » Applying R, — Ry 11 — Ry, for1 < n < 1999, the determinant becomes

— -1 1 1 1 11 _
-1 -1 1 1 11
-1 -1 =1 1 11
det | 1 1 1 1 ... 1 1
-1 -1 -1 =1 ... =11
2000 1999 1998 1997 ... 2 1
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Applying now Cy, + C2000 — Cn for1 < n < 1999, we obtain

_ 0 2 2 2 ... 2 1 _
0 0 2 2 ... 2 1
0 0 0 2 2 1
det | o 0 0 0 cee 2 1
0 0 0 o --- 0 1
_2001 2000 1999 1998 ... 3 1 ]

This last determinant we expand along the first column. We have

2 2 2 ... 2 1
o 2 2 ... 2 1
o 0 2 ... 2 1
2001 det =2001(2778).
0O 0 0 2 1
O 0 © 0o 1

<

310 Definition Let A € M, (F). The classical adjoint or adjugate of A is the n X n matrix adj (A) whose
entries are given by o

[adj (A)];; = (=1)"") det Aj;,
where Aj; is the ji-th minor of A.

311 Theorem Let A € M,,«,(F). Then
(adj (A))A = A(adj (A)) = (det A)I,,.

Proof: We have

[A(adj (A)]; = Y ¢ 7 andadj (A)l;

= ZLQ ai(—1)"* det Ajk.

Now, this last sum is det A if i = j by virtue of Theorem 306. Ifi +#j it is 0, since then the j-th
row is identical to the i-th row and this determinant is Or by virtue of Lemima 293. Thus on the
diagonal entries we get det A and the off-diagonal entries are Oy. This proves the theorem. [

The next corollary follows immediately.

312 Corollary Let A € M, xn (F). Then A is invertible if and only det A =/ O and
L, _adj(A)
detA ’
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|Homework |

Problem 6.4.1 Find

by expanding along the second column.

Problem 6.4.2 Prove that det |

a b c

b ¢ a

Problem 6.4.3 Compute the determinant

Problem 6.4.4 Prove that

Problem 6.4.5 If

and xabc 0, prove that

Problem 6.4.6 Consider the matrix

1 0o -1 1
2 0 0 1
det
666 —3 —1 1000000
1 0 0 1
x4+ a b c
det | ¢ x+b c | =¥x+a+b+ec).
a b x+c
1 1 1 1
x a 0 0
det =0,
x 0 b O
x 0 0 ¢
o111
x a b ¢
a —b —c —d
b a d —c
A =

a bl =0a®+b*+ c® —3abc. This type of matrix is called a circulant matrix.
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0 Compute ATA.

O Use the above to prove that
detA = (a” +b* + ¢* + d?)°.

Problem 6.4.7 Prove that

0 a b O
a 0 b 0
det =2ab(a —b).
0 a 0 b
1T 1 1 1
Problem 6.4.8 Demonstrate that _ )
a 0 b 0
0 a 0 Db
det = (ad —be)?.
c 0 d 0
0 ¢c 0 d
Problem 6.4.9 Use induction to shew that
1 1 1 e 101
1 0 0 0 0
0 1 o ... 0 0
det = (=™,
0 0 1 0 0
0O 0 O 1 0
Problem 6.4.10 Let ) .
T nn n n
n 2 n n n
nn 3 n n
A = b
nnn 4 n
n nn n n n

that is, A € Muxn(R), A =[ay] is a matrix such that axx = k and ai; = n when i +/j. Find det A.

Problem 6.4.11 Let n € N,n > 1 be an odd integer. Recall that the binomial coefficients (}) satisfy () = (3) =1

Kk 0
and that for 1 < k < n,

ny (n-—1 i n—1

k)] \k—1 k )
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Prove that

det () 1 T (M) (W =1+ (=M™

()
Problem 6.4.12 Let A € GL,,(F), n> 1. Prove that det(adj (A)) = (det A)"~.

Problem 6.4.13 Let (A,B,S) € (GL.(F))>. Prove that
O adj(adj (A)) = (det A)"2A.
O adj (AB) = adj (A) adj (B).
O adj (SAS™') = S(adj (A))S™".

Problem 6.4.14 If A € GL.(F), , and let k be a positive integer. Prove that det(adj---adj(A)) = det A.
—_——

k

Problem 6.4.15 Find the determinant

(b +c)? ab ac

det ab (a+c)? be

ac be (a+1b)?
by hand, malking explicit all your calculations.
Problem 6.4.16 The matrix ) )
a b c d
d a b c
c d a b
b c d a

is known as a circulant matrix. Prove that its determinant is (a +b+c+d)(a—b+c—d)((a —c)* +

6.5 Determinants and Linear Systems
313 Theorem Let A € M, (F). The following are all equivalent
O det A +Op.
O A is invertible.
O There exists a unique solution X € M, x1(F) to the equation AX =Y.

D IfAX = 0n><1 thel’lX = 0n><1.

(b—d)?).
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Proof: We prove the implications in sequence:

0 = 0: follows from Corollary 312

0 = [:IfA is invertible and AX = Y then X = A~'Y is the unique solution of this equation.

0 = 0: follows by putting Y = Onx1

[0 = [: Let R be the row echelon form of A. Since RX = 0,,x1 has only X = 0,x1 as a solution,
every entry on the diagonal of R must be non-zero, R must be triangular, and hence det R + Op.

Since A = PR where P is an invertible n X n matrix, we deduce that det A = det P det R =/ Oy.
O

The contrapositive form of the implications [J and [] will be used later. Here it is for future reference.

314 Corollary Let A € M, x, (F). If there is X # 0,1 such that AX = 0,,x7 then det A = Op.

|Homework |

Problem 6.5.1 For which a is the matrix | 1 4 1| singular (non-invertible)?
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Eigenvalues and Eigenvectors

7.1 Similar Matrices
315 Definition We say that A € M, x (F) is similar to B € M« (F) if there exist a matrix P € GL,,(F)

such that
B =PAP .

316 Theorem Similarity is an equivalence relation.

Proof: Let A € Muun(F). Then A = I,AL_', so similarity is reflexive. If B = PAP~! (P €
GL, (F) ) then A = P7'BP so similarity is symmetric. Finally, if B = PAP~! and C = QBQ™!
(P € GL,(F),Q € GL,, (F)) then C = QPAP~'Q~' = QPA(QP)~! and so similarity is transitive.
0

Since similarity is an equivalence relation, it partitions the set of n X n matrices into equivalence classes
by Theorem 29.

317 Definition A matrix is said to be diagonalisable if it is similar to a diagonal matrix.

Suppose that

M 00O 0
0 A2 O 0
A=
0 0 O An
Then if K is a positive integer
Ak 0 o0 0
0 Ak o 0
AK =
0 0 © AK
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In particular, if B is similar to A then

Ak 0 0 0
0 A¥ 0 .- 0
BX = (PAP")(PAP™")... (PAP™') = PAXP~ ' =P P,
K factors : : : :
0 0 0 --- AK

so we have a simpler way of computing B¥. Our task will now be to establish when a particular square
matrix is diagonalisable.

7.2 Eigenvalues and Eigenvectors

Let A € M,,xn(F) be a square diagonalisable matrix. Then there exist P € GL,, (F) and a diagonal matrix
D € M, «+(F) such that P~'AP = D, whence AP = DP. Put

A 000 0
0 A O 0

D= , P=[P1;P2;--- 5Py,
O 0 O An

where the Py are the columns of P. Then
AP =DP — [AP1;AP2; L] ;Apn] = [7\1 P1;7\2P2; oo ;Anpn],

from where it follows that APy = APx. This motivates the following definition.

318 Definition Let V be a finite-dimensional vector space over a field F and let T : V — V be a linear

transformation. A scalar A € F is called an eigenvalue of T if there is a EY + 6) (called an eigenvector)
such that T(V) = AV.

319 Example Shew that if A is an eigenvalue of T : V — V, then A¥ is an eigenvalue of T¥ : V — V, for
k € N\ {0}.

Solution: » Assume that T(V) = AV. Then
T2(V) = TT(V) = T(AV) = AT(V) = AAV) = AZV.
Continuing the iterations we obtain T*(V) = A¥¥, which is what we want. <

320 Theorem Let A € M,, «(F) be the matrix representation of T : V. — V. Then A € F is an eigenvalue
of T if an only if det(AI, — A) = Op.

Proof: A isan eiggnvalue of A & thereis ¥ + ? such that AV = AV & AV — AV = 6)
= A,V —AV =0 < det(Al, — A) = Oy by Corollary 314.00

321 Definition The equation
det(AI, — A) = Op

is called the characteristic equation of A or secular equation of A. The polynomial p(A) = det(AL, — A) is
the characteristic polynomial of A.
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322 Example Let A =

Find

O The characteristic polynomial of A.

O The eigenvalues of A.

O The corresponding eigenvectors.

Solution: » We have

det(AL; — A)

A—1
—1
det
0
0
(A—1)det

A=DA=DA=1)=1)+ (=((A=1)2=1))

A=DA=DA=2)(A) — (A—=2)(A)

A=2)A)((A=1)2=1)

(A —2)2(A)?

O The eigenvalues are clearly A = 0 and A = 2.

O IfA=0, then

0L, —A
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This matrix has row-echelon form

and if

thenc=—danda=—b
Thus the general solution of the system (0I4 — A)X = Onx1 is

a 1 0
b —1 0
=a +c
c 0 1
d 0 —1

IfA =2, then

2I; —A =

This matrix has row-echelon form

_—1 10 0_
0 01 —1
0 00 O ’
_0 0 0 0_

and if
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thenc=danda="»>
Thus the general solution of the system (2I4 — A)X = Onx1 is

a 1 0
b 1 0
=a +c
c 0 1
d 0 1

Thus for A = 0 we have the eigenvectors

- 1 - - , -
—1 0
0 ’ 1
L 0 J __1_
and for A = 2 we have the eigenvectors
_1_ _O_
1 0
0 ’ 1
_O_ _1_

<

323 Theorem If A = Oy is an eigenvalue of A, then A is non-invertible.

Proof: Putp(A) =det(AL, — A). Then p(Or) = det(—A) = (—1)" det A is the constant term of
the characteristic polynomial. If A = O is an eigenvalue then

p(O]F)=O]F — detA=0F,

and hence A is non-invertible by Theorem 313. [

324 Theorem Similar matrices have the same characteristic polynomial.
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Proof: We have

det(AL, — SAS™") =

det(ASI,S~' — SAS™T)

= detS(AI, —A)S™!

= (detS)(det(AL, —A))(detS~ ")

= (det S)(det(AL, — A)) (de1t S)

= det(AL, — A),

from where the result follows.[]

|Homework |

Problem 7.2.1 Find the eigenvalues and eigenvectors of

1T =1
A =

-1 1

Problem 7.2.2 Let A be a 2 X 2 matrix over some some
field F. Prove that the characteristic polynomial of A is

A% — (tr (A))A + det A.

Problem 7.2.3 A matrix A € Mzx2(R) satisfies tr (A) =
—1 and det A = —6. Find the value of det(I> + A).

Problem 7.2.4 A 2 X 2 matrix A with real entries has
characteristic polynomial p(A) = A*> + 2A — 1. Find the
value of det(2I; + A).

7.3 Diagonalisability

o 2 -1
Problem 7.2.5 Let A= | > 3 _—2|.Find
-1 -2 0

O The characteristic polynomial of A.
O The eigenvalues of A.

O The corresponding eigenvectors.

Problem 7.2.6 Describe all matrices A € Mxx2(R) hav-
ing eigenvalues 1 and —1.

Problem 7.2.7 Let A € M, x»(R). Demonstrate that A
has the same characteristic polynomial as its transpose.

In this section we find conditions for diagonalisability.

325 Theorem Let {V1,V>,..
A, A2, ..

Proof:

., ¥} C V be the eigenvectors corresponding to the different eigenvalues
., Ak} (in that order). Then these eigenvectors are linearly independent.

Let T : V — V be the underlying linear transformation. We proceed by induction.

For k = 1 the result is clear. Assume that every set of k — 1 eigenvectors that correspond

to k — 1 distinct eigenvalues is linea%y
have corresponding eigenvectors V1, V2, ...

independent and let the eigenvalues A1, A3, .

ey Ak

,Vx_1. Let A be a eigenvalue different from the

A1,A2,...,Ax—1 and let its corresponding eigenvector beV. If Y were linearly dependent of the
1, V2,... ,qu, we would have
H
XV —|—X171 —|—X272—|—---—|—Xk717k71 = 0. (7.1)
Now NN
T(XV +x1 V1 +X2V2 4+ +X1Vi1) =T(0) = 0,
by Theorem 240. This implies that
H

X?\V —|—X17\171 —|—X27\272 + e+ ka1}\kf17k—1 = 0.

(7.2)
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From 7.2 take away A times 7.1, obtaining
H
X1 (A1 — A V1 +x2(A2V2 + o+ X1 (A1 —A) Vi1 =0 (7.3)

Since A — Ay # Op 7.3 is saying that the eigenvectors 71 ,72, - ,Vk_1 are linearly dependent,
a contradiction. Thus the claim follows for k distinct eigenvalues and the result is proven by
induction. [

326 Theorem A matrix A € M xn (F) is diagonalisable if and only if it possesses n linearly independent
eigenvectors.

Proof: Assume first that A is diagonalisable, so there exists P € GL, (F) and

AMM 0O O - O
O A 0 .-« 0
D=
O 0 o0 An
such that i i
A 0 O 0
0 A O 0
P AP =
O 0 0 .-+ Aq
Then
A0 O 0
0O A2 O --- 0
[AP1;AP2; L ;APn] =AP=P = [7\1 P1;}\2P2; oo ;}\npn];
O 0 0 -+ Aq

where the Py are the columns of P. Since P is invertible, the Py are linearly independent by
virtue of Theorems 204 and 313.

Conversely, suppose now that V1,..., Vo aren linearly independent eigenvectors, with corre-
sponding eigenvalues A1, Az, ..., An. Put

A0 O - O

P=[Vi;...;Vnl, D=
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Since Avi = AiVi we see that AP = PD. Again P is invertible by Theorems 204 and 313 since
the V. are linearly independent. Left multiplying by P~ we deduce P~'AP = D, from where A
is diagonalisable. [

327 Example Shew that the following matrix is diagonalisable:

and find a diagonal matrix D and an invertible matrix P such that
A =PDP .

Solution: » Verify that the characteristic polynomial of A is
A3 —3A%2 —4A+12=A—2)(A+2)(A—23).

The eigenvector for A = —2 is L
1
—1
4
The eigenvector for A = 2 is : :
—1
0
1
The eigenvector for A = 3 is : :
—1
1
1
We may take o
-2 00 1 -1 4
D=10o 2 o/, P=|—-1 0 1
0 0 3 -1 1 1
We also find
b

a=
a=
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|Homework |
Problem 7.3.1 Let A be a 2x 2 matrix with eigenvalues 1 6. Find the eigenvalues of A.

_] 1 7. Find the eigenvectors of A.
and —2 and corresponding eigenvectors and 8. Find A'°.

0 —1
respectively. Determine A'. Problem 7.3.5 Consider the matrix

- 1T a 1

9 —4 A~

Problem 7.3.2 Consider the matrix A = =10 1 b

20 —9

0 0 ¢

1. Find the characteristic polynomial of A.
2. Find the eigenvalues of A.
3. Find the eigenvectors of A.

b
,find a + d.

c d

4. IfA%° =

Problem 7.3.3 Let A € Mj3x3(R) have characteristic
polynomial
A+ 1A =3).
1

One of the eigenvalues has two eigenvectors |g| and
0

1

1|. The other eigenvalue has corresponding eigenvec-

0

1

tor [1|. Determine A.

Problem 7.3.4 Let

0 0 01
001 0
A =
01 0 0
10 00
Find det A.
Find A~'.

Find rank (A —14).
Find det(A —14).
Find the characteristic polynomial of A.

S

O Find the characteristic polynomial of A.
O Explain whether A is diagonalisable when a =

0,c=1.
U Explain whether A is diagonalisable when a +#
O,c=1.

O Explain whether A is diagonalisable when ¢ /1.

Problem 7.3.6 Find a closed formula for A", if

—7

Problem 7.3.7 Let U € M. xx(R) be a square matrix all
whose entries are equal to 1.

1. Demonstrate that U? = nl.

2. Find det U.
3. Prove that det(AL, — U) = A" (A —n).
4. Shew that dimker (U) =n —1.
5. Shew that
n 0 0
0 0 0
u="p P,
0 0 0
where
1 1 0 0 0
1 0 1 0 0
1 0 0
P=
1 0 0 0 1
1 -1 -1 -1 -1
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7.4 Theorem of Cayley and Hamilton

328 Theorem (Cayley-Hamilton) A matrix A € M, (F) satisfies its characteristic polynomial.

Proof: PutB = AL, — A. We can write
detB =det(AI, — A) =A" + b ;A" + boA" 2 + ... 4+ by,

as det(AI, — A) is a polynomial of degree n.

Since adj (B) is a matrix obtained by using (n—1) X (n—1) determinants _from B, we may write
adj (B) =A"" "B, + A" 2B,,_, + -+ + Bo.
Hence
det(AI, — A)I, = (B)(adj (B)) = (AL, — A)(adj (B)),
Jfrom where
Ao 4 biI A 4 b I A 2 4 Iy = (AIy — A) (A" "B + A" 2By_2 + - - + Bo).

By equating coefficients we deduce

In = Bn—1
bl = —ABn_1+Bn 2
bZIn = _ABn—Z + Bn—3

bn_1In —AB1 + Bop

bnl, = —ABo.

Multiply now the k-th row by A™¥ (the first row appearing is really the 0-th row):

A" = A"Bn_;

b;AM T = —A"B, 1 + A" B, >
bA™ 2 = —A™ B, >+ A" ?B, ;
b, 1A = —A’B; +ABg

bnl, = —ABo.

Add all the rows and through telescopic cancellation obtain
A" + 1AM T 4+ oo+ by 1A + byl = Oy,

Jfrom where the theorem follows. O
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329 Example From example 327 the matrix

has characteristic polynomial
A—=3)A—2)(A+2) =A% —3A% —4r+12,

hence the inverse of this matrix can be obtained by observing that
1/3 1/6 —1/6

:
A3—3A2—4A—|—1213=03:>A_1=—E(A2—3A—413)= 1/6 1/3  1/6

—5/6 —1/6 —1/3

|Homework |

Problem 7.4.1 A 3 X 3 matrix A has characteristic polynomial A(A—1)(A+2). What is the characteristic polynomial
of A%?
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Linear Algebra and Geometry

8.1 Points and Bi-points in R?

a
R? is the set of all points A = with real number coordinates on the plane, as in figure 8.1. We use
az
0
the notation O = to denote the origin.
0
Yy a
A =

az
-
|
|
o,

] X

Figure 8.1: Rectangular coordinates in R2.

aq b1
Given A = € R? and B = € R? we define their addition as
az bZ
Qaq b, a; + by
A+B= + = (8.1)
az b> a; + by
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Similarly, we define the scalar multiplication of a point of R? by the scalar & € R as

oA =« = . (8.2)

|:| Throughout this chapter, unless otherwise noted, we will use the convention that a point
A € R? will have its coordinates named after its letter; thus

aq
A =

az

330 Definition Consider the points A € R?, B € R?. By the bi-point starting at A and ending at B, denoted
by [A, B], we mean the directed line segment from A to B. We define

[A,A]=0=

|:| The bi-point [A, B] can be thus interpreted as an arrow starting at A and finishing, with
the arrow tip, at B. We say that A is the tail of the bi-point [A, B] and that B is its head. Some
authors use the terminology “fixed vector” instead of “bi-point.”

331 Definition Let A & B be points on the plane and let L be the line passing through A and B. The
direction of the bi-point [A, B] is the direction of the line L, that is, the angle 6 € ]—%‘; %] that the line L
makes with the horizontal. See figure 8.2.

332 Definition Let A, B lie on line L, and let C,D lie on line L’. If L||L’ then we say that [A, B] has the
same direction as [C,D]. We say that the bi-points [A, B] and [C, D] have the same sense if they have
the same direction and if both their heads lie on the same half-plane made by the line joining their
tails. They have opposite sense if they have the same direction and if both their heads lie on alternative
half-planes made by the line joining their tails. See figures 8.3 and 8.4 .

B B B
D
A A A
5) C C
Figure 8.2: Direction of a Figure 8.3: Bi-points Figure 8.4: Bi-points

bi-point with the same sense. with opposite sense.
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|:| Bi-point [B, A] has the opposite sense of [A, B] and so we write

[B,A]=—[A, Bl

333 Definition Let A & B. The Euclidean length or norm of bi-point [A, B] is simply the distance between
A and B and it is denoted by

A, BII = /(a1 —b1)2 + (a2 — b2)2.

We define
A, A]l| = [|O]| = 0.

A bi-point is said to have unit length if it has norm 1.

|:| A bi-point is completely determined by three things: (i) its norm, (ii) its direction, and (iii) its
sense.

334 Definition (Chasles’ Rule) Two bi-points are said to be contiguous if one has as tail the head of the
other. In such case we define the sum of contiguous bi-points [A, B] and [B, C] by Chasles’ Rule

[A) B] + [B) C] = [A) C]-

See figure 8.5.

335 Definition (Scalar Multiplication of Bi-points) Let A € R \ {0} and A & B. We define
0lA,B]=0

and
AA, Al = O.

We define A[A, B] as follows.
1. A[A, B] has the direction of [A, B].
2. A, B] has the sense of [A, B] if A > 0 and sense opposite [A, B] if A < 0.

3. A[A, B] has norm |A|[|[A, B]|| which is a contraction of [A,B] if 0 < |A| < T or a dilatation of [A, B] if
Al > 1.

See figure 8.6 for some examples.

—2[A, B]
B ‘/[A, B]
A /\ .
]

Figure 8.6: Scalar multiplication of bi-

Figure 8.5: Chasles’ Rule. 2
points.
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8.2 Vectors in R?

336 Definition (Midpoint) Let A, B be points in R2. We define the midpoint of the bi-point [A, B] as

a;+b;,

A+B 2
2 ax+b,

2

337 Definition (Equipollence) Two bi-points [X, Y] and [A, B] are said to be equipollent written [X,Y] ~
[A, B] if the midpoints of the bi-points [X, B] and [Y, A] coincide, that is,

X+B Y+A

X, YI~[A,B]l & > >

See figure 8.7.

Geometrically, equipollence means that the quadrilateral XYBA is a parallelogram. Thus the bi-points
[X, Y] and [A, B] have the same norm, sense, and direction.

Figure 8.7: Equipollent bi-points.

338 Lemma Two bi-points [X, Y] and [A, B] are equipollent if and only if

Y1 —x1 b1 —a
Y2 —x2 b —az
Proof: This is immediate, since
Q1 +Yy1 _gy1 bi+x3
2
X, Y]~ [A,B] & =
ar+y» botxs
5 2
Y1 —x1 b1 —a
— = B}
Y2 —x2 b —az

as desired. O

|:| From Lemma 338, equipollent bi-points have the same norm, the same direction, and the
same sense.

339 Theorem Equipollence is an equivalence relation.
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Y — %1
Proof: Write[X, Y] ~ [A, B] if[X, Y] if equipollent to [A, B]. Now [X, Y] ~ [X, Y] since =
Y2 — X2
Yy — X1
and so the relation is reflexive. Also
Yz — X2

Y1 —x1 b1 —
X, YI~[A,B] =
Y2 —x2 b, —az
b1 —a Y1 —xq
— =
b —a; Y2 —x2

— [A,B]~[X,)Y],

and the relation is symmetric. Finally

Y1 —x1 b1 —ay
(X, Y] ~[A,BJA[A,B]~[W,V] <& =
Y2 — X2 b, —az
b1 —a v — 1w
A =
bz—az V2 — auy
Y1 — X1 Vi — Uy
— =
Y2 — X2 V2 — Uz

— [X, Y] ~ [U, v]s

and the relation is transitive. O

340 Definition (Vectors on the Plane) The equivalence il)ass in which the bi-point [X, Y] falls is called the
vector (or free vector) from X to Y, and is denoted by XY. Thus we write

Y2 —X2

If we desire to talk about a vector without mentioning a bi-point representative, we write, say, V, thus

denoting vectors with boldface lowercase letters. If it is necessary to mention the coordinates of v we
will write

Vi

-

V2
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|:|7 For any point X on the plane, we have )6)( = 8 the zero vector. If[X,Y] € V then Y, X] €

P
341 Definition (Position Vector) For any particular point P = € R? we may form the vector OP -

P2

. We call @ the position vector of P and we use boldface lowercase letters to denote the equality

P2
OB -7
—1 3
342 Example The vector into which the bi-point with tail at A = and head at B = falls is
2 4

represent the same vector

3—(=1) 4 7—3
AB - -] = %
4 —2 2 9 -7
—T1+n 34+ n
In fact, if S = T = then the infinite number of bi-points [S, T] are representatives of
+m 4+m

2
of the vectors /ﬁ = W = ﬁ'

—
Given two vectors U, V we define their sum U + ¥ as follows. Find a bi-point representative AB € U
and a contiguous bi-point representative ]ﬁ € V. Then by Chasles’ Rule

U+ v =AB +BC=AC.

Again, by virtue of Chasles’ Rule we then have

AB-AO+OB--OA+OB-b—1d (8.3)
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Similarly we define scalar multiplication of a vector by scaling one of its bi-point representatives.We
define the norm of a vector vV € R? to be the norm of any of its bi-point representatives.

uq Vi

Componentwise we may see that given vectors U = LV = , and a scalar A € R then their
uz V2
sum and scalar multiplication take the form
uq A% 7\111
U+V-= + . AU =
uz A% 7\u2

u+v
1
2
Figure 8.8: Addition of Vectors. Figure 8.9: Scalar multiplication of vectors.

344 Example Dlagonals are drawn in a rectangle ABCD. If AB = X and AC = Y. then BC - ¥ —X,
CD- %X.DA=X —7.and BD =7 —

345 Definition (Parallel Vectors) Two vectors U and V are said to be parallel if there is a scalar A such
that W = AV. If U is parallel to V we write ﬁll? We denote by RV = {cx7 o € R}, the set of all vectors
parallel to V.

|:| 6} is parallel to every vector.

uq
346 Definition If U = , then we define its norm as |[U|| = \/u +u3. The distance between two
uz

vectors U and V is d(U, V) = |[U — V||

347 Example Let a € R, a > 0 and let V 0. Find a vector with norm a and parallel to V.

7
Solution: » Observe that = has norm1 as

Il
H d H WH

7
Hence the vector a has norm a and it is in the direction of V. One may also take —a .
v IEll

<
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348 Example If M is the midpoint of the bi-point [X, Y] then XM = MY from where XM = %)W Moreover,

if T is any point, by Chasles’ Rule

X+TY = T+ MX+T™M + MY
— 2TM — XM + MY
_ 2TM.

349 Example Let AABC be a triangle on the plane. Prove that the line joining the midpoints of two sides
of the triangle is parallel to the third side and measures half its length.

Solution: » Let the midpoints of [A, B] and [A, C] be M and Mg, respectively. We shew that
BC = 2McMg. We have 2AMc = AB and 2AMg = AC. Thus

B¢ - BA4AC
. _AB4AC

= —2AMc +2AMpg

~ 2MCcA + 2AM3
- 2(McA + AMg)
- 2McMg,

as we wanted to shew. «

350 Example In AABC, let M be the midpoint of side AB. Shew that
— 1
CMC = E (ﬁ + C?) .

Solution: » Since AMc¢ = Mcg, we have

+CB = CMc+ McA + CMc + McB

Sl

= 2CMc¢c —AMc + McB

2CMc,

which yields the desired result. <

351 Theorem (Section Formula) Let APB be a straight line and A and p be real numbers such that

A, Pl A
(P, Bl

With d = O—f\%} = OT3) andﬁ> = @ then
- )\B) + uﬁ

8.4
At 64
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Proof: Using Chasles’ Rule for vectors,
AB-=AOC +OB=-4d+b,
AP-AO +OP=—d + 7.

Also, using Chasles’ Rule for bi-points,
[A, Plu = A([P,B]) = A([P,A] +[A, B]) = A(—[A, P] +[A, B]),
whence

A A A
[A,Pl=—~ [A,B] — AP-—~ AB — p—-d=—(b—d).
At+p A+ A+

On combining these formulae
A+ F—d) =Ab—d) = A+ P =Ab +ud,

Jrom where the result follows. O

o o o
5N 7% :
b
Figure 8.10: [A]. Problem Figure 8.11: [B]. Problem Figure 8.12: [C]. Problem
8.2.6. 8.2.6. 8.2.6.
_)
d d b <
. 3 ?@z a 3
- -
= - €
b b f
Figure 8.13: [D]. Problem Figure 8.14: [E]. Problem Figure 8.15: [F]. Problem
8.2.6. 8.2.6. 8.2.6.
|Homework |
Problem 8.2.1 Let a be a real number. Find the dis- ]
1 1—a where V =
tance between and . 1
a 1

Problem 8.2.3 Given a pentagon ABCDE, find /ﬁ +
— —
BC + CD + DE + EA.

Problem 8.2.2 Find all scalars A for which ||)\7|| =1
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Problem 8.2.4 For which values of a will the vectors
2a+5

a?—4a+3

will be parallel?

Problem 8.2.5 In AABC let the midpoints of [A, B] and
—

[A,C] be Mc and Mg, respectively. Put McB = X,

— —

Mga =ﬂ, and CA = Z. Express [A] /ﬁ + B_C} + McMg,

[B] AMc + McMas + MsC, [C] AC + McA — BMy in
terms of?), ,and Z.

Problem 8.2.6 A circle is divided into three, four equal,
or six equal parts (figures 8.10 through 8.15). Find the
sum of the vectors. Assume that the divisions start or
stop at the centre of the circle, as suggested in the fig-
ures.

Problem 8.2.7 Diagonals are drawn in a square (figures

?? through ?7?). Find the vectorial sum d + _b) + C.
Assume that the diagonals either start, stop, or pass
through the centre of the square, as suggested by the
figures.

Problem 8.2.8 Prove that the mid-points of the sides of
a skew quadrilateral form the vertices of a parallelogram.

8.3 Dot Product in R?

Problem 8.2.9 ABCD is a parallelogram. E is the mid-
point of [B, C] and F is the midpoint of [D, C]. Prove that

AC +BD - 2BC.

Problem 8.2.10 Let A, B be two points on the plane.
Construct two points I and J such that

L_A) = _3IT3>) I—A> = _%]_B))
and then demonstrate that for any arbitrary point M on
the plane
MA + 3MB = 4Ml
and

—

3MA + MB - 4M]J.

Problem 8.2.11 You find an ancient treasure map in
your great-grandfather’s sea-chest. The sketch indicates
that from the gallows you should walk to the oak tree,
turn right 90° and walk a like distance, putting and x at
the point where you stop; then go back to the gallows,
walk to the pine tree, turn left 90°, walk the same dis-
tance, mark point Y. Then you will find the treasure at
the midpoint of the segment XY. So you charter a sailing
vessel and go to the remote south-seas island. On ar-
rival, you readily locate the oak and pine trees, but un-
fortunately, the gallows was struck by lightning, burned
to dust and dispersed to the winds. No trace of it re-
mains. What do you do?

352 Definition Let (3,3}) € (R?)2. The dot productﬁ-f) of d and b is defined by

b,

b2

=ai;by + azbs.

The following properties of the dot product are easy to deduce from the definition.

DP1 Bilinearity

(X +Y)eZ =XeZ +YsZ, Xe(Y+Z)=XeU + XoZ (8.5)
DP2 Scalar Homogeneity
(aX)eY = X+(a¥) = x(X-¥), x €R. (8.6)
DP3 Commutativity
Xy = Yo% (8.7)
DP4
XX > 0 (8.8)
DP5 -
XX =05%X=0 (8.9)
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DP6
x|l = VXX (8.10)

353 Example If we put

0 1
aq
then we can write any vector q= as a sum
az
- —
ﬁ=a1i+azj
The vectors
e L
1= y ) = y
0 1
- = — —
satisfyi-j=0,andHiH=HjH=1_

L —

354 Definition Given vectors d and ? we define the angle between them, denoted by (ﬁ,?

), as the angle
H
between any two contiguous bi-point representatives of dand b.

355 Theorem -
- - -
@b =|[d|ll[bllcos (d, b).

Proof: Using Al-Kashi’s Law of Cosines on the length of the vectors, we have

6 —d|? = I[d|”2 + [bl1> — 2I[all[b]l cos (d, D)

& (0 —d)e(b —d)=[dll? + oI — 2/[a|libll cos (d, b)
58 — 208 +dea = [TI2 + 8112 — 22Tl cos (T, B)

- - — — — -
& |[b|[2 — 2@eb + [|b||? = |[d|I> + |[b]I> — 2/[d|ll|b]| cos (d, b

&8 = QB cos (@, ),

)

as we wanted to shew. O

Putting (ﬁ,?) = Z in Theorem 355 we obtain the following corollary.

356 Corollary Two vectors in R? are perpendicular if and only if their dot product is 0.
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~

b

Figure 8.19: Theorem 355.
357 Definiﬁgn Two vectors are said to be orthogonal if they are perpendicular. If d is orthogonal to ? we
writed L b.

358 Definition If @ L b and [d]| = HE}H — 1 we say that d and b are orthonormal.

|:| It follows that the vectorB> is simultaneously parallel and perpendicular to any vector!
359 Definition Let @ € R? be fixed. Then the orthogonal space to d is defined and denoted by
dt-(X eRrR?: ¥ Ld})
Since |cos 0| < 1 we also have
360 Corollary (Cauchy-Bunyakovsky-Schwarz Inequality)

5] < 4 ]

361 Corollary (Triangle Inequality) . o
[+ %] < 1l + 5]}

Proof:
(@+1b)e(d+Db)

ﬁOﬁ -+ 2?0? -+ 6)06)

_>
I'd + b2

- -
< |[dl)? + 2/[d]lllb]] + (|62

= (@l +1mn?,

from where the desired result follows. [

362 Corollary (Pythagorean Theorem) If d L ? then

rd -+ = |[a))” +|[3]

Proof: Since ﬁ-ﬁ = 0, we have

_>
Id + b2

Il |
al T
G
+
N —
©oa
[+ 1
ol
>l

I
el

al

_|_

o

_|_

ol <
=

a2 + o2,
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Jrom where the desired result follows. O
363 Definition The projection of T onto V (or the 7—component of —t>) is the vector
T = Sl ]
proj— = (cos (t ,7))“ t H I HV,

—

where (7,—t>) € [0; ] is the convex angle between V and —t> read in the positive sense.

|:| Given two vectors t and vector V = 6> find bi-point representatives of them having a
common tail and join them together at their tails. The projection of t onto V is the “shadow” of
T in the direction oﬁ . To obtain proj—é we prolongV if necessary and drop a perpendicular line
to it from the head of T. The projection is the portion between the common tails of the vectors
and the point where this perpendicular meets T. See Jigure 8.20.

s
|

Figure 8.20: Vector Projections.

364 Corollary Let d 0. Then

- 1 ?oﬁ
proj; = eos (%, 0| [¥|| @ = 2 @

365 Theorem Let d € R2 \ {?}. Then any? € R? can be decomposed as
X=uU+7V,

where U (S Rd and v S ﬁJ'.

Proof: We know that proj% is parallel to d, so we take U = proj:’é. This means that we must

then take Vv = X — proj%. We must demonstrate that ¥ is indeed perpendicular to d. But this
is clear, as

307 = BO? — ﬁoprojg
_ N g Xed
- ax-d Irall*
= ﬁo? — 70?
= O)

completing the proof. 0

366 Corollary Let V L W be non-zero vectors in R2. Then any vector d € R? has a unique representation

as a linear combination of 7,17}\) ,
d=sV+tw, (s,t) R
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Proof: By Theorem 365, there exists a decomposition
d=sv+s'V',

where V' is orthogonal toV. But then V'|[W and hence there exists o« € R with V' = ow. Taking
t = s’ we achieve the decomposition

d =SV +tw.

To prove uniqueness, assume
SV +tw="1d=pV + qw.

Then (s p)7 (g — t)W. We must have s = p and q =t since otherwise V would be parallel
to w. This completes the proof. [

367 Corollary Let P, q be non-zero, non- parallel vectors in R2. Then any vector d € R? has a unique
representation as a linear combination of p ,ﬁ ,

—1p+mﬁ (L,m) € R%.

Proof: Consider Z = ﬁ — projg. Clearly ? 1 Z and so by Corollary 366, there exists unique
(s,t) € R? such that

d

sP +tZ

sp — tprojg +1tq
- (s - tf:ﬁ’—) + 4,

establishing the result upon choosing l = s — t%ll’— andm=t. [

368 Example Let P = . q = . Write P as the sum of two vectors, one parallel to ¢ and the other

perpendicular to ﬁ

Solution: » We use Theorem 365. We know that proj%) is parallel to ﬁ and we find

5 Pq 3
projf - T g 3q
I91[° 6
5
We also compute
13 2
. 5 5
7 — proj? = =
1— 68 _1
5 5
Observe that
Sl |5] 6 6
) 25 25

[211<)
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and the desired decomposition is

Figure 8.21: Orthocentre.

369 Example Prove that the altitudes of a triangle AABC on the plane are concurrent. This point is

called the orthocentre of the triangle.

Solution: » Put d = O—A),g> = O?,—c> =
expanding,

oc.

First observe that for any X. we have, upon

(X —d)e(b—C)+ (X —D1)e(€—a) + (X — €)e(d — b) =0. (8.11)
Let H be the point of intersection of the altitude from A and the altitude from B. Then

0= AH.CB = (OH — OA)+(OB — OC) = (OH — @)+(b — ©), (8.12)
and _ N R

0= BH.AC = (OH — OB)«(OC — OA) = (OH — b)+(T — @). (8.13)

Putting X = (71 in (8.11) and subtracting from it (8.12) and (8.13), we gather that
0=(OH —)s(d — b) = CH.AB,

which gives the result. «

|Homework |
a
Problem 8.3.1 Determine the value of a so that
1—a
1
be perpendicular to
—1

Problem 8.3.2 Demonstrate that
- - — -
(6 +2 - A([d] - |[6]) = @-T)@-7) -

4 —1 2
Problem 8.3.3 Let P = | |. 7 = .5 =| |. Write

? as the sum of two vectors, one parallel to 7 and the

other parallel to 5.

Problem 8.3.4 Prove that

[@]]* =

Problem 8.3.5 Let d + 0 + b be vectors in R? such that
ﬁ-b 0. Prove that

aﬁ+ﬁ?=6) = a=p3=0.

3.

are perpendicular.

Problem 8.3.6 Let (X, U) € (R?)? with |[X]| =
Shew that 2X + 3y and 2X — 3y
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Problem 8.3.7 Let ?,B’ be fixed vectors in RZ. Prove

Problem 8.3.10 Let 7,? be non-zero vectors in RZ.
Prove that

that if N
vV ER2,70?=7-]3, .a
. Projyy
proj - od,
o

then d = _b)

Problem 8.3.8 Let (d, b) € (R?)2. Prove that

B B |0

Problem 8.3.11 Let (A, @) € R x R? be fixed. Solve the

Problem 8.3.9 Let U,V be vectors in R2. Prove the po- equation
dexX = A

larisation identity:

TeV-=

(IR + VI = e = VIP) - for X € B2,

:
2
8.4 Lines on the Plane

370 Definition Three points A, B, and C are collinear if they lie on the same line.

It is clear that the points A, B, and C are collinear if and only if A—B) is parallel to /ﬁ Thus we have the
following definition.

371 Definition The parametric equation with parameter t € R of the straight line passing through the

point P = in the direction of the vector vV 8 is
P2
X —P1
= V.
Yy—p2
x
v = , then the equation of the line can be written in the form
Y

7T -, 8.14

The Cartesian equation of a line is an equation of the form ax + by = ¢, where a? + b? & 0. We write
(AB) for the line passing through the points A and B.

372 Theorem Let V 0 and let @ L V. An alternative form for the equation of the line ¥ — P = tV is

(¥ —P)emt = 0.

a

Moreover, the vector is perpendicular to the line with Cartesian equation ax + by = c.

b

Proof: The first part follows at once by observing that Vem = 0 and taking dot products to both
sides of 8.14. For the second part observe that at least one of a and b is & 0. First assume that
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a 0. Thenwecanputy =t and x = —%t + & and the parametric equation of this line is
b
x—a| _ Nl
y 1

and we have

. =——.a+b=0.
1 b
Similarly if b 0 wecan putx =t and y = —%t + % and the parametric equation of this line is
X 1
=1 ,
Uil ~%
and we have
1 a a
. =a——:b=0,
—g b

proving the theorem in this case. [

a

|:| The vector | ¥ ***°* | has norm1 and is orthogonal to the line ax 4+ by = c.
b

VaZivZ
2 —4
373 Example The equation of the line passing through A = and in the direction of ¥ = is
3 5
x—2 —4
=A
y—3 5
—1 -2
374 Example Find the equation of the line passing through A = and B =
1 3
Solution: » The direction of this line is that of
—2—(-1) —1
A% - _
3—-1 2
The equation is thus
x+1 —1
= )\ y )\ G R.
y—1 2
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<

375 Example Suppose that (m,b) € R?. Write the Cartesian equation of the line y = mx+b in parametric
form.

Solution: » Here is a way. Putx =t. Theny = mt + b and so the desired parametric form is

<

376 Example Let (mq, mz,by,bz) € R* mym, +# 0. Consider the lines L; : y = myx +byand L, : y =
myx + b,. By translating this problem in the language of vectors in R?, shew that Ly L L, if and only if
mim; = —1.

Solution: » The parametric equations of the lines are

X 1 p? 1
Lq: =s , Ly: =t
y—by my y—"bz my
= 1 —
PutVv = and w = . Since the lines are perpendicular we must have VW = 0, which
my mp

yields

0=Vew=1(1) + my(mz) = mymz =—1.
<

377 Theorem (Distance Between a Point and aline) Let (¥ — d)s = 0 be a line passing through the
point A and perpendicular to vector T. If B is not a point on the line, then the distance from B to the

line is
‘(ﬁ—ﬁ)-n‘
=

If the line has Cartesian equation ax + by = c, then this distance is

lab; + bby — |
vaZ+pZ

—
Proof: Let Ry be the point on the line that is nearest to B. Then BRg = r_o>

the line, and the distance we seek is

— B) is orthogonal to

Iprojis—t | - ‘ (7o —?)-FLH (78— b)ew|
“ EIR ]|

. , .
Since Ry is on the line, rO-Tf = 7-?1}, and so

||Pl'0jr_°ﬁ|| _ |T_0>°T1> —B}OT{I 3 |ﬁo?l) —g)o?ﬂ 3 |(ﬁ —E}).Tﬂ
n - = =
" il kil =

as we wanted to shew.
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If the line has Cartesian equation ax+by = c, then at least one of a and b is # 0. Let us suppose
a 0, as the argument when a =0 and b 0 is similar. Then ax + by = c is equivalent to

A I S
y 0 b
£ a
We use the result obtained above withd = |%|, A = , and B = Then ||T1>H =
0 b b,
vaZz + b2 and
%—b1 a
(d — 0ol = . — |c — aby — bby| = [ab; + bbs — ¢,
—b> b

giving the result.

378 Example Recall that the medians of AABC are lines joining the vertices of AABC with the midpoints
of the side opposite the vertex. Prove that the medians of a triangle are concurrent, that is, that they
pass through a common point.

|:| This point of concurrency is called, alternatively, the isobarycentre, centroid, or centre of
gravity of the triangle.

Solution: » Let M, Mg, and Mc denote the midpoints of the lines opposite A, B, and C,
respectively. The equation of the line passing through A and in the direction of AMa is (with

=]

¥ — OA + rAMa.

Similarly, the equation of the line passing through B and in the direction of BMg is
7= (ﬁ) + sBMa.

These two lines must intersect at a point G inside the triangle. We will shew that @ is parallel
to CM ¢, which means that the three points G, C, M ¢ are collinear.

Now, 3(ro,s0) € R? such that
OA + 1oAMa = OG = OB + soBMg,

that is L
roAMA — SoBMB = 0B — OA,
or — —  ——
ro(AB + BMAa) — so(BA + AMg) = AB.

Since M 5 and l\i;; are the midpoints of [B, C] and [C, A] respectively, we have 2BMa = lﬁ and
2AMg = R =AB + lﬁ The relationship becomes

ro(AB + 2BC) — so(~AB + JAB + 1BC) = A,
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(ro+ 5 — DAB = (—=) +

We must have

50\B¢.

2 2

S
To+ — —1=0,

2
To

2

So

-0,
2

since otherwise the vectors }ﬁ and ]?Z would be parallel, and the triangle would be degenerate.

— ———

Solving, we find sg = 19 = 2. Thus we have ﬁ —+ %AMA = 0OG, orm = %AMA, and similarly,

3
BG - 2BMjy.

From /ﬁ = 2ZAMA, we deduce E = 2GMAa. Since Ma is the midpoint of [B, C], we have

3

@ + @ =2GMp = E which is equivalent to

GA +GB+GC-=0.

As Mc is the midpoint of [A, B] we have ﬁ -+ @ =2GMc. Thus
0 - GA + GB + GC = 2GMc + GC.

This means that @ = —2GMc, that is, that they are parallel, and so the points G, C and M¢
all lie on the same line. This achieves the desired result. <

|:| The centroid of AABC satisfies thus

GA+ GB+GC=0,

and divides the medians on the ratio 2 : 1, reckoning from a vertex.

|Homework |

Problem 8.4.1 Find the angle between the lines 2x —y =
Tandx —3y =1.

Problem 8.4.2 Find the equation of the line passing

1 2
and in a direction perpendicular to

—1 1

through

Problem 8.4.3 AABC has centroid G, and AA’B’C’
satisfies
4 —/> 4 -
AA"+BB"+ CC = 0.
Prove that G is also the centroid of AA’B’C’.

Problem 8.4.4 Let ABCD be a trapezoid, with bases
[A,B] and [C, D]. The lines (AC) and (BD) meet at E and
the lines (AD) and (BC) meet at F. Prove that the line
(EF) passes through the midpoints of [A, B] and [C, D] by
proving the following steps.

O Let I be the midpoint of [A, B] and let ] be the point
of intersection of the lines (FI) and (DC). Prove
that J is the midpoint of [C, D]. Deduce that F,1,]J
are collinear.

0 Prove that E, I, ] are collinear.

Problem 8.4.5 Let ABCD be a parallelogram.
O Let E and F be points such that

AE-IAC ana AP-2AC

Demonstrate that the lines (BE) and (DF) are par-
allel.

O Let I be the midpoint of [A, D] and J be the midpoint
of [B, C]. Demonstrate that the lines (AB) and (IJ)
are parallel. What type of quadrilateral is IEJF?

Problem 8.4.6 ABCD is a parallelogram; point I is the
midpoint of [A,B]. Point E is defined by the relation

IE - %I—)D Prove that
AE - % (/IWS> + ﬁ)

and prove that the points A, C, E are collinear.

Problem 8.4.7 Put OA = d, OB = b, OC = ¢. Prove
that A, B, C are collinear if and only if there exist real
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numbers «, 3, v, not all zero, such that and AA’B’C’ (not necessarily in the same plane) are
N R so positioned that (AA’), (BB’), (CC’) all pass through
o«d+pb+yc=0, a+p+y=0. the same point V and if (BC) and (B’C’) meet at L, (CA)

and (C’A’) meet at M, and (AB) and (A’B’) meet at N,
Problem 8.4.8 Prove Desargues’ Theorem: If AABC | then L, M, N are collinear.

8.5 Vectors in R3

We now extend the notions studied for R? to R3. The rectangular coordinate form of a vector in R? is

a

d=|q,

as

In particular, if
1 0 0
T - of» 7 =1 »i} =10
0 0 1
a;

then we can write any vector d = a,| asasum
as
- Wi %
ﬁ=a11 +a2j +aszk.
aq b1
H
Given d = a,| and b = |p, |, their dot product is
as b3
_>
deb = aiby 4+ ab, + azbs,

and

We also have

and . . .
(=150 = [l =

379 Definition A system of unit vectors _i),T,? is right-handed if the shortest-route rotation which brings

— —
i to coincide with j is performed in a counter-clockwise manner. It is left-handed if the rotation is done
in a clockwise manner.




170 Chapter 8

To study points in space we must first agree on the orientation that we will give our coordinate system.
We will use, unless otherwise noted, a right-handed orientation, as in figure 8.22.

® x
— —
) )
- -
i i
Figure 8.22: Right-handed system. Figure 8.23: Left-handed system.

|:| The analogues of the Cauchy-Bunyakovsky-Schwarz and the Triangle Inequality also hold
inR3.

We now define the (standard) cross (wedge) product in R3 as a product satisfying the following prop-
erties.

380 Definition Let (¥, 7, Z,a) € R3 x R3 x R3 x R. The wedge product x : R3 x R3 — R3 is a closed
binary operation satisfying

CP1 Anti-commutativity:

XXY = —(YxX) (8.15)
CP2 Bilinearity:
(X +Z2)XY =XXY +2ZXY, XX(Z+Y)=XXZ+xXxXY (8.16)
CP3 Scalar homogeneity:
(aX)XY =X x (oY) = a(X XY) (8.17)
CP4
XxX -0 (8.18)
CP5 Right-hand Rule:
Txj =K, jxk-1, Kxi-]j (8.19)
X1 Y1

381 Theorem Let X = |, | and J = y | be vectors in R*. Then

X3 Ys

- — -
X XY = (x2y3 —x3Y2) T + (x3y1 —x1Y3)j + (x1y2 — x2y1) K.
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I .
Proof: Since ixi=jxj =Kk

- . < - - - ey,

(x11 +x2j +x3k)x(y1i +yz2j +yszk) x1YyziXj +x1ysi xk
e v
+x2y1j X i +%2y3j Xk
Kxj

vy
+x3y1 kX i +x3y2k X

- - -
x1Yz2k —x1yzj —x2y1k

- Y -
+x2y3 i +%x3Yy1j —x3yz21i,

Jfrom where the theorem follows. O

382 Example Find

1 0
0| x|
-3 2

Solution: » We have

(T —3K)x(7 +2K) = ixj +2ixK—3Kx] —6KxK
- K—2j—-31+60
- 31 -2 +X
Hence
1 o] |-3
o|x|1|=|-2
3| |2 1
R |

383 Theorem The cross product vector E4 xﬁ is simultaneously perpendicular to X and ﬁ

Proof: We will only check the first assertion, the second verification is analogous.

- . -
Xe(XXY) (x11 +%x2j +x3K)e((x2y3 —x3y2) i
- -
+(x3y1 —x1y3)j + (x1y2 —x2y1) k)
= X1X2Y3 — X1X3Y2 + X2X3Yy1 — X2X1Y3 + X3X1Y2 — X3X2Y1

= 0,

completing the proof. [
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384 Theorem dx (b x <) = (+¢)b — (a+b)C.

Proof:

— —- —- - —
dAx(bx7) (a1i +az2j +azk)x((bzes —bzcz) i+

H
k

H
+(bzcr —bic3)j + (brcz —bzer)k)

- -
aj(bzct —biecz)k —ag(brecz —bacr)j

- -
—az(bzcz —bzca)k + az(bicz —baey) i

- -
+az(b2cz3 —bzcz)j —az(bzecy —bicz)i

- - -

(a1c1 +azez2 +aszcsz)(by i —|—b2j +b3i)
- - -
+(—a1by —azb, —azbz)(c1i +c2j +c31i)

(8+C)b — (a+b) T,

completing the proof. [
385 Theorem (Jacobi’s Identity)

ﬁx(?x—c}) +?x(_c’xﬁ) +—c>><(ﬁ><3>) =6).

Proof: From Theorem 384 we have

Ax(DxC) = (C)b — (8+b)T,
<

and adding yields the result. [

L —

386 Theorem Let (X, ) € [0;7] be the convex angle between two vectors X and Y. Then

IR x Yl = XYl sin (X, ).

Proof: We have

X xYlI2

(x2y3z —x3Yy2)? + (x3y1 —x1Y3)? + (x1y2 — x2y1)?

= x3y? — 2x2y3x3y2 + x3y3 +x3y? — 2x3y1x1ys+
+X7Y3 + X7Y3 — 2x1Y2x%2y1 +X3Y5

= (x] +x3+x3)(y7 +y3 +y3) — (x1y1 +x2y2 + x3y3)?

= IXIPIYI? — (Xe¥)?

- IRIPIFIZ — RIFIFI? cos? (X, 7)

—_
X

= IIXI2I[¥)1? sin® (X, ),
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whence the theorem follows. The Theorem is illustrated in Figure 8.24. Geometrically it means
that the area of the parallelogram generated by joining X and y at their heads is |[X xY||. O

%

Figure 8.24: Theorem 386.

The following corollaries are now obvious.

387 Corollary Two non-zero vectors X,y satisfy X Xy = 0 if and only if they are parallel.

388 Corollary (Lagrange’s Identity)

IXxVI? = Il llyll* — (X+¥)?
389 Example Let X € R3, x|/ = 1. Find

IR XTI+ 1T 1 + IR x K.

Solution: » By Lagrange’s Identity,

el
{
1

I

|
ul
:l

XTI =[]

I®xXI2 = [R5 R =1— @GP

— —112 - -
IR I2= %] [x|[ = (Re1)2 =1 = (Xek)?,
and since (7-?)2 + (7-7)2 + (Y-Tc))z = ||7\ |2 =1, the desired sum equals 3 — 1 =2. <

Problem 8.5.1 Consider a tetrahedrc&> Bj [A] Find | Problem 8.5.4 Prove or disprove! The cross product is
AB + ]i)f + CS. [B] Find ,TC) + CS+ SA + associative.

Problem 8.5.2 Find a vector simultaneously perpendic- | Problem 8.5.5 Prove that X XX = 6) follows from the

] ] anti-commutativity of the cross product.

ular to |1| and |1| and having norm 3. Problem 8.5.6 Expand the product (d — B)x(d + b).

1 0
Problem 8.5.7 The vectors ﬁ b are constant vectors.

Solve the equation Ax (X x b b X (X xd).
Problem 8.5.3 Find the area of the triangle whose ver-

0 0 1 Problem 8.5.8 The vectors ﬁ,?,_c) are constant vec-
tors. Solve the system of equations

ticesareatP= ||, Q=|1|.andR=] ¢
X+ Yxd=b, 37 +¥xd-=

1 0 0
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Problem 8.5.9 Prove that there do not exist three unit
vectors in R® such that the angle between any two of

them be > Z—T[

Problem 8.5.12 Let (d,b) € R® x R® be fixed. Solve
the equation

dAxx =1,

3
for X.

Problem 8.5.10 Let d € R? be a fixed vector. Demon-

strate that 3 - Problem 8.5.13 Let T{,? be fixed vectors in R*. Prove
X={X eR’: dx¥X =0} that

is a subspace of R3.

R® x R® — R?

L:
(X, 7) — RxK+nhxy

is a linear transformation.

Problem 8.5.11 Let (?,_b)) € (R*)? and assume that
H

@eb = 0 and_)that ?) and b are linearly independent.

Prove that ?, b ,? X b are linearly independent.

8.6 Planes and Lines in R?

390 Definition If bi-point representatives of a family of vectors in R? lie on the same plane, we will say
that the vectors are coplanar or parallel to the plane.

391 Lemma Let ¥V, W in R? be non-parallel vectors. Then every vector U of the form
U=aVv+ bv_>v,

((a,b) € R? arbitrary) is coplanar with both V and W. Conversely, any vector T coplanar with both R
and W can be uniquely expressed in the form

T}=p7+qv—>v.

Proof: This follows at once from Corollary 367, since the operations occur on a plane, which
can be identified with R?. [

A plane is determined by three non-collinear points. Suppose that A, B, and C are non-collinear

X

points on the same plane and that R = y | is another arbitrary point on this plane. Since A, B, and C

z

are non-collinear, /ﬁ) and R which are coplanar, are non-parallel. Since F{ also lies on the plane, we
have by Lemma 391, that there exist real numbers p, q with

AR = pAB + qAC.

By Chasles’ Rule,
OR = OA + p(OB — OA) + q(OC — OA),

is thgquation of a plane containing the three non-collinear points A, B, and C. By letting T = (ﬁ
d = OA, etc., we deduce that .
T —d=p(b—d)+q(¢—1d).

Thus we have the following definition.
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392 Definition The parametric equation of a plane containing the point A, and parallel to the vectors U
and V is given by

e pﬁ + qV.
Componentwise this takes the form

X — a7 = pur + qvi,

Yy — az = puz + qvaz,

zZ — a3z = puz + qvs.

The Cartesian equation of a plane is an equation of the form ax + by + cz = d with (a, b, c,d) € R* and
a’? +b2 +c? #0.

393 Example Find both the parametric equation and the Cartesian equation of the plane parallel to the

1 1 0
vectors (1| and |1| and passing through the point | _q
1 0 2

Solution: » The desired parametric equation is

z—2 1 0

Thisgivess =z—2,t=y+1—s=y+1—z+2=y—z+3andx=s+t=z—2+y—z+3=y+1.
Hence the Cartesian equationisx —y =1. «

394 Theorem Let U and ¥ be non-parallel vectors and let T—d-= pﬁ + q7 be the equation of the plane
containing A an parallel to the vectors Wand V. If W is simultaneously perpendicular to U and V then

(¥ —d)em = 0.

Moreover, the vector |4 | is normal to the plane with Cartesian equation ax + by + cz = d.

Proof: The first part is clear, as UWen = 0 = Veri. For the second part, recall that at least one
of a, b, c is non-zero. Let us assume a # 0. The argument is similar if one of the other letters is
non-zero and a = 0. In this case we can see that

d b c
X=———y— —2z.
a ay a
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Puty =s andz =t. Then

is a parametric equation for the plane.

395 Example Find once again, by appealing to Theorem 394, the Cartesian equation of the plane parallel
1 1 0

to the vectors [1| and |1| and passing through the point | _1

1 0 2
1 1 —1
Solution: » The vector |1| X |1| = | 1 | is normal to the plane. The plane has thus equation
1 0 0
X —1
y+1{*|1|=0= x+y+1=0 = x—y=1,
z—2 0

as obtained before. «

396 Theorem (Distance Between a Point and a Plane) Let (¥ — d)«7 = 0 be a plane passing through the
point A and perpendicular to vector T. If B is not a point on the plane, then the distance from B to the

plane is
‘(E—?).T{’
ﬁ—-
1kl

— -
Proof: Let Ry be the point on the plane that is nearest to B. Then BRy = T§—bis orthogonal

to the plane, and the distance we seelk is

Iproi—t | - ‘ (=) 1 =)
T - -
“ EilE ]|
Since Ry is on the plane, r_o)-ﬁ> = ﬁ-?f, and so
progT—]l - [Foeml — etl]  [dorl — beri|  |(d — )|
— = = =
K i Tl e

as we wanted to shew. O

|:| Given three planes in space, they may (i) be parallel (which allows for some of them to
coincide), (ii) two may be parallel and the third intersect each of the other two at a line, (iii)
intersect at a line, (iv) intersect at a point.
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397 Definition The equation of a line passing through A € R? in the direction of V 0is given by
T —-d=tV¥, teR.

398 Theorem Put OA — @, OB = b, and OC = €. Points (A, B, C) € (R3)3 are collinear if and only if

dAxb +bxC +¢xd=0.

Proof: If the points A, B, C are collinear;, then A? is parallel to /ﬁ and by Corollary 387, we

must have
(€—d)x(b—d)=0.

Rearranging, gives N NN
Txb—7¢xd—dxb=0.

Further rearranging completes the proof. [

399 Theorem (Distance Between a Point and a line) Let L : ¥ = d + AV, ¥ 0, be a line and let B be a
point not on L. Then the distance from B to L is given by

||(ﬁ—?)x7||'
IEdl

Proof: [f Ro—uwith position vector r{—is the point on L that is at shortest distance from B then
BRy is perpendicular to the line, and so

T
IBR3x V| = [IBRl|[¥]| sin > =~ [BRal|[¥]]-

The distance we must compute is HB—R(;H = |[r¢ — ?II, which is then given by
i gy - BRI (78— B)x V|
[Ell Ikl

Now, since Ry is on the line Ity € R such that r_o> =d+ t07. Hence

(F—B)xV = (d — b)xV,

giving .
d—b)xV
7 — Bl = ”(—HV’%

proving the theorem. [

|:| Given two lines in space, one of the following three situations might arise: (i) the lines
intersect at a point, (ii) the lines are parallel, (iii) the lines are skew (one over the other, without
intersecting).

|Homework |

Problem 8.6.1 Find the equation of the plane passing | Problem 8.6.2 Find the equation of plane containing
through the points (a,0,a), (—a,1,0), and (0,1,2a) in | the point (1,1,1) and perpendicular to the line x =
R3. 1+ty=—2t,z=1—1t.
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Problem 8.6.3 Find the equation of plane containing
the point (1, —1,—1) and containing the line x = 2y = 3z.

Problem 8.6.4 Find the equation of the plane perpen-
dicular to the line ax = by = cz, abc # 0 and passing
through the point (1,1, 1) in R3.

Problem 8.6.5 Find the equation of the line perpendic-
ular to the plane ax + a’y + a®*z =0, a #0 and passing
through the point (0,0, 1).
Problem 8.6.6 The two planes
x—y—z=1, x—z=—1,

intersect at a line. Write the equation of this line in the
form

X

y| = d+tV, teRr

z

Problem 8.6.7 Find the equation of the plane passing
1 2

through the points | ¢ |, |1 | and parallel to the line

—1 1

:xi ER

X —1 1
y| =|-2| +t|o
z 0 1

Problem 8.6.8 Poin§ a,b,cin R3 are colligear gld it is
E)nown that dx¢ = i — 2? andﬁx? =2k —31i. Find
bxTC.

Problem 8.6.9 Find the equation of the plane which is
3 1

equidistant of the points | 2 | and | _1

Problem 8.6.10 (Putnam Exam, 1980) Let S be the
solid in three-dimensional space consisting of all points
(x,y, z) satisfying the following system of six conditions:

XZO» UZO» ZZO’

x+y+z<11,
2x +4y + 3z < 36,
2x 4+ 3z < 24.

Determine the number of vertices and the number of
edges of S.

8.7 R"

As a generalisation of R? and R? we define R™ as the set of n-tuples
X1
X2
Xn

The dot product of two vectors in R" is defined as

X1 Y1

X2

2= | .

Xn Yn

The norm of a vector in R" is given by

=X1Y1 +x2Yy2 + -+ +XnYn.

%] = VRX.
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As in the case of R? and R3 we have

400 Theorem (Cauchy-Bunyakovsky-Schwarz Inequality) Given (¥, Y) € (R™)? the following inequality
holds

eyl < [[*X[[[[Y]]
n n n
Proof: Puta= in b= Zxkyk, and ¢ = Zyi Consider
k=1 k=1 k=1
n n n n
thk—yk -2 ) xp—2t) xkyx+ ) yp-at’ +bt+ec.
=1 k=1 k=1 k=1

This is a quadratic polynomial which is non-negative for all real t, so it must have complex roots.
Its discriminant b? — 4ac must be non-positive, from where we gather

(Eon) 4(E2) (E)
wer < ¥l

This gives

from where we deduce the result. [

401 Example Assume that ay, by, cx,k =1,...,n, are positive real numbers. Shew that

(Gome) = (1) (1) (£.)

Solution: » Using CBS on ZE=1 (axby)ck once we obtain
n n 172 , » 1/2
Z axbiex < <Z aibﬁ) <Z cﬁ) .
k=1 k=1 k=1

Using CBS again on () }_; aibﬁ)” % we obtain

n 1/2 1/2
Shakbrex < (Xh,a2bd) P (Zr, ed)”

< (Ipaa) (e e (IR, e

which gives the required inequality. <

)1/2

)

402 Theorem (Triangle Inequality) Given (¥, Y) € (R™)? the following inequality holds
X+ < %]+ Y]l

Proof: We have

(A+1)e(d+D)
ﬁ-ﬁ -+ Zﬁ-ﬁ +g)-g)

_>
I'd + bl?

- -
< [dI? + 2[dlll[6] + b2

(1@l -+ IIo1)?
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Jfrom where the desired result follows.
O

We now consider a generalisation of the Euclidean norm. Given p > 1 and X € R" we put

n 1/p
%], = (Z ka|p> (8.20)

k=1
Clearly
X[, >0 (8.21)
%], =0&X=0 (8.22)
[|oX|, = lexl|[¥]],, a€R (8.23)

We now prove analogues of the Cauchy-Bunyakovsky-Schwarz and the Triangle Inequality for [|-[|,,. For
this we need the following lemma.

1 1
403 Lemma (Young’s Inequality) Let p > 1 and put — + a = 1. Then for (a,b) € ([0;+0o0[)? we have
P

aP b4
ab < — 4+ —.
P q

Proof: Let0< k<1, and consider the function

[0; +oof — R

X — xF—k(x—1)

Then 0 = f'(x) = kx¥" 1 —k & x =1. Since f”’(x) = k(k—1)x*¥2<0forO<k<1,x > 0,x =1
1

is a maximum point. Hence f(x) < f(1) forx > 0, that is x* < 1 4+ k(x — 1). Letting k = — and
P

a 1 /aP
—<T1T+—-|—-—1].
bda/p p \bd

Ppl+pP/a—p 1+p/q
ab < b+e/ay &0 _b
o P P

aP
x = — we deduce
bd

Rearranging gives

from where we obtain the inequality. O

The promised generalisation of the Cauchy-Bunyakovsky-Schwarz Inequality is given in the following
theorem.

404 Theorem (Hélder Inequality) Given (¥,7) € (R™)? the following inequality holds
Xyl < |[X|],|[¥]],-

Proof: If H?Hp =0 or |[Y]] q = 0 there is nothing to prove, so assume otherwise. From the
Young Inequality we have

Xkl lyxl [xx [P lyx/9

< + .
NI R
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Adding, we deduce

n xkl Tyl 1 n 1 n

2 k- < D e XKl A+ = > o [ykl9
SR T, \7!\pppp ! . ], %a ="

1], 91,

= .+ q
XL, ([l "a
1 1
_+_
P dq
1.

This gives

> byl < [[X|[ 1Y,
k=1

The result follows by observing that

n
> XYk
k=1

< > il < XY
k=1

O
As a generalisation of the Triangle Inequality we have

405 Theorem (Minkowski Inequality) Let p €]1;+o00[. Given (¥, ) € (R")? the following inequality holds
% +9ll, <I¥Il, + [¥ll,-

Proof: From the triangle inequality for real numbers 1.6
i+ yul? = X+ yllxe + Yl < (xkd + yad) xe + yelP
Adding

n n n
D iyl <Y badb +yrlPTT 4 ) lyrdix + yilP (8.24)
k=1 k=1 k=1

By the Hélder Inequality

_ 1 _ 1/
S e + P < (IR xalP) P (IR Ik + gl (1)

= (TR lP) P (R b ylP) (8.25)
_ p/dq
= XX +9;
In the same manner we deduce
3yl + ylP < (Y[R + I (8.26)
k=1

Hence (8.24) gives

1R+ 915 = 3wl < [[RILIR + I+ [WILIR + 9115

k=1
Jrom where we deduce the result. [

|Homework |
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Problem 8.7.1 Prove Lagrange’s identity:

(Zreren “J'b")z - (D19 @) (Tigen t])
_Z1§k<j5n(akbj — ajby)?

and then deduce the CBS Inequality in R™.

Problem 8.7.2 Let d; € R" for 1 < i < n be unit vectors
H
with ', @i = 0. Prove that 2i<ig<n Qieq) = —%.

Problem 8.7.3 Let ax > 0. Use the CBS Inequality to

shew that
= 5 = 1 2
k=1 k

k=1

Problem 8.7.4 Let @ € R" be a fixed vector. Demon-
strate that

X={X €R":deX =0}

is a subspace of R".

Problem 8.7.5 Let a; € R*, 1 < i < k (k < n) be k

non-zero vectors such that E{-Ej’ = 0 for i #j. Prove that
these k vectors are linearly independent.

Problem 8.7.6 Let ax > 0,1 < k < n be arbitrary.
Prove that

2
i nn+12n+1) &« al
P

k=1




Appendix

Answers and Hints

1.1.2
x € X\ (X\A) & xeXAxZ (X\A)
— xeXAxeA
— x€eXNA.
1.1.3

X\ (AUB) x € XA (x & (AUB))
xEXAxZAANAXxZB)
x EXAXxZA)AN(x € XAx &B)

x € (X\A)Ax € (X\B)

I 117171

x € (X\A)N (X\B).

1.1.6 One possible solution is
AUBUC=AU(B\A)U(C\ (AUB)).

1.1.8 We have
lal=la —b +b| < Ja — bl + |b],

giving
la — bl < |a —b.
Similarly,
Ib|=b—a+al <|b—al+laf=[a—Dbl+]al,
gives

bl —lal < |a —Dbl.
The stated inequality follows from this.

1.2.1 a ~ asince § =1 € Z, and so the relation is reflexive. The relation is not symmetric. For 2 ~ 1 since % EZ

but 1 = 2 since % & 7. The relation is transitive. For assume a ~ b and b ~ c. Then there exist (m,n) € Z? such
that £ =m, 2 = n. This gives

E=mn€Z,
c

S'la

c
and so a ~ c.

1.2.2 Here is one possible example: put a ~ b & # € Z. Then clearly if a € Z \ {0} we have a ~ a since

#j“ = a+ 1 € Z. On the other hand, the relation is not symmetric, since 5 ~ 2 as 5245 _ 15 ¢ Z but 2 +5, as

2
225+2 = £ ¢ 7. It is not transitive either, since SZT+5 €Z = 5~3and 321;’3 €Z = 3~12but 5211'5 ¢ Z and so

5= 12.

183
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1.2.4 [B] [x]=x + %Z. [C] No.

1.3.1 Letw =—1 —0—14. Then w? + w + 1 =0 and w? = 1. Then
x=a’>+b*+c* —3abc=(a+b+c)a+ wb+ w?c)a+ w’b + cw),

y=u3—|—v3—|—w3—3uvw= (U +v+w)(u+ wv+ w?w)(u+ w?v+ ww).

Th
. (a+b+c)(lu+v+w)=au+ av+ aw + bu + bv + bw + cu + cv + cw,
(a + wb + w?c)(u+ wv+ w?w) = au-+bw+cv
+w(av + bu + cw)
+w?(aw + bv + cu),
and

(a+ w?b + we)(u + w?v + ww)

au + bw + cv
+w(aw + bv + cu)

+w?(av + bu + cw).
This proves that

xy = (au+bw+ cv)® + (aw + bv + cu)® + (av + bu + cw)?

—3(au+ bw + cv)(aw + bv + cu)(av + bu + cw),

which proves that S is closed under multiplication.

1.3.2 We have
xT(YTz2)=xT(Yy®a®z)=x)Q (1) ®(Y®aR®z)=xQ®aR®Yy R a z,

where we may drop the parentheses since ® is associative. Similarly
xTY)Tz=xQ@a®YyTz=xRa®Y)®(A)R(z2)=xQRaRYRadz.

By virtue of having proved
xT(yTz)=(xTy)Tz,

associativity is established.

1.3.3 We proceed in order.

O Clearly, if a, b are rational numbers,
lal <1,/bl <1 = |ab|<1 = —1<ab<1 = 1+ ab>0,

whence the denominator never vanishes and since sums, multiplications and divisions of rational numbers

are rational, atb is also rational. We must prove now that —1 < oa+bd <1 for (a,b) €] — 1;1[2. We have
1+ ab 1+ ab

a+b

B

<1 & —1—ab<a+b<«<1+ab
& —1—ab—a—b<0<1+ab—a—b>b
&S —(a+1)(b+1)<0<(a—1)(b—1).

Since (a,b) €] —1;1[%, (a+1)(b +1) > 0 and so —(a + 1)(b + 1) < 0 giving the sinistral inequality. Similarly
a—1<0andb—1<0give (a—1)(b—1) > 0, the dextral inequality. Since the steps are reversible, we have

established that indeed —1 < a+b <1.
1+ ab
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0 Sincea®b= a+b = b+a =b ® a, commutativity follows trivially. Now

1+ab 1+ ba
b+
®(1 o)
+
+ bce
+
T+a <1+bc)

a(l+be)+b+c a+b+c+abc
1+bc+a(b+¢c) T1+ab+bc+eca’

a® (b®c)

One the other hand,

(a®b)®c = <a+b)®c

I
ela

(a+1b) + c(1 + ab)
T+ ab+ (a+b)c

a+b+c+ abce
1+ ab+bc+ ca’

whence  is associative.

a+e

O If =ath
aRRe=a en1_'_ae

= a, which gives a + e = a+ea?ore(a?—1)=0. Since a #/=+1, we must have e = 0.

O Ifa®b=0, then ﬁ = 0, which means that b = —a.
1+ ab

1.3.4 We proceed in order.

O Sincea®@b=a+b—ab=b+ a—ba=>b® a, commutativity follows trivially. Now

a® (b®e) = a® (b+c—be)
= a+b+c—bc—a(b+c—bc)
= a+b+c—ab—bc—ca+ abc.
One the other hand,
(a®b)®c = (a+b—ab)®c

= a+b—ab+c—(a+b—ab)c
= a+b+c—ab—bc—ca+ abec,

whence  is associative.

O If a® e =athen a+ e — ae = a, which gives e(1 — a) = 0. Since a 1, we must have e = 0.

a

0 Ifa®b=0,then a+ b — ab =0, which means that b(1 — a) = —a. Since a /1 weﬁndb=—1_a
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+ o T 2z 3 x 5 6 7 K 9 | 70 ol T 2z 3 T 5 3 7 K 9 10
o o T 2 3 T 5 3 7 K3 2 10 0 o 0 o 0 o 0 o 0 0 o 0
T T 2z 3 T 5 3 7 K3 k2 10 0 T ol T 2z 3 T 5 3 7 K 9 10
2 2 3 T 5 3 7 K3 2 10 o T 2z o z T 3 K 10 T 3 5 7 K2
3 3 T 5 6 7 B 2 10 0 T 2z 3 0 3 3 9 T T 7 10 2z 5 B
T T 5 6 7 B 9 T0 0 T 2z 3 T 0 T K3 T 5 9 2z 6 10 3 7
5 5 3 7 B 9 10 0 T 2z 3 7 5 0 5 10 T 9 3 B 2 7 T 6
3 3 7 B 2 10 0 T 2z 3 T 5 3 0 3 T 7 z K 3 2 7 10 5
7 7 0 9 10 0 T 2z 3 7 5 6 7 0 7 3 10 3 2z 9 5 T B 7
K3 K3 9 10 0 T Z 3 7 5 6 7 K 0 K3 5 z 10 7 T T 2 6 3
9 9 10 o T 2 3 3 5 6 7 B 9 0 2 7 5 3 T 10 B 6 T 2z
10 10 0 T 2 3 3 5 6 7 B 2 T0 0| 70 9 K 7 3 5 7 3 2z T
Table A.1: Addition table for Zq1. Table A.2: Multiplication table Zq1.

1.3.5 We have
xoy = (xoy)o(xoy)

= [yo(xoy)lox
= [(xoy)ox]oy
= [(yox)ox]ouy
= [(xox)oyloy
= (yoy)o(xox)
= yox,

proving commutativity.

1.4.1 The tables appear in tables A.1 and A.2.

1.4.2 Observe that

3x* —5x+T1=0 = 43x* —5x+1)=40 = x*+2x+1+3=0 = (x+1)*=8.

We need to know whether 8 is a perfect square modulo 11. Observe that (11 —@)? = @, so we just need to check half
the elements and see that ey,

1"=1;, 27=4; 3 =9; 4 =5, 5 =3,
whence 8 is not a perfect square modulo 11 and so there are no solutions.

1.4.3 From example 50

Now, the squares modulo 11 are 0°=0,7-=T12 =9,4% =5,5 =3. Also, (TT—4)2 =7 = 5. Hence the

solutions are x =4 orx="7.

1.4.5 Put f(x) = x* + x> +x?> +x + 1. Then
f(0)=1=1 mod 11 f(1)=5=5 mod 11 f(2)=31=9 mod 11
f(3) =121 =0 mod 11 f(4) =341 =0 mod 11 f(5)=781=0 mod 11

f(6) =1555=4 mod 11 | f(7) =2801 =7 mod 11 f(8) =4681 =6 mod 11

f(9)=7381=0 mod 11 | f(10) =11111 =1 mod 11




Answers and Hints 187

1.5.1 We have
1 V2 +2v3—-3V6

V2 +2v3+3v6 (V2+2v3)2 — (3v6)?
V2+2v3-3vV6
2+12+4v6—54
V2+2v3-3v6

—40 + 46
(V2 +2v3 — 3v/6)(—40 — 4v/6)
402 — (4v/6)2
(V2 +2v3 — 3v/6)(—40 — 4v/6)
1504
16v2 +22v/3 — 30v/6 — 18
N 376

1.5.2 Since
(—a)b '+ ab "= (—a+a)b ' =0sb " = 0p,

we obtain by adding —(ab™') to both sides that

(—a)b™' = —(ab™").
Similarly, from
a(=b")+ab ' =a(=b""+b7") = a0 = O,
we obtain by adding —(ab~') to both sides that
a(=b')=—(ab™")
1.6.1 Assume h(b) = h(a). Then
h(a) = h(b) = a®=b3

= a—-b*=0
= (a—Db)(a’?+ab+b2)=0

Now, ,
2 2 a2 3a
b —l—ab—l—a—(b—!—z) + 1

This shews that b? + ab + a? is positive unless both a and b are zero. Hence a — b = 0 in all cases. We have shewn
that h(b) = h(a) = a =1, and the function is thus injective.

1.6.2 We have
6a  6b
2a—3 2b-—3

6a(2b — 3) = 6b(2a — 3)

—
=
& 12ab —18a =12ab — 18b
&— —18a=-18b

=

proving that f is injective. Now, if

f(x) =y, y#3,
then
6x
x—3 Y
that is 6x = y(2x — 3). Solving for x we find
3y
T 2y—6

Since 2y — 6 0, x is a real number, and so f is surjective. On combining the results we deduce that f is bijective.
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211 A=(2 4 8§

212 A=|2 4 ¢

3 6 9
a—+1 0 2c 2a —4a 2c
213 M+N=| g b—2a 0|, 2M= 0 —2a 2b
2a 0 -2 2a+2b 0 -2

2.1.4 x=1andy =4.

13 —1 5 0
2.1.5 A - B-

15 3 6 1

2.1.8 The set of border elements is the union of two rows and two columns. Thus we may choose at most four
elements from the border, and at least one from the central 3 X 3 matrix. The largest element of this 3 X 3 matrix is
15, so any allowable choice of does not exceed 15. The choice 25, 15, 18,1 23, 20 shews that the largest minimum is
indeed 15.

2 2
2.2.1
0o -2
2.2.2
a b c a+b+c b+c ¢
AB=| c¢+a a+b b+c |[»BA=|la+b+c a+b b
a+b+c a+b+c a+b+c a+b+c c+a a

223 (2 3 1|12 2 2/=111 11 11|, whence a+ b+ c=36.

0 0 4 12 00 0 =8 0 0 0 0
0 0 0 4 00 0 0 0 0 0 0
2.2.4 An easy computation leads to N? = , N3 = and N* = . Hence
0 0 0 O 00 0 0 0 0 0 0
0 0 0 O 00 0 0 0 0 0 0

any power—from the fourth on—is the zero matrix.
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02 0 3
02 0 3
2.2.5 AB =04 and BA =
02 0 3
02 0 3
2.2.6 For the first part, observe that
1 0 a 1 0 b
2 2
m(a)m(b) = |_ _e | _b°
a 1 ) b 1 3
o 0 1 0o 0 1
1 0 a+b
_ a? b?
—a—>b 1 —7-7-'-(11)
0 0 1
1 0 a+b
2
- |—(a+v) 1 _lath
2
0 0 1
= m(a+Db)

For the second part, observe that using the preceding part of the problem,

1 0 0
m(a)m(—a) =m(a—a) =m(0) = | ¢ 1 _%2 - L,
0 0 1

giving the result.

2.2.7 Observe that

A% = (AB)(AB) =A(BA)B=A(B)B = (AB)B=AB=A.
Similarly,

B? = (BA)(BA) = B(AB)A =B(A)A = (BA)A = BA = B.

2.2.8 For this problem you need to recall that if [r| < 1, then

2 3 a
a—+ar+ar” + ar —l—---—!—---=1_r
This gives
U PN WIS I N
CRECIRE A e
1 1 1 7 2
s+t t+eoe=25=%
2T 323735 [ J
1—3 3
and ]
T+3+5 455+ = =2.
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By looking at a few small cases, it is easy to establish by induction that forn > 1

1 1
0 Py 0 > 0 0
n-1 _ 1 n _ 1
A prre=Y o |» A 0 5 O
1 1
0 0 I 0 0 >on
This gives
T+3+52+5+ 7+ ++ 0 i 209
2 3
LHA+AT+A - = | T4 L+ L+ T+3+5+5+ 0 =2 4 0
0 0 T+ 3+ + 55+ 0 0 2
2.2.9 Observe that
2
—4 x —4 x| |—4 x 16 — x? 0
—x 4 —x 4| |—~x 4 0 16 — x?
and so we must have 16 — x> = —1 or x = £/17.
10 01
2.2.10 Disprove! Take A = and B = . Then AB = B, but BA = 05.
00 00
0o 0 1 0
2.2.11 Disprove! Take for example A = and B = . Then
1 1 1 0
-1 0 -1 0
A? — B’ = + = (A +B)(A —B).
0 1 -2 1
2.2.12 x = 6.
32 -32
2.2.14
—-32 32
0 2100131002
2.2.15 A% =
2100231001 0

2.2.17 The assertion is clearly true for n = 1. Assume that is it true for n, that is, assume

N cos(n)ax —sin(n)a
A" =

sin(n)aa  cos(n)x
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Then
AT\ +1 - A An

cosax —sina| |[cos(n)a —sin(n)x

sinax cosa sin(n)a cos(n)x

cos xcos(n)x —sinasin(n)ac —cos asin(n)ax — sin acos(n)«x
sinxcos(n)x + cos asin(n)a —sin asin(n)x + cos xcos(n)«a
cosm+ 1)a —sin(n+ 1)«

sin(n+1)ax cos(n+ 1)x

and the result follows by induction.

2.2.18 Let A = [aij],B = [by] be checkered n X n matrices. Then A + B = (ay + by;). If j — i is odd, then
aij + byj = 0+ 0 = 0, which shows that A + B is checkered. Furthermore, let AB = [ci;] with ¢ij = Y 1_; aicbig. If iis
even and j odd, then aix = 0 for odd k and by; = 0 for even k. Thus ci; = 0 for i even and j odd. Similarly, ci; = O for
odd i and even j. This proves that AB is checkered.

2.2.19 Put
0o 1 1
J=10 0 1
0 0 0
We first notice that
0 0 1

=10 o of, J?=0s.

0 0 0

This means that the sum in the binomial expansion

An _ (13 + I)n _ Z <1]:>Inklk

k=0

is a sum of zero matrices for k > 3. We thus have

ATL

PG+ (OB

100 [0on |l [0oo0 (9

= 101 o/tj0 0 n|T|0 0 O

0 0 1 0 0 0 0 0 0
n(n+1)
1T n =
= 0 1 n )
0 0 1

giving the result, since (}) = 22-" and n + (3) = 20,




192 Appendix A

2.2.20 Argue inductively,
A’B=A(AB) -AB-B

A3B=A(A’B)=A(AB)=AB=B

A™B = AB =B.
Hence B=A™B = 0,B = 0,.
a b
2.2.22 Put A = . Using 2.2.21, deduce by iteration that
c d
A= (a+ d)*'A.
a b
2.2.23 , bc=—a?
c —a
a b
2.2.24 +I, , a>=1—bc
c —a
a b
2.2.25 We complete squares by putting Y = =X —I. Then
c d
a’+bc bla+d) S , |-1 o 0 0
=Y =X"-2X+I=(X-I)"= +1I=
cla+d) be+d? 6 3 6 4

This entails a = 0,b =0, cd = 6,d”> = 4. Using X = Y + I, we find that there are two solutions,

2.2.26 The matrix

clearly satisfies the conditions.
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a b
2.2.27 Put X = . Then
c d
aZ+bc+a=1 aZ+bct+a=1 1
d=a7/z
, 11 ab+bd+b=1 bla+d+1)=1 ]
X* +X= = = ) e=b=5—"7
11 ca+dc+c=T cla+d+1)=1 a+]
2
+
2a +1)2 -1
cb+d4+d=1 (d—a)(a+d+1)=0 (2a+1)%+a

The last equation holds
e 4a*+8a®+a’—3a=0 & ac€ {—%,—1,0,%}-
Thus the set of solutions is

—1 —1| |o 1| |1/2 172| |-3/2 —1,2
—1 —1| |1 o] |1/2 172| |-1/2 —3,2

2.2.29 Observe that A = 2I3 — ], where I3 is the 3 X 3 identity matrix and

Observe that J* = 3*7'J for integer k > 1. Using the binomial theorem we have

AY =
= Yo (@) =1)1"
- LT, ()2
= 2L (-2

(_1)n + 2n+1 (_1 )n _m (_1 )n _n

Il
Wl
|
—
=
|
N
3
|
—
3
+
N
3
A
—
=
|
N
3

1 2 3 -9 2 3 10 0 0
A=12 3 1|=|2 3 1{+t]0 0 o0
31 2 3 1 2 0o 0 0
1 1 |
2.3.2 There are infinitely many examples. One could take A = and B = . Another set is
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2 0 0 0
A= and B =

00 0 2
2.3.3 If such matrices existed, then by the first equation
tr (AC) + tr (DB) =n.
By the second equation and by Theorem 86,
0=tr(CA) + tr (BD) =tr (AC) + tr (DB) =n,

a contradiction, since n > 1.

1 1 3
2.3.4 Disprove! This is not generally true. Take A = and B = . Clearly AT = A and B" = B. We have
1 2 0 1
3 1
AB =
3 2

but

3 3

(AB)' =

1 2

2.3.6 We have
a b|lla b a’+bc ab+bd
tr (AZ) =tr =tr =a’+d* + 2bc
c d||c d ca+cd d’>+cb

and

2

a b
tr =(a+d)?>.
c d

Thus

tr (Az) = (tr(A))2 = a?+d*+2bc= (a+ d)2 < bc=ad,
is the condition sought.
2.3.7
tr (A —1)?%)

tr (A2 —2A + L)
= tr(A%) —2tr(A) + tr (L)
= —4—-2tr(A)+4
= —2tr(A),

and tr (3I4) = 12. Hence —2tr (A) =12 or tr (A) = —6.

2.3.8 Disprove! Take A =B =I,, and n> 1. Then tr (AB) = n <n? = tr (A) tr (B).

1 0 0 1 0 0
2.3.9 Disprove! Take A = ,B =

0 0 0 0 1 0

(@)
Il

. Then tr (ABC) =1 but tr (BAC) = 0.
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2.3.10 We have

(AAT)T = (AT)TAT = AAT.
2.3.11 We have
(AB—BA)" = (AB)" — (BA)" =B"AT —ATB" = —BA — A(—B) = AB — BA.

2.3.13 Let X = [xi;] and put XX" = [ci;]. Then

n
2
0=cii= E Xk = Xik =0.
k=1

2.4.1 Here is one possible approach. If we perform C; «+ C3 on A we obtain

1 0 1 0 0 01 0

0 1 0 1 01 0 0
A = so take P =

1 1 -1 1 1 0 0 0

1T -1 1 1 0 0 0 1

2 0 2 0 2 0 0 0

0 1 (VI 01 0 O
Az = so take D =

1 1 =1 1 0 01 0

1T =1 1 1 0 0 0 1

4 -2 4 2 1 0 0 2

0 1 0 1 01 0 0
B = sotake T =

1 1T -1 1 0O 01 0
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2.4.2 Here is one possible approach.

Thus we take

2.4.3 Let Eij € Muxn(F). Then

b ¢
Pip3opg
e f e
h i
P’/:Cq1&C,
A

T:C;—C5—C;
Ay

D:2p3 —ip3
A

1.0 0
100

T=1-1 1 of>
0 01
00
0 0

AEij=
0 0
0 0

_g .
d e
a b
_h .
e d
_b a
_h_g
e—d
_b—a
- .
e—d

airi

azi

An—-1i

Qni

0

0

where the entries appear on the j-column. Then we see that tr (AE;;) = aj; and similarly, by considering BEi;, we

see that tr (BEi;) = bji. Therefore Vi, j,

a;ji = bji, which implies that A = B.




Answers and Hints 197
2.4.4 Let Est € My xn(R). Then
0 0 0
EyA = a1 Q2 ... Qjn|>
0 0 0
where the entries appear on the i-th row. Thus
0 0 0
(EUA)Z = 1aia51 @iz ... @§iQjn |
0 0 e 0
which means that Vi, j, ajiajx = 0. In particular, ajzi = 0, which means that Vi, j, aj;i =0, i.e., A = On.
2.5.1 a=1,b=-2.
2.5.2 Claim: A" =I, — A + A? — A3, For observe that
(In+A)In —A+ A" =A%) =L, —A+ AT — A’ —A+ AT — A%+ A% =1,
proving the claim.
2.5.3 Disprove! It is enough to take A = B = 2I,. Then (A +B)™' = (4I,) "' = Il but A~ + B™' = 1L, + II, = I...

2.5.8 We argue by contradiction. If exactly one of the matrices is not invertible, the identities
A = AL = (ABC)(BC) ™' =0y,

B =I.BI, = (A) ' (ABC)C ' = 0y,
C=1.C=(AB)'(ABC) = O,,

shew a contradiction depending on which of the matrices are invertible. If all the matrices are invertible then

0,=0,.C"'B'A7' = (ABC)C"'B'A =1,,,

also gives a contradiction.

2.5.9 Observe that A, B, AB are invertible. Hence

A’B?=1,=(AB)> = AABB-=ABAB

= AB=BA,

by cancelling A on the left and B on the right. One can also argue that A = A~', B=B~', and so AB = (AB)"' =

B~'A7' =BA.
2.5.10 Observe that A = (a — b)I, + bU, where U is the n X n matrix with 1¢’s everywhere. Prove that
A?=(2(a—1b)+nb)A — ((a —b)? +nb(a —b))I,.

2.5.11 Compute (A —I,)(B —I,).
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2.5.12 By Theorem 86 we have tr (SAS™') = tr (S7'SA) = tr (A).
2.7.2 The rank is 2.

2.7.3 If B is invertible, then rank (AB) = rank (A) = rank (BA). Similarly, if A is invertible rank (AB) = rank (B) =

1 0 0 1 0 0
rank (BA). Now, take A = and B = . Then AB = B, and so rank (AB) = 1. But BA = ,
0 0 0 0 0 0
and so rank (BA) = 0.
2.7.4 Observe that ) ) ) )
1 1 0 0 1 1 0 0
0O 0 1 1 o 0 1 1

R3—2(R;+Rz)—R3
Y d
R;—2R;—Ry

2 2 2 2 0o 0 00

2 0 0 2 0o —2 0 2

whence the matrix has three pivots and so rank 3.

2.7.5 The maximum rank of this matrix could be 2. Hence, for the rank to be 1, the rows must be proportional,
which entails

T=)i< = ¥ —2x=0 = x€{0,2}.

2.7.6 Assume first that the non-zero n X n matrix A over a field F has rank 1. By permuting the rows of the matrix
we may assume that every other row is a scalar multiple of the first row, which is non-zero since the rank is 1.
Hence A must be of the form

aq az L] Qn aq
Araq ArQz .o A1Qn az

A= = T A1 v+ An_1 = XY,
An—1@1 Ap_102 -+ Ap_1Qn an

which means that the claimed factorisation indeed exists.

Conversely, assume that A can be factored as A = XY, where X € Mux1(F) and Y € My« (F). Since A is
non-zero, we must have rank (A) > 1. Similarly, neither X nor Y could be all zeroes, because otherwise A would be
zero. This means that rank (X) = 1 = rank (Y). Now, since

rank (A) < min(rank (X),rank (Y)) =1,

we deduce that rank (A) < 1, proving that rank (A) = 1.

2.7.7 Effecting R3 — R1 — R3; aRs — bR2 — R4 successively, we obtain

1T a 1 b 1 a 1 b
a 1 b 1 a 1 b 1
T b 1 a 0 b—a 0 a—Db
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Performing Rz — aR; — Rz; Rs + Rz — R4 we have

_1 a 1 b _
0 1—a? b—a 1—ab
0 0 —a? +2ab —b? 2a—2b—a’®+ ab?
0 0 a’ —b? 2(a—b)

Performing R3 — R4 — R3 we have

_1 a 1 b _
0 1—a? b—a 1—ab
0 0 —2a(a—b) —a(a®?—1b?)
0 0 a? — b? 2(a—b)

Performing 2aRs + (a + b)R3 — R4 we have

-1 a 1 b -
0 1—a’ b—a 1—ab
0 0 —2a(a—b) —a(a? —b?)
0o 0 0 4a* —4ab — a* + a’b? — ba® + ab’
Factorising, this is i i
1 a 1 b
0 1—a? b—a 1—ab
0 0 —2a(a—b) —a(a—b)(a+b)
0 0 0 —a(a+24+Db)(a—b)(a—2+D)

Thus therank is4if (a+2+b)(a—b)(a—2+b) 0. Therankis3ifa+b=2and (a,b) #(1,1) orifa+b =-2
and (a,b) ##(—1,—1). Therankis 2ifa=b 1 and a+—1. Therankis 1ifa=b = £1.

2.7.8 rank (A) = 4 if m® + m? + 2 0, and rank (A) = 3 otherwise.
2.7.9 The rank is 4 if a s/ +b. The rank is 1 is a = £b /0. The rank is O if a =b = 0.

2.7.10 The rank is 4 if (a — b)(c — d) 0. Therankis 2isa=b,c*dorif a ¥b,c=d. Therankis 1 if a =b and
c=d.
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2.7.11 Observe that rank (ABC) < rank (B) < 2. Now,

R;+4+2R1—=R;
~

R3—R;—R3

0 x+2

0

-3

—1

has rank at least 2, since the first and third rows are not proportional. This means that it must have rank exactly

two, and the last two rows must be proportional.

x+2 5

Hence

-3 —1

1
2.7.13 For the counterexample consider A =

2.8.1 We form the augmented matrix

123

2 31

3.1 2

From Rz — 2R; — Rz and Rz — 3R; — Rz we obtain

From R, < R3 we obtain

Now, from R; — Rz — Ry and Rz — 3R> — Rz, we

T33
5§ 2
5250
T2 3
530
5§ 2

obtain

ol =
NI ol
(o]] W

ol
ol
NI

From 4R, — Rz and 4R3 — R3, we obtain

(o]]
=
(o]]

(o]]
(o]]
=

— x=13.

ol

ol

1 =

&

& =

1

& |

ol

S]] |

(o]]

ol

ol

= ol

ol

ol ol

=

ol ol

=

ol ol

Al

ol

ol

(o]

(o]

=

(o]

= Al

&

& Al

Nl
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Finally, from Ry — 3R3 — R3 we obtain

0 0 1|0 4 2
We deduce that 1
12 3 4 20
2317 =203
3.1 2 0 4 2

2.8.2 To find the inverse of B we consider the augmented matrix

Performing R1 + aR2 — R; and R2 — aR3 — R; in succession,

-1 0 b+a*| 0 a 1
0O -1 0 | a 1 0

o 0 1 -1 0 0

Performing Ry — (b + a?)R; — R3, —R1 — Ry and —R2 — R; in succession, we find

1 0 0|]—-b—a* —a -1

01 0 —a -1 0>
0 0 1 —1 0 0
whence
—b—a* —a -1
B'=| ¢ -1 o0
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Now,
_0 0 —1_ -a b c||-b—a’> —a -1
BAB™' = |0 1 a||1 0 0 —a -1 o0

-1 a b0 10 —1 0 0
-0 —1 O- _—b—az —a —1

= -1 a 0 —a —1 0
|0 0 —c|| -1 0 0
-a 1 0

= |b 0 1
Lc 0 0

= AT,

which is what we wanted to prove.

2.8.3 First, form the augmented matrix:

Perform R, — Ry — Rz and Rz — Ry — Rs:

Performing R3 — Rz — Rj:

Finally, performing %Rs — R3:
1 0 0f 1 (VN
o1 0|—-1 1 0
11
X X

2.8.4 Since MM~ =I5, multiplying the first row of M times the third column of M~', and again, the third row of
M times the third column of M~', we gather that

1:-04+0-a+1-b=0, 0:-04+1-a+1-b=1 = b=0,a=1.
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1 0 0 1 0 0
2.8.5 It is easy to prove by induction that A™ = n 1 0o|. Row-reducing, (A™)~' = —n 1 0
nn-+1) Mnm—1n
7 1 7 n 1
0 —1
2.8.6 Take, for example, A = =—A""
1 0

2.8.7 Operating formally, and using elementary row operations, we find

_ a’-1 a’+2a—2 a—2
a2 -5+2a a2 -5+2a aZ—-5+2a

B '=| 2 a+4 1
aZ—5+2a aZ-5+2a aZ—-5+2a

2a ___ 2a+5 a
aZ—-5+2a aZ—-5+2a aZ—5+2a

Thus B is invertible whenever a ¥ —1 + /6.

2.8.8 Form the augmented matrix

a 2a 3a|l1 0 O
0 b 2|0 1 0
0 0 c |0 0 1

Perform ]@;R1 — Ry, ERZ — Ra, %Rg — R3, in succession, obtaining

1 2 3(1/a 0 O
o1 2|0 1/b 0

0 0 1| 0 0 1/c

Now perform Ry — 2Rz — Ry and R2 — 2R3 — R; in succession, to obtain
1 0 —1|1/a —2/a 0
01 0 0 /b —2/c

0 0

Y

0 0 1/c

Finally, perform R; + R3 — R; to obtain

1 0 0{1/a —2/b 1/c

o1 0|0 1/b -2/

0 0 1 0 0 1/c
Whence .
a 2a 3a 1/a —2/b 1/c
0 b 2b =10 1/b —2/c

0 0 ¢ 0 0 1/c
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2.8.9 To compute the inverse matrix we proceed formally as follows. The augmented matrix is

b a 0|1 0 0
c 0 a|0 1T O

0 ¢c b|0 0 1

Performing bR> — cR; — Rz we find

Performing aR3 4+ R2 — R3 we obtain

0O —ca ab |—c b 0

0 0 2ab | —c b a

Performing 2R> — R3 — Rz we obtain

Performing 2cR; + R2 — R; we obtain
2bc 0 0 c b —a
0 —2ca O [—c b —a
0 0 2ab|—c b a

From here we easily conclude that

1 1 a

b a 0 7% ¢ T 7be
= 1 b 1
c 0 a Za ~ 2ac 2c
c 1 1

0 c b —%ba  Za 7%

as long as abc #0.
2.8.10 Since AB is invertible, rank (AB) = n. Thus
n =rank (AB) <rank (A) <n = rank (A) =n,

n =rank (AB) < rank (B) <n = rank (B) =n,

whence A and B are invertible.
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2.8.11 Form the expanded matrix
T+a 1 1 1 0 0

1 1+b 1 01 0

1 1T 14c¢c|0 0 1

Perform bcR; — Ry, abR3 — R3, caRz — R:. The matrix turns into

bc + abe be bc bc O 0
ca ca + abc ca 0 ca O
ab ab ab +abc | 0 0 ab

Perform R; + Rz + R3 — R; the matrix turns into

ab +bc+ca+ abc ab+bc+ca+ abc ab+ bec+ ca+ abec | bc ca ab

ca ca + abc ca 0 ca O
ab ab ab + abc 0 0 ab
Perform mm — Rj. The matrix turns into

1 1 1 bce ca ab
ab+bc+ca+abce ab+bc+ca+abe ab+bc+ca+abce

ca ca+ abc ca 0 ca 0

ab ab ab + abce 0 0 ab

Perform Rz — caR; — Rz and R3 — abR3 — R3. We get

1 1 1 bce ca ab
ab+bc+ca+abe ab+bc+ca+abe ab+bc+ca+abe
abce? c?a? a’be
0 abe 0 ab+bc+ca+abe ca ab+bc+ca+abe ab+bc+ca+abe
ab’c a’be a’b?
0 0 abe ab+bc+ca+abe ab+bc+ca+abe ab ab+bc+ca+abe

Perform -%=R2 — Rz and 54=Rs — Rs. We obtain

1 1 1 be ca ab
ab+bc+ca+abce ab+bc+ca+abce ab+bc+ca+abe
0 1 0| — c 1 _ ca _ a
ab+bc+ca+abce b b(ab+bc+ca+abe) ab+bc+ca+abce
0 0 1|— b — a 1____ _ab
ab+bc+ca+abce ab+bc+ca+abce c c(ab+bc+ca+abe)
Finally we perform Ry — R2 — R3 — Ry, getting
1 0 0 a+b+be _ c _ b
ab+bc+ca+abe ab+bc+ca+abe ab+bc+ca+abe
01 0|— c 1_ ca S —
ab+bc+ca+abe b b(ab+bc+ca+abe) ab+bc+ca+abe
0 0 1| — b _ a 1____ _ab
ab+bc+ca+abe ab+bc+ca+abe c c(ab+bc+ca+abce)
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We conclude that the inverse is

b+ct+be _ c . b
ab+bc+ca+abce ab+bc+ca+abce ab+bc+ca+abe
_ c ct+a+tca . a
ab+bc+ca+abe ab+bc+ca+abce ab+bc+ca+abe
_ b _ a a+b+ab
ab+bc+ca+abe ab+bc+ca+abe ab+bc+ca+abe

2.8.16 Since rank (AZ) <5, A? is not invertible. But then A is not invertible and hence rank (A) < 5.

2.8.17 Each entry can be chosen in p ways, which means that there are p? ways of choosing the two entries of an
arbitrary row. The first row cannot be the zero row, hence there are p> — 1 ways of choosing it. The second row
cannot be one of the p multiples of the first row, hence there are p? — p ways of choosing it. In total, this gives
(p2 — 1)(p* — p) invertible matrices in Zp.

2.8.18 Assume that both A and B are m X n matrices. Let C = [A B] be the m X (2n) obtained by juxtaposing
A to B. rank (C) is the number of linearly independent columns of C, which is composed of the columns of A and
B. By column-reducing the first n columns, we find rank (A) linearly independent columns. By column-reducing
columns n + 1 to 2n, we find rank (B) linearly independent columns. These rank (A) + rank (B) columns are
distinct, and are a subset of the columns of C. Since C has at most rank (C) linearly independent columns, it
follows that rank (C) < rank (A) + rank (B). Furthermore, by adding the n + k-column (1 < k < n) of C to the
k-th column, we see that C is column-equivalent to [A + B B]. But clearly

rank (A + B) < rank ([A + B B]) =rank (C),
since [A + B B] is obtained by adding columns to A + B. We deduce
rank (A + B) < rank ([A + B B]) =rank (C) < rank (A) + rank (B),
as was to be shewn.

2.8.19 Since the first two columns of AB are not proportional, and since the last column is the sum of the first two,
rank (AB) = 2. Now,

Since BA is a 2 X 2 matrix, rank (BA) < 2. Also,
2 - rank (AB) = rank ((AB)Z) - rank (A(BA)B) < rank (BA),
whence rank (BA) = 2, which means BA is invertible. Finally,
(AB)? —AB=0; — A(BA—1,)B=0; — BA(BA —I,)BA =BO;A — BA — L = 0;,
since BA is invertible and we may cancel it.

3.1.1 The free variables are z and w. We have

2y+w=2 = 2y=2—w = y=1+w,

and B B B B
X+y+z4+w=0 = x=—y—z—w=2y+2z+2w.

Hence o o o o

x 0 0 0

yl |7 0 0

= +z +w
z 0 1 0
w 0 0 1

This gives the 9 solutions.
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3.1.2 We have

Nl
Wl
=
«<
Il
N

wl
=
Nl
N
o

Hence . )
x 12 3 5 4 2 0| |5 4
y|=12 3 7| |[6|-1]2 0 3||e|-|3
z 3.1 2 0 0 4 2| |0 [3
3.1.3 The augmented matrix of the system is
T 275 T 27 |5 ]

R3—5R;—R3
Y

NI
NI
ol
N
ol
ol
|
N
|
w

R, —2R;—R,

al
|
w
N
=
o
N
[
—
NI

1 -2 1 |5
6R3—7R,R3 _ _ _
~ 0 6 —2 | -3
00 8 |7

Backward substitution yields

82=7 = 5.82=5.7 — z=35=9,
Gy-2:-3-2.95-3-T5-2 — T1.6y=-T1-2 — y-22-79,
x=2y—1z+5=2-9—-1-9+5=14=1
Conclusion :
x=1, y=9, z=9
Check:
7-2.9+9--8%5,
2.7+2.9-2017,
5.7-3.943.9-T4%7.
3.1.4 We need to solve the system
a—b+c—d=p(—1)=-10,
a=p(0)=—1,
a+b+c+d=p(1)=2
a—+2b +4c+8d=p(2) =23.
Using row reduction or otherwise, we find a = —1, b = 2, ¢ = —3, d = 4, and so the polynomial is

p(x) =4 —3x% +2x — 1.
3.1.5 Using the encoding chart

0 1 2 3| 4 5 6 71 8 2 {10 11|12

A|lB|C|DJEI|F|G|H|TI|T|K|]L|M

13|14 || 15 (|16 || 17 || 18 |[ 19 || 20 || 21 | 22 || 23| 24| 25
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we find

Thus
20 U 18
APz=110| = |K|> APs= |24

0 A 12

Finally, the message is encoded into

) 18
, Pa=|E| = |24
A 0
4| |E

OGY UKA SYM ECA OFK APW.

3.1.6 Observe that since 103 is prime, Zq03 is a field. Adding the first hundred equations,

100x0 + X1 + X2 4+« + X100 = 4950 = 99%0 =4950 — 4949 =1 = x0 =77 mod 103.

Now, for 1 < k < 100,

This gives

xk=k—1—x0=k—78=%k+ 25.

X1 =26,X2 =27,...,X77 = 102,7(78 =0,X79 = 1,X30 =2,...,X1oo =22.

3.3.1 Observe that the third row is the sum of the first two rows and the fourth row is twice the third. So we have

Rearranging the rows we obtain

R3—R;—R,—Rj3
o
R4 —2R;—2R,—Ry

R;—R5—=R,
A
R;—R5—R;y

1

1
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Hence d and f are free variables. We obtain

c=—1,
b=1—c—d=2-4d,
a=—f.
The solution is - o L _
a 0 0 —1
b 2 —1 0
c|=|-1|+d|lo|+f|o
d 0 1 0
f 0 0 1

3.3.2 The unique solution is | _1

1

3.3.3 The augmented matrix of the system is

2m 1 1 2

Performing R < Ra.

Performing R, < Rs.

2m 1 1 2

Performing R — R1 — Ry and R3 — 2mR; — R3 we obtain

1 2m 1 4m
0 1—2m 2m—1|2m? —4m

0 1—4m? 1—2m | 2—8m?
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Ifm-= 17 the matrix becomes

[S)
[
[

|

Nlw

0 0 0] O

and hence it does not have a solution. If m + 1, by performing ﬁRz — Rz and ﬁR3 — R3, the matrix becomes

1 2m 1 4m
2m(m—2)
0 1 —1 %

0 1+2m 1 |2(1+2m)

Performing Rz — (1 + 2m)R2 — R3 we obtain

1 2m 1 4m
2m(m—2)
0 1 —1 =

2(1+2m)(1—m?)
0 0 242m — S

If m = —1 then the matrix reduces to

The solution in this case is

x z
y| = |12+z
z z
IFm<—1ms+ —% we have the solutions
x m
yl =
2] [y

3.3.4 By performing the elementary row operations, we obtain the following triangular form:
ax+y—2z=1,

(a—1y+(1—a)a—2)z=1—a,

(a—2)z=0.
If a = 2, there is an infinity of solutions:
x 14+t
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Assume a #2. Then z = 0 and the system becomes
ax+y=1,
(a—1)’y=1—aq,
2x+(3—a)y=1.
We see that if a = 1, the system becomes
x+y=1,
2x+2y =1,
and so there is no solution. If (a — 1)(a — 2) /0, we obtain the unique solution

x a—1
= 1

Y Ta—1

z 0

I“‘

X

m—2
3.3.5 The system is solvable if m /0, m # 42. If m 2 there is the solution y| = m_g
z] =
X a+d+b—c
y —c—d—b+a
3.3.6 There is the unique solution =
z d+c—b+a
t c—d+b+a

3.3.7 The system can be written as

0 ¢ bf |z a
The system will have the unique solution
- -1
X b a 0 c
y = c 0 a b
z 0 ¢ b a

1
76 Zc ~2ve| | €
= 1 b 1
36— Zac 3¢ bl >
c 1 1
7ba Za 76 a
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as long as the inverse matrix exists, which is as long as abc 0

3.3.8 We first form the augmented matrix,

1—a 2a+1 2a+4+2|a 1 3a+1 2a+2|3a+2
R;+R,—R;
a a 0 2a+2 ~ a a 0 2a+2
2 a+1 a—1 |a®>—2a+9 2 a+1 a—1 |a*—2a+9
1T 3a+1 2a+ 2 3a+2

R>—aR;—R;,
A

2 2 2
Ry 2Ry R 0 —3a —2a° —2a | —3a” +2

0 —5a—1 —3a—5 a?—8a+5

After (—5a — 1)R2 + 3a?R3 — R3, this las matrix becomes

1 3a+1 2a+2 3a+2
0 0 a®—3a>+2a|3a*—9a®>+18a? —10a—2
0 —5a—1 —-3a-—5 a?—8a+5

Exchanging the last two rows and factoring,

1 3a+1 2a+2 3a+2
0 —5a—1 —-3a-—5 aZ—8a+5
0 0 ala—1N(a—2)| (a—1)3a® —6a’+12a + 2)

Thus we must examine a € {1,2,3} and a € {0, 1, 2}.

Clearly, if a(a — 1)(a — 2) /0, then there is the unique solution

,_2+12a—6a’ +3d’ 20> —3a’ +6a+10 .20 —a’+4a+6
- ala—2) ¥ ala—2) : - ala—2)

If a = 0, the system becomes
x+y+2z=0, 0=2, 2x+y—2z=0,

which is inconsistent (no solutions).

If a = 1, the system becomes
3y+4z-=1, x+y=1, 2x + 2y =8,

which has infinitely many solutions,

If a = 2, the system becomes
—Xx+5y+6z=2, 2x+2y =26, 2x+3y+z=9,
which is also inconsistent, as can be seen by observing that
(—x+5y+6z)—6(2x+3y+2)=2—18 = —13x — 13y = —18,

which contradicts the equation 2x + 2y = 6.
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3.3.9
x = 2723°
y _ 2—3312
z = 22377,

3.3.10 Denote the addition operations applied to the rows by ai, a2, az, as and the subtraction operations to the
columns by b1, bz, bs, bs. Comparing A and AT we obtain 7 equations in 8 unknowns. By inspecting the diagonal
entries, and the entries of the first row of A and A", we deduce the following equations

a; = by,
az = ba,
az = bs,
as = ba,
a; — bz =3,
a; —bz =6,
a; —bg =9.

This is a system of 7 equations in 8 unknowns. We may let as = 0 and thus obtain a; = by = 9, az = b2 = 6,
az=b3=3,as=bs=0.

3.3.11 The augmented matrix of this system is

Permute the rows to obtain

1 0 0o 1 —y |o
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Performing Rs — Rz — Rs and R4 + yR2 — R4 we get

10 0 1 —y |0
01 —y 1 o |o
00 1 —y 1 |0

0 0 1—y*> y—1 y 0

00 y y—1 1—y? |0

10 0 1 —y 0
01 —y 1 0 0
00 1 —y 1 0

Performing Rs 4+ Rs — Rs we get

_1 0 0 1 —y o_
01 —y 1 0 0
00 1 —y 1 0
00 0 —yd+2y—1 vy +y—1]0
00 0 —y +y*+3y—2 0 0

Upon factoring, the matrix is equivalent to

10 0 1 —y 0
01 —y 1 0 0
00 1 —y 1 0

00 0 —(y—NMy?+y—1) y*+y—11|o0

00 0 —(y—2W+y—1 0 0

Thus (y — 2)(y? +y — 1)x4 = 0. If y = 2 then the system reduces to

10 0 1 =2|0

o1 -2 1 0|0
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In this case xs5 is free and by backwards substitution we obtain

_x1_ _t_
X2 t
x3| = |t|» tE€ R.
X4 t
_XS_ _t_

If y> +y — 1 = 0 then the system reduces to

In this case x4, x5 are free, and

X1 yt—s
X2 y’s—yt—s

2
x3| = ys—t , (s,t) € R°.
X4 S
X5 t

Since y?s —s = (y? +y — 1)s — ys, this last solution can be also written as

_x1- _ yt—s -

X2 —ys —yt

xs| = | ys—t |> (s,t) € R%.
X4 S

_xs_ i t

Finally, if (y — 2)(y®> +y — 1) 0, then x4 = 0, and we obtain

_X1 : _o_
X2 0
x3| = |0
Xa 0
kel _0_
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4.1.1 No, since 15V = V is not fulfilled. For example

4.1.2 We expand (1r + 17)(d + E’) in two ways, first using 4.7 first and then 4.8, obtaining
(e +1)(@+6)=(Te+1e)d+ (Ts+15)b=d+d+ b+ D,

and then using 4.8 first and then 4.7, obtaining
(Te+1e)(d+0)=1s(d+b)+1:(d+b)=d+b+d+b.

We thus have the equality o . .
d+d+b+b=d+b+d+b.
Cancelling d from the left and E} from the right, we obtain

d+b-b+74,
which is what we wanted to shew.

4.1.3 We must prove that each of the axioms of a vector space are satisfied. Clearly if (x,y, ) € RT x R* x R then
xPy=xy>0and a®x =x*>0, so V is closed under vector addition and scalar multiplication. Commutativity and
associativity of vector addition are obvious.

Let A be additive identity. Then we need
XPDA=x — xA=x — A=1.

Thus the additive identity is 1. Suppose I is the additive inverse of x. Then

xPl=1 = xI=1 = I=3—<.

1
Hence the additive inverse of x is <

Now
a® (x@y)=xy)*"=x"Y* =x"Py" = (a®x) B (a®y),
and
(a+B)@x=x""P=x% = (x)® (x*) = (¢« ®@x) ® (B %),

whence the distributive laws hold.

Finally,
TRx= x' = X,

and
a®@(BR®x)=(BRX)*=xP)*=x* = (af) @ x,

and the last two axioms also hold.

4.1.4 C is a vector space over R, the proof is trivial. But R is not a vector space over C, since, for example taking
i as a scalar (from C) and 1 as a vector (from R) the scalar multiple i-1 =i ¢ R and so there is no closure under
scalar multiplication.

4.1.5 One example is

ol (ol |o| |of |[T1| (7| (7| |7
(z2)* =< 15!, |al, |7l |7, |8], |8, |7, |7
ol (7| (o (7| o] [7]| o] |7

Addition is the natural element-wise addition and scalar multiplication is ordinary element-wise scalar multiplica-
tion.
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4.1.6 One example is

ol
ol
ol
=
=
=
Nl
Nl
Nl

2
(Z3) = ) ) ) ) ) ) ) )

o

=
Nl
ol
=
Nl
ol
=
Nl

Addition is the natural element-wise addition and scalar multiplication is ordinary element-wise scalar multiplica-
tion.

4.2.1 Take « € R and

a a’
b b’
X = €EX, a—b—3d=0, Y= €X, a’'—b’—3d’ =0.
c c’
d d’
Then - o ) )
a a’ a—+ aa’
- b b’ b + ab’
X+oy=| |+« -
c c’ c+ ac’
d da’ d+ ad’

Observe that
(a+aa’)—(b+ab’)—3(d+ad’)=(a—b—3d)+ax(a’—b’—3d") =0+ «0 =0,

meaning that X + cxﬁ € X, and so X is a vector subspace of R?.

4.2.2 Take ) ) ) )
ai az
2a; — 3by 2az — 3b>
U = 5b, ,7= 5b, , x€R.
ar + 2b; az + 2b>
ar az
Puts = a1 + aaz,t = b1 + abz. Then ) - ) -
- a1 + xaz - [ s _

2(a1 + aaz) — 3(b1 + abz) 2s — 3t

U+ v = 5(b1 + abz) = 5t eX,
(a1 + xaz) + 2(b1 + abz) s + 2t
a1 + xaz S

since this last matrix has the basic shape of matrices in X. This shews that X is a vector subspace of R’.

4.2.7 We shew that some of the properties in the definition of vector subspace fail to hold in these sets.
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0 0
0 Take X = |1|, «=2.Then X € Vbut 2X = |2| € V as 0> + 2% =4 /1. So V is not closed under scalar

0 0

multiplication.
0 1 1
0 Take X = 1 Y = 0 .ThenX¥ e W, ¥y e Whut X + 7 = 1| €Was1:1=1+0.Hence W is not closed

0 0 0
under vector addition.

-1 1 -1 1 1 -1
0 Take X = .ThenX € Zbut —x = — = g Zas 1+ (—1)2 =2 0. So Z is not closed

0 0 0 0 0 0

under scalar multiplication.

4.2.8 Assume U; ¢ U; and U; ¢ Uy. Take ¥V € U, \ Uy (which is possible because U; ¢ U;) and ¥ € U; \ U,
(which is possible because U, ;(_ u,). If U+V e U4, then—as —1 is also in U —the sum of two vectors in U; must

also be in U, giving
U+V-u=Veu,
a contradiction. Similarly if U +7V € Uz, then—as —V also in U,—the sum of two vectors in U, must also be in U,

giving
U+V—U=u€ Uy,

another contradiction. Hence either U; C U; or U, C U, (or possibly both).

4.2.9 Assume contrariwise that V = U; [JUz {J- - - |J Ux is the shortest such list. Since the U; are proper subspaces,
k> 1. Choose X € Uy, X ¢ uzg---uuk and choose ¥ ¢ U;. Put L = {§ + oiX|a € F}. Claim: L(\U; = . For if
Uel (UW; then Jao € F with U = Y +aoX andso Y =U —agX € Uy, a contradiction. So L and U, are disjoint.

We now shew that L has at most one vector in common with U;,2 < j < k. For, if there were two elements of F,
a b with Y + aX, Y + bX € U;,j > 2 then

(a—b)¥X = (¥ +aX) — (§ +bX) € Uj,

contrary to the choice of X.

Conclusion: since F is infinite, L is infinite. But we have shewn that L can have at most one element in common
with the U;. This means that there are not enough U; to go around to cover the whole of L. So V cannot be a finite
union of proper subspaces.

4.2.10 Take F=7Z,,V =F X F. Then V has the four elements

ol (o] |T] |7
ol (1] |o] |7
with the following subspaces
o| |0 ol |1 ol |1
Vi = ) ) Vv, = y y V3 = y
ol |1 ol |0 ol |7

It is easy to verify that these subspaces satisfy the conditions of the problem.
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4.3.1If o
1 1 1
H
alo| +b|1| +c|1| =0,
0 0 1
then -
a+b+c 0
b+c =10
c 0
This clearly entails that ¢ = b = a = 0, and so the family is free.
4.3.2 Assume - L L - -
1 1 1 1 0
1 1 —1 1 0
a +b +c +d =
1 —1 1 0 0
1 —1 —1 1 0

Then
a+b+c+d=0,
a+b—c+d=0,
a—b+c=0,
a—b—c+d=0.
Subtracting the second equation from the first, we deduce 2c = 0, that is, ¢ = 0. Subtracting the third equation from

the fourth, we deduce —2c¢ + d = 0 or d = 0. From the first and third equations, we then deduce a +b = 0 and
a — b =0, which entails a = b = 0. In conclusion, a=b=c=d =0.

Now, put

Then

Solving as before, we find

N| =
N| =
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4.3.5 We have -
(V1 +V2) = (V2+V3) + (Vs +Va)— (Va+V1)=0,

a non-trivial linear combination of these vectors equalling the zero-vector.

4.3.7 Yes. Suppose that a + b+/2 = 0 is a non-trivial linear combination of 1 and /2 with rational numbers a and
b. If one of a, b is different from O then so is the other. Hence

a+bv2-0 = f:—g.
The sinistral side of the equality v/2 = —g is irrational whereas the dextral side is rational, a contradiction.

4.3.8 No. The representation 2 -1 + (—+/2)v/2 = 0 is a non-trivial linear combination of 1 and v/2.

4.3.9 1. Assume that
a+b\/§—|—cx/§=0, a,b,c, e @,az—i—b2 + c? 0.
If ac #0, then
2 _ 2 >, 2b%2—a?—3c?
bv2=—a—cV3 & 2b?=a®+2acV3+3c* & T=\/§.
The dextral side of the last implication is irrational, whereas the sinistral side is rational. Thus it must be the
case that ac =0.If a =0, ¢ 0 then

b\/z+cx/§=0(:)—%=\/§,
and again the dextral side is irrational and the sinistral side is rational. Thus if a = 0 then also ¢ = 0. We can
similarly prove that c = 0 entails a = 0. Thus we have

bv2 =0,
which means that b = 0. Therefore
a—|—b\/§+0\/§=0,a,b,c,€@, Sa=b=c=0.
This proves that {1, V2,4/3} are linearly independent over Q.

2. Rationalising denominators,

1,2 B 1+\/Z+2\/12+4
1—v2 V12-2 1-2 12—4
1 1
= 1-VZ+3V3+5

1 1
= —E—\/Z—FE\/g.

4.3.10 Assume that

ae® +be” + ce®* = 0.
Then

c=—ae **—be .
Letting x — +o0, we obtain ¢ = 0. Thus
ae® + be? =0,
and so
b=—ae "

Again, letting x — 400, we obtain b = 0. This yields

ae* =0.

Since the exponential function never vanishes, we deduce that a = 0. Thus a = b = ¢ = 0 and the family is linearly
independent over R.

4.3.11 This follows at once from the identity
cos 2x = cos’ x — sin? X,

which implies
cos 2x — cos’ x + sin’ x = 0.
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4.4.1 Given an arbitrary polynomial
p(x) =a+ bx + ex? + dx?,

we must shew that there are real numbers s, t, u, v such that
P(x)=s+t(14+x)+u(l+x)>+v(1+x)°.
In order to do this we find the Taylor expansion of p around x = —1. Letting x = —1 in this last equality,
s=p(—1)=a—b+c—deR.
Now,

p’(x) =b + 2cx + 3dx? =t + 2u(1 +x) + 3v(1 +x)°.

Letting x = —1 we find
t=p'(—1)=b—2c+3deR.

Again,
p”(x) =2¢c+ 6dx = 2u + 6v(1 +x).

Letting x = —1 we find
u=p”(=1)=c—3deR.

Finally,
P’ (x) =6d = 6v,

so we let v=d € R. In other words, we have
px)=a+bx+cex’+dx>=(a—b+c—d)+ (b—2c+3d)(1+x) + (c—3d)(1 +x)* + d(1 +x)>.

4.4.2 Assume contrariwise that

Then we must have

a=1,
b=1,
—a—b=-1,
1 1 0 1 0
which is impossible. Thus | 1 | is not a linear combinationof | ¢ [, | 7 | and hence is not in span ol»|1
—1 —1 —1 —1 —1
4.4.3 Itis
1 0 0 0 0 1 a c¢
a +b +c = ,
00 0 1 -1 0 —c b

i.e., this family spans the set of all skew-symmetric 2 X 2 matrices over R.

4.5.1 We have

_ a | _1_ _o_
2a—3b 2 -3
5b =alo| +b|5],
a+2b 1 2
I a | _1_ _0_
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so clearly the family

_1_ _o_
2 -3
O[> | 5
1 2
1 0

spans the subspace. To shew that this is a linearly independent family, assume that

_1- - 0 - -0-
2 -3 0
afol+b|{5]|=10
1 2 0
_1_ I 0 | _O_

Then it follows clearly that a = b = 0, and so this is a linearly independent family. Conclusion:

_]_ _0_
2 -3
O[> | 5
1 2
1 0

is a basis for the subspace.

4.5.2 Suppose

ol

a(V1+V2) +b(V2+V3) + (V3 +Va) + d(Va +Vs) + (Vs + V1)

(a+fVi+ (a+b)V2+ (b+c)Vs + (c+ d)V4 + (d + f)Vs.

Since {7 1 ,72, - ,75} are linearly independent, we have

a+f=0,
a+b=0
b+c=0
c+d=0
d+f=0.

Solving we find a = b = ¢ = d = f = 0, which means that the
(V1 + V2, Va4 V3, V3 + Va4, Va + V5, Vs + V1)

are linearly independent. Since the dimension of V is 5, and we have 5 linearly independent vectors, they must also
be a basis for V.
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4.5.3 The matrix of coefficients is already in echelon form. The dimension of the solution space is n — 1 and the
following vectors in R?™ form a basis for the solution space

—1 —1 - -
-1
1 0
0
0 1
1
0 0
a = y az = s vy an—-1 = [ -1
-1 -1
0
1 0
0 1
0
1
0 0 ST

(The “second” —1 occurs on the n-th position. The 1’s migrate from the 2nd and n + 1-th position on a; to the
n — 1-th and 2n-th position on an—1.)

4.5.4 Let AT = —A and B' = —B be skew symmetric n X n matrices. Then if A € R is a scalar, then
(A +2AB)" = —(A + AB),

so A + AB is also skew-symmetric, proving that V is a subspace. Now consider the set of

1+2+---+(n—1)=@
matrices Ak, which are 0 everywhere except in the ij-th and ji-spot, where 1 <i<j <n,ay=1=—aqajiandi+j =Kk,
3 <k <2n—1. (In the case n = 3, they are

0o 10 0o 0 1 0o 0 0
-1 0 0 ) 0o 0 0 » 00 1 )
0o 0 0 -1 0 0 0o -1 0
for example.) It is clear that these matrices form a basis for V and hence V has dimension @

4.5.5 Take (U, V) € X? and « € R. Then

a a
b b’

U= , b+2c=0 V= , b’ +2¢' =0.
c c’
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We have

a+ aa’
b+ ab’
74—0&7:

c+ ac’

d+ ad’

and to demonstrate that U + oV € X we need to shew that (b + ab’) + 2(c + ac’) = 0. But this is easy, as
(b+ab’)+2(c+ac’)=(b+2¢c)+ (b’ +2¢') =0+ a0 =0.

Now L _ _ o _ _ -
a a 1 0 0
b —2c 0 -2 0
= =a +c +d
c c 0 1 0
d d 0 0 1
It is clear that o ) -_ _ _- ) o : ) .
1 0 0
0 -2 0
0 1 0
0 0 1

are linearly independent and span X. They thus constitute a basis for X.

4.5.6 As a basis we may take the w

4.5.7 dim X = 2, as basis one may take {\)_1),\)_2)}.

matrices Eyj; € Mn(F) for1 <i<j<n.

4.5.8 dim X = 3, as basis one may take {V_]),V_z),v_g,)}.
4.5.9 dim X = 3, as basis one may take {v_f,v_},v_;}.

4.5.10 Let A € R. Observe that

a b ¢ a’ b’ ¢ a+Aa’ b+ Ab’ c+Ac’
0 d f|TA|o a |-~ 0 d+Ad’ £+ A’
0 0 g 0o o0 ¢’ 0 0 g+ Ag’

andifa+b+¢=0, a+d+g=0, a’+b’'+c¢’'=0, a’+d" +g¢g’=0,then
a+Aa’+b+Ab ' +c+Ac’=(a+b+c)+A(a"+b" +c')=0+2A0=0,
and
a+Aa’+d+Ad"+g+Ag'=(a+d+g)+A(a"+d" +g')=0+2A0=0,
proving that V is a subspace.

Now,a+b+c=0=a+d+g = a=—-b—c,g=b+c—d. Thus
a b ¢ —b—c b c -1 1 0 -1 0 1 00 0 0 0 0
0 da f|-= 0 d f =blo o0 o|l*+c|o o0 ol*+djo 1 of|+Tlo o0 1

0 0 g 0 0 b+c—d 0 0 1 0 0 1 0 0 —1 0 0 0
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It is clear that these four matrices span V and are linearly independent. Hence, dimV = 4.

4.6.1 1. It is enough to prove that the matrix

1T -1 =1 1

A’ = =414,

whence the inverse sought is

11 1T 1/4 1/4  1/4  1/4
11 =1 —1 /4 1/4 —1/4 —1/4
1T -1 1 -1 1/4 —1/4 1/4 —1/4

1T -1 =1 1 1/4 —1/4 —1/4 1/4

2. Since the dy are four linearly independent vectors in R?* and dimR* = 4, they form a basis for R*. Now, we
want to solve

X 1 1 1 1 X 1

y 1T 1 =1 —1| |y 2

A — =
z 1 =1 1 —1 z 1
w 1T -1 -1 1 w 1
and so o o _ o - - -
X 1 1/4 1/4 1/4 1/4 1 5/4
y , 2 1/4 1/4 —=1/4 —-1/4| |2 1/4
= A~ = =
z 1 1/4 —1/4 1/4 —-1/4| |1 —1/4
w 1 1/4 —1/4 —-1/4 1/4 1 —1/4
It follows that o o o o _ .
1 1 1 1 1
2 5 1 N 1 1 1 -1 1 -1
4 4 4 4
1 1 -1 1 -1
1 1 -1 -1 1
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The coordinates sought are
51 1.1
44 4 4)°

3. Since we have

1 1 1 1 1
2 5 1 1 —1 +1 1 1 —1
4 4 4 4 ’
1 1 1 —1 —1
1 1 —1 —1 1
the coordinates sought are
> 111
4 4’4 4)°
o -
a—1 0 0 Ta—1
—1 1—a -1 a—+1
4.6.2 [1]a=1,12] (A(a))"' = [3]
_ ] —1 0 a
a—1 a—1
1 a 1 —a—1
[ 1 1 1]
0 a—1 a—1 a—1
0 —a—1 —a —1
a a 1
O ==a=7 “a=7 “a=i
1 2+a a—+1 1
5.1.1 Let « € R. Then
X + aa (x +axa) — (y + ab) — (z + «c)
Liy+ab| = |(x+ aa)+ (y+ ab) + (z+ ac)
z+ ac z+ ac
X—Yy—2z a—b—c
= |x+y+z| TX|la+b+c
z c
X a
= L y +al |p],
z c

proving that L is a linear transformation.
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5.1.2

L(H+ aH’) —A""(H+ aH)H)A™!

= —ATTHA T4+ a(—A"TH'AT)

= L(H) + aL(H'),
proving that L is linear.
5.1.3 Let S be convex and let ﬁ,? € T(S). We must prove that Va € [0; 1], (1 — cx)ﬁ + cx? € T(S). But since 7,?
belong to T(S), Ix e S,ﬁ € S with T(?) =?,T(ﬁ) =3>. Since S is convex, (1 — cx)? + cxﬁ € S. Thus
T((1— ¥ + o) € T(S),

which means that
(1— ) T(X) + «T(Y) € T(S),
that is,
(1—a)d +ab € T(S),
as we wished to show.

X

5.2.1 Assume y| € ker (L). Then

z
x 0
L yl = (0]
z 0
that is
x—y—z=0,
x+y+z=0,
z=0.

This implies that x —y =0 and x +y = 0, and so x =y = z = 0. This means that

0

ker (L) = 0 ,

0
and L is injective.

By the Dimension Theorem 244, dimIm (L) = dim V — dimker (L) = 3 — 0 = 3, which means that

Im (L) = R®
and L is surjective.
5.2.2
1. If a is any scalar,
x x’ x + ax’ x x’
y y’ y+ay’ (x+ax’) + (y + ay’) x+y x' +y’ y y’
L +a =L = = +a =L +aL ,
z z’ z+ az’ (x +ax’) — (y + ay”’) X — x' —y’ z z’
Yy Yy Yy Yy
w w’ w+ aw’ w w’
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whence L is linear.

2. We have,
X 0
y x+y 0 0
L = = = x=yYy,x=—Yy — x=y=0 = ker(L) = :zeRweR
z X—y 0 z
w w

Thus dim ker (L) = 2. In particular, the transformation is not injective.

3. From the previous part, dimIm (L) = 4 — 2 = 2. Since Im (L) C R? and dimIm (L) = 2, we must have
Im (L) = R%. In particular, the transformation is surjective.

a

5.2.3 Assume that |y | € ker (T),

c 0 0 1
Then o
0
a
0
0
c
0
1 1 0

(a—=b)T |g| +bT |1| +¢cT |o

0 0 1
_1_ _2_ _1_
0 —1 —1
- (a—0) +b +c
—1 0 1
0 0 0
-a—l—b—l—c-
—b—c
—a+b+c
0
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It follows that a = 0 and b = —c. Thus

and so dimker (T) =1.

By the Dimension Theorem 244,
dimIm (T)=dimV —dimker (T)=3—1=2.

We readily see that

2 1 1
—1 0 —1
= —|— s
0 —1 1
0 0 0
and so -
1 1
0 —1
Im (T) = span ,
—1 1
0 0
5.2.4 Assume that
x+2y 0
X
L =|x+2y| = |0
y
0 0
Then x = —2y and so
X -2
=y
y 1

This means that dimker (L) = 1 and ker (L) is the line through the origin and (—2,1). Observe that L is not
injective.

a

By the Dimension Theorem 244, dimIm (L) = dimV — dimker (L) = 2 — 1 = 1. Assume that |p| € Im(L).

Then 3(x,y) € R? such that

X + 2y a

L = [(x+2y| = |b
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This means that

a x+ 2y 1

b| = |x+2y| =x+2y) |1

c 0 0
Observe that L is not surjective.
5.2.5 Assume that
X—y 0
x
L = [x+vy 0
Y
0 0
Then x +y = 0 = x — y, that is, x = y = 0, meaning that
0
ker (L) = ,
0

and so L is injective.

a

By the Dimension Theorem 244, dimIm (L) = dimV — dimker (L) = 2 — 0 = 2. Assume that |p| € Im(L).

Then 3(x,y) € R? such that

- xX—y a
X
L =|x+y| = |b
Yy
B 0 c
This means that ) ) )
a xX—Uy 1 —1
b| = [x+y| =X|1]| TY|1
c 0 0 0
Since )
1 -1
T[] 1
0 0

are linearly independent, they span a subspace of dimension 2 in R, that is, a plane containing the origin. Observe
that L is not surjective.

5.2.6 Assume that
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3
Then y = 2z;x = y + z = 3z. This means that ker (L) =<z (2| : z €R ;. Hence dimker (L) = 1, and so L is not
1
injective.
Now, if
x -
X—y—z a
L y| = =
y—2z b
. J
Then ) )
a X—y—z 1 —1 —1
= =X +y +z
b y—2z 0 1 -2
Now,
1 —1 —1
—3 2 =
0 1 -2
and

are linearly independent. Since dimIm (L) = 2, we have Im (L) = R?, and so L is surjective.

5.2.7 Assume that

a b
0=tr =a+d.
c d
Then a = —d and so,
a b —d b -1 0 01 0 0
- -d +b +c ,
c d c d 0 1 0 0 1 0

5.2.8 1. Let (A,B)? € M2x2(R), & € R. Then

L(A + aB) (A+aB)" + (A + aB)
= AT+B" +A+aB

= AT+A+aB" + aB

= L(A) + oL(B),

proving that L is linear.
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5.2.9

ad

a b
Assume that A = € ker (L). Then
c d
0 0 a
=L(A) =
0 0 c
whence a=d =0 and b = —c. Hence

and so dimker (L) = 1.

a c 2a

By the Dimension Theorem, dimIm (L) =4 — 1 = 3. As above,

2a

L(A)
b+c

Il
e

from where

0 Observe that

b+c

b+c
2d
0 1
+ (b+c¢) +d
1 0
2 0 0 1 0 0
0 0 1 0 0 2

(I—T)Y=1—-2T+T°=1—-2T+T=1—T,

proving the result.

The inverse is I — %T, for

1
I+ (I —3T) =1+T—5T—

proving the claim.

0 We have

5.3.1

X € ker (T)

Observe that

a 1 1

b 1 0

1

rvuv7e

=d + (2a—c—0b) +(—d —2a+2c+Db)

1

2— —
ST =1+T

1 1

X —T(X) € ker (T)

I(¥X) —T(X) € ker (T)

(I—T)(¥) € ker (T)

XeIm(I-T).

+ (—a+c)
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Hence o - - o L
a 1 1 1 —1
b 1 0 1 -2
T = daT + (2a—c—0b)T +(—d—2a+2c+b)T + (—a+c)T
[ 1 1 1 0
d 1 0 0 0
0 1 0 1
= d|g|+R2a—c—b)| 1 |+(—d—2a+2c+Db)| o |+ (—a+c)|]
1 —1 —1 1
a—>b
= a—>b
—a+2d
This gives - - - -
1 0 0 0
1 —1 0 0
0 1 0 0
T =11/, T =|=1|, T =lo|, T =10
0 0 1 0
—1 0 0 2
0 0 0 1

The required matrix is there%o-re
1 —1 0 0
1 —1 0 0
-1 0 0 2

1 —1
This matrix has rank 2, and so dimIm (T) = 2. We can use 11, =1 as a basis for Im (T). Thus by the
-1 0

a 2d
0 a—b
b 2d
dimension theorem dimker (T) = 2. If |o| =T = a—b |.Hence the vectors in ker (T) have the form
c c
0 —a+2d
d d
2 0
2 0
and hence we may take , as a basis for ker (T).
0 1
1 0
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5.3.2 1. Since the image of T is the plane x + y + z = 0, we must have

1

2. Observe that |1| € ker (T) and so

Thus

The required matrix is therefore

a+04+1=0 = a=-1,

3+b—5-0 = b-2,

—14+2+c¢c=0 = c=-—1.

1 0
Tl =0
1 0
1 2 1 3
oj=T|1|=Tl11=1]2
0 1 1 -5
0 1 1 —1
11=T|2|=Tl1|=]2
0 1 1 —1
0 1 1 —1
oj=Tl1|=Tl1|=1o0
1 2 1 1
3 -1 1
2 2 0
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5.3.3 1. Let @« € R. We have
X u X+ oau
T + = T
y v Y+ av
X+ au+y+ av

= X+ oau—y—av

2(x + au) + 3(y + av)

X+y u+v

= x—y | tT&®| u—v

2x + 3y 2u + 3v
X u
= T + T ,
Y v
proving that T is linear.
2. We have
0 x+y 0
X
T =10 — xX—y =10 — x=Yy-= 0,
Y
0 2x 4+ 3y 0

dimker (T) = 0, and whence T is injective.
3. By the Dimension Theorem, dimIm (T) =2 — 0 = 2. Now, since

x+y 1 1
X
T =| x—y | =*|1|tY|-1|>
Yy
2x + 3y 2 3
whence )
1 1
Im (T) = span 11, =1
2 3
4. We have L - o o _ -
3 1 1 0 11/2
1 11 5 13
T |- =7 |1 30|75 |1~ |-5/2| >
2
8 1 —1 0 —13/2
L~ L L L L ]
and L o o - _ -
4 1 1 0 15/2
1 15 7 19
T =|(=2{ =32 |1 20|~ 1| |72
3
11 1 -1 0 —19/2

PB




236 Appendix A

The required matrix is

11/2  15/2
—5/2  —7/2
—13/2 —19/2

B

5.3.4 The matrix will be a 2 x 3 matrix. In each case, we find the action of L on the basis elements of R® and express
the result in the given basis for R>.

1. We have
1 0 0
1 2 0
L||ol|= L1 | = Lo | =
3 0 —1
0 0 1
The required matrix is
1 2 0
3 0 —1
2. We have
1 1 r 1
1 3 3
L 0 = ,L 1 = ,L 1 =
3 3 2
0 0 ) 1
The required matrix is
1 3 3
3 3 2
3. We have i
1 - - - -
1 1 1 —2
L] o] |= =2 +3 = ,
3 0 1 3
o i i - W
] - - - - - - - -
3 1 1 0
L] |y = =0 +3 = ,
3 0 1 3
0 i i i i 157{
1 - - - - - -
3 1 1 1
Lfl1]]= =1 +2 =
2 0 1 2
] i i i i '52{
The required matrix is
-2 0 1




Answers and Hints 237

2
5.3.5 Observe that €Im (T) =ker (T) and so

3

Now

and

The required matrix is thus

5.3.6 The matrix will be a 1 X 4 matrix. We have

tr =1,

tr =0,

tr =0,

tr =1.

Thus
ML=(1 00 1).

5.3.7 First observe that ker (B) C ker (AB) since VX € Mqx1(R),
BX=0 — (AB)X=A(BX)=0.

Now
dimker (B) = q—dimIm (B)
= q—rank (B)
= q—rank (AB)

= q—dimIm (AB)

= dimker (AB).
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Thus ker (B) = ker (AB) . Similarly, we can demonstrate that ker (ABC) = ker (BC) . Thus

rank (ABC)

dimIm (ABC)

= r—dimker (ABC)
= r—dimker (BC)
= dimIm (BC)

= rank (BC).

6.2.1 This is clearly (123 4)(6 8 7) of order lem(4,3) = 12.

6.3.1 Multiplying the first column of the given matrix by a, its second column by b, and its third column by c, we
obtain

abc abc abce

We may factor out abc from the first row of this last matrix thereby obtaining

abcQ = abcdet |52 p2 2

Upon dividing by abc,

6.3.2 Performing R1 + Rz + R3 — Ry we have

a—b—c 2a 2a
Q = det 2b b—c—a 2b
2c 2c c—a—>

a+b+c a+b+c a+b+ec
=det | 2p b—c—a 2b
2c 2c c—a—>
Factorising (a + b + c¢) from the first row of this last determinant, we have
1 1 1
OQ=(a+b+c)det |2p b—_c—a 2b

2c 2c c—a—>
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Performing C; — C; — Cz2 and C3 — C; — Cg3,

1 0 0
Q=(a+b+c)det |2p _b—_c—aqa 0
2c 0 —c—a—>

This last matrix is triangular, hence
Q=(a+b+c)(—b—c—a)(—c—a—b)=(a+b+c),
as wanted.

6.3.3 det A; = det A = —540 by multilinearity. det A, = —det A; = 540 by alternancy. det A3 = 3det A, = 1620
by both multilinearity and homogeneity from one column. det A4 = det Az = 1620 by multilinearity, and det A5 =
2det A4 = 3240 by homogeneity from one column.

6.3.5 From the given data, det B = —2. Hence
det ABC = (det A)(det B)(det C) = —12,

det 5AC = 5° det AC = (125)(det A)(det C) = 750,

(detA)3 27

3p—3p0-—1 __\EwvAA) At
(et A™B "C ) = et B3 (detC) ~ 16"

6.3.6 Pick A € R\ {0,a11,a22,...,ann}. Put

ayn — A 0 0 e 0
azy azz2 — A 0 e 0
X = asy asz asz —A .- 0
an1 an2 an3 e Qnn — A
and ) )
A a2z ais QAin
0 A az a2n
Y=10 0 A ! am
0 0 0 : A

Clearly A =X+ Y, det X = (a11 —A)(azz —A) - (ann — A) 0, and det Y = A™ 0. This completes the proof.
6.3.7 No.

6.4.1 We have

4 6 1 3 1 3
2(—1)""2 det +5(—1)*"2 det + 8(—1)*"3 det

7 9 7 9 4 6
—2(36 —42) +5(9 —21) — 8(6 — 12) = 0.

det A
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6.4.2 Simply expand along the first row
a b c b c a
adet — bdet + cdet =a(a’? —bec) —b(ca—b?) +c(c* —ab) = a® +b% + ¢* — 3abe.
c a b a b ¢

6.4.3 Since the second column has three 0’s, it is advantageous to expand along it, and thus we are reduced to
calculate

6.4.5 Expanding along the first column,

0 = det

= det|p p o —xdet|p p o

+xdet [ o o] —xdet |q o0 o

= xabc—xbc+xdet | o o| —xdet g o o

0 0 ¢ 0 b O
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Expanding these last two determinants along the third row,

1 11 1T 1 1

0 = abc—xbc+xdet [ o o —xdet |q o 0
0 0 ¢ 0 b O
1 1 1 1
= abc—xbc + xcdet + xb det
a O a O

abc — xbc — xca — xab.

It follows that
abc =x(bc + ab + ca),

whence
1 b
1_befabiea 1 1,1
X abce a b ¢
as wanted.
6.4.7 Expanding along the first row the determinant equals
a b 0 a 0 O
a b a b
—adet |0 o p| +bdet|g g p| = abdet + abdet
1 1 1 1
1 1 1 1 1 1
= 2ab(a—Db),
as wanted.
6.4.8 Expanding along the first row, the determinant equals
a 0 b 0 a b

adet (o0 g o| +bdet|. o o
c 0 d 0 ¢ d

Expanding the resulting two determinants along the second row, we obtain

a b a b
addet + b(—c) det = ad(ad — be) — be(ad — be) = (ad — be)?,
c d c d
as wanted.
6.4.9 For n = 1 we have det(1) =1 = (—1)"*". For n = 2 we have
1 1
det =—1=(=1)*""

1 0
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Assume that the result is true for n — 1. Expanding the determinant along the first column

giving the result.

6.4.10 Perform Cy—C;
Then

11 1 1 1 r

0
1 0 0 00

1
o1 o .- 00

det = Tldet |
0 0 1 00

0

00 0 1 0 )

—1det

(_] )n+1 ,

0

1(0) — (M (="

0

— Cx for k € [2;n]. Observe that these operations do not affect the value of the determinant.

n 2—n 0 0

n 0 3—n 0
det A = det

n 0 0 4 —n

n 0 0 0
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Expand this last determinant along the n-th row, obtaining,

n—1 n—1 n—1

detA (=1)"*"ndet

1T 1 1
1 0 0
o1 0O
 (=2)(—1) det
0o 0 1
0o 0 O
1T 1 1 1 1
1 0 0 0 0
o1 o0 0 0
= —(n!)det
0 0 1 0 0
oo o .- 1T 0
= e
= (_])n+1n!)

upon using the result of problem 6.4.9.

6.4.11 Recall that (}) = ("),

n—k

and

Z(—U“(L‘) —0, if n>o.

k

Il
o

n—1 n—1
0 0
0 0
0 0
—1 0

Assume that n is odd. Observe that then there are n + 1 (an even number) of columns and that on the same row,
(+) is on a column of opposite parity to that of (,",). By performing C; — C2 + C3 — Cs + -+ + Cn — Cny1 — C1.,

the first column becomes all 0’s, whence the determinant if 0 if n is odd.
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6.4.15 I will prove that
(b + ¢)? ab ac
det ab (a+c)? be =2abe(a+ b+ ¢)’.
ac be (a+1b)?
Using permissible row and column operations,
(b +c¢)? ab ac -bz + 2bc + c? ab ac
det ab (a+c)? be = det ab a? + 2ca + ¢? be
ac be (a+1b)? I ac be a? 4+ 2ab + b?
-bz +2bc+c¢? +ab + ac ab ac

=CTERIST det ab + a? +2ca+c*+be a*+2ca+c? be
|ac +be + a® + 2ab + b? be a’ + 2ab + b?
-(b+c)(a+b+c) ab ac
= det | (a+c)(a+b+c) a®+2ca+ c? be
[(a+b)(a+b+c) be a? + 2ab + b?
Pulling out a factor, the above equals
b+c ab ac
(a+b+c)det (g ¢ a2 4+ 2ca+ c? bc
a+b be a’ + 2ab + b?
and performing R; 4+ Rz + R3 — Ry, this is
2a+2b+2c ab+a’+2ca+c*+be ac+be+ a’+2ab+b?
(a+b+c)det a+c a’ 4+ 2ca + c? bc
a+b be a’ + 2ab + b?
Factoring this is
20a+b+¢) (a+c)la+b+c) (a+b)(a+b+c)
(a+b+c)det a+c a? + 2ca + c? be )
a+b be a’ + 2ab + b2
which in turn is
2 a+c a+b
(a+b+c)’det |qyc a?+2ca+tc? be
a+b be a’ + 2ab + b?
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Performing C; — (a + ¢)Cy — Cz and C3 — (a + b)Cy — C3 we obtain

2 —a—c¢ —a—>
(a+b+c)det|q ¢ 0 —a’*—ab—ac
a+b —a’*—ab—ac 0

This last matrix we will expand by the second column, obtaining that the original determinant is thus

a+c —a’—ab—ac 2 —a—">
(a+b+c¢)? | (a+c)det + (a® + ab + ac) det

a+b 0 a+c —a’—ab—ac

This simplifies to

(a+b+c¢)? ((a+c)(a+b)(a®+ab+ ac)

+(a® + ab + ac)(—a® — ab — ac + be)) ala+b+c)PX((a+c)(a+b)—a®>—ab— ac+ be)

2abec(a + b + ¢)3,

as claimed.

6.4.16 We have
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a+b+c+d a+b+c+d a+b+c+d a+b+c+d
d a b c
det R1+R2+IE/_§>+R44>R] det
c d a b
b c d a
1 1 1 1
d a b ¢
= (a+b+c+d)det
c d a b
b ¢c d a

C4—C3+C5—CqCy
S

R,+R35R5, Ry+R35R,
ol

C;—C3—Cq, C;—-C3—-C,
~y

(a+b+c+d)

(a+b+c+d)(a—b+c—d)

(a+b+c+d)(a—b+c—d)

(a+b+c+d)(a—b+c—4d)

(a+b+c+d)(a—b+c—4d)

(a+b+c+d)(a—b+c—d)

d a b 1
c d a -1
b ¢ d 1

d+c a+d b+a

b+c c+d a+d

0 0 1
d+c—b—a d—b b+a

b+c—a—d c—a a—+d

d+c—b—a d—D»

b+c—a—d c—a

(a+b+c+d)(a—b+c—d)(d+c—b—a)(c—a)—(d—Db)(b+c—a—4d)

(a+b+c+d)(la—b+c—d)

((c—a)(c—a)+(c—a)(d—Db)—(d—Db)(c—a)—(d—Db)(b—d))
(a4-bhtetrtdifa—brte—dila—e) - (b—_d?2)
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|:| Since

(a—c)+b—d?=(a—c+i(b—d))(a—c—i(b—d)),

the above determinant is then

Generalisations

7.2.1 We have

(a+b+c+d)(a—b+c—d)(a+ib—c—1id)(a —ib — c +id).

of this determinant are possible using roots of unity.

A—1 1
det(AI, — A) = det —A=12=1=Ar—-2),

1T A—1

whence the eigenvalues are 0 and 2. For A = 0 we have

-1 1
oI, —A=

This has row-echelon form

If

then a =b. Thus

1
and we can take

<
—_

as the eigenvector corresponding to A = 0. Similarly, for A = 2,

which has row-echelon form

If

then a = —3b. Thus

1 3
2 —A = ,
1 3
1 3
0 0
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and we can take as the eigenvector corresponding to A = 2.
-3

7.2.5 0 We have

A -2 1
det(AI; —A) = det|_2 A_3 2
1 2 A
A—3 2 -2 2 -2 A=3
= Adet + 2det + det
2 A 1 A 1 2

= AA=3A—4)+2(—2A—2)+ (—A—1)
= MA=4)(A+1)—=5A+1)

= A —=4=5A+1)

= A+1)*A-5)

O The eigenvalues are —1, —1,5.

OIxfA=-1,
-1 -2 1 a 0
(-Iz3—A)=1|_2 4 2 bl =10 & a=-—-2b+c
1 2 1| |c 0
a -2 1
= bl=b|1]|+c]lo
c 0 1
-2 1
We may take as eigenvectors | 1 |, ||, which are clearly linearly independent.
0 1
If A =5,
5 =2 1| |a 0
GBI —A)=1_—2 2 2| |v|=]0] & a=—cb=-2c
1 2 5| |c 0
a —1
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We may take as eigenvector | 2
—1

7.2.6 The characteristic polynomial of A must be A2 — 1, which means that tr (A) = 0 and det A = —1. Hence A

a c¢
must be of the form , with —a? — bc = —1, thatis, a> + bc =1.

b —a
7.2.7 We must shew that det(AI, — A) = det(AI, — A)"T. Now, recall that the determinant of a square matrix is the
same as the determinant of its transpose. Hence
det(AL, — A) = det((Al, — A)") = det(AI; — A") = det(AL, — AT),

as we needed to shew.

7.3.1 Put i
1 0 1 0
D= ) ’P=
0 —2 1 —1
We find ;
1 1
P =
0 —1
Since A = PDP!
1 o |1 0 1 1 1 —1023

1T —1[ 10 1024 |0 —1 0 1024

7.3.2
A=9 4
1. A has characteristic polynomial det A=A +N+80=A2—T=A—T1)A+1).
—20 A+9
2. A=1DA+1)=0 = Ae{-1,1%
3. For A = —1 we have
9 —4| |a a
=—1 = 10a=4b = a=2?b,
20 —9( |b b
2
so we can take as an eigenvector.
5
For A = 1 we have
9 —4| |a a b
=1 :>8a=4b:>a=z)
20 —92( |b b
1
so we can take as an eigenvector.

2
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4. We can do this problem in at least three ways. The quickest is perhaps the following.

Recall that a 2 X 2 matrix has characteristic polynomial A2 — (tr (A))A + det A. Since A has eigenvalues —1
and 1, A%° has eigenvalues 1?° = 1 and (—1)?° = 1, i.e., the sole of A%° is 1 and so A?° has characteristic
polynomial (A — 1)? = A> — 2X + 1. This means that —tr (A*°) = —2 and so tr (A%°) = 2.

The direct way would be to argue that

~ 4 - - 20 —1

and so a + d = 2. One may also use the fact that tr (XY) = tr (YX) and hence
tr (AZO) —tr (PDZ"P_]) —tr (PP_1D2°) —tr (DZO) -2.

7.3.3 Put

Then we know that A = XDX ™' and so we need to find X~'. But this is readily obtained by performing Ry — Rz — Ry
and Rz — R3 — R3 in the augmented matrix

getting
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Thus

>
I

7.3.4 The determinant is 1, A = A~ ',

7.3.6 We find

A+7
det(AI, — A) = det

—12 A—-10

A short calculation shews that the eigenvalue A = 2 has eigenvector

3

eigenvector . Thus we may form

—4

This gives

A=PDP ' — A"-PD"P ' -

7.4.1 The eigenvalues of A are 0, 1, and —2. Those of A” are 0, 1,

AZisAA=T1)(A—4).
8.2.1 v2a2 —2a+1
8.2.2 | V|| =1

8.2.3 0

8.2.4 a=+1lora=-8.

6

= VAOZTH(ANZ=1 = 2N =] = A=

and the characteristic polynomial is (A* — 1)2.

=AM —3A+2=A=1)(A=2).

2
and that the eigenvalue A = 1 has

-3

—8-2"+9 —6-2"+6

12.2"—12 9.2" -8

and 4. Hence, the characteristic polynomial of

1

2

825 [A|I2X+1)—1Z.BIX+7¥—1Z.[C1 —-X + 7 + Z)

8.2.6 [A]. 0, [B]. 0, [C]. 0. [D]. 0, [E]. 2¢(= 2d)

—

8.2.7 [F]. 0 v

. [H]. 20.[1]. 0

, [G]. (1. 0.
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8.2.8 Let the skew quadrilateral be ABCD and let P, Q, R, S be the midpoints of [A, B], [B, C], [C, D], [D, A], respec-
—
tively. Put X = OX, where X € {A,B, C,D,P,Q, R, S}. Using the Section Formula 8.4 we have

P = 2 ’ ?= 2 y T = 2 y § = 2 .

This gives
T
2 2

This means that @ = ITS) and so PQRS is a parallelogram since one pair of sides are equal and parallel.

8.2.9 We have ZB? - BE + F_? By Chasles’ Rule ﬁ = A? + F_? and BD - BE + ED. We deduce that
AC +BD = AE + EC + BE + ED = AD + BC.
But since ABCD is a parallelogram, /ﬁ = ]i)f Hence
AC +BD - AD + BC - 2BC.
8.2.10 We have ﬁ = —3IT3> = 17)\ = —3(L_1-\> + ,ﬁ%’) = —317>\ — 3/?3). Thus we deduce

IA +3IA = —3AB <= 4IA - —3AB

& 4Al-3AB

& Al -2AB.
Similarly
JA-—1JB < 3JA-JB
& 3JA-—JA—AB
& 4JA-—AB
— AJ-1AB
Thus we take I such that /TI) = %A—B) and ] such that /T]Z = };A—B)
Now
MA +3MB - MI +IA + 318
— 4Ml + 1A + 318
- aMi,
and

3MA +MB = 3MJ+3JA + MJ+JB
4MJ + 3JA + JB
- aMJ.

8.2.11 Let G O and P denote Vectors from an arbitrary origin to the gallows, oak, and plne re ‘Pectlve . ’I_‘I)le
condltlons of the problem define X and Y thought of similarly as vectors from the origin, by X-0 + R(O — G),

Y-P— R(P —E)), where R is the 90° rotation to the right, a linear transformation on vectors in the plane; the fact
that —R is 90° leftward rotation has been used in writing Y. Anyway, then

X+Y _8+? R(O —P)

2~ 2 T 2
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is independent of the position of the gallows. This gives a simple algorithm for treasure-finding: take P as the

(hitherto) arbitrary origin, then the treasure is at m
83.1 a=1
8.3.3
o |4 =1 -
P = =2 +3 =27 +35
5 1 1

T = (i) i+ (@e])T
from where the assertion follows.
8.3.5
od + B_b) =6> == R-((x? + B_b)) =?06>
—  «(ded)=0
=  qf |ﬁ| |2 =0.

Since d 7/6), we must have Hﬁ“ + 0 and thus « = 0. But if « = 0 then

since E} 7/6).

8.3.6 We must shew that
(2X + 37)e(2X — 3Y) = 0.
But 9
(ZX +3Y)+(2X — 3Y) = 4IXII* — 2YII* = 4311 1I*) — 9IYII* = 0.

8.3.7 We have VvV € R, Ve(d — E)) = 0. In particular, choosing V-d-— ? we gather
(@ —0)e(d—b)=I[d —BJ*=0.

—

But the norm of a vector is 0 if and only if the vector is the 0 vector. Therefore d— ? = ? e, d= E)

8.3.8 We have

(A+b)e(d+D)
Aed + 2deb + Deb

[€][* + 2@+b + [[o|

[a=%]f

2
)

whence the result follows.

8.3.9 We have

I+ V12— [l — V|2 (U +V)e(U +V) — (T —V)o(U —V)
— Ueud + 22UV —0—707 — (?Oﬁ — 22UV +707)

= 4?07,

giving the result.
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8.3.10 By definition

proj prof? = Lo]g.ﬁ
Icils

deX
[ ik

N
(dex)?
I1xI12|[d]|*
(dex)?

Since 0 < < 1 by the CBS Inequality, the result follows.
IR

8.3.11 Clearly, if d-= 0 and A #0 then there are no solutions. If both d = 0 and A = 0, then the solution set is the

whole space R?. So assume that d 0. By Theorem 365, we may write X = +V with pro_] -U[dand V L d.
Thus there are infinitely many solutions, each of the form

2TV~ f'ﬁaw 2

where V € at.

2 1
8.4.1 Since d = is normal to 2x —y = 1 and E) = is normal to x — 3y = 1, the desired angle can be

—1 -3
obtained by finding the angle between the normal vectors:

_,
(?,?) = arccos ————— = arccos ; = arccos 1— -z

842 2(x—1)4+(y+1)=0or2x+y=1.

—— —— —— — —
8.4.3 By Chasles’ Rule AA’ = AG + GA', BB’ - BC + GB’, and CC’ = CG + GC’. Thus

3 - AA' BB 4 cC

whence the result.

8.4.4 We have:

a The pomts F,A,D are collinear, and so FA is parallel to FD meaning that there is k € R \ {0} such that
FA kFD Since the lines (AB) and (DC) are parallel, we obtain through Thales’ Theorem that ﬁ kFJ and
FB - kF?. This gives

—Fl - k(FD — FJ) = IA-JD.

FB — Fl - k(FC — Ff) — B -1JC.

Since I is the midpoint of [A, B], IT)R + I_B) = ? and thus k(]? + ]Tﬁ) = 8 Since k & 0, we have ]? + ]T)) = 6}
meaning that J is the midpoint of [C, D]. Therefore the midpoints of [A, B] and [C, D] are aligned with F.

Similarly
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O Let J’ be the intersection of the lines (EI) and (DC). Let us prove that J’ =J.

Since the points E, A, C are collinear, there is 1 &/ 0 such that E)l\ = 1E4()f. Since the lines (ab) and (DC) are

S , e == R o .
parallel, we obtain via Thales’ Theorem that EI = IEJ” and EB = lED. These equalities give

FA—El = (EC—F) — IA-U'C,

EB— £l - (ED — §J’) — 1B - J'D.

—

. . . . = . = _ A~ gy Gy e . 7 7
Since I is the midpoint of [A, B], IA+1IB = 0, and thus 1(J'C+J'D) = 0. Since 1 /0, we deduce J'C+J'D =

that is, J’ is the midpoint of [C, D], and so J’ =7J.

8.4.5 We have:
O By Chasles’ Rule

AE=1AC & AB+BE=1AC,
and

AF-2AC <« AD+DF-2AC -

Adding, and observing that since ABCD is a parallelogram, /ﬁ) = @

AB +BE+AD +DF=AC & BE+ DF=AC—AB —

él

& BE+DF-AD+DC—AB—AD -

&> BE-_DF

The last equality shews that the lines (BE) and (DF) are parallel.
0 Observe that B_f = %lﬁ = %ﬁ _ Al - —IA . Hence

T TR + A8+ B -

proving that the lines (AB) and (IJ) are parallel.

Observe that

iR+ AT - DA+ JAC- 1CH + R O+ RE-FC 4 O -,

whence IEJF is a parallelogram.

—

—

K

8.4.6 Since IE-! ID and [I, D] is a median of AABD, E is the centre of gravity of AABD Let M be the midpoint

of [B, D], and observe that M is the centre of the parallelogram, and so ZAm 73) + AD Thus

AE - gm _ g(ZATVI) _ g(/ﬁ + AD).

To shew that A, C, E are collinear it is enough to notice that AY = %/ﬁ .

8.4.7 Suppose A, B, C are collinear and that “P}} E” = % Then by the Section Formula 8.4,
3) _ AC + uﬂ

)

At

whence pﬁ—(7\+u)?+7\?=6>andclearlyp—(7\—|—u)—|—7\=0. Thus we may take «x = pu, B =A+ u, and y = A.

Conversely, suppose that

ocﬂ—l—ﬁ?—l—y?:?, a+pB+v=0

for some real numbers «, 3,7y, not all zero. Assume without loss of generality that y ¥ 0. Otherwise we simply

change the roles of y, and « and 3 Then y = —(«x + ) # 0. Hence

cxﬁ—!—B_b)

_)
od +Bb =(a+p)C = = FE

and thus [O, C] divides [A, B] into the ratio g, and therefore, A, B, C are collinear.
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8.4.8 Put OX = X for X e {A,A’,B,B’,C,C’,L, M, N, V}. Using problem 8.4.7 we deduce

Viadd+a’a =0, T+a+a =0, A.1)
V4+pd+pa’ =0, 1+p+p =0, (A.2)
_}
V4yd+ya =0, T+y+y =0 (A.3)
From A.2, A.3, and the Section Formula 8.4 we find
— —
ﬁ?_y? ~ B,b,—'YIC, __1>
B—vy B’ —v’ ’
- - — R .
whence (f —y)1l =Bb — y . In a similar fashion, we deduce

(y—(x)m=y?—(x?,

(oc—[3)?1>= cxﬁ—[?w?.
This gives
(B—v)T + (v — )i + (a— BT = 0,
B—v)+(y—a)+ (x—p) =0,

and appealing to problem 8.4.7 once again, we deduce that L, M, N are collinear.

8.5.1 [A] AS, [B] AB.

8.5.2 Put
1 1 —1
e I N -
-1 x 1] =(T+7+K)x(T+j)=j—1i=]1
1 0 0
Then either
3
V2
i _sd |
el vz | v2 |
0
or
3
V2
3d |
el |7v2
0
will satisfy the requirements.
8.5.3 The desired area is
0 1 —1
[POxPR| = || 1 | x| o] =||-1]l|-V3
—1 —1 —1
8.5.4 It is not associative, since _i)x (_i> x?) = ?x? =—j but (_i> x_i)) x? = ?x? - 0.
8.5.5 We have X XX = —X XX by letting ﬂ =X in 8.15. Thus 2X XX = 6> and hence X XX = 6)

8.5.6 2dX D
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8.5.7
AX(XXD) =X (XXA) e= (deb)X — (AsX)b = (bsd)X — (bexX)d = deX = bsx = 0.
The answer is thus {7 : X € Rd xb}.
8.5.8
_ (deb)d +6b +2dX 7T
12+ 2|4
7 - (deC)d +6C +3dxXD
18+ 3|[4||°

H
8.5.9 Assume contrariwise that @, b, © are three unit vectors in R* such that the angle between any two of them

is > Z?H Thenﬁob) < —%, ?o_c) < —%, and Ced < —%. Thus

H?+b)+_c’Hz H?HZJer)HZJrH_c’HZ
1 2deb 4 20sC 4+ 2¢sd

T+14+1—-1—-1-1

A

= 0,
which is impossible, since a norm of vectors is always > 0.
8.5.10 Take (?,7) € X? and « € R. Then
AX (U +aV) =dxU + adxV =6) + cx? =6),
proving that X is a vector subspace of R".
8.5.11 Since ?,b) are linearly independent, none of them is 6> Assume that there are (o, B,y) € R such that
od + BB +ydxb = 0. (A.4)

Since de(d x b = 0, taking the dot product of A.4 with @ yields «f[d| | = 0, which means that & = 0, since |[d|| #0.

Similarly, we take the dot product with b and d x b obtaining respectively, 3 = 0 and 'y = 0. This establishes linear
independence.

8.5.12 Smce ? 1 dx¥ = b there are no solutions if a-b < 0. Neither are there solutions if d = 0 and b + 0 If
both d = b = 0 then the solutlon set is the whole of R3. Assume thus that a -b 0 and that d and b are linearly

independent. Then ﬂ b, ﬁx b are linearly independent, and so they constitute a basis for R®. Any X € R? can be
written in the form - R

X =od+Bb+ydxb.
We then have

ol

= dAx¥

- BAxDb +yax(dxb)

— BAXb +y((deb)d — (ded)b).
- BAXb —y(dedb)

- paxb —v|[d[*®,

from where

paxb + (—y|[d||*—1)b = 0,
, since ?,b},ﬁ xb) are linearly independent. Thus

which means that =0 and y = TR

% -od— ——dxb
H?H

in this last case.
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8.5.13 Let ?,ﬁ,?',ﬁ' be vectors in R and let « € R be a scalar. Then

L(X,Y) +aX' Y

L(X +oaX’ Y +ay’)
(X + aX)xK + Wx (Y + oy ”’)

- - - -
XXK +oxX' XK+ hxy + hxay’

- LX,Y) +alX',Y")

8.6.1 The vectors

a— (—a)- -Za
0—1 =1-1
a—20 | | a
and . )
0—(—a) a
1-—1 =10
2a—-0 | _2a
are coplanar. A vector normal to the plane is
2a a —2a
—1[ X 0| =[-3a’
a 2a a
The equation of the plane is thus given by
—2a xX—a

that is,
2ax + 3a2y —az=ad’.

8.6.2 The vectorial form of the equation of the line is

1 1

Since the line follows the direction of | _»|, this means that | _»| is normal to the plane, and thus the equation of

the desired plane is
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8.6.3 Observe that (0,0,0) (as 0 = 2(0) = 3(0)) is on the line, and hence on the plane. Thus the vector
1—0 1
—1—0| = (-1
—1—-0 —1
lies on the plane. Now, if x = 2y = 3z = t, then x = t,y = t/2,z = t/3. Hence, the vectorial form of the equation of the
line is
0 1 1
T=lo| +t|1/2| =t |12
0 1/3 1/3
1

This means that |1/2| also lies on the plane, and thus

1/3
1 1 1/6
—1| X |(172| = |-4/3
—1 1/3 3/2

is normal to the plane. The desired equation is thus

lx—i —|—§z—0
6 39T 2F7%

8.6.4 Put ax = by = cz =t, sox = t/a;y = t/b;z = t/c. The parametric equation of the line is
X 1/a
yl=t|1/p], teR

z 1/c

1/a
Thus the vector |1 /b is perpendicular to the plane. Therefore, the equation of the plane is

1/c

or

We may also write this as
bex + cay 4+ abz = ab + be + ca.
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Appendix A

a

8.6.5 A vector normal to the plane is | 42 |. The line sought has the same direction as this vector, thus the equation

(12

of the line is

8.6.6 We have

Hence if z = t,

x -t —1 -—1- 1
yl=| -2 1|=|-2|+t]o
z |t i 0 | 1
8.6.7 The vector i i i
2-—-1 1
1—0 [ = |1
17— (—1)_ 2
lies on the plane. The vector
1 1 1
o X 1] = {1
1 2 —1

—1 z+1

8.6.8 We have ¢xd = -7 + 27 and ﬁx? - 2K —31. By Theorem 398, we have
BxC=—dxb—Cxd=—2K+31+1—2) =41 —2j — 2K.

8.6.9 4x 46y =1

8.6.10 There are 7 vertices (Vo = (0,0,0), V1 = (11,0,0), V2 = (0,9,0),V3 = (0,0,8), Va = (0,3,8), V5 = (9,0,2),

Vs = (4, 7, 0)) and 11 edges (VoV] N Von, VOV3, V] V5, V] Vs, V2V4, V3V4, V3V5, V4V5, and V4V6).

8.7.2 Expand |3 1, d||* = 0.
8.7.3 Observe that ) ;_, 1 =n. Then we have

giving the result.
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8.7.4 Take (U,V) € X? and « € R. Then
do(U + V) = dotl + xdeV =0+ 0=0,
proving that X is a vector subspace of R™.

8.7.5 Assume that -
M@+ -+ Axar = 0.

Taking the dot product with E,? and using the fact that E{.E,? = 0 for i #/j we obtain
0 =6>oaj> = Ajaj)o(?j = )\j“(lj”z.

_}
Since a] # 0 = llajl* # 0, we must have A; = 0. Thus the only linear combination giving the zero vector is the
trivial linear combination, which proves that the vectors are linearly independent.

8.7.6 This follows at once from the CBS Inequality by putting

a1
7 1
a2 2
— 2
v = , U=
an
Py n

and noticing that

2 nn+1)2n+1)
Yy K- c :

n
k=1
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GNU Free Documentation License

Version 1.2, November 2002
Copyright © 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

‘We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section “Entitled XYZ" means a named subunit of the Documem whose mle elther 15 preclsely XYZ or contams XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Ack d . , or “History”.) To “Preserve the Title” of such a section when you modify the Document
means that it remains a section “Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
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You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified
Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

1. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version
as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you
or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledge-
ments”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE




The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version

number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

Que a quien robe este libro, o lo tome prestado y no lo devuelva, se le convierta en
una serpiente en las manos y lo venza. Que sea golpeado por la paradlisis y todos sus
miembros arruinados. Que languidezca de dolor gritando por piedad, y que no haya
coto a su agonia hasta la ultima disoluciéon. Que las polillas roan sus entrarias y,
cuando llegue al final de su castigo, que arda en las llamas del Infierno para siempre.

-Maldicion anoénima contra los ladrones de libros en el monasterio de San Pedro, Barcelona.
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