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§1 Definition and Examples: 

Definition 1.1: Let X be any non-empty set. A family � of subsets of X is called a topology on 

X if it satisfies the following conditions: ���    � � �  �	
 � � � ����   �, � � � � � � � � � 
�����  �� � � ,  � � � �  (where � is any indexing set)  �    ������ � �   
          If � is a topology on �, then the ordered pair ��, ��  is called a topological space (or T-

space)  

 

Examples 1.2: Throughout X denotes a non-empty set. 

1) � � ��, �� is a topology on �. This topology is called indiscrete topology on � and the T-

space ��, �� is called indiscrete topological space.  

 

2)  � � ����, (���� � power set of � is a topology on � and is called discrete topology on � 

and the T-space ��, �� is called discrete topological space.  

Remark: If |�| � 1, then discrete and indiscrete topologies on � coincide, otherwise they are 

different.  

 

3) Let � � ��,  , !� then �" � ��, ���, � , !�, �� and �# � ��, ���, � �, ��,  �, �� are topologies 

on � whereas �$ � ��, ���, � �, �� is a not a topology on �.   

 

4) Let � be an infinite set. Define � � ��� % �� & � | � ' � is finite� then � is topology on �. 

    (i) � � �   …… (by definition of �) 

         As X – X = , a finite set, � � �  

    (ii) Let �, � � � . If either � � � or � � �, then � � � � � . Assume that � ( � and � ( � .  

          Then � ' � is finite and � ' � is finite. Hence � ' �� � �� � �� ' �� % �� ' �� is  
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          finite set. Therefore � � � � �. Thus �, � � � � � � � � �. 

    (iii)  Let �� � � ,  for each � � � �where Λ is any indexing set�. If each �� � �, then  

������ � � � � . 
         

 If  * �+ � � such that ��, ( �, then ��, & ������   � ' ��, - � '������ . 
As � ' ��,is a finite set and subset of finite set being finite we get � '������ is finite  
and hence ������ � � . Thus in either case,  
�� � � ,    � � � �   �   

 
������ � � . 

From (i), (ii) and (iii) is a topology on X. This topology is called co-finite topology on X and the 

topological space is called co-finite topological space. 

 

Remark: If X is finite set, then co-finite topology on X coincides with the discrete topology on 

X. 

 

5) Let X be any uncountable set. Define � � ��� % �� & � | � ' � �. countable� Then � is a 

topology on X. 

i. � � �  (by definition). 

As X – X =  and  is countable (Since  is finite) we get X  �. 

ii. Let �, � � �. If either � � � or � � � we get � � � � � .  

Let � ( � and � ( �.  

Then by definition of  � , X – A and X – B both are countable sets and hence � ' �� � �� = �� ' �� % �� ' �� is countable. This shows that  � � � � � . Thus    �,� � � implies � � � � �.  

 

iii. Let   �� � �  � � � Λ , where  is any indexing set. If for each � � Λ, �� � �  
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then  ������ � � will imply ������ � � .  Let ��, ( � for some �+ � � . 
Then ��, & ������ � � '��, - � '������  

 

         � �'������ is a subset of a countable set  � ' ��,   � Since ��, � � and ��, ( � �  
 � �'������  is a countable set. (since subset of countable set is countable ) 

�   ������   �  
              Thus in either case,  �� � � , � � � Λ  �   ������   �  

 From (i) , (ii) and (iii) we get � is a topology on X. This topology on X is called co-countable 

topology on X and the T-space ��, ��  is called co-countable topological space.  

 

Remark: If  � is a countable set, the co-countable topology on X coincides with the discrete 

topology on X. 

 

6)  Let � & �. Define � � ��� % �� & � | � & ��. Then � is a topology on X. 

 (i)   � � � by definition. As  � & � , � � �. 

 (ii)  Let  �, 9 � �. If � � � or 9 � �, then � � 9 � � will give  � � 9 � �. Let � ( �  or     

       9 ( � . Then � & � � 9 will imply � � 9 � �. 

 (iii) Let �� � �  � � � Λ , where  is any indexing set. If for each  � � Λ ,  �� � � then 

������ � �  and in this case ������ � � . 
Assume that ��, ( � for some �+ � � . Then � & ��,and ��, & ������ imply  � & ������ . 
Therefore ������ � � . 
From (i), (ii) and (iii)  � is a topology on X. 
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Remarks: (1) If  � � � then � is discrete topology on X.       

        (2) If � � � then � is indiscrete topology on X. 

                   (3) If � � �:�, then � � ��� % �� & � | : � �� is called ;-inclusive topology on X. 

 

7)  Let : � �. Define � � ��� % �� & � | : < ��. Then � is topology on �. 

  (i)  : < � implies � � �. By definition � � �. 

  (ii) Let �,� � �. If � � � or � � �, then  � � � � �. In this case  � � � � �. Assume that   

        either  � ( � or � ( �. Then : < � or : < � and hence : < � � � which proves 

        � � � � �.  

        Thus �,� � � implies � � � � �. 

 (iii)  Let   �� � �  � � � Λ , where  is any indexing set. If for some � � Λ, �� � � then  

         ������ � �  will give  ������ � � . 
         Assume that �� ( �  for each � Λ . Then : < �� for each � � Λ will imply, 

           : < ������  and hence ������ � � . 
         Thus in either case, �� � �  � � � �  � ������ � � . 
From (i), (ii) and (iii)   �  is a topology on X. 

This topology on X is called ;-exclusive topology on X. 

 

8) Let ��, �� be topological space and � & �. Define �= � �> % �� � ?� | >, ? � ��. Then �= 
is a topology on X.  

  (i)  Take > � � and ? � �. Then > % �� � ?� � � % �� � �� � �  ⇒ � � �=. Take > � �.  

        Then for any ? � � we get � % �� � ?� � �. Hence � � �=.  
  (ii)  Let >" % �� � ?"� � �= and  ># % �� � ?#� � �= for  >", ?", >#, ?# � � . 

         Then @>" % �� � ?"�A � @># % �� � ?#�A  
                 = �>" � >#� % �>" � � � ?#� % �� � ?" � >#� % �� � ?" � ?#� 
                 =  �>" � >#� % @� � @�>" � ?#� % �?" � >#� % �?" � ?#�AA 
         As �>" � >#� � � and @�>" � ?#� % �?" � >#� % �?" � ?#�A � � we get,  

         @>" % �� � ?"�A � @># % �� � ?#�A � �.  
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  (iii)  Let  >� % �� � ?�� � �= for  � � Λ , where  is any indexing set. Then >� � � and 

          ?� � � , � � � Λ .  

           �@>� % �� � ?��A��� � B  �>����  C % D� � B  �?���� CE 
          As �>���� � �  and  �?���� � � , we get �@>� % �� � ?��A��� � �= . 
From (i), (ii) and (iii) we get  �= is a topology on X. 

 

Remark: This example shows that every topology on X induces another topology on X. 

 

9) Let X and Y be any two non-empty sets and let  F G � H I be any function. Let �  be 

topology on I. Define �= � �FJ"�>� | > � �� , where FJ"�>� � �K � � | F�K� � >�. Then �= is 

topology on X. 

  (i) FJ"��� � �     ⇒    � � �= and  FJ"�I� � �     ⇒    � � �= 
  (ii) Let FJ"�>� � �= and FJ"�?� � �= for , ? � � . Then FJ"�> � ?� � FJ"�>� � FJ"�?� 
and >, ? � � will imply  FJ"�>� � FJ"�?� � �=. 
   (iii) Let  FJ"�>�� � �= � � � Λ , where  any indexing set is. Then  

FJ" L�>���� M � �FJ"�>�����  .     As �>���� � � , we get �FJ"�>����� � �=.   
Thus from (i), (ii) and (iii) we get  �= is a topology on X. 

 

10) Let � be any uncountable set and let ∞ be a fixed point of � . Let  

 � � �> & � | ∞ < >�  % �> & � |  ∞ � > and � ' > is finite� . Then � is a topology on X. 

     Define �" � �> & � | ∞ < >�  and �# � �> & � |  ∞ � > and � ' > is finite� then   

 � � �" % �# .  

(i)   ∞ < � ⇒ � � � . ∞ � � and  � ' � � � is a finite set � � � �# ⇒ � � �.  

(ii) Let �,� � � .  
Case 1:  � , � � �" . Then ∞ < � and ∞ < �. Hence ∞ < � � �.  

Therefore � � � � �"   � � � � � �. 
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Case 2 : �, � � �#. Then � � �#  � ∞ � � and � ' � is finite. � � �#  �  ∞ � � and � ' � 

is finite. Then ∞ � � � � and � ' �� � �� � �� ' �� % �� ' �� is finite. Thus  � � � � �# 

which gives  � � � � � .  

Case 3 : � � �" and  � � �# . Then ∞ < � will imply  ∞ < � � �.  

Hence  � � � � �"  ⇒ � � � � �.  

Case 4 : � � �# and  � � �" . Then ∞ < � will imply  ∞ < � � �.  

Hence  � � � � �"  ⇒ � � � � �.   

Thus in all the cases  �,� � �  �  � � � � �.  

(iii)  �� � �  � � � Λ , where Λ is any indexing set .  If  �� � �"   � � � Λ  then  

∞ < ��  � � � Λ will imply ������ � �" .  Hence  ������ � � . 
If  *  �+ � �  such that ��, < �" then  ��, � �# . In  this case ∞ � ��, and  � ' ��, is a finite 

set.  

��, & ������  implies  ∞ � ������  and  � '������ & � ' ��,  . 
As  � ' ��,  is finite we get  � '������  a is finite set. Thus in this case  ������ � �# 
and hence  ������ �  � . 
Thus in either case,  �� � � , � � � �  �  ������ � �. 
From (i), (ii) and (iii)  �  is a topology on X . 

 

This topology � is called Fort’s topology on X and the T-space ��, ��  is called Fort’s space. 

 

 Some Special Topologies on Special sets .  

 Apart from the topologies given in the above examples there exist some special 

topologies on  V  or X or Y . (V � the set of all real numbers , X � the set of all integers and  Y � the set of all natural numbers ). We list some of them in the following examples.  
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(11) Let  �Z � ��� % �� & V  | � � � �  *   [ \ 0 such that �� ' [ , � _ [� & �� . Then �Z is a 

topology on  .  

(i)      � � �Z (by definition) and  V � �Z  as for any � � V , �� ' 1 , � _ 1� & V.   

(ii)     Let �,� � �Z . If  � � � or � � � , then  � � � � �Z . Let � ( �  and  � ( �.   

Then K � � � �   ⇒    K � � and K � �  ⇒  *   [" \ 0 such that �K ' [" , K _ ["� & �  

and  *   [# \ 0 such that �K ' [# , K _ [#� & �. 

Define [ � `�	�[", [#�. Then [ \ 0 and �K ' [ , K _ [� & � � � . But this shows that    � � � � �Z  . Thus in either case �, � � �Z   ⇒    � � � � �Z . 

(iii)  �� � �Z  � � � Λ , where Λ is any indexing set .  
         If  ������ � � , then obviously, ������ � �Z . 

 Hence, assume that ������ ( �.  Let K � ������ . Then K � ��, for some �+ � � . 
As  ��, � �Z   *    [ \ 0 such that �K ' [ , K _ [� & ��, .  

But then �K ' [ , K _ [� & ������ . But this shows that ������ � �Z  . 
Thus in either case �� � �Z  ,  � � � �  �  ������ � �Z . 

From (i), (ii) and (iii)   �Z  is a topology on V .  

This topology is called usual topology on  . 

Remarks: (1) The usual topology on  is also called standard topology or Euclidean topology . 

(2)  Any open interval in   is a member of  �Z. Consider the open interval ��,  � and K ���,  �. Take  [ � `�	�K ' � ,  ' K�. Then  �K ' [ , K _ [�  & �� ,  � . This shows that �� ,  � � �Z .  

 

(12) Let �c � ��� % �� & V  | � : � �  * �,  � V  such that : � @� ,  � & �� . Then  �c is a 

topology on  .  

(i)   � � �c (by definition).  V � �c as for any : � V  * �,  � V  such that  : � @: , : _ 1� & V .  

(ii)   Let  �, � � �c . If  � � � � � , then � � � � �c  .  If  � � � ( � then for  K � � � � there exist half open intervals ?" and ?# in  such that K � ?" & � and   
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K � ?# & �. But then ?" � ?# will be an half open interval in V with  K � ?" � ?#  & � � � . This shows that � � � � �c  .  Thus �, � � �c ⇒ � � � � �c .  

(iii)  Let  �� � �c   � � � Λ , where Λ is any indexing set. 

        

If ������ � � , then obviously ������ � �c  . 
Let  ������ ( � . Let  K � ������ . 
Then K � ��, for some �+ � Λ . As  ��, � �c   *  @� ,  � such that, 

K � @� ,  � & ��, & ������  

But this shows that ������ � �c  . 
Thus in either case �� � �c  ,   � � � �  �  �����d � �c  . 
From (i), (ii) and (iii)  �c is a topology on V .    

This topology is called lower limit topology or right half open topology on V . 

 

(13) Let �e � ��� % �� & V  | � : � �  * �,  � V  such that : � �� ,  A & �� . Then  �e is   

 a topology on V . 

This topology is called upper limit topology or left half open topology on V . (Proof as in 

Ex.12) 

 

(14) For each � � V define fg � �K � R  | K h ��. Define � � ��� % �R� % �fg | � ∈R� . 
Then � is a topology on V. [ Note that fg � � '∞ , �� ].  

(i) � � � and R � � (by definition) 

(ii) Let � , � � � .  

Case (1) :  � � � or � � � in this case � � � � �  � � .  

Case (2) :  � � R or � � R in this case � � � � � or � � � � � . Hence  � � � � � .  

Case (3) :  � � fg and � � fi . Then �,  � V . Define ! � min ��,  � . Hence  � � � � fg � fi � fk  � � . Thus in all cases �, � � � � � � � � � .  



 

Topological spaces 

Page | 11  

 

(iii)  Let  �� � �  � � � Λ , where Λ is any indexing set. 

Case (1):  �� � � ,   � � � � .  Then ������ � �  � ������ � �  . 
Case (2):  �� � R  for some � � � . Then ������ � R  �   ������ � � . 
Case (3):  �� � f� ,   � � � � . Then � & V  .  ������ � �����V � V ,  �F  � � R  or 
�����Λ

� �f���Λ

� fZ     if   Λ m R . 
And   n � o. n.  . � �  | � � Λ� .  
Thus in all cases ������ � � . 

From (i), (ii) and (iii) is a topology on R . This topology is called the left ray topology on R . 

 

(15) Define �= � ��� % �R� % �pg | � ∈R� where pg � � K � R | K \ �� . 
[ Note that pg � �� ,∞� ]. Then �= is a topology on R .  

This topology is called right ray topology on V .  

[Proof is similar to example 4]. 

 

(16) Let � � ��� % ��q | 	 � 1,2,… � where �q � �	, 	 _ 1, 	 _ 2,… �. Then �  is a topology  

on N . 

(i) � � � (by definition). As  � � �1,2,3, … � � �" we get  � � � .  

(ii)  Let � , � � � . If either  � � � or � � � we get  � � � � �  � � . Hence assume 

that � ( � and � ( � . Then � � �u or � � �q for some  , 	 � � . But then � � � � �u � �q � �u if ` v 	 or � � � � �u � �q � �q if 	 v ` . Thus in 

either case  � � � � � for �, � � �. 

(iii) Let �� � �  � � � Λ , where Λ is any indexing set . As �� � �  � � � Λ , by 

definition of  � ,   Λ � �. Hence  is well ordered set.  

Define ` � o. n.   �� | � � Λ� . This ` exists. 

Hence �����Λ

� �u .  This shows that �����Λ

� � . 
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From (i), (ii) and (iii), � is a topology on.  

 

(17)  Let � � ��� % ��� % ��q | 	 � 1,2,… � where �q � �1,2,3,… , 	�.  
Then � is a topology on �.  

(i)  � � � and � � � (by definition).  

(ii)  Let � , � � � . If � , � � ��� % ��� , then � � � � � . Let  �,� � ��q | 	 � 1,2,… � 
then � � �q and  � � �u . As ` , 	 � � , either ` w 	 or  	 w ` . Hence � � � � �u if ` w 	 or � � � � �q if  	 w `.  

(iii)  �� � � ,  for each � � � �where Λ is any indexing set�.  
9�.x �1�:  �� � � ,   � � � � . Then �����Λ

� �  � �����Λ

� � . 
9�.x �2�:  �� � N ,  for some � � � , then �����Λ

� Y .  Hence �����Λ

� �. 
9�.x �3�:  Let �� ( � and �� ( N ,  � � � � .  Then  � & N .   z    �����Λ

� Y .   
if Λ � N and �����Λ

� �u  {|x[x ` � .n:� � | � � Λ�  if Λ ( N. 
Hence in all the cases,  �����Λ

� � whenever �� � � ,  � � � �. 
From (i), (ii) and (iii) � is a topology on Y.  

 

(18) � � ��� % �>}  | ~ � X�  , where >} � �~ _ 2	 | 	 � X�. Then � is a topology on X .   

 

(19) Let � � V and define � � ��� % �� & V | K � � implies ' K � ��.  
Then � is a topology on V . 

(i)  � � � (by definition). V � � as  K � V implies ' K � V .  

(ii)  Let �, � � � . If  � � � � � , then � � � � � . Let � � � ( �.  

Then K � � � � ⇒ K � � and K � �. As �, � � � we get 'K � � and 'K � �. Thus  

K � � � � ⇒ 'K � � � �. Hence  � � � � � .  

(iii)  Let �� � � ,  for each � � � �where Λ is any indexing set�.  
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If   �����Λ

� �  � �����Λ

� � .  Let  �����Λ

( � and let K �  �����Λ

. 
Then K � ��, for some �+ � Λ .  

As  ��, � �  we get ' K � ��, and hence  ' K � �����Λ

 . 
Thus  �� � � ,   � � � �  �  �����d � � . 

From (i), (ii) and (iii) � is a topology on V .  

 Note that for this topology � on V , � � � � V' � � �. Let � � � . If � � � or V 

then obviously V ' � � �. Hence, let � m � m V.  K � V ' � � K < � � 'K < � [since 'K � � � '�'K� � K � �]  

                                   �'K � V' �.  

Thus � � � � V' � � �. Similarly V' � � � �  V ' �V ' �� � � � �.   

Hence � � � � V ' � � �.       

 

 

Remarks :  

1) In a T-space ��, ��, each member of � is a subset of X but not conversely.  

 For this consider the T-space ��, �� where � � ��,  , !� and � � ��, ���, ��,  �, ��. 
Then �!� m � but �!� < �.   

 

      2)  Intersection of finite number of members of � is a member of � but intersection of   

      any number members of � need not be member of �  . 

      For this consider the T-space �V, �Z�. �– 	, 	� � �Z for each 	 � N . But  

��'	, 	�q�� � �0� < �Z . 
 

      3)  Let � ( �. Every subset of the power set of X need not be a topology on X. 

 For this consider the following examples: 

(i) Let � � V and � � ��� % �V� % �@�,∞�| � � V�. Define �q � �"q ,∞� � 	 � N.    
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Then  �q � � for each  	 � N   but   ��qq�N � �� 1	  ,  ∞�q�N � �0 , ∞� < � . 
Hence � is not a topology on V .     

  

 (ii)  Let � � ��,  , !�. Define � � ��, ���, �!�, ��. Then � is not a topology on X as  

        ��� % �!� � ��, !� < �.  

 

      4)  For any two topologies �" and �# on X, �" % �# need not be a topology on X.  

 For this, consider � � ��,  , !�. Let �" � ��, ���, �� and �# � ��, � �, �� be two  

 topologies on X, but �" % �# � ��, ���, � �, �� is not a topology on X.  

 

Definition 1.3: Let ��, �� be a topological space. Members of � are called open sets in X with 

respect to the topology �.  

Obviously, we have, 

(i) � and X are open sets in X w.r.t. any topology � on X.  

(ii)  Intersection of finite number of open sets in a T-space is an open set. 

(iii) Union of arbitrary number of open sets in a T-space is an open set. 

(iv)  Every subset of X is open in X w.r.t. the topology � if and only if the � is a discrete     

  topology on X.  

 

§2 The set of all topologies on X ( (  �)                   

  Given X (( �), there always exists a topology on X viz. the discrete topology or the 

indiscrete topology. Hence, every non-empty set can be considered as a T-space.  

 The collection � of all topologies defined on a non-empty set X is surely non-empty and 

is partially ordered set (poset in short) under the partial ordering relation w defined by  �" w �#  if and only if �" & �#, for �", �# � �. The poset ��, w� is a bounded poset with 

indiscrete topology as the smallest element and discrete topology as the greatest element. 

            If �", �# � �, then �" � �# � �. Actually, � ���  | �� � �� for any �� � �. 

Thus � is closed for arbitrary intersection and contains the greatest element. Hence � forms a 

Moore family of subsets of X ( A family of subsets of a non empty set X is said to form a Moore 
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family of subsets of X  if  it is closed for arbitrary intersection and contains X). But �" % �# 

need not be a topology on X for �", �# � �. For �", �# � �, define  

� � ����  | �� is a topology on � such that �" & ��and �# & ���� . 
Then �  is the smallest topology on X containing both �" and �#.  

This topology � is called the topology generated by �� and ��.  

 The set ��,�,�� is a complete lattice with �" � �# � �" � �# and �" � �# � topology 

generated by �"and �#. Note that �" % �# is a topology on X if �" & �#or �# & �".   

 

§3 Topological spaces and metric spaces 

Theorem 3.1 :-Let ��, 
� be a metric space.  

For K � � and [ \ 0, ��K, [� � �� � � | 
�K, �� h [�.  
Define �� � �� & � | �K � � * [ \ 0 such that ��K, [� & �� % ���.  
Then �� is a topology on X. 

Proof :-  (i) � � ��  (by definition). For K � �, ��K, 1� & �. Hence � � �� .  

(ii) Let �, � � �� . If  � � � � � , then � � � � �� . Let � � � ( �. Then for K � � � � we get K � � and K � �.  

 K � � � * [" \ 0 such that ��K, ["� & �. K � � �* [# \ 0 such that ��K, [#� & �. Select [ � min�[", [#�. Then ��K, [� & ��K, ["� and ��K, [� & ��K, [#�. Hence ��K, [� & � � �. Thus 

given K � � � �, * [ \ 0 such that ��K, [� & � � �. Hence � � � � ��. Thus �, � � ��implies � � � � ��. 

(iii)  Let �� � ��  ,  for each � � � �where Λ is any indexing set�.  
If  �����Λ

� � ,  then by definition of  ��  ,   �����Λ

� �� . 
Let �����Λ

( � .  Then K � �����Λ

 � K � ��,  for some �+ � � . 
As  ��, � ��   *  [ \ 0 such that   ��K, [� & ��,  and hence  ��K, [� &  �����Λ

 . 
Thus given K � �����Λ

 ,  *  [ \ 0 such that  ��K, [� & �����Λ

 . 
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Hence �� � �� , for each  � � � �  �����Λ

� ��  . 
From (i), (ii) and (iii) �� is a topology on X. 

Hence ��, ��� is a topological space. 

This topology �� is called the  topology induced by the metric � on X. 

 

Remarks:  

(1) Every open set in a metric space ��, 
� is an open set in T-space ��, ���.  
Obviously for any K � � and [ \ 0, ��K, [� � �� .  

(2) Every metric 
 on � �( �� induces a topology � on X. 

 

Example : Let 
 be a discrete metric on ��( �� i.e.  


�K, �� � �1    �F   K ( �0   �F   K � � � 
As ��K, 1� � �K�, we get �K� � �� for each K � �. Hence �� is the discrete topology on X. Thus 

discrete metric on X induces the discrete topology on X. 

 

Example : Let 
 denote usual metric on V  i.e. 
�K, �� � |K ' �| for K, � � V. Then  ��K, [� � �K ' [, K _ [� for each K � V and [ \ 0, Hence �� � �Z (by definition of ��and �Z) 

This shows that the usual topology on  V is same as the topology induced by induced usual 

metric on V .     

 

Definition 3.2: A T-space ��, �� is said to be metrizable if there exists a metric d on X such 

that �� � �.  

 

Examples :   

(1)    �V, �Z� is a metrizable space. 

(2)    Discrete topological space is a metrizable space. 

 

Remarks: Every topological space need not be a metrizable space. 

 For this, consider the following topological spaces. 
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(1) The topological space  ��, ��  where  � � ��,  � and � � ��, ���, ��. This topological  

space ��, �� is not metrizable. Let there exist a metric 
 on X such that �� � �. As � (  , 
��,  � \ 0. For [ � 
��,  � , �� , [� � � �. Thus � � � ��  but � � < ��.  

Hence a contradiction. This shows that ��, �� is not a metrizable space. 

(2)    Co-finite topological space �N, �� is not a metrizable. �N, �� be a co-finite topological   

        space. Assume that there exists a metric 
 on  such that �� � �.  

        Then ��K, 1� � �K� � �� � �, which is a contradiction, as N ' �K� is not finite.  

(3)    Indiscrete topological space ��, �� with |�| \ 1, is not a metrizable space. 

         Let |�| \ 1 and let �  be indiscrete topology on X. If possible assume that there exists a        

         metric 
 on X such that �� � � . Select K, � � � such that K ( � (this possible as 

         |�| \ 1). Hence 
�K, �� � [ \ 0. Then ��K, [� ( � as K � ��K, [�. Thus ��K, [� � ��  but  

         ��K, [� < � � ��, ��. This contradicts � � �� . Thus there does not exist any metric 
 on   

         X such that � � �� . (� � indiscrete topology). 

 

Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

(1) List four distinct topologies on  

(i) � � ��,  , !, 
�     (ii) � � �1,2,3� 
(2) Show that in a co-finite (co-countable) topological space ��, ��, 

��> � � | K � >� � �K� for any K � �. 
(3) Show that no two (non-empty) open  sets in a co-finite topological space are disjoint. 

(4) Define a metrizable space. Show that every metric 
 defined on � induces a topology 

on �.  

(5) Prove or disprove: 

(i) Union of two topologies defined on the same non-empty set � is a topology on �. 

(ii) Every topological space is metrizable. 

(iii)The set of all topologies defined on a non-empty set � is a complete lattice. 

(6) Give four different topologies on V. 

(7) Show that the co-finite topology on a finite set is the discrete topology. 

(8) Show that the co-countable topology on a countable set is the discrete topology. 
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(9) Let  ��, �� be a topological space and � & �. Show that  �� % �� � �� | �, � � �� is a 

topology on � . 

(10) Let � � �1,2,3� .  �" � ��, �, �2�, �2,3�� and �# � ��,�, �2�, �1,3��. Find the smallest 

topology on � containing �" and �#  and the largest topology contained in �" and �# . 

(11) Prove or disprove: � � ��� % �V� % �@� , ∞� | � � V� is a topology on V . 

(12) Find the mutually non-comparable topologies on � � �: , � , [� . 
(13) Let � ( � and � & � . Show that the family of all subsets of �  which contain � 

together with the empty set � is a topology on �. Discuss the special cases 

(i)  � � �  (ii)  � � � 

(14) Prove or disprove:  

(1)  Every topological space is metrizable. 

(2)  Any metric defined on � �( �� induces a topology on �. 

(15)  Show that the usual metric on � � � "q G 	 � Y � induces the discrete topology on �. 

(16) Prove that usual metric on V induces usual topology on V . 

(17) Let � � ��,  , !, 
. x� and � � ����, �!, 
�, ��,  , !��. Find the topology � on � 

generated by the family � . 

______________________________________________________________________________ 
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§1 Base for a topology – Definition and Examples. 

§2 Characterizations of bases. 

§3 Solved problems. 

§4 Sub-base – Definition and Examples. 

§5 Subspaces of a topological space. 
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§1 Base for a topology 

Definition 1.1: Let ��, �� be a topological space and let � � �. � is a base for �  if members of 

� can be can be expressed as a union of members of � or equivalently for each and each � 	 
 

there exists � 	 � such that � 	 � � 
. 

 The members of the base � are called basic open sets.  

 

Examples 1.2:  

(1) Let ��, �� be a discrete topological space. � � 
��� | � 	 �� is base for �. 

(2) Let � � ��, �, �, �� and � � ��, ���, ���, ��, ��, ��, ��, ��, �, ��, ��, �, ��, ��. Then ��, �� is a 

T-space and � � 
���, ���, ��, ��� is a base for �.  

(3) For the T-space ��, ���, � � ���, �� | �, � 	 �� is a base for ��. Obviously � � ��. Select 


 	 ��, and � 	 
. As 
 	 ��, for � 	 
, � � � 0 such that ��  �, � ! �� � 
 (by definition 

of ��). As ��  �, � ! �� 	 � and � 	 ��  �, � ! �� � 
 we get � is a base for ��.  

 

§2 Characterizations of bases 

Theorem 2.1: Let �" and �# be two topologies on a set X having bases �" and �# respectively. 

Then �" $ �# if and only if every member �" of can be expressed as a union of some members 

of �#. 
Proof : Only if part. 

 Let �" $ �#. As �" � �" we get �" � �#. As �# is base for topology �#, each member 

of �" being member of �#, can be expressed as union of some members of �#.  
If part.  

            By the given condition, each member of �"can be expressed as union of some members 

of �#. As �" is a base for �", each member of �" is expressed as union some members of �" 
and hence each member �" of is expressed as union of some members of �#. As �# � �# we 

get each member of �" is a member of �# also. Hence �" � �# i.e. �" $ �#. 

 

Unit 2: Bases and SubspacesBases and SubspacesBases and SubspacesBases and Subspaces 
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 Note that not every family of subsets of X will form a base for some topology on X. 

 

 The necessary and sufficient condition for � � %��� to be a base for some topology � 

on X is given in following theorem. 

 

Theorem 2.2: Let X be non-empty set and � � %���. � is a base for some topology on X if and 

only if it satisfies the following conditions : 

(i) � � &�� | � 	 �� and (ii) for �", �# 	 � and � 	 �" ' �#, there exists � 	 � such that 

� 	 � � �" ' �# (i.e. �" ' �# is expressed as union of members of �) 

Proof : Only if part 

 Let � be base for some topology � on X. Then � 	 �  (  � � &��| � 	 ��. Let 

�", �# 	 �. Then as � � � we get �", �# 	 � and hence �" ' �# 	 � . � being a base for 

topology for each � 	 �" ' �# , � � 	 � such that � 	 � � �" ' �# . Thus both conditions are 

satisfied. 

If part  

 Let � � %��� and let � satisfy the given two conditions (i) and (ii). To prove that � is a 

base for some topology � on X. Define  

                          � � ��� ) �* � � | * is union of some members of ��   
(1)  � 	 � and � 	 �  (by condition (i)). 

(2)  Let 
, + 	 �. If 
 ' + � �, then 
 ' + 	 �. Let 
 ' + , �. 

      � 	 
 ' +   (   � 	 
 and � 	 +. As 
,+ 	 �   � �", �# 	 � such that � 	 �" � 
 and  

      � 	 �# � + (by definition of �). Thus � 	 �" ' �# and �", �# 	 �. Hence by condition (ii), 

there exists � 	 � such that � 	 � � �" ' �#. This shows that for any � 	 
 ' +, � � 	 � such 

that � 	 � � 
 ' +. Hence 


 ' + � - ���
.	/'0

� - �
1	� 

� 
 ' + 

 

 i.e. 
 ' + is union of some members of �. Hence 
 ' + 	 �.  
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(3)  Let *2 	 � ,  3 4 	 5 , where Λ is any indexing set. Then obviously A
λ

λ∈Λ

∪  is union of 

some members of  . Hence A
λ

λ∈Λ

∪  	 �. 

From (1), (2) and (3), � is a topology on X. Now as � � � and each member of  is expressed as 

union of members of �, we get � is a base for this topology � on X.  

 

Corollary 2.3: If � is a family of subsets of X (, �) such that  

                 (i) � � &��| � 	 �� and  

                 (ii) �", �# 	 �  ( �" ' �# 	 �.  

Then � is a base for topology � on X.  

 

§3 Solved problems 

Problem 1: Show that �8�, �9 | � : �,   �, � 	 �� will not form base for any topology � on  

�. 

Solution : Let � be a topology on � for which � � �8�, �9 | � : �,   �, � 	 �� is a base for �. 

As � � �, 81 , 29 ' 82 , 39 	 �  ( �2� 	 �. But �2� cannot be expressed a union of members of 

� ; a contradiction. Hence there does not exists any topology � on � for which � is a base. 

 

Problem 2 : Let ��, �� be a topological space and � be a base for � . If � > is a topology on X 

with same base � then � � � >. 
Solution : Let 
 	 �. Then by definition of base 
 � &��| � 	 �,� � 
�. As � is a base for 

� > also, � � � > and hence 
 	 � >. Thus � � � >. Similarly we can prove � > � �. Hence 

� � � >. 
 

Problem 3 : Let ��, �� be a discrete topological space. Let � � 
��� | � 	 ��. Show that any 

family �? (of subsets of X) is a base for � if and only if � � �?.  
Solution : Only if part –  

 Let �? be a base for �. ��� 	 � and � 	 ���. Hence by definition of base � �? 	 �? such 

that � 	 �? � ���. But then �? � ���. As this is true for each � 	 � we get � � �?.  
If part –  Let � � �?. As � � %���, �? � � . ____________________ (1)  
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As 
 	 �. Then �
∈

∪ � �x G x  .  

As ��� 	 �? , 3 � 	 
 we get,  
 is union of members of �?__________ (2) 

Hence from (1) and (2) �? is base for �.   

 

Problem 4 : Let � and �? be any two topologies on X �, �� with � and �? as bases. If each 


 	 � is union of members of �?, then show that � $ �?.  
Solution : As �? � �?, each 
 	 � is union of members of �? and �? being a topology on X,  


 	 �?. This shows that � $ �?. 
 

Problem 4: Let ��, �"� and �B, �#� be two T-spaces.  

Let � � �
" C 
#| 
" 	 �" and 
# 	 �#� 
Then show that  � is a base for some topology on � C B. 

Proof : Obviously � is a family of subsets of � C B. As � 	 �" and B 	 �#, we get  

� C B � &��| � 	 �� _______ (1) 

Further let 
" C 
# 	 �, +" C +# 	 � and ��, D� 	 �
" C 
#� ' �+" C +#�.  
Then ��, D� 	 �
" ' 
#� C �+" ' +#�. As 
" ' 
# 	 �" and +" C +# 	 �# we get  

�
" ' 
#� C �+" ' +#� 	 �. Thus ��, D� 	 �
" ' 
#� C �+" ' +#� � �
" C+"� ' �
# C +#�. 
This shows that both the conditions (i) and (ii) of the theorem 1.4.3 are satisfied. Hence � is base 

for some topology � on � C B.  

 

Definition : The topology � defined on � C B for which � � �
 C+ | 
 	 �" and + 	 �#� is 

called the product topology on � C B and the T-space �� C B, �� is called product space, where 

� is product topology on � C B.. 

 

§4 Sub-base – Definition and Examples. 

Definition 4.1: A family S of subsets of X is said to be a sub-base for the topology � on X if 

the family of all finite intersections of members of � is base for �. 
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Examples 4.2: 

(1) Every base for topology � is obviously a sub-base for �.  

(2) �* � � | * � ��,∞� F� * � � ∞, �� GF� �, � 	 �� is a sub-base for the usual topology �� 

on �. 

 

§5 Subspace of a topological space 

Theorem 5.1: Let ��, �� be a T-space and let Y be any non-empty subset of X. Define  

�? � �
 ' B | 
 	 ��. Then �? is a topology on Y. 

Proof : (i)  � 	 �   (   � ' B � � 	 �?. 
                 � 	 �   (   � ' B � B 	 �?. 
(ii) Let 
?, +? 	 �?. Then 
? � 
 ' B and +? � + ' B for some 
,+ 	 �. Hence 

 
? ' +? � �
 ' +� ' B. As �
 ' +� 	 � we get 
? ' +? 	 �?. 
(iii) Let 
2? 	 �? ,  3 4 	 5 , where Λ is any indexing set. Then 
2? � 
2 ' B for some 
2 	 �. 

 -
2?
2	H

�-�
2 ' B�
2	H

� I-
2
2	H

J ' B                                                
       

As -
2
2	H

	 � , we get -
2?
2	H

	 �?.                                                             
From (i), (ii) and (iii) we get �? is a topology on Y. Hence �B, �?� is a T-space. 

 

Definition 5.2: This topology �? on Y is called relative topology on Y and the T-space �B, �?� is 

called the subspace of T- space ��, ��.  
 Note that a subset* � B is open in �B, �?� if and only if * � 
 ' B  for some open set G 

in ��, ��. 
 

Examples 5.3: 

(1) Let ��, �� be a T-space where � � ��, �, �, �� and � � ��, ���, ��, ��, ��, �, ��, ��. If   
B � ��, �, �� then the relative topology �? on Y is given by �? � ��, ��, ��, B�  
(2) Let ��, �� be any T-space. Let B � ��� for some � 	 �. Then the relative topology �? on Y  

is the indiscrete topology on Y as �? � 
�, ����. 
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(3) M � �. ��, ��� is a T-space. The relative topology �? on M is a discrete topology on M as for 

any N 	 M, �N� � ON  "
# , N ! "

#P ' M 	 �?. Similarly we can prove that the relative topology of 

�� to Q is the discrete topology. 

(4) Any subspace of a discrete (indiscrete) T-space is a discrete (indiscrete) T-space. 

 

Theorem 5.4: Let ��, �� be a T-space and R S B S �. Denote 
� BT , the relative topology on Y 

induced by � . Show that 
��/B� RT  � � RT . 

Proof: We have 
� RT � �
 ' R | 
 	 �� and 

� BT � �
 ' B | 
 	 ��.  

Then 
��/B� RT � V
? ' R | 
? 	 � BT W  

   � ��
 ' B� ' R | 
? � �
 ' B�, 
 	 �� 
                         � �
 ' �B ' R� |   
 	 �� 
   � �
 ' R |   
 	 ��      ……… ( X R S B ) 

   � 
� RT  

Remark: Let �B, �?� be a subspace of  ��, �� . For each subset open in the subspace �B, �?� to 

be open in ��, �� , it is necessary and sufficient that B is open in �.  

For this consider the T-space ��, ��� and B � 80,19. Then Y is not open in ��, ���. Y 0 , "# P is 

open in Y as Y 0 , "# P � OZ"#  , "#P ' B � OZ"#  , "#P ' 80,19 and OZ"#  , "#P 	 ��. But Y 0 , "# P is not 

open in ��, ���. 
 

Theorem 5.5: Let ��, �� be a T-space and let � be a base for �. If �B, �?� is a subspace of 

��, ��, then �? � �� ' B | � 	 �� is a base for �?. 
Proof : � is a base for � (  � � �  (  �? � �? ________________________(i) 

 Let 
? 	 �? and D 	 
?. As 
? 	 �?, 
? � 
 ' B for some 
 	 �. As D 	 
?, we get  

D 	 
 ' B. As � is a base for �, D 	 
 and 
 	 � will imply D 	 � � 
 for some � 	 �. But 

then D 	 � ' B � 
 ' B � 
?. Define �? � � ' B. Then �? 	 �?.  
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Thus for 
? 	 �? and D 	 
? �  �? 	 �? such that D 	 �? � 
?________________(ii) 

 Hence from (i) and (ii) �? is a base for �?. 
 

Definition 5.6: A property of a topological space is said to be hereditary if every subspace of the 

space has that property.  

 

Examples 5.7:  

(1) The property of a topological space being a discrete space is a hereditary property.  

(2) A property of a topological space being a indiscrete space is a hereditary property. 

(3) Metrisability is a hereditary property i.e. subspace of a metrizable space is metrizable space. 

Proof:  Let a T-space ��, �� be a metrizable. Hence �  a metric � defined on X such that the 

induced topology �[ by the metric � coincides with �. �:� C � ] � and B � �. Restrict � to 

B C B and denote it by �". Then �": B C B ] � .  
For any D 	 B, ^�D, �� in Y = �^�D, �� in �� ' B __________________ (I) 

The base for topology �[ � � is given by �^��, �� | � 	 � and � � 0�. From theorem 5.5,  

�^��, �� ' B | � 	 � and � � 0� will be a base for �?, where �? denotes the relative topology on 

Y. Thus by (I) �^�D, �� | D 	 B and � � 0� is a base for �?. As the base for the topology �? and 

the topology �[b  are the same we get �? � �[b . This shows that for the relative topology  �? on 

B � �, � a metric �" on Y such that �[b � �?. Hence the subspace �B, �?� is metrizable. Thus 

subspace of a metrizable space is metrizable.  

   

Remark : There are some properties of a topological ��, �� which are not hereditary, e.g. 

compactness or connected which we will study in unit 6 and 7.  

 

Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

1) Let �B, �?� be a subspace of ��, ��. Consider the following statements : 

 (i) ��, �� is discrete topology  ( �B, �?� is discrete topology. 

 (ii) �B, �?� is discrete topology  ( ��, �� is discrete topology. 

Which of the statements (i) and (ii) is true? Justify your answer. 

______________________________________________________________________________ 
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§1 Derived set of a set 

Definition 1.1:- Let ��, �� be a topological space. Let � � � and 	 
 �. Then 	 is a limit point 

or accumulation point of � if each open set containing 	 contains a point of � other than 	.  

i.e. for each open set � containing 	, G � � 
 �	� � � .  

 

Remarks: 

(1)  	 
 � is not a limit point of � � � if � � � � � or � � � � �	� for some open set � 

containing 	. 

(2) The set of all limit points of � is denoted by ���� and is called derived set of �. 

 

Examples 1.2: 

1) Let ��, �� be a discrete topological space and let � � �. For any 	 
 � we get 	 
 �	� 
and �	� 
 � . Hence �	� � � � � if 	 � � or �	� � � � �	� if 	 
 �.  

Hence  �	� � � 
 �	� � �.Hence, 	 is not a limit point of �. 

Thus no point of � will be a limit point of �. Hence  ���� � � for each 

 � � � in a discrete topological space. 

2) Let ��, �� be indiscrete topological space, � � � and 	 
 �. The only open set 

containing 	 is �. Hence � � � 
 �	� � � 
 �	� .  
If � � �, then no point of � will be a limit point of �. Hence ���� � �.  

If � � �	�, then each point of � 
 �	� will be a limit point of �. 

Hence ���	�� � � 
 �	� .  
If |�| � 1, then each point of � will be a limit point of �. Hence ���� � � . 

3) Consider the topological space ��, ��� and � � � . For 	 
 � , 

�	 
 � , 	 � �� 
 ��. 

For �  1 we get �	 
 � , 	 � �� � � � �. Hence 	 is not a limit point of �. 

As this is true for any 	 
 � , ���� � � .  

4) Let � � �!, ", #� and let � � ��, �!�, �"�, �!, "�, ��. Take � � �!� .  

Unit 3:    Special SubsetsSpecial SubsetsSpecial SubsetsSpecial Subsets    
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(i) 	 � ! . For the open set �!� containing !, we get, 

�!� � � 
 �!� � �!� � �!� 
 �!� � �!� 
 �!� � � . Hence ! is not a limit point of �. 

(ii) 	 � " . For the open set �"� containing ", we get, 

�"� � � 
 �"� � � . Hence " is not a limit point of � . 

(iii) 	 � # . The only open set containing # is � and � � � 
 �#� � �!� 
 �#� � �!� � �. 

This shows that # is a limit point of � 

Hence ���� � �#�.  
 

Theorem 1.3: In any topological space  ��, �� we have, 

1) ���� � �. 

2) � � $  %  ���� � ��$� ,   & �, $ � � . 

3) 	 
 ����  %   	 
 ��� 
 �	�� , & � � � . 

4) ��� ' $� � ���� ' ��$� , & �, $ � � . 

5) ��� � $�  � ���� � ��$�   & �, $ � �. 

Proof: - 

(1)Let 	 
 � and � be any open set containing 	. Then � � � 
 �	� � � 
 �	� � �, shows 

that no 	 
 � will be a limit point of � .  

Hence ���� � �. 

(1) Let 	 
 ���� . If 	 � ��$� , then ( an open set � containing 	 such that 

� � $ 
 �	� � � . As � � $ we get � � � 
 �	� � � . Hence 	 � ���� ; a 

contradiction. Thus 	 
 ����  %  	 
 ��$� , if � � $.  

Hence, � � $  %  ���� � ��$�.    
(2) Let 	 
 ���� . To prove that 	 
 ��� 
 �	��.  

Assume that 	 � ��� 
 �	�� . Then ( an open set � containing 	 such that 

� � �� 
 �	�� 
 �	� � � . But this implies � � �� � �	�)� � �	�) � �  (�	�* � � 
 �	�) 
i.e. � � � � �	�) � �   i.e. � � � 
 �	� � � . Hence 	 � ���� ; a contradiction.  

Hence 	 
 ����  %  	 
 ��� 
 �	��. 
(3) To prove that ��� ' $� � ���� ' ��$� , & �, $ � � . 

By (2) we get,  

� � � ' $  %  ���� � ��� ' $� and 

$ � � ' $  %  ��$� � ��� ' $� . 
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Hence ���� ' ��$� � ��� ' $� ___________________________ (I) 

Let 	 
 ��� ' $�. To prove 	 
 ���� ' ��$�.  
Assume that 	 � ���� ' ��$�. Therefore 	 � ���� and 	 � ��$�. 
	 � ����  % ( � 
 � such that 	 
 � and � � � 
 �	� � �. 

	 � ��$�  % ( + 
 � such that 	 
 + and + � $ 
 �	� � �. 

�,+ 
 � %  � � + 
 � and we get �� � +� � � 
 �	� � � and 

�� � +� � $ 
 �	� � �. 

 Combining both we get, �� � +� � �� � $� 
 �	� � �. 

As � � + 
 � and 	 
 � � +, we get 	 � ��� ' $�; a contradiction.  

Thus 	 
 ��� ' $�  % 	 
 ���� ' ��$�  
Hence ��� ' $�  � ���� ' ��$� ____________________________ (II) 

From (I) and (II) we get, 

                       ��� ' $� � ���� ' ��$� 
(4)   � � $ � �  %  ��� � $�  � ���� !,� � � $ � $ %  ��� � $�  � ��$�  Hence we 

get ��� � $�  � ���� � ��$�. 
 

§2  Closed sets  

Definition 2.1: Let ��, �� be a topological space and � � � . � is said to be closed if � contains 

all its limit points i.e. if ���� � �. 

 

Examples 2.2: 

1) ���� � � � �       %    � is closed in ��, �� . 
2) ���� � � always   %    � is closed in ��, �� .  
3) In ��, ��� , �!, "�  - where !  ". is not a closed set as it does not contain its limit 

point !.  

4) In a discrete topological space ��, �� , �|�| � 1�, ���� � � , & � � �.  

Hence ���� � � , & � � �. Hence each subset of � is closed. 

5)  In an indiscrete topological space the only closed sets are � and �. 
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Theorem 2.3: Let / be a closed set in a topological space ��, �� and let 	 � /. Then ( an open 

set � such that 	 
 � � � 
 /.  

Proof: / is closed set % ��/� � /. 

	 � / % 	 � ��/� 
           % 	 is not a limit point of /. 

           % ( an open set � containing 	 such that � � / 
 �	� � �. 

           % ( � 
 � such that 	 
 � and � � / � � 0� � � / � �	�. 
           % ( � 
 � such that 	 
 � and � � / � �  (as 	 � /, � � / � �	�). 
           % ( � 
 � such that 	 
 � and 	 
 � � � 
 /. 

 

Corollary 2.4: If / is a closed in ��, ��, then � 
 / is an open set. 

Proof: By Theorem 2.3 for each 	 � /, ( an open set � such that 	 
 � � � 
 /. 

Thus � 
 / � 1 �	�
2
345

�1�� 
 � | 	 
 � and � � � 
 /�  

Thus � 
 / �1�� � � 
 / | � 
 �  such that  	 
 � � � 
 /� 
Thus � 
 / is an arbitrary union of open sets and hence � 
 / is an open set.  

 

Corollary 2.5: If � 
 / is an open set in ��, ��, then / is a closed set. 

Proof: -To prove that / is a closed set in � i.e. to prove that ��/� � /.  

Let us assume that ��/� 6 /. Then (  	 
 ��/� such that 	 � /.  

By Theorem 2.3, ( an open set � such that 	 
 � � � 
 /.  

For this open set � containing 	, we get  � � / 
 �	� � � 
 �	� � � .  

This shows that 	 is not a limit point of /. i.e. 	 � ��/� ; a contradiction.  

Hence, ��/� � /.Therefore / is a closed set. 

 

Corollary 2.6: A set is closed subset of a topological space if and only if its complement is an 

open subset of the space. 

Proof: -From the Corollary 2.4 and Corollary 2.5 the proof follows. 
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Corollary 2.7: The family 7 of all closed subsets in a topological space has the following 

properties: 

1. The intersection of any number of members of 7 is member of 7. 

2. The union of any finite number of members of 7 is a member of 7. 

3. � 
 7 and � 
 7. 

 

Theorem 2.8: Let � � � and let 7 denotes the family of subsets of � satisfying the conditions 

in corollary 2.7. Then ( a unique topology � on � for which the family 7 will be family of 

closed subsets of �. 

Proof:- Define � � �� 
 / | / 
 7� . Then obviously � is a topology on �. 

To prove the uniqueness only. 

Let �* be another topology on � for which  7 is family of closed sets in �.  

Then � 
 � 8 � 
 � 
 7  8 �
 � is � closed 8 �
 � is �* closed (since � and �* have the 

same family of closed sets) 8 � is open in ��, �*� i.e. � 
 �*.  
Thus � 
 � 8  � 
 �* .  
Hence � � �* and the uniqueness follows.  

 

Example:- Let 7 � �9� ' �� � 9 | � is a finite set� . Then 7 satisfies three conditions of 

corollary 2.7 and hence can be used to define a topology � on 9. 

(I) 9 
 7 (by definition) and � 
 7 , as � is always finite. 

(II) Let �, $ 
 7. If � � 9 or $ � 9, then � ' $ � 9 and we get � ' $ 
 7.  

If � � 9 and $ � 9, then � is finite and $ is finite. Hence � ' $ is finite and therefore 

� ' $ 
 7.  

Thus �, $ 
 7 %  � ' $ 
 7. 

(III) Let �: 
 7  & ; 
 Λ , where Λ is any indexing set .  
Then =�:

:
>
 � �:?  for some ;@. 

As �:?  is a finite set, we get =�:
:
Λ


 7 . 

Thus the family 7 satisfies all the three conditions of corollary 2.7. 
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Define � � �� 
 / | / 
 7� . Then obviously � is a topology on � for which 7 will form 

family of closed sets. 

 

Remark: It can be observed that in discrete and indiscrete spaces the closed sets are same as 

open sets. But there also exists some non-trivial topological spaces in which closed sets are same 

as open sets.  

e.g. Consider the topological space ��, �� where � � �!, ", #� and � � ��, �!�, �", #�, ��. The 

family of closed sets in ��, �� is 7 � ��, �!�, �", #�, �� , which is same as �. 

 

Definition 2.9:-A subset in a topological space is said to be clo-open if it is both closed and open 

in that space. 

� and � are clo-open sets in any topological space. 

 

Remark: Union of finite number of closed sets in a topological space is a closed set, but union 

of an infinite collection of closed sets in a topological space is not necessarily closed. 

For this consider the topological space ��, ���.  
Define /A � B 1, , 1 C  ,   &  , 
 �. 
Then /A is a closed set in ��, ��� ,   &  , 
 �. 

As 1/A
A
�

� �1� ' B 12 , 1C ' B 
1
3 , 1 C  ' B 

1
4 , 1 C  ' …… � �0 , 1.  ,   we get 1/A

A
�
 is not a  

closed set in ��, ���.  
 

§3  Closure of a set 

Definition 3.1: The closure of a set � in a topological space ��, �� is the intersection of all 

closed subsets of � containing �. This is denoted by #��� or �I .  
 

Remarks:  

(1) �I is the smallest closed set containing �. 

(2) �I is a closed set(see corollary 1.10) containing �. 

(3) � is a closed set if and only if � � �I. Hence �J � � and  � KKKK � �. 
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Theorem 3.2: For any set � in a topological space ��, ��, �I � � ' ����. 
Proof:-  

 I)  To prove that �I � � ' ����. 
Let 	 
 �I . To prove that 	 
 � ' ����.  
Assume that 	 � � ' ����. Then 	 � � and 	 � ����.  
	 � ����  % 	 is not a limit point of �. 

                 % ( an open set � containing 	 such that � � � � � or � � � � �	�. 
As 	 � � we get � � � � �. Hence � � � 
 �.  

Further as � � � � � and � 
 �, no limit point of � will be a limit point of �.  

But this will imply � � � 
 ����. 
Thus � � � 
 � and � � � 
 ����  %  � � �� 
 �� � L� 
 ����M 
                                                            %  � � � 
 -� ' ����.. 
Thus for each 	 � � ' ���� i.e. for each 	 
 � 
 -� ' ����. there exists an open set �2 

such that 	 
 �2 and �2 � � 
 -� ' ����..  
Hence � 
 -� ' ����. � 1 �2

2
34-N'O�N�.
      is an open set. 

Hence � 
 -� ' ����. is an open set in ��, ��. 
Therefore -� ' ����. is a closed set. 

Obviously, � � � ' ����. Hence �I � � ' ����. 
II)  To prove that � ' ���� �  �I.  

Let  	 
 � ' ���� !,� PQR $ "Q !,S #P0TQ� TQR #0,R!U,U,V �.  
If  	 
 �, then  	 
 $ obviously. 

If 	 
 � �� �, then  	 
 � �$� L since  � � $ implies � � � � � � � $ �M and hence 

	 
 $ as $ is a closed set. Thus 	 
 � ' ���� implies 	 
 $ for any closed set $.  
Hence  	 
 �I.  
This shows that � ' ���� �  �I 

From (I)  and (II) the result follows. 

 

Theorem 3.3: If W is a subset of a subspace ��X, �X� of a topological space ��, ��, then 

#X�W� � �X � #�W�, where #�W� �closure of E in  ��, �� and #X�W� � closure of E in ��X, �X� 
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Proof: Let 7 and 7X denote the family of closed sets in � and �X respectively. 

�X � #�W� � �X � d=�/ | / 
 7 and W � /�e �=��X � / | / 
 7 and W � /� 

                    �=�/X | /X 
 7X and W � /X� � #X�W� . 
 

Remark: In any topological space  ��, �� we have,  

(1) #��� � � 

(2) #��� � � 

(3) #L#�W�M � #�W�   f0� !,S W � �. 
(4) � � $ % #��� � #�$� for any  �, $ � �. 
(5) #�� � $� � #��� � #�$� for all �, $ � � .  

 

§4  Interior of a set  

Definition 4.1: Let ��, �� be a topological space and W � �. The interior of W is the union of all 

open sets contained in W. 

It is denoted by U�W� 0� Wg  
 

Remarks: 

(1) U�W� is an open set in � and is the largest open set contained in W. 

(2) W is open in � if and only if U�W� � W. 

 

Examples: 

(1) Let ��, �� be an indiscrete T – space with |�| � 1. Then for any W h � we get U�W� � �. 

For W � � , U�W� � �.  

(2) Let ��, �� be a discrete topological space. U�W� � W for each W � �. 

 

Theorem 4.2: For any set W in a topological space ��, ��, U�W� � W)4) (complement of closure 

of complement of W). 

[�) � Complement of � in ��, �� and �I � closure of � in ��, ��.] 
Proof: To prove U�W� � W)4).  
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Let 	 
 U�W�. Then U�W� is an open set containing 	 and contained in W. 

Hence U�W� � �� 
 W� � �.  

Thus, U�W� � �� 
 W� 
 �	� � �.This shows that 	 is not a limit point of W. 

Thus 	 
 U�W�   % 	 � �� 
 W� and 	 � �-�� 
 W�.. Hence 	 � W* ' ��W*� i.e. 	 � W)4.But 

then 	 
 W)4).This shows that U�W� � W)4) _______________ (1) 

To prove W)4) � U�W� . Let 	 
 W)4). 
 

Then 	 � W)4  %  	 � W) ' ��W*�  
                        %  	 � W) and 	 � ��W*�    
                        %  	 
 W and 	 is not a limit point of W*. 
Hence ( an open set � in � such that 	 
 � and � � W) 
 �	� � �. 

This is possible only when � � W) � � … (since 	 � W)  %  � � W) � �	�).   
Thus � � W. By the definition of U�W� we get � � U�W�.Hence 	 
 U�W�.  
This shows that W)4) � U�W�  ___________________________ (2) 

From (1) and (2), we get, 

                                    U�W� � W)4) . 
 

Remarks. 

 In any topological space ��, ��, U�W� � Complement of the closure of the complement of W. 

U�W� equals the set of all those points of E which are not limit points of  
W) � � 
 W.  

#�W� Qij!PT RkQ TQR 0f #omplement of the interior of the complement of W. 

 

Theorem 4.3: In any topological space  ��, �� we have,  

(6) U��� � � 

(7) U��� � � 

(8) ULU�W�M � U�W� f0� !,S W � �. 
(9) � � $ % U��� � U�$� f0� !,S  �, $ � �. 
(10) U�� � $� � U��� � U�$�   for all �, $ � � .  

Proof: We prove the property (5) only. 

� � $ � � and � � $ � $. 
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%  U�� � $� � U��� and U�� � $� � U�$� 
%  U�� � $� � U��� � U�$�  ______________________________________ (i) 

Let 	 
 U��� � U�$� . Then 	 
 U��� and 	 
 U�$�. 
	 
 U���  % ( � 
 � such that 	 
 � � �. 

	 
 U�$�  % ( + 
 � such that 	 
 + � $. 

But then 	 
 � � + � � � $. 

As � � + 
 � we get � � + � U�� � $�. Hence 	 
 U�� � $�. 
This shows that, U��� � U�$� � U�� � $� ______________________________ (ii) 

From (i) and (ii), we get, 

                           U�� � $� � U��� � U�$�. 
 

Remark: U��� ' U�$� � U�� ' $� for �, $ � �. But U��� ' U�$� � U�� ' $� in general. For this 

consider the topological space ��, ���. Take � � -0,1� and $ � -1,2�. Then U��� � �0,1� and 

U�$� � �1,2�. Hence U��� ' U�$� � �0,2� 
 �1�. � ' $ � -0,2� and U-� ' $. � �0,2�.  
This shows that U-� ' $. � U��� ' U�$� .  
 

Definition 4.4: Let ��, �� be a topological space, W � � and 	 
 �. 	 is called an interior point 

of W if ( an open set � such that 	 
 � � W. 

 

Remark: The set of all interior points of W is U�W� for any subset W of a topological space ��, ��.  
 

§5  Exterior of  a set 

Definition 5.1: Let ��, �� be a topological space and W � �. The exterior of W is the set of 

interior points of the complement of W. This is denoted by Q�W�. 
 Thus Q�W� � U�W*� � U�� 
 W�. 
 

Remark: U�W� � Q�W*�. 
 

Theorem 5.2: In any topological space  ��, �� we have, 

(1) Q��� � � 

(2) Q��� � � 
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(3) Q�W� � W) � � 
 W f0� !,S  W � �. 
(4) Q�W� � Q-� 
 Q�W�. f0� !,S  W � �. 
(5) Q�� ' $� � Q��� � Q�$�. f0� !,S  �, $ � �. 

Proof: Proofs of properties (1), (2) and (3) follows directly from the definition. 

Proof of (4):  

  Q-� 
 Q�W�. � ULQ�W�M  (by the definition) 

             � ULU�� 
 W�M 
             � U�� 
 W� 
             � Q�W� 
Thus, Q�W� � Q-� 
 Q�W�.. 
Proof of (5):  

  Q-� ' $. � U-� 
 �� ' $�. 
       � U-�� 
 �� � �� 
 $�. 
       � U�� 
 �� � U�� 
 $� 
       � Q��� � Q�$� 
Thus  Q�� ' $� � Q��� � Q�$�. 
 

§6  Boundary of set 

Definition 6.1: Let ��, �� be a topological space and W � �. The boundary of set W is the set of 

all points interior to neither W nor � 
 W. This is denoted by "�W� or frontier of W. 

 

Theorem 6.1: In any topological space��, �� for any  W � � we have 
(1) "�W� � � 
 -U�W� ' U�� 
 W�. 

         � -� 
 U�W�. � -� 
 U�� 
 W�. 
         � -� 
 U�W�. � -� 
 Q�W�. 
         � � 
 -U�W� ' Q�W�. 

(2) "�W� � "�� 
 W� 
"�W� � � 
 -U�W� ' U�� 
 W�.  
         � � 
 -U-� 
 �� 
 W�. ' U�� 
 W�. 
         � "�� 
 W�  



Special Subsets 

 

Page | 42  

 

(3) "�W� � � 
 -U�W� ' U�� 
 W�. 
          � -� 
 U�W� . � -� 
 U�� 
 W�. 
         � WK � �� 
 W�KKKKKKKKKK  

 

 

 

§7  Solved Problems 

Problem 1: If 	 is a limit point of a subset W of a topological space ��, ��, what can be said 

about whether 	 is a limit point of W in the topological space ��, �X� if �X l �. What if  �X m � ? 

Solution: If �X l � then surely 	 is a limit point of W in ��, �X� also [since any open set 

in ��, �X� containing 	 will also be open in ��, �� containing 	]. 

If �X m �, then 	 need not be a limit point of W in ��, �X� . For this, consider � � �!, "� . 
� � indiscrete topology and �X � discrete topology on �. Then " is a limit point of �!� in ��, ��, 
but " is not a limit point of �!� in ��, �X� . 
 

Problem 2: Consider the topological space ��, �� where,  

� � ��� ' ��A | , � 1,2,… � where �A � �,, , � 1, , � 2,… � ,   & , 
 � .  

Find  (1)  ��W� where W is an infinite subset of �.  

          (2)  ��W� where W is a finite subset of � and W � �1�.  
          (3)  ��W� where W � �1�. 
Solution:  

(1) Let W be any infinite set and , 
 �.  

Then , 
 �n for all o l ,.  W � �n 
 �,� � �   & o l ,. Hence , is a limit point of W. 

As this is true for any , 
 �, we get ��W� � �. 

(2) Let W is a finite subset of �. Let W � �	p, 	q, … , 	A�. Let o � o!	 �	p, 	q, … , 	A�.  
Then for any �r , s l o , �r � W 
 �s� � � . Hence each s l o is a limit point of W. 

Hence ��W� � �1,2, … ,o�. 
(3) Let W � �1�. Then for 1, �p is the open set containing 1.  

�p � W 
 �1� � �1� 
 �1� � � . For any , � 1, �A � W 
 �1� � � 
 �1� � � . 

Hence , � 1 is not a limit point of W � �1�.  
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Thus no point of � will be a limit point of �1�. Hence ���1�� � � . 

 

Problem 3:- Let ��, �� be a s 
inclusion topology �s 
 �� (see Example 6, Unit 1). Find �I for 

� � �"�. 
Solution:- We know that � � ��� ' �� � � | s 
 ��.  
Consider 	 
 � and an open set � containing 	. Then s 
 � (by definition of �) and 

 � � �s� 
 �	� � � for each 	 � s as s 
 � � �s� 
 �	� where s � 	. But this shows that 

each 	 � s is a limit point of � � �s�. Hence by the Theorem 3.2, 

�I � � ' ���� � �s� ' �� 
 �s�� � �. 

 

Problem 4:- Let ��, �� be a co-finite topological space, where � is an uncountable set. Show 

that for infinite countable subset � of �, �I � �. 

Solution:- By the definition, � � ��� ' �� � � | � 
 � is finite�. 
Thus closed set in � must be finite. As � is not finite, � is not closed set in ��, ��. Hence only 

closed set containing � is �. As �I � the smallest closed set containing �, we get �I � �. 

 

Problem 5:- Find the derived set of �!, "�  -!  ". in � relative to, 

(i) Discrete topology.  

(ii) Usual topology ��. 

(iii)  Lower limit topology. 

(iv) Indiscrete topology.   

Solution: - 

(i) �L�!, "�M � � relative to discrete topology in � (see Example 1 in 1.2).  

(ii) �L�!, "�M � -!, ". relative to usual topology �� on � . 

! 
 �! 
 �, ! � �� and �! 
 �, ! � �� 
 �� for any � � 0 .  

�! 
 �, ! � �� � �!, "� 
 �!� � �   & � � 0. This shows that ! is a limit point of �!, "�.  
Similarly, we can prove that " is a limit point of �!, "� in ��, ��� . Further any 

	 
 �!, "� will obviously a limit point of �!, "�. Further 	 � �!, "� will not be a limit 

point of �!, "�. Hence �L�!, "�M � -!, ". relative to usual topology on � .  

(iii) Let � denote the lower limit topology on � .  
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Then � � ��� ' �-!, "� | !, " 
 � and !  "� . Now ! is a limit point of �!, "� as 

! 
 -! , ! � t� and �! , ! � t� 
 �  & t � 0 and -! , ! � t� � �! , "� 
 �!� � � for 

any t � 0 . This shows that ! is a limit point of �! , "� relative to � .  

Obviously, any s 
 �! , "� will be limit point of �! , "� relative to � . For " 
 � , the 

open set containing " is of the form -" , " � t� for t � 0 and 

-" , " � t� � �! , "� 
 �"� � � 
 �"� � �. Hence " is not a limit point of �!, "�. 
Similarly any 	 � �!, "� will not be a limit point of �!, "� relative to � . Hence,  

�L�!, "�M � -!, "� relative to � . 

(iv) Let � be an indiscrete topology on � . Then �L�!, "�M � � relative to indiscrete 

topology (see Example 2 in 1.2) 

 

Problem 6:-Let �u, �X� be a subspace of ��, ��. Then a subset � of u is closed in u if and only if 

there exists a set / closed in � such that � � / � u. 

Solution: - Let a subset � of  u  be closed in u. Hence u 
 � is open in u. 
Hence  u 
 � �  � � u for  some � 
 � . 
But then � � �� 
 �� � u  will  imply � � / � u where / � � 
  � is closed set in �.  

Similarly we  can prove the converse. 

 

Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

1) In a topological space ��, �� where, 

� � ��� ' ��� ' ��!,∞� | ! 
 �� find all � - closed subsets of � . 

 

2) Let � � �!, ", #, �, Q�. Define � � ��, �!�, �#, ��, �!, #, ��, �", #, �, Q�, ��. Show that � is a 

topology on � and find all � - closed subsets of �. 

 

3) Consider the topological space ��, ���.  
Define � � �!, "� , $ � -!, "� and w � -!, ".. Which of the following sets are neither 

open nor closed: 

(a)  �    (b)  $   (c)  � � $  (d)  � � w                                                                   
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4) Show that U- � � $KKKKKKK .  � U��I� � U�$K�, where � and $ are open sets in ��, ��. 
 

5) Verify the following properties of  x , y and z for any sets �, $ and W: 

(i) #�W� � W ' "�W� , U�W� � W 
 "�W�. 
(ii) � � U�W� ' "�W� ' Q�W� where  U�W� � "�W� � Q�W� � �.  

(iii) "LU�W�M � "�W� , "L#�W�M � "�W� (give an example where these sets are not 

equal). 

(iv) "�� ' $� � "��� ' "�$� , U�� ' $� { U��� ' U�$� (give an example where these 

sets are not equal). 

(v) "�W� � � if and only if W is both open and closed. 

(vi) If � and $ are open,  UL#�� � $�M � UL#���M � UL#�$�M. 
______________________________________________________________________________ 
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Unit 4 

Different ways of defining topologiesDifferent ways of defining topologiesDifferent ways of defining topologiesDifferent ways of defining topologies     

§1  Closure operator. 

§2  Interior operator. 

§3  Exterior operator. 

§4  Neighbourhood system. 
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§1 Closure operator  

Definition 1.1: Let X be any non-empty set. By a closure operator c* on X we mean a function  

c*:����� ���� satisfying the following conditions: 

(1) c*�	� 
 	 

(2) � � c*��� 
(3) c*
c*���� 
 c*��� 
(4) c*�� � �� 
 c*��� � c*���   

for all �, � � ����.  
Example 1.2: Let ��, �� be any T – space. Define c*:���� ����� by c*��� 
 �� 
 closure 

of � in ��, ��. Then c* is a closure operator on X. 

Theorem 1.3: Let c* be a closure operator defined on X. Let � 
 �� � � | c*��� 
 �� and  

� 
 �� � � | � � ��. Then � is a topology on X and c*���  
  �� = closure of � in ��, ��, for 

any � � � . 

Proof: I] To prove that � is a topology on X. 

(i) c*�	� 
 	 (by definition of c*)  �  � � 	 � � � � � �. 

� � c*��� (by definition of c*). We get c*��� 
 �   �  � � � � � �  	 � �. 

(ii) Let  �, � � �. Then c*�� � �� 
 � � � and c*�� � �� 
 � � � (by definition of �). 

c*�� � ��  ��! 
 c*��� � �� � �� � ��! 
                            
 c*�� � �� � c*�� � �� …… (definition of c*) 

                            
 �� � �� � �� � �� …… (�,� � �)  

                            
 � � ��  �� 
This shows that �  � � �.  

Thus �, � � �  �  �  � � �. 

Unit 4:Different ways of defining topologiesDifferent ways of defining topologiesDifferent ways of defining topologiesDifferent ways of defining topologies 
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(iii) Let "# � �  $ % � Λ , where Λ is any indexing set .  
To prove that '"#

#�(
 �   � . 

First note that � � � �  c*��� � c*��� , for �, � � ����.  
� � �  �   � � � 
 � �   c*�� � �� 
 c*���  
                                        � c*��� � c*��� 
 c*��� 
                                        � c*��� � c*���  
Thus � � � �  c*��� � c*���. 
Now "# � � � * + �� �  "#� 
 � �  "# $ % � Λ . 

 "# �' "#
#�(

�  �� �  "#�  ,    -� �' "#
#�(

.  ,    $ % � Λ   

                         �   *+�� �  "#� ,  *+ -� �' "#
#�(

.,      $ % � Λ 

                         �   �� �  "#�  ,  *+ -� �' "#
#�(

.  ,    $ % � Λ 

                         �   /�� �  "#�
#�(

 ,  *+ -� �' "#
#�(

. 

                         �   -� �' "#
#�(

. , *+ -� �' "#
#�(

. 

But by definition of c*, 

                                -� �' "#
#�(

. � *+ -� �' "#
#�(

. 

Hence 

                                *+ -� �' "#
#�(

. 
 -� �' "#
#�(

. 

But this shows that  

              -� �' "#
#�(

. � �     �       '  "#
#�(

� �. 
From (i), (ii) and (iii) we get � is a topology on X. Hence ��, �� is a T – space. 
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II] To prove that *+��� 
 �� 
 closure of � in ��, ��. 
By definition of c*,  *+�*+���! 
 *+���. Hence  *+��� is closed set in  ��, �� (by definition of � 

and �). By definition of c*, � � *+���. Thus *+��� is a closed set containing �. Let 0 a closed 

set � in ��, �� containing �. 

Then  � � �  �  *+��� � *+���  �  *+��� � � ….(since � is closed  *+��� 
 �; by 

definition of �). Thus  *+��� � �. But this shows that  *+��� is the smallest closed set containing 

A. Hence,  *+��� 
 ��, the closure of � in ��, ��. 
 

§2  Interior operator 

Definition 2.1: Let X be any non-empty set. By an interior operator  1+ on X we mean a function  

1+:���� � ���� satisfying the following conditions: 

(1) 1+��� 
 � 

(2) 1+��� � � 

(3) 1+
1+���� 
 1+��� 
(4) 1+��  �� 
 1+���  1+���    

for all �, � � ����.  
Example 2.2: Let ��, �� be any T – space. Define 1+:���� ����� by 1+��� 
 �2 
 interior 

of � in ��, ��. Then 1+ is an interior operator on X. 

 

Theorem 2.3: Let 1+ be an interior operator defined on X. Let � 
 �� � � | 1+��� 
 ��. Then � 

is a topology on X and 1+��� 
 �3 
 interior of � in ��, �� for any � � �.  

Proof: I] To prove that � is a topology on X. 

(i) 1+��� 
 � (by definition of 1+)  � � � �.  

1+�	� � 	 (by definition of 1+)  �  	 � �. 

(ii) Let  �, � � �. Then 1+��� 
 � and 1+��� 
 � (by definition of �). 
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1+���  ��! 
 1+���  1+���   …… (definition of c*) 

                    
 �  �                …… (�, � � �)  

This shows that �  � � �.  

Thus �, � � �  �  �  � � �. 

(iii) Let "# � �  $ % � Λ , where Λ is any indexing set . To prove that  G
λ

λ∈Λ

∪  �  �. 
First note that � � � � 1+��� � 1+���.  
� � �  �   �  � 
 � �  1+��  �� 
 1+���   
                                        � 1+���  1+��� 
 1+��� 
                                        � 1+��� � 1+���  
Thus � � �  �  1+��� � 1+��� . 
Now "# � �  �   1+� "#� 
  "#   $ % � Λ . 

 "# �' "#
#�(

    �   1+� "#� �  1+ -' "#
#�(

.      $ % � Λ  

                             �    "# � 1+ -' "#
#�(

.      $ % � Λ   �since  1+� "#� 
  "#� 

                             �   '  "#
#�(

� 1+ -' "#
#�(

. 

But by definition of 1+, 
                              1+ -' "#

#�(
. � ' "#

#�(
 

Hence  

                                 1+ -' "#
#�(

. 
 ' "#
#�(

 

But this shows that  

                                         '  "#
#�(

� �. 
From (i), (ii) and (iii) we get � is a topology on X. Hence ��, �� is a T – space. 

II] To prove that 1+��� 
 �3 
 interior of � in ��, ��. 
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Fix up � � �. By definition of 1+, 1+��� � � and 1+�1+���! 
 1+���. Hence 1+��� � �. 

Thus 1+��� � � implies that 1+��� is an open set contained in �. Let 0 an open set � in ��, �� 
contained in �. 

Then  � � �  �   1+��� �  1+���  � � �  1+��� ….(since � is open  1+��� 
 �). Thus 1+��� 
is the largest open set contained in �. Hence,  1+��� 
 �3 
 the interior of � in ��, ��. 
 

§3  Exterior operator  

Definition 3.1: Let X be any non-empty set. By an exterior operator  9+ on X we mean a 

function  

9+: ���� � ���� satisfying the following conditions: 

(1) 9+�	� 
 � and 9+��� 
 	 

(2) 9+��� � � � � 

(3) 9+
� � 9+���� 
 9+��� 
(4) 9+�� � �� 
 9+���  9+���    

for all �, � � ����.  
 

Example 3.2: Let ��, �� be any T – space. Define 9+:���� � ���� by 9+��� 
 exterior of � 

in ��, �� for each � � ����. Then 9+ is an  exterior operator on X. 

 

Theorem 3.3: Let 9+ be an exterior operator defined on X. Then there exists a unique topology 

�  on X such that 9+��� 
 9��� 
 the exterior of � in ��, �� for any � � �. 

Proof:- Define � 
 �" � � | 9�� � "� 
 "�.  
[I] To prove that  � is a topology on X. 

(i) By definition of 9+,  9+�	� 
 � and 9+��� 
 	  

              � 9+�� � 	� 
 	 and 9+�� � �� 
 � … (definition of 9+, condition (3)) 

              �  	 � � and � � � 

(ii) Let  �, � � �. To prove that �  � � � .  

�, � � � �  9+�� � �� 
 � and  9+�� � �� 
 � 

9+�� � ��  ��! 
 9+��� � �� � �� � ��! 
       
 �9+�� � ��!  �9+�� � ��! … (definition of 9+, condition (4)) 
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 �  � …………………. (since �, � � �)  

Thus 9+�� � ��  ��! 
 �  �. Hence �  � � �. 

(iii)  Let "# � �  $ % � Λ , where Λ is any indexing set . To prove that  G
λ

λ∈Λ

∪  �  �. 
"# � �  �   9+�� �  "#� 
  "#   $ % � Λ . 

First we prove that � � � � 9+��� , 9+��� 
� � �  �   � � � 
 � �  9+�� � �� 
 9+���   
                                        � 9+���  9+��� 
 9+��� 
                                        � 9+��� � 9+���  
Thus � � �  �  9+��� � 9+��� . 
Now  

 "# �' "#
#�Λ

    �  � X � "#� ,  -X �' "#
#�Λ

.        $  % � Λ  

                             �   9+� X � "#� �  9+ -X �' "#
#�Λ

.        $  % � Λ  

                             �    "# �  9+ -� �' "#
#�(

.      $ % � Λ   �since  9+�� �  "#� 
  "# � 

                             �   '  "#
#�(

�  9+ -� �' "#
#�(

. 

But by definition of 9+, 
                              9+ -� �' "#

#�(
. �  ' "#

#�(
 

Hence  

                                 9+ -� �' "#
#�(

. 
  ' "#
#�(

 

But this shows that   

                                         '  "#
#�(

� �. 
From (i), (ii) and (iii) we get � is a topology on X. Hence ��, �� is a T – space. 
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II] To prove that 9+��� 
 9��� 
 the exterior of � in ��, �� for any � � �.  

By definition of 9+, 9+
� � 9+���� 
 9+���. Hence, 9+��� � �. Again by definition of 9+, 
9+��� � � � �. Thus 9+��� is an open set contained in� �  �. Let � be any open set contained 

in � � �. Then   � � � � �   �    � � � � �  
                                                 �   9+��� ,  9+�� � �� 
                                                 �  9+��� , ;�; …………… (Since � � �)  

 

Thus 9+��� is the largest open set contained in � � �. Hence by definition of exterior, 

 9+��� 
 9��� 
 the exterior of � in ��, �� for any � � �.  

 

§4  Neighbourhood system 

Definition 4.1: Let ��, �� be any T – space and < � �. A neighbourhood of a point < is any 

subset of � which contains an open set containing the point <. 

 

Example 4.2: Let � 
 �=, >, *, ?� and � 
 �	, �=�, �>�, �=, >�, ��. Then in the topological 

space ��, ��, �>, *� is a neighbourhood of >. However, �>, *� is not a neighbourhood of *.  

 

Remarks:  

(1) In topological space ��, ��, any " � �, is a neighbourhood of each of its points. 

(2) If N is a neighbourhood of a point < � � then any superset of N is also a neighbourhood 

of <. 

(3) Each point < � � is contained in some neighbourhood. 

 

Theorem 4.3: Let X be any non-empty set. Let there be associated with each point < of set X, a 

collection  of subsets, called neighbourhoods, subject to the conditions: 

(1) Every point of X is contained in at least one neighbourhood, and each point is contained 

in each of its neighbourhood. 

(2) The intersection of any two neighbourhoods of a point is a neighbourhood of that point. 

(3) Any set, which contains a neighbourhood of a point, is itself a neighbourhood of that 

point. 



Different ways of defining topologies  

 

Page | 56  

 

(4)  If N is a neighbourhood of a point <, then there exists a neighbourhood N
*
 of  < such that 

N is a neighbourhood of each point of N
*
. 

Let � 
 �" � � | " is neighbourhood of each of its points�.  
Then � is a topology on X and @+�<� 
 @�<� 
 the collection of all neighbourhoods of < 

in ��, �� . 
Proof:- I] To prove that � is a topology on X. 

(i) 	 � �, since obviously it is a neighbourhood of each of its points.  

We know that, by (1), any < is contained in at least one neighbourhood and this 

neighbourhood is contained in X. Therefore, by (3), X is a neighbourhood of <. Thus as 

X is neighbourhood of each < � �, � � �. 

(ii) Let �, � � �. Let < � �  �.  

< � � and � � � � � is a neighbourhood of < …… (by definition of �) . 

                             � � � @+�<�.  
Similarly, < � � and � � �  �  � is a neighbourhood of < 

                                               �  � � @+�<�.  
� � @+�<� and � � @+�<�    � �  � � @+�<� …… (by (2)) 

Hence, �  � is a neighbourhood of <. Thus as �  � is a neighbourhood of each 

 < � �  �, �  � � �.  

(iii) Let "# � �  $ % � A , where A is any indexing set . 
To prove that  '  "#

#�( 
� �. 

B9C  < � '  "#
#�( 

 . DE9F < �  "# GHI JHK9 % � A. 
By data,  "# � �  �  "# is a neighbourhood of <.  

Hence,  "# � @+�<�.  
As  "# � '  "#

#�( 
, L9 M9C '  "#

#�( 
� @+�<�…… by �3� 

Hence  '  "#
#�( 

 is a neighbourhood of <. As this true for any  < � '  "#
#�( 

,  
we get , '  "#

#�( 
� �. 
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From (i), (ii) and (iii), � is a topology on X and hence ��, �� is a T – space.  

II] To prove that @+�<� 
 @�<�, where @�<� is the collection of all neighbourhoods of < 

in ��, ��, for < � �.   

Fix up < � �.  

@ � @�<�  � @ is a neighbourhood of < in ��, ��. 
                   � 0 " � � such that < � " � @  

As " is an open set, " is a neighbourhood of <. Hence, " � @+�<�.  
As " � @, we get @ � @+�<� … (by (3)). Thus @ � @�<�� @ � @+�<�. 
Therefore  @�<� � @+�<�.  
Now suppose that @ � @+�<�. 
Define " 
 �< � � | @ is neighbourhood of <�. 
Now < � "   �   @ is a neighbourhood of < 

                      �   < � @. 

Therefore " � @. 

Let P � ". Then @ is a neighbourhood of P � @ � @+�P�. By (4), there exists @+ � � such that  

@+ � @+�P� and if  Q � @+, then  @ � @+�Q�. But then, by definition of ", Q � ".  

Hence @+ � " and by (3) , " � @+�P�. 
Thus P � " �  " � @+�P�. Hence, " is a neighbourhood of each of its points. Hence, " � �.  

Thus given @ � @+���, " � � such that " � @. Hence  " � @�<�. This shows that 

@+�<� � @�<�. Combining both inclusions, we get @+�<� 
 @���. 
 

Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

1) Define a closure operator  c * on X. Show that c* induces a unique topology � on  

� such that the  � - closure of A =  c* ( A ) for any A � �. 
2) Define an interior operator  i * on X. Show that i* induces a   unique topology 

�  on � such that the � - interior of A =  i* ( A ) for any A � �. 
3) Define a closure operator  e * on X. Show that e* induces a   unique topology 

�  on � JR*E CE=C CE9 � - exterior of A =  e* ( A ) for any A � �. 
______________________________________________________________________________ 
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§1 Definitions and examples. 

Definition 1.1: A function �, mapping a topological space ��, �� into a topological space  ���, ��� is said to be continuous at 	 
 � if for every open set �� containing  ��	
 there is an 

open set � containing 	 such that ���
 � ��.    
 

Definition 1.2: A function �, mapping a topological space ��, �� into a topological space  ���, ��� is said to be continuous on a set � � � if it is continuous at each point of �. 

 

Examples 1.3:  

(1) Let �: � � �� be a function. Let � 
  �� be any fixed point.  

Define ��	
 � �, for each 	 in �.  � is continuous at each 	 
 �  since for every open 

set �� containing ��	
 � �, there is an open set �  = X containing 	 such that ���
 ���. Hence � is continuous  on X . 

 

(2) Let �: � � �� be a function. Let � 
 � such that ��� 
 �. Then � is continuous at �.  

Let �� 
 �� such that ���
 
 ��. Then � 
 ������
  �  ��� � ������
. Define � � ���. Then � 
 � such that � 
 � and ���
 � ��. Hence � is continuous at �. 

 

Remarks: 

(1)  If ��, �� is a discrete topological space, then �	� 
 � , � 	 
 �. Hence, by Example 1.4, � is 

continuous at each 	 
 � i.e. � is continuous on �.  

Thus, any function defined on discrete topological space is always continuous. 

(2)  Converse of the Example 1.4 need not be true i.e. is continuous at 	 � � in X need not 

imply ��� 
 �. For this consider the following example. � � �1,2,3,4�.  � � ��, �1�, �1,2�, �2,3,4�, ��. Define �: � � � by, ��1
 � 2, ��2
 � 4, ��3
 � 2, ��4
 � 3. Then � is continuous at 	 � 4, but �4�  �.  

Unit 5: Continuous functions and HomeomorphismsContinuous functions and HomeomorphismsContinuous functions and HomeomorphismsContinuous functions and Homeomorphisms 
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§2  Characterizations 

Theorem 2.1: Let ��, �� and ���, ���  be topological spaces and �: � � ��. � is continuous 

on � if and only if the inverse image of an open set in �� is an open set in �. 

Proof: Only if part .  

Let �: � � �� be continuous on �. Let �� 
 ��. To prove that ������
 
 �.  

Let 	 
 �����
. Then by assumption, � is continuous at 	. Hence there exists an open set � in � 

such that ���
 � ��. But then 	 
 � � ������
 will imply 	 is an interior point of  ������
. As 

any 	 
 ������
 is its interior point ������
 is an open set in �. 

If part . 

To prove that � is continuous on �.  

Fix up any 	 
 �. Select any open set �� in �� containing ��	
. By assumption, ������
 is an 

open set in �.  ��	
 
 �� � 	 
 ������
. Define � � ������
.  
Then we get 	 
 � and ���
 � �!������
" � ��. Hence � is continuous at 	. As � is 

continuous at each 	 
 �, we get � is continuous on �. 

 

Examples 2.2: 

I. Let �   � co-finite topology on # .  

               �$ � usual topology on # .  

(1) %: �#, �� � �#, �$� be an identity map. Then %���0,1
 � �0,1
  � as # ' �0,1
 � �'∞, 0" ) !1,∞
 is not finite. Thus, though �0,1
 
 �$ , %���0,1
  �. 

Hence the identity map %: �#, �� � �#, �$� is not continuous.  

(2) Let %: �#, �$� � �#,�� be an identity map. Let � 
 �. Then # ' � is finite. 

Hence %���# ' �
 is finite subset of �#, �$�. Hence # ' � is closed in �#, �$�. 
Hence � 
 �$. Thus given � 
 � , � � %����
 
 �$ . Hence % is continuous.  

II. Let �  � co-countable topology on # .  

               �$ � usual topology on # .  

(1) Let %: �#, �� � �#, �$� be an identity map. �0,1
 
 �$ . Then %���0,1
 � �0,1
. As 



Continuous functions and Homeomorphisms 

Page | 63  

 

# ' �0,1
 � �'∞, 0" ) !1,∞
 , #' �0,1
 is not a countable subset of # . 

Hence �0,1
  �. Therefore %: �#, �� � �#, �$� is not a continuous map.  

(2) Let %: �#, �$� � �#,�� be an identity. Let � � # ' *1, �+ , �, , �- , … /.  
Then � 
 � as # ' � � *1, �+ , �, , �- , … / is a countable set. Now %����
 � �  �$.  

[#' � � *1, �+ , �, , �- , … / is not a closed in �#, �$� as 0 is the limit point of # ' � and 0  # ' �] . Hence %: �#, �$� � �#, �� %0 123 4213%15250. 
 

Remark: Let ��, ��� and �6, �+�  be two topological spaces. Let �: ��, ��� � �6, �+� be a 

continuous map. Then 

(1) �: ��, ���� � �6, �+� is a continuous map if ��� 7 ��. 

(2) �: ��, ��� � �6, �+� � is a continuous map if �+� 8 �+ . 

 

Theorem 2.3: Let ��, �� and ���, ���  be topological spaces and �: � � ��. � is continuous 

on � if and only if the inverse image of a closed set in �� is a closed set in �. 

Proof: Only if part . 

Let �: � � �� be continuous and let 9� be closed set in ��. Then �� ' 9� is a open set in ��. 
Hence by Theorem 2.1, ������ ' 9�
 is open in � i.e. � ' ����9�
 is open in �. Hence  ����9�
 is closed in �. 

  If part  

To prove that � is continuous on �. Let �� be any open set in ��. Then �� ' �� is closed set 

in ��. Hence ������ ' ��
 is closed set in �, by assumption . Therefore  � ' ������
 is closed 

set in �. 

Hence ������
 is an open set in �. Thus inverse image of an open set in �� is an open set in �.  

Hence by Theorem 2.1,  � is continuous on X. 

 

Theorem 2.4: Let ��, �� and ���, ���  be topological spaces. �:� � �� is continuous if and 

only if �!4��
" � 4�!���
" for any � � �. 

[4��
 � closure of E in ��, �� and 4�!���
" � closure of ���
 in ��� , ���] 
Proof: Only if part.  

Let �: � � �� be continuous and let � � 9. We know that � � ���!���
".  
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Hence � � ���!���
" � ���:4�;���
<=  ;since ���
 � 4�;���
< always<.  
As 4�;���
< is closed set in  �� and � is continuous function on �, ���:4�;���
<= is a closed 

set in �  (see Theorem 2.3). Hence 4��
 � ���:4�;���
<= i.e. �!4��
" � 4�;���
<. 
If part. 

To prove that � is continuous on �.  

Let 9� be any closed set in ��. Define � � ����9�
. Then by assumption �!4�����9�

" � 4�!������9�

". 
But �!����9�
" � 9� always. Hence 4�: �!����9�
"= � 4��9�
 � 9�.  
Thus we get , �!4�����9�

" � 9�. Hence 4�����9�

 � ����9�
. 
As ����9�
 � 4�����9�

 always, we get 4�����9�

 � ����9�
.  
Hence ����9�
 is a closed set in X. Hence by Theorem 2.3,  � is a continuous function. 

 

Theorem 2.5: Let ��, �� and ���, ���  be two topological spaces and �: � � ��. � is continuous 

on � if and only if  ���!%����
" � %!������
"  for every �� � ��. !%����
 � interior of �� in �� and %!������
" � interior of ������
 in �"  
Proof: Only if part.  

Let �: � � �� be continuous and let �� � ��. Then %����
 is an open set in ��. Hence by 

Theorem 2.1, ���!%����
" is open in X. As %����
 � ��, ���!%����
" � ������
. 
Hence, ���!%����
" � %!������
". 
If part . 

To prove that �: � � �� is continuous on X. Let �� be any open set in ��. Then  %�� ��
 �  ��.  
By assumption, ���!%����
" � %!������
" i.e. ������
 � %!������
" . But always %!������
" � ������
. Hence %!������
" � ������
. This shows that ������
 is an open set 

in X. Hence, by Theorem 2.1, � is continuous function on X. 

 

Theorem 2.6: Let ��, �� and ���, ���  be two topological spaces. %: � � � be identity map. % is 

continuous on X if and only if  �� 8 �.  

Proof: Only if part . 

Let %: � � � be continuous on X. To prove �� 8 �. Let �� 
 ��. As %: � � � is continuous, %�����
 
 � i.e. �� 
 � . This shows that �� 8 �.  
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If part . 

Let �� 8 �. To prove the identity map %: � � � is continuous. Let �� 
 ��. %�����
 � �� . As �� 8 � we get %�����
 � �� 
 �. Thus inverse image of any open set in ���, ��� is an open set 

in ��, ��. Hence % is continuous, by Theorem 2.1. 

 

Example: Let    �$ � usual topology on #  and �   � co-finite topology on # .  

                  Let %: �#, �$� � �#, �� be an identity map Then % is continuous as � 8 �$.  

 

§3  Properties  

Theorem 3.1: Let �: � � �� and >: �� � ��� be continuous maps. Then > ? �: � � ��� is 

continuous [i.e. composition of two continuous functions is a continuous function]  

Proof:- Let ��� be any open set in ���. As >: �� � ��� is continuous, >������
 is open in ��. 
Again, as �: � � �� is continuous, ���!>������
" is open in X. i.e. �> ? �
��!���" 
 � for 

every ��� 
 ���. Hence > ? � is a continuous map. 

 

Theorem 3.2: Let �: � � �� is continuous map and � � �. The restriction of � to � is also a 

continuous map. 

Proof:- Let >: � � �� be a restriction of � to � i.e. >�	
 � ��	
 , � 	 
 �. To prove > is 

continuous on �. Let �� be any open set in ��. Then >��!��" � � @ ���!��". As � is 

continuous, ���!��" is an open set in �. Hence � @ ���!��" is an open set in �. But this shows 

that > is continuous on �.  

  

Theorem 3.3: Let ��, �� and �#, �$� be a topological spaces and � � �. AB C � � # denotes 

the characteristic function on � i.e. 

AB�	
 � D 1 , %�  	 
 �  0 , %�  	  � E 
Then AB is continuous on X if and only if � is both open and closed in �. 

Proof:- Let �� 
 �$ . Then, 

AB�����
 � F �                %� 1 
 �
� �1G 0  �� � ' �       %� 0 
 �� �1G 1  ���               %� 0 
 �� �1G 1 
 ���                %� 0  �� �1G 1  �� E 
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Thus as AB is continuous on �, AB�����
 
 � i.e. � 
 � and � ' � 
 �. Thus � and � ' � are 

open in �. Hence, � must be both open and closed in �.  

Conversely, if � is both open and closed then AB�����
 
 � for any �� 
 �$. Hence AB will be 

continuous, by Theorem 2.1. 

 

Theorem 3.4: Let ��, �� and ���, ���  be two topological spaces. If �� is the indiscrete topology 

on ��, then any function �: � � �� is continuous.  

Proof:- As �� is the indiscrete topology on ��, the only open sets in �� are � and ��. And ������
 � � and �����
 � �, shows that � is continuous on �, by Theorem 2.1. 

 

Definition 3.5: Let ��, �� be a topological space. A subset � of � is said to be dense in itself if 

every point of � is a limit point of � i.e. � � G��
. 
 

Theorem 3.6: Let ��, �� and ���, ��� be topological spaces. �: � H �� be one-one, continuous 

map. � maps every dense in itself subset of � onto dense in itself subset of ��. 
Proof:- Let � � � and let � be dense in itself in �. To prove that ���
 is dense in itself in ��  
i.e. to prove that each point of ���
 is its limit point. Let 	� 
 ���
. Then  I 	 
 � such that ��	
 � 	�.  	 
 �  �   	 is a limit point of �.  

Let �� be any open set containing 	�. Then ������
 is an open set in � containing 	, since � is 

continuous. As 	 is a limit point of �, ������
 @ � ' �	� J �.  

Let K 
 ������
 @ � ' �	� . Then K J 	 � ��K
 J ��	
 , since � is one-one. 

Further ��K
 
 �� and ��K
 
 ���
.  
Thus ��K
 
 �� @ ���
 ' ���	
� i.e. ��K
 
 �� @ ���
 ' �	��. 
But this shows that  	� is the limit point of ���
.  
Thus each point of ���
 is its limit point. Hence ���
 is dense-in-itself in ��. 
 

§4  Homeomorphism  

Definition 4.1: Let ��, �� and ��� , ���  be two topological spaces. �:� � �� is an open 

mapping if image of every open set in � is open in ��. 
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Definition 4.2: Let ��, �� and ��� , ���  be two topological spaces. �:� � �� is a closed  

mapping if image of every closed set in � is a closed set in ��. 
 

 Examples:  

(I)  Let � � ��, L, 4� , � � ��, ���, �� , �� � �M, N, O� and �� � ��, �M�, �M, O�, ��� . 
(1) Define �: � � �� by, ���
 � M , ��L
 � N , ��4
 � O.Then � is an open map (Note that � is not a continuous map).   

(2) Define >: � � �� by >��
 � N , >�L
 � N , >�4
 � N. Then > is a closed map (Note 

that > is continuous map).   

(II) Let ��, �� be any topological space. Let �� � ��, L, 4� and �� � ��, ���, ��, 4�, ���.  
(1) Define P: � � �� by, P�	
 � �  , �  	 
 �. Then P is an open map but not a closed 

map.  

(2) Define Q: � � �� by Q�	
 � L ,   �  	 
 �. Then Q is a closed map but not an open 

map. 

 

 Remarks: 

(1) As P is continuous but not closed, we get continuous map need not be closed map. 

Similarly as Q is continuous but not open, we get continuous map need not be an open 

map. 

(2) Open map need not be continuous, as � is open but not continuous. Similarly, closed 

mapping need not be continuous.  

 

Theorem 4.3: The identity mapping of ��, �� onto ��, ��� is open if and only if �� 7 �.   

Proof:- Only if part . 

 Let %: ��, �� � ��,��� be open. Then � � 
 �, %��
 
 ��  
i.e. � 
 �  �   � 
 �� �0%14R %��
 � �
 . Hence �� 7 �.  

If part . 

Let �� 7 �. Then for any � 
 � , %��
 � � 
 ��. Hence % is an open map. 
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Theorem 4.4: Let ��, �� and ���, ��� be T – spaces. A mapping �: � � ��is open if and only if  �!%��
" � %�!���
" for any � � �. 

Proof: Only if part.  

   Let �: � � ��is open and � � �. As %��
 is an open set in �, �!%��
" is an open set in ��. 
Further  %��
 � � implies �!%��
" � ���
. Hence, as �!%��
" is an open set contained in ���
, 
we get �!%��
" � %�!���
". 
If part. 

To prove �: � � �� is open. Let � 
 �. Then %��
 � �. By data, �!%��
" � %�!���
"  
i.e. ���
 � %�!���
" .  
As %�!���
" � ���
 always, we get, %�!���
" � ���
. Hence ���
 is an open set in ��. This 

shows that � is open. 

 

Theorem 4.5: Let ��, �� and ���, ���  be any topological spaces. �: � � �� is closed if and 

only if  �!4��
" S 4�!���
". 
Proof:- Only if part. 

 Let �: � � �� be a closed mapping and � � �. 4��
 is a closed set in �. Hence, �!4��
" 
is a closed set in ��. Now � � 4��
   �  ���
 � �!4��
"  �  4�!���
" � �!4��
" .  
If part. 

 To prove �: � � �� is closed mapping. Let 9 be any closed set in �. Then 4�9
 � 9. By 

assumption, �!4�9
" S 4�!��9
". Therefore ��9
 S 4�!��9
" . 
But always ��9
 � 4�!��9
". Hence ��9
 � 4�!��9
".  
This shows that � is a closed map. 

 

Definition 4.6: Let ��, �� and ��� , ���  be two topological spaces. �:� � �� is a 

homeomorphism if f one-one, onto, continuous and open mapping. 

 

Definition 4.7: Two topological spaces ��, �� and ���, ��� are said to be homeomorphic if there 

exists a homeomorphism �: � � �� [or �: �� � �].   

 

 Definition 4.8: A property of sets, which is preserved under a homeomorphism, is called a 

topological property. 
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Theorem 4.9: Let ��, �� and ���, ���  be two topological spaces. Let �: � � �� be bijective 

mapping. The following statements are equivalent :  

(1)  � is a homeomorphism (or � is continuous and open mapping). 

(2)  � and ��� both are continuous. 

(3)  � is continuous and closed mapping. 

Proof:-  (1)  � (2)  �:� � �� be continuous and open mapping.  

To prove that ��� is continuous.  ���: �� � �. ��� is one-one and onto. Let � 
 �. As �: � � �� is open, we get ���
 
 ��  
i.e. !���"����
 
 ��. But this shows that for any � 
 � , !���"����
 
 ��. Hence ��� is 

continuous.  

(2) � (1)  

 Let � and ��� both are continuous. To prove that � is an open map. Let � 
 �.  

Then ���: �� � � being continuous, !���"����
 
 ��  i.e. ���
 
 ��. 
This shows that � is an open map.  

(1) � (3)  

Let �: � � �� be continuous and open mapping.  

To prove that � is closed. 

Let 9 be a closed set in �. Then � ' 9 is an open set in �. Hence ��� ' 9
 is open in ��.  
But ��� ' 9
 � �� ' ���
, as � is onto.  

But this shows that ���
 is closed set in ��.  
Hence, � is closed map. 

(3) � (1) 

Let �: � � �� be a closed map. To prove that � is open map. 

Let � 
 �. Then � ' � is closed set in �. Hence ��� ' �
 is closed in ��.  
But ��� ' �
 � �� ' ���
, � being onto. Hence ���
 is open in ��� , ��� .  
This shows that � is an open map. 

Thus   (1)  T (2) and  (1) T  (3) .Hence the result . 
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Theorem 4.10: Let ��, �� and ���, ���  be two topological spaces. Let �: � � �� be one-one, 

onto mapping. Then � is a homeomorphism if and only if �!%��
" � %�!���
" for any � � �.  

Proof:-  �:� � �� is continuous T %�!���
" � �!%��
"     � � � �  (see Theorem 2.5). �:� � �� is an open mapping T  �!%��
"  � %�!���
"     � � � � (see Theorem 4.4).  

Hence, the bijective map �: � � �� is a homeomorphism if and only if   �!%��
" � %�!���
"     � � � �. 

 

 Theorem 4.11: Let ��, �� and ��� , ���  be two topological spaces. Let �: � � �� be one-one, 

onto mapping. Then � is a homeomorphism if and only if �!4��
" � 4�!���
" for any � � �.  

Proof:  �: � � �� is continuous T  �!4��
" �  4�!���
"    � � � �  (see Theorem 2.4). �:� � �� is a closed mapping T  �!4��
"  S 4�!���
"     � � � � (see Theorem 4.5).  

Hence, the bijective map �: � � �� is a homeomorphism if and only if   �!4��
" � 4�!���
"     � � � �. 

 

§ 5  Solved Problems 

Problem 1: Let � � ��, L, 4� , � � ��, ���, �� , �� � �M, N, O�  �1G  �� � ��, �M�, �M, O�, ���. Let  �:� � �� be defined by ���
 � M , ��L
 � N , ��4
 � O. Check the continuity of the function f.  

Solution: [I] Continuity of  U at V:- 

The open set containing ���
 in �� are �M� and �M, O� and ��.  
Case (1): �� � �M�. 
Take � � ���. Then ���
 � �M� � ��.  
Case (2): �� � �M, O�. 
Take � � ���. Then ���
 � �M� � ��.  
Case (3): �� � ��. 
Take � � ���. Then ���
 � �M� � ��. 
      Hence � is continuous at � 
 �. 

[II] Continuity of  U at W:- 

The open set containing ��L
 � N is �� only.  

Hence, in this case for �� � ��, select � � � and we get ���
 � ��. 
Hence � is continuous at L 
 �. 
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[III] Continuity of  U at X:- 

The open set containing ��4
 � O in �� are �M, O� and ��.  
Case (1): �� � �M, O�. 
As the only open set containing 4 is � and ���
 Y ��  �Z ���
 � ��
 we get � is not 

continuous at 	 � 4.  

From [I] , [II] and [III] we get � is not continuous on X. 

 

Problem 2: Let ��, �� and ��� , ���  be two topological spaces. [ is a base for �. If �: � � 6 is 

a mapping such that ���\
 | \ 
 [� is a base for ��. Then show that � is an open map. 

Solution:- Let � 
 �. By definition of base, � � ^�\_ | ` 
 Λ� where Λ is any indexing set. 

Hence, ���
 � � bc�\_ | ` 
 Λ�d 
� ���
 �c���\_
  | ` 
 Λ� � ���
 
 ��. 
Thus for any � 
 �, we get ���
 
 ��. Hence � is an open mapping. 

 

Problem 3.  Let � � indiscrete topology on # .  

              �� � discrete topology on # . 

              �$ � usual topology on # .        

Show that no two topological spaces �#, ��, �#, ��� and �#, �$� are homeomorphic. 

Solution:  - 

(1) Let if possible there exists �: �#, �� � �#,�$� such that � is a homeomorphism.  

Then � must be a constant map. Hence, � is not a bijective map. Hence, � is not a 

homeomorphism. Hence �#, �� and �#, �$� are not homeomorphic.  

(2) Let if possible there exists >: �#, ��� � �#,�$� such that > is a homeomorphism. 

Then �	� 
 � � >��	�
 
 �$   � 	 
 # . But >��	�
 � �>�	
�  �$ being a singleton 

set; a contradiction (since > is open). Hence �#, ��� and �#, �$� are not homeomorphic. 

Hence three spaces �#, ��, �#, ��� and �#, �$� are not homeomorphic. 
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Remark:- Let ��, �� and ��, ���  be two topological spaces and %: ��, �� H ��, ��� be an identity 

map. Then % is �� ' ��
 continuous if and only if � 7 ��. Similarly the identity map  %: ��, ��� H ��, �� is continuous if and only if �� 7 � .  

Therefore identity map need not be continuous.  

 

Problem 4: Let ��, �� and �6, ���  be two topological spaces. Let �: � � 6 be continuous 

at 	 
 �. If �	e� is a sequence of points of X, converging to 	, then show that the image 

sequence ���	e
� in Y, converges to ��	
 in Y.  

Solution: Let �� 
 �� such that ��	
 
 ��. �:� � 6 is continuous. Hence ������
 is an open 

set in ��, ��. As 	 
 ������
 and 	e H 	 , I f such that 	e 
 ������
 for 1 7 f. But then ��	e
 
 �� , for 1 7 f. This shows that ��	e
 H ��	
 in Y. 

  

Problem 5: Let � be a mapping of topological space ��, �� onto a set Y.  

Define  �� � �� � 6 | �����
 
 ��. Then show that 

(1) �� is a topology on Y. 

(2) �: ��, �� � �6,��� is a continuous function. 

(3) �� is  the largest topology on Y for which �: � � 6 is continuous. 

(4) 9 � 6 is closed in �6, ��� if and only if ����9
 is closed in ��, ��. 
Solution: 

(1) To prove that �� is a topology on Y. 

(i) �����
 � � ,   � 
 � �  � 
 ��. ����6
 � � ,   � 
 � �  6 
 �� (since � is onto)  

(ii) Let g, \ 
 ��. Then ����g
 
 � and ����\
 
 �. 

Therefore, ����g
 @ ����\
 
 � i.e. ����g @ \
 
 � . 

But this shows that g @ \ 
 �� . 
(iii) g_ 
 ��  � ` 
 Λ , where Λ is any indexing set . Then ����g_
 
 �   � ` 
 Λ .  

� being a topology,   c����g_
_
h  
 �  %. R.   ��� icg__
h j  
 � . 
But this shows that cg__
h  
 ��. 
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From (i), (ii) and (iii) we get, �� is a topology on Y.  
(2) To prove �: ��, �� � �6,��� is a continuous function. 

Let � 
 ��. Then by definition of ��, �����
 
 �. Hence � is continuous.  

 

(3)  Let �� denote a topology on Y such that �: ��, �� � �6, ��� is continuous function. 

To prove that �� � ��.  
Let � 
 ��. Then by continuity of �,  �����
 
 �. But then by definition of ��, � 
 ��. 
Thus � 
 �� �  � 
 ��. Hence �� � ��. 
This shows that, �� is  the largest topology on Y for which �: � � 6 is continuous.  

(4) 9 � 6 is closed in �6, ��� T 6' 9 
 ��. T ����6 ' 9
 
 � . T �' ����9
 
 � . T ����9
 is closed in ��, ��.  
 

Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

(I) Let ��, �� and ���, ���  be topological spaces and �: � � ��. Prove that the following 

statements  are equivalent. 

1) � is continuous on �. 

2) The inverse image of an open set in �� is an open set in �. 

3) The inverse image of a  closed  set in �� is a closed set in �. 

4) �!4��
" � 4�!���
" for any � � �. 

5) ���!%����
" � %!������
"  for every �� � ��. 
(II) Let ��, �� and �6, ���  be two topological spaces. Let �: � � 6 be continuous at 	 
 �. 

If �	e� is a sequence of points of X, converging to 	, then show that the image 

sequence ���	e
� in Y, converges to ��	
 in Y. Is the converse true ? Justify your 

answer. 

(III) Let ��, �� and ���, ���  be topological spaces and �: � � ��. Prove that the following 

statements  are equivalent. 
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1) � is a homeomorphism .  

2) �!%��
" � %�!���
" for any � � �.  

3) �!4��
" � 4�!���
" for any � � �.  

 

(IV) Let ��, �� and ���, ���  be any topological spaces. Show that a mapping �: � � �� is 

closed if and only if  �!4��
" S 4�!���
". 
(V) Let ��, �� and ���, ��� be T – spaces. Show that a mapping �: � � ��is open if and 

only if  �!%��
" � %�!���
" for any � � �. 

(VI) Show by an example that the image an open set � of a space � under a continuous 

function  �: � � �� is not necessarily an open set in the space ���, ���. 
(VII)  Show by an example that the image a closed set � of a space � under a continuous 

function  �: � � �� is not necessarily a closed set in the space ���, ���. 
(VIII) Let g� and  g+  are closed sets in ��, �� such that g� ) g+ � �. Let ���, ��� be another 

topological space and let �: � � �� be a mapping such that the restriction of � to each 

of the subspaces g� and  g+ is continuous. Show that � must be continuous. 

______________________________________________________________________________ 
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§1  Definition and Examples 

Definition 1.1: Let ��, 	� be a topological space and 
 � �. A family �
� | � � Λ� of subsets 

of � is said to form an open cover of 
 if  
 ��
�
���

 and 
� � 	 , for each � � Λ. 
 

Definition 1.2: If some finite sub-collection of the given covering of a set 
 is also a covering 

of 
, then we say that the covering is reducible to  a finite sub-covering.  

 

 Definition 1.3: A subset 
 of a topological space is said to be compact if every open covering  

of 
 is reducible to a finite sub-covering of 
. 

 When � itself is a compact subset of ��, 	�, we say that ��, 	� is compact. 

 

Examples 1.4: 

Compact spaces 

1) Any subset of an indiscrete topological space ��, 	� is compact, as ��� is the only open cover 

for any 
 � �. 

2) Any finite subset of any topological space ��, 	� is compact. 

3) Co-finite topological space is compact. 

Let ��, 	� be a co-finite topological space (with � an infinite set). Let �
� | � � Λ� be any 

open cover of �.  

Fix up any 
�� for some �� � Λ. Then 
�� � 	  �  � � 
�� is finite set. 

Let � � 
�� � ���, ��, … , ���.As � �  
����  , find 
�! � �
� | � � Λ�  such that �! �

�!  " # ,   1 % # % &. 
As � � 
�� ' (� � 
��) , we get � � 
�� ' 
�� ' …' 
�� . 

Thus  any open cover �
� | � � Λ� of � contains a finite sub-cover.  

Hence ��, 	� is compact. 

4) Fort’s space is compact. 

Unit 6: Compact spacesCompact spacesCompact spacesCompact spaces     
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Let � be an uncountable set and let ∞ be the fixed point of �. 

	 � �
 � � | ∞ + 
�  ' �
 � � |  ∞ � 
 and � � 
 is finite�.  
��, 	� is a T – space – Fort’s space (see Unit (1) §1.2 Example (10)).  

To prove that ��, 	� is a compact.  

Let �
� | � � Λ� be any open cover for � .  

As � ��
�
��Λ

 and ∞ � �, we get ∞ � 
�,for some �� � Λ . 
By definition of 	 , 
�� � 	  �  � � 
�� is finite subset of �. 

Let � � 
�� � ���, ��, … , ���. Select 
�! � �
� | � � Λ�  such that �! � 
�!  " # ,   1 % # % & 

Thus � � 
�� ' (� � 
��) � 
�� ' 
�� ' …' 
�� . 

Thus � � 
�� ' 
�� ' …' 
�� .  

This shows that   any open cover �
� | � � Λ� of X has a finite sub-cover.  

Hence ��, 	� is a compact.  

5) ��, 	� is a compact space where 	 is the - � exclusion topology .- � �/ on X .  
i.e. 	 � ��� ' �
 � � | - + 
�. 
Let �
� | � � Λ� be any open cover for �.  

As � ��
�
��Λ

 and - � �, we get - � 
�,for some �� � Λ . 
By definition of 	 , 
�� � �. Thus the open cover �
� | � � Λ� of X has a finite sub-cover 

 0
��1. Hence ��, 	� is a compact.  

 

Non compact spaces. 

1) Any infinite discrete topological space ��, 	� is not compact, as the open cover 0��� | � � �1 
has no finite sub-cover for �.  

2) ��, 	2� is not compact. 

�.�&, &/ | & � 3� forms an open cover for � . Let this cover contains a finite sub-cover.  

Let � � .�&� , &�/ ' .�&� , &�/ ' …' .�&4 , &4/. 
Let 5 � max�&�, &�, … , &4�.  
Then 5 � � but 5 + .�&� , &�/ ' .�&� , &�/ ' …' .�&4 , &4/ a contradiction. Hence 

the open cover �.�&, &/ | & � 3� of � has no finite sub-cover.Hence ��, 	2� is not compact. 
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§2  Characterizations and Properties 

Theorem 2.1: Let �9, 	:� be a subspace of ��, 	� and 
 � 9. Then 
 is compact subset of 

�9, 	:� if and only if  
 is a compact subset of ��, 	�. 
Proof: -Only if part. 

 Let 
 � 9 be compact in �9, 	:�. To prove that 
 � � is compact in ��, 	�.  
Let �
� | � � Λ� be any 	 – open cover of 
 in � . 

Define 
�: � 
� ; 9 for each � � <.  Then  
�: � 	:   " �  and  
 ��
�:��=
 shows that ,  

�
�: | � � Λ� forms an 	: - open cover for 
.  

As E is compact in �9, 	:�, the 	: - open cover �
�: | � � Λ� of 
 has a finite sub-cover.  

Let 
 ��
�>:
�

!?�
.Then  
 ��
�>

�

!?�
.  

This shows that 
 is compact in ��, 	�. 
If part . 

 Let 
 � 9 is compact in ��, 	�.  
To prove that 
 is compact in �9, 	:�. 
Let �
�: | � � Λ� be an open cover of 
 in �9, 	:� .  
Then for each � � < , 
�: � 	:  �  
�: � 
� ; 9 for some 
� � 	 .  

As 
 � 9 we get  
 ��
�
��=

.But this in turns shows that �
� | � � Λ� forms an open cover for  

 in ��, 	�. As 
 is compact in ��, 	� , there exists a finite sub-cover for open cover �
� | � � Λ�.  
Let 
 ��
�>

�

!?�
. But then 
 � 
 ; 9 � 
 � G�
�>

�

!?�
H ; 9 � 
 ��I
�> ; 9J

�

!?�
� 
 ��
�>:

�

!?�
. 

Thus  any  open cover �
�: | � � Λ� of 
 has a finite sub-cover for 
. 

Hence 
 is compact in �9, 	:� .  
 

Remark: -Being compact is an absolute property i.e. the property of being compact for a set 

does not depend on the subspace in which it is contained. 
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 Definition 2.2: A family of sets is said to have finite intersection property (f.i.p. in short) if 

every finite sub-family of the family has a non-empty intersection. 

 

Theorem 2.3: A topological space ��, 	� is compact if and only if every family of closed sets 

having the finite intersection property has a non-empty intersection.  

Proof: Only if part. 

 Let ��, 	� be compact and let �K� | � � Λ� be a family of closed sets in X satisfying f.i.p.  

To prove that  LK�
��Λ

M N. 

Let LK�
��Λ

� N .Then G� �  LK�
��Λ

H � �  �  �O� � K�P
��Λ

� � . 
Thus the family �� � K� | � � Λ� forms an open cover for �. As � is compact, this open cover 

has finite sub-cover.  

Let � ��(� � K�>)
�

!?�
. But then LK�>

�

!?�
� N � a contradiction to assumption. 

Hence LK�
��Λ

M N.  
If part .  

Let any family of closed sets in ��, 	� have f.i.p. 

To prove that � is compact.Let � is not compact. Then there exist an open cover �
� | � � Λ� 
of � such that� M  
�>�!?�  for any finite & . 
 Hence L(� � 
�>)

�

!?�
M N for any finite  &. 

Thus the family �� � 
� | � � Λ� of closed sets in � satisfy f.i.p. Hence by assumption 

L.� � 
�/
���

M N  #. Q.  � M�
�
���

 ; a contradiction. 
Hence our assumption is wrong. Therefore � must be compact space. 
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Theorem 2.4: A T – space � is compact if and only if every basic open cover of � has a finite 

subcover. 

Proof: Let � be a compact. Then every open cover of � has a finite subcover. In particular, 

every basic open cover of � must have a finite subcover. 

 Conversely, suppose that every basic open cover of � has a finite subcover and let 

                                  S � �
� � 	 | � � Λ�   
be any open cover of �. If 

                                  T � �UV | W � Δ�    
be any open base for � , then each 
� is union of some members of T and the totality of all such 

members of T is evidently a basic open cover of �. By hypothesis this collection of members 

of T has a finite subcover, say 

                                  0UV> | # � 1 , 2 , … , &1 . 
For each UV> in this finite subcover, we can select a 
� , from S such that UV> Z 
�> .  
It follows that the finite subcollection  

                                  0
�> | # � 1 , 2 , … , &1 , 
Which arises in this way is a subcover of S.  

Hence � is compact. 

 

Theorem 2.5: Every closed subset of a compact space is compact (i.e. compactness is closed 

hereditary)  

Proof: Let ��, 	� be a compact space and 
 be a closed subset of �.  

 To prove that 
 is compact.Let �
� � 	 | � � Λ� be any open cover of 
. 

As � � 
 ' .� � 
/ � [ ��
� | � � Λ� \ ' .X � E/ shows that ��
� | � � Λ� ' .X � E/ 
forms an open cover for �. As � is compact, this open cover has a finite sub-cover.  

Let  � � G �0
�> | �! � Λ1 
_

`?�
H ' .X � E/.  Then surely,   
 ��
�> 

_

`?�
.  

Thus the open cover �
� � 	 | � � Λ� of 
 contains a finite sub-cover. Hence 
 is compact (by 

Theorem 2.1). 
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Remarks:  

(1) Being a compact space is a closed hereditary property, but it is not a hereditary property. 

For this, consider the following example. 

 Let ��, 	� be Fort’s space. Then ��, 	� is compact space (see §1.4 Example (4)).  

Let 9 � � � �∞�. Then the relative topology 	: on 9 is the discrete topology on 9 (by the 

definition of 	).  

Hence �9, 	:� is not a compact space (since 9 is an uncountable set). Thus we get a 

subspace of a compact space need not be compact. Hence being a compact space is not a 

hereditary property. 

 

(2) Converse of Theorem 2.4 need not be true i.e. compact subset of a compact space need not 

be closed. For this, consider the following example.  

 Let ��, 	� be an indiscrete topological space with |�| a 2 . We know ��, 	� is compact.  

Let N Z 
 Z �. Then 
 is a compact subset of � as ��� is the only open cover for 
. But  
 

is not closed in ��, 	�. 
(3) By Theorem 2.4 closed subset of a compact space is compact but there may exists an open 

set in a compact space which is compact (i.e. closed sets are not the only compact subsets in 

a compact space). For this, consider the following example: 

Let � be an infinite set and let  	 be a co-finite topology on �. Then ��, 	� is a compact 

space (see §1.4 Example (3)). Fix up any � � � and define 9 � � � ��� . Then 9 is proper 

subset of � and 9 � 	.  

Claim that 9 is compact.  

Let �
� � 	 | � � Λ�  be any open cover of 9. Fix up any 
�,,   �� � Λ. Then � � 
�, is a 

finite subset of � and hence it contains finite number of elements of 9. 

Let  b�, b�, … , b� � (� � 
�,) ; 9. cd 9 ��
�
��Λ

 , we can select 
�>
� �
� � 	 | � � Λ� such 

that  b! � 
�>  " # , 1 % # % & .Thus 9 � 
�, ' 
�e ' …' 
�f. 

This shows that the open cover �
� � 	 | � � Λ� of 9 contains a finite sub-cover.  

Hence 9 is compact. 

Thus in a compact space ��, 	� there exists a compact open subset 9 in �. 
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(4) Union of any two compact  sets of a T-space is a compact set but 

 intersection of any two compact  ts of a T-space  need not be  a compact set. 

For this consider the following example. 

Let X be an infinite set. Let a  , b � � . gQh#&Q 	 � � ��  ' �
 | 
 � � � � i, j ��. 
#. Q. 	 � ��� ' �
 � � |i + 
 i&k j + 
�.Then ��, 	� be a topological space. 

Define  A =  X – {a} and B = X –{ b }. 

Let �
� | � � Λ� be any open cover for c.  

As  c   �   �
�
��Λ

 and i � c, we get i � 
�,for some �� � Λ . 
By definition of 	 , 
�� � �. Thus the open cover �
� | � � Λ� of  A has a finite sub-cover  

{ 
���. Hence A is a compact subset of  X. 

Similarly,  we  can prove that  B is a compact subset of  X. 

Now A ; B = X – { a , b }  is not compact  as   the open cover {{ x } | � �  A ;  B� of A ; 

B has no finite  sub-cover. This shows that intersection of any two compact  sets of a T-

space  need not be  a compact set. 

 

 

 

Theorem 2.6: An intersection of closed compact sets of a T-space is a closed compact set. 

Proof:- Let ��, 	� be compact and let �K� | � � Λ� be a family of closed  compact sets in X.  

To prove that  LK�
��Λ

 is a closed  compact set in �. 
Obviously,   LK�

��Λ
 is a  closed set in � as K�  is a closed set for each � � Λ. 

Now   LK�
��Λ

  �   K�   shows  that   
 that  LK�

��Λ
 is a closed subset of a compact set K� . 

Hence LK�
��Λ

 is a compact set ( see Theorem 2.4 ). 
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Theorem 2.7: Let ��, 	� be a topological space. Let 	: % 	. Then ��, 	:� is a compact space. 

Proof: Let �
� � 	: | � � Λ� be an 	:- open cover for �.  

As 	: % 	 , �
� � 	: | � � Λ� is also 	 - open cover for �.  

As ��, 	� is compact, n a finite sub-cover say 0
�> � 	: | �! � Λ ,1 % # % &1  for �.  

But this in turns shows that ��, 	:� is a compact space.  

 

Remark: Let ��, 	:� be a compact space and 	: % 	. Then ��, 	� need not be a compact space. 

For this, consider the following example. 

  Let � be any infinite set and  

                                      	: � indiscrete topology on �. 

                                       	 � discrete topology on � . 

Then 	: % 	. ��, 	:� is a compact space but ��, 	� is not a compact space.  

 

Theorem 2.8: Let ��, 	� and �9, 	:� be any two topological spaces. Let ��, 	� be a compact 

space and let h: � p 9 be onto, continuous map. Then �9, 	:� is compact. 

Proof:- Let �
�: � 	: | � � Λ� be any open cover for 9. 

As 9 ��
�:��Λ
  and h is onto we get � � hq� G�
�:��Λ

H    ��hq�.
�:/��Λ
 

As h is continuous and 
�: � 	: , " � � Λ ; we get hq�.
�:/ � 	 , " � � Λ.  

Hence � hq�.
�:/ � 	 | � � Λ� forms an open cover for �. As � is compact this open cover has a 

finite sub-cover. Let � �  hq�(
�>: )�!?�  . But then 

 9 ��
�>:
�

!?�
 shows that the open cover  �
�: � 	: | � � Λ� of 9 

has a finite sub-cover. Hence �9, 	:� is compact. 

 

Corollary 2.9: Being a compact space is a topological property. 

 

Corollary 2.10: Let h be a continuous map of ��, 	� into �9, 	:�. h maps every compact subset 

of � onto a compact subset of 9.  
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Proof: �
 is a compact subset of �. Restriction of h on the subspace 
 of � is continuous onto 

map on the subspace h.
/ of 9. Hence by Theorem2.7, h.
/ is a compact space of 9.  

 

§3  Special examples: ��,��� 
          Though ��, 	2� itself is not a compact space, compact sets in ��, 	2� are of special 

importance.  

Theorem 3.1: Any closed and bounded interval in ��, 	2� is compact. 

Proof:- Let r � Oi, jP be any closed bounded interval in � . To prove that r is compact. 

Let r is not compact. Then n an open cover �
� � 	2 | � � Λ� of r which has no finite sub-cover.  

Consider the two closed intervals [i  , sqt� \ and [sqt�  , j\ . Obviously both of these closed 

bounded intervals have no finite sub-cover for the given open cover �
� � 	2 | � � Λ� .  
Denote by r, the closed interval among these two which has no finite sub-cover. Again bisect r 
into two closed intervals. Label r� , the interval which has no finite sub-cover. Continuing this 

process we get a sequence �r�� of intervals such that  r u r� u r� u v  and length of r�  w 0 

as & p ∞ . Hence by Canter’s intersection theorem, 

Lr�
y

�?�
 M N .  Let � �Lr�

y

�?�
 .  Then  � � � �  � � 
�,  for some �� � Λ .  


�, � 	2 and � � 
�,   �  n  z { 0  such that  .� � z ,  � | z/ � 
�,. Select & so large that 

r� � .� � z ,  � | z/. But then r� � 
�, shows that r� has a finite sub-cover for the given 

cover�
� � 	2 | � � Λ� . This contradicts the choice of r� . Hence, our assumption is wrong. 

Hence, r is compact subset of ��, 	2�.   
 

Theorem 3.2: Any compact subset of � is closed in ��, 	2�.  
Proof:- Let c be any compact subset of � .  

To prove that c is closed in � .  

Select � � � � c and i � c . Then � M i . Let k.�, i/ � z { 0 .  

Then }� � ~
�   , � | ~

�� ; }i � ~
�   , i | ~

�� � N . 

Define 
t � }i � ~
�   , i | ~

��  , "  i � c and 
� � }� � ~
�   ,  � | ~

��  ,   "  � � � � c .  



Compact spaces 

 

Page | 86  

 

Then �
t � 	2 | i � c� will form an open cover for c. As c is compact, this open cover has a 

finite sub-cover.  

Let c ��
t>
�

!?�
 .Find the corresponding 
�> , 1 % # % & . 

Then � �L
�>
�

!?�
� �� c. 

Define �� � 5#&  ��� , �� , … , ��� . Then � � .�� � z , �� | z/ � � � c. 
But this shows that each � � � � c is its interior point.  Hence, � � c is an open set. 

Therefore c is a closed set in �. 

 

Theorem 3.3: Heine - Borel Theorem. 

 A subset c of ��, 	2� is compact if and only if c is bounded and closed. 

Proof: Only if part. 

Let c be a compact subset of � .  

To prove that c is closed and bounded.  

For each i � c, define 
t � .i � 1, i | 1/. Then �
t � 	2 | i � c� will form an open cover 

for c.  As c is compact, this open cover has a finite sub-cover for c .  

Let c ��
t>
�

!?�
 .Thus �i�, i�, … , i�� � c .by construction/. 

Let 5 � 5#&  �i�, i�, … , i�� and � � 5i� �i�, i�, … , i��.  
Then 
te ' 
t� ' …' 
tf � O5 � 1,5 | 1P will imply c � O5 � 1,5 | 1P.  
Hence c is bounded subset of � .  

If part . 

Let c be a closed bounded subset of �. Then c � O5 ,�P. By Theorem 3.1, O5 ,�P is compact. 

Thus c is a closed subset of a compact space O5 , �P (w.r.t. relative topology). 

Hence c is compact (see Theorem 2.4). 

 

Theorem 3.4: Cantor set S in ��, 	2� is compact. 

Proof: We know that the Cantor set S is given by,  
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S �LK�
y

�?�
,   where 

K� � O0,1P , 
K� � [0 , ��\ ' [��  , 1\ , 
K� � [0 , ��\ ' [��  , ��\ ' [��  , ��\ ' [��  , 1\  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Thus, each K� is union of 2� disjoint closed intervals each of length   ��f  .  

Each K� is a closed set in �  and  hence S �LK�
y

�?�
 is a closed set.  

 As S � O0 , 1P , S is a bounded closed subset of  ��, 	2�. Hence by Theorem 3.3, S is a compact 

set. 

  

§4  One point compactification 

            We know that every topological space need not be compact (see Example 1.4 (6 )). 

But for given non-compact space ��, 	� we can construct a compact space ��:, 	:� such that � is 

homeomorphic with some dense subspace of �. This compact space ��:, 	:� is called 

compactification of the space �. If �: � � ' �∞� for some object ∞ + �, then compactification 

of � is called one-point compactification. 

 The topology 	: on �: � � ' �∞� , ∞ + � for which we get a one-point compactification 

��:, 	:� of ��, 	� is explained in the following theorem.  

 

Theorem 4.1: Let ��, 	� be a non-compact space. �: � � ' �∞�, where ∞ + �. Define 	: as  

	: � �
 � �: | 
 � 	� ' �
 � �: | �: � 
 is a closed compact subset of ��. Then 

1) 	: is topology on �. 

2) ��, 	� is a subspace of ��:, 	:� 
3) ��:, 	:� is a compact space.  

4) ��, 	� is dense subspace of ��:, 	:�.   
This ��:, 	:� is a one-point compactification of ��, 	�.  
Proof: -  

1) To prove that 	: is topology on �. 



Compact spaces 

 

Page | 88  

 

	: � �
 � �: | 
 � 	� ' �
 � �: | �: � 
 is a closed compact subset of �� . 
Then 	: � 	 ' 	� , where 	� � �
 � �: | �: � 
 is a closed compact subset of �� . 
Further, note that 
 � 	� �∞ � 
 and 
 � 	 � ∞ + 
    " 
 � �:.  
Again, if ∞ � 
,
 � �:, then �: � 
 � �: ; 
� � O� ' �∞�P ; 
� � O� ; 
�P '
O�∞� ; 
�P � � ; 
� 
.�  ∞ � 
 � ∞ + 
�/. 
Thus �: � 
 � � � 
   " 
 � �: such that ∞ � 
.  

(i) N � 	: as N � 	.  

�: � 	: as �: � �: � N is a closed compact subset of �.  

(ii) Let c, U � 	:. To prove that c ; U � 	:. 
Case 1: ∞ � c ; U. 

Then ∞ � c , c � 	:� � �c is a closed compact subset of �. 

Similarly, � � U is a closed compact subset of �. Hence .� � c/ ' .� � U/ is a 

closed, compact subset of � (since union of two compact sets is a compact set and 

union of two closed sets is a closed set). But as � � .c ; U/ � .� � c/ ' .� � U/ 
we get c ; U � 	� and hence c ; U � 	:.  
Case 2: ∞ + c ; U. 

Then either ∞ + c or ∞ + U.  

Sub case (1): Suppose ∞ + c and ∞ � U.  

Then c � 	 and U � 	�. 

Hence c � 	 and �: � U is closed compact subset of �. Hence � � O�: � UP is an 

open set in �. But � � O�: � UP � � � O�: ; U�P 
              � � ; O�: ; U�P�  
              � � ; O.�:/� ' .U�/�P 
              � � ; ON ' UP 
              � � ; U. 

As c � 	 and � ; U � 	, we get c ; .� ; U/ � 	 i.e. .c ; �/ ; U � 	  

i.e. c ; U � 	. Hence c ; U � 	:.  
Sub case (2): ∞ � c or ∞ + U. 

As in sub case (1) we can show that c ; U � 	:. 
Sub case (3): ∞ + c and ∞ + U.  
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∞ + c and c � 	:  �  c � 	.  

∞ + U and U � 	:  �  U � 	. 

	 being topology on �, c ; U � 	 and hence c ; U � 	:. 
(iii) Let c� � 	:  " � � Λ , where Λ is any indexing set.  

To prove that, �c�
���

� 	:. 
Case .1/:  ∞ +�c�

��Λ
 . 

Then ∞ + c� for each � � Λ.  As ∞ + c� i&k c� � 	: we get c� � 	 , " � � Λ .  

Hence 	 being topology on � ,  �c�
���

� 	  . 
Hence in this case  ,  �c�

���
� 	: . 

Case .2/:  ∞ ��c�
��Λ

 . 
Then �: ��c�

��Λ
� � ��c�

��Λ
�L.� � c�/
��Λ

. 
As � � c� is a closed set in �, we get  L.� � c�/

��Λ
 is a closed set. 

Select �� � Λ such that ∞ � c�,.  
As c�, ��c�

��Λ
 �Q �Q� G� ��c�

��Λ
H � � � c�, . 

As ∞ � c�, , c�, � 	� ,  � � c�, is a closed, compact subset of �. 

Again  � ��c�
��Λ

�L.� � c�/
��Λ

. 
As each � � c� is a closed set in 	 ,  we get  L.� � c�/

��Λ
 is a closed set in 	 . 

Hence  � ��c�
��Λ

�L.� � c�/
��Λ

 is a closed set in � which contained in a compact 
space � � c�,.  
Hence � ��c�

��Λ
 is compact (see Theorem 2.5/.Thus  � ��c�

��Λ
� 	� and hence  
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�c�
��Λ

� 	:  whenever  c� � 	:   " � � Λ . 
Thus from both the cases we get, 

c� � 	:  " � � Λ � �c�
��Λ

� 	: . 
From (i), (ii) and (iii)  is a topology on �:. Hence ��:, 	:� is a topological space. 

2) To prove ��, 	� is a subspace of ��:, 	:�. 
� Z �:. The relative topology 	�:  on � is given by, 	�: � �
 ; � | 
 � 	:�. . 
To prove that 	�: � 	.  

Let 
 � 	. Then 
 � � and 
 � 	:  .since 	 � 	:/.  
Hence 
 � 
 ; �, 
 � 	:  � 
 � 	�: . Hence 	 � 	�:  _______________ (i) 

Now let 
: � 	�: . Then 
: � 
 ; � for some 
 � 	�: � 	 ' 	� .  

Case (1): 
 � 	. Then 
 � � and hence 
: � 
 ; � � 
. 

This shows that 
: � 	.  

Case (2): 
 � 	�. Then �: � 
 is a closed, compact subset of �.  

Hence � � O�: � 
P is open in �.  

� � O�: � 
P � � ; 
 is open in �.  

As 
: � 
 ; �, we get 
: � 	 . 

Thus from case (1) and case (2), 
: � 	�:  �  
: � 	. 

Hence 	�: � 	 ____________________ (ii) 

From (i) and (ii), 	 � 	�:  .  

Thus the relative topology 	�:  on � coincides with the topology 	 on �. 

Hence ��, 	� is a subspace of ��: , 	:�.  
3) To prove that ��:, 	:� is a compact space. 

Let �
�� be any open cover of �:. 
Hence �: ��
�

�
  � ∞ � 
�,  for some ��.  

Hence �: � 
�, is closed compact subset of �. As �: � 
�, � �: we get, 

�: � 
�, ��
�
�

 .Thus �
�� forms an open cover for  �: � 
�, 
 and �: � 
�,is compact subset of �:.  
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�: � 
�, ��
�>
�

!?�
 .But then �: � 
�, ' 
�e ' …' 
�f  . 

This shows that the open cover �
�� of �: has a finite sub-cover. 

Hence ��:, 	:� is compact.  

4) To prove that  � is dense in  �:.  
� is non-compact subset of  �:. Hence � is not a closed subset of ��:, 	:�  (since ��:, 	:� 
is compact and closed subset of a compact subset is compact). Hence �: � � is not open 

in �:. As �: � � � �∞� we get �∞� is not open in �:. Hence for any open set 
 

containing ∞ we get 
 ; � � �∞� M N (since 
 M �∞�  � 
 contains some � � � ). 
But this shows that ∞ is a limit point of �. Hence �� � � ' k.�/ � � ' �∞� � �:. This 

shows that � is a dense in �:.  
 

Remarks:  

(1) The one-point compactification ��:, 	:� of ��, 	� is also known Alenander’s 

compactification of ��, 	�. The point ∞ is called the point at infinity.  

(2) We know that ��, 	2� is not compact. Compactification of this space is obtained by 

adding two points denoted by ∞ and�∞ and properly introducing topology 	: on 

�: � � ' �∞,�∞� . Thus ��: , 	:� is the compactification of ��, 	2� but it is not the 

one-point compactification. 

 

§5  Locally compact spaces  

 Definition 5.1: A topological space is ��, 	� is a locally compact space if each point � � � has a 

compact neighbourhood. 

 

Examples 5.2:  

1) ��, 	2� is a locally compact space. 

For each � � �, O� � z , � | zP is a compact neighbourhood of � (z { 0) [see Theorem 

…] 

2) Let ��, 	� be the discrete topological space. Then ��� is a compact neighbourhood of 

each � � �. Hence ��, 	� is locally compact space. 
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Theorem 5.3: Every compact space is locally compact. 

Proof: Let ��, 	� be a compact space. Then for any � � � , � itself is a compact neighbourhood 

of �. Hence � is locally compact. 

 

Remark: Converse of Theorem 5.3  need not be true. i.e. every locally compact space need not 

be compact. 

For this, consider the T – space ��, 	2� . ��, 	2� is not compact but ��, 	2� is locally compact. 

Also any infinite discrete space is locally compact but not compact. 

 

Theorem 5.4: Closed subset of a locally compact space is locally compact. 

Proof:- Let ��, 	� be a locally compact space and let K be any closed subset of � . To prove that 

the subspace �K, 	:� is locally compact.  

Let � � K. As � � � and � is locally compact, n a compact neighbourhood say � of � in ��, 	�. 
As K ; � is a closed subset of a compact space �, we get � ; K is compact neighbourhood of � 

in K. Hence �K, 	:� is locally compact.  

 

 

Theorem 5.5: Being a locally compact space is a topological property. 

Proof:- Let ��, 	� be a locally compact space.  

Let ��, 	� be any topological space and let h: � p 9 be a homeomorphism. 

To prove that 9 is locally compact space. 

Let b � 9. As h is onto, n � � � such that h.�/ � b. As � � � and � is locally compact, n a 

compact neighbourhood of say � of �. As h is continuous, onto, h.�/ is compact subset of 9 

containing b. Hence h.�/ is compact neighbourhood of h.�/ � b ( h.�/ is a neighbourhood of 

b as h is an open map). 

This shows that 9 is locally compact. 

 

Remark: Continuous image of a locally compact space need not be locally compact. 

For this, consider the following example: 
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Let ��, 	� be non-locally compact space. Let 	: denote the discrete topology on �. Then ��, 	:� 
is a locally compact space. Let # � � p � be identity map. Then # is 	: � 	 continuous, onto and 

one-one. But #.�/ � � is not locally compact. 

This shows that continuous image of a locally compact space need not be locally compact. 

 

§6  Countably compact spaces 

Definition 6.1: A T – space ��, 	� is said to be countably compact if any infinite subset of X has 

a limit point. 

 

Example 6.2: Let � � 3, the set of all natural numbers. Let T � 0�2& � 1 , 2&� | & � 31. 
Then T is a base for some topology say 	 on X. This T – space ��, 	� is countably compact. 

Let A be any infinite subset of X. Let - be the smallest number in A.  

Case (1): - is an even number. Let - � 25. Then 25 � 1 is a limit point of A, for, the only 

basic open set containing 25 � 1 is 
 � �25 � 1 , 25� and 25 � 
 ; c � �25 � 1� which 

implies 
 ; c � �25 � 1� M N. Hence in this case 25 � 1 is the limit point of A.  

Case (2): ): - is an odd number. Let - � 25 � 1. Then the only basic open set containing - 

is � � �25 � 1 , 25�. 25 is the limit point of A, for, 25 � 1 � � ; c � �25� which implies 

� ; c � �25� M N.  

Thus from either the case we conclude that A has a limit point in X. Therefore ��, 	� is 

countably compact space.  

 

Theorem 6.3: Every compact space is countably compact. 

Proof: Assume that there exists a compact space ��, 	�, which not countably compact. Hence, 

there exists an infinite set A of X that has no limit point in X. Thus, each � � � is not a limit 

point of A. But then for each  � � �, there exists an open set 
� containing � such that 


� ; c � ��� � N. Hence either 
� ; c � N or 
� ; c � ���, " � � �. Again as �
����� forms 

an open cover for X, it must have a finite sub-cover (X being a compact space).  

Let � ��
�>
�

!?�
.  
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Thus c � � ; c � G�
�>
�

!?�
H ; c ��I
�> ; cJ.

�

!?�
 

As 
�> ; c � ��!� or 
�> ; c � N, " #, 1 % # % &;  

�I
�> ; cJ
�

!?�
 must be a finite set. 

Hence A is a finite subset of X; a contradiction. 

Thus, our assumption is wrong. This proves that every compact space is countably compact.  

 

Example 6.4: By  Theorem 6.3 we immediately get 

(i) co-finite topological space is a countably compact space. 

(ii) Fort’s space is a countably compact space. 

 

Remark: Converse of Theorem 6.3 need not be true. i.e. every  countably compact space need 

not be a compact space. 

For this  consider the topological space given in Example 6.2.  

The T – space defined in Example 7.2 is countably compact but not a compact space. Since the 

open cover 0�2& � 1 , 2&�1 of 3 has no finite sub-cover.  

 

Theorem 6.5: Any closed subset of a countably compact space is countably compact. 

Proof:- Let A be any closed subset of X. To prove that A is countably compact. 

i.e. To prove that any infinite subset E of A has a limit point in A. 


 � c � k.
/ � k.c/ and A is closed � k.c/ � c. Hence k.
/ � c. 
 � � and X is 

countably compact �
 has a limit point say - in X. But then - � k.
/  � - � c. This in turn 

shows that A is countably compact.  

Theorem 6.6: Being countably compact space is a topological property. 

Proof:- Let ��, 	� and �9, 	:� be two T – spaces. Let ��, 	� be a countably compact space and let 

 h: �9 be a homeomorphism. To prove that Y is countably compact space. Let A be any infinite 

subset of Y. Then h being one-one and onto, hq�.c/ � U is an infinite subset of X. As X is  

countably compact, B has a limit point in X say -. Claim that h.-/ � 9 is a limit point of A. Let   
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: � 	: such that h.-/ � 
:. Then 
 � hq�.
:/ � 	 and - � 
. As - is a limit point of B, we 

get 
 ; U � �-� M N. But this will imply 
: ; c � �h.-/� M N. Hence h.-/ is a limit point of A 

in Y. Therefore Y is countably compact. Homeomorphic image of a countably compact space 

being countably compact, the result follows. 

 

Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

1) Show that Fort’s space is compact. 

2) Show that Cantor set S in ��, 	2� is compact. 

3) Show that ��, 	2� is not compact. 

4) Explain in detail what do you mean by one-point compactification of ��, 	� 
5) Prove that: 

i. Being compact space is a topological property.. 

ii. Being countably compact space is a topological property. 

iii. Being  locally compact space is a topological property. 

6) Prove or disprove  the  following statements. 

i. Being countably compact space is a  hereditary property. 

ii. Every compact space is countably compact. 

iii. Every   countably compact space is compact. 

iv. Continuous image of a locally compact space  is locally compact. 

v. Every compact space is locally compact. 

vi. Every locally compact space is compact. 

vii. A subset c of ��, 	2� is compact if  A is bounded and closed. 

viii. Any compact subset of � is closed in ��, 	2�. 
ix. Closed sets are not the only compact subsets in a compact space 

x. Let ��, 	:� be a compact space and 	: % 	. Then ��, 	� is a compact space. 

7) Prove that a topological space ��, 	� is compact if and only if every family of closed sets 

having the finite intersection property has a non-empty intersection. 

______________________________________________________________________________ 
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Unit 7  

Connected SpacesConnected SpacesConnected SpacesConnected Spaces    

§1 Separated sets. 

§2 Connected sets. 

§3 Solved Problems. 
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§1 Separated sets  

Definition 1.1: Let ��, �� be a T – space. The subsets � and � of � are said to be separated in � 

if 

(i) � 	 
 and � 	 
 .  

(ii) � � � � 
 . 

(iii)  � � 
��� � 
 and � � 
��� � 
. 

 

Example 1.2:  

� � �1,4� and � � �5,8� are separated sets in ��, ��� . 
 

Remarks: 

1) Conditions (ii) and (iii) can be combined into the following single condition 

(*)… �� � ��� � �� � ��� � 
  

This condition is known as Hausdorff  Lenne’s condition. 

2) Any two disjoint, non-empty closed sets in any T – space are separated sets. 

3) Any two disjoint, non-empty open sets in a T – space are separated sets. Let � and � be 

both open, non-empty disjoint sets in � .  

� � � � 
  �   � � � � � � �� � � � ��������� � � � � � �� � � � �� � �� � � � 
 .  
Hence  �� � � � 
. Similarly �� � � � 
.  

Therefore � and � are separated sets. 

4) If � and � are separated sets in ��, �� and if � and � are non-empty subsets of � such 

that � � � and � � �, then � and � are also separated sets. 

 

Theorem 1.3: If A and B are separated sets in ��, �� , then � and � are both open and closed 

in � � � and conversely.  

Proof: Let � and � be separated sets in ��, ��. Hence � 	 
 and � 	 
 and 

�� � ��� � �� � ��� � 
  ( �� � � ! �) . 

Unit 7: Connected SpacesConnected SpacesConnected SpacesConnected Spaces 
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Let " � � � � . Then     

� # � � � ! � � "  … (By Theorem 3.3 in Unit 3) 

          � � ! � � �� � �� 

          � $� ! � � �% � $� ! � � �% 
          � � � 
  … (since A and B are separated sets) 

          � � .  

This shows that A is closed in Y.  

Similarly, we can show that B is closed in Y. As � � � � 
 and � � � � ", � and � are 

complements of each other in Y. 

Hence � and � both are open in Y.  

Conversely, let � and � are both open and closed in � � �.  

To prove that � and � are separated in X.   

By data � 	 
 and � 	 
 and � � � � 
. Let " � � � � . 

� � � # � � � ! � � "  (see Theorem 3.3 in Unit 3) 

                 � � ! � � �� � �� 

                 � $� ! � � �% � $� ! � � �% 
               � � � $� ! � � �% 
Thus   � � � � $� ! � � �%Hence, � ! � � � � � .  

But then � ! � � � � � � � � 
 , will imply � ! � � � � 
 i.e. �� � � � 
 (�� � � ! �).  

Similarly, we can prove that � ! � � � � �� � � � 
.  

As Hausdorff Lenne’s condition is satisfied by � and � we get � and � are separated sets in �. 

  

Theorem 1.4: Let �", �&� be a subspace of a T – space ��, �� and �, � � " . � , � are �&  

separated if and only if � , � are � – separated (i.e. � , � are separated in �", �&� if and only if 

� , � are separated in ��, �� ).  
Proof: First note that, 

$� # � � �% � $� # � � �% � '$� ! � � "% � �( � '$� ! � � "% � �( 
 � '� ! � � $" � �%( � '� ! � � $" � �%( 

                                             � $� ! � � �% � $� ! � � �%     �)*+�,�, � � "�. 
Thus $� # � � �% � $� # � � �% � 
 - $� ! � � �% � $� ! � � �% � 
 . 
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Thus if � and � are non-empty disjoint sets in Y (and hence in X) are separated in �", �&� if and 

only if � and � are separated in ��, �� .  
 

§2 Connected sets 

Definition 2.1: Two separated sets � and � said to form a separation of E in a topological 

space ��, �� if . � � � �.  

 We denote this by . � � | �.  

 

Definition 2.2: Let ��, �� be a T – space. A subset . of � is said to be connected if it has no 

separation in ��, ��.  
i.e. . is connected if . cannot be expressed as union of two disjoint, non-empty sets satisfying 

the Hausdorff Lenne’s condition. 

 

Examples 2.3: 

(1)  
 and )*+0 ,12+ ),1) are connected  sets in any topological space. 

(2)  In a discrete topological space ��, �� , 345 �4 6 �� are the only connected sets ( |�| 7 2). 

(3)  Any interval in ��, ��� is connected. 

(4)  Any indiscrete topological space is connected. 

(5)  Let � � 39, :5 and � � 3
, 395, �5. Then ��, �� is a connected space. 

 

Theorem 2.4: Let ��, �� be a topological space and let � and � be non-empty subsets of �. The 

following statements are equivalent. 

(1)  � � � | � . 

(2)  � � � � � and �� � �� � 
 .  

(3)  � � � � � , � � � � 
 and � , � are both closed in �. 

(4)  � � � � � and � is both open and closed in �.  

(5)  � � � � � and :��� � 
    (:��� � boundary of �).  

(6)  � � � � � , � � � � 
 and �, � both are open in �.  

Proof: (1) ���� (2) 

Let � � � | �. Then � � � � � , � � � � 
 , � 	 
, � 	 
 , � � 
��� � 
  and  

� � 
��� � 
 .  
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To prove that �� � �� � 
.  

But �� � �� � $� � 
���% � $� � 
���% 
                 � �� � �� � ;� � 
���< � ;� � 
���< � $
��� � 
���% 
                 � 
��� � 
���  

Hence 4 6 �� � ��  � 4 6 
��� � 
��� 

                              � 4 6 
��� and 4 6 
��� 

                              � 4 = � 9+
 4 = �   (since � � 
��� � 
 and � � 
��� � 
) 

                              � 4 6 � � � 9+
 4 = � . 

                              � 4 6 � 9+
 4 = �  (since � � � � � , � � � � 
). 

                                      which is a contradiction.  

Hence �� � �� � 
.  

(2) ���� (3)  

� � � >  and � � � >   �  � � � � �� � �� � 
  �   � � � � 
.  

Now, �� � �� � 
  � � > � � � � >    
                              � � > � � � � (since � � � >  �  � � � > � � � �) 

                              � � > � �   (� � � � � , � � � � 
 � � � � � �) 

                              �  � � � > . 

Hence, � is a closed set in �. Similarly, we can prove that � is closed in �. 

(3) ����    (4)  

� � � � � , � � � � 
 � � � � � �.  

As � is closed, � � � � � is open. Thus � is both open and closed.      

(4) ���� (5)  

:��� � � > � �� � ������������  

         � � � �� � ��  (since � is both open and closed � � � � is also both open     and closed)  

         � 
 

(5� � � � ���� (6) 

 Let :��� � 
 . We know that �� � �? � :���.  

As :��� � 
 , �� � �?. As �? � � � �� , we get  �� � � �  �?. Hence � is open.  

As � � � � �,  � is also open in �. 

(6) ����    (1)  



Connected Spaces 

Page | 103  

 

Let � � � � � , � � � � 
 and �, � both are open in �. As � and � are complements of each 

other,  � and � are closed in �. Hence �� � ��� � �� � ��� � �� � �� � �� � �� � 
. 

Thus � � � | � . 

 

Remarks: 

1) The space of rationals @ with relative topology is disconnected. 

Fix any real number A . Define � � 34 6 @ | 4 B A5 and � � 34 6 @ | 4 C A5. 
Then � and � both are non-empty disjoint subsets of @ . Further both are open in @ w.r.t. 

the relative topology on @ [��, ��� is T – space and @ � �].  

2) The space of irrational numbers @D with relative topology is disconnected space.  

        

Theorem 2.5: Let ��, �� be a T – space. If a connected set � has a non-empty intersection with 

both a set . and the complement of . in ��, �� , then � has a non-empty intersection with the 

boundary of .. 

Proof: To prove that � � :�.� 	 
 (:�.� � boundary of . in ��, ��). 
Let � � :�.� � 
.  

� � � � � � � � $. � �� � .�% . 
Hence, � � $� � .% � $� � �� � .�%  ___________________ ____(1) 

$� � .% � $� � �� � .�% � � � $. � �� � .�% � � � 
 � 
.  

Hence, $� � .% � $� � �� � .�% � 
 ___________________ _____(2) 

Now, $� � .% � $� � �� � .�%������������������  �  $� � . > % � �� � .����������� 

                                                    � � � '. > � �� � .����������� ( 
                                                    � � � :�.�   (since :�.� � . > � �� � .����������� ) 

                                                     � 
   …… (by assumption) 

Thus $� � .% � $� � �� � .�%������������������ � 
    _________________________ (3) 

Similarly, we can prove that  $� � �� � .�% � $� � .%���������� � 
   _______(4)  

Hence E$� � .% � $� � �� � .�%������������������F � E$� � �� � .�% � $� � .%����������F 
           � 
 � 
 � 
________ ______ (5) 

From (1), (2) and (5) we get, 

� � �� � .� | $� � �� � .�%  (as by hypothesis�� � .� 	 
 and $� � �� � .�% 	 
 ). 
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This is a contradiction, as � is connected set. 

Thus our assumption is wrong. Hence � � :�.� 	 
 . 

 

Theorem 2.6: Continuous image of a connected space is a connected space. 

Proof: Let t ��, �� be a connected space. Let �", �&� be any T – space and 

 G: � I " be a continuous function. To prove that " is a connected space. 

Let if possible " is not connected. Let " � � | �. Then " � � � �, and �, � are non-empty, 

disjoint open sets of " (by Theorem 1.3). As G is onto, GJK�"� � � and hence 

� � GJK��� � GJK���. G being onto and continuous, GJK��� and GJK��� both are non-empty 

disjoint open sets in �. But this shows that � � GJK��� | GJK��� ; a contradiction. Hence our 

assumption is wrong i.e. " must be a connected space.   

 

Corollary 2.7: Homeomorphic image of a connected space is a connected space. 

 

Theorem 2.8: Let . be a subset of the subspace ��&, �&� of a T – space ��, ��. . is �& connected 

if and only if . is � connected. 

Proof:- Let � , � � �& � �.   

Denote �&��� � closure of � in ��&, �&� and ���� � closure of � in ��, ��.  
Then �&��� � ���� � �& (see Theorem 3.3 in Unit 3). 

Then $� � ����% � $� � ����% � $�� � �&� � ����% � $�� � �&� � ����% 
                                                   � '� � $�& � ����%( � '� � $�& � ����%( 
                                                   � $� � �&���% � $� � �&���% 
Thus for � , � � �& � � we get , 

$� � ����% � $� � ����% � 
       -       $� � �&���% � $� � �&���% � 
 .  

Thus the set . has separation in ��&, �&� if and only if  L � , � � . such that . � � � �, 
� � � � 
 , � 	 
 and � 	 
 and $� � �&���% � $� � �&���% � 
 . 

- L � , � � . such that . � � � �, � � � � 
 , � 	 
 and � 	 
 and 

$� � ����% � $� � ����% � 
 . 

- . has separation in ��, ��.    
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Theorem 2.9: Let � be a connected subset of the T – space ��, ��. 
Let � � � | � . Then either � � � or � � �. 

Proof:-X � � | � � � � � � �, � � � � 
 , � 	 
 and � 	 
.  

Hence � � � � � � � � �� � �� � �� � �� � �� � ��.  

Again �� � �� � �� � �� �  � � �� � �� � 
 .  

Now '�� � �� � �� � ������������( � '�� � �� � �� � ������������( � �� � ��� � �� � ��� � 
 . 

� '�� � �� � �� � ������������( � '�� � �� � �� � ������������( � 
. 

Thus � � �� � �� | �� � �� , if�� � �� 	 
 and�� � �� 	 
 . But as � is connected � has no 

separation. Hence either �� � �� � 
 or �� � �� � 
. Thus either � � � � � � � or� � � �
� � � and hence the result follows. 

  

Corollary 2.10: If � is a connected set in a T – space ��, �� and if � � . � ��, then . is 

connected in ��, ��. 
Proof:- To prove that . is connected set.  

Let if possible . is not connected set. Then . must have a separation, say . � � | � . 

As � is a connected subset of � and . � �,  � is connected subset of . (by Theorem 2.8).  

But then � � � or � � �(by Theorem 2.9). Let us assume that  � � �. 

Then �� � � � �� � � � 
 will imply �� � � � 
. But � � . � �� implies �� � � � �.  

Thus � � 
 ; a contradiction. Hence our assumption is wrong. This proves that . must be 

connected set.  

 

Remark: By taking E =  �� in particular in  Corollary 2.10, we get 

 if � is connected, then �� is connected. 

 

Corollary 2.11: Let ��, �� be a topological space such that any two points of a set . � � are 

contained in same connected subset of .. Then . is connected. 

Proof:- To prove that . is a connected set. 

Let if possible . be not connected. Let . � � | � . Then . � � � �, � � � � 
 , 

� 	 
 and � 	 
. As � 	 
 and � 	 
, select 9 6 � and : 6 �.  As � � � � 
 , 9 	 : in X. 

By assumption, L a connected set � containing both 9 and :. By Theorem 2.8, � � � or � � �.  
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Let � � �. Then : 6 � � � � 
 ; a contradiction. Hence our assumption is wrong. This shows 

that . must be a connected set.  

 

Corollary 2.12: -The union of any family 3�N5 of connected sets having a non-empty 

intersection, is a connected set. 

OPQQR: Let 3�N | S 6 T5 be a family of connected sets such that, U �N
N6V

	 
 . 
To prove that . � W �N

N6V
 is connected set. 

Let . is not connected. Then . � � | � .  

Let 4 6 U �N
N6V

 … Y since  U �N
N6V

	 
Z . Then  4 6 �N , [ S 6 T ,  �N � . � 4 6 . � � | �. 
As � � � � 
, either 4 6 � or 4 6 �.  

Without loss of generality, assume that 4 6 �. Thus 4 6 �N � � � �N � � 	 
 , [ S 6 T .  
�N is connected subset of X and . � � � �N is connected subset of . (by Theorem  2.8).  

As �N is connected subset of . and . � � | � , �N � � or �N � �. But as   � � � � 
, we get 

�N � � , [ S 6 T  or  �N � � , [ S 6 T.  

Hence, �N � � , [ S 6 T as � � � � 
.  

Thus  . � W �N
N6V

� � .  But then . � � � � � � � ..  
Hence, . � �. Therefore � � 
 ; a contradiction. 

Thus  . � W �N
N6V

 is connected set. 
 

§3 Solved Problems 

Problem1: Let ��, �� be a topological space and . � �. If . � � | � and . is closed subset 

of �, then � and � are closed in �.  

Solution: . � � | � � � and � are proper non-empty sets of . and both are open and closed 

in . (by Theorem  2.4 (4)). Hence � � . � \ for some closed set \ in �. As . itself is a closed 

set in �, we get . � \ � � is closed in �. Similarly we can prove that � is closed in �. 
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Problem 2: Show that  in a connected topological space, every non-empty proper subset has a 

non-empty boundary. 

Solution: - Let . 	 
, . ] �.   

To prove :�.� 	 
. Let :�.� � 
.Then .� � �� � .����������� � :�.� � 
. 

Hence, . � �� � .����������� � 
 and .� � �� � .� � 
. 

. 	 
, . 	 �    �      � � . 	 
 , � � . 	 �. 

. � �� � .� � � 9+
 . � �� � .� � 
 .  

Hence � � . | �� � .� , a contradiction.Hence, :�.� 	 
.  

 

Problem3: If  ��, �� is a connected topological space and �& ^ �, then show that  ��, �&� is 

connected.  

Solution:- Let ��, �&� be not connected. Hence there exist proper, non-empty subsets � and � 

of � such that �, � 6 �& and � � � � � , � � � � 
. But as �& ^ � , we get � and � are proper 

non-empty subset of � such that �, � 6 �, � � � � �, � � � � 
.  

But this shows that ��, �� is not a connected set; a contradiction.  

Hence ��, �&� is connected space. 

 

Problem4: For a topological space ��, �� show that following statements are equivalent. 

1) X is connected. 

2) X cannot be written as disjoint union of two non-empty closed sets. 

3) X cannot be written as disjoint union of two non empty open sets. 

4) The only clo-open sets are 
 and �. (clo-open = both open and closed) 

5) Every non-empty proper subset of X has a non-empty boundary. 

Solution:- The result follows immediately by definition and   by Theorem 2.4. 

 

 Problem 5: Let . be a subset of a topological space ��, ��.If . is connected , then E is not the 

union of any two non-empty sets � and � such that �� � �� � 
. 

Solution: Let . be connected. Let if possible . � � � �,� 	 
,� 	 
  and �� � �� � 
. 

.� � �� � ������������ � �� � �� . � 	 
  �  �� 	 
  and � 	 
  �  �� 	 
 . 

�� � ��  > � �� � �� � 
 and �� � �� > � �� � �� � 
. 
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Hence  .� � �� | ��  ; a contradiction (since .  is connected �  . >  is connected ) 
Hence . is not a union of any two non-empty sets � and � such that �� � �� � 
. 

 

Exercises ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––   

Prove or disprove the following statements. 

1) Closure of a connected set in ��, �� is a connected set. 

2) Any two disjoint sets are separated in ��, ��. 
3) Any two separated sets are disjoint in  ��, ��. 
4) Union of two connected sets  in  ��, ��is a connected  sets  in  ��, ��. 
5) X is connected if and only if X cannot be written as disjoint union of two non-empty 

closed sets. 

6) X is connected if and only if X cannot be written as disjoint union of two non-empty 

open sets. 

7) X is connected if and only if the only clo-open sets are 
 and �. 

8) X is connected if and only if every non-empty proper subset of X has a non-empty 

boundary. 

9) Let � be a connected subset in ��, �� and  � � � | � . Then either � � � or � � � 

10) X is connected if and only if it has non-empty proper subsets which are both open and 

closed. 

______________________________________________________________________________ 
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§1  Definition and Examples 

Definition 1.1: Let ��, �� be a topological space. ��, �� is said to be first axiom space (or f.a.s. 

in short )  if it satisfies the following first axiom of countability. 

 For each point � � �, there exists a countable family 	
���
� � �� of open sets such that 

 � �  
���
 for each � � � and for any open set G containing x, �  �� � � such that , � �
 
���
 � �. 
            The family 	
���
� � �� is called a countable local base at x. 

 

Examples 1.2 

(1)  Every discrete topological space is first axiom space. 

Let ��, �� be a discrete topological space. Then 		��� forms a countable local base at x. Hence 

��, �� is a first axiom space. 

 

(2) ��, ��� is a first axiom space. 

Fix up any �  � . For each   � �  � define  
���
 �  �� � �
�   , � � � 

��. Then 	
���
� � �� forms a 

countable family of open set in ��, ��� . 
 Further if � is open set in �� containing � , then by the definition of  �� ,  
�  �  0  such that �� � �

"  , � � �� � �. Select �� so large, such that 
�
�# $ � .  

Then �� � �
�#   , � � �

�#�  � �� � � , � � �
  � �   % 
�# � � . 

           Hence the family  	
���
� � �� forms a countable local base of  � �  �. Therefore ��, ��� 
is a first axiom space. 

 

(3)  Every metric space is first axiom space. 

Unit 8:First Axiom Spaces First Axiom Spaces First Axiom Spaces First Axiom Spaces  
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Let ��, &� be a topological space and �  be the topology on X induced by the metric d. Fix up 

any � �  �. Define 
���
 � ' �� , ���   for any � �  �. Then by the definition of �  , 
���
 �
� , ( � � �. � �  
���
 for each � � �.  
Let � � � such that � � �. Then by the definition of  � , � �  0 such that  
)� �, � 
 � � . Select n so large that  ��#  $ �. 
Then � � ' *� ,   1�� , � '� �, � 
 � �. 
Thus given � � � containing � , �  � � � � such that  � � 
 � #��
  � �. Hence the countable 

family 	
���
� of open sets in ��, �� forms a countable local base at �. This shows that  ��, &� is 

a first axiom space. 

 

(4) Co-finite topological space ��, �� ( with X an infinite set ) is  a non-first axiom space. 

Let ��, �� be a first axiom space and � � �. Then � a countable local base 	
���
� 
at x. 
���
 � � , ( � � � %  � � 
���
  is a closed set in ��, ��, ( � � �    
               %  � � 
���
 is a finite set in  ��, ��,   ( � � �.  
                                                %  -.� � 
���
/

0

 �1�
  is a countable subset of �. 

… ( since  countable union of countable sets is countable.) 

Hence   � 2 -.� � 
���
/
3

 �1�
. 

Select 4 � �  such that  4 5  -.� � 
���
/
3

 �1�
  and 4 2 �.  

But then 4 � � � 6-.� � 
���
/
3

 �1�
7      %   4 � - 
���


3

 �1�
 

Now then  � � � � 	 4 �. Then G is an open set ��, �� containing x ( since x 2 4). Hence 

�  �� � �  such that � �  
�#��
  � � � 	 4 �.  
4 � 
�#��
     %   4 � � � 	 4 � , a contradiction . 
Hence ��, �� is a non-first axiom space. 
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(5)  Co-countable topological space defined on an uncountable set is non-first axiom space. 

Let ��, �� be a first axiom space and � � �. Then � a countable local base 	
���
� at x.  


���
 � �  ( � � � %   � � 
���
  is a closed set in ��, ��, ( � � �    
                  % �� 
���
 is a finite set in  ��, ��, ( � � �.  

               % -.� � 
���
/
0

 �1�
  is a countable subset of X. 

… (since countable union of countable sets is countable). 

Hence  � 2 -.� � 
���
/
3

 �1�
. 

Select 4 � � such that 4 5  -.� � 
���
/
3

 �1�
 and 4 2 �.  

But then 4 � � � 6-.� � 
���
/
3

 �1�
7    %   4 � - 
���


3

 �1�
 . 

Now then  � � � � 	 4 �. Then � is an open set ��, �� containing � (since � 2 4). 

Hence  �  �� � �  such that � �  
�#��
  � � � 	 4 �.  
4 �  
�#��
   %   4 � � � 	 4 � , a contradiction .  
Hence ��, �� is a non-first axiom space. 

 

(6)  Fort’s space is a non-first axiom space. 

Let ��, �� be a Fort’s space. X is an uncountable set, ∞ is a fixed point of � and  � �
	 F � � / ∞ 5 F� H 	 F � � / ∞ � F  and � � F is finite�. 

Assume that ��, �� is a first axiom space. Hence, there exists a countable local base 

say 	 
�� ∞
� ���  , (  � � �. 

We get - 
��∞

3

 �1�
 �  � . 

As  ∞ �  - 
��∞

3

 �1�
 by the definition of � ,  We get 6� � -
��∞


3

 �1�
7  is a finite 

set.  
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Hence  � �-
��∞

3

 �1�
2 � �Since � is uncountable
 I. J.K.� � 
��∞
/

3

 �1�
 2 �. 

Select � � � such that � 5  K.� � 
��∞
/
3

 �1�
. As � 2 ∞ ,   ∞ � � � 	��. 

As  � � 	�� is an open set in � containing  ∞, we get ∞ � 
�#�∞
 � � � 	�� 
for some  �� � � .  

 But by the choice of �, � � 
�#�∞
 implies � �  � � 	�� ; a contradiction. 

Hence ��, �� is  a  non-first axiom space. 

 

§2  Properties  

Theorem 2.1: Let ��, �� be a first axiom space. Then  � a nested / monotone decreasing local 

base at each that  � � �. 
Proof:- Let � � � and 	
���
� � �� be a countable local base at x. 

                 Define  
�M� � 
   �   
�� � 
. 
                               
NM� � 
  �   
�� � 
 O  
N� � 
.  
                               
PM� � 
  �   
�� � 
 O  
N� � 
 O 
P� � 
.  
                               ------------------------------------------------ 

                               ------------------------------------------------ 

         In general ,   
�M� � 
  � K
Q� � 

�

 Q1�
.   

Then 	 
�M� � 
� � �� forms a monotone decreasing local base at x. 

 

Theorem 2.2:- Being a first axiom space is a hereditary property. 

Proof:- Let ��, �� be a first axiom space and �R, �M� be its subspace. To prove that �R, �M� is a 

first axiom space. Select   4 � R. Then 4 � � and X is first axiom space 

% � a countable local base 	
��4
����   at 4 in ��, ��. 
Define 
�M�4
 �  
��4
 O R for each � � �. Then 	
�M�4
���� forms a countable family of open 

sets in  ��M, �M� and 4 �  
�M�4
  ( � � �.  
Let �M  �  �M containing 4. 

Then �M � � O R for some � �  � ,  As 4 � � and � � � ,  �  �� � � such that 
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y �  
�#�4
  � �. But then 4 � 
�#�4
 O R � � O R will imply  

 y � 
�#M �4
  � �M. Hence 	
�M�4
����  forms a countable local bas at 4. 
Hence   �R, �M� is a first axiom space. 

 

Theorem 2.3:- The property of being a first axiom space is a topological property. 

Proof: Let ��, �� and �R, �M� be two topological spaces and let T: � V R be a homeomorphism. 

Assume that ��, �� is a f.a.s.  

To prove that �R, �M� is a f.a.s.  

Let 4 � R. As T is onto, � � � � such that T��
 � 4. As � is a f.a.s. � a countable local base say 

	
���
���� at �. As 
���
 � � , ( � � W we get T.
���
/ � �M (since T is an open mapping). 

Again, � � 
���
 % 4 � T.
���
/ , ( � � W. 

Claim that 	T.
���
/���W will form a countable local base at 4 � T��
. 
(i) T.
���
/ � � , ( � � W. 

(ii) 4 � T.
���
/ , ( � � W. 

(iii) Let �M � �M such that 4 � �M. Then TX�.�M/ � � (since T is continuous) and � �
TX�.�M/. 

Hence � �� � W such that 
�#��
 � TX�.�M/ . 
But then TY
�#��
Z � TYTX�.�M/Z  % TY
�#��
Z � �M. 
From (i), (ii) and (iii) we get  	T.
���
/���W forms a local base at 4 � R. 

Hence �R, �M� is a f.a.s. 

 

Remark: Continuous image of a f.a.s. need not be a f.a.s. 

For this consider the discrete topological space ��, �� and co-countable topological space ��, �M�, 
where � is an uncountable set. Then the identity map I: � V � is � � �M continuous and onto. 

 ��, �� is a f.a.s. but ��, �M� is not a f.a.s. (see Example 1.2 (1) and Example 1.2 (5)) 

 

§3  Sequentially continuity  and first axiom spaces 

Definition 3.1: Let ��, �� and �R, �M� be two topological spaces and let T: � V R be a function. T 

is said to be sequentially continuous on � if for every sequence 	��� converging to � in �, the 

image sequence 	T���
� converges to T��
 in R. 
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Theorem3.2: Let ��, �� be a first axiom space and �R, �M� be any topological space. A 

function T: � V R is continuous on � if and only if T is sequentially continuous.  

Proof: Only if part – 

Let T be a continuous on �. To prove that T is sequentially continuous.  

Let 	��� be a sequence of points of � converging to � � �. To prove that the image 

sequence 	T���
� converges to T��
 in R.  

Let �M � �M such that T��
 � �M.  
T:� V R is continuous % TX�.�M/ � � . 

T��
 � �M  %   � � TX�.�M/ . 
As �� V � , � [ � W such that �� � TX�.�M/ for each � \ [ .  

But then T���
 � �M T]� [ \ � , (as �  TX�.�M/ � �M). 
But this shows that T���
 V T��
 in R. 

If part – 

Let T: � V R be sequentially continuous.  

To prove that T is continuous on �. Assume if possible, T be not continuous on �. Hence � � �
� such that T is not continuous at �. Hence � �M � �M containing 

T��
 such that T��
 ^ �M for any � � � containing �. As � is a f.a.s.  � countable monotone 

decreasing local base say 	
���
���W at �. As � � 
���
 and 
���
 � � for each �, we 

get T_
���
` ^ �M for each �.  

Select T���
 � T.
���
/ O .R � �M/ ;  ( � � �. Then 	��� is a sequence of points in �. 

Claim 1: The sequence 	��� converges to � in �.  

Let O be any open set in � containing �. Then � [ � W such that 
a��
 � O (by definition of 

local base).  

Hence �a � O ( by the choice of 	��� , �a � 
a��
 ). 
As 	
a��
� is monotonically decreasing, we get �� � 
a��
 for all � \ [.  

This shows that �� V � in �.  

Claim 2: The sequence T���
 does not converge to T��
 in R.  

We know that �M � �M containing T��
 and T���
 5 �M for any � (by the choice of T���
 ). 
Hence T���
 b T��
. Thus �� V � in � but T���
 b T��
 in R. This contradicts the data that T 
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is sequentially continuous on �. Hence, our assumption must wrong. Hence T is continuous 

on �. 

 

Remark: Note that the property that � is a first axiom space is not used in the proof of only if 

part. Hence if T: � V R continuous on � then T: � V R is sequentially continuous, for any 

topological space �. 

 

Theorem3.3: Let � be a first axiom space and F � �. Let c � �. Then c is a limit point of F if 

and only if � a sequence 	c�� with c� � F O .� � 	c�/ for all �, which converges to c.  

Proof: Only if part – 

Let c be a limit point of F.  

Hence for any � � � containing F, � O F � 	c� 2 d _______________ [I] 

As � is a f.a.s. � a countable, monotonically decreasing local base at c, say 	
��c
�. Hence by 

[I], 
��c
 O F � 	c� 2 d ;  ( � � W.  

Select c� � 
��c
 O F � 	c� ;  ( � � W. Then 	c�� is a sequence of limit points of 

F O .� � 	c�/ and c� V c (since c� � 
��c
 and 	
��c
� is monotonically decreasing local 

base). 

If part – 

Let � a sequence c� � F O .� � 	c�/ such that c� V c. To prove that c is a limit point of F. 

Let � � � containing c. Then as c� V c , � � such that c� � � for all � \ �. Thus c� � � O
F � 	c� …(by choice of the sequence 	c��) 
But this shows that for any open set � containing c, � O F � 	c� 2 d.  

Hence c is a limit point of F. 

 

Remark: Note that the property that � is a f.a.s. is not used in the proof of ‘If part’ and hence the 

if part is true in any topological space. 

 

Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

(I) State whether the following statements are true or false. 

(1)  Every compact space is a f.a.s. 

(2)  Every f.a.s. is compact. 
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(3)  Every discrete topological space is a f.a.s. 

(4)  Every indiscrete topological space is a f.a.s. 

(5)  e � exclusion topological space a f.a.s. 

(6)  e � inclusion topological space a f.a.s. 

(II) Prove or disprove the following statements. 

(1) Let ��, �� be a first axiom space and �R, �M� be any topological space. T:� V R is 

continuous if and only if T is sequentially continuous.  

(2) Continuous image of a f.a.s. is a f.a.s. 

(3) Homeomorphic image of a f.a.s. is a f.a.s. 

(4) Subspace of a f.a.s. is a f.a.s.  

______________________________________________________________________________ 

 



Second axiom spaces 

Page | 119  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

Unit 9  

Second axiom spaceSecond axiom spaceSecond axiom spaceSecond axiom spacessss    

§1  Definition and properties of second axiom spaces. 

§2  Sequentially compact spaces and second axiom spaces. 
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§1  Definition and properties of second axiom spaces. 

Definition 1.1: A topological space ��, �� is a second axiom space (s.a.s. in short) if it satisfies 

the following second axiom of countability. 

                             (*)      � has a countable base � �	 
 	 � � . 

Examples 1.2:  

1�   ��, ��� is a second axiom space as  � � � ��, �� | �, � � �
 is a countable base for ��. 

2)   Let �� , ��  be a discrete topological space with X-an uncountable set. Then ��, �� is a non- 

second axiom space. 

Theorem 1.3: Every second axiom space is a first axiom space. 

Proof: - Let ��, ��  be a second axiom space. Let � � � �	 
 	 � � be a countable base for �. Fix 

up any � � �. Consider those �	  �  � for which � �  �	 and denote this family by ��	���
. 
 �� ��	���
  � ��	
, the family ��	���
 is a countable family of open sets. By selection,  

� � �	���, � � . Let � � �  such that � � �. As � is a base for � ,     �	! � � such that 

� � �	!  � �. But then �	! � ��	���
. 
 Hence ��	���
 forms a countable local base at x. As this is true for any  � � �, ��, �� is a 

first axiom space. 

 

Remark:- Converse of the Theorem 1.3 need not be true. 

 i.e. every first axiom space need not be a second axiom space. For this consider a discrete 

topological space ��, �� defined on an uncountable set X. This space is a first axiom space but it 

is not a second axiom space. As "��
# forms a countable local base at each � � � , we get  ��, �� 
is a first axiom space. Let if possible ��, �� be a second axiom space. Then there exists a 

countable base say � � � �	 
 	 � �  for  �. As ��
 � � and  � � ��
 ,   $% � & such that  
� � �	! � ��
. But Then �	! � � � 
.  

Unit 9: Second axiom spacesSecond axiom spacesSecond axiom spacesSecond axiom spaces 
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Thus "��
 | � � �#  �  ��	 |  $ �  & 
 ' "��
 | � � �# is a countable family; a contradiction, as 

X is uncountable. Hence ��, �� is not a second axiom space. 

 

Theorem 1.4: The property of being a second axiom space is a hereditary property. 

Proof:- Let ��, �� be a second axiom space and let �(, �)� be its subspace. To prove that �(, �)� 
is a second axiom space. By definition of subspace   ( � � �( * +� �$,  �) � �� - (/ � �  �
. 
Let  � be a countable base for ��, ��. Then Define �) � �� - ( | � � �
 .Claim that �) is a 

countable base for �). Obviously, � � � ' �)  � �) and �) is countable set. 

Let �) � �) �$, � � �). Then � � ( � � and   � � � such that �) � � - (. As � � � and 

� � �,    � �  , such that � � � � � .  

Hence, � �  � - (  �  � - ( '    �) � �) such that � � �) � �). This shows that  �) is a 

countable base for �). As a subspace of a second axiom space is a second axiom space, the 

property of being a second axiom space is a hereditary property. 

 

Theorem 1.5: The property of being a second axiom space is a topological property. 

Proof:- Let ��, �� be a second axiom space and let  ��), �)� be any topological space. Let 

/:� 1  �) be a homeomorphism. To prove that ��), �)� is a second axiom space. As ��, �� is a 

second axiom space, there exists a countable base say �  for �. As � � �, /��� � �) for each 

� � �, being an open mapping.  Define  �) � �/��� | � � �
. 
Claim that   �) is a countable base for �). 
  �) is a countable family of open sets in ��), �)�.   Let �) � �) and �) � �). As f is onto, 

  � � � such that /� � � � �). /23��)� � � and � � /23��)� 
As � is a base for the topology � ,   � � � such that � � � � /23��)� .  
But then /��� � �) � �)  � �) will imply that �) is a base for �). 
Thus  �) � �/��� | � � �
 forms a countable base. Hence  ��), �)� is a second axiom space. 

Thus, homeomorphic image of  a second axiom space is a  second axiom space 

 

Theorem 1.6: Any family of disjoint open sets in a second axiom space is countable. 

Proof:- Let ��, �� be a second axiom space. Let 4 denote the family of disjoint open sets in X. 

To prove that  4 is countable. As X is a second axiom space, there exists a countable base say 

� � ��	 | $ � &
 for � . Let  � � 4.  As � �  � ,    $% � & such that �	!  �  �.  
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Let  5 � � � � & | �	 �  �
 and let  5 � the smallest member of M. As the Members of  4 are 

disjoints, the assignment of 5 to  � � 4 is unique. Now list the members of 4 according to the 

order of the associated integers to them. But this shows that 4 is countable. 

 

Theorem 1.7: Let ��, �� be a second axiom space and let A be an uncountable subset of X. Then 

some point of A will be a limit of A. 

Proof:-     ��, �� is a second axiom space. Hence,   a countable base say � � � �	 |  $ � &
                                  
for � . If possible, assume that no point of A is its limit point. Hence for each  � � �,   �6 � � 

such that  � �  �6  and �6 - � 7 ��
 � + . As A is uncountable, �6 - � � + is not possible. 

Hence �6 - � � ��
 for each � � �. 
As � �  �6 �$, �6 � � ,   $6 � & such that � � �	8 � �6. Hence  �	8 - � � ��
 .  
Note that for � * � ,   �	8 * �	9 . 
: � * � ' ��
 * ��
   ' �	8 - � * �	9 - � .  � � �	8  and � ; �	8  , � � �	9 and    
� ;  �	9 < 
 Thus   a one-one, onto correspondence � 1 �	8  from � to � �	 | $ � &
. But this shows 

that A is a countable set a contradiction. Hence our assumption is wrong. This proves that A has 

a limit point in it. 

 

Remark : The converse of  Theorem 1.7 need not be true. For this consider the following 

example. 

                Let X be an uncountable set and let �  be the co-finite topology on X. Let A be any 

infinite subset of X. Claim that each � � � is its limit point. Fix up any � � �. For any open set 

G containing a, X-G is finite. Hence G contains almost all points of A except finitely many 

points of A. But then �6 - �  \� � 
 * +. This in turn shows that each � � � is its limit point. 

But ��, �� being non first axiom space (see Example …) we get X is not a second axiom space 

(Theorem 1). 

 

Theorem 1.8: In a second axiom space  ��, �� , every open covering of X is reducible to a 

countable sub covering. 
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Proof:- Let ��, �� be a second axiom space. Let  > � ��? / @ � ∆
  be an open covering of X. As 

X is a second axiom space     a countable base say � � � �	 | $ � &
 for �  . 

 Define  &� > � � �$ � &  / �	 � �? for some @ � ∆
 for each $ �  &� > � associate 
a set �	 � > such that �	  �  �	 .   
Thus the set ��	 | $ �  &� > �
  is a countable set and   ��	| $ �  &� > �
 � >.  
Claim that  ��	 | $ �  &� > �
 forms a cover for X. 

Fix up any  � � �. As   � � B��? / @ � ∆
  we get  � � �? for some @ � ∆ . As  � is a base 
for � ,   $ � & such that  � � �	 � �	 . 

This in turn shows that � �C�  �	 / $ �  &� > � 
 . Hence ��	 | $ �  &� > �
  forms a  
cover for X. This shows that any arbitrary open cover of X is reducible to a countable sub-cover. 

 

Remark: Converse of Theorem 1.8 need not be true.  

i.e.  every open covering of a topological space X is reducible to a countable sub covering need 

not imply X is a second axiom space. 

 For this consider the following example. 

 Let  ��, �� be a Fort’s space. As ��, �� is non-first axiom space, we get ��, �� is a non- 

second axiom space (see Theorem 1). As ��, �� is a compact space (see Example 1.4 (4) in Unit 

6 ) every open covering of X is reducible to a countable sub covering. 

 

§2  Sequentially compact spaces and second axiom spaces. 

Definition 2.1: Let ��, �� be a T – space. A subset D of � is said to be sequentially compact if 

every sequence of points of D has a subsequence which converges to a point of D.  

 

Theorem 2.2: Every sequentially compact space is countably compact. 

Proof: Let D be an infinite subset of a sequentially compact space �. Select an infinite 

sequence ��	
 of points of D. As � is sequentially compact, the sequence ��	
 of points of � 

(since D � �) has a convergent subsequence say  "�	E# . Then "�	E# being a sequence of points 

of D,  � is a limit point of (see Theorem …). This shows that the topological space � is countably 

compact.  
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Remark: Converse of Theorem 2.2 need not be true in general. But it is true if � is a f.a.s. 

 

Theorem 2.3: Let ��, �� be a first countable, countably compact space. Then ��, �� is 

sequentially compact. 

Proof: Let ��	
 be an infinite sequence in �. Then � is an infinite set of a countably compact 

space �. Hence, it has a limit point say � in �. As � is a first countable space,   a decreasing 

countable local base say ��	���
	�F  at �. As � � �	��� and �	��� � � ,   G such that 

�	 � �	��� for all $ H G. Fix up �	I � �	��� , � $ � F. Then obviously, the subsequence "�	I# 
of ��	
 will converge to �. 

Thus for a sequence ��	
 in �     a convergent subsequence "�	I# . Hence � is sequentially 

compact. 

 

Corollary 2.4: Let ��, �� be a f.a.s. Then � is countably compact if and only if � is sequentially 

compact. 

Proof: Result follows by Theorem 1 and Theorem 2. 

 

Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Prove or disprove the following.  

1) Fort’s space is a  second axiom space 

2) Co- countable topological space defined on an uncountable set is a second axiom space. 

3) Co- finite Co- countable topological space defined on an uncountable set is a second 

axiom space. 

4) Discrete topological space defined on countable set is a second axiom space. 

5) ��, ��� is a second axiom space. 

6) Every sequentially compact space is compact. 

7) Every compact space is sequentially compact. 

8) Every countably compact space is sequentially compact. 

9) In any metric space compactness, sequentially compactness and countably compactness 

are equivalent. 

10) A subspace of a second axiom space is a second axiom space. 

______________________________________________________________________________ 
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§1 Definition and Examples 

Definition 1.1: A topological space ��, �� is a Lindelof space if every open cover of X has a 

countable sub-cover. 

 

Remarks: 

1) Every compact space is a Lindelof space (Obviously, by the Definition). 

2) Every second axiom space is a Lindelof space as in a second axiom space every open cover 

has a countable sub-cover (see Unit 9 Theorem 1.8). 

 

Examples 1.2:  

1) Let ��, �� is a discrete topological space with X as a infinite countable set.  

This space is a Lindelof space. As ��	
 | 	 � �
 forms a countable family of open sets, every 

open cover of X will have a countable sub-cover. 

 

2) ��, ��� is a second axiom space as  ��� , ��| �, � � �
 forms a countable base for ��. 

Hence ��, ��� is a Lindelof space. 

 

§2 Properties 

Theorem 2.1: Closed subspace of a Lindelof space is a Lindelof space. 

Proof:- Let ��, �� be a Lindelof space and let ��, ��� be a closed subspace of X i.e. Y is closed 

subset of X and �� �  �� � � | � � �
. 
  ��� ���� | � � Λ
 be any open cover of Y in ��, ���.  
 �!"� ,   � #$�����∆

  �!& ��� � �  ; ( � � Λ. 
 ��� � �� * ��� � �� � �  for some   �� �  � . 
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Thus   � � � � + � � , � .                                                                   

                  � � � + � � , -$�����∆
. 

                  � � � + � � , -$��
��∆

� �. 

                  � � � + � � , -$��
��∆

. 
           As � is a closed subset of �,  � + � is an open set in X.   

Hence  ��� | � � ∆
 , �� + �
 forms an open cover for X. As X is a Lindelof space, this open 

cover has a countable sub-cover. 

Let -$��/ 
0

 123
. � � � + �� .  But Then we have ,  

 � # -$��/ 
0

 123
. � � �  $4 ��/ 5 �6 

0

 123
�    $��/�

0

 123
  

But this shows that  the open cover  ���� | � � ∆
 of � has a countable sub-cover. Hence � is a 

Lindelof space. 

 

Theorem 2.2: Being a Lindelof space is a topological space. 

Proof:- Let ��, �� be a Lindelof space. Let ���, ��� be any T – space and let  7: � 9 �� be a 

homeomorphism. To prove that �� is a Lindelof space. Let  ����
 be any open cover of  ��. 
Then ��� � �� and 7: � 9 �� is continuous  

             * 7:3;���<  � �   for each � � Λ.  
As �� �$�����∆

 and f is onto, we get � � 7:3 -$�����∆
.  �   $7:3; ���<��∆

 

But this shows that  �7:3; ���<
��∆ forms an open cover for ��. As X is a Lindelof space the open 

cover �7:3; ���<
��=  of X has a countable sub-cover. 

Denote the countable sub-cover by  �7:3; ��/� <
1�> . 
Then   � �$7:34 ��/� 61�>

 .  But 7 is onto   *   �� � 7�	� � 7 -$7:3; ��/� <1�>
.   
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Hence  �� �   $?747:3; ��/� <6@1�>
  

 *   �� �  $��/1�>
 

This shows that any open cover � ��� 
��∆ of  �� has a countable sub-cover � ��/� 
 1�> for ��. 
Hence ���, ��� is a Lindelof space. Thus homeomorphic image of a Lindelof space is a Lindelof 

space. Hence being a Lindelof space is a topological property. 

 

§3 Solved examples 

Problem 1:- Show by an example that every Lindelof space need not be a compact space. 

Solution:- Let ��, �� be a discrete topological space with X as a infinite countable set. This 

space is a Lindelof space but it is not a compact space as the open cover   ��	
 | 	 � �
   
of  � has no finite sub-cover. 

 

Problem 2:- Show by an example that every Lindelof space need not be a second axiom space.  

Solution:- Consider an uncountable set X. Let � denote a co-finite topology on X. Then ��, �� is 

a compact space (see Unit (6) §1.4  example 2). Hence ��, �� is a Lindelof space. But ��, �� is 

not a first axiom space (see Unit (8) §1.2 example 4). We get ��, �� is not a second axiom space 

(see Unit (9) Theorem 1.3). Thus ��, ��, the cofinite topological space defined on an uncountable 

set X is a Lindelof space but not a second axiom space (first axiom space). 

 

Problem3: Show by an example that being a Lindelof space is  not a hereditary property. 

Solution: Let � be an uncountable set and � � A + exclusion topology on � (A � �)  

i.e. � � ��
 , �B # � | A � B
. Then ��, �� be a T – space.  

I] ��, �� is a Lindelof space. 

As ��, �� is a compact space (see Unit (6) §1.4 example 5), we get ��, �� is a Lindelof space. 

II] Let � � � + �A
. Consider the subspace ��, ���. Then the relative topology �� is the discrete 

topology on �. Hence ��, ��� is not a Lindelof space as the open cover ��	
 | 	 � �
 of � has no 

countable sub-cover. 
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Thus C a subspace ��, ��� of Lindelof space ��, �� which is not a Lindelof space. Hence the 

result.  

 

Problem4: Show that continuous image of a Lindelof space is a Lindelof space. 

Solution:  Let ��, �� be a Lindelof space. Let ���, ��� be any  D + EA�"� and let  7: � 9 �� be a 

homeomorphism. To prove that �� is a Lindelof space. Let  ����
 be any open cover of  ��. 
Then   �E ��� � �� and 7: � 9 �� is continuous ,we get  7:3;���<  � �  for each � � ∆.  
As �� #$�����=

 and 7 is onto, we get � # 7:3 -$�����=
.  �   $7:3; ���<��=

 

 But this shows that  �7:3; ���<
��= forms an open cover for ��. As X is a Lindelof space, 

the open cover �7:3; ���<
��=  of X has a countable sub-cover. 

Denote the countable sub-cover by  �7:3; ��/� <
1�> . 
 Then   � �$7:34 ��/� 61�>

.  But 7 is onto   *   �� � 7��� � 7 -$7:3; ��/� <1�>
.   

Hence  �� �   $?747:3; ��/� <6@1�>
 . 

 *   �� �  $��/1�>
  

  This shows that any open cover � ��� 
��∆ of  �� has a countable sub-cover � ��/� 
 1�> for 

��. Hence ��� , ��� is a Lindelof space. This shows that continuous image of a Lindelof space is a 

Lindelof space. 

 

Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Prove or disprove  the following statements. 

1) Subspace of a Lindelof space is  a Lindelof space 

2) Every  Lindelof  space is a second axiom space.  

3) Every second axiom space  is a Lindelof  space .  

4) Every first axiom space  is a Lindelof  space 

5) Every  Lindelof  space is a first  axiom space.  
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6) Every  Lindelof  space is a space.  

7) Every  compact space  is a Lindelof  space . 

______________________________________________________________________________ 
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§2  Properties. 
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§1 Definition and Examples 

               We know that a subset E of a topological space ��, �� is dense in X if �� � �. 
 viz. the set Q of all rational numbers is dense in �
, ���. 
 

Definition 1.1: A topological space ��, �� is called separable if there exists a countable dense 

subset of X. 

 

Examples 1.2: 

Separable spaces. 

1) �
, �� is a separable space as the set of all rational numbers Q is a countable dense subset 

of  
. 
2) Let X be a countable set and ��, �� be discrete topological space. Then ��, �� is a 

separable spaces as �� � � and X is a countable set. 

3) Let ��, �� be a co finite topological space and let X be an uncountable set. For any 

countable set A of X,  �
 � � (since the only closed set containing A is X). Hence ��, �� 
is a separable space. 

4) Let X be an uncountable set and � be the discrete topology on X. Then ��, �� is not a 

separable space as X is the only dense subset of X. In particularly, the discrete 

topological space  �
, �� is not a separable space. 

             Note that the discrete topological space is separable if and only if X is a countable set. 

 

Non separable spaces. 

1) Discrete topological space defined on uncountable set � is a non-separable space. 

2) Co-countable topological space ��, �� defined on an uncountable set � is not a separable 

space.              

3) Let � be any uncountable set and � � �. 

� � � � exclusion topology on � i.e. � � ��� � �� � � | � � ��.   
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Let if possible � is a separable space. 

Hence � a countable set � such that �
 � �. Select any � � � � � , � � � . [ This is 

possible as � � � is an uncountable set ]. Then � � � and � � �
 imply � � ���� .  
As ��� is an open set containing �, we get ��� � � � ��� � �. But as � � � � � , we 

have ��� � � � � . Thus ��� � � � ��� � � ; a contradiction. 

Hence our assumption is  wrong .Therefore ��, �� is not a separable. 

 

§2  Properties 

Theorem 2.1: Property of being a separable space is a topological property. 

Proof: - Let ��, �� be a separable space. Let �� , � � be any topological space. Let  !: � # �  be 

a homeomorphism. To prove that  �� , � � is a separable space.  
Let ��, �� be a separable space. Hence � a countable subset A of X such that �
 � �. As ! is 

onto, !��� � � .  !: � # �  being continuos we get   !/�
0  � !/�0������    (see Theorem … 

Continuous function). Hence  !/�0  � !/�0������  implies  � � !/�0������  1. 2. � � !/�0������ . Thus !/�0 is a 

countable dense subset of � . Hence �  is a separable space. Thus homeomorphic image �� , � � 
of a separable space ��, �� is a separable space. Hence being a separable space is a topological 

property. 

 

Theorem 2.2: Every second axiom space is a separable space. 

Proof:- Let ��, �� be a second axiom  space. Hence there exists a countable base say 

3 � �45 | 6 � 7� for �. Define � � � 85 � 45 | 6 � 7 �.  
Then A is a countable subset of X. 

Claim that  �
 � �. 

Let  � � � and G be any open set containing �. Hence by the definition of base, �  6 � 9  such 

that � �  45  � :. Select 85 � 45 such that 85 � �. Then  85 � : � � � ��� implies � is a limit 

of A. Thus  � � �
 implies �
 � �. Thus there exists a countable dense subset A of X. Hence  

��, �� is a separable space. 
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A property of a space is said to be hereditarily separable if each subspace of the space is 

separable.  

Theorem 2.3: Every second axiom space is hereditarily separable. 

Proof:- Let  ��, �� be a second axiom space. Let  �;, � � be a subspace of ��, ��. As every  

sub-space of a second axiom space is a second axiom space, we get �;, � � is a second axiom 

space (see Unit (9) Theorem 1.4). 

By Theorem 2.2 , �;, � � is a separable space. Thus  each subspace of a second axiom space is 

separable. Hence the result. 

 

Theorem 2.4: Any topological space is a subspace of a separable space. 

Proof:- Let  ��, �� be any topological space and ∞ � �. Define � � � � �∞� and 

� � � � � � � : � �∞� | : � ��. 
 I]  To prove that  �  is a topology on � . 
(i)      � � �   and � �  � . 
(ii)  � , 4 � � =  � � � � �∞�   and   4 �  4 � �∞�  for  �, 4 � � 

                          = � � 4 � �� � 4� � �∞� � �   as  � � 4 � �. 
(iii) Let :> � � , ? � Λ. Then :> � :> � �∞� ,  where :> � � ;  B? � Λ.                          
                Then  C:> >�D

 �  C/ :> � �∞�0
>�D

 � EC:>
>�D

F � �∞�. 
                 As  C:>

>�D
 �  � .  We get C:> >�D

�  �   
From (i), (ii) and (iii) we get �  is a topology on � . 
 

II]  ��, �� is a subspace of  �� , � � as � � �: � � | : � � � and  � � � . 
 

III]  �∞������ � � .  Let  � � �  �� � ∞� and  :  � �  with � � : . 
         : � �∞� � � � � �  �∞� implies  x is a limit point of �∞�. 
         Thus each  � � ∞ �  �  is a limit point of  �∞�. Hence  ��� ∞ �� � �. 
         As �∞������ � � ∞ � � ���∞�� � �∞� � � � � . 
IV]   As �∞� is a countable dense set in � , we get �� , � � is a separable space. 
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Thus given any space ��, �� there exists a separable space �� , � � such that ��, �� is a 

subspace of �� , � �. 
 

Remark: As any topological space is a subspace of a separable space, subspace of a separable 

space need not be a separable space. 

  

Theorem 2.5: A metric space is separable if and only if it is a second axiom space. 

Proof:- As if part follows by Theorem 2.3 we prove ‘Only if part’ only.  

Only if part – 

 Let ��, �� be a metric space and let � denote the topology induced by � on X. Hence 

� � � : � �  | B � � : � G H 0  such that  J�� , G� � :�. 
Given  ��, �� is a separable space. To prove that ��, �� is a second axiom space. 

As X is separable, � a countable dense set say A in X.  

Let  � � � �K, �L, �M, …… � .  Then �
 � �. 
Define 3 � OJ P�5 , 1RS T �5  � �,   R, 6 � 9U .  Then  3 is a countable set and 3 � �. 
To prove that 3 is a base for  .  

(1) 3 � �. 

(2) Let : � � and � � :. By the definition of  � , � G H 0 such that  � � J� �, G� � :. 

Select R � 7 such that  KV  W  XL . Then J Y� , KVZ � J Y� , XLZ � J��, G�. 
As �
 � �, � is a limit point of �. Hence � � J Y� , KVZ and J Y� , KVZ � � will imply 

J Y� , KVZ � � � ��� � �.  

Let �5 � J Y� , KVZ � �. To prove that J Y�5 , KVZ � J��, G�. 
Let [ � J Y�5 , KVZ. [ � J Y�5 , KVZ  = ���5 , [� W K

V . 

Hence, ��� , [� W ��� , �5� \ ���5 , [� 
       = ��� , [� W K

V \ K
V     …… ]since �5 � J Y� , KVZ^ 

       = ��� , [� W L
V  

       = ��� , [� W G   …… ]since KV W X
L^ 
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       = [ � J��, G� . 
This proves J Y�5 , KVZ � J Y� , KVZ.  

As J Y� , KVZ � J��, G� � :, we get J Y�5 , KVZ � :.  

Thus given : � � and � � :, � J Y�5 , KVZ � 3 such that J Y�5 , KVZ � :.  

Hence, from (1) and(2) we get, the countable family 3 forms a base for the topology � 

.Hence,  ��, �� is a second axiom space. 

 

Theorem 2.6: In a separable space any countable family mutually disjoint open sets is countable. 

Proof:- Let ��, �� be a separable space. As � is separable space there exists a countable dense 

set say D in �. Let _ denote the family of mutually disjoint open sets in �.  

To prove that _ is countable. 

For :, ` � _ , : � ` � � , 1! : � `. 

Case (1): � � _. 

ab � � = : � a � � for any : � _. Select �c � : � a,B : � _.  

Define !:_ # a by !�:� � �c. 

Obviously ! is onto. 

!�:� � !�`�  = �c � �d  =  : � ` � � = : � `…�8[ �2!161e1f6 f! _�. 
This shows that ! is one-one. 

As !:_ # a is one-one and onto and a is countable we get _ is countable. 

Case (2): � � _. 

Applying the case (1) for the family _ � ��� we get the family _ � ��� is countable.  

And hence _ � �_ � ���� � ��� is countable. 

 

§3  Solved problems 

Problem 1: Show that being a separable space is not a hereditary property. 

Solution: Let � be an uncountable set and � � �. 

� � � � inclusion topology on �. 

I)  ��, �� is a separable space. 

Consider � � ���. Claim that �
 � �.  
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Select any � � � � ���. Then any open set : containing � must contain �. Hence 

: � � � ��� and hence : � � � ��� 
� ��� � ��� � � . But this shows that � is a limit point of �. Thus � � ��� � ����. 
Hence  �
 � � � ���� � ��� � �� � ���� � �.  

Thus � is dense in �. As � is a countable, dense subset of �, � is separable space. 

II) Define ; � � � ���. Then the subspace �;, � � is the discrete topological space. 

Claim: �;, � � is not a separable. 

Let if possible �;, � � is separable space. Hence there exists a countable dense set say � 

in ;. But since �;, � � is the discrete topological space, each subset of ; is closed in ;. 

Hence �
 � � (since � � ; as � is countable and ; is uncountable). This shows that our 

assumption is wrong. Hence �;, � � is not a separable space. 

Hence being a separable space is not a hereditary property. 

 

Problem 2: Give an example to show that every separable space need not be a Lindelof 

space. 

Solution:- Let � be an uncountable set and � � �. 

� � � � inclusion topology on �. 

I)  ��, �� is a separable space.(see Problem 1) 

II) � is not a Lindelof space. 

Consider the family g��, �� | � � �h. This family of open sets forms an open cover 

for �. But this open cover has no countable sub-cover for �, as � is an uncountable 

set. This shows that ��, �� is not a Lindelof space. 

 Hence every separable space need not be a Lindelof space. 

 

Problem 3: Give an example to show that every Lindelof space need not be  a separable 

space. 

Solution: -Let � be any uncountable set and � � �.  

� � � � exclusion topology on � i.e. � � ��� � �� � � | � � ��. 
I) ��, �� is a compact space. 

Let �:> | ? � Λ� be any open cover of �.  
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Then  � � C:>
>�D

 and � � � will imply � � :>i  for some ?j � Λ .  
But by definition of  � , :>i � �. Hence, the open cover  �:> | ? � Λ� of � has a finite 

sub-cover g:>ih of �.  

This shows that ��, �� is a compact space. 

II) ��, �� is a Lindelof space. 

As every compact space is a Lindelof space we get ��, �� is a Lindelof space.  

III)  ��, �� is not a separable space. 

Let if possible � is a separable space. 

Hence � a countable set � such that �
 � �. Select any � � � � � , � � � . [ This is 

possible as � � � is an uncountable set ]. Then � � � and � � �
 imply � � ���� .  
As ��� is an open set containing �, we get ��� � � � ��� � �. But as � � � � � , we 

have ��� � � � � . Thus ��� � � � ��� � � ; a contradiction.Hence our assumption is 

wrong. 

Therefore ��, �� is not a separable. Thus there exists a Lindelof space which not a 

separable space. 

 

Problem 4: Show that for a metric space ��, ��, the following statements are equivalent:  

(1) The metric space � is separable. 

(2) The metric space � is a Lindelok f space. 

(3) The metric space � is a second axiom space. 

Solution:-We know a metric space is separable if and only if it is a second axiom space and a 

metric space is a Lindelok f if and only if it is a second axiom space.  

Hence for a metric space ��, ��, the  given three statements are equivalent.  

 

Problem 5: Show that every subspace of a separable metric space is separable. 

Solution: -Let � be a separable metric space and let ; be its subspace. Then � is a second axiom 

space (see Theorem 2.5). As subspace of a second axiom space is a second axiom space we get ; 

is a second axiom space (see Unit (9) Theorem 1.4) 

This shows that any subspace of a separable metric space is a separable metric space. 
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Problem 6: Show that the open subspace of a separable space is separable. 

Solution: Let ��, �� be a separable space and let �;, � � be its open subspace. Then as ; is open 

is open in �,  � � �.  

As � is a separable space, � a countable dense set say � in � i.e. �
 � �.  

Define 4 � � � ;. Then 4 is countable subset of ;.  

Claim:  4� � ;. 

Let [ � ;. Let :  be any open set in ;. Then : � � and [ � : .  
As [ � �
 , we get,  : � � � �[� � �  

i.e. �: � ;� � � � �[� � �  

i.e. : � �; � �� � �[� � �  

i.e. : � 4 � �[� � �. 

But this shows that [ � ; is a limit point of 4. Hence 4� � ;. 

 

Problem 7: Show that continuous image of a separable space is a separable space. 

Solution: - Let ��, �� be a separable space. Let �� , � � be any topological space.  

Let  !: � # �  be an onto continuous mapping. 

 To prove that  �� , � � is a separable space.  
Let ��, �� be a separable space. Hence � a countable subset A of X such that �
 � �. As f is onto, 

 !��� � � .  !: � # �  being continuous we get   !/�
0  � !/�0������    (See Unit (5) Theorem 2.5). 

Hence !/�0  � !/�0������  implies  � � !/�0������  1. 2. � � !/�0������ . Thus  !/�0  is a countable dense 

subset of � . Hence �  is a separable space. Thus continuous image �� , � � of a separable space 

��, �� is a separable space. Continuous image of a separable space is a separable space. 

 

Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

      State whether the following statements are true or false. 

1) Every Lindelof space is a separable space. 

2) Every separable space is a Lindelof space. 

3) Every metric space is a separable space. 

4) Every subspace of a separable space is a separable space. 
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5) Every discrete topological space is a separable space. 

6) Co-finite topological space defined on an uncountable set is a separable space.  

______________________________________________________________________________ 
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§1 Definition and Examples.  

§ 2 Characterizations and properties. 
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§1 Definition and Examples  

Definition 1.1: A topological space ��, �� is said to be a T0 – space if it satisfies the 

following axiom of Kolomogrov: 

 “If � and 	 are two distinct points of � then there exists an open set which contains 

one of them but not the other.” 

 

Examples 1.2:  

(1) Any discrete topological space ��, �� with |�| � 2 is a T0 – space. For � 
 	, ��� � � 

such that � � ��� and 	 � ���. 
(2) Any co-finite topological space ��, �� is T0 – space.  

Case (1): X is finite. In this case � � ���� and hence ��, �� is a T0 – space. 

Case (2): X is infinite. Given � 
 	 in X, � � ��� � � such that 	 � � � ��� and 

� � � � ��� 
(3)  Any co-countable topological space ��, �� is T0 – space (proof as in (2) ). 

(4) Let � � � and � � ��� � ��� � ��� | � � 1,2,3,… � where �� � �1,2, … , ��. 
Then ��, �� is a T0 – space. 

For  
 � in X, either  ! � or � !  . Let  ! �. Then  � �" but � � �" 

and �" � �.   

(5) Let ��, �� be # – inclusion topological space (# � �).  

Here  � � ��� � �� $ � | # � ��. This space is a T0 – space. For # 
 � in X there 

does exist an open set �#� containing #  but not  � and for � 
y (both different from 

 #) there does exist an open set �#, �� containing � but not 	. 

(6) Let ��, �� be # – exclusion topological space (# � �). 

Here � � ��� � �� $ � | # � ��. This space is a T0 – space. For # 
 � in X, ��� � � 

such that � � ��� and # � ���. For � 
 	 (both different from #) then ��� � � such 

that � � ��� but 	 � ���. 

Unit 12: TTTT
0000
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(7) Every metric space is a T0 –space. Let ��, %� be a metric space and let � be the 

topology on X induced by %. Let � 
 	 in X. Then %��, 	� � & ' 0. Then ) *�, +,- � � 

such that � � ) *�, +,- but 	 � ) *�, +,-.  
Hence ��, %� is a T0 – space.  

(8) �., �/� is a T0 – space. Let � 
 	 in X. Then |� � 	| ' 0. Take |� � 	| � &. Then 

*� � +
, , � 0

+
,- � �/ such that  � � *� � +

, , � 0
+
,- but 	 � *� � +

, , � 0
+
,-. Hence 

�., �/� is a T0 – space.    

(9) Any indiscrete topological space ��, �� is not a T0 – space.  

Remark: As any T – topological space need not be a T0 – topological space, the 

set of T0 – topological spaces is a proper subset of all topological spaces. 

 

§ 2 Characterizations  and properties 

Theorem 2.1: A topological space ��, �� is a T0 – space if and only if the closures of distinct 

points of X are distinct. i.e. for � 
 	 in X, ���1111 
 �	�1111. 
Proof: Only if part. 

          Let ��, �� be a T0 – space and � 
 	 in X. Hence by definition of a T0 – space  , 
   234&4 4�5626  7 � � such that � � 7 and 	 � 7. 7 � � .    � � 7 is closed set   9
�� � 7�1111111111 � � � 7. 

 As 	 � � � 7, �	� $ � � 7. Hence �	�1111 $ �� � 7�1111111111 � � � 7. As � � � � 7 we get � � �	�1111. 
Thus � � ���1111 but � � �	�1111     ���1111 
 �	�1111.  
If part.  

         Let ��, �� be a topological space such that for � 
 	 in X, ���1111 
 �	�1111.  
Without loss of generality assume that : ; � � such that ; � ���1111 and ; � �	�1111.  
Claim that � � �	�1111.  
If � � �	�1111, then ��� $ �	�1111 will imply ���1111 $ �	�11111111 � �	�1111. In this case as ; � ���1111 we get ; � �	�1111; 
which is not true by the choice of ;. Hence � � �	�1111. Define 7 � � � �	�1111. Then 7 being the 

complement of closed set, 7 � � and � � 7 and 	 � 7 (since 	 � �	�1111). This shows that ��, �� 
is a T0 – space.  
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Theorem 2.2: A topological space ��, �� is a T0 – space if and only if whenever � and 	 are 

distinct points of X either � � �	�1111 or 	 � ���1111. 
Proof: Only if part. 

 Let ��, �� be a T0 – space and let � 
 	 in X. Hence by definition of a T0 – space, for  

� 
 	 in X, : 7 � � such that � � 7 and 	 � 7. 

7 � � 9  � � 7 is closed set in X 9 �� � 7�1111111111 � � � 7. As 	 � � � 7, �	� $ � � 7. 

Hence �	�1111 $ �� � 7�1111111111 � � � 7. But � � � � 7 5 #<546 � � �	�1111. Thus for  � 
 	 in X, we 

get � � �	�1111 
If part.  

 Assume that ��, �� is a topological space such that for any two distinct points � and 	 

in X, either � � �	�1111 or 	 � ���1111. Assume that � � �	�1111. Define 7 � � � �	�1111. Then 7 � �, 

� � 7 and 	 � 7 (since 	 � �	�1111 ). But this shows that for � 
 	,  an open set containing one 

but not the other. Similarly if 	 � ���1111, then : an open set = � � � ���1111 containing 	 but not �.   

Hence ��, �� is a T0 – space.   

                          

Theorem  2.3: Being T0 – space is a hereditary property. 

Proof: Let ��, �� be a T0 – space and let �>, �?� be a subspace of ��, ��.  
To prove that �>, �?� is a T0 – space. 

Here �? � �7 @ > | 7 � �� and > $ �. Let 	 
 ; in Y. As > $ �, 	 
 ; in X. 

X being a T0 – space, there exists  an open set G in X such that 	 � 7 and ; � 7.  

Define 7? � 7 @ >. Then 7? � �?and 7? contains 	 but not ;. This shows that �>, �?� is a  

T0 – space. As any subspace of a T0 – space ��, �� is a T0 – space, the result follows.    

 

Theorem 2.4: Being a T0 – space is a topological property. 

Proof: Let ��, �� and �>, �?� be any two topological spaces and A: � C > be a 

homeomorphism. Let ��, �� be a T0 – space. To prove that �>, �?� is a T0 – space. 

Let 	D 
 	E in Y. A:� C > being onto, there exist �D, �E in X such that A��D� � 	D and 

A��E� � 	E. As A is one-one, A��D� 
  A��E�  9 �D 
 �E. As X is a T0 – space, for �D 
 �E 
in X there exists an open set 7 in X such that �D � 7 and �E � 7. A being an open map, 
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A�7� � �?. Thus for 	D 
 	E in Y, there exists A�7� � �? such that 	D � A�7� and 	E �
A�7�. 
This shows that �>, �?� is a T0 – space. Thus any homeomorphic image of a T0 – space is a 

T0 – space. Hence the result.  

 

Corollary 2.5: The property of a space being T0 – space is preserved by one-one, onto open 

maps. 

 

Theorem 2.6: Let ��, �� be a T0 – space and �? � �. Then��, �?� is also T0 – space.  

Proof: To prove that ��, �?� is T0 – space. 

Let � 
 	 in X. As  ��, �� be a T0 – space, for � 
 	 in X, there exists 7 � � such that � � 7 

and 	 � 7. As �? � �, 7 � �?. Thus for � 
 	 in X, there exists  7 � �? such that � � 7 

and 	 � 7. Hence ��, �?� is a T0 – space. 

 

Let ���� be a sequence of points in a topological space ��, ��. The sequence ���� is said to be 

convergent to � � �, if for any open set 7 containing �  : F such that �� � 7 for all 

� � F.  

 

Remark: In a T0 – space, a sequence may converge to more than one point (In fact it may 

converge to every point of the space). 

For this, consider the following example: 

 Let � � � and let � � ��� � ��� | � � 1,2,… � where �� � ��, � 0 1, � 0 2,… �. 
Then ��, �� is a T0 – space. Let ���� be any sequence in ��, ��. Fix up any � � �. The open 

sets containing 2 are �D, �E, … , �� . For each �+ we get �� � �+ for � � & . But this shows 

that �� G 2. Thus, any 2 � �  is a limit point of ���� .  
 

 

 

 

 



T� – spaces  

Page | 153  

 

 

Exercises–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Prove or disprove the following statements 

1) The set of T0 – topological spaces is a proper subset of the set of all topological 

spaces. 

2) The property of a space being a T0 – space is preserved by continuous maps. 

3) The property of a space being a T0 – space is a hereditary property. 

4) The property of a space being a T0 – space is a topological property. 

5) A topological space ��, �� is a T0 – space if and only if whenever � and 	 are distinct 

points of X have distinct closures. 

�––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
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§1 Definition and Examples. 

 
Definition 1.1 : A topological space is a T1 – space if it satisfies the following axiom of  

Frechet : 

 “If � and � are two distinct points of X, then there exist  two open sets, one containing � 

but not �, and the other containing � but not �”. 

 

Remarks:  

(1)  Obviously , every T1 – space is a T0 – space ( follows by the  Definition ). 

(2)  Let ��, �	 be a T1 – space and   �
 � �. Then ��, �
	 is also T1 – space. 

 

Examples 1.2: 

T1 – spaces: 

(1) Any discrete topological space ��, �	 with |�| � 2 is a T1 – space. 

Let � � � in X. Define � � ��� and � � ���. Then �,� � � such that   � � � but � � � and � � �  but  � � �. Hence  ��, �	 is a T1 – space. 

 

(2) Any co-finite topological space ��, �	 with � is an infinite set, is a T1 – space. 

Let � � � in X. Define � � � � ��� and � � � � ���. Then �, � � � such that  � � � but � � � and � � � but  � � �. Hence  ��, �	 is a T1 – space.  

 

(3) Any co-countable topological space with X as an uncountable set is a T1 – space (proof as 

in Example 2 ). 

 

(4) Any metric space is a T1 – space.  

Unit 13: TTTT
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Let ��, �	 be a metric space and let � be induced topology on X. Let � � � in X. 

Then ���, �� � � � 0. Define � � ���, �/3� and  � � ���, �/3�. Then �, � � �, � � � 

but � � � and � � � but  � � �. Hence, any metric space is a T1 – space.  

(5) �R, �!	 is a T1 – space. Let � � � in R. Then |� � �| � � � 0. Define � � "� � #$ , � % #$& 

and � � "� � #$ , � % #$&. Then �,� � � such that � � � but � � � and � � � but � � �. 

Hence �R, �!	 is a T1 – space.  

 

Non T1 – spaces: 

(6) Any indiscrete topological space ��, �	 is not a T1 – space. 

 

(7) Let ��, �	 be a topological space. � is ' – exclusion topology �' � ��.  
i.e.  � � �( ) � | ' � (� * ���. If � � ' then + any open sets �, � � � such that � � � 

but ' � � and ' � � but � � � ( as X is the only open set containing p ). Hence  the 

topological space ��, �	 is not a T1 – space. 

 

(8) Let ��, �	 be a topological space where � � �( ) � | ' � (� * �,�. �' � ��. (i.e. is ' 

inclusion topology). Then ��, �	 is not a T1 – space as for � � ', every open set ( containing � contains ' also. 

Remark: Every T1 – space is a T0 – space but  not conversely .  

Every T0 – space need not be  T1 – space. For this consider the following examples: 

(1) Let � � - and � � ��.,∞�| . � -� * �-, ,�. Then for � � � in -  if � 0 � then � � ��,∞� and � � ��,∞�. This shows that �-, �	 is a T0 – space. But �-, �	 is not a 

T1 – space, as for � � � with � 0 �, there does not exists an open set containing � but 

not �. 

(2) Let � � � and � � �,� * ��� * �(1 | 2 � 1,2,… � where (1 � �1,2,3,… , 2�. 
Then ��, �	 is a T0 – space (see example  in §). But ��, �	 is not a T1 – space. [Let 5 � 2 in X. Assume 5 0 2. Then any open set containing n contains m. Hence ��, �	 is 

not a T1 – space.] 
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Hence the set of T1 – topological spaces is a proper subset of all  T0 – topological 

spaces . 

§ 2 Characterizations  and Properties 

Theorem 2.1: A  topological space ��, �	 is a T1 – space if and only if ��� is a closed in X for 

each � � �.  

Proof: Only if part.  

 Let ��, �	 be a T1 – space and let � � �. To prove that ���6666 � ���. Let � � ���6666 such 

that � � ���. As � � � and X is a T1 – space, there exist  �,� � � such that � � � but � � � 

and � � � but  � � �.  

 � � ���6666   7 � is a limit point of ���  
     7 8� 9 ���: � ��� � ,   …. (as � � � and � � �) 

     7 ��� � ��� � ,   …. (since � � �) 

     7 , � , ; a contradiction. 

Hence ���6666 ) ���. As always ��� ) ���6666, we get ���6666 � ���. 
If part . 

                Let ��, �	 be a T – space such that ��� is closed set for each � � �. To prove that ��, �	 is a T1 – space. Let � � � in X. As ���6666 � ���, we get � � ��� � ���6666. Hence 

 � � � � ��� � � � ���6666. Similarly � � ��� � ���6666 will imply � � � � ��� � � � ���6666. Define 

� � � � ���6666 � � � ��� and � � � � ���6666 � � � ���. Then �, � � � such that � � � but � � � 

and � � � but � � �. Hence, ��, �	 be a T1 – space.   

 

Theorem 2.2: A Topological space ��, �	 is a T1 – space if and only if any finite subset of X is 

closed. 

Proof: Only if part. 

 Let ��, �	 be a T1 – space. By Theorem 1, ��� is a closed set in X for each � � �. Let A 

be any finite subset of X. Let ( � ���, �;, … , �1�. Then ( � 1� �n
ii x

=

∪   

7                (? � @A��B�1
BC� D666666666666 �A��B�666661

EC�        (see Unit 3, Theorem 3.4) 
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                                                                                �A��E�1
EC�    �since ���6666 � ��� F G, 1 H G H 2� 

           � ( 

Hence, any finite subset ( of X is closed in X. 

If part.  

 Let any finite subset ( of X is closed in topological space ��, �	. Then obviously ��� is 

closed in X for every � � ���. Hence by Theorem 2.1, ��, �	 is aT1 – space. 

 

Theorem 2.3: A topological space ��, �	 is aT1 – space if and only if the topology � is stronger 

than co-finite topology on X. 

Proof: Only if part.   

 Let ��, �	 be a T1 – space. Let �
 denote the co-finite topology on X. To prove that �
 H �. Let � � �
. By definition of �
, � � � is a finite set. As ��, �	 is a T1 – space � � � is 

a closed set in ��, �	 ( see Theorem 2.2). Hence � � �. This shows that �
 H �. 

If part.  

 Let ��, �	 be a topological space and �
 be a co-finite topology on X such that �
 H �. 

To prove that ��, �	 is a T1 – space. Select � � �. Then � � ��� � �
 7  � � ��� � �. But this 

shows that ��� is a closed set in X. Hence by Theorem 2.1, ��, �	 is  a T1 – space.  

 

Theorem 2.4: Being a T1 – space is a hereditary property. 

Proof: Let ��, �	 be a T1 – space and let �I, �
	 be a subspace of ��, �	. Then I ) � and  �
 � �� 9 I | � � ��. Let � � J in Y. Then � � J in X (as I ) � ). As X is a T1 – space, K �,� � � such that � � � but J � � and J � � but � � �. Define �
 � � 9 I and �
 � � 9 I. 

Then �
, �
 � �
 such that � � �
 but J � �
 and J � �
 but � � �
. This shows that �I, �
	 is 

a T1 – space. Thus any subspace of a  T1 – space is a T1 – space. Hence being a T1 – space is a 

hereditary property. 

 

Theorem  2.5 :- Let ��
 , �
	 be a one point compactification of ��, �	. ��, �	 is a T1 – space if 

and only if  ��
, �
	 is a T1 – space. 

Proof: Only if part.  
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 Let ��, �	 be a T1 – space. To prove that ��
, �
	 is a T1 – space. Here �
 � � * �∞�, ∞ � � and �
 � �( ) �
 | ∞ � ( and �
 � ( is a closed compact subset of ��. Let � � � in �
. 
Case (1): � � ∞ and � � ∞. Then �, � � � and � � � in X. As X is a T1 – space there exists �,� � � such that � � � but � � � and � � � but � � �. As �, � � �
, we get for � � � in �
 
with � � ∞ and � � ∞, K �, � � �
 such that � � � but � � � and � � � but � � �. 

 Case (2): � � ∞  7  � � � 7 ��� is closed in X (since X is a T1 – space). Thus ��� is a 

closed compact subset of X. 

Define ( � �
 � ���. Then ∞ � ( and �
 � ( � ��� is a closed compact subset of X. 

Hence ( � �
. Thus for � � ∞ in �
, there exists open sets X and A in �
 such that  � � � but ∞ � � and ∞ � ( but � � (. From case (1) and case (2) it follows that ��
, �
	 is a  

T1 – space.  

If part.   

 Let ��
, �
	 be a T1 – space. As ��, �	 is a subspace of ��
, �
	 (see §one point 

compactification), by  Theorem 2.4, we get ��, �	 is a T1 – space.   

 

Theorem 2.6: Being a T1 – space is a topological property. 

Proof: Let ��, �	 be a T1 – space. Let �I, �
	 be a topological space and L: � N I be a 

homeomorphism. To prove that �I, �
	 is a T1 – space. Let . � O in Y. L being onto, K �, � � � 

such that L��� � . and L��� � O. As L is one-one . � O  7   � � � in X. X being a T1 – space, K �,� � � such that � � � but � � � and � � � but � � �. Define �
 � L��� and �
 � L���.  L being an open map, �
, �
 � �
. Further . � �
 but O � �
 and O � �
 but . � �
. This 

shows that �I, �
	 is a T1 – space. As homeomorphic image of a T1 – space is a T1 – space , the 

result follows.   

 

Corollary 2.7: The property of a space being T1 – space is preserved under bijective  open 

mappings.  

 

 Remark: T1 – space need not be preserved under continuous functions. 

Continuous image of a  T1 – space  need not be a   T1 – space . For this consider the following 

example . 
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Let ��, ��	 be a discrete topological space and  ��, �;	 be an indiscrete topological space 

(|�| � 2). Consider the identity map G: ��, ��	 N ��, �;	. Then G is continuous. ��, ��	 is a 

T1 - space but continuous image of ��, ��	 i.e.  ��, �;	 is not a T1 – space. 

 

Theorem 2.8: For any set X there exists a unique smallest topology � such that ��, �	 is a  

T1 – space. 

Proof: Let � be the co-finite topology defined on X. Then ��, �	 is a T1 – space (see Example 2). 

Further if �
 is a topology on X such that ��, �
	 is a T1 – space, then �
 � � (see Theorem 2.3). 

This shows that there exists a unique smallest topology � – the co-finite topology – such 

that ��, �	 is a T1 – space.  

 

Theorem 2.9: Let ��, �	 be a T1 – space and let ( ) �. If a point  � � � is a limit point of A, 

then any open set ( neighbourhood  ) containing � contains infinitely many points of (.    

 Proof: Let ��, �	 be a T1 – space and � � � is a limit point of A. Let � � � such that � � �. 

Then � 9 ( � ��� � ,. Define P � � 9 ( � ���. Assume that P is finite. ��, �	 being a  

T1 – space, P is closed set in ��, �	 (by Theorem 2.2). Then � � P is an open set containing �. 

Hence � 9 �� � P� is an open set containing � and actually, � 9 �� � P� 9 ( � ���. Hence  8� 9 �� � P�: 9 ( � ��� � ,, this contradicts the fact that � is a limit point of A. Hence � 9 ( 

must be an infinite set i.e. � contains infinite elements of (. 

 

Theorem 2.10: Let ��, �	 be a first axiom space, T1 – space. � � � is a limit point of E if and 

only if there exists a sequence of distinct points in E converging to �. 

Proof: If part . 

Let ��1� denote a sequence of distinct points of E converging to �. 

Claim: � is a limit point of E. 

Let G be any open set containing �. As  �1 N � , K Q such that �1 � � for 2 � Q. As the point 

of the sequence are distinct, �1 � �  F 2 � Q. But then � 9 R � ��� � ,. This shows that � is 

limit point of E. 

Only if part.  

 Let � be a limit point of E. As X is a F.A.S. K a monotonically decreasing countable local base, 

say �S1���� at �. As X is a T1 – space and � is a limit point of E, any open set containing � 
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contains infinitely many points of E. As S1��� is an open set containing �, S1��� contains 

infinitely many points of E, F 2 � T.  

Thus S1��� 9 R � ��� must be infinite. Hence we can select points �1 different from previously 

selected �U �V 0 2� such that �1 � S1��� 9 R � ���, F 2 � T. 

Claim: �1 N �.  

     Let G be any open set containing �. Then K 2 � T such that � � S1��� ) �. By choice of �1 , �1 � S1��� 9 R � ��� i.e. �1 � � 9 R � ��� and hence �1 N �.  

Note that for the proof of ‘If part’ is true in any topological space. 

 

Remark:  In a T1 – space a sequence may converge to more than one limit. In fact it may 

converge to every point of the space.  

 For this consider the following example. 

Let ��1� be any sequence in ��, �	, where ��, �	 is co-finite topological space with X an infinite 

set. Let � � �. To prove that �1 N �. Let � � � such that � � �. � � � 7 � � � is a finite 

set. Find the largest 2W � T such that �1X � � � �. Then as � � � * �� � �� we get �1 � � for 

all 2 � 2W. But this shows that �1 N � in ��, �	. As this is true for any � � �, we get any 

sequence in  ��, �	 converges to each � � �. 

 

§3 T1 – spaces and countably compact  spaces 

We know that  a T – space ��, �	 is  countably  compact if any infinite subset of X has a limit 

point. The  countably compact  T1 – spaces have very important properties. The equivalent 

conditions countably compact   to be aT1 – spaces are mentioned in the following theorems. 

 

Theorem 3.1: Let ��, �	 be a T1 – space. ��, �	 is a countably compact if and only if every 

countable open cover of it has a finite sub-cover. 

Proof:  Only if part.  

 Let ��, �	 be a countably compact space. To prove that any countable open subset of X 

has a finite sub-cover. Suppose this is not true. Hence  there exists a countable open cover 

say ��1�1C� of X, which has no finite sub-cover i.e. 1
n

iiX G
=

≠∪  for any finite 2. For each 
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2 � Q, define  

P1 � � � @A�E1
EC� D . 

Then each P1 is a non-empty, closed set and P� [ P; [ P$ [ \  
Select from each P1, a point �1 and define R � ��1 | 2 � Q, �1 � P1 �.  
Claim that R is not finite set. . 

For if E is finite, then there exists some point say �], which will be in each P1. But then  

�] � ^P1_
1C�   7  �] � � �A�1_

1C� � , as � � A�1_
1C� ; a contradiction.  

As E is an infinite set and X is a countably compact space, R has a limit point say � in X. As X is 

a T1 – space, any open set containing � must contain infinite points of R (see Theorem 2.9 ). 

But this in turn will imply that x is a limit point of each set R1 � ��1 ,  �1h� , … � , 2 � Q.  R1 ) P1  7   ��R1� ) ��P1�. As P1 is a closed set,  ��P1� ) P1 .  

Hence � � P1 F 2 � Q.  

Thus � � ^P1_
1C�   7  � � � �A�1_

1C� � , since � �A�1_
1C� ; a contradiction.  

Thus our assumption is wrong. Hence any countable open  cover of X has a finite sub-cover. 

If part. 

 Assume that any countable open cover of X has a finite sub-cover. 

To prove that X is countably compact. 

Suppose that X is not countably compact. Then there must exist an infinite subset say  A of  X 

such that E has no limit point in X. Hence ��(� � , As  A is infinite, select an infinite 

sequence ��1�1C� of points of A. Define S � ��1 | 2 � Q�. As S ) ( 7  ��S� ) ��(�. 
As ��(� � ,, we get ��S� � ,.  

i.e. B has no limit point in X. Hence, each �1 is not a limit point of S. But then there exists an 

open set �1 containing �1 such that �1 9 S � � �1�   m F   2 � Q. As ��S� � ,, we get S is 

closed set. Hence � � S is open set in X.  

Now � � S * �� � S�  7  � � @A�1_
1C� D 9 �� � S�  

(since �1 9 S � � �1� and S � ��1 | 2 � Q� ). Hence by assumption, for countable open cover 
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� �1�1C� * �� � S� of X, there exists a finite sub-cover. But this is not possible since each �1 is 

required to cover the points �1 (since �1 9 S � � �1� ). Hence X must be a countably compact 

space.  

 

Theorem3.2: Let ��, �	 be a T1 – space. ��, �	 is countably compact if and only if every 

countable family of closed subsets of X, which has finite intersection property, has non-empty 

intersection. 

Proof: Only if part .  

 Let X be a countably compact space. Let p denote family of closed sets having finite 

intersection property (f.i.p.). To prove 

^ PEqr�p
� ,. 

Let  ^ PEqr�p
� , . Then t^ PEqr�p

u
v
� X 7 A PEvqr�p

��   �here Pv � � � P�. 
As P is closed, P’ is an open set. Hence �Px�q�p forms a countable open cover for X.  

By Theorem 3.1, this open cover has a finite sub-cover. Hence  � �APEv1
EC�  . 

But then ^PE1
EC� � ,, contradicts  the fact that y satisfies f.i.p.  Hence ^PE1

EC� � ,. 
If part. 

         Assume that any countable family of closed sets satisfying f.i.p. has non-empty intersection 

in ��, �	. To prove that ��, �	 is countably compact space. Let � �E�EC� be any countable open 

cover of X. If this countable open cover, has no finite sub-cover, then the countable family � �Ev�EC� of closed set will satisfy f.i.p.  

Hence by assumption ^�Ev1
EC� � ,.But then � �A�E_

EC� ; a contradiction.  
 This shows that the countable open cover � �E�EC� of X has a finite sub-cover. Hence by 

Theorem  3.1,��, �	 is a countably compact space. 
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Theorem 3.3: A T1 – space X is countably compact if and only if every infinite open covering of 

X has a proper sub-cover.  

Proof: Only if part. 

 Let X be a T1 countably compact space. To prove that any infinite open covering of X has 

a proper sub-cover. 

Let this be not true i.e. K an infinite open cover U of X that fails to have a proper sub-cover. But 

this means that each member of U contains a point, which does not, belong to any other member 

of U. Thus K an infinite subset A of X such that ( 9 � is singleton set for each � � �. As X is 

countably compact, the infinite set A has a limit point say � in X.  

Now � � � and � � O UO∈

∪  7 � � �  for some � � �. 

� being a limit point of A,  ( 9 � � ��� � ,. But by choice of (, ( 9 � is singleton set. As � is 

limit point of A and X is a T1 – space, any open set containing � must contain infinite points of A 

(see Theorem 2.9 ); which is not true. Hence our assumption is wrong. This proves that any 

arbitrary open cover has a proper sub-cover. 

If part. 

 Assume that any arbitrary open cover of X has a proper sub-cover and X is a T1 – space. 

To prove that X is countably compact. 

Let X be not countably compact then there exists an infinite subset A of X which has no limit 

point in X. As ��(��,, (? � (. Therefore A is closed set in X. For any . � (, as . is not a limit 

point of A,  K an open set �� such that  . � �� and ��9 ( � �.� � ,.  

As . � ( and  . � �� we get ��9 ( � �.� (as ��9 � �.� � , ). 

Thus ( � A�.���� )A����� . 
� � ( * �� � (� ) @A����� D * �� � (�. 
This shows that �������� * �� � (�� forms an open cover for X. But this open cover has no 

proper sub-cover for � ; a contradiction. Therefore, X is countably compact.  

 

Theorem  3.4: Let X be a T1 – space. X is countably compact if and only if  every sequence in X  

has a limit point. 
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Proof: Only if part. 

 Let X be countably compact. Let ��1� be any sequence in X. Let �1 � � for infinitely 

many 2, then obviously � is a limit point of ��1�. Let �1 O� distinct points of X. 

Then ( � ��1| 2 � Q� is an infinite subset of X. As X is countably compact, A has a limit point 

in X. say �. 

Claim that �1 � �. 

Suppose ��1� does not converge to �. Then there exists an open set G in X such that � � � and 

an integer 5 such that �1 � � for  2 � 5 i.e. �1 � � � � for  2 � 5. Then the open set 

containing � will contain only finite number of points ��, �;, … , ���� of A. _____________ (I) 

As X is a T1 – space and � is a limit point of A imply the open set G containing � must contain 

infinitely many points of A ( see Theorem 2.9 ).  ________________________________ (II)   

As (I) and (II) contradicts each other  our assumption is wrong. Therefore ��1� converges to � in 

X. 

If part. 

 Assume that every sequence ��1� in X has a limit point in X. 

To prove that X is countably compact. It is enough to prove that any countable open cover of X 

has finite sub-cover as X is a T1 – space (see Theorem3.1)  

Suppose there exists a countable sub-cover ��1�1�� of X, which has no finite sub-cover. Let  

�1 �A�U1
UC�  ,   2 � Q.Then by assumption , �1 � � m  F 2 � Q.  �� � �� � �. 

Fix up �� � ��. Let 2� � 1. Select �; � �; such that �; � ��. Select �$ � �$ such that  �$ � �� * �;. Continuing in this way, there exists a sequence ��1� in X. By assumption ��1� has 

a limit point say � in X. As �1 � �, K  2W � Q such that � � �1X . But  �1X � � , � �  �1X and �1X 

does not contains terms of ��U� for V � 2W , this contradicts the fact that �1 � �.  

Hence X must be countably compact. 

 

Combining   all  the equivalent conditions  we get   

 

Theorem 3.5: For a T1 – space X following statements are equivalent : 

(1) X is countably compact. 

(2) Every countable open cover of X has a finite sub-cover..  
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(3) Every countable family of closed subsets of X having f.i.p. will have a non-empty 

intersection.  

(4) Every infinite open cover of X has a proper sub-cover. 

(5) Every sequence of X has a limit point in X. 

 

§4 T1 – spaces and First axiom spaces (f.a.s.) 

Let ��, �	 be a T – space . Recall that X is a  f.a.s.  if there exists  a countable local 

base   �S1����1C�  at  each  � G2  �.  

 

Theorem 4.1: Let ��, �	 be a T1 – space and f.a.s. Let R ) �.  A point � � � is a limit point of E 

if and only if there exists a sequence of distinct points of E converging to �.  

Proof: Only if part –  

 Let � be a limit point of E. As X is f.a.s., there exists  a countable monotonically 

decreasing local base �S1����1C� at �. Now � � S1��� and S1��� � � 7 S1��� 9 R � ��� �, ;  F 2 � Q. Further as X is T1 – space and  � is limit point of E, each S1��� contains infinite 

number of distinct points of E (see Theorem 2.9).  

Hence S1��� 9 R � ��� must be  an infinite set. Hence by induction select �1 � S1��� 9 R � ��� 
such that �1 is different from ��, �;, … , �1�� .  

As �S1���� is monotonically decreasing family, �1 � �.  

Thus if  � is limit point of E ,then K a sequence of distinct points of E converging to �. 

If part – 

      Let ��1� be a sequence of distinct points of E converging to �. To prove that � is a limit point 

of E. Let G be an open set containing �. But �1 � � and � � �, � is open in X  7 K Q such 

that �1 � � for 2 � Q. Since the points �1 are distinct points of X,  � 9 R � ��� � , . Hence � 

is a limit point of E. 

[Note that for the proof of ‘If part’, X is T1 – space and f.a.s., both are not used. Hence the if 

part is true in any T – space.]  

 

Theorem 4.2:-  For each � in first axiom, T1 – space  X,  
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��� �^S1��� _
1C�  . 

    where �S1����1��  is  a countable local base at x.   

Proof: As X is a first axiom space, K a countable local base �S1���� at �. 

Hence ��� ) ^S1���1�T . ��� � � ^S1���1�T  such that � � �. 
Then X being a T1 – space,  K  � � � such that � � � but � � �. As � � � and � � � , K 2W � T 

such that S1��� ) �. But then � � �; a contradiction.  

Hence ^S1��� ) ���1�T . 
Thus ��� � ^S2���2�T . 

 

Remarks:  

�1�   �R, �!	 is a first axiom, �� – space. Hence ^�� � 12 , � % 12�
∞

1C� � ��� 
since the  family �"� � �1  , � % �1& | � � "� � �1  , � % �1& , F 2� is a countable local base at �. 

�2� Any metric space is first axiom, �� �  space. Hence  ^��� , 12�
∞

1C� � ��� 
since the family �� "� , �1& | � � � "� , �1& , F 2� is a countable local base at �. 

  

§5  Solved  problems 

Problem1: Let ��, �	 be a T1 – space. If � is closed for arbitrary intersection, then show that � is 

the discrete topology on X.  

Solution :-By data, � is closed for arbitrary intersection  and hence any union of closed sets in X 

is a closed set in X. Let ( ) �.  

Then ( �A�.����   7  ( is a closed set in  � �since �.� is a closed set in ��. 
Thus, any subset of X is closed in X. Hence � is the discrete topology on X. 
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Problem 2 :-Let ��, �	 be a T1 – space and ���� be a local base at � � �.  Show that for � � � 

there exists S � ���� such that � � S. 

Solution: Let ��, �	 be a T1 – space. As � � �, there exist � � � such that � � � but � � �. 

As � � � and � � �, by definition of local base, K  S � ���� such that � � S ) �. As � � � we 

get � � S. Hence the result. 

 

Problem 3: Let � be a T1 – space and ( is finite subset of � then no point of ( is limit point 

of (.  

Solution :-Let ��, �	 be a T1 – space and let ( � �.�, .;, … , .1� be a finite subset of X. As X is a  

T1 – space, by Theorem 2, A is a closed set. Hence (? � ( * ��(� � (  i.e. ��(� ) (. Hence, 

limit points of A must be members of A. Claim that .� � ( is not a limit point of A.  

Let S � �.;, .$, … , .1� . B being a finite subset of a T1 space, B is closed in ��, �	. Hence � � S 

is open in ��, �	. As .� � � � S � �.�� and �� � S� 9 ( � �.�� � �.�� � �.�� � ,, we get .� 

is not a limit point of A. Similarly, we can prove that any .E � ( is not a limit point of A. 

Hence ��(� � ,. 

 

Problem 4: Show that  a finite topological space ��, �	 is a T1 – space if and only if ��, �	 is a 

discrete space. 

Solution :-  Only if part.  

           Let ��, �	 be a finite T1 – space. To prove � � ����. Let ( ) �. Then � � ( being finite, � � ( is closed in  ��, �	 (see Theorem 2). Hence ( is open in � i.e. ( � �.  

Thus ( � ���� 7 ( � �. Hence � � ����. This shows that ��, �	 is a discrete topological 

space.  

If part.  

  Let ��, �	 be a discrete topological space. Then for � � � in X, define � � ��� and  � � ���. Then �, � � �, such that � � � but � � � and � � � but � � �. Hence ��, �	 is a T1 – 

space. [Note that ��, �	 is a finite space – is not used] 

 

Problem 5: Let a T1 – topology � on X be generated by finite family of subsets of X.  Show that  �  is  the discrete topology on X. 
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Solution: As � is generated by a finite family of subsets of X, � must be finite i.e. there are only 

finite number of open sets in X. Hence there exists only finite number of closed sets in X. As X 

is a T1 – space, singleton sets are closed in X. Thus the family of singleton sets in X is finite. 

Hence � �  A��E�1
EC�   7  � is a finite set. As � is a T1 topology defined on a finite set �,   

�  must be the discrete topology on X. 

 

Problem  6: Show that  a topological space ��, �	 is a T1- space if and only if 

 ^�� | � � � , � � �� � ���. 
Solution :-Only if part. 

            Let ��, �	 be a T1 – space. To prove that ��� | � � � , � � �� � ���.  
Let � � ��� | � � � , � � �� such that � � �. As � � �, K �, � � � such that � � � but � � �. 
By the choice of �, � � �, � � � 7 � � �; a contradiction.  

Hence ^�� | � � � , � � �� � ���. 
If part. 

Let ^�� | � � � , � � �� � ��� for any � � �.  
To prove that ��, �	 is a T1 – space. Let . � O in X.  

Then  �.� � ^�� | � � � , . � ��  and �O� �^�� | � � � , O � ��. 
As . � O,   O � �.�  7   O � ^�� | � � � , . � ��. 
Hence K an open set � such that . � � but O � �.    

Similarly as . � �O�  7   . � ^�� | � � � , O � ��. 
Hence K an open set � such that O � �  but  . � �. 

This shows that ��, �	 is a T1 – space. 

 

Problem 7: Show that a topological space ��, �	 is a T1 – space if and only if the intersection of 

all neighbourhoods of any arbitrary point of X is a singleton set.  
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Solution :-Only if part .   

Let ��, �	 be a T1 – space. To prove that  ��Q |Q is a nbd. of � , � � �� � ���.  
Let � �  ��Q |Q is a nbd. of � , � � ��  such that � � �. 
As � � �, K �, � � � such that � � � but � � � 

By the choice of �, � � �, � � � 7 � � �; a contradiction.  

Hence  ��Q |Q is a nbd.of � , � � �� � ���. 
If part.  

Let ^�Q |Q is a nbd. of � , � � �� � ��� for any � � �.  
To prove that ��, �	 is a T1 – space. Let . � O in X.  

Then  �.� �  ^�Q |Q is a nbd.of . , . � ��  and �O� �  ^�Q |N is a nbd.of O , O � ��. 
As . � O,   O � �.�  7   O �  ^�Q |Q is a nbd. of � , � � ��. 
Hence K a nbd. N  of . � Q such that O � �            Similarly as . � �O�  7   . �  ��Q |Q is a nbd. of � , � � �� hence K nbd. � of O such 

that . � �. As Q and � are neighbourhoods of . and O respectively, there exists open sets � and � such that   . � � )  Q and  O � � ) �.  Hence K an open set � such that . � � but O � �.     .2� K an open set � such that O � � but . � �. 

This shows that ��, �	 is a T1 – space. 

 

Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

1) Let ��, �	 be a T1 – space and let A be finite subset of X. Then no point of A is limit 

point of A.  

 

2) A finite topological space ��, �	 is a T1 – space if and only if for two distinct points � and � of X,  there exist a  nbd. N of � not   containing �, and a  nbd. M  of   y   not   

containing �. 
 

3) Give  an example of each of the following . 

a) A T1 – space which is countably compact. 

b) A T1 – space which is   not countably compact. 
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c) A  countably compact  which is a T1 – space. 

d) A countably compact space which is  not  a T1 – space. 

e) A T1 – space  which is  first countable. 

f) A  T1 – space  which is   not  first countable. 

g) First countable   space  which is    a T1 – space. 

h) First countable   space  which is   not a T1 – space. 

 �––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
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§1  Definition and Examples. 

§2  Characterizations  and Properties . 

§3  T2 – spaces and compact spaces  

§4  Convergent sequences in T2 –  spaces. 
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§1 Definition and Examples 

Definition1.1: A topological space ��, �� is a T2 – space or Hausdorff space if it satisfies the 

following axiom of Hausdorff:  

 “If � and 	 are two distinct points of X, then there exist two disjoint open sets one 

containing � and the other containing 	”.  

Remarks: (1) Obviously, every T2 – space is a T1 – space and hence a T0 – space (follows by the 

Definition). 

(2)  Let ��, �� be a T2 – space and �
 � �. Then ��, �
� is also T2 – space. 

 

Examples 1.2:  

T2 – spaces.  

(1) Any discrete topological space ��, �� with |�| � 2 is a T2 – space. 

 For  � � 	 in X, ��� and �	� are two disjoint open sets containing x and y respectively. 

(2) Any metric space is a T2 – space. 

Let ��, �� be a metric space and let � be the induced topology on X by the metric �. 

Let � � 	 in X. Then ���, 	� � � � 0. Then � ��, ��� and � �	, ��� are two disjoint open 

sets containing x and y respectively. Hence ��, �� is a T2 – space.  

(3) ��, ��� is a T2 – space.  

Let � � 	 in �. Then |� � 	| � � � 0. �� � �
�  , �  

�
�� and �	 � �

�  , 	  
�
�� are disjoint 

open sets in � containing � and 	 respectively. Hence ��, ��� is a T2 – space. 

(4) Fort’s space is a T2 – space. 

Let X be any uncountable set and let ∞ be a fixed point of X .  

Let � � �" # � | ∞ $ "�  % �" # � |  ∞ & " and � � " is finite�. Then � is a topology 

on X. Define �/ � �" # � | ∞ $ "�  and �� � �" # � |  ∞ & " and � � " is finite� 
then � � �/ % ��   is a topology on � . This Fort’s space ��, �� is a T2 – space.  

Let � � 	 in X.  

Unit 14: TTTT
2222
    ––––    SSSSpacespacespacespaces 
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Case 1: Let � and 	  both are different from ∞ . Then " � ��� and 0 � �	� are disjoint 

open sets containing � and 	 respectively. 

Case 2: Let 	 � ∞. Then " � � � �∞� and 0 � �∞� are disjoint open sets containing � 

and ∞ respectively. Thus from both the cases we get the Fort’s space ��, �� is a T2 – 

space. 

    

  Non T2 – spaces. 

(1)  Any indiscrete topological space ��, �� is not a T2 – space. 

(2) Any co-finite topological space ��, �� with X an infinite set is not a T2 – space.  

            [Note that if X is finite, then co-finite topology � on X is discrete topology on X and    

            hence in this case ��, �� is a T2 – space.]  

            Let ",0 & � such that " 1 0 � 2. " is open 3 � �" is finite set.  

            H is open 3 � � 0 is finite set. " 1 0 � 2 3 " # � �0 3 " is a finite set.  

            As � � " % �� � "�, we get X is a finite set; a contradiction. This shows that no two                             

            open sets in X are disjoint. Hence ��, �� is not a T2 – space. 

(3) Let ��, �� be a 4-inclusion topology (4 & �). � � �2� % �5 # � | 4 & 5�. ��, �� is not a  

T2 – space. For 4 � � in X we cannot find two disjoint open sets one containing 4 and 

other containing �.  

(4) Let ��, �� be a 4-exclusion topology (4 & �). � � ��� % �5 # � | 4 $ 5�.  
Case (1): � � 	 (� � 4 and 	 � 4). ���, �	� & � such that � & ��� , 	 & �	� and  

��� 1 �	� � 2. 

Case (2): � � 4. As X is the only open set containing 4, in this case we cannot find 

disjoint open sets one containing 4 and other containing �.  

Hence ��, �� is  not a T2 – space.  

(5) Let � � 6 and � � �2� % �6� % �57 | 8 � 1,2,3,… � where 57 � �1,2,… , 8�.  
Let < � 8 in X. Assume < = 8. Then by definition of � any open set containing 8 must 

contain <. Hence ��, �� is not a T2 – space. 

(6) Let � � 6 and � � �2� % �6� % �57 | 8 � 1,2,3,… � where 57 � �8, 8  1, 8  2,… �.  
Let < � 8 in X. Then if < = 8, then every open set containing < must contain 8. 

Hence ��, �� is not a T2 – space. 
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Remark: Every T1 – space need not be a T2 – space . 

  We know that co-finite topological space is a T1 – space (see Example in § ) But . any co-

finite topological space ��, �� with X an infinite set is not a T2 – space. Hence we get every 

T1 – space need not be a T2 – space. Thus  the collection of all T2 – spaces is a proper subset of 

the collection of all T1 – spaces. As every T2 – space is a T1 – space, all the properties of T1 – 

space hold for T2 – space.  

e.g. (1) Every finite subset of a T2 – space is closed in it. 

       (2) Finite T2 – space is the discrete topological space. 

       (3)Distinct points have distinct closures in a T2 – space. 

 

§2  Characterizations and Properties 

Theorem 2.1: Let   ��, �� be a T– space.Then ��, �� is a T2 – space if and only if the 

intersection of all closed neighbourhoods of a point � in � is ��� . 
Proof: -Only if part – 

Let ��, �� be a T2 – space. To prove that 1 �> | > is a closed nbd. of �� � ���. 
Let 	 & 1 � N | N is a closed nbd. of  x � such that y � � . As ��, �� be a T2 – space and � � 	 

in �. Hence H " , 0 & � such that � & ", 	 & 0 and 1 0 � 2 .  

Hence � & " # � –0. But this shows that � � 0 is a closed nbd. of x .But by the choice of y,  

	 & � � 0 ; a contradiction. Hence 1 �> | > is a closed nbd. of �� � ���. 
If part –  

Let 1 �> | > is a closed nbd. of �� � ��� for each � in �. To prove that � is a T2 – space. 

Let � � 	 in �. Hence 	 $ ��� � 1 �> | > is a closed nbd. of �� implies y $ >, for some closed 

nbd. > of �. As > is a nbd.of � there exists an open set " such that � & "  # >. Thus for � � 	 

in � there exist disjoint open sets " and � � > such that � & " and 	 & � � >.    

This shows that � is a T2 – space. 

 

Theorem 2.2: A T – space ��, �� is a T2 – space if and only if for any � � 	 in �, H basic open 

sets J and K such that � & J, 	 & K and J 1 K � 2. 

Proof: Only if part – 
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Let ��, �� be a T2 – space and � � 	 in �. Hence  H " , 0 & � such that � & ", 	 & 0 and 

" 1 0 � 2. Let L  be a base for � . Then for " , 0 & �   H M/ , M� & L such that � & M/ # " and 

� & M� # 0 (by definition of base). Thus there exists basic open sets M/ and M� such that  

� & M/, 	 & M� and M/ 1 M� � 2.  

If part – 

To prove ��, �� that is a T2 – space.  

Let � � 	 in � . By assumption, H basic open sets M/ , M� & L such that � & M/, 	 & M� and 

M/ 1 M� � 2. As L # � , there exist disjoint sets M/ , M� in � such that � & M/, 	 & M�.  

Hence ��, �� is a T2 – space. 

 

Theorem 2.3: Being T2 – space is a hereditary property. 

Proof: Let ��, �� be a T2 – space and let �N, �
� be a subspace of ��, ��.  
Then N # � and �
 � �" 1 N | " & ��. Let 	 � O in Y. As N # �, 	 � O in X. 

X being a T2 – space, there exist ",0 & � such that 	 & " and O & 0 and " 1 0 � 2.  

Define "
 � " 1 N and 0
 � 0 1 N. Then "
, 0
 & �
 such that 	 & "
, O & 0
 and  

"
 1 0
 � 2. But this shows that �N, �
� is a T2 – space. As any subspace of a T2 – space ��, �� 
is a T2 – space, the result follows. 

 

Theorem2.4: Being a T2 – space is a topological property. 

Proof: Let ��, �� and �N, �
� be any two topological spaces and P: � R N be a homeomorphism. 

Let ��, �� be a T2 – space. To prove that �N, �
� is a T2 – space. 

Let 	/ � 	� in Y. P:� R N being one-one and onto, there exist �/ � �� in X such that 

P��/� � 	/ and P���� � 	�. As X is a T2 – space, there exist ", 0 & � such that �/ & " and 

�� & 0 and " 1 0 � 2. P being an open map, P�"�, P�0� & �
. Thus 	/ & P�"�, 	� & P�0� 
and P�"� 1 P�0� � 2. But this in turns shows that �N, �
� is a T2 – space. Thus any 

homeomorphic image of a T2 – space is a T2 – space. Hence the result. 

 

Corollary 2.5: The property of a space being T2 – space is preserved by one-one, onto open 

maps. 

 



T� – Spaces 

Page | 181  

 

Theorem 2.6: Let ��, �� be a topological space and �N, �
� be a Hausdorff space. Let P: � S N 

and T: � S N be continuous mappings. The set �� & � | P��� � T���� is closed in X.  

Proof:  Let 5 � �� & � | P��� � T���� . Select any U & � � 5. Then P�U� � T�U� as U $ 5.  

As P�U� � T�U� in Y and Y is a T2 –space, H  "
, 0
 & �
 such that P�U� & "
, T�U� & 0
 and 

"
 1 0
 � 2. 

 P: � S N is continuous and T: � S N is continuous 3 PV/�"
� and TV/�0
� & � .  
Hence W � PV/�"
� 1 TV/�0
� & � ________________________ (I) 

P�U� & "
  3 U & PV/�"
�   
T�U� & 0
  3 U & TV/�0
�. 
Thus U & PV/�"
� 1 TV/�0
� � W _________________________ (II) 

Again for any � & W, we get � & PV/�"
� 1 TV/�0
� i.e. P��� & "
 and T��� & 0
. 
As "
 1 0
 � 2 , we must have P��� � T��� . Thus � & W 3 � $ 5 3 � & � � 5.  

Hence W # � � 5 _______________________________ (III) 

Thus for U & � � 5, H W & � such that U & W # � � 5 (from (I), (II) and (III)). 

But this shows that each point of � � 5 is its interior point. Hence � � 5 is an open set.  

This proves that A is a closed set. 

 

Theorem 2.7: Le-t ��, �� be any topological space and let �N, �
� be a T2 – space. Let P and T be 

continuous mappings of � into N. If P and T agree on a dense subset of �, then P � T on the 

whole �.  

Proof: Let  D� �� & � | P��� � T���� .Then X  is dense subset of � .  
To prove that P��� � T��� ,   Y � & �.  

By  Theorem  2.6,  XZ � X. X being dense  in X, XZ � �. Thus X � �. 

Therefore, P��� � T��� for all � & �.  

 

Theorem2.8: Let ��, �� be a T2 – space and P: � S � be a continuous map. Then  

5 � �� & � | P��� � �� is a closed set in �.  

Proof: P: � S � be a continuous map. Let [: � S � be the identity map. Then [ is a continuous 

map. Hence by Theorem 2.7, the set 5 � �� & � | P��� � [���� is closed in �.  

But as [��� � � we get the set �� & � | P��� � �� is closed set in �.  
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§3 T2 – spaces and compact spaces  

Theorem 3.1: Let ��, �� be a Hausdorff – space and ��, �
�  be a compact space such that � #
�
. Then � � �
 . 
Proof: � # �
. Hence only to prove that �
 # � .  Let "
 & �
 .  "
 & �
  implies � � "
 is 

closed in ��, �
�. Hence � � "
 is compact in ��, �
� (see   Theorem  …) 

As  � � "
 is a compact subset of a T2 - space ��, �� we get  � � "
 is a closed subset of ��, �� 
(see Theorem 3.1). Hence  "
 is an open set in ��, �� Thus "
 & �
   3   "
 & �. 

Hence �
 # �. As � # �
 and �
 # � we get � � �
. 
 

Theorem 3.2: Any compact subset of a T2 – space is closed. 

Proof: Let ��, �� be a T2 – space and let \ be any compact subset of X. To prove that \ is 

closed. Fix up any � & � � \. Then for each 	 & \ we get � � 	. As X is a T2 – space, 

 H disjoint open sets "] and "^ such that � & "] and 	 & "^. As this is true for any 	 & \, 

\ �_�	�
^&`

 #  _"^
^&`

3 a"^b^&`  forms an open cover for \. As F is compact, \ #_"^c
7

de/
. 

Find corresponding "]c & � such that such that � & "]c and "]c 1 "^c � 2 , Y f, 1 g f g 8.  

Define 0 �_"^c
7

de/
 and " �h"]c

7

de/
.  Then ",0 & � , " 1 0 � 2 ,   � & " and \ # 0. 

As " 1 0 � 2, we get " 1 \ � 2. But then " # � � \. Thus for given � & � � \ , H an open 

set " in X such that � & " # � � \. This shows that each point of � � \ is its interior point. 

Hence � � \ is an open set. This proves that \ is a closed set. 

 

Remark: Compact subset of any T – space need not be closed set. 

For this consider an indiscrete topological space ��, ��. Let A be any subset of X. Then A is 

compact in X, but A is not closed in ��, ��. 
 

Theorem 3.3: A T – space ��, �� is a Hausdorff space if and only if any two  disjoint compact 

subsets of X can be separated by disjoint open sets. 
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Proof: Only if part – 

Let ��, �� be T2 – space and let A, B be disjoint compact sets in X.  

Fix up any i & 5. Then for each � & M we get i � � �5 1 M � 2�. As X is a T2 – space, 

H  "]  , 0] & � such that i & "] , � & 0]  and "] 1 0] � 2. As M �  { }
∈

∪
x B

x  #  
∈

∪ x
x B

H     

we get �0]�]&j form an open cover of B. B being compact, this open cover has finite sub-cover 

for B say a0]cbde/
7  . 

 Define 0 �_0]c
7

de/
. Then 0 & � and M # 0 .For the corresponding sets "]c & � ,   

define "k �h"]c
7

de/
.Then "k & � , i & "kand "k 1 0 � 2.  As 5 �  _�i�

k&l
#_"k
k&l

 , 

we get �"k�k&l forms an open cover for 5.  As 5 is compact , 5 #_"kc
m

de/
. 

Define " �_"kc
m

de/
.Then " & � .Further as "k 1 0 � 2  Y i   , we get " 1 0 � 2 . 

Thus for the disjoint compact sets 5 and M  H  " , 0 & � such that 5 # " , M # 0 and " 1 0 � 2. 

If part – 

Assume that  any two  disjoint compact subsets of X can be separated by disjoint open sets. To 

prove that X is a T2 – space. Let � � 	 in X. Then ��� and �	� are compact disjoint subsets of X. 

By assumption H  " , 0 & � such that ��� # " , �	� # 0 and " 1 0 � 2. But this in turns shows 

that H open sets " and 0 such that � & " and 	 & 0. Hence X is a T2 – space. 

 

Corollary 3.4: Let ��, �� be a T– space . ��, �� is a Hausdorff space if and only if for any  

compact set  F and  for any � $ \ H ",0 & � such that � & " , \ # 0 and " 1 0 � 2 . 

Proof :-The proof  follows from Theorem 3.3  and  the fact that ��� and \ are disjoint compact 

sets in � . 

 

Corollary  3.5: Let ��, �� be a compact, T2 – space. If \ is closed set in X and i $ \ �i & ��, 
then there exists ",0 & � such that i & " , \ # 0 and " 1 0 � 2.  
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Proof: We know that any closed subset of a compact space is compact (see ). Hence \ is 

compact subset of a T2 – space X and i $ \. Therefore by  Corollary  3.4 H ", 0 & � such 

that i & " , \ # 0 and " 1 0 � 2. 

 

Corollary 3.6: Let ��, �� be a compact, T2 – space. Let \/, \� be two disjoint closed subsets of 

X. Then there exists two disjoint open sets " and 0 in X such that \/ # " and \� # 0.  

Proof: Fix up any point � & \�. Then � $ \/ and \/ is closed subset of  compact T2 – space X. 

By Corollary 3.4 there exist open sets "]  and 0] in X such that � & 0]  , \/ # "]  

and "] 1 0] � 2. 

As \� � _���
]& ǹ

 #   _ 0]
]& ǹ

  we get an open cover �0]�]& ǹ  for the set \�. 

As \� is closed subset of a compact space X, \� itself is a compact. Hence the open cover 

�0]�]& ǹ  has a finite sub-cover. Let \� �_0]c
7

de/
.Find corresponding sets "]c & � 

such that \/ # "]c  Y f    1 g f g 8 , "]c 1 0]c � 2.  

Define  " �h"]c
7

de/
 and 0 �_0]c

7

de/
.Then ", 0 & � , \/ # " , \� # 0 and " 1 0 � 2. 

Hence the result. 

 

Theorem 3.7: Every continuous mapping of a compact space into Hausdorff space is closed. 

Proof: Let ��, �� be compact space and let �N, �
� be a Hausdorff space. Let P: � S N be a 

continuous map. To show that P is a closed map. Let \ be any closed set in X. To prove 

that P�\� is closed in Y. F is closed in X and X is compact 3 F is compact (see …). 

P:� S N is continuous and F is compact in X 3 P�\� is compact subset (see …) of Y. As Y is 

a T2 – space, P�\� is closed subset of Y (see Theorem 3.2). This in turns shows that P is closed 

map. 

 

Corollary 3.8: Every bijective continuous mapping of a compact space onto a Hausdorff space 

is a homeomorphism. 
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Corollary 3.9: If P is a one-one continuous mapping of the compact space X onto the 

T2 – space Y. Then P is an open map and hence P is a homeomorphism. 

Proof: To prove P is an open map. Let G be an open set in X. Then \ � � � " is closed in X. 

As \ is closed subset of a compact space X, \ is a compact subset of X (see …). Continuous 

image of compact space being compact (see …), P�\� is compact in Y. But as Y is a T2 – space, 

P�\� is closed in N (see   Theorem 3.2).  

Hence N � P� \�  = N � P�� � "� is an open set  in � .  
Now N � P�� � "� � P�"� (since P is one-one and onto 3   P��� � N) 

3 P�"� is open in N.  

This shows that P is an open mapping. As P is continuous, bijective and open, P is a 

homeomorphism. 

  

 Recall that a topological space ��, �� is locally compact if each point of X is contained in 

a compact neighbourhood  . 

Theorem 3.10: Let ��, �� be a locally compact, Hausdorff space. Then  the one point 

compactification  ��
, �
 � of  ��, ��  is a Hausdorff space. 

Proof: Let � � 	 in �
.  
Case 1: �, 	 & �. 

As � is a Hausdorff space, H " , 0 & � such that � & ", 	 & 0 and " 1 0 � 2. As � # �
 we 

get " , 0 & �
 such that � & ", 	 & 0 and " 1 0 � 2.  

Case 2: � � ∞ , � � 	.  

Then 	 & �. As � is locally compact, H a compact neighbourhood, say > of 	 in �.  

As � is a T2 – space, > is closed subset of � (see …). Hence �
 �> & �
 and ∞ & �
 �> . 

Thus for ∞ � 	   H disjoint open sets " and �
 �> in �
 such that 	 & ", ∞ & �
 �> and 

" 1 ��
 �>� � 2 … [> is nbd of 	 in ��, ��  3 H " & � such that 	 & " # >. But then 

" 1 ��
 �>� � 2].  

Thus from both cases ��
, �
� is a Hausdorff space.  

 

 Remark: If  ��, ��  is a locally compact, the one point compactification ��
, �
� of ��, �� is a 

compact, Hausdorff space. 
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§4 Convergent sequences in T2 –  spaces. 

 Let  ��, �� be a T2 – space. Let ��7� be a sequence of points of �. We say that the 

sequence  ��7� converges to a point � in � if  for any open set  G containing x there exists > 

such that  �7 & "  Y 8 � > .  

 

Remark: Convergent sequence in a topological space need not converge to unique limit. 

In a co-finite topological space defined on an infinite set any sequence converges to each point of 

the space. But in T2 – space convergent sequence has a unique limit. 

 

Theorem 4.1: Let ��, �� be a T2 – space. Any convergent sequence in X converges to a unique 

point in X. 

Proof: Let ��7� be a sequence of points of a T2 – space X and let it converge to two distinct 

points say � and 	 in X. As X is a T2 – space, for � � 	 in X, there exist ", 0 & � such that 

� & " and 	 & 0 and " 1 0 � 2. As �7R � and � & " there exists >/ such that 

�7 & "  Y 8 � >/. Similarly �7R 	 and 	 & 0 there exists >� such that �7 & 0  Y 8 � >�. 
Define > � max�>/, >�� then �p & " 1 0 � 2; a contradiction. Hence there does not exists any 

convergent sequence in T2 – space, converging to two distinct points in it. 

 

Theorem 4.2: Let ��, �� be a first axiom space. Then ��, �� is a T2 – space if and only if every 

convergent sequence in X has a unique limit.      

Proof: Only if part – 

As X is a T2 – space, every convergent sequence in X has a unique limit (see Theorem 4.1 ).  

[Note that for the proof of ‘Only if part’ the property that X is a F.A.S. is not used]. 

If part – 

 Let ��, �� be a first axiom space  such that  every convergent sequence in X has a unique limit.      

To prove that X is a T2 – space.  

Let if possible��, �� is not a T2 – space. Then H  � � 	 in X such that for any open sets ", 0 in X 

with � & ", 	 & 0," 1 0 � 2 .  

X is a F.A.S. 3  H a countable decreasing local base, say �M7���� at � and H a countable 

decreasing local base, say �M7�	�� at 	 .   

By assumption M7��� 1 M7�	� � 2, Y 8 & 6. Select �7 & M7��� 1 M7�	�, Y 8 & 6.  
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Consider the sequence ��7� in X. Claim that �7 S �.   

Let " be any open set in X such that � & ". As �M7���� is a countable local base at �, H > such 

that Mp��� # ". But then �7 & " for 8 � > ( �M7���� being decreasing local base).  

This shows that �7 S �. Similarly, we can prove that �7 S 	 . Thus  H a convergent sequence 

��7� in X converging to two distinct points � and 	 in X ; a contradiction. Hence X must be a  

T2 – space. 

 

Remarks:  

(1) The converse of the Theorem  4.1 need not be true. 

i.e. Every convergent sequence in a topological space   �q, r� may  converge to a 

unique point in  X . But this  need not imply that �q, r�  is  a  T2 – space.   

For this consider the following topological spaces . 

(a)  co-countable topological space ��, �� (X is uncountable set). 

��, �� is not a T2 – space, since no two open sets in ��, �� will be disjoint (see example  

… ) Let ��7� be any convergent sequence in X. Then ��7� converges  to the unique point 

in X.  

(b) Consider the indiscrete topological space ��, �� with |�| � 2. Then X is not a T2 – space 

though each convergent sequence in ��, �� converge to unique point in X. 

(2) The converse of the Theorem 4.1 is true if ��, �� is a first axiom space ( see the  proof of 

Theorem 4.2 ). 

 

Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

(I) Let ��, �� be a compact, Hausdorff space. Show that 

(1) � is not a compact with any topology larger than and different from �. 

(2) � is not a Hausdorff space with any topology smaller than and different from � 

(II) Show that the property of a space being T2 – space is not preserved by continuous maps.  

(III) Prove or disprove the following statements. 

(1) Any compact subset of a compact space is closed. 

(2) Any closed subset of a compact space is compact.. 

(3) Continuous mapping of the compact space into a T2 – space is a closed mapping. 
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(4) Continuous mapping of the Hausdorff space into a compact space is a closed 

mapping. 

(5) Continuous mapping of the compact space into any T – space is a closed mapping . 

(6) Continuous mapping of the compact space into a compact space is a closed mapping. 

(7) Continuous mapping of the compact space into a T2 – space is a homeomorphism. 

(8) Convergent sequence in a topological space converges to  a unique limit. 

(9) Convergent sequence in a Hausdorff topological space converges to a unique limit. 

(10) If  every  convergent sequence in a topological space converges to a unique limit then 

 the space is a Hausdorff space . 

(IV) Let   ��, �� be a T– space. Show that the following statements are equivalent. 

(1) ��, �� be a T2 – space. 

(2) The intersection of all closed neighbourhoods of a point � in X is ���. 
(3) Given finite number of distinct points  �/ , �� , … , �7 there exist neighbourhoods 

>/ , >� , … , >7 of points  �/ , �� , … , �7 respectively, which are pair wise disjoint.   

(V)  State whether the following statements are true or false. 

(1) Every discrete T – space is a T2 – space. 

(2) Every indiscrete T – space is a T2 – space.  

(3) In a T2 – space  ���ssss � ��� , Y � & �. 

(4) In a T2 – space  � � 	 3 ���ssss � �	�ssss. 
(5) In a T2 – space  1 �>Z | > is a nhd.of �� � ���. 
(6) If every convergent sequence in topological space � converges to unique limit, then � 

is a T2 – space. 

(7) In a T2 – space every convergent sequence converges to a unique limit. 

(8) Every f.a.s. is a T2 – space. 

(9) Every T2 – space is a f.a.s. 

(10) Every T2 – space is compact. 

(11) Every T2 – space is a T0 – space. 

(12) Every T0 – space is a T2 – space. 

(13) Every T2 – space is a T1 – space. 

(14) Every T1 – space is a T2 – space. 

(15) Every T – space is a T2 – space. 
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(16) Every subspace of T2 – space is a T1 – space. 

(17) Being a T2 – space is a topological property. 

(18) Homeomorphic image of a T2 – space is a T – space. 

(19) Continuous image of a T2 – space is a T1 – space.     

�––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
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§1 Definition and Examples. 

Definition 1.1:- A topological space ��, �� is said to be regular if it satisfies the following axiom 

of Vietoris: 

“If 	 is closed set in � and if 
 is a point of � not in 	, then there exist disjoint open sets � and � such that  
 
 �  ��� 	 � �”. 

 

Examples 1.2: 

1) Every discrete T-space ��, �� with |�| � 1 is a regular space. 

2) Let � � ��, �, �� ��� � � � � , � , � � �, � � , ��� The topological space ��, �� is a regular 

space. 

The family of closed sets in ��, �� is � � � � , � , � � �, � � , ���.                                        
Case 1: � � � � , � �. Then take � � � � � and � � � �, ��.  �, � 
  �.  � � � � �, � 
 � and  ��, �� � � .                      

Case 2: � � � � �. Take � � �� , �� and � � ���.  Then  �, � 
  � .  � � � � � , � 
 ��, � � � � and ��� � 	.  

Case 3:- � � � � �. Take � � � � , � � ��� � � �  � �.  !"�  �,� 
  �.   � 
 � , � � �  �   �        
and � � � � � .          

Thus given a closed set F and a point 
 � 	  there exist disjoint open sets one containing 
 and 

the other containing F.      

This shows that the T-space ��, �� is a regular space. 

3) Every metric space is a regular space.      

Let ��, �� be a metric space and � denote the topology induced by d on X. Let F be any closed 

set and  
 � 	 , ( 
 
 � ). As 
 �  	# � 	 , �$ 
 , 	% & 0. Let ( � �$ 
 , 	%.   

Define  �) � *+ 
  ,  ( 2- . and  �/ �0 S +2  ,  r 4- .5
6 .  
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Then  �), �/ 
  � , 
 
  �)  and  	 �  �/  only to prove  that   �) � �/ �  � .      

 Let  7 
  �) � �/.  Then  �$ 
 , 7 % 8   r 4-    for some  � 
 	                     

   � $ 
 , �%     9      �$ 
 , 7 % :  �$ 7 , � %    
                8  r 4- : r 4-  �   ( 2-                   
 Hence    � $ 
 , �% 8 (  ;    � 
 *$ 
 , (%            

But then � 
 *$ 
 , (% � 	 �  � + Since ( � �$ 
 , 	 %. ; a contradiction.    
Hence, �) � �/ �  � . Thus given  
 � 	 , F is a closed set in ��, ��  ; < disjoint open sets one 

containing 
 and other containing 	. Hence, the metric space ��, �� is a regular space. 

 

4) �=, �>� is a regular space. 

Proof:-  Let � $ � , 2% �  |� ? 2| and *$ � , (% � $ � ? ( , � : (%. 
Then the  topology �> is induced by the metric d on  R and hence  by Example 3, �=, �>� is a regular space. 

 

5) Let � � = and Let � denote the topology on = having the open intervals and the set Q of 

rational Numbers as a sub-basis. 

Proof:- Define 	 � = ? @. Then F is closed set in �= , ��. 1 � 	 and there does not exist only 

two disjoint sets one containing 1 and other containing F. Hence �= , ��is not a regular space. 

 

§2 Characterizations and Properties of regular spaces 

Theorem 2.1: A topological space ��, �� is regular if and only if for any point  � 
 �  and any 

open set G containing �, there exists an open set � such that � 
 �  and  �A  � �  $B( � � � � �A � �% . 
Proof:- Only if part 

 Let X be a regular space and � 
 � , � is an open set in X   ; � ? � is a closed set and  � � � ? �. As X is a regular space <   �,L 
 �   such that � 
 � , � ? � � L  and     � � L � � . Now  � ? � � L ;   � M � ? L.                                                                          � � L � �   ;   � � � ? L ; �A � � ? L ######### � � ? L  (Since � ? L is a closed set). 

Thus � 
 � � � ? L � �. Thus < an open set � such that  � 
 � and  �A  �   � 

If Part   
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Let F be a closed set in X and Let  � � 	. Then  � ? 	 is an open set and � 
 � ? 	 . By assumption, < an open set � such that � 
 �  ���  �A  � � ? 	. 

Define   L � � ? �A .Then L 
  �  and  � � �A  

 ;   � � L � � � $ � ? �A%  �  �      $N   � ? �A  � � ? �%.                                                                                                                     
Thus for � � 	 , <  disjoint open sets H and K such that � 
 � ���  	 � L. Hence ��, �� is a 

regular space. 

 

Theorem 2.2: Let ��, �� be a topological space. The following statements equivalent.  

1)  X is a regular space.                                                                                                                        

2) For any sub-basic open set G containing a point �, there exists an open set H such that   � 
 � and  �A � � .  
Proof:   1%  ; 2%                                                                                                                                         

G is a sub-basic open set  ; � 
  � . Hence, by Theorem 2.1, the implication follows. 2%  ; 1%   

Let G be any open set and � 
 �. By the definition of the sub-base there exist members of �  say O), O/, …… ,OQ  of the sub base such that  

�  
    ROSQ
ST)     � �  

As OS 
  �  U  V  , 1 9 V 9 � and  � 
  OS  , by Theorem 2.1 , < an open set �S  such that  � 
 �S  and  �W###  �   OS   for each V , 1 9 V 9 �.                                                                          
Thus we get    � 
  ROSQ

ST)  �  R�W###Q
ST)  �   ROSQ

ST)  � � 

Define   � �R�SQ
ST)  .Then �  
  �  and  �A   �   � … ZN   �A  �  [R�WQ

WT) \###########  �   R�W###Q
ST)  ]  

Hence, by the Theorem 2.1, X is a regular space. 

 

Theorem 2.3: Let ��, �� be a regular space. The following statements are equivalent:            

1)  X is a regular space.                  

2)  For each  � 
  � and a nbd. U of � ,  < a nbd. V of � such that  #̂   � O . 

3)  For each � 
  � and a closed set F not containing �, there exists a nbd. V of � such that   
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      #̂ � 	 � �. 

Proof: 1%  ; 2%           

Let O be a nbd.of  � 
  �. Hence < an open set G such that �  
 � �  �A  �  �.  
Thus <  a  nbd. H  of � such that  �A   �  O . 2%  ; 3%           

 Let F be a closed set such that � � 	. But then � ? 	 is a nbd of �. By (2), there exists a 

nbd. ^ of  � such that  #̂   �  � ? 	 . Hence < a nbd. ^ of � such that  #̂  � 	 �  �. 3%  ; 1%           

 Let F be a closed set and let � � 	. By (3), < a nbd. V of � such that  #̂  � 	 �  �.                    #̂  � 	 �  �  ; 	  � � ? #̂.         

 ^ is a nbd of �  ;  < an open set � such that � 
 � � ^. 
Define  L � � ? #̂.  Then L 
 � and � � L �  �. 
Thus  <   �, L 
   � such that � 
 �, 	 � L and  � � L �  �.     

Hence,  ��, �� is a regular space. 

 

Theorem 2.4: A topological space ��, �� is a regular space if and only if the family of closed 

nbds of any point of X forms a local base at that point. 

Proof:-  Only if part 

 Let  ��, �� be a regular space. Let ` be any nbd of a point �, Hence < � 
  �  such that      � 
 � � `.  As X is a regular space, < an open set � in X such that � 
 � and �A � � (By 

Theorem 2.1). But this shows that  � 
 �A � `. Hence the family of closed nbds of � forms a 

local base at �. 

If part  

 Let the family of closed nbds of any point of  � forms a local base at that point. To prove 

that  � is a regular space. Let  � 
 � and let  	 be a closed set such that  � � 	. Then � ? 	 is a 

nbd of �. By assumption < a closed nbd. K of � such that � 
 L � � ? 	.   
 Define � � interior of L and � � � ? L. Then  �,� 
  � , � 
 �, 	 � � and � � � � � .  

Hence ��, �� is a regular space. 
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Theorem 2.5: Being a regular space is a hereditary property. 

Proof:- Let ��, �� be a regular space and let �a, �b� be its subspace.  

Then �b � �� � a | � 
 �� and  a �  �.  
Let 	b be any closed set in �a, �b� and  a �  	b $ 2 
 a%.   	b is a closed set in  �a, �b�  ;  	b � 	 � a  for some closed set 	 in ��, ��.  
As ��, �� is a regular space,  <  � , L 
  �  such that 2 
 �, 	 � L and � � L �  �.    

Define �b � � � a and Lb � L � a.  

Then  �b ,  Lb  
  �b,   2 
  �b ,  	b � Lb  and  �b � Lb � � . 

This shows that �a, �b� is a regular space.  

As any sub-space of a regular space is a regular space, the result follows. 

 

Theorem 2.6: Being a regular space is a topological property. 

Proof:- Let ��, �� be a regular space. let �a, �b� be any T-space and c d � e a be  

homeomorphism.                                                                                                                                                           

To prove �a, �b� is a regular space. Let 	b be a closed set in Y and  2 �  	b $2 
 a%.  
As F is onto, <  � 
 � such that 2 � c$�%.  	b is a closed set and c d � e a is continuous 

 ; cf)g	bh is a closed set in X. 

As  2 � 	b , � � cf)g	bh .  ��, �� is a regular space. Hence there exist �,� 
  �  such that           � 
 � ,   cf)g	bh  � � and  � � � �  � .        

Thus c$�% 
 c$�% ,   cicf)g	bhj  � c$�%  and   c$�% � c$�% � � . 
Define  �b � c$�%  and  �b � c$�%.       

Then  �b, �b 
  �b , 2 
 �b and  	b � �b and �b � �b �  � .     

This shows that �a, �b� is a regular space. As homeomorphic image of a regular space is a 

regular space, the result follows. 

  

Theorem 2.7: Let A be a compact subset of a regular space ��, �� . For any open set G 

containing A, there exists a closed set F such that  k � 	 � �. 
Proof: We know that,  � 
 k  ;  � 
 �  and  � is open in X .  
           As X is a regular space, by Theorem 2.1, < an open set �l  such that  � 
  �l �  �l### � �.     

Thus  k �  0���l
m  � 0 �ll
 m  shows that ��l�l
m  forms an open cover for a compact set k . 
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Hence k �  0�ln
Q
ST)  .  Now  �lo####  � �   U V ,  1 9 V 9 �   ; 0�ln

Q
ST)  � � . 

Define  	 �0�lo####Q
ST)  . Then 	 is a closed set such that k � 	 � �. 

Hence the proof. 

  

Theorem 2.8 : Let ��, �� be a regular space. Let A and B be disjoint subsets of X such that A is 

closed and B is compact in X. Then  <  disjoint open sets in X one containing A and the other 

containing B.  

Proof:-        k � p � �   ;   � � k  for any  � 
 p.                                                                                   

As X is a regular space, <   disjoint open sets �q and �q  in � such that � 
  �q and k �  �q      

for each � 
 p. Thus p �0���q
r  �  0�qq
r     ;   ��q�q
r  forms an open cover for p.  
p being compact, p �  0�qn

Q
ST) .  Define � �   0�qn

Q
ST)  .  Then � 
  �. 

Find corresponding �qn U V .  Then  k �R�qn
Q
ST) .  Define � �R�qn 

Q
ST)  

Then � 
  �  and k � �.  
Thus < open sets G and H in X such that  p � �  , k � �  and � � � � �.   
 

Theorem 2.9: Closure of a compact subset of a regular space is compact. 

Proof:- Let ��, �� be a regular space and let k be a compact subset of  �. Let ��s� be any cover 

for  kt . Then ��s� is also an open cover for k (Since  k � kt ) . As  k is compact, 

k �0�sn
Q
ST) . Define � �0�sn

Q
ST) .  Then � 
  � and k �  �. By Theorem  2.7, < a closed set 	 

such that  k � 	 � �.  As kt �  	# � 	.  We get kt   � �  V. ".  kA   �  0�sn
Q
ST)  . 

But this implies that the open cover ��s� of  k has a finite sub cover. Hence kt is compact. 
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§3 Definition and Examples of T3 spaces. 

 

Definition 3.1: Every regular, T1 – space is said to be T3 – space. 

 

Examples 3. 2: 

1)  Every discrete T – space ��, �� with |�| � 1 is a regular, T1 – space and hence a T3 – space. 

2)  Let � � ��, �, �� ��� � � � � , � , � � �, � � , ��� . The T-space ��, �� is a regular space, but 

not a T1 – space. Hence this space is not a T3 – space. 

3)  Every metric space is a T3 – space.      

Metric space ��, �� is a regular space (see Example 1.2 (3)). We also know that any metric space ��, �� is a T1 – space (see Unit 13). Hence, any metric space is a T3 – space. 

4) �=, �>� is a T3 – space. 

5) Let  � � = and let  � denote the topology on = having the open intervals and the set Q of 

rational numbers as a sub-basis. �= , �� is  a T1 – space but not a regular space and hence  �= , �� is not a T3 space. 

Remarks:-  

(1)  �> 8 � and  �= , �> � is a T2 – space will imply �= , �� is also a T2 – space.  

       (See Unit 14). 

(2)  This example 5) shows that  

1) �= , �� is a  ) ? u
��" but not a regular space. 

2) �> 8 �  and  �=, �>� is a regular space but �= , �� is not a regular space. 

 Hence a topology finer than a regular topology on X need not be a regular topology on X. 

 

§4 Properties of T3 spaces 

Theorem 4.1: Every T3 – space is a T2 – space.  

Proof:- Let ��, �� be a T3 – space. Let  � & 2 in � . As � is a T1 – space �2� is a closed set in � .                                   

As  � & 2 we get � � �2� . As � is regular space, < an open set such that � 
 � , 	 � � and � � � � � . But this shows that  ��, �� is a T2 – space. 
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Theorem  4.2: Being a T3 – space is a hereditary property. 

Proof:- Let ��, �� be a T3 – space and let �a, �b� be its subspace. ��, �� be a regular space  ;    �a, �b� is a regular space (By Theorem 2.5).  ��, �� is a T1 – space   ;   �a, �b� is a T1 – space (see Unit 13).  

Hence,  �a, �b� is T3 – space. 

 

Theorem  4.3: Being a T3 – space is topological property. 

Proof:- Let ��, �� be a T3 – space. Let  �a, �b� be any T-space and c d � e a be a 

homeomorphism.  ��, �� be a regular space  ;   �a, �b� is a regular space (By Theorem 3) .  ��, �� is a T1 – space    ;  �a, �b� is a T1 – space (See Unit 13). 

Hence  �a, �b� is T3 – space. As homeomorphic image of a T3 – space is a T3 – space, the result 

follows.  

 

Theorem 4.4: Every regular, T0 – space is  a  T3 – space.  

Proof:- Let ��, �� be a regular T0 – space. Let � & 2 in �.  
As � is a T0 – space � � �######  &  � 2 �###### (See Theorem 2.1 Unit 12). 

Let  <  7 
 � � �######   such that  7 � � 2 �###### . 
Claim: � �  � 2 �###### . 
Let  � 
 �2�####  such that  ��� � � 2 �######  
 ;  � � �######  �  � 2 �######  � � 2 �######  
 ;   v 
  � 2 �######  ; a contradiction. 

Hence  � � � 2 �###### .        
          As  ��, �� is a regular space, <  �, � 
  �  such that � 
 �, � 2 �######   � �  and � � � � �.  
But then for � & 2 , <  �, � 
  �  such that � 
 �, 2 
 � and � � � � �.   
         This shows that X is a T2 – space.  As every T2 – space is a T1 – space, we get  ��, ��  is a 

T3 – space. 
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Theorem 4.5: A compact, T2 – space is a regular space and hence T3 – space. 

Proof:-   Let ��, ��  be a compact space, T2 – space. Let F be a closed set and  � � 	.Then F is a 

compact subset of X ( see Unit 7). Hence<  an open set such that � 
 � , 	 � �  

and  � � � � � (See Unit 14). 

Hence ��, �� is a regular space. As every T2 – space is a T1 – space, ��, ��   is a  

T3 – space.  
 

§5  Solved problems  

Problem 1: Give an example of T2 – space which is not a T3 – space. 

Solution: Consider a topology � on = defined as follows. 

The � nbhds of any non-zero point in = are as in usual topology for = but � nbhds of 0 have the 

form w ? k where k is nbhd of 0 in the usual topology and 

    k � x )Q d � � 1 , 2 , … , � y. 
Then = with this topology is a Hausdorff space since this topology on = is finer than the usual 

topology which is Hausdorff.   

But k is � - closed and cannot be separated from 0 by disjoint open sets, and so �= , �� is not a  

T3 – space (by definition).  

 

Problem 2: A T2 – space need not be regular. 

Solution: Let �> denote the usual topology on =. 

Let � denotes the smallest topology on = containing �> z �= ? k� where k � x)Q d � 
 wy . 
Then �> 9 � 

I) Claim: �=, �� is a T2 – space. �=, �>� is a T2 – space  ;  �=, �� is a T2 – space (see  Unit 14). 

II) Claim: �=, �� is not a regular space. k is a closed set in �=, �� $since = ? k 
 �% and 0 � k. As { any open set containing 0 

and disjoint with k (as any open set in �=, �>� contains a member of k), �=, �� is not a 

regular space.  

Hence, �=, �� is a T2 - space but �=, �� is not a regular space. 
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Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Prove or disprove the following statements. 

1) Every T2 – space is a regular space. 

2) Every T2 – space is a T3- space. 

3) Homeomorphic image of a regular space is a regular space.  

4) Sub-space of a regular space is a regular space. 

5) A compact T2 – space is a regular space. 

6) A compact, T2 – space is a T3 – space   

7) Every regular, T0 – space is a T3 – space. 

8) �=, �>� is a T3 – space. 

9) Being a T3 space is a hereditary property.    

10) Co-finite topological space is a regular space. 

______________________________________________________________________________ 
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§1  Definition and Examples of normal spaces. 
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§3  Definition and Properties of T4 spaces. 

§4  Solved examples. 
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§1 Definition and Examples of normal spaces 

Definition 1.1: A topological space ��, �� is said to be normal if for any two disjoint closed sets 

F1 and F2 in X, 
 two disjoint open sets G1 and G2 in X such that F1� G1 and F2�G2 . 

 

Example 1.2: 

Normal spaces. 

1�  �
, ��� is a normal space.  

Let F1 and F2 be any two disjoint closed sets in  �
, ���. 
�� � ��  �  �   �   �� � � � ��. Thus for each  � �  �� , 
  � �  0 such that 

 �� � � , � � ��  �  � � ��  (since � � �� is an open set in �). 

Hence  �� � �
�  ,  � � �

�  � �� � � .  

Let ! � "   �� � �
2  ,  � � �

2  $�%�
. 

Then ! �  �� and  �� � ! _________________________ (1)  

Similarly for each  � � ��  , 
  � �  0 such that �� � �
�  ,  � � �

�  �  � � ��. 

Hence � � � �
2  ,  � � �

2   � ��  �  �.  Let & � " �� � �
2  ,  � � �

2 $�%�
. 

Then  & � � and  �� � &  ___________________________ (2) 

Only to prove that ! �  & � �. 

Let ' �  ! �  &.  ' � G  � ' �  �� � �
�  , � � �

�  , for some � � �� . 

' � & �  ' �  � ) � �
�  , ) � �

�   For some ) � �� but then 

 |� � '| +  ��    and    |) � '| +  ,� .    
Hence  |� � )| � |� � ' � ' � )|  - |� � '| � |) � '| 
As � and  . are real numbers, they are comparable. 
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Case 1: Let  � -  .. 
   Then |� � )| +  ..  Hence  � � �) � . , ) � .�  By the choice of  . ,  

�) � ., ) � .�  � � � ��.  Hence  � � �) � ., ) � .�   � � � � � �� � � / �� ; which is 

contradiction.  
Case 2. Let  . -  �. 
Then |� � )| +  �. Hence  ) � �� � �, � � ��. 
By the choice of  �, �� � � , � � ��  � � � �� , will imply ) �  � � �� i.e. ) /  �� ; which is 

contradiction.  
Hence  ! � & � �. 

Thus given two disjoint closed sets  �� and  �� in 
, 
 two disjoint open sets !  and & such that 

�� � ! and  �� � &. Hence  �
, ��� is a normal space. 

 

2)  Let � � 6', 7, 89 and � � 6�, �, 6'9, 679, 6', 799 Then  ��, �� is a topological space. 

The Family of closed sets : is given by : � 6�, �, 67, 89, 68, '9, 6899 
Each  pair of disjoint closed sets contains �. Hence the space is  ��, �� a normal space. 

 

Non – normal spaces.  

 1)  Let X= 6��, )� |  �, ) �  
 , ) � 09 .�;� <'8= �>, '� � � ?<@AB< 

 C��>, '� � D��, )� | E�� � >�� � �) � '�� + .  where . + F, A@ ' � 0G 
           C��>, 0� � D��, )� |  E�� � >�� � �) � '�� + .  where . � 0G 
Define for each �>, '� � � , 
 C��>, '� � D��, )� � � | E�� � >�� � �) � '�� + . G  , A@ F � 0 

 C��>, '� � D��, )� � � | E�� � >�� � �) � '�� + . G H 6�>, 0�9 
Define   

 C�>, F� � 6C��>, '� | . + F and F � 0 9 H 6C��>, 0� | . � 09 
Define I � 6C�>, F� / �>, '� � �9. Then  I forms a base for some topology  � on �. 
Let  � � 6�>, 0� | > is a rational9 and K � 6�>, 0� | > is a irrational9. 
Then � and K are disjoint closed sets in X.As there do not exist  two open sets G and H such that 

� � ! , K � & and ! � & � � , we get  ��, �� is not a normal space. 
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§2  Characterizations and properties of normal spaces  

Theorem 2.1: A topological space X is normal if and only if  for any closed set F and an open 

set G containing F, there exists an open set H such that F � & � &N   � !. 
Proof:  Only if part 

Let X be a normal space. Let F be a closed set and G be an open set such that  F � !. Then 

X � ! is a closed set and F � �� � !� � �. As X is normal, 
 open sets H and K in X such that 

F � & , � � ! � K  and  & � K � �.                       

& � K � � �  & �  � � K  and   � � ! � K � � �K � ! .   
Hence  & � � � K � !.   
Therefore & � � � K  and � � K is a closed set�  &N  �  � � KPPPPPPPP � � � K.  

Hence  H � !  or  � � K � !. Thus  
 open sets H in X such that 

 F � & �  &N � ! .                       
If part  

Assume that for any closed set F and an open set G containing F, there exists an open set H such 

that F � & � &N   � !. 
To prove that ��� , ��� is normal. Let F and K be disjoint closed sets in X. 

� � K � �  �     � � � � K.    
As F is a closed set and  � � K is an open set , by assumption  
 open sets H in X such that, 

 F � & �  &N � � � K. We get   K � � � &N .  

Define ! � � �& PPP.  Thus  
  !,& �  �  such that  � � &, K � ! and 

 & � ! � �. But this shows that X is a normal space. 

 

Theorem 2.2: A topological space ��, �� is normal if and only if  for any closed set � and an 

open set ! containing �, there exist  an open set &  and a closed set K such that 

� � & � K � !. 

Proof: Only if part 

Let  ��, � �  be a normal space. Let � be a closed set and ! be an open set in X such that � � !. 

By Theorem 2.1, there exists an open set H such that  
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F � & � &N � !. Define K � &N. Then K is closed set in X. Thus 
 open sets H and a closed set 

K such that F � & � K � !  

If part 

 Assume that for any closed set F and an open set G containing F, there exists an open set H  and 

a closed set K such that F � & � K  � !. 
To prove that ��, ��   be a normal space. Let �� and �� be any two disjoint closed sets in X.  

Then  �� � �� � �  � �� � � � ��   
As �� is a closed and � � �� is an open set, by assumption, 
 open set H and a closed set K such 

that  �� � & � K � � � ��. Then �� � & and ��  � � � K . 
Define   ! � � � K. Then  !,& �  �  such that  �� � & and ��  � ! and ! � & � � . This 

shows that  ��, �� is a normal space. 

 

Theorem 2.3: Urysohn’s Lemma  

 A topological space ��, ��  is normal if and only if for every two disjoint closed sets ��  
and �� of X and closed interval R' , 7S , there exists a continuous mapping @ T � U R' , 7S such 

that  @R�� S � 6'9  and  @ R��S � 679 . 
Proof:  Only if part: 

Let ��, ��  be a normal space and  �� , �� be two disjoint closed sets in X. 

I] First we prove that 
 a continuous function @ T � U R0 , 1S such that   

@ R�� S � 609 and  @ R��S � 61 9. �� � �� � �   � �� � � � ��                                                             

As �� is closed in  � ,  � � �� is open. Hence by Theorem 2.1, 
 an open set   !� �W  in �  such that  

                      �� �  !� �W �  !� �W
PPPPPP � � � �� _____________________ (1)   

Again  �� � !� �W  , �� is closed and  !� �W  is open and X is normal will imply, 
 an open set say 

  !� � W  such that , 

                              �� � !� �W �  !� �W
PPPPPP � !� �W  _________________________ (2)   

Further      !� �W
PPPPPPP � � � �� ,   !� �W

PPPPPPP  is closed and � � �� is  open and X is normal will imply  
 an 

open set say !X � W  such that  

                              !� �W
PPPPPPP   � !X � W � !X � WPPPPPP � � � ��  ______________________ (3)  

From (1), (2) and (3) we get, 
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 �� �   !� �W �   !� �W
PPPPPPP �   !� �W  �    !� �W

PPPPPPP   �   !X � W �   !X � WPPPPPPP � � � ��           

 Continue this process. 

Define  D � YZ�[  | \ � 1 , 2 , … ;  B � 1 , 2 , … _ . Then D is a countable set and  

for �, ` � a  with  � + `  we get,   

� �   !� �   !�PPPPP �   !b  �    !bPPPP   � � � ��   

Define  @ T � U R0 , 1S by  

                                     @��� � 1    if   � � ��       

             � AB@  6� � a / � �    !�9   A@ � / �� 

Obviously, @ R��S � 61 9.                 

If   � �  �� , then @��� � AB@  6� / � � a9 � 0    �Since � �   !�  , c  � � a  in this  case� 
Hence  @ R�� S � 609.  
To prove that @  is continuous. 

  Let �8, ?�  �  R0,1S. To prove that @d� e�8, ?�f � `. 
    Now    � � @d� e�8, ?�f    �    @��� � �8, ?� 
                                                �  8 + @��� + ?            
                                                 �   0 + 8 + @��� + ? + 1 

Find  >, F � a  such that,   0 + 8 + > + @��� + F + ? + 1    

Now > � a and  > + @���     �   � /    !gPPPPP .       

Further  F � a and  @��� + F  �   � �   !h  
Thus when  > + � + F  , � � !h   �   !gPPPP . This shows that @d�R�8, ?�S � !h � !gPPP .                         

Similarly if  � � !h ,   � � !gPPP , then  � � !h � !gPPP .  
Therefore,  7 + @��� + F  �   @��� � �8, ?�. 
Hence  !h � !gPPP  �  @d�R� 8, ? �S .  
Combining both the inclusions we get  @d� R� 8, ? �S �  !h  � !gPPP .  

As  !h � !gPPP � !h � �� � !gPPP� is an open set in X .  

But this in turn shows that @  is a continuous map. Thus for disjoint closed sets  ��  and  �� in �, 


 a continuous function  @ T � U R0 , 1S  such that  @ R�� S � 609 and  @ R��S � 61 9.  

II] To prove that 
 a continuous function  = T � U R' , 7S such that   
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= R�� S � 6'9  and   = R��S � 67 9.      

 We know that i: R 0,1 S  U R', 7S  defined by i��� � ' � �7 � '��  is a continuous 

function. As composition of two continuous functions is a continuous function ,  

= � i;@ T � U R', 7S is a continuous function. Further =��� � iR @���S ; c  � � �.  

If  � �  �� ,  then  =��� � iR @���S  � =��� � iR 0S  � ' � �7 � '�. 0 � '. 
Thus  = R�� S � 6'9. 
If  � �  �� ,  then   =��� � iR @���S  � =��� � iR 1S  � ' � �7 � '�. 1 � 7. 

Thus  =R�� S � 679.  

If part: 

 Let  ��, � � be a topological space such that for any two disjoint closed sets ��  'B?  �� in 

X, 
 a continuous function @:� U R0, 1S such that @ R�� S � 6'9 and @ R��S � 679.  
To prove that  ��, � � is normal. 

Let  ��  and  �� be any two closed sets. By assumption 
 a continuous function @ T � U R0 , 1S 
such that  @ R�� S � 6'9 and  @ R��S � 67 9.  

As k a , mdn�      and �  mdn
�   , b p are open in [ a, b ] and @ is continuous, we get 

@d� qk a , mdnn    r   and @d� k�  mdn
n   , a p p  are open in �. Further they are disjoint and 

�� �  @d� qk a , mdn
�    r   and ��  �   k�  mdn

�   , b p p . 
This shows that  ��, � � is normal. 

 

Theorem 2.4: Any compact, regular space is normal. 

Proof:-Let ��, � � be a compact, regular space. Let � and K be any two disjoint sets in X. As X 

is compact, K is a compact subset of X (see Unit 6). Thus � is a closed subset of X and K is a 

compact subset of X with � � K �  �. As X is regular space, 
 disjoint open sets ! and & such 

that � � !  and K � & (see Unit 15). But this shows that ��, � � is a normal space. 

 

Remark: Every regular space need not be normal but a compact, regular space is a normal 

space. 

 

Theorem 2.5: Compact, Hausdorff space is normal. 
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Proof:-Let  ��, � � be a compact, T2 – space. Let F and K be any two disjoint closed sets in X. 

X being T2 , 
 two disjoint open sets G and H in X such that � � ! , K � & and ! � & � � 

(see Unit 14). Hence X is normal. 

 

Remark: A compact space need not be normal but a compact, Hausdorff space is normal and a 

compact regular space is normal. 

 

Theorem 2.6: Every regular, Lindelof space is normal. 

Proof: Let ��, � � be a regular, Lindelof space. Let F and K be any two disjoint closed subsets of 

X. Fix up any  � � �. Then � / K  � � � � � K and  � � K is an open set in X.  

As X is a regular space, 
 open set !$   in  � such that  � �  !$ � !$PPP  � � � K.  
Hence  � � " 6�9

$�%
 �  "!$

$�%
 . 

This shows that  6!$  9$ �% forms an open cover for F . As X is a Lindelof space, and F is a closed 

subset of X, we get F is a Lindelof  space. 

Hence the open cover 6!$  9$ �% of F contains a countable sub cover. 

Let   � �  "  !$
s

tu�
 . 

In the same way we can find a countable cover 6&v9v�w of K. 

Define  xt � !t �"� &yPPP �
t

vu�
   and   zt � &t �"�!yN �

t

vu�
 

Then  xt and  zt are open sets in X for each B. 

Define  x �  " xt
s

tu�
   and    z �  "zt

s

tu�
 

Then x and z are open sets in � such that  � � x   and  K � z  and  x � z � �. 

Hence ��, � � is a normal space. 

 

Corollary 2.7: Every regular, second axiom space is normal. 

Proof:- Every second axiom space is a Lindelof  space. Hence by Theorem 2.6 we get every 

regular second axiom space is a normal space. 
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Theorem 2.8: Being a normal space is a topological property. 

Proof:-Let ��, � � be a normal space. Let  �{, �|� be any T-space and Let @ T � U { be a 

homeomorphism. 

To prove that Y is normal. 

Let �|  and K|   be any two disjoint closed sets in �{, �|�. @ T � U { being continuous, 

@d�R�|S  and @d�RK|S  are two disjoint closed sets in ��, � �. As X is a normal space ,
 two 

disjoint open sets G and H in X such that @d�R�|S  � !  and  @d�RK|S  � & . As @ is an open 

map. @�!� and @�&� are open sets in Y. Further  �| �  @�!� and  

 K| �  @�&� and  @�!�  �  @�&� � f�G � H� � @��� � �. Thus any two disjoint closed sets F 

and K in Y can be separated by disjoint open sets in Y. Hence �{, �|� is a normal space. 

 

Corollary 2.9: Every closed continuous image of a normal space is normal. 

 

Theorem 2.10: Closed subspace of a normal space is normal. 

Proof:- Let �� , � � be a normal space. Let �{, �|� be a closed subspace of ��, � �. To prove that 

�{, �|� is normal. Let �| and  K|   be any two disjoint closed sets in �{, �|�.  
Then  �| � � � { and  K| � K � { for some closed sets � and K in X (see Unit (4)). As { is a 

closed subset of �,  �| � � � { is a closed subset of  �. Similarly,  K| is a closed subset of �. 

Further  �|  � K| � � and  ��, � � is a normal space will imply the existence of two disjoint open 

sets G and H in X such that  �|  � ! and  K|  � & .  

But then !| � ! � { and  &| � & � { are disjoint open sets in  �{, �|� such that � �  !| and  

K � &|. Hence �{, �|� is a normal space. 

 

Remark:- Subspace of a normal space need not be normal. Hence being a normal space is not a 

hereditary property. But by Theorem 2.10, being a normal space is closed hereditary. 

 

§3  Definition and Properties of T4 spaces  

Definition 3.1: A topological space which is both normal and T1   is called a T4-space. 

 

Theorem 3.2: Every Compact, Hausdorff space is a T4 – space. 
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Proof:- Every Compact, Hausdorff space is a  normal space (see Theorem 2.5) 

and every Hausdorff space is a T1 – space (see Unit 14). Hence Every Compact, Hausdorff space 

is a T4 – space. 

 

Theorem 3.3: Every ~� – space is a ~X – space. 

Proof:- Let �� , � � is a ~� – space. To prove that �� , � � is a regular space. Let F be any closed 

set in X and � / �. As �� , � � is a ~� – space, {x} is a closed set in �� , � �.                             
  � / �  �  6�9 � � �  �          

 As X is a normal space, 
  !, & �  �  such that  6�9 � !,   � � &  and  ! � & � �.  

But this in turn implies that X is a regular space. As X is a regular, ~� – space. 

We get X is a ~X– space. 

 

Corollary 3.4: Every T4 space is a regular space. 

 

Theorem 3.5: Being a ~� - space is a topological property. 

Proof: We know that the property of being a ~� – space is a topological property and the 

property of a space being a normal space is also a topological property. Hence the property of 

being a ~� – space is a topological property. 

 

§4  Solved examples 

1) Show that  any metric space is normal. 

Solution: Let  �� , ?� be a metric space and let � be the topology induced by ? on X. 

To prove that  �� , � � is a normal space.Let F be any closed set and G be any open set in 

X such that � �  ! .As G is open, for each � � �  
 �x > 0 such that S(�, �x) � G. 

Define  & � " S �x � r�/��
$�%

 

Then H is an open set in X and � � &.Further, 
              

& � " S �x � r�/��
$�%
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    �  " S �x � r�/��
$�%

 

    �  " S �x � r$�
$�%

 

               � ! �By Construction� 

Thus given a closed set � and an open set ! with � �  ! , 
 an open set & such that                 

� � & �  &  � !. Hence  �� , � � is a normal space(see theorem 2.1). 

 

  

2) Give an example of a normal space which is not regular. 

Solution:-Let X={a,b,c} and � � 6�, �, 6'9, 679, 6', 799 Then + �,� � is a topological 

space. 

I) �� , � � is not regular. 

 The Family of closed sets � � 6�, �, 67, 89, 68, '9, 6899 For ' / 67, 89 ,there do not exist 

two disjoint open sets one containing a and other containing {b,c}. 

Hence + �,� � is not a regular space. 

II) �� , � � is a normal space. 

 The pair of disjoint closed sets contains �.Hence the space is a normal space.  

Thus every normal space need not be a regular space. 

 

Remark: This space  �� , � � is normal but it is not a T1-space (Since {a} is not a closed set in 

X).Hence this space is not a T4-space.Thus this example also shows that every normal space 

need not be a T4-space.  

 

3) Give an example to show that subspace of a normal space need not be normal. 

Solution: Let �� , � � be any discrete T-space with X as an uncountable set. 
Let X�| � X� H 6�9 be any point compactification of ��. 

Let   �� , � � be any discrete topological space with �� as an infinite set. 

Let ��| � �� H 6�9 be one point compactification on of ��. 
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Define  � � ��|  �  ��| . Let � denote the product topology on X. The product 

space �� , � � is a compact space as ��| and ��| both are compact spaces. The product 

space  �� , � � is a T2-space. Hence the product space is a normal space (see Theorem 2.5) 

Define  { � � � 6�, �9. Consider the subspace  �{, �|� of  ��, ��.  
 Then � � 6��, )� | ) � ��9 and  � � 6 ��, �� | � � ��9 are disjoint closed sets in X.  

As these disjoint closed closed sets are not contained in any disjoint open sets in �{, �|� 
we get �{, �|� is not a normal space. Thus this example shows that subspace of a normal 

space need not be normal. 

 

4) Give an example of a regular space which is not normal.                                                    

Solution: Niemytzki’s space is a regular space but not normal. 

 

5) Show that every T3 space need not be a T4 space. 

Solution: Let X= 6��, )� |  �, ) �  
 ,   ) � 09 
For each �>, '� � �  define,  

 C��>, '� � D��, )� | E�� � >�� � �) � '�� + .   where  . + F, A@ ' � 0G 
           C��>, 0� � D��, )� | E�� � >�� � �) � '�� + . �=<�< . � 0G 
Define for each �>, '� � � , 
 C��>, '� � D��, )� |  � � E�� � >�� � �) � '�� + . G , A@ F � 0 

 C��>, '� � D��, )� � �  |  E�� � >�� � �) � '�� + . G H 6�>, 0�9 
Define   

 C�>, F� � 6C��>, '� | . + F 'B? F � 0 9 
    H 6C��>, 0� | . � 09 
Define  I � 6C�>, F� | �>, '� � �9 
Then  I forms a base for some topology  � on X.  
�� , � � is a T3 space .  

Let � � 6�>, 0� | > is a rational9 and K � 6�>, 0� | > is a irrational9 
Then � and K are disjoint closed sets in X. As there do not exists two open sets ! and & 

such that � � ! , K � & 'B? ! � & � �, we get  �� , � � is not a normal space and 
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hence ��, �� is not a T4 space. Thus every T3 space need not be a T4 space. T4 space This 

space is called Niemytzki space. 

 

Remark:- This example also shows that                                                                                                                                         

1.Subspace of a T4-space need not be a T4-space.                                                                                       

2.Subspace of a T4-space need not be a normal space. 

 

6) Give an example to show  that every normal space need not be a T4-space. 

Solution:-Let X={a,b,c} and � � D�, �, 6'9, 679, 6', 79G. Then  ��, �� is a topological 

space. 

��, �� is a normal space as the pair of disjoint closed sets contains � but it is not a  

T1-space (Since {a} is not a closed set in X). Hence this space is not a T4-space. 

This example shows that every normal space need not be a T4-space. 

 

Exercises ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  

  I) Prove or disprove the following statements. 

1) Being a normal space is a hereditary property. 

2) Being a normal space is   a closed hereditary property. 

3) Every normal space  is a T4-space. 

4) Every regular space is  a T4-space 

5) Every  T3 space  is a T4-space 

6) Subspace of a T4-space  is a normal space. 

7) Subspace of a T4-space   is a T4  space. 

8) Every  normal space  is  regular. 

9) Every regular space  is   normal. 

10) Being a normal space is a  topological  property. 

11) Being a  T4 space is a  topological  property. 

12) Every  T4 space is a regular space. 

13) Every Compact, Hausdorff space is a T4 – space. 

14) Every Compact, Hausdorff  space is a  normal  space. 

15) Every Compact  space is a T4 – space. 
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16) Every  Hausdorff  space is a  normal  space. 

17) Every closed continuous image of a normal space is normal. 

18) Every continuous image of a normal space is normal. 

19) Every Compact,  regular  space is a  normal  space. 

20) Every  second axiom regular space is a  normal  space. 

  II) Show by an counter example that a subspace of a normal space need not be normal 

______________________________________________________________________________  
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§1 Definition and Examples 

Definition 1.1: A topological space ��, �� is said to be completely normal if it satisfies the 

following axiom. 

            If A and B are two separated subsets of X, then there exists two disjoint open sets, one 

containing A and the other containing B. 

 

Examples 1.2: 

1) Any discrete topological space is completely normal. 

2) Every metric space is completely normal. 

Let  ��, �� be a metric space and Let  �  be the topology introduced by �. To prove that 

��, �� is completely normal. Let A and B be separated sets in X.  

Therefore 	 
 �� 
 �  and  � 
 	� 
 � .  

Hence  � � 	   �   � � ��      �    �  ��  � 0  such that �� � , ��� 
 � 
 �. 
Similarly  � �  �     � 	�    �    �  �!  � 0  such that ��   , �!� 
 	 
 �. 
Define  " 
 # $% � & � ,  �� '( ) *  � � 	+    and  , 
 # $% � &  , �! '( ) *  � �+ 

            By the definition of � ,  ��� , �� � �   -  . � �  and  � � 0. We get ",, are open sets. 

Further  � � � & � ,  �� '( )  - � � 	   �   	 
 /0�1
��2

 3  /$� & �, �� '( ) / � � 	+ 
                                                           �   	 3 ". 
 Similarly � 3 ,   . 
Claim that  " 
  , 
 � .  

Let  " 
  , 5 �. Hence �  6 � " 
 , .  6 � "  �   6 �  � & � ,  �� '( )  for some � � 	.   
6 � , �   6 � � &   ,  �! '( )   for some   �  �.    
Hence  ��� ,  6� 7  �� '(    and  � &  , �! '( )   7  �! '(   . 
 

Unit 17: Completely normal spaces and TCompletely normal spaces and TCompletely normal spaces and TCompletely normal spaces and T
5555
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Hence  ��� ,   � 8   ��� , 6� 9  ��6 ,  � 
                             7  �� '(  9  �! '( . 
                             7 ��  

But  ���,  � 7 ��      �     � ��� , ���     
                                 �      � ��� , ��� 
 � 
 �  ;    a  contradiction.   
Hence " 
 , 
 �.  
            Thus given two separated sets 	 and � in �,  � disjoint sets " and , such that 

	 3  " , and  � 3  ,.  

Hence � is a completely normal space. 

 

§2 Properties and characterizations 

Theorem 2.1: Every completely normal space is normal. 

Proof: Let ;< , ;' be any two disjoint closed sets in a completely normal space  ��, ��.  
As ;<= 
 ;< and ;'��� 
 ;' we get ;< 
 ;' 
 �  �   ;< 
  ;'��� 
 �  and   ;<=  
  ;' 
  �.  
Thus ;< and ;'  are separated sets in X. Hence by definition, � disjoint open sets G and H such 

that ;<  3 " and ;'  3 ,. This shows that ��, �� is normal. 

 

Remark: Converse of the Theorem 2.1 need not be true. 

i.e. Normal space need not be completely normal. 

For this consider the following example. 

Let � 
 0�,  , >, �1 and � 
 0� , 0�1 , 0�,  1 , 0�, >1 , 0�,  , >1 , �1 . The family of closed sets is 

given by, ? 
 0�, 0 , >, �1, 0>, �1, 0 , �1, 0�1, �1. 

(I) To prove that �X , �� is normal. 

Let 	 and � be any two disjoint closed sets in �. Then one of them must be empty. 

Let 	 
 � . Take " 
 � and , 
 �. Then ", , � � , " 
 , 
 � , 	 3 " and � 3 ,. 

Hence �� , �� is a normal space. 

(II) To prove that �� , �� is not completely normal.  

By Theorem 2.3, it is sufficient to prove that there exists a subspace �A , �B� of �� , �� 
such that �A , �B� is not normal. 

Define A 
 0�,  , >1. The relative topology  �B on A is given by, 
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�B 
 0� , 0�1 , 0�,  1 , 0�, >1 , A1 
Here, ?B 
 0� , 0 , >1 , 0>1 , 0 1 , A1 denotes the family of closed sets in �A , �B� 
0 1 and 0>1 are disjoint closed sets in A which are not separated by disjoint open sets 

in �A , �B� . Hence �A , �B� is not normal. 

As there exists a subspace �A , �B� of  �� , �� such that �A , �B� is not normal. 

Hence �� , �� is not completely normal. [A normal space is completely normal if and 

only if each subspace of it is normal]  

This example also shows that any T4 – space need not be completely normal. 

 

Theorem 2.2: Being a completely normal space is a hereditary property. 

Proof:- Let �� , �� be a complete normal space and Let  ��B, �B� be its subspace. To prove that 

��B, �B� is a completely normal space. 

 Let A and B be any two separated sets in ��B , �B�. 
Claim that A and B be are separated subsets of  ��, ��. A and B are separated in ��B, �B�. 
�   	 
  CB��� 
 �  and  � 
  CB�	� 
 �.   
�   	 
 D C��� 
 �BE 
 �   and � 
 D C�	� 
 �BE 
 �  .   
�   D	 
 �BE 
 C���  
 �  and   D� 
  �BE 
 C�	�  
 � .  
�   	 and � are separated sets in �. 
As X is a completely normal space, �  ", , �  �  such that 	 3 " , � 3 , and " 
 , 
 �. 

Define "B 
 	 
 �B and   ,B 
 , 
 �B .  Then "B, ,B � �B.    
 "B 
 ,B 
 " 
 , 
 �B 
 � ,   	 3  "B and � 3 ,B .  This shows that ��B , �B� is a 

completely normal space. 

 Thus as any subspace of a completely normal space is completely normal, the result 

follows. 

 

Theorem 2.3: A topological space �� , ��  is a completely normal space if and only if every 

subspace of X is normal. 

Proof: -‘ Only if part’ follows by Theorem 2.1 and Theorem 2.2.Hence to prove ‘if part’ only 

 Let �� , �� be a topological space such that each subspace of X is normal. To prove 

�� , �� is completely normal. 
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 Let A and B be any two separated sets in X. Then  	 
 �� 
 �  and � 
 	� 
 � . 
Define �B 
 � F D	�  
 ��E 
 �� F 	�� 
 �� F ���. 
            Let �B 
 0 " 
 �B | " � �1 be the relative topology on �B. As 	� is closed in X, 	� 
  �B is 

closed in �B. Similarly, �� 
 �B is closed in �B. 
Further �	� 
  �B� 
 � �� 
 �B� 
 �	� 
  ��� 
 �B  
           
 �	� 
 ��� 
 D� F �	� 
 ���E 
 � .   

Thus 	� 
 �B  and  �� 
 �B are disjoint closed subsets of  �B. As  �B is normal,  

 �  "B, ,B  �  �B  such that   �	� 
  �B� 3   "B and  � �� 
  �B� 3   ,B  and   "B 
   ,B 
 �.   
As  "B, ,B � �B  �   "B 
 " 
 �B  and   ,B 
 , 
 �B  for some ", , �  �. 

Claim  that  	 3 "  �H� � 3 " .  

1E      	 
 �� 
 �          �    	 3 � � F ���       
          	� 
  �� 3 ��         �     � F D 	� 
 ��E  J � � F ��� .      
    �    �B  J  � � F ��� J   	   
Thus  	 3 �B, Similarly we get � 3 �B. 
2E        	 
 �B     
    	 
 D � F � 	� 
 ���E  
                               
    	 
 D �� F 	�� # �� F ���E   
                               
    L	 
 D� F 	�EM # D	 
 D� F ��EE  
                               
    � # 	  
  	  

    D  	 3 	�    �  	 
 D� F 	�E 
 �. 
       	 
  �� 
 � �  	 3 � � F ���   �   	 � � F ���  
 	  E  
    Thus  	 
 �B 
 	, Similarly we get  � 
 �B 
 �. 

3E     	 3 �B    �   	 
 	 
 �B   3   	�  
 �B   3   "B  3  "       

 Thus   	 3  " , similarly we get � 3  ,. 
Thus for given any pair of separated sets in A and B in  ��, �� �  ",, � �  such that 	 3  "  
and � 3  ,  and  " 
 , 
 �. 
             Hence �� , �� is a completely normal space. 

 

Example:  Let X = { a, b, c, d } and � 
 0�, 0 a1, 0 a, b1, 0a, c1, 0 a, b, c 1, X 1. 
Take �B 
 0 �,  , >1 then the relative topology �B and �B   is given by  as follows, 

 �B 
 0 �, 0 �1 , 0� ,  1 , 0� , >1 , �B1 .  0 1 and 0>1 are disjoint closed sets in  ��B , �B� .    
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 As there are no disjoint open sets " and , in ��B , �B� such that 0 1 � " and 0>1 � ,. 
We get ��B , �B� is not a normal space. Hence by the Theorem2.3 , �� , �� is not a completely 

normal space. 

 

Theorem 2.4: Being a completely normal space is a topological property. 

Proof:-  Let �� , �� be a complete normal space. Let  ��B , �B� be any topological space and let 

U:� W �B be a homomorphism. To prove that �B is a completely normal space. 

 Let A and B be any two separated sets in �B. Hence 	 
 �� 
 �  and  � 
 	�.   
Since U is continuous UX<D 	 E����������  3  UX<D 	=  E and UX<D � E����������  3  UX<D�� E . 
Hence  UX<D	 E  
 UX<D � E   3   UX<D 	=  E 
  UX<D 	=  E 
 UX<D	 
  �� E 
 UX<D� E 
  �.  
Therefore,   UX<D	 E  
 UX<D � E 
  �  _______________________________ (1) 

Similarly we can show that   UX<D	 E  
 UX<D � E 
  � __________________ (2) 

 From(1) and (2) we get UX<D	 E and UX<D�E are separated sets in X. As X is a completely 

normal space � disjoint open sets say G, H in X such that  UX<D	 E  3 " and  UX<D�E 3  ,. 
As U is onto,  	 
 UL UX<D	 EM and  � 
 ULUX<D�EM. 
Hence 	 
 ULUX<D	 EM  3 U�"�  and  � 
 UD UX<D�EE  3 U�,�. 
Further U�"� 
 U�,� 
 U�" 
 ,� 
  �  �Since U is one F one�. 
Further U is an open map � U�"�, U�,� �  �B.  
Thus for two disjoint separated sets A and B in �B there exist U�"�, U�,� �  �B one containing A 

and the other containing B. 

 Hence ��B , �B� is a completely normal space. 

As homeomorphic image of a completely normal space is completely normal, the result follows. 

 

Theorem 2.5: Every regular, second axiom space is completely normal. 

Proof: Let ��, �� be a regular, s.a.s. To prove that ��, �� is completely normal. Let A and B be 

separated sets in X. i.e.  	 
 �� 
 �  and  � 
 	� 
 � . 
 . � 	   �   . � ��    �  x � � F ��  � � "Z � � . 

 such that . �  "Z   3  "Z  ����  3 � F ��.  
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 Hence  0"Z  | . � 	1 will form an open cover for A. As X is s.a.s. the open covering 

0"Z  | . � 	1 of A can be reducible to a countable sub-covering (See Unit (9) Theorem 1.8)  

Denote it by 0 "[1[�\. Similarly for B �  a countable sub-covering  0 ,[1[�\. 
Define  " 
 / ]"^ F / ,_���

 [ ` ^
a

 ^ � \
    and   , 
 / ],^ F / "_=

 [ ` ^
a

 ^ � \
 

Define b^ 
 "^ F / ,_���
 [ ` ^

   - H � c  and  d̂ 
  ,^ F / "_=
 [ ` ^

   - H � c 

Then for each H , b^ and d̂  are open sets. Hence/ b^
 [ � ^


 " and  / d̂
 [ � ^


 ,  are open.  
 Further b^ 
 de 
 �    - H � c and f � c.  
Hence " 
 , 
 �  �by the definition of b^  and d̂  �. 
Further 	 3 / "^

 ^ � \
  and  "^ 3 "^��� 3 � F ��    - H   imply 	 3 ". 

          Similarly  � 3 ". Thus for separated sets A and B of X, � disjoint sets G and H such that 

	 3 "  and � 3 ". 
           Hence X is a completely normal space. 

 

§3  T5 – spaces 

Definition 3.1: A T5- space is a completely normal, T1- space. 

 

Theorem 3.2: Every T5- space is a T4 – space. 

Proof: - As every completely normal space is normal we get every T5 – space is a T4- space. 

 

Remark:- Converse of Theorem3.2 need not be true. 

i.e. every  T4- space  need not be  a T5- space. 

See remark after Theorem 2.1. 

 

Theorem 3.3: Being a T5- space is a topological property. 

Proof: - We know that being a completely normal space is a topological property and being a  

T1- space is a topological property. Hence being a T5-space  is a topological property. 
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Theorem 3.4: Being a T5-space  is a hereditary property. 

Proof: - we know that being a completely normal space is a hereditary property. Also being a  

T1 – space  is a hereditary property. Hence being a T5 – space is a hereditary property. 

 

 

Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

   Prove  or Disprove the following statements. 

1) Every completely normal space is normal. 

2) Every normal space is completely normal. 

3) Any subspace of a completely normal space is completely normal 

4) Any subspace of a completely normal space is normal. 

5) Being a T5 – space is a hereditary property. 

6) Being a T5 – space is a topological property. 

7) Every T5 – space is aT4 – space. 

8) Every  T4 – space is aT5- space. 

______________________________________________________________________________ 
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§1  Definition and examples 

Definition 1.1: A topological space 	
, �
 is said to be regular if it satisfies the following axiom.                           

                  “If F is a closed subset of  X and x is a point of X not in F, Then there exist a 

continuous function  �: 
 � � 0 , 1� such that �� � � � 0 and  �� � � � �1�.  

 

Examples 1.2: 

1) Fort’s space is a completely regular space. 

2) Every metric space is a  completely regular space. 

3) 	�, �� 
 is a completely regular space. 

 

§2  Characterizations and properties 

Theorem 2.1: A topological space 	
, �
 is completely regular if and only if for every � � 
 and 

every open set containing � , there exists a continuous mapping  �: 
 � �0 , 1�   such that 

 ���� � 0  and �� � � 1 ,   !   � 
 " #. 

Proof:- Only if part. 

 Let X be a completely regular � � # where G is an open set in X. Then X-G is a closed     

set in 
 with � $ 
 " #. As X is completely regular, % a continuous function  �: 
 � �0 , 1� 

such that  ���� � 0 and  �� 
 " # � � �1�  

&. '.  �� � � 1 for each  � 
 " #.  

If part.  

Assume that for every � � 
 and every open set containing, there exists a continuous mapping 

�:
 � �0 , 1� such that  ���� � 0  and �� � � 1 , !  � 
 " #. 

 To prove that X is a completely regular space. Let F be a closed set and � $ �.  

Then 
 " � is an open set containing x. Hence by assumption,  % a continuous real valued  

function 

Unit 18: Completely rCompletely rCompletely rCompletely regular spacesegular spacesegular spacesegular spaces    andandandand    TTTT��
� sssspacespacespacespaces    
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  �: 
 � �0 , 1� such that   ���� � 0  and �� 
 " # � � 1    !  � 
 " �
 " ��   

 &. '. ���� � 0  and �� � � 1, !  � �. 

 Hence  	 
, �
 is a completely regular space. 

 

Theorem 2.2: Let 	
, �
  be completely regular space. Let N be neighborhood of � � 
.  

Then  % a continuous function  �: 
 � �0 , 1� such that  ���� � 0 and �� � � 1 , !  � 
 " (  

and conversely. 

Proof:- As N is neighborhood of  � � 
,   %  an open set G in X such that  � � # ) (. 

Hence  � $ 
 " #, where 
 " # is a closed set in X. 

 As X is completely regular, % continuous function �: 
 � �0 , 1� such that 

 ���� � 0  and  ��
 " #� � �1�. 

As  # ) ( *  
 " ( ) 
 " #   we get  �� � � 1 for each  � 
 " (. 

Conversely, assume that %  a continuous function  �: 
 � �0 , 1�  such that  

���� � 0  and �� � � 1 ,   !  � 
 " ( 

To prove that  	
, �
 be completely regular space. Let G  be an open set in X such that � � #. 

 As G is neighborhood of  � � 
, %  a continuous function �: 
 � �0 , 1� such that  

���� � 0  and �� � � 1 , !  � 
 " #.  

Hence by Theorem 2.1, 	
, �
  is a  completely regular space. 

 

Theorem 2.3: Let 	
, �
 be a completely regular space.Let F is a closed set in X and � $ � . 

Then  %  a continuous function �: 
 � �0 , 1� such that ���� � 1 and ���� � �0�.  

Proof: Let � $ � and F be a closed set in X. As X is a completely regular space % a continuous 

function  +: 
 � �0 , 1�  such that  +��� � 0 and +��� � �1�. 

Define the function +: 
 � �0 , 1� by ���� � 1 " +���,   ! � � 
.   

Then f is a continuous function and ��0� � 1 " +�0� � 1 " 0 � 1 and  

��1� � 1 " +�1� � 1 " 1 � 0.  

Thus  % a continuous function �: 
 � �0 , 1� such that  ��0� � 1 and +�1� � 0. 

  

Theorem 2.4: Being a completely regular space is a topological property. 

Proof: - Let 	
, �
  be a completely regular space. Let 	
, , �,
 be any topological space and 

�:
 � 
, be a homomorphism. To prove that 
, is a completely regular space. Let �, be a  
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closed set in 
, and  �, $  �,  ��, �  
, �.  

 As f is onto, %  � � 
 such that ���� �  �,. As f is a continuous function, �-.��,� is a 

closed set in X. 

�, $  �,   *   �, $ �-.� �,�.  

            Hence X being a completely regular space, % a continuous function +: 
 � �0 , 1�  

such that  +��� � 0 and  +��-.��,�� � �1�. 

Thus  +��-.��,�� � 0   and   +��-.��,�� � �1�   

  *    �+ / �-.���,� � 0   012      �+ 3 �-.���,� � � 1 �   

Now  + / �-.: 
,  � �0,1�  

�-.: 
, � 
 is a continuous as � is a homeomorphism. 

Hence  + / �-. is a continuous map (see Theorem … in  Continuous function) 

Thus for �, $  �,   %  a continuous function  +3 �-.: 
, � �0 , 1� such that  

�+ 3 �-.���,� � 0   and    �+ 3 �-.���,� � �1�. 

 Hence 
, is a completely regular space. As homeomorphic image of a completely regular 

space is a completely regular space, we get being a completely regular space is a topological 

property. 

 

Theorem 2.5: Being a completely regular space is a hereditary property. 

Proof: - Let  	
, �
  be completely regular space and Let  	
, , �,
 be its subspace. To prove that 

	
, , �,
 is completely regular. Let �, be any closed set in 
, 012  �, $  �,  ��, �  
, �. 

As �, is a closed set in 
,,% a closed set F in X such that, 

�, � � 4 
,, �, $  �,  *  �, $  �,  ��, �  
, �.    

  As 	
, �
 is a completely regular space and  �, $  �  % a continuous function �: 
 � �0 , 1�  

such that ���,� � 0  and ���� � �1�. 

 Let + denote the restriction of � to  
,. Then + is a real valued continuous function 

defined on  
, such that +��,� � 0 and +��,� � � �.  

Hence  
, is a completely regular space. Thus subspace of a completely regular space is a 

completely regular space. Hence the property of being a completely regular space is a hereditary 

space. 
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Theorem 2.6: Every completely regular space is regular. 

Proof: Let 	
, �
 be a completely regular space. To prove that 	
, �
 is regular. Let F be a closed 

set and � $ � �� � 
�. A s  X is a completely regular, % a continuous function  �: 
 � � 0 , 1� 

such that �� � � � 0  and �� � � � �1�. We know that 	5, ��
 is a Hausdorff space.  

Hence [0,1] (being a subspace of 	5, ��
) is a Hausdorff space. 

 As 0 6 1 in � 0,1 �, %  disjoint open sets G and H in [0,1] such that 0 � # and 1 � 7.  

But �: 
 � � 0 , 1�  &8 931:&1;3;8 * �-.�#�  �  �  and  �-.�7� � � . 

Further � �  �-.�#� and � )    �-.�7�.  Thus for  � $ � ,  % disjoint open sets  �-.�#�   

and   �-.�7�  in  
  such  that  � � �-.�#� and � )  �-.�7� .  

Hence 	
, �
 is a regular space. 

 

Theorem 2.7: A normal space is completely regular if and only if it is regular. 

Proof: - As every completely regular space is a regular space (see Theorem2.6), the proof of    

‘only if ’part follows immediately, 

 To prove if part, assume that X is a normal, regular space. To prove that X is completely 

regular space. Let F be a closed set and � $ � �� $ 
�. Then 
 " � is an open set containing �. 

As X is a regular space, an open set G in X such that � � # )  #<  ) 
 " � (see Theorem 

1 in … Regular spaces /=� "  8>09'). 

 As  #<  ) 
 " �   we get  #< 4 � � ?. 

Thus as #<  and � are disjoint closed sets in a normal space X. Hence % continuous function 

�:
 � �0 , 1�   such that  ��#<� � �0� and ���� � �1�  �by Urysohn's Lemma�.  

As � � #<   we get ���� � 0 and ���� � �1�. Hence X is a completely regular space. 

 

Corollary 2.8: Any compact, T2 – space is completely regular. 

Proof:-  We know that compact, T2 – space is both  normal and regular (see Theorems …and … 

T2 – space) . Hence by Theorem 2.7, any compact, T2 – space is completely regular. 

 

Corollary 2.9: Any compact, regular space is completely regular. 

Proof:-  We know that any compact regular space is normal (see  Theorem ….Normal spaces)  

Hence by Theorem 2.7,  it is a completely regular space. 
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Theorem 2.10: Every locally compact, Hausdorff space is completely regular. 

Proof: - Let 	
, �
  be a countably compact, Hausdorff space. Let  	
, , �,
 be one point 

compactification of  	
, �
 . 
, � 
 C � ∞� where ∞ $ 
  and  

�, � �# ) 
, | 
, " # is a closed, compact subset of 
 � C � . 

Claim 1: 	
, , �,
is a Hausdorff space.  

Let � 6    in  
, .  

Case 1:- �,   � 
  and � 6  . 

          As X is a T2 – space, % disjoint open sets G and H in 	
, �
  such that  � � #  and  � 7 

But then  #, 7 �  �, and hence in this case � and   are separated by disjoint  open sets in 
,. 

Case 2:-  � � ∞ � 
,  &. '.  � $ 
  and   $ 
. 

 As X is  a locally compact space and  � 
 ,   is an interior point of some compact 

subset say K. Let G be an open set in X such that  � � # ) F. As K is a compact subset of a  

T2 – space, K is a closed in X and hence 
, " F is open in 
,.Thus � � # , ∞ � 
 " F  and #,


, "F  are disjoint open sets in 
,. 

              Thus from both the cases we get 	
, , �,
 is a Hausdorff space. 

Claim 3:- 	
, , �,
 is a completely regular. As 	
, , �,
 is a compact, Hausdorff space, it is 

completely regular (By Corollary2.7). 

Claim 4:- 	
, �
  is a completely regular. We know that 	
, �
  is a subspace of 	
, , �,
 and 

	
, , �,
 is a completely regular space. Hence  	
, �
 is a completely regular space (see Theorem 

2.4 ).  

 

§3  �
�
�
�
 spaces or Tichonov spaces  

Definition 3.1: Completely regular, T1 – space is called a Tichonov space  or a =��
�
 space. 

 

Theorem 3.2: Every Tichonov space ( =��
�
 space) is a T3 – space. 

Proof:- As every completely regular space is regular (Theorem 6), every Tichonov space  

(=��
�
  space) is a T3 – space. 

 

Theorem 3.3: Every space T4 – space is a Tichonov space ( =��
�
 
 8>09' �. 
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Proof: Let 	
, �
 be a T4 – space i.e. 	
, �
 is a normal T1 – space. To prove that 	
, �
 is a 

Tichonov space. Let � $ � where F is a closed set in X (� � 
). As X is a T1 – space, ��� is a 

closed set in X. 

� $ �  * ��� 4 � � ?.  Hence as 
 is normal , % a continuous function �: 
 � � 0 , 1�  

such that ������ � �0� and �� � � � �1� �By Urysohn's Lemma�. 

 Thus for � $  � , % a continuous function �: 
 � �0 , 1� such that 

���� � 0 and ���� � �1� 

Hence X is a completely regular space. 

 

Theorem 3.4: If � 6   in a Tichonov | =��
�
 space X, then % a continuous function such that   

���� 6 �� �. 

Proof:-   Let 	
 , �
 be a Tichonov space and � 6   in 
.  As X is a T1 – space � � is a closed set 

in X. � 6   *  � $ � � . X being a completely regular space,  % a continuous function 

 �: 
 � �0 , 1� such that  ���� � 0 and ��� �� � �1�.  &. '.  �� � � 1. 

Hence ���� 6 �� �.   

 

Theorem 3.5: Being Tichonov space ( =��
�
   ) is a topological property. 

Proof: - We know that being a completely regular space is a topological property and being a  

T1 – space is also a topological property. Hence being a Tichonov space  ( =��
�
 ) is a topological 

property. 

 

Theorem 3.6: Being a Tichonov ( =��
�
  ) space is a hereditary property. 

Proof: We know that being a completely regular space is a hereditary property and being a  

T1 – space is a hereditary property. Hence being a Tichonov ( =��
�
 ) space is a hereditary 

property. 

 

§4  Solved  Problems 

Problem 1: Fort’s space is a completely regular space ��
�
�
�
 space).  

Solution: Fort’s space is a compact, Hausdorff space (see        ). 
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Hence by Corollary2.8, Fort’s space is completely regular.  

Again as Fort’s space is a T1 – space (being a  Hausdorff space ) it is a =��
�
  space .              

 

Problem 2: Define the topology  � on 5   by � � �?, 5� C ��0,∞� |  0 � 5� . Show  that 	5 , �
 

is not a completely regular space. 

Solution: 

I]  	5 , �
 is normal. 

 The family of closed sets in  5  &8  G � �?, 5� C �� H,∞�/ H � 5�. 

Hence A and B are disjoint sets in  5, then J �  ? 3K L � ?. Hence if J �  ?, then # �  ? 012  

7 � 5 are disjoint open sets containing A and B respectively. Hence  	5 , �
 is normal space. 

II] 	5 , �
 is not a regular space. 

 Let � � � 1,∞�. Then F is a closed set in 5 and 0 $ �. As the only open set containing F 

is 5, we get 	5 , �
 is not a regular space. 

 Hence form (I) and (II),  	5 , �
 is not a completely regular space. 

 

 Problem 3: Every metric space is  a completely regular space. 

 Solution: Let 	
, 2
 be a metric space and let � denote the topology on X induced by the metric 

d. Let F be any closed set in X and � $ � � � � 
�.  Then � � � 4 � � ? 012 �� � is a closed set 

in X (Since  	
, �
  is a T1 – space, ( see T1 – space). As every metric space is normal (see  

Normal spaces). By Urysohn’s Lemma, %  continuous   function �: 
 � �0 , 1�  

 such that ������ � �0� and  �� �� � �1�.  But then  ���� � 0 and ���� � �1�. 

Therefore 	
, �
 is a completely regular space. 

 

Exercises –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

I) Let 	
, �
 be a completely regular space. Show that for any pair of disjoint subsets A and B 

such that A is compact and B is closed in X, there exists a real valued continuous function f 

on X such that  �� J � � � 0 �  012 �� L � � � 1 �. 

II) Prove  or disprove  the following statements. 

1) Every completely regular space is regular. 

2) Every regular space is completely regular. 
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3) Homeomorphic image of a completely regular space is a completely regular space. 

4) Subspace of a completely regular space is a completely regular space. 

5) A normal space is completely regular if it is regular. 

6) Any subspace of  a normal, completely regular is regular. 

7) Any subspace of  a normal, regular is completely regular. 

8) Any compact, regular space is completely regular. 

9) Any compact,  =M "  8>09' is completely regular. 

10) Any  countably compact,  =M "  8>09' is completely regular. 

______________________________________________________________________________ 
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§1 Definition and Basic concepts 
 

Theorem 1.1: Let ��, ��� and ��, ��� be two T-spaces. 

� 	 � 
 ��
, �� | 
 � � ,  � � � � . Let � 
 ��� 	 ��| �� � �� and �� � ��� 
Then � is a base for some topology on � 	 �. 

Proof : Obviously, � is a family of subsets of � 	 �. As � � �� and � � ��, we get  

� 	 � 
 ���| � � �� . 
Further let �� 	 �� � �, �� 	 �� � � and �
, �� � ��� 	 ��� � ��� 	 ���.  
Then �
, �� � ��� � ��� 	 ��� � ���. As �� � �� � �� and �� 	 �� � �� we get  

��� � ��� 	 ��� � ��� � �. Thus �
, �� � ��� � ��� 	 ��� � ��� 
 ��� 	��� � ��� 	 ���. 
This shows that both the conditions of the Theorem are satisfied. Hence � is base for some 

topology � on � 	 �.  

 

Definition 1.2: The topology � defined on � 	 � for which  

� 
 �� 	 � | � � �� and � � ��� is a base is called the product topology on � 	 � and the T-

space �� 	 �, �� is called product space, where � is product topology on � 	 �. 

 

Theorem1.3: Let ��, ��� and ��, ��� be two T-spaces. If �� is a base for �� and �� is a base 

for ��, then �� 	�� is base for the product topology on � 	 �. 

Proof:  

(1) �� � �� , �� � ��   �   �� 	 �� � � .  

(2) Let O be any open set containing �
, �� in the product space � 	 � . Then as � is base for  

, we get,  � � � �� and � � �� such that �
, �� � � 	 � � O .  

As 
 � � and � � �� , � �� � �� such that 
 � �� � �.  

Similarly � �� � �� such that � � �� � �.  

Thus �
, �� � �� 	 �� � � 	 � � O.  
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As �� 	 �� � � we get, for given �
, �� � O , O � �  � �� 	 �� � � such that  �
, �� �
�� 	 �� � O.  

Hence from (1) and (2), � is a base for the product topology � on � 	 �.  

 

Problem1.4: Let � 
 ��, �, �� , �� 
 � , ���, �� , � 
 �!, ", #, $� and 

�� 
 � , �!�, �"�, �!, "�, �#, $�, �!, #, $�, �", #, $�, �� .  
Find the base for the product topology of � 	 �.  

Solution: �� is the base for �� , where �� 
 %���, �&. �� is the base for �� , where �� 

%�!�, �"�, �#, $�&.  
� 
 �� 	 �� 
 %��� 	 �!� , ��� 	 �"� , ��� 	 �#, $�, � 	 �!� , � 	 �"� , � 	 �#, $�& 
                        
 ' ���, !�� , ���, "�� , ���, #�, ��, $��, ���, !�, ��, !�, ��, !�� , ���, "�, ��, "�, ��, "�� , ���, #�, ��, #�, ��, #�, ��, $�, ��, $�, ��, $��( 
This family � is the base for the product topology � on � 	 �. 

 

Theorem1.5: Let ��, ��� and ��, ��� be two T-spaces. Let �� 	 �, �� be a product space. Let 

∏* + � 	 � , � and ∏- + � 	 � , � be the projection mappings. Then 

�.�      ∏* and ∏- are continuous, open mappings. 

(II) The product topology � on � 	 � is the smallest topology for which the projections 

are continuous.  

Proof:  

(I) 

1) ∏* + � 	 � , �. To prove that ∏* is continuous. Let � be any open set in �.  

Let � � ��  � � 	 � � � (by definition of �) and hence, ∏*/���� 
 � 	 � � � . But 

this shows that ∏* is continuous. 

2)  To prove that ∏* is open. Let 0 � � then by definition of � ,  

O 
1��2 	 �2  | 3 � Λ ,  �2 � �� ,  �2 � ��� 
(by definition of the base). 

Hence,  

∏*�O� 
 ∏* 51��2 	�2  | 3 � Λ ,  �2 � �� ,  �2 � ���6  
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 1� ∏*7�2 	 �28 | 3 � Λ ,  �2 � �� ,  �2 � ��� 
              
 1� �2 | 3 � Λ ,  �2 � �� � � ��…��$ �� :$ � ;<!<=<>�� 

This shows that ∏* is an open map.  

3) As in 1) and 2) we can prove that ∏- is a continuous, open mapping. 

(II) Let �? be any other topology on � 	 � such that the projection maps ∏* and ∏- are both 

continuous. To prove that � @ �?.  
Let O � � . Then by definition of � , 

O 
1��2 	 �2 |   �2 � �� ,  �2 � �� , 3 � Λ� 
   
 1���2 � �2� � �� 	 �� |   �2 � �� ,  �2 � �� , 3 � Λ , � 
   
 1���2 	 �� � �� 	 �2� |   �2 � �� ,  �2 � �� , 3 � Λ , � 
   
 1� ∏*/���2� � ∏-/���2� |   �2 � �� ,  �2 � �� , 3 � Λ , � 

As for any �2 � �� ,  ∏*/���2� � �? and for any �2 � �� ,  ∏-/���2� � �?, we get,  

 ∏*/���2� �  ∏-/���2� � �? . �? being topology on  � 	 �, we get O � �? .  
Thus O � � �  O � �? and hence � � �?. 
This shows that the product topology � on � 	 � is the smallest topology for which the 

projections are continuous. 

 

Theorem1.6: For any fixed � � �, >: � 	 ��� , � defined by >�
, �� 
 
 , B 
 � � is a 

homeomorphism. 

For any fixed 
 � �,  C: �
� 	 � , � defined by C�
, �� 
 � , B � � � is a homeomorphism. 

Proof: I] To prove that > is a homeomorphism. 

(1) > is one-one: 

Let,  >�
�, �� 
 >�
�, �� for 
� ,  
� � �. 

Then 
� 
 
�  � �
� , �� 
 �
� , ��.  
But this shows that > is one-one. 

(2) > is onto: 

Let 
 � �. Then �
, �� � � 	 ��� and >�
, �� 
 
. This shows that > is onto. 
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(3) > is continuous:  

As ∏* + � 	 � , � is continuous and > is the restriction of ∏* to the subspace � 	 ���, 
we get, > is a continuous mapping.  

(4) > is open: 

Let O
*
 be any open set in � 	 ��� . Then � an open set O in � 	 � such that 

O
*
 O � �� 	 ����. 

As O 
1��2 	 �2  |   �2 � �� ,  �2 � �� , 3 � Λ� 
We get, 

>�O?� 
 >7O � �� 	 ����8 
            
 > 51���2 	 �2� � �� 	 ���� |   �2 � �� ,  �2 � �� , 3 � Λ�6 
            
 > 51���2 � �� 	 ��2 � ���� |   �2 � �� ,  �2 � �� , 3 � Λ�6 
            
 > 51��2 	 ��2 � ���� |   �2 � �� ,  �2 � �� , 3 � Λ�6 
            
1�>7�2 	 ��2 � ����8 |   �2 � �� ,  �2 � �� , 3 � Λ� 
            
1�>7�2 	 ���8 |   �2 � ��,  � � �2  , 3 � Λ� 
            
1�>7�2 	  8 |   �2 � ��,  � � �2  , 3 � Λ� 
            
1��2 |   �2 � ���   … ��� DEF:G:;:<G <F >� 
             � ��. 

This shows that > is open. 

From (1) to (4) we get, > is homeomorphism.  

Hence � 	 ��� is homeomorphic with � for any fixed � � �.  

II]   As in I] we can prove that �
� 	 � is homeomorphic with � under the homeomorphism 

C: �
� 	 � , � defined by C�
, �� 
 � , B � � �.  

 

§2   Product Invariant Properties 

Theorem 2.1: Let ��, ��� and ��, ��� be two T-spaces. Let �� 	 �,�� be a product space. The 

product space � 	 � is connected if and only if both � and � are connected spaces. 
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Proof: Only if part. 

Let � 	 � be a connected space. 

To prove that � and � both are connected spaces. 

We know that ∏* + � 	 � , � is continuous, onto, open mapping. 

Hence � 	 � is connected � � is connected. 

Similarly, as ∏- + � 	 � , � is continuous, onto, open mapping, � 	 � is connected implies � 

is connected. 

Hence, if the product space � 	 � is connected then both � and � are connected. 

If part. 

Let � and � be connected spaces. 

To prove that product space � 	 � is connected. 

Let �
�, ��� and �
�, ��� be distinct points of � 	 �. As �
�� 	 � is homeomorphic with � (see 

Theorem …). We get �
�� 	 � is connected space (see Theorem …). Similarly � 	 ���� is a 

homeomorphic image of � (see Theorem …). As � is a connected set we get � 	 ���� is 

connected set(see Theorem …). Further as �
�, ��� � ��
�� 	 �� � �� 	 �����, we get, 

��
�� 	 �� � �� 	 ����� H  . Hence by Theorem …, we get, ��
�� 	 �� I �� 	 ����� is a 

connected space. 

Thus for�
�, ��� H �
�, ��� in � 	 � , � a connected set ��
�� 	 �� I �� 	 ����� containing 

them. Hence � 	 � is a connected space. 

 

Theorem2.2:- Let ��, ��� and ��, ���  be two topological spaces. Let �� 	 �,�� be their product 

space. The product space � 	 � is compact if and only if each of the spaces is compact. 

Proof:- Only if part. 

Let � 	 � be a compact space. 

We know that continuous image of a compact space is compact. 

As ∏* + � 	 � , � is continuous, onto, open mapping, we get � is compact (see Theorem …). 

Similarly, ∏- + � 	 � , � is continuous, onto, open mapping. Hence � is a compact space. 

If part . 

Let � and � be compact spaces. To prove that � 	 � is a compact space. It is enough to prove 

that any basic open cover of � 	 � has a finite sub-cover.  
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Let ��2 	 �2  |  3 � Λ� be any basic open cover for � 	 �. Then ��2 	 �2 |  3 � Λ� is also a basic 

open cover for �
� 	 � , for some fixed 
 � �. 

As �
� 	 � is a homeomorphic with � and � is compact, we get �
� 	 � is compact.  

Hence � finite sub-cover for the given basic open cover for �
� 	 �. 

Let  �
� 	 � �1J�2K 	 �2KL
M

NO�
. 

Define ��
� 
Q�2K
M

NO�
 .  Then  ��
� � ��  B 
 � � and  
 � ��
�. 

Consider the family %��
� 	 �2K  |  1 @ i @ G&. Then this family forms a finite open cover 

for �
� 	 �.  


 � ��
� and ��
� � ��  � ���
��T�* forms an open cover for �. As  � is compact this open 

cover of � has a finite sub-cover. 

Let � 
1�J
UL
V

UO�
 .  

Now for each �J
UL , find �2W  such that �J
UL � �2W  B X ,   1 @ X @ Y ,  3U � Λ. 
Find corresponding �2W  ,  3U � Λ so that �2W 	 �2W � ��2 	�2  |  3 � Λ�.  
Thus the basic open cover ��2 	 �2 |  3 � Λ� of � 	 � has a finite sub-cover 

Z�2W 	 �2W  |  3U � Λ , 1 @ X @ Y[.  
Hence � 	 � is a compact space. 

 

Theorem2.3: The product space �� 	 �,�� is a first axiom space iff both  ��, ��� and  ��, ��� 
are first axiom spaces. 

Proof: Only if part. 

 Let  �� 	 �, �� be a first axiom space. We know that the projection map ∏* + � 	 � , � 

is a continuous, onto, open map.  

 Hence, X is a first axiom spaces. Similarly, as the projection map  ∏- + � 	 � , � is 

continuous, onto and open map, Y is a first axiom spaces. 

 If part. 
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 Let ��, ��� and  ��, ��� be first axiom spaces. To prove that �� 	 �, �� is a first axiom 

spaces. Let �
, �� � � 	 �. Then 
 � � �GD � � �. As ��, ��� is a first axiom spaces, � a 

countable local base say  ��M�
�� at x in ��, ���. Similarly, as ��, ��� is a first axiom spaces, � a 

countable local base say  �\M���� at y in  ��, ���. 
Define ] 
 % �N�
� 	 \U��� |   : ,  X � ^&. 
 �1�  �N�
� 	 \U���  �  �  B :, X � ^ .  
            �2�  � 
, �� � �N�
� 	 \U���  B :, X � ^ .    
 �3�  aE; � 
, � � � � 	 � where  � 	 � � � . 
Where � is a base for the product topology �. Then 
 � � and � � ��imply �   
 � ^ such that 

 
 � �M�
� � �. similarly � � � and � � �� imply �  Y � ^  such that � � \V��� � � 	 �. 
Shows that the family � �N�
� 	 \U��� � forms a countable base at (x, y) in �� 	 �, ��. Hence 

�� 	 �,�� is a First axiom spaces. 

 

Theorem2.4: The product space �� 	 �, �� is a second axiom space if and only if both ��, ��� 
and  ��, ��� are second axiom spaces. 

Proof:- Only if part . 

 Let � 	 � be a second axiom space. Consider the projection map ∏* + � 	 � , � . 

Then ∏* is continuous, open and onto map. 

 Hence, we get X is a second axiom space. Similarly, as the projection map ∏* + � 	 � ,
� is a continuous open and onto, we get Y is a second axiom space. 

If part . 

 Let ��, ��� and  ��, ��� be second axiom spaces. To prove that �� 	 �, �� is a second 

axiom space. As ��, ��� is a second axiom space, � a countable base say ��M� for ��. 

Similarly, as ��, ���  is a second axiom space, � a countable base say � \M� for ��. 

 Consider the family % �N�
� 	 \U��� |   : ,  X � b&. This will form a countable base for �. 

Hence �� 	 �, �� is a second axiom space.  

 

Theorem 2.5:-The product space �� 	 �, �� is a completely regular space if and only if both 

��, ��� and  ��, ��� are completely regular spaces. 

Proof:- Only if part . 



Product Spaces and Quotient Spaces 

Page | 248  

 

 Let � 	 � be a completely regular space. Consider the projection map ∏* + � 	 � , � . 

Then ∏* is continuous, open and onto map. 

 Hence , we get X is a completely regular space. Similarly, as the projection map ∏* +
� 	 � , � is a continuous open and onto, we get Y is a completely regular space. 

 If  part. 

Let ��, ��� and  ��, ��� be two completely regular spaces. 

To prove that the product space �� 	 �, �� is a completely regular space. Let �
, �� � � 	 � and 

O be an open set in � 	 � such that �
, �� � O. By definition of � , � � � �� �GD � � �� such 

that �
, �� � � 	 � � O. Thus 
 � � , � � �.  

� is completely regular  � � a continuous function F: � , 70,18 such that F�
� 
 0 and 

F�� d �� 
 �1� . 
� is completely regular  � � a continuous function >: � , 70,18 such that >��� 
 0 and 

>�� d �� 
 �1�.  
Define C: � 	 � , 70,18 by C�
, �� 
 Y�
 �F�
� , >����  B 
 , � � � 	 �. 

(1)  Then C is a continuous function [since both F and > are continuous] 

(2)  C�
, �� 
 Y�
 �F�
� , >���� 
 0  

(3)  Let �e , f� � �� 	 �� d �� 	 �� 
              � �e , f� g �� 	 �� 
              �  e g � or f g �. 

       Let e g �. Then F�e� 
 1 . 

       C�e , f� 
 Y�
 �F�e� , >�f�� 
 1.  

       Let f g �. Then >�f� 
 1.  

        C�e , f� 
 Y�
 �F�e� , >�f�� 
 1. 

        Thus C7�� 	 �� d �� 	 ��8 
 �1� . 
As � 	 � � O , 7� 	 � d O8 � �� 	 �� d �� 	 ��. Hence, C7� 	 � dO8 
 �1�. 
This shows that � 	 � is a completely regular space. 

 

Theorem2.6: The product space �� 	 �, �� is a T0 – space if and only if both ��, ��� and  

��, ��� are T0 – spaces. 

Proof: Only if part. 
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 Let � 	 � be a T0 – space. Consider the projection map ∏* + � 	 � , � . Then ∏* is 

continuous, open and onto map. 

 Hence, we get X is a T0 – space. Similarly, as the projection map ∏* + � 	 � , � is a 

continuous open and onto, we get Y is a T0 – space. 

 If part. 

Let ��, ��� and ��, ���  be two T0 – spaces and �� 	 �, �� be their product space. To prove 

that �� 	 �,�� is a T0 – space. Let �
�, ��� H �
�, ��� in � 	 �. Then either h
� h H 
� orh �� h H ��. 

Assume that h
� h H 
� . As X is a T0 – space and h
� h H 
� in X, � open set � in ��, �� such 

that h
� h � � but 
� g �. But then h�
�, h�� h�h � � 	 � and h�
�, h�� h�h g � 	 �. As � 	 � is open sets in 

the product space � 	 �, the result follows.  

 

Theorem2.7: The product space �� 	 �, �� is a T1 – space if and only if both ��, ��� and  

��, ��� are T1 – spaces. 

Proof: Only if part. 

 Let � 	 � be a T1 – space. Consider the projection map ∏* + � 	 � , � . Then ∏* is 

continuous, open and onto map. 

 Hence, we get X is a T1 – space. Similarly, as the projection map ∏* + � 	 � , � is a 

continuous open and onto, we get Y is a T1 – space. 

If part. 

Let ��, ��� and ��, ���  be two T1 – spaces and �� 	 �, �� be their product space. To prove 

that �� 	 �,�� is a T1 – space. Let �
�, ��� H �
�, ��� in � 	 �. Then either h
� h H 
� orh �� h H ��. 

Assume that h
� h H 
� . As X is a T1 – space and h
� h H 
� in X, � open sets � and � in ��, �� such 

that h
� h � � but 
� g �and h
� h � � but 
� g �. But then h�
�, h�� h�h � � 	 �, h�
�, h�� h�h g � 	 � 

and h�
�, h�� h�h g � 	 �, h�
�, h�� h�h � � 	 �. As � 	 � and � 	 �  are open sets in the product 

space � 	 �, the result follows. 

 

Theorem2.8:- The product space �� 	 �, �� is a T2 – space if and only if both ��, ��� and  

��, ��� are T2 – spaces. 

Proof:- Only if part. 

 Let � 	 � be a T2 – space. Consider the projection map ∏* + � 	 � , � . Then ∏* is 

continuous, open and onto map. 
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 Hence, we get X is a T2 – space. Similarly, as the projection map ∏* + � 	 � , � is a 

continuous open and onto, we get Y is a T2 – space. 

If part. 

Let ��, ��� and ��, ��� be two T2 – spaces. 

To prove that the product space �� 	 �, �� is a T2 – space. Let �
�, ��� and �
�, ��� be distinct 

points of � 	 �. Then either 
� H 
� and �� H ��. Let 
� H 
�. As � is T2 – space, and 
� H 
�, 
in �, � �, � � �� such that 
� � � , 
� � � and � � � 
  . Define O� 
 � 	 � and 

O� 
 � 	 �. Then O� ,  O� � � , O� � O� 
 �� � �� 	 � 
   , �
�, ��� � O� and  

�
�, ��� � O� . Hence, the product space �� 	 �, �� is a T2 – space. 

 

Theorem2.9: If the product space �� 	 �, �� is a separable, then both ��, ��� and  ��, ��� are 

separable spaces.  

Proof:- Only if part. 

Let �� 	 �, �� be a separable space. Then � a countable dense set say i 	 � in � 	 �. 

Claim:  i is countable dense set in �.  

Let 
 � � . If possible, assume that 
 g ij. Then for any � � �, �
, �� � i 	 �kkkkkkkk .  

 g D�i� , � � � �� such that 
 � � and � � i d �
� 
   . 

But then � � i 
   (since 
 g ij  �  
 g i ).  

In this case � � � � � , �
, �� � � 	 � and 

�� 	 �� � �i 	 �� d ��
, ��� 
 �� � i� 	 �� � �� d ��
, ��� 
   . 

This contradicts the fact that �
, �� � i 	 �kkkkkkkk.  
Hence, each 
 � � must be in ij i.e. ij 
 � . 

Thus, there exists a countable dense set i in �, � is separable space. 

Similarly, we can prove that the countable set � is dense in �. 

Hence � and � are separable spaces when � 	 � is separable space. 

If part. 

Let ��, ��� and ��, ��� be separable spaces.  

To prove that �� 	 �, �� is separable. 

Let l and \ be countable dense sets in � and � respectively. 

Then l 	 \ is a countable subset of � 	 �. 

Claim that  l 	 \kkkkkkkk 
 � 	 �. 
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Let �
, �� � � 	 �. If 
 g l m 
 l I D���, we get 
 g D�l�. 
Hence � � � �� such that � � l d �
� 
  . But then � � l 
  .  

Consider � 	 � � � . As �
, �� � � 	 �, we get �� � �� � �l 	 \� d ��
, ��� H  . 

But �� � �� � �l 	 \� d ��
, ��� 
 �� � �� � �� 	 \� d ��
, ���  
                                                        
      … (� � l 
  ) 

This is absurd.  

Hence �
, �� � � 	 �  � �
, �� � D�l 	 \� 
n  l 	 \kkkkkkkk 
 � 	 �.  

Hence l 	 \ is a countable dense set in � 	 �.  

Therefore � 	 � is a separable space. 

 

 §3  Quotient topology 

 We know that product topology is the smallest topology  on  the domain  for which 

projection  maps  are continuous .Also we know that  indiscrete topology is the  smallest 

topology on the co –domain Y for which any function  F: � , �  is continuous . Now our aim is 

to find the largest topology on � for which  F: � , � is continuous, if exists. 

Theorem 3.1: Let  ��, �� be topological space  �GD   let f be a mapping  of X onto a set Y. 

Define �? 
 �� � � | F/���� � �� .Then 

(1) �? is a topology on Y. 

(2) F: ��, �� o ��,�?� is a continuous function. 

(3) �? is  the largest topology on Y for which F: � o � is continuous. 

(4) p � � is closed in ��, �?� if and only if F/��p� is closed in ��, ��. 
Proof: ( 1 ) �? is a topology on Y. 

(i) F/�� � 
   ,    � � �   � �?. 
F/���� 
 � ,   � � � �  � � �? (since F is onto)  

(ii) Let i, � � �?. Then F/��i� � � and F/���� � �. 

Therefore, F/��i� � F/���� � � i.e. F/��i � �� � � . 

But this shows that i � � � �? . 
(iii) i2 � �?  B 3 � Λ , where Λ is any indexing set . Then F/��i2� � �   B 3 � Λ .  
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� being a topology,   1F/��i2�
2�q

 � �  :. E.   F/� r1i2
2�q

s  � � . 
But this shows that 1i2

2�q
 � �?. 

From (i), (ii) and (iii) we get, �? is a topology on Y. 

 
�t�  F: ��, �� o ��, �?� is a continuous function. 

  Let � � �?. Then by definition of �?, F/���� � �. Hence F is continuous.  

 

(3)  Let �� denote a topology on Y such that F: ��, �� o ��, ��� is continuous function. 

To prove that �� � �?.  
Let � � ��. Then by continuity of F,  F/���� � �. But then by definition of �?, � � �?. 
Thus � � �� �  � � �?. Hence �� � �?. 
This shows that, �? is  the largest topology on Y for which F: � o � is continuous.  

 

�u� p � � is closed in ��, �?� 
v �d p � �?. 
v F/��� d p� � � . 

v �d F/��p� � � . 
v F/��p� is closed in ��, ��.  

 

Definition 3.2: Let ��, �� be a topological space. � is any non-empty set. F: � , � is an onto 

mapping. The largest topology �? on � for wC:�C  F is � - �? continuous, is called the quotient 

topology for � (relative to F and �) and the map F is called the quotient map. 

Note that   � � �?  v   F/���� � � . 

 

Theorem 3.3: Let ��, �� and ��, �x� be two topological spaces. F: � , � is onto, continuous 

map. If F is either open or closed, then �x is the quotient topology on �. 

Proof: I] Let F: � , � be continuous, onto, open. 

To prove that �x is the quotient topology on �.  

By definition of quotient topology �? on �,  �x @ �?.  
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To prove that �? @ �x. 
Let � � �?. Then F/�7�8 � �. As F is open,  FyF/�7�8z � �x .  
Hence � � �x. Therefore, �? @ �x. 
Combining both inclusions, we get, �{ 
 �?. 
II] Let F: � , � be continuous and closed. 

To prove �{ 
 �?. 
�x @ �? , as �? is largest topology for which F is continuous. 

Hence to prove �? @ �x. Let � � �?.  
Then F/�7�8 � � � � d F/�7�8 is closed in �. 

          � Fy� d F/�7�8z is closed in �. 

                              � F7F/���� d F/����8 is closed in �.                                                

                              � F7F/��� d ��8 is closed in �. 

                              � �� d �� is closed in �. 

                              � � is open in �. 

                              � � � �x. 
Thus �? @ �x.Combining both inclusions we get  �{ 
 �?. 
 

Corollary3.4: Let  F  be continuous map of a compact space  ��, ��  onto a Hausdorff 

space ��, �?�. Then �? is the quotient topology on �. 

Proof: We know that a continuous map of a compact space onto a Hausdorff space is a closed 

map. Hence F is a closed mapping. By Theorem, �? is the quotient topology on �. 

 

Corollary 3.5: Let F: � , � be a continuous map and let � have the quotient topology (relative 

to F). Then >: � , | is continuous if and only if > } F is continuous. 

Proof: Composition of two continuous functions is always continuous. 

Hence ‘Only if part’ follows.  

For ‘If part’, assume that > } F is continuous map.  

To prove that > is continuous. 

Let � is open in |.  

> } F:� , | is continuous � 7 > } F8/���� � � . 
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            � 7 F/� } >/�8��� � � 

            � F/�7>/����8 � � 

                                            � >/���� � �?  ………. (by definition of �?) 
Thus any � open in | we get >/���� is open in �. Hence >: � , | is continuous. 

 

Theorem 3.6: Let ��, �� be a topological space. � is any non-empty set. F: � , � is an onto 

mapping If � is compact  ( connected, separable or Lindelof ) then so is � with the quotient 

topology. 

Proof: Since F: � , � is continuous, onto, the result follows. 

[Continuous image of a compact (connected, separable or Lindelof) space is a compact 

(connected, separable or Lindelof) space]. 

 

Definition: Let ��, �� be a topological space and ~ an equivalence relation on �. Let � be the 

quotient map of � onto the quotient set   � ~�   of  � over ~ so that ��
� 
 7
8 is the equivalence 

class to which 
 belongs. Then the quotient space is the family   � ~�   with quotient topology 

(relative to �).      

 

Exercises ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  

(I) Show that � 	 � has each of the properties listed below if and only if both X and Y have the 

same properties . 

( i) T0 

(ii) T1 

(iii) T2 

( iv) regularity. 

(v)  complete  regularity. 

(vi) first axiom. 

(vii) second  axiom. 

(viii) separability. 

( II)   By an example show that  the product space of two normal spaces need not  be normal . 
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(III)  Let ��, �� be a topological space.  � is any non-empty set.  
F: � , � is an onto mapping . Show that  � with the quotient topology is a T1 – space if 

and only if  F/�7���8 is closed in �, B � � �. 

 

______________________________________________________________________________ 
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The Urysohn Metrization Theorem tells us under which conditions a topological space X is
metrizable, i.e. when there exists a metric on the underlying set of X that induces the topology of X.
The main idea is to impose such conditions on X that will make it possible to embed X into a metric
space Y, by homeomorphically identifying X with a subspace of Y.

Let us start with some definitions. A topologies space X  is said to be regular if for any point

x X∈  and any closed set B X⊂  not containing x, there exist two disjoint open sets containing x and
B respectively. The space X is said to be normal if for any two disjoint closed sets B1 and B2 there
exist two disjoint open sets containing B1 and B2 respectively.

Example :

An example of a Hausdorff space which is nor normal is given by the set ¡ , where the usual

topology is enhanced by requiring that the set { }1/ |n n ∈ ¥  is closed. Examples of spaces which are

regular but not normal exist, but are complicated.

Lemma :  Every regular space with a countable basis is normal.

Proof :  First, using regularity and countable basis, construct a countable covering { }iU  of B1 by

open sets whose closures do not intersect B2. Similarly, construct an open countable covering { }iV of

B2 disjoint from B1. Then define

'

1
: \

n

in n
i

U U V
=

= ∪  and  '

1
: \

n

in n
i

V V U
=

= ∪
Show that these sets are open and the collection { }'

nU  covers B1 and { }'nV  covers B2. Finally

show that '' : nU U= ∪  and '' : nV V= ∪  are disjoint.

Next, we will prove one of the very deep basic results.

Unit 20 : The  Urysohn  Metrization  Theorem
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Urysohn Lemma : Let X be a normal space, and let A and B be disjoint subsets of X. There exists a

continuous map [ ]: 0,1f X →  such that ( ) 0f x =  for every x A∈ , and ( ) 1f x =  for every x B∈ .

Proof :  Let Q be the set of rational numbers on the interval [0, 1]. For each rational number q on this

interval we will define an open set qU X⊂  such that whenever p < q, we have p qU U⊂ .

Hint :  Enumerate all the rational numbers on the interval (so that the first two elements are 1 and 0)

and then define 1 /U X B=  and all other qU ’s can be  defined inductively by using normality of X.

Now let us extend the definition of qU  to all rational numbers by defining qU φ=  if q is

negative, and qU X=  if q > 1.

Next, for each x X∈  define ( )Q x  to be the set of those rational numbers such that the

corresponding set qU  contains x. Show that ( )Q x  is bounded below and define ( )f x  as its infimum.

Now we will show that ( )f x  is the desired function. First, show that if rx U∈ , then ( )f x r≤

and if rx U∉ , then ( )f x r≥ .

Now prove the continuity ( )f x  of by showing that for any 0x X∈  and an open interval (c, d)

containing ( )0f x , there exist a neighbourhood U of 0x  such that ( ) ( ),f U c d⊂ . [Why would this

imply continuity ?] For this choose two rational numbers q1 and q2 such that ( )1 0 2c q f x q d< < < <

and take 12
\ qqU U U= .

Next, we will construct the metric space Y for the embedding. Actually, as a topoligical space
the space Y is simply the product of ¥  copies of ¡  with the product topology. Let

( ) { }, min ,1d a b a b= −  be the so-called standard bounded metric on ¡  [show that this is indeed a

metric]. Then if x and y are two points of Y, define,

( ) ( ),
, sup i id x y

D x y
i

 
=  

 

Show that this is indeed a metric.

Proposition :  The metric D induces the product topology on Y = ¥¡ .

Proof :  First, let U be open in the metric topology and let x U∈ . We will find an open set V in the
product topology such that x V U⊂ ⊂ . Choose and ε -ball centered at x, which lies in U. Then
choose N large enough so 1/ N ε< . Show that the following set satisfies the requirement :
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( ) ( )1 1, ... , ...N NV x x x xε ε ε ε= − + × × − + × × ×¡ ¡

Conversely, consider a basis element iV ∈= Π ¥ i iV V∈= Π ¥  for the product topology, such

that iV  is open in ¡  and iV = ¡  for all but finitely many indices 1,..., ki i . Given x V∈ , we will find an

open ball U in metric topology, which contains x  and is contained in V. Choose an interval

( ),i i i ix xε ε− +  contained in iV  such that 1iε <  and define.

{ }1min / | ,..., ki i i iε ε= =

Now show that the ball of radius ε  centered at x is contained in V..

Next we need the following technical result :

Lemma : Let X be a regular space with a countable basis. There exist a countable collection of

continuous functions [ ]: 0,1nf X →  such that for any 0x X∈  and any neighbourhood U of 0x ,

there exist an index n such that ( )0 0nf x >  and 0nf =  outside U.

Proof :  Given 0x  and U, use regularity to choose two open sets Bn and Bm from the countable basis

containing 0x  and contained in U such that n mB B⊂ . Then use the Urysohn lemma to construct a

function ,n mg  such that ( ), 1nn mg B =  and ( ), \ 0n m mg X B = . Now show that this collection of

functions satisfies our requirement.

Finally we will prove the main result :

Urysohn Metrization Theorem :  Every regular space X with a countable basis is metrizable.

Proof :  Given the collection of functions { }nf  from the previous lemma, and Y = ¥¡  with the

product topology, we define a map :F X Y→  as follows :

( ) ( ) ( )( )1 2, ,...F x f x f x=

Show that is a continuous map. Also show that it is injective.
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In order to finish the proof, we need to show that for each open set U in X, the set ( )F U  is

open in ( )F X . Let 0z  be a point of ( )F U . Let 0x U∈  be such that ( )0 0F x z=  and choose an

index N such that ( )0 0Nf x >  and ( )\ 0Nf X U = . Now we let

( )( ) ( )1 0,NW f Xπ −= ∞ ∩

where Nπ  is the projection Y → ¡  onto the Nth multiple. Show that W is an open subset of ( )F X

such that ( )0z W F U∈ ⊂ .

Give an example of a Hausdorff space with a countable basis which is not metrizable.


