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Topological spaces

Unit 1: Zopological Spaces

§1 Definition and Examples:

Definition 1.1: Let X be any non-empty set. A family  of subsets of X is called a topology on
X if it satisfies the following conditions:

(i) peJandX e

(i) ABES =ANBES

(iii) Ay €3, VA € A (where A is any indexing set) = U Ay ES
A€A

If§ is a topology on X, then the ordered pair (X,J) is called a topological space (or T-

space)

Examples 1.2: Throughout X denotes a non-empty set.

1) 3 = {0, X} is a topology on X. This topology is called indiscrete topology on X and the T-

space (X, J) is called indiscrete topological space.

2) 3 = p(X), (fp(X) = power set of X is a topology on X and is called discrete topology on X
and the T-space (X, 3) is called discrete topological space.
Remark: If |X| = 1, then discrete and indiscrete topologies on X coincide, otherwise they are

different.

3) LetX ={a,b,c} thenJ; = {@,{a},{h,c}, X} and J, = {@,{a},{b},{a, b}, X} are topologies
on X whereas J; = {@, {a}, {b}, X} is a not a topology on X.

4) Let X be an infinite set. Define § = {@} U {A € X | X — A is finite} then J is topology on X.
HPey ...... (by definition of )
As X — X =@, afinite set, X €
(i) LetA,B € 3 .IfeitherA=Q@orB =@, thenANBEJ.Assumethat A#=@and B # @ .
Then X — A is finite and X — B is finite. Hence X —(ANB) = (X —-A)U (X —B) is
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Topological spaces

finite set. Therefore ANB € 5. ThusA,BEJ = ANBE .
(iii)) Let A; € J, for each A € A (where A is any indexing set). If each A; = @, then

UA,1=(Z)ES.

AEA

If 31, € A such that 4, # , then 4, C UAA —X -4, DX UAA.
AEA AEA

As X — Ay, is a finite set and subset of finite set being finite we get X — U Aj is finite
A€

and hence U A; € 3. Thus in either case,
AEA

ALES, VIEA = UAAES.
AEA

From (i), (ii) and (iii) is a topology on X. This topology is called co-finite topology on X and the

topological space is called co-finite topological space.

Remark: If X is finite set, then co-finite topology on X coincides with the discrete topology on

X.

5) Let X be any uncountable set. Define § = {#} U{A € X | X — A is countable} Then J is a
topology on X.
i. @ €3 (bydefinition).
As X — X =@ and @ is countable (Since @ is finite) we get X € J.
ii. LetA,B€ J. IfeitherA=QorB=Q0weget ANBES.
LetA # @ and B # Q.
Then by definition of J, X — A and X — B both are countable sets and hence
X—(ANnB)=(X—A) U (X — B) is countable. This shows that AN B € J . Thus
A,B € JimpliessANB € J.

iii. Let Ay €3 VA€ A, where A is any indexing set. If foreachA € A, 4; = @
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Topological spaces

then UAA = @ will imply UAA €3 . Let Ay, # @ for some 4y € A.
AEA AEA

ThenA,lo c UAA :>X_Alo 22X — UAA
AEA AEA

= X — U A, is a subset of a countable set X — A, (Since Ay, € Jand 4, + @)
AEA

= X — U A; is a countable set. (since subset of countable set is countable )
AEA

= UAAES

AEA

Thus in either case, 4; EJ,VAEA = UAAE 3
AEA

From (i) , (ii) and (iii) we get J is a topology on X. This topology on X is called co-countable

topology on X and the T-space (X, J) is called co-countable topological space.

Remark: If X is a countable set, the co-countable topology on X coincides with the discrete

topology on X.

6) Let A € X. DefineJ = {@} U{B € X | A € B}. Then J is a topology on X.

(i) @ € J by definition. As AC X, X €.

(ii)) Let B,CEJ.IfB=0QorC =@,thenBNC =@ willgive BNCEJ.LetB # @ or
C#@.ThenAS BnCwilimplyBNC € 3.

(iii) Let B € 3 V A € A, where A is any indexing set. If for each 1 € A, B; = ¢ then

UB,1=(Z) and in this case UBAE3-

AEA AEA

Assume that B, # @ for some Ay € A. Then A € B, and By, < U B, imply A © U B;.
AEA AEA

Therefore U B, €.
AEA

From (i), (ii) and (iii) 3 is a topology on X.
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Topological spaces

Remarks: (1) If A = @ then J is discrete topology on X.
(2) If A = X then J is indiscrete topology on X.
(3)If A = {p},then I = {@} U {B < X | p € B} is called p-inclusive topology on X.

7) Letp € X. Define § = {X}U{A € X |p & A}. Then J is topology on X.

(i) p € @ implies @ € J. By definition X € .

(i) Let AABEJ.IfA=XorB =X,then ANB = X. Inthiscase AN B € J. Assume that
either A # X orB # X. Thenp € Aorp € B and hence p € A N B which proves
ANBES.

Thus A,B € J implies ANB € J.

(iii) Let A; €3 VA € A, where A is any indexing set. If for some 4 € A, A; = X then

UAA — X will give UAA €.

A€ AEA
Assume that Ay # X foreach € A. Thenp & A; for each A € A will imply,

p €& UAA and hence UAA €EJ.

A€A A€A

Thus in either case, 4, EJ VAEA = UAA €EJ.
AEA

From (i), (ii) and (iii) J is a topology on X.
This topology on X is called p-exclusive topology on X.

8) Let (X, J) be topological space and A € X. Define §* ={GU(ANH) |G, H € J}. Then F*
is a topology on X.
(i) TakeG =@and H =0. ThenGU(ANH) =QU(AND) =0 = @ € J*. Take G = X.
Then for any H € I we get X U (AN H) = X. Hence X € J*.
(ii) Let G, U(ANH;) € and G, U(ANH,) €F for G,H,G,,H, €T .
Then [G, U (AN H)]N[G,VU (AN H,)J
=(G:NnG)U(G NANH,)UMANH, NG,)U(ANH, NH,)
= (GiNG)U[AN[(GynHy) U (Hy NGy) U (Hy NH)J
As (Gy N Gy) € Jand [(G; N H,) U (H, NG,) U (H, N H,)] €J we get,
[G;U(ANH)]IN[G,U(ANH)]ES.
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(iii) Let G, U (AN H;) € J* for A € A, where A is any indexing set. Then G; € J and
H €S, VAEA.

U[GAU(AnH/I)] = [ UGA

AEA AEA

uldn UHA

AEA

As UGAE3 and UHA € J, we get U[GAU(ADHA)] €.
AEA AEA AEA

From (i), (ii) and (iii) we get J* is a topology on X.
Remark: This example shows that every topology on X induces another topology on X.

9) Let X and Y be any two non-empty sets and let f : X — Y be any function. Let 3 be
topology on Y. Define 3* = {f "1(G) | G € J} , where f1(G) = {x € X | f(x) € G}. Then J* is
topology on X.

O)f'@)=0 = G€Jand fFIY)=X = XET

(i) Let f71(G) € 3* and f~1(H) € 3* for,HE€ J . Then f"H(GNH) = f~YG)n f1(H)
and G,H € 3 will imply f~1(G) n f~1(H) € J*.

(iii) Let f~1(G,) € 3* VA € A, where A any indexing set is. Then

ft (U G,1> = Uf‘l(G,l) . As UG’l € 3, we get Uf‘l(G,l) € .

A€A A€A A€A AEA

Thus from (i), (ii) and (iii) we get J* is a topology on X.

10) Let X be any uncountable set and let o be a fixed point of X . Let

F={GSX|oog G} U{G S X| o€ (GandX — G is finite} . Then J is a topology on X.
Define J; ={G S X| o &G} andJ, ={G S X | o € G and X — G is finite} then

=31V 3.

i) o¢gP=>0€eFJ.oeXand X—X=0Qisafiniteset >X€J, =>X€S.

(ii)Let ALBES.

Casel: A,BE€EJ; .Thenoo & Aand oo ¢ B. Hence o € AN B.

Therefore ANBEJ, = ANBES.
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Case2:A,B€JI,. ThenA€JF, = o€ Adand X — Ais finite. BEJ, = o€ Band X — B
is finite. Thenco E ANBand X —(ANB) = (X —A)U (X — B) is finite. Thus ANB € J,
which gives ANB € 3.

Case3:A €3I and B€E€J,.Thenoo & A will imply o € AN B.

Hence ANBEJ, = ANBES.

Case4: A€ J,and BEJ; .Then oo € B will imply o0 € AN B.

Hence ANBEJ, = ANBES.

Thus in all the cases A, BEJ = ANBES.

(iii) A, € 3 Y1 € A, where Ais any indexing set. If A; € J; VA €A then

w0 & Ay VA € Awill imply UAA €%, . Hence UAA €.
AEA AEA

If 3 Ay € A such that Ay & J; then A; €3, .In this case o0 € A3 and X — A, is a finite

set

Ay, € UAA implies o € UAA and X — UAA CX—4,,.
AEA AEA AEA

As X — A, is finite we get X — U A; ais finite set. Thus in this case U A; €T,
AEA AEA

and hence UAA € J.
AEA

Thus in either case, A, EFJ ,VAEA = UAA € 3.
AEA

From (i), (ii) and (iii) J is a topology on X .
This topology J is called Fort’s topology on X and the T-space (X,J) is called Fort’s space.

Some Special Topologies on Special sets .

Apart from the topologies given in the above examples there exist some special
topologies on R or Z or N . (R = the set of all real numbers , Z = the set of all integers and

N = the set of all natural numbers ). We list some of them in the following examples.
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(A1) Let J, ={0JU{AS R |Va€A I r>0suchthat(a—r,a+r) € A}.ThenJ, isa

topology on E .

(i) @ € 3, (bydefinition) and R€ J,, asforanya € R,(a—1,a+1) S R.

(i) LetA,BEJ,.If A=Q@orB=@,then ANB€ESJ, .LetA# @ and B # Q.
Thenx € ANB = x€Aandx€B = 3 r, >0suchthat(x—nr,, x+1r)CA
and 3 r, >0suchthat(x —r,, x+1,) € B.
Define r = min(ry,73). Thenr > 0 and (x —r,x + ) € A N B . But this shows that
ANB €S, . Thusineithercase A BEJ, = ANBESJ,.

(i) A; € J, VA € A, where Ais any indexing set .

If UAA — @ , then obviously, UAA €3,
AEA AEA

Hence, assume that U Ay # 0. Letx € U A, . Then x € A, for some Ay € A.
AEA AEA

As Ay, €J, 3 r>O0suchthat(x—7, x +71) S 4,,.

But then (x —r,x + 1) S U Aj; . But this shows that U Ay EZ, .
AEA AEA

Thus in either case A, €3, , VAEA = UAA € 3y, -
AEA

From (i), (ii) and (iii) J, is a topologyon R .

This topology is called usual topology on E .

Remarks: (1) The usual topology on E is also called standard topology or Euclidean topology .
(2) Any open interval in K is a member of J,,. Consider the open interval (a, b) and x €
(a,b). Take r =min(x —a,b—x). Then (x —r,x +71r) € (a,b) . This shows that (a,b) €

o~

Su -

(12)Let3, ={0}UfASR |Vp€EA JabeR suchthatp € [a, b) € A}.Then J, isa

topology on E .

(i) @ € 3, (by definition). R € J,- as foranyp € R 3 a,b € R such that
pE[p,p+1)CSR.

(i) Let AB€E€J, . If ANB=0@0,then ANB €3, . If AnB # @ then for

x € A N B there exist half open intervals H; and H, in E such that x € H; € A and
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x € H, € B. But then H; N H, will be an half open interval in R with
x€H N H, CANB.Thisshowsthat ANBE€J,. ThusA,BEJ, =>ANBESJ,.

(i) Let A; € 3, VA € A, where A is any indexing set.

If UAA — @ , then obviously UAA €S, .

AENA AEA
Let UAA +@.Llet x € UAA'
AEA AENA

Then x € A, for some g € A.As A; €3, 3 [a,b) such that,

X € [a,b) QAAO c UAA
A€A

But this shows that U A €,
AEA

Thus in either case 4, €J,,, VAEA = UAA €3 -
A€A

From (i), (ii) and (iii) J, is a topology on R .
This topology is called lower limit topology or right half open topology on R .

13)Let3, ={0}UfASR |Vp €A Tab€R suchthatp € (a, b] € A} . Then §; is
a topologyon R .

This topology is called upper limit topology or left half open topology on R . (Proof as in
Ex.12)

(14) For each a € R define L, = {x € R | x < a}. Define J = {0} U{R} U {L, | a eR}.
Then 3 is a topology on R. [ Note that L, = ( —o0,a) ].
(i) @ € 3 and R € J (by definition)
(i) LetA,BE.
Case (1): A=@QorB=0Qinthiscase ANB =0 €.
Case (2): A=RorB=Rinthiscase ANB=AorANB =B .Hence ANBES.
Case (3): A=L,and B =L, .Thena,b € R. Define c = min (a, b) . Hence
ANB=L,NL,=L, €3 .ThusinallcasesA,BEJ = ANBEJ.
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(i) Let Ay € 3 VA € A, where A is any indexing set.

Case (1): A, =@, VA€A. Then UA,1=(Z) = UAAES.
AEA AEA

Case (2): A, = R for some A € A . Then UAA “R = UAAES.
AEA AEA

Case (3): A3 =L;, VA€A. ThenA S R.. UA,1=UA,1=IR, if A=R or

AEA AER
l—J1415: L_JLA:: Lu if AcR.

AEA AEA
And u=Lub.{1]|1€A}.

Thus in all cases U A EJ.
AEA

From (i), (ii) and (iii) is a topology on R . This topology is called the left ray topology on R .

(15) Define 3* = {0} U{R} U{R, | a eR} where R, = {x € R|x > a}.
[ Note that R, = (a, ) ]. Then J* is a topology on R .
This topology is called right ray topology on R .

[Proof is similar to example 4].

16)LetI={0}U{A,|n=12,.. }where A, ={n,n+ 1,n+2,...}. Then J is a topology
onN.

@) @ € 3 (by definition). As N=1{1,23,..} =4, weget NEJ.

(i1) Let A,B€J.Ifeither A=QorB=0weget ANB =@ € 3. Hence assume
that A #@and B # @ . Then A = A,,, or B = A, for some ,n € N . But then
ANB=A,NnA,=A,ifm>2norANB =A4,,NA, =A,ifn>m. Thus in
either case ANB € JforA,B €.

(i) LetA, €3 VA€ A,whereAis any indexingset. AsA4; €3 VA E A, by
definition of ¥, A = N. Hence A is well ordered set.

Define m = l.u.b {A| 1 € A} . This m exists.

Hence U A; = A, . This shows that U A ET.
AEA AEA
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From (i), (ii) and (iii), J is a topology on.

17) Let3 ={Q} U{N}U {4, | n=1,2,... } where 4,, = {1,2,3, ..., n}.

Then J is a topology on N.
(i) @ € § and N € J (by definition).
(ii) Let A,BEJ.IfA,BE{@}U{N},thenANBEeZ.Let ABE{A,|n=12,..}
then A=A, and B=A4,, Asm,n€N, ,eitherm<norn<m.Hence ANB = A, if
m<norANB=A4,if n<m.
(i) A, € 3, for each A € A (where A is any indexing set).

Case (1): A, =@, VA€ A.Then UA,1=(Z) = UAAES.
AEA AEA

Case (2): Ay = N, for some A € A, then UAA = N. Hence UAA €.
AEA AEA

Case (3): Let Ay # @and Ay # N, VA€ A. Then ACN. - UA,1=N.

ifA = Nand UAA = A,, wherem = sup{A|2 € A} if A = N.
AEA

Hence in all the cases, U A; € Iwhenever 4; €3, VA1 € A
AEA

From (i), (ii) and (iii) J is a topology on N.
18)I={0}u{G,|z€Z} ,where G, ={z+ 2n | n € Z}. Then J is a topology on Z .

(19) Let X = R and define § = {0} U{A € R | x € Aimplies — x € A}.
Then J is a topology on R .

(i) @ € 3 (by definition). R € J as x € Rimplies —x € R.

(i) LetALBEJ.If ANB=0,thenANBEJ.Let AnB + Q.

Thenx EANB=x €EAandx € B. AsA,B € Jwe get —x € A and —x € B. Thus

x€EANB=—-x€ANB.Hence ANBES.

(i) Let Ay € 3, for each A € A (where A is any indexing set).
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If UA,1=(Z) :>UA,1€3.Let UAﬁ(z)andletx € UAA.

AEA AEA A€EA AEA

Then x € A,  for some 45 € A .

As A;, €3J weget —x € Ay, and hence —x € UAA .
AEA

Thus A, €S, VAEA = UAAES.
A€EA

From (i), (ii) and (iii) J is a topology on R .
Note that for this topology SonR, A €J & R—-—A€J. LetAeIJ.IfA=0orR
then obviously R — A € 3. Hence, let ® € A c R.
XER-—-A=x¢ A= —x¢& Alsince —x EA= —(—x) = x € A]
= —-x €ER—A.
ThusAEJ > R—-—A€Z. SimilarlyR—4€J = R—-(R—-—A) =A4€3.
Hence Ae§ ©R—-A€S.

Remarks :
1) Ina T-space (X,3), each member of J is a subset of X but not conversely.
For this consider the T-space (X, J) where X = {a, b,c} and J = {@,{a}, {a, b}, X}.
Then {c} c X but{c} & .

2) Intersection of finite number of members of § is a member of § but intersection of

any number members of J need not be member of 3 .

For this consider the T-space (R, J,,). (— n, n) € J3, foreachn € N . But

(enm = es.

neN

3) Let X # @. Every subset of the power set of X need not be a topology on X.

For this consider the following examples:

(i) Let X = R and K = {@} U {R} U {[a, ©)| a € R}. Define A, = E“’) VneN.
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1
Then A,, € K for each n € N but UAn=U[—, 00)=(0,00)(E7C.
neN neN n

Hence X is not a topology on R .

(ii) Let X = {a, b, c}. Define K = {@, {a}, {c}, X}. Then X is not a topology on X as
{a}u{c}={a,c}e XK.

4) For any two topologies J3; and J, on X, J; U J, need not be a topology on X.
For this, consider X = {a, b, c}. Let §; = {0, {a},X} and J, = {0, {b}, X} be two
topologies on X, but J; U J, = {@,{a}, {b}, X} is not a topology on X.

Definition 1.3: Let (X, J) be a topological space. Members of J are called open sets in X with
respect to the topology J.
Obviously, we have,

(i) @ and X are open sets in X w.r.t. any topology J on X.

(i1) Intersection of finite number of open sets in a T-space is an open set.

(i11) Union of arbitrary number of open sets in a T-space is an open set.

(iv) Every subset of X is open in X w.r.t. the topology J if and only if the J is a discrete

topology on X.

§2 The set of all topologies on X ( = 0)

Given X (# @), there always exists a topology on X viz. the discrete topology or the
indiscrete topology. Hence, every non-empty set can be considered as a T-space.
The collection K of all topologies defined on a non-empty set X is surely non-empty and
is partially ordered set (poset in short) under the partial ordering relation < defined by
31 <3, ifand only if §; € J,, for J;,J, € K. The poset (X, <) is a bounded poset with
indiscrete topology as the smallest element and discrete topology as the greatest element.
If3;,3, € K, then J; N J, € K. Actually, N {J, | I, € KX} for any JF, € K.
Thus XK is closed for arbitrary intersection and contains the greatest element. Hence X forms a

Moore family of subsets of X ( A family of subsets of a non empty set X is said to form a Moore
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family of subsets of X if it is closed for arbitrary intersection and contains X). But J; U 3,

need not be a topology on X for J;, 3, € K. For 3,3, € K, define
3= ﬂ{Sa | 3, is a topology on X such that §; € J,and J, S J, ).
a

Then J is the smallest topology on X containing both J; and J,.
This topology J is called the topology generated by J; and 3.

The set (K ,A,V) is a complete lattice with J; A J, = F; N J, and F; V F, = topology
generated by J;and J,. Note that J; U 3, is a topology on X if J; S J,or 3, S J;.

§3 Topological spaces and metric spaces

Theorem 3.1 :-Let (X, d) be a metric space.

Forx e Xandr > 0,S(x,r) ={y e X |d(x,y) <r}.

Define §; ={A S X |Vx € A3 r > 0suchthat S(x,r) € A} U {0}.

Then J, is a topology on X.

Proof :- (i) @ € J, (by definition). For x € X, S(x,1) € X. Hence X € J,.

(i)LetA,BEJ; . If ANB=@,thenANBEJ,;.LetANB # @. Then for x € AN B we get
X €EAand x € B.

x € A= 31, > 0suchthat S(x,7;) € A. x € B= 31, > 0 such that S(x,7,) S B. Select

r = min(ry,7,). Then S(x,7) € S(x,7;) and S(x,7) € S(x,7,). Hence S(x,7) € AN B. Thus
givenx € AN B,3r > 0suchthat S(x,r) € AN B.Hence AN B € J,;. Thus A, B € J,implies
ANBES,.

(iii) Let A, € 34, for each A € A (where A is any indexing set).

If U A, =@, then by definition of Sy, U A, €5,
AEA AEA

Let UAA # @. Thenx € UAA = X € A, for some 45 € 4.
AEA AEA

As A; €34 3 v > O0suchthat S(x,7) € A, and hence S(x,7) S UAA :
AEA

Thus given x € UAA , 3 r > 0suchthat S(x,r) S UAA .
AEA AEA
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Hence 4, € 3, ,foreach 1 € A = UAA € 34 -
AEA

From (i), (ii) and (iii) J4 is a topology on X.
Hence (X, J4) is a topological space.

This topology J, is called the topology induced by the metric d on X.

Remarks:
(1) Every open set in a metric space (X, d) is an open set in T-space (X, J4).
Obviously for any x € X and r > 0, S(x,7) € J4.

(2) Every metric d on X (# @) induces a topology J on X.

Example : Let d be a discrete metric on X (# @) i.e.

d(x,y)z{l if x+vy

0 if x=y
As S(x, 1) = {x}, we get {x} € J, for each x € X. Hence J, is the discrete topology on X. Thus

discrete metric on X induces the discrete topology on X.

Example : Let d denote usual metric on R i.e. d(x,y) = |x — y| for x,y € R. Then
S(x,r) =(x—r,x+7) foreachx € Randr > 0, Hence J; = J,, (by definition of I, and J,,)
This shows that the usual topology on R is same as the topology induced by induced usual

metricon R .

Definition 3.2: A T-space (X, J) is said to be metrizable if there exists a metric d on X such

that Sd = 3

Examples :
(1) (R,3J,) is a metrizable space.

(2) Discrete topological space is a metrizable space.

Remarks: Every topological space need not be a metrizable space.

For this, consider the following topological spaces.
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(1) The topological space (X,J) where X = {a, b} and J = {@, {a}, X}. This topological
space (X, ) is not metrizable. Let there exist a metric d on X such that §; = J. Asa # b,
d(a,b) > 0. Forr = d(a,b) ,S(b,r) = {b}. Thus {b} € I, but {b} & J,.

Hence a contradiction. This shows that (X, J) is not a metrizable space.

(2) Co-finite topological space (N, J) is not a metrizable. (N, J) be a co-finite topological
space. Assume that there exists a metric d on I such that J,; = .

Then S(x,1) = {x} € J; = J, which is a contradiction, as N — {x} is not finite.

(3) Indiscrete topological space (X, J) with |X| > 1, is not a metrizable space.

Let |X| > 1 and let § be indiscrete topology on X. If possible assume that there exists a
metric d on X such that J; = J . Select x,y € X such that x # y (this possible as

|X| > 1). Hence d(x,y) =r > 0. Then S(x,7) # @ as x € S(x,r). Thus S(x,r) € J, but
S(x,7) ¢ 3 = {0, X}. This contradicts § = J;. Thus there does not exist any metric d on
X such that J = J,;. (3 = indiscrete topology).

Exercises

(1) List four distinct topologies on
()X ={a,b,c,d} (i) X = {1,2,3}

(2) Show that in a co-finite (co-countable) topological space (X, ),

ﬂ{GES|xEG}={x}foranyxEX.

(3) Show that no two (non-empty) open sets in a co-finite topological space are disjoint.

(4) Define a metrizable space. Show that every metric d defined on X induces a topology

on X.
(58) Prove or disprove:
(1) Union of two topologies defined on the same non-empty set X is a topology on X.
(i1) Every topological space is metrizable.
(i11) The set of all topologies defined on a non-empty set X is a complete lattice.
(6) Give four different topologies on R.
(7) Show that the co-finite topology on a finite set is the discrete topology.

(8) Show that the co-countable topology on a countable set is the discrete topology.

Page | 17



9)

(10)

(11)

(12)
13)

(14)

15)
(16)
a7

Topological spaces

Let (X,J) be a topological space and A € X. Show that {UU(VNA)|U,V €J}isa
topology on X .

Let X = {1,2,3}. 3; = {0, X,{2},{2,3}} and 3, = {0, X, {2},{1,3}}. Find the smallest
topology on X containing J; and J, and the largest topology contained in J; and J, .
Prove or disprove: J = {@} U {R} U {[a, ) | a € R} is a topology on R .

Find the mutually non-comparable topologieson X = {p, q, r}.

LetX #® and A € X . Show that the family of all subsets of X which contain A
together with the empty set @ is a topology on X. Discuss the special cases

1) A=0 () A=X

Prove or disprove:

(1) Every topological space is metrizable.

(2) Any metric defined on X (# @) induces a topology on X.
Show that the usual metric on X = { % :n€eN } induces the discrete topology on X.

Prove that usual metric on R induces usual topology on R .
LetX ={a,b,c,d.e}and X = {{a}, {c,d},{a,b, c}}. Find the topology J on X

generated by the family X .
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Unit 2

Bases and Subspaces

§1 Base for a topology — Definition and Examples.
§2 Characterizations of bases.

§3 Solved problems.

§4 Sub-base — Definition and Examples.

§5 Subspaces of a topological space.
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Bases and Subspaces

Unit 2: Bases and Subspaces

§1 Base for a topology

Definition 1.1: Let (X, J) be a topological space and let B € J. B is a base for § if members of
3 can be can be expressed as a union of members of B or equivalently for each and each x € G
there exists B € B suchthatx € B € G.

The members of the base B are called basic open sets.

Examples 1.2:

(1) Let (X, ) be a discrete topological space. B = {{x} | x € X} is base for .

2)Let X ={a,b,c,d} and J = {@,{a},{b},{a, b}, {c,d} {a,c,d},{b,c,d}, X} Then(X,3) isa

T-space and B = {{a}, {b},{c, d}} is a base for .

(3) For the T-space (R, J,), B = {(a,b) | a,b € R} is a base for J,,. Obviously B < J,,. Select
GEJy,andx €G.AsG €3, forx € G,3r > 0suchthat (x —r,x + 1) S G (by definition

of §). As(x —r,x+r)eEBandx € (x —r,x + 1) S G we get B is a base for J,,.

§2 Characterizations of bases

Theorem 2.1: Let J; and J, be two topologies on a set X having bases B, and B, respectively.
Then J; < 3, if and only if every member B, of can be expressed as a union of some members
of B,.
Proof : Only if part.

Let 3; < 3J,. AsB; € J; we get By € J,. As B, is base for topology J,, each member
of B, being member of J,, can be expressed as union of some members of B,,.
If part.

By the given condition, each member of B, can be expressed as union of some members
of B,. As B, is a base for J;, each member of J; is expressed as union some members of B,
and hence each member J; of is expressed as union of some members of B,. As B, € J, we

get each member of J; is a member of J, also. Hence J; € J, i.e. 31 < JI».
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Note that not every family of subsets of X will form a base for some topology on X.

The necessary and sufficient condition for B € g (X) to be a base for some topology J

on X is given in following theorem.

Theorem 2.2: Let X be non-empty set and B S o (X). B is a base for some topology on X if and
only if it satisfies the following conditions :
(i) X = U{B | B € B} and (ii) for B;, B, € B and x € B; N B,, there exists B € B such that
X € B € B; N B, (i.e. By N B, is expressed as union of members of B)
Proof : Only if part
Let B be base for some topology Jon X. Then X € § = X = U{B| B € B}. Let
By, B, € B. Then as B € J we get By, B, € J and hence B; N B, € J . B being a base for
topology for eachx € By N B, , 3 B € B such that x € B € B; N B, . Thus both conditions are
satisfied.
If part
Let B € (X) and let B satisfy the given two conditions (i) and (ii). To prove that B is a
base for some topology 3 on X. Define
I =1{0} U {4 € X | Ais union of some members of B}
(1) @ € Jand X € F (by condition (i)).
2) LetG,HEJ.IfGNH=0,thenGNHESZ.Let GNH # .
XEGNH = x€Gandx€H.AsG,HEJ IB;,B, €Bsuchthat x € B; € G and
X € B, € H (by definition of J). Thus x € B; N B, and B;, B, € B. Hence by condition (ii),
there exists B € B such that x € B € B; N B,. This shows that for any x € G N H, 3 B € B such
that x € B € G N H. Hence

GNH= U {x} c UBanH

XEGNH BESB

i.e. G N H is union of some members of B. Hence G N H € .
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(3) Let 4, € 3, VA€ A, where Ais any indexing set. Then obviously AUA A/l is union of
S

some members of . Hence AUA A/l € J.
S

From (1), (2) and (3), J is a topology on X. Now as B € J and each member of is expressed as

union of members of B, we get B is a base for this topology J on X.

Corollary 2.3: If B is a family of subsets of X (# @) such that
(i) X = U{B| B € B} and
(i) B,,B, €B = B, N B, € B.

Then B is a base for topology J on X.

§3 Solved problems

Problem 1: Show that {[a,b] | a < b, a, b € R} will not form base for any topology J on

R.

Solution : Let J be a topology on R for which 8 = {[a,b] | a < b, a,b € R} is a base for J.
AsBCJ,[1,2]n[2,3] €3 = {2} € J. But {2} cannot be expressed a union of members of

B ; a contradiction. Hence there does not exists any topology 5 on R for which 8B is a base.

Problem 2 : Let (X, ) be a topological space and B be a base for § . If § ' is a topology on X

with same base B then § = .
Solution : Let G € . Then by definition of base G = U{B| B € B,B S G}. As B is a base for

!

also, B € J ' and hence G € J'. Thus J € J . Similarly we can prove ' € J. Hence

o~

R}
I=3"
Problem 3 : Let (X, ) be a discrete topological space. Let 8 = {{x} | x € X}. Show that any
family B* (of subsets of X) is a base for J if and only if B € B".
Solution : Only if part -

Let B* be a base for 3. {x} € J and x € {x}. Hence by definition of base 3 B* € B* such
that x € B* € {x}. But then B* = {x}. As this is true for each x € X we get B € B*.
Ifpart— Let BSE B AsJ=p(X), B 3. (1)
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As G € 3. Then = U {X} .

xel
As{x} € B*,V x € G we get, G is union of members of B* (2)
Hence from (1) and (2) 8B* is base for J.

Problem 4 : Let 3 and J* be any two topologies on X (# @) with B and B* as bases. If each
G € 5 is union of members of B*, then show that J < F*.
Solution : As B* € J*, each G € J is union of members of J* and J* being a topology on X,

G € 3*. This shows that § < J*.

Problem 4: Let (X, J,) and (Y, J,) be two T-spaces.

Let B ={G, X G;| G; € J, and G, € T}

Then show that B is a base for some topology on X X Y.

Proof : Obviously B is a family of subsets of X X Y. As X € J; and Y € J,, we get

X xY = U{B| B € B} (1)

Further let G, X G, € B, H; X H, € Band (x,y) € (G, X G,) N (H; X H,).

Then (x,y) € (G, N G,) X (H, N Hy). As G, N G, € J; and H; X H, € T, we get

(G, N G,) X (H, N Hy) € B. Thus (x,y) € (G; N G,) X (H, N Hy) = (G X H)) N (G, X Hy).
This shows that both the conditions (i) and (ii) of the theorem 1.4.3 are satisfied. Hence B is base

for some topology Jon X X Y.

Definition : The topology J defined on X X Y for which 8 ={G X H |G € J, and H € J,} is
called the product topology on X X Y and the T-space (X X Y, J) is called product space, where
J is product topology on X X Y.

§4 Sub-base — Definition and Examples.
Definition 4.1: A family S of subsets of X is said to be a sub-base for the topology J on X if

the family of all finite intersections of members of J is base for 3.
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Examples 4.2:

(1) Every base for topology J is obviously a sub-base for 3.
Q2Q){ASR|A=(a,»o)orA=(—ow,b) fora,b € R} is a sub-base for the usual topology J,,
on R.

§5 Subspace of a topological space
Theorem 5.1: Let (X, J) be a T-space and let Y be any non-empty subset of X. Define
I ={GNY |G €J} Then J* is a topology on Y.
Proof: i) 0 EJ = ONY =0€J"
XEX = XNnY=YESZ.
(i) Let G",H* € 3*. ThenG* =GNYand H* = HNY for some G,H € . Hence
G NH"=(GNH)NY.As(GNH) E3wegetG*NH" €J*.

(iii) Let G," € 3*, VA € A, where A is any indexing set. Then G;* = G, N'Y for some G, € .

UGA* = U(GADY) = UGA ny
AEA AeA AEA

As UGA € J, we get UGA* € J".
AEA AEA

From (i), (ii) and (iii) we get J* is a topology on Y. Hence (Y, J*) is a T-space.

Definition 5.2: This topology J* on Y is called relative topology on Y and the T-space (Y, J*) is
called the subspace of T- space (X, J).

Note that a subsetA € Y is open in (Y, J*) ifand only if A = G N Y for some open set G
in (X, 3).

Examples 5.3:

(1) Let (X, J) be a T-space where X = {a, b, c,d} and J = {0, {a}, {b,c},{a, b, c}, X}. If

Y = {b, c, d} then the relative topology J* on Y is given by J* = {@,{b, c}, Y}

(2) Let (X, ) be any T-space. Let Y = {a} for some a € X. Then the relative topology J* on Y
is the indiscrete topology on Y as §* = {9, {a}}.
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3) N € R. (R, J,,) is a T-space. The relative topology J* on N is a discrete topology on N as for
anyn €N, {n} = (n — %,n + %) N N € J*. Similarly we can prove that the relative topology of

3. to Z is the discrete topology.

(4) Any subspace of a discrete (indiscrete) T-space is a discrete (indiscrete) T-space.

Theorem 5.4: Let (X, ) be a T-space and Z C Y C X. Denote ¥/ y» the relative topology on Y
induced by 3 . Show that @/ Y)/ /

Proof: We have ¥/, ={GNZ |G € FYand¥/y ={GnY |G € J}.

Then (S/Y)/Z = {G* NZ|G* € 3/y}

={(GNnY)NZ|G"=(GNY), GEST}
={GNn(YNnZ)| GeJ}
={GNZ| Ge€J} ......... (wZcY)

= J/Z

Remark: Let (Y, J") be a subspace of (X, ) . For each subset open in the subspace (Y, J*) to
be open in (X, J) , it is necessary and sufficient that Y is open in X.
For this consider the T-space (R, J,,) and Y = [0,1]. Then Y is not open in (R, J,,). [ 0, % ) is

openinYas[O, %):(

1 1
2

1) .
—)1sn0t
2

) ny = (_71 %) n[0,1] and (_71 %) € 5,. But [0,

open in (R, J,,).

Theorem 5.5: Let (X, ) be a T-space and let B be a base for . If (Y, J*) is a subspace of
(X,3), then B* = {BNY|B € B} is a base for J*.
Proof : BisabaseforF—= BCS I = B CJ" (1)

LetG" €I andy EG* . AsG"EJ,G"=GNY forsome G €J. Asy € G*, we get
yeEGNY.AsBisabaseforJ,y € G and G € I will imply y € B € G for some B € B. But
theny €EBNY S GNY =G Define B* =B NY. Then B* € B".
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Thus for G* € 3 andy € G* 3 B* € B* suchthaty € B* € G~ (11)

Hence from (i) and (ii) B* is a base for §*.

Definition 5.6: A property of a topological space is said to be hereditary if every subspace of the
space has that property.

Examples 5.7:

(1) The property of a topological space being a discrete space is a hereditary property.

(2) A property of a topological space being a indiscrete space is a hereditary property.

(3) Metrisability is a hereditary property i.e. subspace of a metrizable space is metrizable space.
Proof: Let a T-space (X, ) be a metrizable. Hence 3 a metric d defined on X such that the
induced topology 34 by the metric d coincides with J. d: X X X — Rand Y € X. Restrict d to
Y X Y and denote it by d;. Thend;: Y XY — R.

Foranyy €Y,S(y,r)inY=(S(y,r) nX)NnY @

The base for topology J; = J is given by {S(x,7) | x € X and r > 0}. From theorem 5.5,
{S(x,r)NY | x € X and r > 0} will be a base for J*, where J* denotes the relative topology on
Y. Thus by (I) {S(y,r) | y € Y and r > 0} is a base for J*. As the base for the topology J* and
the topology 34, are the same we get J° = J, . This shows that for the relative topology J* on
Y € X, 3 ametric d; on Y such that J; = J*. Hence the subspace (Y, J") is metrizable. Thus

subspace of a metrizable space is metrizable.

Remark : There are some properties of a topological (X, J) which are not hereditary, e.g.

compactness or connected which we will study in unit 6 and 7.

Exercises

1) Let (Y, J3*) be a subspace of (X, J). Consider the following statements :
() (X, ) is discrete topology = (Y, J*) is discrete topology.
(ii) (Y, J*) is discrete topology = (X, J) is discrete topology.

Which of the statements (i) and (ii) is true? Justify your answer.
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Unit 3
Special Subsets

§1 Derived set of a set.
§2 Closed sets.
§3 Closure of a set.
§4 Interior of a set.

§5 Exterior of a set.

§6 Boundary of set.
§7 Solved Problems.
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Unit 3: Special Subsets

§1 Derived set of a set

Definition 1.1:- Let (X, J) be a topological space. Let A € X and x € X. Then x is a limit point
or accumulation point of 4 if each open set containing x contains a point of A other than x.

i.e. for each open set G containing x, GNA —{x} # 0.

Remarks:
(1) x € X is not a limit pointof A S X if G N A = @ or G N A = {x} for some open set G
containing Xx.

(2) The set of all limit points of A is denoted by d (4) and is called derived set of A.

Examples 1.2:

1) Let (X, ) be a discrete topological space and let A € X. For any x € X we get x € {x}
and {x} €S . Hence{x}NnA=0ifx & Aor{x}nA={x}ifx € A.
Hence {x} N A — {x} = @.Hence, x is not a limit point of A.
Thus no point of X will be a limit point of A. Hence d(A4) = @ for each
A € X in a discrete topological space.

2) Let (X, J) be indiscrete topological space, A € X and x € X. The only open set
containing x is X. Hence X N A — {x} = A — {x} .
If A = @, then no point of X will be a limit point of A. Hence d(A) = 0.
If A = {x}, then each point of X — {x} will be a limit point of A.
Hence d({x}) = X — {x}.
If |A| > 1, then each point of X will be a limit point of A. Hence d(4) = X .

3) Consider the topological space (R, J,)and NS R.Forx € R,
(x—r, x+1r)€EST,.
Forr < 1weget(x —r, x+r) NN = @. Hence x is not a limit point of N.
As this is true forany x € R, d(N) =@ .

4) LetX ={a,b,c}and letJ = {@,{a},{b},{a, b}, X}. Take A = {a} .
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(i) x = a . For the open set {a} containing a, we get,
{a}nA—{a} ={a} n{a} — {a} = {a} — {a} = @ . Hence a is not a limit point of A.
(i) x = b . For the open set {b} containing b, we get,
{b}n A—{b} = @ . Hence b is not a limit point of 4 .
(iii) x = ¢ . The only open set containing c is X and X N A — {c} = {a} — {c} = {a} # 0.
This shows that c¢ is a limit point of 4

Hence d(A4) = {c}.

Theorem 1.3: In any topological space (X,J) we have,

1) d(@) = 0.

2) A€B = d(A)cd(B), VABCcX.

3) x€d(A) = xedlA—{x}), VACX.

4) d(AUuB)=d(A)ud(B), VA BSX.

5) d(AnB) €d(A)nd(B) VABCX.

Proof: -
(1)Let x € X and G be any open set containing x. Then G N @ — {x} = @ — {x} = @, shows
that no x € X will be a limit point of @ .
Hence d(¢) = @.

(1) Letx € d(A) . Ifx ¢ d(B) , then 3 an open set G containing x such that
GNB—{x}=0.AsASBwegetGNA—{x}=0.Hencex € d(4) ;a
contradiction. Thus x € d(4) = x € d(B) ,if A € B.

Hence, A€ B = d(A4) c d(B).
(2) Let x € d(A) . To prove that x € d(4 — {x}).
Assume that x € d(A — {x}) . Then 3 an open set G containing x such that
GN(A—-{x})—{x}=0.ButthisimpliesGNAN{X})N{x} =0 ({x} =X —{x}
ie.GNAN{x} =0 ie.GNA—{x}=0.Hencex & d(4) ; a contradiction.
Hence x € d(4A) = x € d(4 — {x}).
(3) To prove thatd(AU B) =d(A)ud(B), VA BS X .
By (2) we get,
ACAUB = d(A) €d(AUB) and
BCcAUB = d(B)<d(AUB).
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Hence d(A) Ud(B) € d(AU B) )
Let x € d(AU B). To prove x € d(A) U d(B).

Assume that x € d(4) U d(B). Therefore x ¢ d(A) and x & d(B).
x¢d(Ad) = 3G eJsuchthatx EGandG NA—{x} = 0.
x¢d(B) = 3IH€EeJsuchthatx € Hand HN B — {x} = 0.

GHEY3 = GNHeJandweget(GNH)NA—{x}=0and
(GNH)NB-{x}=0.
Combining both we get, (GNH) N (ANB) —{x} =0.
AsGNHEJandx € G NH, we getx & d(A U B); a contradiction.
Thusx € d(AUB) = x € d(4A) ud(B)
Hence d(AUB) € d(A)ud(B) 1))
From (I) and (II) we get,

d(AUuB) =d(A) ud(B)

4 ANnBcA = dAnB) €cdA)andAnNB<S B = d(ANnB) € d(B) Hence we

getd(AnB) € d(A) nd(B).

§2 Closed sets

Definition 2.1: Let (X, J) be a topological space and A € X . A is said to be closed if A contains

all its limit points i.e. if d(A) € A.

Examples 2.2:

1)
2)
3)

4)

5)

d@)=0c 0o = @isclosedin(X,S) .

d(X) € X always = X isclosedin(X,3) .

In(R,SJ,), (a,b) [ where a < b] is not a closed set as it does not contain its limit
point a.

In a discrete topological space (X, ), (|1X| > 1), d(A) =0, VA C X.

Hence d(A) € A, V A € X. Hence each subset of X is closed.

In an indiscrete topological space the only closed sets are @ and X.
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Theorem 2.3: Let F be a closed set in a topological space (X, J) and let x € F. Then 3 an open
set G suchthatx € G € X — F.
Proof: F is closed set = d(F) € F.
x¢F = x¢&d(F)
= x is not a limit point of F.
= 3 an open set G containing x such that G N F — {x} = Q.
= 3G E€Jsuchthatx EGandGNF=0orGNF ={x}
= 3G E€Jsuchthatx EGandGNF =0 (asx & F,GNF # {x}).
= G EJsuchthtx EGandx EG S X —F.

Corollary 2.4: If F is a closed in (X, J), then X — F is an open set.
Proof: By Theorem 2.3 for each x € F, 3 an open set G suchthatx € G € X — F.

Thus X — F = U {x}=U{Ge3|xeGanngx—F}

XEX—F
ThusX—F=U{G CX—F|GES suchthat x € G € X — F)

Thus X — F is an arbitrary union of open sets and hence X — F is an open set.

Corollary 2.5: If X — F is an open set in (X, ), then F is a closed set.
Proof: -To prove that F is a closed set in X i.e. to prove that d(F) € F.
Let us assume that d(F) € F. Then3 x € d(F) such that x & F.

By Theorem 2.3, 3 an open set G such that x € G & X — F.

For this open set G containing x, we get G NF —{x} =0 —{x} =0.
This shows that x is not a limit point of F. i.e. x € d(F) ; a contradiction.

Hence, d(F) € F.Therefore F is a closed set.
Corollary 2.6: A set is closed subset of a topological space if and only if its complement is an

open subset of the space.

Proof: -From the Corollary 2.4 and Corollary 2.5 the proof follows.

Page | 34



Special Subsets

Corollary 2.7: The family K of all closed subsets in a topological space has the following
properties:

1. The intersection of any number of members of K is member of K.

2. The union of any finite number of members of X is a member of K.

3. XEX and 0 € K.

Theorem 2.8: Let X # @ and let X denotes the family of subsets of X satisfying the conditions
in corollary 2.7. Then 3 a unique topology J on X for which the family K will be family of
closed subsets of X.

Proof:- Define § = {X — F | F € X} . Then obviously J is a topology on X.

To prove the uniqueness only.

Let 3’ be another topology on X for which X is family of closed sets in X.

ThenGEJF S X —-GEK ©X—GisJclosed © X — G isJ' closed (since § and ' have the
same family of closed sets) & G is open in(X,J') i.e. G € J'.

ThusGEZ © GES' .

Hence § = J' and the uniqueness follows.

Example:- Let X = {N} U {4 € N | A s a finite set} . Then X satisfies three conditions of
corollary 2.7 and hence can be used to define a topology J on N.
(D) N € XK (by definition) and @ € K , as @ is always finite.
) LetA, BeEX.IfA=NorB=N,thenAUB =NandwegetAUB € X.
If A #+ N and B # N, then A is finite and B is finite. Hence A U B is finite and therefore
AUBEeEX.
Thus A, BEX = AUB e XK.
(III) LetA; € KX V A € A, where A is any indexing set .

Then ﬂ Ay € Ay, for some 4.
AEA

As A, is a finite set, we get ﬂAl EX.
A€A

Thus the family K satisfies all the three conditions of corollary 2.7.
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Define § = {X — F | F € K} . Then obviously J is a topology on X for which K will form

family of closed sets.

Remark: It can be observed that in discrete and indiscrete spaces the closed sets are same as
open sets. But there also exists some non-trivial topological spaces in which closed sets are same
as open sets.

e.g. Consider the topological space (X, J) where X = {a, b, c} and § = {@, {a}, {b, c}, X}. The
family of closed sets in (X, J) is K = {@, {a}, {b, ¢}, X} , which is same as .

Definition 2.9:-A subset in a topological space is said to be clo-open if it is both closed and open
in that space.

@ and X are clo-open sets in any topological space.

Remark: Union of finite number of closed sets in a topological space is a closed set, but union
of an infinite collection of closed sets in a topological space is not necessarily closed.

For this consider the topological space (R, J,,).
1
Define F, = [E'l] , VneN.

Then F), is a closed set in (R, J,,), V n € N.

1 1 1
As UFn:{l}U[E'l]U[g'l] U[Z'l] U =(0,1], wegetUFn is not a

nenN nenN

closed set in (R, J,,).

§3 Closure of a set
Definition 3.1: The closure of a set A in a topological space (X, J) is the intersection of all

closed subsets of X containing A. This is denoted by c(A4) or A .

Remarks:
(1) A is the smallest closed set containing A.
(2) A is a closed set(see corollary 1.10) containing A.

(3) Ais a closed set if and only if A = A. Hence ® = @ and X = X.
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Theorem 3.2: For any set A in a topological space (X, 3), A = A U d(4).
Proof:-
I) To prove that A € A U d(A).
Let x € A . To prove that x € A U d(4).
Assume that x € AU d(A). Thenx ¢ A and x & d(4).
x & d(A) = x is not a limit point of A.
= 3 an open set G containing x suchthat G NA =@ orG N A = {x}.
Asx ¢ AwegetGNA=@.Hence G € X — A.
FurtherasG N A = @ and G € 3, no limit point of G will be a limit point of A.
But this will imply G € X — d(A).
ThusG S X—AandG S X —d(4) = G (X —A)n (X —d(4))
= GSX-[Aud(A)].
Thus for each x € A U d(A4) i.e. for eachx € X — [A U d(A)] there exists an open set G,
such thatx € G, and G, € X — [AU d(4)].
Hence X —[AUd(4)] = U G, s an open set.
xeX—[AUd(A)]
Hence X — [A U d(A)] is an open set in (X, J).
Therefore [A U d(A)] is a closed set.
Obviously, A € AU d(A). Hence A € AU d(A).
II) To prove that AU d(4) € A.
Let x € AU d(A) and let B be any closed set containing A.
If x € A, then x € B obviously.
Ifxed(A),then x € d (B) (since AC Bimpliesd (A)cd (B)) and hence
X € B as Bis aclosed set. Thus x € A U d(A) implies x € B for any closed set B.
Hence x € A.
This shows that AU d(4) € A
From (I) and (IT) the result follows.

Theorem 3.3: If E is a subset of a subspace (X*, §*) of a topological space (X, ), then
c*(E) = X* nc(E), where c(E) =closure of E in (X, J) and c¢*(E) = closure of E in (X*, )
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Proof: Let K and K * denote the family of closed sets in X and X* respectively.

X*nc(E)=X*n(ﬂ{F|Fe?CandE§F})=ﬂ{X*nF|F€7CandE§F}

- ﬂ{F* |F* € X and E € F*} = ¢*(E) .

Remark: In any topological space (X,J) we have,
(DX =X
2)c@ =0
3) c(c(E)) =c(E) foranyE < X.
4 A< B = c(A) S c(B) forany A, B C X.
B5)c(AnB)=c(A)nc(B) forallA,BS X .

§4 Interior of a set
Definition 4.1: Let (X, J) be a topological space and E € X. The interior of E is the union of all

open sets contained in E.

It is denoted by i(E) or E°

Remarks:
(1) i(E) is an open set in X and is the largest open set contained in E.

(2) E is open in X if and only if i(E) = E.

Examples:
(1) Let (X, J) be an indiscrete T — space with |X| > 1. Then for any E c X we geti(E) = 0.
ForE = X,i(E) = X.
(2) Let (X, 3) be a discrete topological space. i(E) = E for each E € X.

Theorem 4.2: For any set E in a topological space (X, J), i(E) = E'~' (complement of closure
of complement of E).

[A" = Complement of A in (X, ) and A = closure of 4 in (X, ).]

Proof: To prove i(E) = E'™".
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Let x € i(E). Then i(E) is an open set containing x and contained in E.

Hence i(E) N (X — E) = @.

Thus, i(E) N (X — E) — {x} = @.This shows that x is not a limit point of E.

Thusx €i(E) = x¢ (X —E)andx € d[(X —E)]. Hence x € E' Ud(E") i.e. x ¢ E'~.But
then x € E'~'.This shows that i(E) € E'~’ (1)

To prove E'~' Ci(E) .Letx € E'™".

Thenx ¢ E'™ = x ¢ E' U d(E")

= x ¢ E'andx ¢ d(E")

= x € E and x is not a limit point of E’.
Hence 3 an open set G in X such thatx € G and G N E' — {x} = Q.
This is possible only when G NE' =@ ... (sincex € E' = G NE' # {x}).
Thus G € E. By the definition of i(E) we get G € i(E).Hence x € i(E).
This shows that E'~" € i(E) (2)

From (1) and (2), we get,
i(E)=E""".

Remarks.

In any topological space (X, ), i(E) = Complement of the closure of the complement of E.
i(E) equals the set of all those points of E which are not limit points of

E'=X-E.

c(E) equals the set of complement of the interior of the complement of E.

Theorem 4.3: In any topological space (X,J) we have,
©6)iX) =X
(7 i(@) =0
8) i(i(E)) = i(E) forany E € X.
9)A<B = i(A) €i(B) forany A,B C X.
(10) i(AnB) =i(A)ni(B) forallA,B<SX.
Proof: We prove the property (5) only.
ANB<S AandANB C B.
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= i(ANB)Ci(A) andi(ANB) S i(B)

= i(AnB) ci(A) ni(B) (i)
Letx € i(A) Ni(B) . Thenx € i(A) and x € i(B).

x €i(A) = 3G € Jsuchthatx € G S A.

x €i(B) = 3 HeJsuchthatx € H € B.

Butthenx e GNH S ANB.
AsGNHEJwegetGNHCi(ANB). Hence x € i(ANB).

This shows that, i(4) N i(B) € i(ANB) (i1)

From (i) and (ii), we get,

i(AnB) =i(4) ni(B).

Remark: i(A) Ui(B) Ci(AUB) forA,B € X. Buti(4) Ui(B) # i(A U B) in general. For this
consider the topological space (R, J,,). Take A = [0,1) and B = [1,2). Then i(4) = (0,1) and
i(B) = (1,2). Hence i(A) Ui(B) = (0,2) —{1}. AU B =[0,2) and i[A U B] = (0,2).

This shows that i[A U B] # i(4) Ui(B) .

Definition 4.4: Let (X, J) be a topological space, E € X and x € X. x is called an interior point
of E if 3 an open set G such thatx € G € E.

Remark: The set of all interior points of E is i (E) for any subset E of a topological space (X, J).

§5 Exterior of a set
Definition 5.1: Let (X, J) be a topological space and E € X. The exterior of E is the set of
interior points of the complement of E. This is denoted by e(E).

Thus e(E) = i(E") = i(X — E).

Remark: i(E) = e(E").

Theorem 5.2: In any topological space (X,J) we have,
(1) e(®) = X
2Q)eX)=0
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(3)e(E)SE'=X—E forany E € X.
4) e(E) =e[X —e(E)] forany E C X.
(5) e(AUuB) =e(A) ne(B). forany A,B < X.
Proof: Proofs of properties (1), (2) and (3) follows directly from the definition.
Proof of (4):
e[X —e(E)] = i(e(E)) (by the definition)

=i(i(X - E))
=i(X—E)
=e(E)

Thus, e(E) = e[X — e(E)].
Proof of (5):
e[AUB] =i[X—-(AUB)]
=i[(X -4 nX-B)]
=i(X—=A4)Nni(X —B)
e(4) ne(B)
Thus e(AU B) = e(4) ne(B).

§6 Boundary of set
Definition 6.1: Let (X, J) be a topological space and E € X. The boundary of set E is the set of

all points interior to neither E nor X — E. This is denoted by b(E) or frontier of E.

Theorem 6.1: In any topological space(X, J) for any E € X we have

() b(E)=X—-[i(F)Vi(X —E)]
=[X—iBE)]n[X—i(X—E)]
= [X—iBE)]In[X —e(E)]
=X —[i(E) ve(E)]

(2) b(E) =b(X —E)

b(E)=X—-[i(E) Vi(X — E)]

=X-[i[X-X-E)]Ui(X —E)]
=b(X —E)
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B)b(E)=X—-[i(E)Vi(X —E)]
=[X—-iE)]n[X—i(X - E)]
=En(X—E)

§7 Solved Problems

Problem 1: If x is a limit point of a subset E of a topological space (X, J), what can be said
about whether x is a limit point of E in the topological space (X, 3*) if 3* < J. What if J* > J ?
Solution: If §* < J then surely x is a limit point of E in (X, J*) also [since any open set

in (X, 3*) containing x will also be open in (X, J) containing x].

If §* = 3, then x need not be a limit point of E in (X, J*) . For this, consider X = {a, b} .

3 = indiscrete topology and J* = discrete topology on X. Then b is a limit point of {a} in (X, J),

but b is not a limit point of {a} in (X, J*) .

Problem 2: Consider the topological space (N, J) where,
I={0}u{d,ln=12,.. }whered, ={n,n+1,n+2,..}, VneN.
Find (1) d(E) where E is an infinite subset of N.
(2) d(E) where E is a finite subset of N and E # {1}.
(3) d(E) where E = {1}.
Solution:
(1) Let E be any infinite set and n € N.
Thenn € A, forallm <n. ENA,, —{n} #® Vm < n. Hencen is a limit point of E.
As this is true for any n € N, we get d(E) = N.
(2) Let E is a finite subset of N. Let E = {x, x5, ..., x, }. Let m = max {x, x,, ..., X, }.
Then forany A,, p <m, A, NE —{p} # @ . Hence each p < m is a limit point of E.
Hence d(E) = {1,2, ..., m}.
(3) Let E = {1}. Then for 1, A; is the open set containing 1.
A\NE—-{1}={1}-{1} =0 .Foranyn# 1, A, NnE—-{1}=0—-{1}=0.

Hence n # 1 is not a limit point of E = {1}.
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Thus no point of N will be a limit point of {1}. Hence d({1}) = @

Problem 3:- Let (X, ) be a p —inclusion topology (p € X) (see Example 6, Unit 1). Find A for
A = {b}.

Solution:- We know that § = {@} U{G S X | p € G}.

Consider x € X and an open set G containing x. Then p € G (by definition of J) and
GNn{p}—{x}+0foreachx # p asp € G N{p} — {x} where p # x. But this shows that
each x # p is a limit point of A = {p}. Hence by the Theorem 3.2,

A=AvdA)=pPlvX-{pH =X

Problem 4:- Let (X, J) be a co-finite topological space, where X is an uncountable set. Show
that for infinite countable subset A of X, A = X.

Solution:- By the definition, § = {@} U {G S X | X — G is finite}.

Thus closed set in X must be finite. As A is not finite, A is not closed set in (X, ). Hence only

closed set containing A is X. As A = the smallest closed set containing A4, we get A = X.

Problem 5:- Find the derived set of (a, b) [a < b] in R relative to,
(1) Discrete topology.
(i) Usual topology J,,.
(i11)) Lower limit topology.
(iv) Indiscrete topology.
Solution: -
(1) d((a, b)) = @ relative to discrete topology in R (see Example 1 in 1.2).
(ii) d((a b)) [a, b] relative to usual topology J,, on R .
a€(a—r,a+r)and (a—r,a+7r) €T, foranyr > 0.
(a—r,a+r)n(ab)—{a} #@® Vr > 0. This shows that a is a limit point of (a, b).
Similarly, we can prove that b is a limit point of (a, b) in (R, J,,) . Further any
x € (a, b) will obviously a limit point of (a, b). Further x & (a, b) will not be a limit
point of (a, b). Hence d((a b)) [a, b] relative to usual topology on R .

(ii1) Let I denote the lower limit topology on R .
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ThenJ = {@} U {[a,b) |a,b € Rand a < b} . Now a is a limit point of (a, b) as
a€la, ate)and(a, a+e) eI Ve>0and[a, a+e)n(a, b) —{a} + @ for
any € > 0 . This shows that a is a limit point of (a, b) relative to ¥ .
Obviously, any p € (a, b) will be limit point of (a, b) relative to § . For b € R, the
open set containing b is of the form [b, b + €) for € > 0 and
[b, b+e)n(a, b)—{b} =0 — {b} = @. Hence b is not a limit point of (a, b).
Similarly any x € (a, b) will not be a limit point of (a, b) relative to J . Hence,
d((a,b)) = [a, b) relative to ¥ .

(iv) Let J be an indiscrete topology on R . Then d((a, b)) = R relative to indiscrete

topology (see Example 2 in 1.2)

Problem 6:-Let (Y, 3*) be a subspace of (X, J). Then a subset A of Y is closed in Y if and only if
there exists a set F closed in X suchthat A = FNY.

Solution: - Let a subset A of Y be closedinY. Hence Y — AisopeninY.

Hence Y —A = GNYfor someG €.

ButthenA = (X —G)NY will imply A =F NY where F = X — G is closed set in X.

Similarly we can prove the converse.

Exercises

1) In atopological space (R, J) where,
I ={0} U{R} U {(a,) | a € R} find all § - closed subsets of R .

2) LetX ={a,b,c,d,e}. Define§ = {0,{a},{c,d},{a,c,d},{b, c, d, e}, X} Show that J is a
topology on X and find all 3 - closed subsets of X.

3) Consider the topological space (R, J,,).
Define A = (a,b), B = [a,b) and C = [a, b]. Which of the following sets are neither
open nor closed:

(@A (b)B (¢c) AnB (d) AnC
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4) Show thati[ AN B] = i(A) ni(B), where A and B are open sets in (X, 3).

5) Verify the following properties of i, e and b for any sets 4, B and E:

(i) c(E)=EUDb(E),i(E)=E —b(E).

(i) X =i(E)Ub(E)Ue(E)where i(E) Nb(E) ne(E) = Q.

(1ii) b(i(E )) c b(E), b(c(E )) C b(E) (give an example where these sets are not
equal).

(iv) b(AUB) € b(A) U b(B), i(AUB) 2i(A) U i(B) (give an example where these
sets are not equal).

(v) b(E) = @ if and only if E is both open and closed.

(vi) If A and B are open, i(c(A N B)) = i(c(A)) N i(c(B)).
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Different ways of defining topologies

Unit 4
Different ways of defining fopologies
§1 Closure operator.
§2 Interior operator.
§3 Exterior operator.

§4 Neighbourhood system.
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Unit 4: Different ways of defining topologies

§1 Closure operator

Definition 1.1: Let X be any non-empty set. By a closure operator c* on X we mean a function
c*: (X) — p(X) satisfying the following conditions:

(D) c*(@) =0

(2) A € c*(4)

(3) c*(c*(4)) = c*(4)

4) c*(AU B) = c*(4) U c*(B)

for all 4, B € $(X).

Example 1.2: Let (X, ) be any T — space. Define c*: o(X) — (X) by c*(4) = A = closure

of A in (X, ). Then c* is a closure operator on X.
Theorem 1.3: Let ¢* be a closure operator defined on X. Let F = {F € X | ¢*(F) = F} and

S ={X —F|F € F}. Then J is a topology on X and c*(4) = A = closure of A in (X, J), for
anyAc X .

Proof: I] To prove that 3 is a topology on X.

(1) c*(@) = @ (by definitionof ¢*) = X — QP €I = X € 3.
X € ¢*(X) (by definition of c*). We getc*(X) =X = X—-X€J = Q€.
(ii) Let A,B € §. Then c*(X — A) = X — A and c*(X — B) = X — B (by definition of ).
HX—-—(ANB)] =c*(X—A) U X —B)]
=c*(X—AUuUc*(X—-B) ...... (definition of ¢*)
=X-AUX-B)...... (A, BEY)
=X—-(ANnB)
This shows that AN B € J.
ThusA,BEJ = ANBES.
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(iii) Let G € 3 VA € A, where A is any indexing set .

To prove that U G, € 3.
AEA

First note that A € B = c*(4) € c*(B) ,for A,B € p(X).
ASB = AUB=B= c*(AUB) =c*B)
= ¢*(4) U c*(B) = c*(B)
= ¢*(4) € c*(B)
Thus A € B = c¢*(4) € c¢*(B).
Now G, €J =c*(X—G))=X— G VAIEA.

GlgUGl: (X—GA)Q (X—UGA>, VAEA

A€A AEA

= C*(X—GA)Q C*(X—U Gl>, VAEA

AEA
= (X_GA)QC*<X_UGA>I VAEA
AEA
AEA AEA
AEA AEA

But by definition of c*,

- Ue)eo-gs

AEA AEA
Hence
AEA AEA

But this shows that

(r-Ua)er = Yaes

A€A A€A
From (i), (ii) and (iii) we get ¥ is a topology on X. Hence (X, J) is a T — space.
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I1] To prove that c*(4) = A = closure of 4 in (X, ).

By definition of ¢*, c*[c*(4)] = ¢*(A). Hence c*(A) is closed set in (X, ) (by definition of
and F). By definition of ¢c*, A € c*(A). Thus c*(A) is a closed set containing A. Let 3 a closed
set B in (X, ) containing A.

Then ACB = ¢*(A) S c¢*(B) = c*(4) €SB ....(since B is closed ¢*(B) = B; by
definition of ). Thus ¢*(A) € B. But this shows that ¢*(A) is the smallest closed set containing
A. Hence, c*(4) = A, the closure of A in (X, ).

§2 Interior operator
Definition 2.1: Let X be any non-empty set. By an interior operator i* on X we mean a function
i*: (X)) — gp(X) satisfying the following conditions:

M i*X) =X

() i*(A) S A

@3) i*(i*(Q) = i*(4)

4) i*(AnB) = i*(A) ni*(B)
for all 4, B € $(X).

Example 2.2: Let (X, J) be any T — space. Define i*: 9(X) — (X) by i*(4) = A° = interior

of Ain (X, ). Then i* is an interior operator on X.

Theorem 2.3: Let i* be an interior operator defined on X. Let S = {4 € X | i*(4) = A}. Then
is a topology on X and i*(A) = A° = interior of A in (X, J) for any A < X.

Proof: I] To prove that 3 is a topology on X.

(i) i*(X) = X (by definition of i*) = X € .
i*(@) € @ (by definitionof i*) = @ € J.
(ii) Let A,B € 3. Then i*(A) = A and i*(B) = B (by definition of J).
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i*[AnB)]=i*(A)ni*(B) ...... (definition of c*)
=ANnB ... (A, BEY)

This shows that AN B € .

Thus A, BEJ = ANBES.

(iii) Let G, € 3 VA1 € A, where A is any indexing set . To prove that AUA G,l € 3.
S

First note that A € B = i*(4) € i*(B).

ASCB = AnB=A= i*(AnB) =i*(4)
= i*(A) ni*(B) = i*(4)
= i*(4A) € i*(B)

ThusAS B = i*(4) €i*(B).

NowG, €3 = i*(G)) =G, VA€EA.

GlgUGl = l*(Gl)gl* UGA> VAEA

A€A AEA

- Gl c i (L Gl) VAEA (since l*(Gl) = Gl)

AEA

- Yaer(Ja)

AEA AEA

But by definition of i*,

(Ja)e o

A€A

Hence

But this shows that

GLES.
A€A
From (i), (ii) and (iii) we get ¥ is a topology on X. Hence (X, J) is a T — space.

I1] To prove that i*(A) = A° = interior of 4 in (X, ).
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Fix up A € X. By definition of i*, i*(A) € Aand i*[i*(A)] = i*(A). Hence i*(4) € .

Thus i*(A) € A implies that i*(A) is an open set contained in A. Let 3 an open set B in (X, J)
contained in A.

Then BSC A = i*(B) S i*(A) = B < i*(A) ....(since B is open i*(B) = B). Thus i*(A)

is the largest open set contained in A. Hence, i*(A) = A° = the interior of 4 in (X, ).

§3 Exterior operator
Definition 3.1: Let X be any non-empty set. By an exterior operator e* on X we mean a
function
e*: (X)) — g (X) satisfying the following conditions:
e (@)=Xande*(X) =0
2)e(A)cXx—-A
(3) e (X —e*(4)) =e*(4)
4 e*(AuB) =e*(A)ne*(B)
for all 4, B € $(X).

Example 3.2: Let (X, J) be any T — space. Define e*: (X) — §(X) by e*(A4) = exterior of A

in (X, J) for each A € (X). Then e* is an exterior operator on X.

Theorem 3.3: Let e be an exterior operator defined on X. Then there exists a unique topology
I on X such that e*(A) = e(A4) = the exterior of A in (X,J) for any 4 € X.
Proof:- Define I ={G S X |e(X — G) = G}.
[I] To prove that J is a topology on X.
(i) By definition of e*, e*(@) = X and e*(X) = @
= e*(X—0) =0 and e*(X — X) = X ... (definition of e*, condition (3))
= PeJand X €
(i) Let A,B € 3. Toprovethat ANB € .
ABEJ3 = e*(X—A)=Aand e*(X—B) =B
e*[X—(AnB)] =e*[(X—A) U (X — B)]
=[e*(X—A)] n[e*(X — B)] ... (definition of e*, condition (4))

Page | 53



Different ways of defining topologies

=ANB ... (since A,B €3)
Thuse*[X —(ANB)]=ANB.Hence ANB ES.

(iii) LetG; € 3 VA € A, where A is any indexing set . To prove that AUA G,l € 3.
S

GLES = e"(X— Gy =G, YVAEA.

First we prove that A € B = e*(4) 2 e*(B)

ASB = AUB=B= e (AUB)=¢*(B)
= e*(A) ne*(B) = e*(B)
= e*(B) c e*(4)

ThusAS B = e*(B) ce*(4).

Now
GlgUGl = (X_GA)Q(X_UGA> VAAEA
AEA AEA
- e*(X—Gl)E e*(X—UGl> VAiAEA
AEA
= G; S e*(X—U G,1> VA€EA (since e*(X— Gy) = G;)
AEA
== U Glg e*(X—U Gl)
AEA AEA
But by definition of e*,
e*(X—U Gl>g U Gl
AEA AEA
Hence

o(-Ya)- Yo

AEA AEA

UGAES.

A€A

But this shows that

From (i), (ii) and (iii) we get ¥ is a topology on X. Hence (X, J) is a T — space.
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I1] To prove that e*(A) = e(A) = the exterior of A in (X, ) for any A C X.
By definition of e*, e*(X — e*(4)) = e*(A). Hence, e*(4) € . Again by definition of e*,
e*(A) € X — A. Thus e*(A) is an open set contained inX — A. Let B be any open set contained
inX—A.Then BEX-A = ASX-B

= e*(4) 2 e* (X —B)

= e"(A)2B ............... (Since B € J)

Thus e*(A) is the largest open set contained in X — A. Hence by definition of exterior,

e*(A) = e(A) = the exterior of A in (X, J) for any A C X.

§4 Neighbourhood system
Definition 4.1: Let (X, J) be any T — space and x € X. A neighbourhood of a point x is any

subset of X which contains an open set containing the point x.

Example 4.2: Let X = {a,b,c,d} and § = {@,{a}, {b},{a, b}, X}. Then in the topological

space (X, 3), {b, c} is a neighbourhood of b. However, {b, c} is not a neighbourhood of c.

Remarks:
(1) In topological space (X, J), any G € S, is a neighbourhood of each of its points.
(2) If N is a neighbourhood of a point x € X then any superset of N is also a neighbourhood
of x.

(3) Each point x € X is contained in some neighbourhood.

Theorem 4.3: Let X be any non-empty set. Let there be associated with each point x of set X, a
collection of subsets, called neighbourhoods, subject to the conditions:
(1) Every point of X is contained in at least one neighbourhood, and each point is contained
in each of its neighbourhood.
(2) The intersection of any two neighbourhoods of a point is a neighbourhood of that point.
(3) Any set, which contains a neighbourhood of a point, is itself a neighbourhood of that

point.

Page | 55



Different ways of defining topologies

(4) If N is a neighbourhood of a point x, then there exists a neighbourhood N* of x such that

N is a neighbourhood of each point of N,

Let 3 = {G € X | G is neighbourhood of each of its points}.

Then J is a topology on X and N*(x) = N(x) = the collection of all neighbourhoods of x
in(X,3) .

Proof:- I] To prove that J is a topology on X.

(1)

(i)

@ € 3, since obviously it is a neighbourhood of each of its points.
We know that, by (1), any x is contained in at least one neighbourhood and this
neighbourhood is contained in X. Therefore, by (3), X is a neighbourhood of x. Thus as
X is neighbourhood of each x € X, X € J.
LetA,BEJ. Letx € ANB.
x € Aand A € J = A is a neighbourhood of x ...... (by definition of J) .

= A € N*(x).
Similarly, x € Band B € 3 = B is a neighbourhood of x

= B € N*(x).

AEN*(x)andBEeN*(x) = ANBEN*(x) ...... (by (2))
Hence, A N B is a neighbourhood of x. Thus as A N B is a neighbourhood of each
x€ANB,ANBES.

(iii) Let G, € 3 VA € A, where A is any indexing set .

To prove that U G, € 3.
A€

Let x € U G, .Thenx € G; for some A € A.
AEA

Bydata, G, €3 = G, is a neighbourhood of x.
Hence, G, € N*(x).

As G, S U G,,we get U G, € N*(x) ... ... by (3)
A€M AEA

Hence U G, is a neighbourhood of x. As this true for any x € U G,,
AEA AEA

we get, U G; € 3.
AEA
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From (i), (ii) and (iii), J is a topology on X and hence (X, J) is a T — space.
I1] To prove that N*(x) = N(x), where N (x) is the collection of all neighbourhoods of x
in(X,3), forx € X.
Fixup x € X.
N € N(x) = N is a neighbourhood of x in (X, ).

= 3G € Jsuchthatx e G S N
As G is an open set, G is a neighbourhood of x. Hence, G € N*(x).
AsG S N,wegetN € N*(x) ... (by (3)). Thus N € N(x) = N € N*(x).
Therefore N(x) S N*(x).
Now suppose that N € N*(x).
Define G = {x € X | N is neighbourhood of x}.
Nowx € G = N is a neighbourhood of x

= x E€N.

Therefore G S N.
Let y € G. Then N is a neighbourhood of y = N € N*(y). By (4), there exists N* € X such that
N* € N*(y) and if z € N*, then N € N*(z). But then, by definition of G, z € G.
Hence N* € G and by (3), G € N*(y).
Thusy € G = G € N*(y). Hence, G is a neighbourhood of each of its points. Hence, G € J.
Thus given N € N*(X), G € J such that G € N. Hence G € N(x). This shows that
N*(x) € N(x). Combining both inclusions, we get N*(x) = N(X).

Exercises

1) Define a closure operator ¢ * on X. Show that c* induces a unique topology 5 on
X such that the J - closure of A= ¢* ( A) for any A C X.

2) Define an interior operator i * on X. Show that i* induces a unique topology
3 on X such that the J - interior of A = i* ( A) for any A C X.

3) Define a closure operator e * on X. Show that e* induces a unique topology

3 on X such that the J - exterior of A= e* (A ) for any A C X.
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Unit 5
Continuous functions and Homeomorphisms
§1 Definitions and examples.
§2 Characterizations.
§3 Properties.
§4 Homeomorphism

§ 5 Solved Problems.
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Unit 5: Continuous functions and Homeomorphisms

§1 Definitions and examples.
Definition 1.1: A function f, mapping a topological space (X, J) into a topological space
(X*, ") is said to be continuous at x € X if for every open set G* containing f(x) there is an

open set G containing x such that f(G) € G*.

Definition 1.2: A function f, mapping a topological space (X, J) into a topological space

(X*, ") is said to be continuous on a set E € X if it is continuous at each point of E.

Examples 1.3:
(1) Let f: X — X™ be a function. Let a € X™ be any fixed point.
Define f(x) = a, for each x in X. f is continuous at each x € X since for every open
set G* containing f(x) = a, there is an open set G = X containing x such that f(G) S

G*. Hence f is continuous on X .

(2) Let f: X — X* be a function. Let a € X such that {a} € J. Then f is continuous at a.
Let G* € 3* such that f(a) € G*. Thena € f~1(G*) = {a} € f~1(G*). Define
G ={a}. Then G € I suchthata € G and f(G) S G*. Hence f is continuous at a.

Remarks:

(1) If (X, ) is a discrete topological space, then {x} € §, V x € X. Hence, by Example 1.4, f is
continuous at each x € X i.e. f is continuous on X.

Thus, any function defined on discrete topological space is always continuous.

(2) Converse of the Example 1.4 need not be true i.e. is continuous at x = a in X need not
imply {a} € . For this consider the following example.

X =1{1234} 3 =1{0,{1},{1,2},{2,3,4}, X}. Define f: X — X by, f(1) =2, f(2) =4,

f(3) = 2,f(4) = 3. Then f is continuous at x = 4, but {4} ¢ J.
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§2 Characterizations

Theorem 2.1: Let (X, J) and (X*, I*) be topological spaces and f: X — X*. f is continuous

on X if and only if the inverse image of an open set in X* is an open set in X.

Proof: Only if part .

Let f: X — X* be continuous on X. Let G* € §*. To prove that f~1(G*) € 5.

Let x € f~1(G). Then by assumption, f is continuous at x. Hence there exists an open set G in X
such that f(G) € G*. But thenx € G € f~1(G*) will imply x is an interior point of f~1(G*). As
any x € f~1(G*) is its interior point f ~1(G*) is an open set in X.

If part .

To prove that f is continuous on X.

Fix up any x € X. Select any open set G* in X* containing f (x). By assumption, f~1(G*) is an
open set in X.

f(x) € G* = x € f71(G*). Define G = f~1(G*).

Then we getx € G and f(G) = f[f~1(G*)] € G*. Hence f is continuous at x. As f is

continuous at each x € X, we get f is continuous on X.

Examples 2.2:
I.  LetJ = co-finite topology onR .
3, = usual topology on R .
(D) i:(R,J) — (R, ) be an identity map. Then i~1(0,1) = (0,1) & J as
R — (0,1) = (—,0] U [1, ) is not finite. Thus, though (0,1) € J,,,i"1(0,1) ¢ 5.
Hence the identity map i: (R, J) — (R, J,,) is not continuous.
(2) Leti: (R, J,) — (R, ) be an identity map. Let G € J. Then R — G is finite.
Hence i "1(R — G) is finite subset of (R, J,,). Hence R — G is closed in (R, J,,).
Hence G € J,. Thus given G € 3,
G =i 1(G) € 3, . Hence i is continuous.
II. LetJy = co-countable topologyonRR.
3, = usual topology on R .
(1) Let i: (R, J) — (R, J,,) be an identity map. (0,1) € J,, . Then i71(0,1) = (0,1). As
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R —(0,1) = (—=o,0] U [1,0) , R — (0,1) is not a countable subset of R .

Hence (0,1) & . Therefore i: (R, J) — (R, J,,) is not a continuous map.
() Let i: (R, 3,,) — (R, ) be an identity. Let G = R — {1, LIS }

ThenG € JasR—G = {1, ;, g, , } is a countable set. Now i " 1(G) = G & J,,.

1
4

1

[R—G = {1, %, > 7 } is not a closed in (R, ,,) as 0 is the limit point of R — G and

1
4

0 ¢ R—G].Hence i: (R, J,) — (R,J) is not continuous.

Remark: Let (X, J,) and (Y, J,) be two topological spaces. Let f:(X,J;) — (¥, J,) be a

continuous map. Then

v
LR LR

(1) f:(X,37) — (Y, ) is a continuous map if J]

=

IA

(2) f:(X,31) — (Y, 35) is a continuous map if 5

N

Theorem 2.3: Let (X, J) and (X*, ) be topological spaces and f: X — X*. f is continuous
on X if and only if the inverse image of a closed set in X* is a closed set in X.
Proof: Only if part .
Let f: X — X~ be continuous and let F* be closed set in X*. Then X* — F* is a open set in X *.
Hence by Theorem 2.1, f~1(X* — F*) is open in X i.e. X — f"1(F*) is open in X. Hence
f~Y(F*) is closed in X.

If part
To prove that f is continuous on X. Let G* be any open set in X*. Then X* — G* is closed set
in X*. Hence f~1(X* — G*) is closed set in X, by assumption . Therefore X — f~1(G*) is closed
set in X.
Hence f~1(G*) is an open set in X. Thus inverse image of an open set in X* is an open set in X.

Hence by Theorem 2.1, f is continuous on X.

Theorem 2.4: Let (X, J) and (X*, I*) be topological spaces. f: X — X* is continuous if and
only if f[c(E)] € ¢*[f(E)] forany E € X.

[c(E) = closure of E in (X, J) and c*[f(E)] = closure of f(E) in (X*,J*)]

Proof: Only if part.

Let f: X — X* be continuous and let E € F. We know that E C f~1[f(E)].
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Hence E € fYf(E)] < f~c*(F(E))] (since f(E) € c*(f(E)) always).

As c*(f(E)) is closed set in X* and f is continuous function on X, f ~*[c*(f(E))] is a closed
setin X (see Theorem 2.3). Hence c(E) € f‘l[c*(f(E))] ie. flc(E)] < c*(f(E)).

If part.

To prove that f is continuous on X.

Let F* be any closed set in X*. Define E = f~1(F*). Then by assumption

fle(FHFENI € T IfFFHED]

But f[f~1(F*)] € F* always. Hence c*[f[f_l(F*)]] c c*(F*) =F~.

Thus we get , flc(f~1(F*))] € F*. Hence c(f~1(F*)) € f~1(F*).

As f7Y(F*) € c(f~Y(F*)) always, we get c(f~1(F*)) = f~Y(F).

Hence f~1(F*) is a closed set in X. Hence by Theorem 2.3, f is a continuous function.

Theorem 2.5: Let (X, J) and (X*, I*) be two topological spaces and f: X — X*. f is continuous
onX if and only if f~1[i*(E*)] € i[f~1(E*)] for every E* C X*.

[i*(E*) = interior of E* in X* and i[f ~1(E*)] = interior of f ~1(E*) in X]

Proof: Only if part.

Let f: X — X* be continuous and let E* € X*. Then i*(E*) is an open set in X*. Hence by
Theorem 2.1, f~1[i*(E*)] is open in X. As i*(E*) € E*, f~[i*(E*)] € f~1(E™).

Hence, f~[i*(E*)] € i[f~Y(E")].

If part .

To prove that f: X — X* is continuous on X. Let G* be any open set in X*. Then i*(G*) = G*.
By assumption, f~1[i*(G*)] € i[f~1(G*)] ie. f~1(G*) S i[f~1(G*)] . But always

i[f~1(G")] < f~1(G*). Hence i[f~1(G*)] = f~1(G*). This shows that f ~1(G*) is an open set

in X. Hence, by Theorem 2.1, f is continuous function on X.

Theorem 2.6: Let (X, J) and (X*, I*) be two topological spaces. i: X — X be identity map. i is
continuous on X if and only if J* < J.

Proof: Only if part .

Let i: X — X be continuous on X. To prove J* < J. Let G* € J*. Asi: X — X is continuous,

i71(G*) € Jie. G* €. This shows that §* < 5.
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If part .
Let I* < 5. To prove the identity map i: X — X is continuous. Let G* € J*. i71(G*) = G* . As
J* < I wegeti1(G*) = G* € J. Thus inverse image of any open set in (X*, I*) is an open set

in (X, J). Hence i is continuous, by Theorem 2.1.

Example: Let J, = usual topologyon R and J = co-finite topology on R .

Leti: (R, J,) — (R, J) be an identity map Then i is continuous as J < J,,.

§3 Properties

Theorem 3.1: Let f: X — X* and g: X* — X™* be continuous maps. Then g o f: X — X™* is
continuous [i.e. composition of two continuous functions is a continuous function]

Proof:- Let G** be any open set in X**. As g: X* — X** is continuous, g~1(G**) is open in X*.
Again, as f: X — X* is continuous, f~1[g~1(G**)] is open in X. i.e. (g o f)"1[G**] € X for

O k%

every G™ € 3. Hence g o f is a continuous map.

Theorem 3.2: Let f: X — X™ is continuous map and E' € X. The restriction of f to E is also a
continuous map.

Proof:- Let g: E — X* be a restriction of f to E i.e. g(x) = f(x), V x € E. To prove g is
continuous on E. Let G* be any open set in X*. Then g7 1[G*] = E n f~L[G*]. As f is
continuous, f "1[G*] is an open set in X. Hence E N f~1[G*] is an open set in E. But this shows

that g is continuous on E.

Theorem 3.3: Let (X, J) and (R, J,,) be a topological spaces and E € X. y; : X — R denotes

the characteristic function on E i.e.

_(1,if x€E

Then y is continuous on X if and only if E is both open and closed in X.
Proof:- Let G* € J,,. Then,

if1€G and 0 ¢ G*
—E if0eG and1€¢G”
if0eG and1€G”
if0€G and1¢G”

xg'(GY) =

(SIS o
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Thus as g is continuous on X, yz(G*) € Jie. E € Jand X —E € 3. Thus E and X — E are
open in X. Hence, E must be both open and closed in X.
Conversely, if E is both open and closed then y;*(G*) € J for any G* € .. Hence yy will be

continuous, by Theorem 2.1.

Theorem 3.4: Let (X, J) and (X*, ") be two topological spaces. If §* is the indiscrete topology
on X, then any function f: X — X™ is continuous.

Proof:- As 3~ is the indiscrete topology on X*, the only open sets in X* are @ and X*. And
f~H(X*) = X and f~1(@) = @, shows that f is continuous on X, by Theorem 2.1.

Definition 3.5: Let (X, J) be a topological space. A subset E of X is said to be dense in itself if
every point of E is a limit point of E i.e. E € d(E).

Theorem 3.6: Let (X, ) and (X*, J*) be topological spaces. f: X — X* be one-one, continuous
map. f maps every dense in itself subset of X onto dense in itself subset of X*.

Proof:- Let E € X and let E be dense in itself in X. To prove that f(E) is dense in itself in X*
i.e. to prove that each point of f(E) is its limit point. Let x* € f(E). Then 3 x € E such that
f(x)=x".x € E = xisa limit point of E.

Let G* be any open set containing x*. Then f~1(G*) is an open set in X containing x, since f is
continuous. As x is a limit point of E, f"1(G*) N E — {x} # 0.

Letz€ f"Y(G*)NE —{x}.Thenz # x = f(z) # f(x), since f is one-one.

Further f(z) € G* and f(z) € f(E).

Thus f(z) € G* N f(E) —{f(x)}ie. f(z) €G* N f(E) — {x*}.

But this shows that x* is the limit point of f(E).

Thus each point of f(E) is its limit point. Hence f (E) is dense-in-itself in X*.

§4 Homeomorphism
Definition 4.1: Let (X, J) and (X*, J*) be two topological spaces. f: X — X* is an open

mapping if image of every open set in X is open in X*.
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Definition 4.2: Let (X, J) and (X*, J*) be two topological spaces. f: X — X* is a closed

mapping if image of every closed set in X is a closed set in X*.

Examples:
(D LetX ={a,b,c}, I=1{0,{a}, X}, X" ={p,qr}and 3" = {0, {p}, {p, 7}, X"} .
(1) Define f: X — X* by, f(a) =p, f(b) =q,f(c) = r.Then f is an open map (Note that
f is not a continuous map).
(2) Define g: X — X* by g(a) = q, g(b) = q,g(c) = q. Then g is a closed map (Note
that g is continuous map).
(ID) Let (X, 3) be any topological space. Let X* = {a, b, c} and §* = {0, {a},{a,c}, X*}.
(1) Define 8: X — X* by, 8(x) =a , V x € X. Then 6 is an open map but not a closed
map.
(2) Define : X — X* by y(x) = b, V x € X. Then ¢ is a closed map but not an open

map.

Remarks:

(1) As 6 is continuous but not closed, we get continuous map need not be closed map.
Similarly as i is continuous but not open, we get continuous map need not be an open
map.

(2) Open map need not be continuous, as f is open but not continuous. Similarly, closed

mapping need not be continuous.

Theorem 4.3: The identity mapping of (X, J) onto (X, J*) is open if and only if J* > J.
Proof:- Only if part .
Leti: (X,3) — (X,3*) be open. ThenV G € J, i(G) € F*
ie.GEFJ = G € J* (sincei(G) =G).HenceJ* = 3.
If part .
Let 3 > 3. Then forany G € §,i(G) = G € J*. Hence i is an open map.
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Theorem 4.4: Let (X, J) and (X*, J*) be T — spaces. A mapping f: X — X*is open if and only if
fli(E)] < i*[f(E)] forany E € X.
Proof: Only if part.

Let f: X — X*isopenand E € X. As i(E) is an open set in X, f[i(E)] is an open set in X*.
Further i(E) € E implies f[i(E)] € f(E). Hence, as f[i(E)] is an open set contained in f(E),
we get f[i(E)] < i*[f(ED].

If part.

To prove f: X — X* is open. Let G € . Then i(G) = G. By data, f[i(G)] <€ i*[f(G)]

ie. f(G) ci*[f(G)].

Asi*[f(G)] < f(G) always, we get, i*[f(G)] = f(G). Hence f(G) is an open set in X*. This

shows that f is open.

Theorem 4.5: Let (X, J) and (X*, I*) be any topological spaces. f: X — X* is closed if and
only if fle(E)] 2 c*[F(E)].
Proof:- Only if part.

Let f: X — X* be a closed mapping and E € X. c¢(E) is a closed set in X. Hence, f[c(E)]
isaclosedsetin X*. Now E € c(E) = f(E) € flc(E)] = c*[f(E)] < flc(E)].
If part.

To prove f: X — X* is closed mapping. Let F be any closed set in X. Then c(F) = F. By
assumption, f[c(F)] 2 ¢*[f(F)]. Therefore f(F) 2 c*[f(F)] .
But always f(F) < c¢*[f(F)]. Hence f(F) = c*[f(F)].

This shows that f is a closed map.

Definition 4.6: Let (X, J) and (X*, J*) be two topological spaces. f: X — X* isa

homeomorphism if f one-one, onto, continuous and open mapping.

Definition 4.7: Two topological spaces (X, J) and (X*, J*) are said to be homeomorphic if there

exists a homeomorphism f: X — X* [or f: X* — X].

Definition 4.8: A property of sets, which is preserved under a homeomorphism, is called a

topological property.
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Theorem 4.9: Let (X, J) and (X*, I*) be two topological spaces. Let f: X — X* be bijective
mapping. The following statements are equivalent :
(1) f is a homeomorphism (or f is continuous and open mapping).
(2) f and f~1 both are continuous.
(3) f is continuous and closed mapping.
Proof:- (1) = (2)
f:X — X* be continuous and open mapping.
To prove that f ~1 is continuous.
f~L:X* — X. f~1is one-one and onto. Let G € . As f: X — X* is open, we get f(G) € F*
ie. [f71]71(G) € J*. But this shows that forany G € J, [f1]71(G) € J*. Hence f~1is
continuous.
2=
Let f and f~* both are continuous. To prove that f is an open map. Let G € 5.
Then f~1: X* — X being continuous, [f~1]71(G) € F* ie. f(G) € .
This shows that f is an open map.
1H=0)
Let f: X — X be continuous and open mapping.
To prove that f is closed.
Let F be a closed set in X. Then X — F is an open set in X. Hence f (X — F) is open in X*.
But f(X —F) = X* — f(E), as f is onto.
But this shows that f(E) is closed set in X*.
Hence, f is closed map.
=@
Let f: X — X be a closed map. To prove that f is open map.
Let G € 3. Then X — G is closed set in X. Hence f(X — G) is closed in X*.
But f(X — G) = X* — f(G), f being onto. Hence f(G) is open in (X*, J*) .
This shows that f is an open map.

Thus (1) & (2)and (1) & (3) .Hence the result .
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Theorem 4.10: Let (X, J) and (X*, J*) be two topological spaces. Let f: X — X* be one-one,
onto mapping. Then f is a homeomorphism if and only if f[i(E)] = i*[f(E)] for any E C X.
Proof:- f:X — X* is continuous & i*[f(E)] € fli(E)] VE S X (see Theorem 2.5).
f:X — X* is an open mapping & f[i(E)] € i*[f(E)] VE < X (see Theorem 4.4).
Hence, the bijective map f: X — X* is a homeomorphism if and only if

fli(E)] = i*[f(E)] VECX.

Theorem 4.11: Let (X, J) and (X*,J*) be two topological spaces. Let f: X — X* be one-one,
onto mapping. Then f is a homeomorphism if and only if f[c(E)] = c*[f(E)] for any E € X.
Proof: f:X — X* is continuous & f[c(E)] € c*[f(E)] VE < X (see Theorem 2.4).
f:X — X" is a closed mapping & f[c(E)] 2 c*[f(E)] VE < X (see Theorem 4.5).
Hence, the bijective map f: X — X* is a homeomorphism if and only if

fle(E)]=c*[f(E)] VEcCX.

§ 5 Solved Problems
Problem 1: Let X = {a,b,c},J ={0,{a}, X}, X" ={p,q,r} and J* = {0,{p}, {p,r}, X*}. Let
f:X — X* be defined by f(a) =p, f(b) = q, f(c) = r. Check the continuity of the function f.
Solution: [I] Continuity of f at a:-

The open set containing f(a) in X* are {p} and {p, r} and X*.

Case (1): G* = {p}.

Take G = {a}. Then f(G) = {p} € G*.

Case (2): G* = {p,r}.

Take G = {a}. Then f(G) = {p} € G*.

Case 3):G* = X".

Take G = {a}. Then f(G) = {p} € G*.

Hence f is continuous at a € X.

[II] Continuity of f at b:-

The open set containing f(b) = q is X* only.

Hence, in this case for G* = X*, select G = X and we get f(G) € G*.

Hence f is continuous at b € X.
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[III] Continuity of f at c:-
The open set containing f(c) = r in X* are {p,r} and X*.
Case (1): G* = {p,r}.
As the only open set containing ¢ is X and f(X) € G* (~ f(X) = X*) we get f is not
continuous at x = c.

From [I] , [II] and [III] we get f is not continuous on X.

Problem 2: Let (X, ) and (X*,J*) be two topological spaces. B is a base for J. If f: X — Y is
a mapping such that {f (B) | B € B} is a base for J*. Then show that f is an open map.
Solution:- Let G € J. By definition of base, G = U{B; | 1 € A} where A is any indexing set.

Hence, £(G) = f [U{Bl | 1€
=1 = Jrr@n 11en

= f(G) €J".
Thus for any G € J, we get f(G) € J*. Hence f is an open mapping.

Problem 3. LetJ = indiscrete topology on R .
31 = discrete topology on R .
3, = usual topology on R .
Show that no two topological spaces (R, J), (R, J,) and (R, J,,) are homeomorphic.
Solution: -
(1) Let if possible there exists f: (R, J) — (R, J,,) such that f is a homeomorphism.
Then f must be a constant map. Hence, f is not a bijective map. Hence, f is not a
homeomorphism. Hence (R, J) and (R, J,,) are not homeomorphic.
(2) Let if possible there exists g: (R, J;) — (R, J,) such that g is a homeomorphism.
Then{x} €J = g({x}) € J, Vx € R.Butg({x}) ={gx)} & I, being a singleton
set; a contradiction (since g is open). Hence (R, J;) and (R, J,,) are not homeomorphic.

Hence three spaces (R, J), (R, J;) and (R, J,,) are not homeomorphic.
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Remark:- Let (X, 3) and (X, J*) be two topological spaces and i: (X, J) — (X, J*) be an identity
map. Then i is (§ — J*) continuous if and only if § > J*. Similarly the identity map
i:(X,J") - (X,3) is continuous if and only if §* > J .

Therefore identity map need not be continuous.

Problem 4: Let (X, J) and (Y, J*) be two topological spaces. Let f: X — Y be continuous

atx € X. If {x,,} is a sequence of points of X, converging to x, then show that the image
sequence {f (x,)} in Y, converges to f(x) in Y.

Solution: Let G* € 3* such that f(x) € G*. f: X — Y is continuous. Hence f~1(G*) is an open
set in (X, ). Asx € f~1(G*) and x,, » x , 3 N such that x,, € f~1(G*) forn > N. But then
f(x,) € G*, forn = N. This shows that f(x,,) = f(x)in Y.

Problem 5: Let f be a mapping of topological space (X, J) onto a set Y.
Define §* = {G € Y | f~1(G) € 5}. Then show that
(1) 3" is a topology on Y.
(2) f:(X,3) — (Y,J¥) is a continuous function.
(3) 3" is the largest topology on Y for which f: X — Y is continuous.
(4) F € Y is closed in (Y, J*) if and only if f 1 (F) is closed in (X, ).
Solution:
(1) To prove that J* is a topology on Y.
i fU(@=0, 0el = PeT"
fFTAY)=X, X€J = Y € F* (since f is onto)
(ii)) LetA,B € 3*. Then f~1(4) € Jand f"1(B) €.
Therefore, f~1(A) N f~1(B) e Jie. fT1(ANB)ES.
But this shows that AN B € §* .
(ii)) A; € 3* VA € A, where A is any indexing set . Then f71(4;) EJ VA EA.

n

€5.

3 being a topology, Uf_l(Az) EJie [T
AEA

But this shows that U A; EJ.
AEA
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From (i), (ii) and (iii) we get, 3~ is a topology on Y.

(2) To prove f:(X,J) — (Y, J*) is a continuous function.
Let G € 3*. Then by definition of J*, f~1(G) € J. Hence f is continuous.

(3) LetJ; denote a topology on Y such that f: (X, J) — (Y, ;) is continuous function.
To prove that 3; S 3.
Let G € J;. Then by continuity of f, f~1(G) € J. But then by definition of J*, G € J*.
Thus G € §; = G € §*. Hence §; S J".
This shows that, J* is the largest topology on Y for which f: X — Y is continuous.
(4) F € Y isclosed in (Y,J*)
SY-FeJ
S fI(Y-F)EeS.
SX-fU(FeS.
& f71(F) is closed in (X, ).

Exercises

(M Let(X,3J)and (X*,J*) be topological spaces and f: X — X*. Prove that the following

statements are equivalent.
1) f is continuous on X.
2) The inverse image of an open set in X* is an open set in X.
3) The inverse image of a closed set in X* is a closed set in X.
4) flc(E)] € c*[f(E)] for any E C X.
5) fHi*(E®)] € ilf~1(E*)] forevery E* € X*.

(I1) Let(X,3J) and (Y, J*) be two topological spaces. Let f: X — Y be continuous at x € X.
If {x,,} is a sequence of points of X, converging to x, then show that the image
sequence {f (x,)} in Y, converges to f(x) in Y. Is the converse true ? Justify your
answer.

(TIII) Let (X,3) and (X*, J*) be topological spaces and f: X — X*. Prove that the following

statements are equivalent.
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1) f is a homeomorphism .
2) fli(E)] =i*[f(E)] forany E < X.
3) flc(E)] =c*[f(E)] forany E < X.

(IV) Let (X,3J) and (X*, J*) be any topological spaces. Show that a mapping f: X — X* is
closed if and only if f[c(E)] 2 c¢*[f(E)].

(V) Let(X,3) and (X*, J*) be T — spaces. Show that a mapping f: X — X*is open if and
only if f[i(E)] € i*[f(E)] for any E C X.

(VD) Show by an example that the image an open set E of a space X under a continuous
function f:X — X* is not necessarily an open set in the space (X*, J*).

(VII) Show by an example that the image a closed set E of a space X under a continuous
function f:X — X* is not necessarily a closed set in the space (X*, J*).
(VIII) Let A, and A, are closed sets in (X, ) such that A; U A, = X. Let (X*, J*) be another

topological space and let f: X — X* be a mapping such that the restriction of f to each

of the subspaces A; and A, is continuous. Show that f must be continuous.
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Unit 6
Compact spaces
§1 Definition and Examples.
§2 Characterizations and Properties.
§3 Special examples: (R, J,,)-
§4 One point compactification.
§5 Locally compact spaces .

§6 Countably compact spaces.
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Unit 6: Compact spaces

§1 Definition and Examples

Definition 1.1: Let (X, J) be a topological space and E € X. A family {G; | 1 € A} of subsets

of X is said to form an open cover of E if E C U G, and G, € 3, foreach A € A.
AEA

Definition 1.2: If some finite sub-collection of the given covering of a set E is also a covering

of E, then we say that the covering is reducible to a finite sub-covering.

Definition 1.3: A subset E of a topological space is said to be compact if every open covering
of E is reducible to a finite sub-covering of E.

When X itself is a compact subset of (X, J), we say that (X, J) is compact.

Examples 1.4:

Compact spaces

1) Any subset of an indiscrete topological space (X, J) is compact, as {X} is the only open cover
forany E € X.
2) Any finite subset of any topological space (X, J) is compact.
3) Co-finite topological space is compact.
Let (X, J) be a co-finite topological space (with X an infinite set). Let {G; | A € A} be any
open cover of X.
Fix up any G, , for some Ao € A. Then G, €J = X — G, is finite set.
Let X — G, = {x1, %2, .., Xy }As X = Ujep Gy , find Gy, € {G; | 1 € A} such that x; €
Gy, Vi, 1<i<n
AsX =G U (X —Gyy), wegetX =Gy UGy, U..UG,, .
Thus any open cover {G; | 1 € A} of X contains a finite sub-cover.
Hence (X, J) is compact.

4) Fort’s space is compact.
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Let X be an uncountable set and let oo be the fixed point of X.
I={GSX|wogG} U{G S X| € GandX — G is finite}.
(X,3) is a T — space — Fort’s space (see Unit (1) §1.2 Example (10)).
To prove that (X, J) is a compact.

Let {G, | A € A} be any open cover for X .

AsX = UGA and o0 € X, we get oo € Gy for some 1y € A.
AEA

By definition of 3, G, € 3 = X — G, is finite subset of X.

Let X — G, = {x1, %2, ..., X, }. Select Gy, € {G, | 1 € A} suchthatx; €Gy, Vi, 1<i<n
Thus X = G5, U (X — G,) S Gry UGy, U ..UGy,, .

Thus X = G, U Gy, U ..U G, .

This shows that any open cover {G; | 1 € A} of X has a finite sub-cover.

Hence (X, J) is a compact.

5) (X, 3) is a compact space where J is the p — exclusion topology (p € X) on X .

D

2)

ie.IJ={Xju{GcX|p¢aG}
Let {G, | A € A} be any open cover for X.

AsX = UGA and p € X, we getp € G, for some 45 € A.
AEA

By definition of 3, G;, = X. Thus the open cover {G, | A € A} of X has a finite sub-cover

{Glo}. Hence (X, ) is a compact.

Non compact spaces.

Any infinite discrete topological space (X, J) is not compact, as the open cover {{x} |x€X }
has no finite sub-cover for X.

(R, J,) is not compact.

{(—n,n) | n € N} forms an open cover for R . Let this cover contains a finite sub-cover.

Let R = (—ny, ny) U(—n,, ny) U..U(—ng, ng).

Let m = max{nq, n,, ..., ny }.

Thenm € Rbutm ¢ (—n,, n,;) U (—n,, ny) U ..U (—n,, ng) a contradiction. Hence

the open cover {(—n,n) | n € N} of R has no finite sub-cover.Hence (R, J,,) is not compact.
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§2 Characterizations and Properties

Theorem 2.1: Let (Y, J*) be a subspace of (X, J) and E € Y. Then E is compact subset of
(Y, 3*) if and only if E is a compact subset of (X, ).

Proof: -Only if part.

Let E € Y be compact in (Y, J*). To prove that E € X is compact in (X, J).

Let {G; | 1 € A} be any J — open cover of E in X .

Define G; = G, NY foreachA € A. Then Gy €J* VA and E S U G, shows that,
A€q

{G; | 1 € A} forms an J* - open cover for E.

As E is compact in (Y, J*), the I* - open cover {G; | A € A} of E has a finite sub-cover.

n n
LetE U Gy, -Then E < U Gy,-
i=1 i=1

This shows that E is compact in (X, J).

If part .

Let E € Y is compact in (X, ).

To prove that E is compact in (Y, J*).

Let {G; | 2 € A} be an open cover of E in(Y,J*) .

Then foreach A€ A,Gy €EF = G; =G, NY forsome G, €.

AsE CYweget EC U G, .But this in turns shows that {G, | A € A} forms an open cover for
A€A

E in (X, ). As E is compact in (X, J) , there exists a finite sub-cover for open cover {G; | A € A}.

n
e
i=1

Thus any open cover {G; | A € A} of E has a finite sub-cover for E.

n n

nY=E§U[G,1inY]=E§UGj{i.

n
LetE C© UGli.ButthenEzEanEQ
' i=1 i=1

=1

Hence E is compact in (Y, J*) .

Remark: -Being compact is an absolute property i.e. the property of being compact for a set

does not depend on the subspace in which it is contained.
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Definition 2.2: A family of sets is said to have finite intersection property (f.i.p. in short) if

every finite sub-family of the family has a non-empty intersection.

Theorem 2.3: A topological space (X, J) is compact if and only if every family of closed sets
having the finite intersection property has a non-empty intersection.

Proof: Only if part.

Let (X, ) be compact and let {F; | A € A} be a family of closed sets in X satisfying f.i.p.

To prove that ﬂ F, # Q.

AEA
X - ﬂFl

AEA

Let ﬂ F) = @ .Then

A€EA

—X = U[X—Fl]zX.

AEA

Thus the family {X — F; | 1 € A} forms an open cover for X. As X is compact, this open cover

has finite sub-cover.

n n
LetX = (X — F/Ii) . But then ﬂ F), = @ — a contradiction to assumption.
i=1 i=1
Hence ﬂ F, = 0.
AEA
If part .

Let any family of closed sets in (X, ) have f.i.p.
To prove that X is compact.Let X is not compact. Then there exist an open cover {G; | A € A}

of X such thatX # U}, G,, for any finite n.
n

Hence ﬂ(X — lei) # @ for any finite n.
i=1

Thus the family {X — G, | 1 € A} of closed sets in X satisfy f.i.p. Hence by assumption

ﬂ(X —G)+Qie X+ U G, ; a contradiction.
A€A A€A

Hence our assumption is wrong. Therefore X must be compact space.
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Theorem 2.4: AT — space X is compact if and only if every basic open cover of X has a finite
subcover.
Proof: Let X be a compact. Then every open cover of X has a finite subcover. In particular,
every basic open cover of X must have a finite subcover.
Conversely, suppose that every basic open cover of X has a finite subcover and let
C={G,eJ|1€A}
be any open cover of X. If
B =1{B, | a € A}
be any open base for X , then each G, is union of some members of B and the totality of all such
members of B is evidently a basic open cover of X. By hypothesis this collection of members
of B has a finite subcover, say
{By,1i=1,2,..,n}.
For each B, in this finite subcover, we can select a G , from C such that By, C Gy, .
It follows that the finite subcollection
{Gyli=1,2,..,n},
Which arises in this way is a subcover of C.

Hence X is compact.

Theorem 2.5: Every closed subset of a compact space is compact (i.e. compactness is closed
hereditary)

Proof: Let (X, J) be a compact space and E be a closed subset of X.

To prove that E is compact.Let {G; € J | A € A} be any open cover of E.

AsX=EU(X—E)C [U{Gl|/1€A}]U(X—E)showsthat U{G,HAEA} U(X—E)

forms an open cover for X. As X is compact, this open cover has a finite sub-cover.

n

U{GM | 2; € A}

i=1

n

U (X —E). Then surely, E < U Gy, -

i=1

Let X =

Thus the open cover {G; € J | A € A} of E contains a finite sub-cover. Hence E is compact (by

Theorem 2.1).
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Remarks:

ey

(2)

3

Being a compact space is a closed hereditary property, but it is not a hereditary property.
For this, consider the following example.

Let (X, J) be Fort’s space. Then (X, J) is compact space (see §1.4 Example (4)).
Let Y = X — {oo}. Then the relative topology J* on Y is the discrete topology on Y (by the
definition of J).
Hence (Y, J*) is not a compact space (since Y is an uncountable set). Thus we get a
subspace of a compact space need not be compact. Hence being a compact space is not a

hereditary property.

Converse of Theorem 2.4 need not be true i.e. compact subset of a compact space need not
be closed. For this, consider the following example.

Let (X, J) be an indiscrete topological space with |X| > 2 . We know (X, J) is compact.
Let ® c E c X. Then E is a compact subset of X as {x} is the only open cover for E. But E
is not closed in (X, ).

By Theorem 2.4 closed subset of a compact space is compact but there may exists an open
set in a compact space which is compact (i.e. closed sets are not the only compact subsets in
a compact space). For this, consider the following example:

Let X be an infinite set and let  be a co-finite topology on X. Then (X, J) is a compact
space (see §1.4 Example (3)). Fix up any x € X and define Y = X — {x} . Then Y is proper
subsetof X and Y € 5.

Claim that Y is compact.

Let {G, € 3| A € A} be any open cover of Y. Fix up any G, , A9 € A. ThenX — G, isa
finite subset of X and hence it contains finite number of elements of Y.

Let yi,¥5, ..., Y0 € (X — G,lo) NY.AsY C U G, , we can select Gy,
AEA

€ {G, € 3| A € A} such
that y; € Gy, Vi, 1 <i<n.ThusY S G, UGy, U..UG,,.
This shows that the open cover {G, € J | A € A} of Y contains a finite sub-cover.
Hence Y is compact.

Thus in a compact space (X, J) there exists a compact open subset Y in X.
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(4) Union of any two compact sets of a T-space is a compact set but
intersection of any two compact ts of a T-space need not be a compact set.
For this consider the following example.
Let X be an infinite set. Leta ,b€ X .DefineJ={X} U{G|G< X —{a,b}}.
i.e.J={X}U{G<X|aé¢Gandb ¢ G}.Then (X, ) be a topological space.
Define A= X—-{a}and B=X-{b }.
Let {G, | A € A} be any open cover for A.

As A < UGA and a € A, we geta € G, for some 15 € A.
AEA

By definition of 3 , G;, = X. Thus the open cover {G, | A € A} of A has a finite sub-cover
{ G2,}- Hence A is a compact subset of X.

Similarly, we can prove that B is a compact subset of X.
Now ANB=X-{a,b} isnotcompact as theopencover {{ x}|x € A N B}ofAn
B has no finite sub-cover. This shows that intersection of any two compact sets of a T-

space need not be a compact set.

Theorem 2.6: An intersection of closed compact sets of a T-space is a closed compact set.

Proof:- Let (X, J) be compact and let {F; | A € A} be a family of closed compact sets in X.

To prove that ﬂ F, is aclosed compact set in X.
A€A

Obviously, ﬂ F, isa closed set in X as F, is a closed set for each A € A.
eA

i
Now ﬂFA C F; shows that

that ﬂ F, is a closed subset of a compact set Fj .
AEA

Hence ﬂ F, is a compact set ( see Theorem 2.4 ).
AEA

Page | 83



Compact spaces

Theorem 2.7: Let (X, ) be a topological space. Let §* < J. Then (X, J*) is a compact space.
Proof: Let {G; € J* | 1 € A} be an J*- open cover for X.

AsJ* <3, {G, €I | 1€ A}isalsoS - open cover for X.

As (X, 3) is compact, 3 a finite sub-cover say {G,li EJ|LEALI<IL n} for X.

But this in turns shows that (X, J*) is a compact space.

Remark: Let (X, J*) be a compact space and J* < J. Then (X, J) need not be a compact space.
For this, consider the following example.
Let X be any infinite set and

*

3" = indiscrete topology on X.
3 = discrete topology on X .

Then J* < J. (X, J*) is a compact space but (X, J) is not a compact space.

Theorem 2.8: Let (X, J) and (Y, J*) be any two topological spaces. Let (X, ) be a compact

space and let f: X — Y be onto, continuous map. Then (Y, J*) is compact.

=@

AEA

Proof:- Let {G; € J* | A € A} be any open cover for Y.

AsY < UG; and f is onto we get X = f~1 [U G;

AEA AEA
As f is continuous and G; € J*, VAE A;weget f71(G;) €T, VAEA.
Hence { f71(G;) € 3| A € A} forms an open cover for X. As X is compact this open cover has a

finite sub-cover. Let X = UL, f _1(6/{1') . But then

n
Y = U G,, shows that the open cover {G; € 3" | 1 € A} of Y

=1

has a finite sub-cover. Hence (Y, J*) is compact.
Corollary 2.9: Being a compact space is a topological property.

Corollary 2.10: Let f be a continuous map of (X, J) into (Y, J*). f maps every compact subset

of X onto a compact subset of Y.
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Proof: —F is a compact subset of X. Restriction of f on the subspace E of X is continuous onto

map on the subspace f(E) of Y. Hence by Theorem2.7, f (E) is a compact space of Y.

§3 Special examples: (R, J,,)
Though (R, J,,) itself is not a compact space, compact sets in (R, J,,) are of special
importance.
Theorem 3.1: Any closed and bounded interval in (R, ,,) is compact.
Proof:- Let I = [a, b] be any closed bounded interval in R . To prove that I is compact.

Let I is not compact. Then 3 an open cover {G; € J,, | 1 € A} of I which has no finite sub-cover.
Consider the two closed intervals [a , bz;a] and [bz;a , b] . Obviously both of these closed

bounded intervals have no finite sub-cover for the given open cover {G; € J,, | 1 € A} .
Denote by I, the closed interval among these two which has no finite sub-cover. Again bisect [
into two closed intervals. Label I, , the interval which has no finite sub-cover. Continuing this
process we get a sequence {I,} of intervals such that I D I; D I, D --- and length of I, — 0

asn — oo . Hence by Canter’s intersection theorem,

co co

ﬂ]n Q. Letx € ﬂ]n . Then x ER = x € G, forsome A5 € A.
n=1 n=1

Gy, €EJyandx € G, = 3 r >0 suchthat (x —r, x +7) € G,,. Select n so large that
I, € (x —7r, x + 7). But then I,, € G, shows that I,, has a finite sub-cover for the given
cover{G, € J,, | A € A} . This contradicts the choice of I,, . Hence, our assumption is wrong.

Hence, I is compact subset of (R, J,,).

Theorem 3.2: Any compact subset of R is closed in (R, J,,).
Proof:- Let A be any compact subset of R .

To prove that A is closed in R .

Selectx ER—Aanda € A.Thenx #a.Letd(x,a) =r>0.

Then(x—g , x+§)n(a—g , a+§)=®.

DeﬁneGaz(a—g , a+§) ,VaeAandez(x—g ,x+£), VYXER—A.
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Then {G, € J,, | a € A} will form an open cover for A. As A is compact, this open cover has a

finite sub-cover.

n
LetA © U G, -Find the corresponding Gy, , 1 <i<n.

=1
n
Then x € ﬂGxi cCR-A
i=1

Define x,,, = min {x;, x5, ..,X,} . Thenx € (x,, — 7, x,, +7) €S R — A.
But this shows that each x € R — A is its interior point. Hence, R — A is an open set.

Therefore A is a closed set in R.

Theorem 3.3: Heine - Borel Theorem.
A subset 4 of (R, J,,) is compact if and only if A is bounded and closed.
Proof: Only if part.
Let A be a compact subset of R .
To prove that A is closed and bounded.
For each a € A, define G, = (a — 1,a + 1). Then {G, € J,, | a € A} will form an open cover

for A. As A is compact, this open cover has a finite sub-cover for 4 .

n
LetA © U Gg, -Thus {ay, a,, ..., a,} € A (by construction).

=1
Letm = min {a,,a,,...,a,} and M = max {aq, a,, ...,a,}.
Then G4, U Go, U ..U Gy, S [m—1,m+ 1] willimply A € [m —1,m + 1].
Hence A is bounded subset of R .
If part .
Let A be a closed bounded subset of R. Then A € [m, M]. By Theorem 3.1, [m , M] is compact.
Thus A is a closed subset of a compact space [m, M] (w.r.t. relative topology).

Hence A is compact (see Theorem 2.4).

Theorem 3.4: Cantor set C in (R, J,,) is compact.

Proof: We know that the Cantor set C is given by,
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C = ﬂ F,, where
n=0

Thus, each F, is union of 2" disjoint closed intervals each of length 3% .

Each F, is a closed set in R and hence C = ﬂ F, is a closed set.

n=0

As C € [0,1], C is a bounded closed subset of (R, S, ). Hence by Theorem 3.3, C is a compact

set.

§4 One point compactification
We know that every topological space need not be compact (see Example 1.4 (6)).
But for given non-compact space (X, J) we can construct a compact space (X*, I*) such that X is
homeomorphic with some dense subspace of X. This compact space (X*, J*) is called
compactification of the space X. If X* = X U {oo} for some object oo € X, then compactification
of X is called one-point compactification.
The topology J* on X* = X U {o0}, o & X for which we get a one-point compactification

(X*, ) of (X, J) is explained in the following theorem.

Theorem 4.1: Let (X, J) be a non-compact space. X* = X U {oo}, where oo € X. Define J* as
FJ*={GS X |GeJIU{G < X*|X*— G isaclosed compact subset of X}. Then

1) J*is topology on X.

2) (X, 3) is a subspace of (X*,J*)

3) (X*, J*)is a compact space.

4) (X, ) is dense subspace of (X*, J*).

This (X*, J*) is a one-point compactification of (X, ).
Proof: -
1) To prove that J* is topology on X.
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FJ*={GS X" |GeJIU{G < X*| X" — G isaclosed compact subset of X} .
ThenJ* =JUJ, , where J; ={G S X* | X* — G is a closed compact subset of X} .
Further, note that G € J; © 0 €GandGEJ S 0 &G VG S X",

Again, if 0 € G,G S X", thenX*  —G =X"NG =[XU{o}|NG' =[XNG']U
[{0}NG']1=XNG’
(v 0wEG= 0 ¢G).
Thus X*—G=X—-G VG S X" suchthato € G.
(i) PeEJ asP €.
X" € JF asX* — X" = @ is aclosed compact subset of X.
(i) Let A,B € J*. To prove that AN B € J~.
Case l: 0 € ANB.
Thenoo € A,A € J* = X — A is a closed compact subset of X.
Similarly, X — B is a closed compact subset of X. Hence (X —A) U (X —B) isa
closed, compact subset of X (since union of two compact sets is a compact set and
union of two closed sets is a closed set). ButasX —(ANB)=(X—-A) U (X —B)
weget ANB €3, andhence ANB € J".
Case2: o € ANB.
Then either co € A or o & B.
Sub case (1): Suppose © & A and o € B.
ThenA € Jand B € ;.
Hence A € § and X* — B is closed compact subset of X. Hence X — [X* — B] is an
opensetinX. ButX — [X* —B] =X — [X* N B']
=Xn[X*NnB']
=Xn[X)'u(B)]
=Xn[puUB]
=XNBAB.
AsAeEJandXNBeJZ, wegetAN(XNB)eJie. (ANX)NBES
iec. ANBE€J. Hence ANB € 3.
Sub case (2): 0 € Aoro & B.
As in sub case (1) we can show that AN B € J".

Sub case (3): 00 € A and o0 € B.
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ogAandAETF = A€S.

ogBandBEJI = BESJ.

J being topology on X, AN B € J and hence AN B € J~.
(iii) Let A; € 3* VA € A, where A is any indexing set.

To prove that, U A; EJN
AEA

Case (1): oo(,i_UA,l.
AEA
Thenoo & A; foreachd €A. Asco & Ajand A € 3" wegetd; €J, VAEA.

Hence J being topology on X , U A, €EJ .
AEA

Hence in this case , U A EZT.
AEA

Case (2): w € UAA .

AEA

Then X* _UAA =X—UA,1 = ﬂ(X—A,l).

A€EA AEA AEA

As X — A, is a closed set in X, we get ﬂ(X — A;) is a closed set.

AEA
Select 45 € A such thatoo € A, .
ASAAO c UAA Weget X — UAA QX—AAO.
AEA AEA

Aso € Ay, Ay, € 31, X — Ay, is aclosed, compact subset of X.

Again X — UAA = ﬂ(X —Ay).
AEA A€A

Aseach X — A, is a closed set in §, we get ﬂ(X — A;) is aclosed setin .
AEA

Hence X — U Ay = ﬂ(X — Aj) is a closed set in X which contained in a compact
AEA AEA

space X — Ay, .

Hence X — U A, is compact (see Theorem 2.5).Thus X — U A, € 31 and hence
AEA AEA
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UAA € 3 whenever 4 €J* VAEA.
AEA

Thus from both the cases we get,

ALES VAIEA = UAAES*.
AEA

From (i), (ii) and (iii) is a topology on X*. Hence (X*, J*) is a topological space.
To prove (X, J) is a subspace of (X*, J*).
X c X*. The relative topology Iy on X is given by, Jx ={GNX |G € J*}..
To prove that Iy = .
LetG € 3. ThenG € X and G € J* (since J S J*).
Hence G =GNX,GEJ = G € Jy. Hence J € J @)

Now let G* € Jx. Then G* = G N X forsome G € Fxy =JUST; .
Case (1):G € 3. ThenG S XandhenceG*=GNX =G.

This shows that G* € .

Case (2): G € J;. Then X* — G is a closed, compact subset of X.
Hence X — [X* — G] is open in X.
X—[X*—G]=XNGisopeninX.
AsG"=GNX,wegetG" € 3.

Thus from case (1) and case (2),G* € Jy = G* € J.

Hence 33y € (ii)

From (i) and (ii), J = J¥ .

Thus the relative topology Jx on X coincides with the topology J on X.
Hence (X, ) is a subspace of (X*, J*).

To prove that (X*, J*) is a compact space.

Let {G,} be any open cover of X*.

Hence X* = U G, = = € G, for some 4.
2

Hence X* — G, is closed compact subset of X. As X* — G, < X™ we get,

X" =Gy, € U G, .Thus {G,} forms an open cover for X* — G,
7
and X* — G, is compact subset of X™.
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X" =Gy, S

L

Gli But thenX* = Glo V) Gl1 U..U Gln .
1

n
This shows that the open cover {G;} of X* has a finite sub-cover.
Hence (X*, 3*) is compact.

4) To prove that X is dense in X ™.
X is non-compact subset of X*. Hence X is not a closed subset of (X*, I*) (since (X*, J*)
is compact and closed subset of a compact subset is compact). Hence X* — X is not open
in X*. As X* — X = {0} we get {0} is not open in X*. Hence for any open set G
containing o we get G N X — {0} # @ (since G # {0} = G contains some x € X ).

But this shows that oo is a limit point of X. Hence X = X U d(X) = X U {0} = X*. This

shows that X is a dense in X*.

Remarks:
(1) The one-point compactification (X*, I*) of (X, J) is also known Alenander’s
compactification of (X, J). The point o is called the point at infinity.
(2) We know that (R, ,,) is not compact. Compactification of this space is obtained by
adding two points denoted by oo and—oo and properly introducing topology J* on
R* = R U {oo, —00} . Thus (R*, J*) is the compactification of (R, J,,) but it is not the

one-point compactification.

§5 Locally compact spaces

Definition 5.1: A topological space is (X, J) is a locally compact space if each point x € X has a

compact neighbourhood.

Examples 5.2:
1) (R,3,) is alocally compact space.
Foreachx € R, [x —r, x + r] is a compact neighbourhood of x (r > 0) [see Theorem
eer]
2) Let (X, J) be the discrete topological space. Then {x} is a compact neighbourhood of

each x € X. Hence (X, J) is locally compact space.
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Theorem 5.3: Every compact space is locally compact.
Proof: Let (X, J) be a compact space. Then for any x € X , X itself is a compact neighbourhood

of x. Hence X is locally compact.

Remark: Converse of Theorem 5.3 need not be true. i.e. every locally compact space need not
be compact.
For this, consider the T — space (R, J,,) . (R, J,,) is not compact but (R, J,,) is locally compact.

Also any infinite discrete space is locally compact but not compact.

Theorem 5.4: Closed subset of a locally compact space is locally compact.

Proof:- Let (X, J) be a locally compact space and let F be any closed subset of X . To prove that
the subspace (F,J*) is locally compact.

Letx € F. Asx € X and X is locally compact, 3 a compact neighbourhood say T of x in (X, J).
As F N T is aclosed subset of a compact space T, we get T N F is compact neighbourhood of x

in F. Hence (F,J*) is locally compact.

Theorem 5.5: Being a locally compact space is a topological property.

Proof:- Let (X, ) be a locally compact space.

Let (X, ) be any topological space and let f: X — Y be a homeomorphism.

To prove that Y is locally compact space.

Lety €Y. As f is onto, 3 x € X such that f(x) = y. As x € X and X is locally compact, 3 a
compact neighbourhood of say N of x. As f is continuous, onto, f(N) is compact subset of Y
containing y. Hence f(N) is compact neighbourhood of f(x) = y ( f(N) is a neighbourhood of
y as f is an open map).

This shows that Y is locally compact.

Remark: Continuous image of a locally compact space need not be locally compact.

For this, consider the following example:
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Let (X, J) be non-locally compact space. Let §* denote the discrete topology on X. Then (X, J*)
is a locally compact space. Leti : X = X be identity map. Then i is J* — J continuous, onto and
one-one. But i(X) = X is not locally compact.

This shows that continuous image of a locally compact space need not be locally compact.

§6 Countably compact spaces
Definition 6.1: A T — space (X, ) is said to be countably compact if any infinite subset of X has

a limit point.

Example 6.2: Let X = N, the set of all natural numbers. Let B = {{Zn —1,2n}|ne N}.
Then B is a base for some topology say J on X. This T — space (X, J) is countably compact.
Let A be any infinite subset of X. Let p be the smallest number in A.

Case (1): p is an even number. Let p = 2m. Then 2m — 1 is a limit point of A, for, the only
basic open set containing 2m — 1is G = {2m — 1, 2m} and 2m € G N A — {2m — 1} which
implies G N A — {2m — 1} # @. Hence in this case 2m — 1 is the limit point of A.

Case (2): ): p is an odd number. Let p = 2m — 1. Then the only basic open set containing p

is H={2m — 1, 2m}. 2m is the limit point of A, for, 2m — 1 € H N A — {2m} which implies
HnNA-{2m} # @.

Thus from either the case we conclude that A has a limit point in X. Therefore (X, J) is

countably compact space.

Theorem 6.3: Every compact space is countably compact.

Proof: Assume that there exists a compact space (X, ), which not countably compact. Hence,
there exists an infinite set A of X that has no limit point in X. Thus, each x € X is not a limit
point of A. But then for each x € X, there exists an open set G, containing x such that

G, NA—{x}= 0. Hence either G, NA =@ orG, NA={x}, Vx €X. Again as {G, },ex forms

an open cover for X, it must have a finite sub-cover (X being a compact space).

n
LetX = U Gy;-
i=1
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ThusA=XNA=

NA= O[Gxi n AJ.

i=1

n
e
i=1

AsGy NA={x}orG,NA=0, Vi, 1<i<n;

L

n
[Gxi N A] must be a finite set.
=1

Hence A is a finite subset of X; a contradiction.

Thus, our assumption is wrong. This proves that every compact space is countably compact.

Example 6.4: By Theorem 6.3 we immediately get
(1) co-finite topological space is a countably compact space.

(i1) Fort’s space is a countably compact space.

Remark: Converse of Theorem 6.3 need not be true. i.e. every countably compact space need
not be a compact space.

For this consider the topological space given in Example 6.2.

The T — space defined in Example 7.2 is countably compact but not a compact space. Since the

open cover {{Zn -1, Zn}} of N has no finite sub-cover.

Theorem 6.5: Any closed subset of a countably compact space is countably compact.

Proof:- Let A be any closed subset of X. To prove that A is countably compact.

1.e. To prove that any infinite subset E of A has a limit point in A.

EcA = d(E) € d(A) and A is closed = d(A) € A. Hence d(E) S A. E € X and X is
countably compact = E has a limit point say p in X. But thenp € d(E) = p € A. This in turn
shows that A is countably compact.

Theorem 6.6: Being countably compact space is a topological property.

Proof:- Let (X, J) and (Y, J*) be two T — spaces. Let (X, J) be a countably compact space and let
f: XY be a homeomorphism. To prove that Y is countably compact space. Let A be any infinite
subset of Y. Then f being one-one and onto, f~1(A) = B is an infinite subset of X. As X is

countably compact, B has a limit point in X say p. Claim that f(p) € Y is a limit point of A. Let
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G* € 3" such that f(p) € G*. Then G = f~1(G*) € Jand p € G. As p is a limit point of B, we
get G N B — {p} # @. But this will imply G* N A — {f (p)} # @. Hence f(p) is a limit point of A
in Y. Therefore Y is countably compact. Homeomorphic image of a countably compact space

being countably compact, the result follows.

Exercises
1) Show that Fort’s space is compact.

2) Show that Cantor set C in (R, J,,) is compact.
3) Show that (R, J,,) is not compact.
4) Explain in detail what do you mean by one-point compactification of (X, )
5) Prove that:
i.  Being compact space is a topological property..
ii.  Being countably compact space is a topological property.
iii.  Being locally compact space is a topological property.
6) Prove or disprove the following statements.
1. Being countably compact space is a hereditary property.
ii.  Every compact space is countably compact.
iii.  Every countably compact space is compact.
iv.  Continuous image of a locally compact space is locally compact.
v.  Every compact space is locally compact.
vi.  Every locally compact space is compact.
vii. A subset A of (R, J,,) is compact if A is bounded and closed.
viii.  Any compact subset of R is closed in (R, J,,).
ix.  Closed sets are not the only compact subsets in a compact space
x.  Let (X, J*) be a compact space and J* < . Then (X, J) is a compact space.
7) Prove that a topological space (X, J) is compact if and only if every family of closed sets

having the finite intersection property has a non-empty intersection.
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Connected Spaces

§1 Separated sets.
§2 Connected sets.

§3 Solved Problems.
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Unit 7: Connected Spaces

§1 Separated sets
Definition 1.1: Let (X, J) be a T — space. The subsets A and B of X are said to be separated in X
if

(i) A@andB # 0.

({)ANB=0.

(iii) And(B) =@ and BN d(A) = Q.

Example 1.2:
A = (1,4) and B = (5,8) are separated sets in (R, J,,) .

Remarks:
1) Conditions (ii) and (iii) can be combined into the following single condition
*)...ANB)UBNA) =0

This condition is known as Hausdorff Lenne’s condition.

2) Any two disjoint, non-empty closed sets in any T — space are separated sets.

3) Any two disjoint, non-empty open sets in a T — space are separated sets. Let A and B be
both open, non-empty disjoint sets in X .
ANB=0 = ASX-B=AcX-B=X-B= AnNBS(X-B)NB=0.
Hence AN B = @. Similarly BN A = @.
Therefore A and B are separated sets.

4) If A and B are separated sets in (X, J) and if C and D are non-empty subsets of X such

that C € A and D € B, then C and D are also separated sets.

Theorem 1.3: If A and B are separated sets in (X, J) , then A and B are both open and closed
in A U B and conversely.

Proof: Let A and B be separated sets in (X, J). Hence A # @ and B # @ and
ANB)UBNA) =0 (A=cly A).
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LetY = AU B . Then
cly A=cly AnY ... (By Theorem 3.3 in Unit 3)

=clyAn(AUB)

= [cly An Al U [cly AN B]

=AUOQ ... (since A and B are separated sets)

=A.
This shows that A is closed in Y.
Similarly, we can show that Bis closedin Y. AsANB =@and AUB =Y, A and B are
complements of each other in Y.
Hence A and B both are openin Y.
Conversely, let A and B are both open and closed in A U B.
To prove that A and B are separated in X.
BydataA#@and B#@and ANB =0.LetY =AUB.
A=cly A=cly ANnY (see Theorem 3.3 in Unit 3)

=clyAn(AUB)
= [cly An Al U [cly AN B]
=AN[cly An B]

Thus A= AN [cly AnB]Hence,cly ANBC A.
Butthencly ANBSANB =0 ,willimplycly ANB=0ie. ANB =0 (4 =clyA).
Similarly, we can prove thatcly BNA=BNA= Q.

As Hausdorff Lenne’s condition is satisfied by A and B we get A and B are separated sets in X.

Theorem 1.4: Let (Y, 3*) be a subspace of a T — space (X,J) and A, B S Y .A,B are §*
separated if and only if A, B are J — separated (i.e. A, B are separated in (Y, J*) if and only if
A, B are separated in (X, J) ).
Proof: First note that,
[cly AnBlulcly B nA]l=|[clyAnY]nB]U|[cly BnY]nA4]

=[cly A n[YnB]]u[cly Bn[Y nA]]

=[cly A NB]U[cly B NnA] (sinceA,BCY).
Thus [cly A NBlU[cly B NA]l =0 © [clyAnNBJlU[clyB NA]=0.
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Thus if A and B are non-empty disjoint sets in Y (and hence in X) are separated in (Y, J*) if and

only if A and B are separated in (X, ) .

§2 Connected sets
Definition 2.1: Two separated sets A and B said to form a separation of E in a topological
space (X, J) if E = AU B.

We denote this by E = A | B.

Definition 2.2: Let (X, J) be a T — space. A subset E of X is said to be connected if it has no
separation in (X, ).
1.e. E is connected if E cannot be expressed as union of two disjoint, non-empty sets satisfying

the Hausdorff Lenne’s condition.

Examples 2.3:
(1) @ and singleton sets are connected sets in any topological space.
(2) In a discrete topological space (X, J) , {x} (x € X) are the only connected sets ( [X| > 2).
(3) Any interval in (R, J,,) is connected.
(4) Any indiscrete topological space is connected.

(5) LetX ={a,b} and J = {0, {a}, X}. Then (X, J) is a connected space.

Theorem 2.4: Let (X, J) be a topological space and let A and B be non-empty subsets of X. The
following statements are equivalent.

(1) X=A|B.

2) X=AUBandANB=0.

3) X=AUB, AnB =@ and A, B are both closed in X.

(4) B =X — A and A is both open and closed in X.

(5) B=X—Aandb(4) =0 (b(A) =boundary of A).

(6) X=AUB, AnB = @ and A, B both are open in X.

Proof: (1) = (2)

LetX=A|B.ThenX =AUB, ANB=0,A+®,B+®, And(B) =@ and
BndA)=9.
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To prove that AN B = .
ButAnB =[Aud(4)]n[Bud(B)]
=@AnB)u(AndB))u(Bnd(4)uld4) nd(B)]
=d(A) nd(B)
Hencex EANB = x € d(A) n d(B)
= x € d(A) and x € d(B)
=xé&Bandx ¢ A (sinceANnd(B) =@ and BN d(4) = Q)
= x€X—-—Bandx ¢ A.
= x€Aandx € A (since AUB =X,ANB = Q).
which is a contradiction.
Hence AN B = 0.
2)=0)
AcAandBSB = ANBCSANB=¢ = AnB=90.
Now,ANB=¢ = ASX-B
= ACSX—B(sinceBEB = X—B €X—B)
= ACA (AUB=X,AnNB=0 = A=X-B)
= A=A.
Hence, A is a closed set in X. Similarly, we can prove that B is closed in X.
=@
AUB=X,ANB=¢0 > A=X-B.
As B is closed, A = X — B is open. Thus A is both open and closed.
) =)
b(A)=AnK~-4)
=A N (X — A) (since A is both open and closed = X — A is also both open  and closed)
=0
(5)=(6)
Let b(A) = @ . We know that A = A° U b(4).
Ash(A) =0, A=A AsA°"CACA,weget A=A = A°. Hence A is open.
AsB =X — A, BisalsoopeninX.
6) =1
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LetX=AUB, AN B = (@ and A, B both are open in X. As A and B are complements of each

other, A and B are closed in X. Hence (ANB)U(BNA) =(ANB)U(BNA) =0.

ThusX =A|B.

Remarks:

1) The space of rationals Q with relative topology is disconnected.

Fix any real number @ . Define A ={x e Q|x >a}andB={x € Q| x < a}.

Then A and B both are non-empty disjoint subsets of Q . Further both are open in Q w.r.t.

the relative topology on Q [{R,J,) is T — space and Q < R].

2) The space of irrational numbers Q' with relative topology is disconnected space.

Theorem 2.5: Let (X, J) be a T — space. If a connected set C has a non-empty intersection with

both a set E and the complement of E in (X, J) , then C has a non-empty intersection with the

boundary of E.

Proof: To prove that C N b(E) # @ (b(E) = boundary of E in (X, J)).
LetC N b(E) = 0.

C=CnX=Cn[EUX-E)].

Hence, C =[CNE]JU[CN (X —E)] (D
[CNE]IN[CN(X—E)]=Cn[EN(X—E)]=Cno=0.
Hence, [CNE]N[CN(X—E)]=0 (2)

Now, [CNE]IN[CN(X—-E)] € [CNE]n (X —E)
=Cn[En(X-E)]
=CNb(E) (sinceb(E)=E Nn(X—E))

=0 ... (by assumption)
Thus [CNEIN[CN(X—E)] =9 3)
Similarly, we can prove that [CN (X —E)IN[CNE]=0 __ (4
Hence {[CNEIn[Cn (X —BE)Juf{[cn (X -=E)]n[CnE]}
=QuUpd=0 &)

From (1), (2) and (5) we get,

C=(CNE)|[CNn(X—E)] (as by hypothesis(C NE) # @ and [CN (X —E)] # D).
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This is a contradiction, as C is connected set.

Thus our assumption is wrong. Hence C N b(E) # 0 .

Theorem 2.6: Continuous image of a connected space is a connected space.

Proof: Let t (X, J) be a connected space. Let (Y, J*) be any T — space and

f:X — Y be a continuous function. To prove that Y is a connected space.

Let if possible Y is not connected. LetY = A | B. ThenY = A U B, and 4, B are non-empty,
disjoint open sets of Y (by Theorem 1.3). As f is onto, f ~1(Y) = X and hence

X = f71(A) U f71(B). f being onto and continuous, f ~*(A4) and f~1(B) both are non-empty
disjoint open sets in X. But this shows that X = f~1(A4) | f~1(B) ; a contradiction. Hence our

assumption is wrong i.e. Y must be a connected space.
Corollary 2.7: Homeomorphic image of a connected space is a connected space.

Theorem 2.8: Let E be a subset of the subspace (X*, J*) of a T — space (X, J). E is §* connected

if and only if E is J connected.

Proof:- LetA,B € X" C X.

Denote ¢*(A) = closure of A in (X*, 3*) and c(4) = closure of 4 in (X, ).

Then ¢*(A) = c(4) N X* (see Theorem 3.3 in Unit 3).

Then [ANc(B)JU[BNc(A)]=[AnX)nc(B)]U[(BNX*)Nc(A)]
=[An[X*necB]|U[Bn[X*ncA]]
=[Anc*(B)]U[Bnc*(4)]

Thus for A,B € X* € X we get,

[Anc(B)JU[BNc(A)]=0 < [Anc*(B)JU[BNnc*(A)]=0.

Thus the set E has separation in (X*, J*) if and only if 3 A,B € E suchthat E = AU B,

ANB=¢ , A#@andB+@and [ANc*(B)]JU[BNnc*(4A)]=0.

< 3JA,BSEsuchthatE=AUB, ANB=¢0,A+ @and B # @ and

[Anc(B)]JU[BNnc(A)]=0.

& E has separation in (X, J).
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Theorem 2.9: Let C be a connected subset of the T — space (X, J).

LetX =A| B . Theneither C € AorC € B.

Proof:-X =A|B =X =AUB, ANB=0,A+ @and B # Q.
HenceC=CnX=Cn(ANnB)=(CnNnA)U(CnB).

Again ((CNAU(CNB)=Cn(ANB)=¢.

Now [(CnA)N(CnB]u[(CnB)n(CNnA)]c(AnB)UBNA)=0.

= [(cnANCnB]u[(CnB)Nn(CNnA)|=0¢.

ThusC = (CNA)|(CnB),if(CNA)+@and(C NB) # @ .Butas C is connected C has no
separation. Hence either (C N A) = @or(C N B) = @. ThuseitherC € X —A=BorC € X —

B = A and hence the result follows.

Corollary 2.10: If C is a connected set in a T — space (X, J) and if C € E € C, then E is
connected in (X, ).

Proof:- To prove that E is connected set.

Let if possible E is not connected set. Then E must have a separation, say E = A | B .

As C is a connected subset of X and E € X, C is connected subset of E (by Theorem 2.8).
But then € € A or C € B(by Theorem 2.9). Let us assume that C € A.
ThenCNBSANB=0@willimplyCNB = @.ButB € E € C impliesC N B = B.
Thus B = @ ; a contradiction. Hence our assumption is wrong. This proves that E must be

connected set.

Remark: By taking E = C in particular in Corollary 2.10, we get

if C is connected, then C is connected.

Corollary 2.11: Let (X, J) be a topological space such that any two points of a set E € X are
contained in same connected subset of E. Then E is connected.

Proof:- To prove that E is a connected set.

Let if possible E be not connected. Let E = A |B.ThenE =AUB, ANB=0,
A#Q@and B # 0. AsA#@and B # @, selecta € Aandb € B. AsANB=0,a#binX.

By assumption, 3 a connected set C containing both a and b. By Theorem 2.8, C € Aor C S B.
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Let C € A. Thenb € AN B = @ ; a contradiction. Hence our assumption is wrong. This shows

that E must be a connected set.

Corollary 2.12: -The union of any family {C; } of connected sets having a non-empty
intersection, is a connected set.

Proof: Let{C, | A € A} be a family of connected sets such that, ﬂ C,#0.
A€

To prove that E = U C, is connected set.
A€4

Let E is not connected. Then E = A | B .

LethﬂC,l ...(since ﬂC,lqt(Z)).Then X€EC,VAEA, CGSE =>x€E=A|B.
A€ A€

AsANB =@, eitherx € Aorx € B.

Without loss of generality, assume thatx € A. Thusx EeC; NA = C;NA #Q,VAEA.
C, is connected subset of X and E € X = C(; is connected subset of E (by Theorem 2.8).
As C, is connected subset of Eand E = A|B, C; S Aor(C; € B.Butas ANB = @, we get
CGEAVAeEAoOr C;EB,VAEA

Hence,C; S A,VA€EAasANB = 0.

ThusE=UC,1§A.ButthenEzAUB:>A§E.
A€

Hence, E = A. Therefore B = @ ; a contradiction.

Thus E = U C, is connected set.
AEA

§3 Solved Problems

Problem1: Let (X, J) be a topological space and E € X. IfE = A | B and E is closed subset

of X, then A and B are closed in X.

Solution: E = A| B = A and B are proper non-empty sets of E and both are open and closed
in E (by Theorem 2.4 (4)). Hence A = E N F for some closed set F in X. As E itself is a closed

setin X, we get E N F = A is closed in X. Similarly we can prove that B is closed in X.
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Problem 2: Show that in a connected topological space, every non-empty proper subset has a
non-empty boundary.

Solution: -LetE +# @, E c X.

To prove b(E) # @. Let b(E) = @.Then E n (X — E) = b(E) = 0.

Hence, EN(X —E) =@ andENn (X —E) = 0.

E+Q9,E+X = X-E+0,X—E=+X.

EUX—-E)=XandENn(X—-E)=0.

Hence X = E | (X — E) , a contradiction.Hence, b(E) # @.

Problem3: If (X, ) is a connected topological space and J* < J, then show that (X, J*) is
connected.

Solution:- Let (X, J*) be not connected. Hence there exist proper, non-empty subsets A and B
of X suchthat A, B€ J and X =AUB,ANB =0.ButasJ <3, we get A and B are proper
non-empty subset of X suchthat A, B€J, X=AUB, ANB =0.

But this shows that (X, ) is not a connected set; a contradiction.

Hence (X, J*) is connected space.

Problemd: For a topological space (X, J) show that following statements are equivalent.
1) X is connected.
2) X cannot be written as disjoint union of two non-empty closed sets.
3) X cannot be written as disjoint union of two non empty open sets.
4) The only clo-open sets are @ and X. (clo-open = both open and closed)
5) Every non-empty proper subset of X has a non-empty boundary.

Solution:- The result follows immediately by definition and by Theorem 2.4.

Problem 5: Let E be a subset of a topological space (X, J).If E is connected , then E is not the
union of any two non-empty sets A and B such that AN B = @.
Solution: Let E be connected. Let if possible E = AUB, A+ @,B + @ and AN B = 0.

es]

=(AUB)=AUB.A+Q0 = A+@ andB#0 = B+#0Q.
NB=ANB=0@0andBNA =BnA=0.

N}
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Hence E = A | B ; a contradiction (since E is connected = E is connected )

Hence E is not a union of any two non-empty sets A and B such that AN B = @.

Exercises

Prove or disprove the following statements.

1)
2)
3)
4)
5)

6)

7
8)

9)
10)

Closure of a connected set in (X, J) is a connected set.

Any two disjoint sets are separated in (X, J).

Any two separated sets are disjoint in (X, ).

Union of two connected sets in (X, J)is a connected sets in (X, ).

X 1s connected if and only if X cannot be written as disjoint union of two non-empty
closed sets.

X 1s connected if and only if X cannot be written as disjoint union of two non-empty
open sets.

X is connected if and only if the only clo-open sets are @ and X.

X 1s connected if and only if every non-empty proper subset of X has a non-empty
boundary.

Let C be a connected subset in (X,J) and X = A | B . Theneither C € AorC € B
X is connected if and only if it has non-empty proper subsets which are both open and

closed.

Page | 108



Just axiom spaces

Unit 8

Jirst axiom spaces

§1 Definition and Examples.
§2 Properties.

§3 Sequentially continuity and first axiom.
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Unit 8: First Axiom Spaces

§1 Definition and Examples
Definition 1.1: Let (X, J) be a topological space. (X, J) is said to be first axiom space (or f.a.s.
in short ) if it satisfies the following first axiom of countability.

For each point x € X, there exists a countable family {B,,(x)} , ey of open sets such that
X € B, (x) for each x € N and for any open set G containing x, 3 ny € N such that, x €
B,(x) €G.

The family {B, (x)},, ey is called a countable local base at x.

Examples 1.2
(1) Every discrete topological space is first axiom space.
Let (X, J) be a discrete topological space. Then {{x}} forms a countable local base at x. Hence

(X, ) is a first axiom space.

(2) (R, J,,) is a first axiom space.
Fix up any € R . For each n € N define B,(x) = (x - % X + %) Then {B,, (%)}, en forms a

countable family of open set in (R, J,,) .

Further if G is open set in R,, containing x , then by the definition of J,, ,

3 r > 0 such that (x —% ,X + r) C G. Select n so large, such that ni <r.
0

1 1
Then (x—n—o ,x+n—0) SCx-r,x+r) €6 = B, SG.

Hence the family {B, (x)}, ey forms a countable local base of x € R. Therefore (R, ;)

is a first axiom space.

(3) Every metric space is first axiom space.
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Let (X, d) be a topological space and  be the topology on X induced by the metric d. Fix up
any x € X. Define B,(x) =S (x ,%) for any n € N. Then by the definition of § , B, (x) €
J,vn € N.x € B,(x) foreachn € N.

Let G € J such that x € G. Then by the definition of J,3 r > 0 such that

s(x,r) € G . Select n so large that n—lo <r.

1
TheanS(x, n_) cS(x,r)ca.
0

Thus given G € J containing x , 3 ny € N such that x € B,, (x) S G.Hence the countable
family {B,,(x)} of open sets in (X, J) forms a countable local base at x. This shows that (X, d) is

a first axiom space.

(4) Co-finite topological space (X, J) ( with X an infinite set ) is a non-first axiom space.
Let (X, ) be a first axiom space and x € X. Then 3 a countable local base {B,, (x)}
atx. B,(x) ey, vneN = X —B,(x) isaclosed setin (X,3), Vn € N

= X — B, (x) is a finite set in (X,J), Vn € N.

a
= U [X — B,,(x)] is a countable subset of X.

n=1

... (since countable union of countable sets is countable.)

Hence X # U[X — B, (x)].

Select y € X such that y & U [X — B,(x)] andy # x.

n=1

O[X—Bn(xn] = ye CJBn(x)

Now then G = X — { y }. Then G is an open set (X, J) containing x ( since x # y). Hence

But theny € X —

3 ny €N suchthatx € B, (x) €X—{y}.
y€B, (x) = y€eX—{y},acontradiction .

Hence (X, J) is a non-first axiom space.

Page | 112



Just axiom spaces

(5) Co-countable topological space defined on an uncountable set is non-first axiom space.
Let (X, ) be a first axiom space and x € X. Then 3 a countable local base {B,,(x)} at x.
B,(x) EIVneN = X —B,(x) isaclosed setin (X,J),Vn €N

= X — B, (x) is a finite set in (X,J), Vn € N.

a
= [X — B,,(x)] is a countable subset of X.
n=1

... (since countable union of countable sets is countable).

0]

Hence X # U[X — B, (x)].

n=1

Select y € X such that y ¢ U [X — B,(x)] and y # x.

n=1

O[X—Bn(xn] = ye LOOJBn(x).

Now then G = X — { y }. Then G is an open set (X, J) containing x (since x # y).

But theny € X —

Hence 3 ny € N suchthatx € B, (x) € X —{y}.
y € B, (x) = y€X—{y},acontradiction .

Hence (X, J) is a non-first axiom space.

(6) Fort’s space is a non-first axiom space.
Let (X, J) be a Fort’s space. X is an uncountable set, oo is a fixed point of X and J =
{AcX /o0 g AJU{ACS X /oo €A and X — A is finite}.

Assume that (X, J) is a first axiom space. Hence, there exists a countable local base

say { B,( )} ey, V N EN.

We get UBn(OO) €.
n=1

As o € U B,,(c0) by the definition of §, We get

n=1

X - U Bn(OO)] is a finite
n=1

set.
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0]

Hence X — U B, () # X (Since X is uncountable) i. e. ﬂ [X — B, ()] # X.

n=1 n=1

Select x € X such that x ¢ ﬂ[X—Bn(OO)].Asx;t o, o€X—{x}

n=1
As X — {x} is an open set in X containing oo, we get © € B, () € X — {x}
for some ny €N .

But by the choice of x, x € B, () implies x € X — {x}; a contradiction.

Hence (X, J) is a non-first axiom space.

§2 Properties
Theorem 2.1: Let (X, J) be a first axiom space. Then 3 a nested / monotone decreasing local
base at each that x € X.
Proof:- Let x € X and {B,,(x)},, ey be a countable local base at x.
Define Bi(x) = B;(x).
B;(x) = By(x) N By(x).
B;(x) = By(x)N By(x)n B3(x).

n
In general, B;(x) = ﬂBi(x).
i=1

Then { B;;( x )}, ey forms a monotone decreasing local base at x.

Theorem 2.2:- Being a first axiom space is a hereditary property.

Proof:- Let (X, ) be a first axiom space and (Y, J*) be its subspace. To prove that (Y, J*) is a
first axiom space. Select y € Y. Then y € X and X is first axiom space

= 3 a countable local base {B,,(¥)}ney atyin (X, 3J).

Define B;;(y) = B,(y) NY for each x € N. Then {B;;(y)},ey forms a countable family of open
setsin (X*,J*)andy € B;;(y) Vn € N.

Let G* € J" containing y.

ThenG*=GNY forsomeGE€ J, Asy€e Gand G €F, 3 ny € N such that
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Y€ B, (y) €SG.Buttheny € B, (y)NY S G nY will imply
y € B, (y) € G*. Hence {B;,(¥)},en forms a countable local bas at y.

Hence (Y,J*) is a first axiom space.

Theorem 2.3:- The property of being a first axiom space is a topological property.
Proof: Let (X,J) and (Y, J*) be two topological spaces and let f: X — Y be a homeomorphism.
Assume that (X, ) is a f.a.s.
To prove that (Y, J*) is a f.a.s.
Lety € Y. As f is onto, 3 x € X such that f(x) = y. As X is a f.a.s. 3 a countable local base say
{B,(xX)}nen atx. As B, (x) €3, Vn € N we get f[B,(x)] € J* (since f is an open mapping).
Again, x € B,(x) = y € f[B,(x)], Vn € N.
Claim that {f[B,, (x)]},ey Will form a countable local base at y = f(x).
i) fIBpn(x)]€J, VvneN.
(i) ye€ f[B,(x)], vneN.
(iii) Let G* € 3* such thaty € G*. Then f~1[G*] €  (since f is continuous) and x €
el
Hence 3 ny € N such that B, (x) € f~*[G*] .
But then f[B,,,(x)] € f[f1G*]] = f[Bn,(x)] < G*.
From (i), (ii) and (iii) we get {f[B,,(x)]} ey forms a local base at y € Y.
Hence (Y, 3*) is a f.a.s.

Remark: Continuous image of a f.a.s. need not be a f.a.s.
For this consider the discrete topological space (X, J) and co-countable topological space (X, J*),
where X is an uncountable set. Then the identity map i: X — X is J — 3" continuous and onto.

(X,3) is a f.a.s. but (X, J*) is not a f.a.s. (see Example 1.2 (1) and Example 1.2 (5))

§3 Sequentially continuity and first axiom spaces
Definition 3.1: Let (X, J) and (Y, J*) be two topological spaces and let f: X — Y be a function. f
is said to be sequentially continuous on X if for every sequence {x,} converging to x in X, the

image sequence {f (x,)} converges to f(x) inY.
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Theorem3.2: Let (X, J) be a first axiom space and (Y, J*) be any topological space. A
function f: X — Y is continuous on X if and only if f is sequentially continuous.

Proof: Only if part —

Let f be a continuous on X. To prove that f is sequentially continuous.

Let {x,,} be a sequence of points of X converging to x € X. To prove that the image

sequence {f (x,)} converges to f(x) in Y.

Let G* € J* such that f(x) € G*.

f:X - Y is continuous = f1[G*] €.

f(x)eG* = xefic"].

As x, » x ,3m € N such that x,, € f ~1[G*] for eachn > m .

But then f(x,) € G* form =n, (as3 f~1[G*] S G*).

But this shows that f(x,,) = f(x)inY.

If part —

Let f: X — Y be sequentially continuous.

To prove that f is continuous on X. Assume if possible, f be not continuous on X. Hence 3 x €
X such that f is not continuous at x. Hence 3 G* € J* containing

f(x) such that f(G) € G* for any G € J containing x. As X is a f.a.s. 3 countable monotone
decreasing local base say {B,, (x)},ey at x. As x € B,(x) and B, (x) € J for each n, we

get f(Bn(x)) € G* for each x.

Select f(x,,) € f[B,(x)]N[Y —G*]; Vn € N. Then {x,} is a sequence of points in X.
Claim 1: The sequence {x,} converges to x in X.

Let O be any open set in X containing x. Then 3 m € N such that B,,,(x) € O (by definition of
local base).

Hence x,,, € O ( by the choice of {x,,} , x,, € By (x)).

As {B,,(x)} is monotonically decreasing, we get x,, € B,,(x) for alln > m.

This shows that x,, = x in X.

Claim 2: The sequence f (x,) does not converge to f(x) in Y.

We know that G* € J* containing f(x) and f(x,) € G* for any n (by the choice of f(x;,,) ).
Hence f(x,) +» f(x). Thus x,, » x in X but f(x,,) - f(x) in Y. This contradicts the data that f
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is sequentially continuous on X. Hence, our assumption must wrong. Hence f is continuous

onX.

Remark: Note that the property that X is a first axiom space is not used in the proof of only if
part. Hence if f: X — Y continuous on X then f: X — Y is sequentially continuous, for any

topological space X.

Theorem3.3: Let X be a first axiom space and A € X. Leta € X. Then a is a limit point of 4 if
and only if 3 a sequence {a, } with a,, € A N [X — {a}] for all n, which converges to a.

Proof: Only if part —

Let a be a limit point of A.

Hence for any G €  containing A,G N A —{a} # @ 1]

As X is a f.a.s. 3 a countable, monotonically decreasing local base at a, say {B,,(a)}. Hence by
(1], Bj(a)nA—{a} #®; YneN.

Select a,, € B,(a) N A—{a}; Vn € N. Then {a,} is a sequence of limit points of

AN [X —{a}] and a,, - a (since a,, € B,(a) and {B,,(a)} is monotonically decreasing local
base).

If part —

Let 3 a sequence a,, € A N [X — {a}] such that a,, = a. To prove that a is a limit point of A.
Let G € 3 containing a. Thenas a,, > a,3 N suchthata, € G foralln > N. Thusay € G N
A — {a} ...(by choice of the sequence {a,})

But this shows that for any open set G containing a, G N A — {a} # 0.

Hence a is a limit point of A.

Remark: Note that the property that X is a f.a.s. is not used in the proof of ‘If part” and hence the

if part is true in any topological space.

Exercises

(I) State whether the following statements are true or false.
(1) Every compact space is a f.a.s.

(2) Every f.a.s. is compact.
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(3) Every discrete topological space is a f.a.s.
(4) Every indiscrete topological space is a f.a.s.
(5) p — exclusion topological space a f.a.s.
(6) p — inclusion topological space a f.a.s.
(II) Prove or disprove the following statements.
(1) Let (X, ) be a first axiom space and (Y, J*) be any topological space. f: X — Y is
continuous if and only if f is sequentially continuous.
(2) Continuous image of a f.a.s. is a f.a.s.
(3) Homeomorphic image of a f.a.s. is a f.a.s.

(4) Subspace of a f.a.s. is a f.a.s.
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Unit 9

Second axiom spaces

§1 Definition and properties of second axiom spaces.

§2 Sequentially compact spaces and second axiom spaces.
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Unit 9: Second axiom spaces

§1 Definition and properties of second axiom spaces.

Definition 1.1: A topological space (X, J) is a second axiom space (s.a.s. in short) if it satisfies

the following second axiom of countability.
(*) 3 has a countable base { B, } ,ew -
Examples 1.2:
1) (R,J,) is a second axiom space as B = { (a,b) | a,b € Q} is a countable base for ,,.

2) Let(R, ) be a discrete topological space with X-an uncountable set. Then (X, J) is a non-

second axiom space.

Theorem 1.3: Every second axiom space is a first axiom space.
Proof: - Let (X, J) be a second axiom space. Let 8 = { B,, } , ¢ y be a countable base for J. Fix
up any x € X. Consider those B,, € B for which x € B,, and denote this family by {B,, (x)}.
As {B,(x)} < {B,}, the family {B,,(x)} is a countable family of open sets. By selection,
x € B,(x), Vx.LetG €3 suchthatx € G. As Bis abase forJ, 3 B, € B such that
x € B,, € G.ButthenB, € {B,(x)}.
Hence {B,,(x)} forms a countable local base at x. As this is true for any x € X,(X,3J) is a

first axiom space.

Remark:- Converse of the Theorem 1.3 need not be true.

1.e. every first axiom space need not be a second axiom space. For this consider a discrete
topological space (X, ) defined on an uncountable set X. This space is a first axiom space but it
is not a second axiom space. As {{x}} forms a countable local base at each x € X , we get (X, )
is a first axiom space. Let if possible (X, J) be a second axiom space. Then there exists a
countable base say B = { B, },en for J. As{x} € Jand x € {x}, I n, € N such that
x € B,, € {x}. But Then B, = { x }.
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Thus {{x} |x €X } c {B,|ne N} = {{x} | x € X } is a countable family; a contradiction, as

X is uncountable. Hence (X, J) is not a second axiom space.

Theorem 1.4: The property of being a second axiom space is a hereditary property.

Proof:- Let (X, ) be a second axiom space and let (Y, J*) be its subspace. To prove that (Y, J*)
is a second axiom space. By definition of subspace Y S X (Y #@)and J*={GNY/G € J}.
Let B be a countable base for (X, J). Then Define B* = {B NY | B € B} .Claim that B* is a
countable base for J*. Obviously, B € J = B* € J* and B* is countable set.

LetG*€eJF andx € G*. Thenx €Y S Xand3 G € JsuchthatG* =G NY. AsG € J and

X €G,3 B€E ,suchthatx e BCS G .

Hence,x € BNY € GNY = 3 B* € B*suchthatx € B* € G*. This shows that B* is a
countable base for J*. As a subspace of a second axiom space is a second axiom space, the

property of being a second axiom space is a hereditary property.

Theorem 1.5: The property of being a second axiom space is a topological property.
Proof:- Let (X,J) be a second axiom space and let (X*,J*) be any topological space. Let
f:X - X* be a homeomorphism. To prove that (X*, J*) is a second axiom space. As (X, J) is a
second axiom space, there exists a countable base say B forJ. AsB < J, f(B) € J* for each
B € B, being an open mapping. Define B* = {f(B) | B € B}.
Claim that B* is a countable base for §*.

B* is a countable family of open sets in (X*,J*). Let G* € 3" and x* € G*. As f is onto,
Jx € Xsuchthat f(x) =x*f"1(G*) € Jand x € f~1(G*)
As B is a base for the topology §, 3B € Bsuchthatx € B < f~1(G") .
But then f(x) = x* € B* < G* will imply that B* is a base for J*.
Thus B* = {f(B) | B € B} forms a countable base. Hence (X*,J*) is a second axiom space.

Thus, homeomorphic image of a second axiom space is a second axiom space

Theorem 1.6: Any family of disjoint open sets in a second axiom space is countable.
Proof:- Let (X, ) be a second axiom space. Let X denote the family of disjoint open sets in X.
To prove that XK is countable. As X is a second axiom space, there exists a countable base say

B={B,|n€N}forJ.let A€K. AsA€ J, 3 ny € Nsuchthat B, < A.
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Let m ={x € N|B, & A} and let m = the smallest member of M. As the Members of ¥ are
disjoints, the assignment of m to A € X is unique. Now list the members of K according to the

order of the associated integers to them. But this shows that K is countable.

Theorem 1.7: Let (X, J) be a second axiom space and let A be an uncountable subset of X. Then
some point of A will be a limit of A.
Proof:- (X, $) is a second axiom space. Hence, 3 a countable base say 8 = { B,, | n € N}
for 3 . If possible, assume that no point of A is its limit point. Hence for each a € 4,3 G, € J
such that a € G, and G, N A — {a} = @ . As A is uncountable, G, N A = @ is not possible.
Hence G, N A = {a} for each a € A.
Asa € Gy and G, € 3,3 n, € Nsuchthata € B, S G,. Hence B,, N A = {a}.
Note that fora # b, B,, # By, .
[a#b= {a} #{b} = B,,NA#B,, NA. a€B,, andb & B, ,b € B,, and
a ¢ B,,]

Thus 3 a one-one, onto correspondence a — B, from Ato { B, | n € N}. But this shows
that A is a countable set a contradiction. Hence our assumption is wrong. This proves that A has

a limit point in it.

Remark : The converse of Theorem 1.7 need not be true. For this consider the following
example.

Let X be an uncountable set and let J be the co-finite topology on X. Let A be any
infinite subset of X. Claim that each a € A is its limit point. Fix up any a € A. For any open set
G containing a, X-G is finite. Hence G contains almost all points of A except finitely many
points of A. But then G, N A \{ a } # @. This in turn shows that each a € A is its limit point.
But (X, ) being non first axiom space (see Example ...) we get X is not a second axiom space

(Theorem 1).

Theorem 1.8: In a second axiom space (X,S) , every open covering of X is reducible to a

countable sub covering.
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Proof:- Let (X, J) be a second axiom space. Let G = {G; / A € A} be an open covering of X. As
X is a second axiom space I a countable base say B = { B, |[n € N} forJ .
Define N(G) ={n €N /B, S G, for some A € A} for eachn € N( G ) associate
aset G, € Gsuchthat B, S G,.
Thus the set {G,, |n € N(G )} is a countable set and {G,|n€ N(G)} S G.
Claim that {G, |n € N(G )} forms a cover for X.
Fixupany x € X. As X € U{G; /1 € A} we get x € G, forsome 1 € A. As Bis a base
forJ, 3n € Nsuchthat x € B, € G, .

This in turn shows that X < U{ G,/n€ N(G)}.Hence{G, |n€ N(G)} formsa

cover for X. This shows that any arbitrary open cover of X is reducible to a countable sub-cover.

Remark: Converse of Theorem 1.8 need not be true.
Le. every open covering of a topological space X is reducible to a countable sub covering need
not imply X is a second axiom space.
For this consider the following example.

Let (X,3J) be a Fort’s space. As (X, J) is non-first axiom space, we get (X, J) is a non-
second axiom space (see Theorem 1). As (X, ) is a compact space (see Example 1.4 (4) in Unit

6 ) every open covering of X is reducible to a countable sub covering.

§2 Sequentially compact spaces and second axiom spaces.
Definition 2.1: Let (X, J) be a T — space. A subset E of X is said to be sequentially compact if

every sequence of points of E has a subsequence which converges to a point of E.

Theorem 2.2: Every sequentially compact space is countably compact.

Proof: Let E be an infinite subset of a sequentially compact space X. Select an infinite

sequence {x,} of points of E. As X is sequentially compact, the sequence {x,,} of points of X
(since E € X) has a convergent subsequence say {xn k} . Then {xn k} being a sequence of points
of E, x is a limit point of (see Theorem ...). This shows that the topological space X is countably

compact.
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Remark: Converse of Theorem 2.2 need not be true in general. But it is true if X is a f.a.s.

Theorem 2.3: Let (X, J) be a first countable, countably compact space. Then (X, J) is
sequentially compact.

Proof: Let {x,} be an infinite sequence in X. Then A is an infinite set of a countably compact
space X. Hence, it has a limit point say x in X. As X is a first countable space, 3 a decreasing
countable local base say {B,, (x)},eny atx. Asx € B, (x) and B,,(x) € §, 3 k such that

Xn € By (x) for alln > k. Fix up x,,, € B,(x), V n € N. Then obviously, the subsequence {xnk}
of {x,,} will converge to x.

Thus for a sequence {x,} in X 3 a convergent subsequence {xnk} . Hence X is sequentially

compact.
Corollary 2.4: Let (X, J) be a f.a.s. Then X is countably compact if and only if X is sequentially

compact.

Proof: Result follows by Theorem 1 and Theorem 2.

Exercises

Prove or disprove the following.

1) Fort’s space is a second axiom space

2) Co- countable topological space defined on an uncountable set is a second axiom space.

3) Co- finite Co- countable topological space defined on an uncountable set is a second
axiom space.

4) Discrete topological space defined on countable set is a second axiom space.

5) (R,3J,) is a second axiom space.

6) Every sequentially compact space is compact.

7) Every compact space is sequentially compact.

8) Every countably compact space is sequentially compact.

9) In any metric space compactness, sequentially compactness and countably compactness
are equivalent.

10) A subspace of a second axiom space is a second axiom space.
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Unit 10: Lindelof Spaces

§1 Definition and Examples

Definition 1.1: A topological space (X, J) is a Lindelof space if every open cover of X has a

countable sub-cover.

Remarks:
1) Every compact space is a Lindelof space (Obviously, by the Definition).
2) Every second axiom space is a Lindelof space as in a second axiom space every open cover

has a countable sub-cover (see Unit 9 Theorem 1.8).

Examples 1.2:
1) Let (X, ) is a discrete topological space with X as a infinite countable set.
This space is a Lindelof space. As {{x} |x €X } forms a countable family of open sets, every

open cover of X will have a countable sub-cover.

2) (R, J,,) is a second axiom space as {(a,b)| a,b € Q} forms a countable base for J,,.

Hence (R, J,,) is a Lindelof space.

§2 Properties
Theorem 2.1: Closed subspace of a Lindelof space is a Lindelof space.
Proof:- Let (X, ) be a Lindelof space and let (Y, J*) be a closed subspace of X i.e. Y is closed
subsetof Xand J* = {GNY |G € JF}.
Let {G; | 2 € A} be any open cover of Y in (Y, J*).

Hence, YEUG}{ and G, €J ;V A€ A.
AEA

G EJ = G = G,NY forsome G, € .
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Thus X =(X—-Y)UY.

=(X-Y)u G,{]

=(X-Y)u G nY

:(X—Y)U Gl]
LAEA

As'Y is a closed subset of X, X — Y is an open set in X.
Hence {G; | A € A} U {X — Y} forms an open cover for X. As X is a Lindelof space, this open

cover has a countable sub-cover.

Let .

N (X —Y). But Then we have,

ny = Jlanv = | s,
i=1 i=1

But this shows that the open cover {G; | A € A} of Y has a countable sub-cover. Hence Y is a

l
4= "y

\_J Gl
i=1
UG
L =1

Lindelof space.

Theorem 2.2: Being a Lindelof space is a topological space.
Proof:- Let (X, J) be a Lindelof space. Let (Y*, 3*) be any T — space and let f: X — X* be a
homeomorphism. To prove that X* is a Lindelof space. Let {G;} be any open cover of X*.
Then G; € 3" and f: X — X* is continuous

= f7G;] €3 foreach 1 € A.

As X* = UG}{ and fis onto, we get X = f~1 [U G}{] = Uf_l[GA*]

A€A A€A A€A

But this shows that {f [ G;]}1ea forms an open cover for X*. As X is a Lindelof space the open
cover {f [ G3]1}1ea of X has a countable sub-cover.

Denote the countable sub-cover by {f [ G 1 ien

Then X = Uf_l[Gj{i] . Butfisonto = X* =f(x):f[Uf_1[G/{i]]

IEN IEN
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Hence X* = U [f[f_l[ G/{i]]]

iEN
= X*= U Gli

iEN
This shows that any open cover { G; }yea of X™ has a countable sub-cover { G } ;e for X™.
Hence (X*, J*) is a Lindelof space. Thus homeomorphic image of a Lindelof space is a Lindelof

space. Hence being a Lindelof space is a topological property.

§3 Solved examples

Problem 1:- Show by an example that every Lindelof space need not be a compact space.
Solution:- Let (X, ) be a discrete topological space with X as a infinite countable set. This
space is a Lindelof space but it is not a compact space as the open cover {{x} |x€X }

of X has no finite sub-cover.

Problem 2:- Show by an example that every Lindelof space need not be a second axiom space.
Solution:- Consider an uncountable set X. Let J denote a co-finite topology on X. Then (X, J) is
a compact space (see Unit (6) §1.4 example 2). Hence (X, ) is a Lindelof space. But (X, J) is
not a first axiom space (see Unit (8) §1.2 example 4). We get (X, J) is not a second axiom space
(see Unit (9) Theorem 1.3). Thus (X, J), the cofinite topological space defined on an uncountable

set X is a Lindelof space but not a second axiom space (first axiom space).

Problem3: Show by an example that being a Lindelof space is not a hereditary property.
Solution: Let X be an uncountable set and J = p — exclusion topology on X (p € X)
ie.3={X}U{A S X|pe€ A}. Then(X,3J) be aT — space.

I] (X, ) is a Lindelof space.

As (X, 3) is a compact space (see Unit (6) §1.4 example 5), we get (X, J) is a Lindelof space.
II] LetY = X — {p}. Consider the subspace (Y, J*). Then the relative topology J* is the discrete
topology on Y. Hence (Y, J*) is not a Lindelof space as the open cover {{x} | x € Y} of Y has no

countable sub-cover.
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Thus 3 a subspace (Y, J*) of Lindelof space (X, J) which is not a Lindelof space. Hence the

result.

Problem4: Show that continuous image of a Lindelof space is a Lindelof space.

Solution: Let (X, ) be a Lindelof space. Let (Y*, 3*) be any T — space and let f:X — X* be a
homeomorphism. To prove that X* is a Lindelof space. Let {G;} be any open cover of X™.

Then as G; € 3" and f: X — X* is continuous ,we get f1[G;] € J for each 1 € A.

AsX*EUG}{ and f is onto, we get X € f~1 [UGAI Uf a7l

AEA AEA AEA

But this shows that {f [ G;]},ea forms an open cover for X*. As X is a Lindelof space,
the open cover {f "[ G;]}aea of X has a countable sub-cover.

Denote the countable sub-cover by {f [ G 2 ien

Then X = Uf_l[G,{i]. But fisonto = X* = f(X) Zf[Uf_l[G/{i]]

IEN

Hence X* = U [f[f_l[ G/{i]]] -

This shows that any open cover { G; },e4 of X has a countable sub-cover { Gj{i} ien for

X*. Hence (X*,J*) is a Lindelof space. This shows that continuous image of a Lindelof space is a

Lindelof space.

Exercises

Prove or disprove the following statements.
1) Subspace of a Lindelof space is a Lindelof space
2) Every Lindelof space is a second axiom space.
3) Every second axiom space is a Lindelof space .
4) Every first axiom space is a Lindelof space

5) Every Lindelof space is a first axiom space.
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6) Every Lindelof space is a space.

7) Every compact space is a Lindelof space .
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Unit 11: Separable spaces

§1 Definition and Examples

We know that a subset E of a topological space (X, ) is dense in X if E = X.

viz. the set Q of all rational numbers is dense in (R, J,).

Definition 1.1: A topological space (X, J) is called separable if there exists a countable dense

subset of X.

Examples 1.2:

Separable spaces.

1) (R,S) is a separable space as the set of all rational numbers Q is a countable dense subset
of R.

2) Let X be a countable set and (X, J) be discrete topological space. Then (X, J) is a
separable spaces as X = X and X is a countable set.

3) Let (X,3) be a co finite topological space and let X be an uncountable set. For any
countable set A of X, A = X (since the only closed set containing A is X). Hence (X, 3)
is a separable space.

4) Let X be an uncountable set and J be the discrete topology on X. Then (X, J) is not a
separable space as X is the only dense subset of X. In particularly, the discrete
topological space (R, ) is not a separable space.

Note that the discrete topological space is separable if and only if X is a countable set.

Non separable spaces.

1) Discrete topological space defined on uncountable set X is a non-separable space.

2) Co-countable topological space (X, J) defined on an uncountable set X is not a separable
space.

3) Let X be any uncountable set and p € X.

o~

J = p — exclusion topologyon X i.e. 3 ={X}U{A S X |p ¢ A}.
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Let if possible X is a separable space.

Hence 3 a countable set A such that A = X. Select any x € X — A, x # p . [ This is
possible as X — A is an uncountable set ]. Then x € A and x € A imply x € d(4) .
As {x} is an open set containing x, we get{x} N A —{x} # @. Butasx € X — A, we
have {x}N A =0 .Thus {x} N A — {x} = @ ; a contradiction.

Hence our assumption is wrong .Therefore (X, ) is not a separable.

§2 Properties

Theorem 2.1: Property of being a separable space is a topological property.

Proof: - Let (X, J) be a separable space. Let (X*, I*) be any topological space. Let f:X — X* be
a homeomorphism. To prove that (X*, J*) is a separable space.

Let (X, ) be a separable space. Hence 3 a countable subset A of X such that A = X. As f is
onto, f(X) = X*. f:X — X* being continuos we get f[A] S f[A] (see Theorem ...
Continuous function). Hence f[X] € f[A] implies X* € f[A] i.e.X* = f[A]. Thus f[A] is a
countable dense subset of X*. Hence X* is a separable space. Thus homeomorphic image (X*, J*)

of a separable space (X, J) is a separable space. Hence being a separable space is a topological

property.

Theorem 2.2: Every second axiom space is a separable space.

Proof:- Let (X, ) be a second axiom space. Hence there exists a countable base say

B =1{B,, | n € N} for J. Define A ={ b, € B, |[n €N }.

Then A is a countable subset of X.

Claim that 4 = X.

Let x € X and G be any open set containing x. Hence by the definition of base, 3 n € N such
that x € B,, € G.Select b,, € B, such that b,, # x. Then b, € G N A — {x} implies x is a limit
of A. Thus X € A implies A = X. Thus there exists a countable dense subset A of X. Hence

(X, ) is a separable space.
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A property of a space is said to be hereditarily separable if each subspace of the space is
separable.
Theorem 2.3: Every second axiom space is hereditarily separable.
Proof:- Let (X, J) be a second axiom space. Let (Y, J*) be a subspace of (X, J). As every
sub-space of a second axiom space is a second axiom space, we get (Y, J*) is a second axiom
space (see Unit (9) Theorem 1.4).
By Theorem 2.2, (Y, J3*) is a separable space. Thus each subspace of a second axiom space is

separable. Hence the result.

Theorem 2.4: Any topological space is a subspace of a separable space.
Proof:- Let (X, J) be any topological space and o & X. Define X* = X U {c0} and
I ={0}u{Gu{n}|GeT}
I] To prove that J* is a topology on X*.
i QO eF andX € J"
(i) AB*€J* = A*=AU{o} and B* = BU{w} for A,BES
= A NB*=(A NB)U{w}eJ as ANBES.
(iii) Let G; € 3", 1 € A. Then G5 = G, U {0}, where G; € J; VA E A

Then UG,{ - U[G,lu{oo}] - UGA]U{OO}.

AEA AEA A€
As UGA € J. We get UGA* € J
AEA AEA

From (i), (ii) and (iii) we get 3" is a topology on X™.

1] (X,$) is a subspace of (X*,J" ) asJ={G*NX |G € J }and X < X"

] {o} =X*. Let x €X* (x # ) and G* € F* withx € G*.
G* N {0} —{x} = {oo}implies x is a limit point of {co}.
Thus each x # co € X* is a limit point of {co}. Hence d({ « }) = X.
As oo} = {0} ud({eo}) = {0} U X = X",

IV] As {0} is a countable dense set in X*, we get (X*, J*) is a separable space.
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Thus given any space (X, J) there exists a separable space (X*, I*) such that (X, J) is a
subspace of (X*, J*).

Remark: As any topological space is a subspace of a separable space, subspace of a separable

space need not be a separable space.

Theorem 2.5: A metric space is separable if and only if it is a second axiom space.
Proof:- As if part follows by Theorem 2.3 we prove ‘Only if part’ only.
Only if part -
Let (X, d) be a metric space and let  denote the topology induced by d on X. Hence
I={GS X |Vx€eG3Ir>0 suchthat S(x,r) € G}.
Given (X,J) is a separable space. To prove that (X, J) is a second axiom space.
As X is separable, 3 a countable dense set say A in X.
Let A=1{xq, X5 X3, ... }. Then 4 = X.
Define B = {S (xn ,%) :x, EA mmne N}. Then B is a countable set and B € .

To prove that B is a base for .
() BCS.
(2) Let G € J and x € G. By the definition of §, 37 > 0suchthat x € S(x,7) € G.
Select m € N such that — < Z . ThenS(x,l) c S(x,f) c S(x, 7).
m 2 m 2
= e 1 1\ — o~ ey
As A = X, x is a limit point of A. Hence x € S (x ,;) and S (x ,;) € J will imply
1
S(x,2)nAa-{x}#0.
Letx,, € S(x,%) N A. To prove thatS(xn ,%) c S(x,7).
1 1 1
LetyES(xn,;).yES(xn,;) = d(x,, y) <—.
Hence, d(x, y) < d(x, x,) +d(x,, y)
1,01 : 1
= d(x, y)<;+; ...... [smceanS(x,;)]

= d(x, y)<%

. 1 r
=dx, y)<r ... [smce;<5
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=y €eS(xr).
This proves S (xn ,%) cSs (x ,%)

1 1
AsS(x,=) € S(,1) € G, we get S (x,,—) € G.
. 1 1
Thus given G € Jand x € G, 3 S(xn ,;) € B such thatS(xn ,;) caG.
Hence, from (1) and(2) we get, the countable family B forms a base for the topology J

Hence, (X,d) is a second axiom space.

Theorem 2.6: In a separable space any countable family mutually disjoint open sets is countable.
Proof:- Let (X, J) be a separable space. As X is separable space there exists a countable dense
set say D in X. Let K denote the family of mutually disjoint open sets in X.

To prove that K is countable.

ForGGHEXK, GNH=0, if G # H.

Case (1): 0 ¢ K.

D=X =GND # @forany G € XK. Selectx; EGND,VGE XK.

Define f: K — D by f(G) = xg.

Obviously f is onto.

f(G)=f(H) = x¢=xy = GNH*Q = G =H..(bydefinitionof X).

This shows that f is one-one.

As f:K — D is one-one and onto and D is countable we get K is countable.

Case (2): 0 € K.

Applying the case (1) for the family 5 — {@} we get the family X — {@} is countable.

And hence KX = (X — {0}) U {@} is countable.

§3 Solved problems
Problem 1: Show that being a separable space is not a hereditary property.
Solution: Let X be an uncountable set and p € X.
3 = p — inclusion topology on X.
I) (X,3) is a separable space.

Consider A = {p}. Claim that A = X.
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Select any x € X — {p}. Then any open set G containing x must contain p. Hence
GNA={p}and hence G N A — {x}
= {p} — {x} = @ . But this shows that x is a limit point of A. Thus X — {p} = d(4).
Hence A=Aud(4) ={p}u (X —{p}) =X.
Thus A is dense in X. As A is a countable, dense subset of X, X is separable space.
II) Define Y = X — {p}. Then the subspace (Y, J*) is the discrete topological space.
Claim: (Y, J*) is not a separable.
Let if possible (Y, J*) is separable space. Hence there exists a countable dense set say A
in Y. But since (Y, J*) is the discrete topological space, each subset of Y is closed in Y.
Hence A = A (since A # Y as A is countable and Y is uncountable). This shows that our
assumption is wrong. Hence (Y, J*) is not a separable space.

Hence being a separable space is not a hereditary property.

Problem 2: Give an example to show that every separable space need not be a Lindelof
space.
Solution:- Let X be an uncountable set and p € X.
3 = p — inclusion topology on X.
I) (X,3) is a separable space.(see Problem 1)
IT) X is not a Lindelof space.
Consider the family {{x, p} | x € X}. This family of open sets forms an open cover
for X. But this open cover has no countable sub-cover for X, as X is an uncountable

set. This shows that (X, J) is not a Lindelof space.

Hence every separable space need not be a Lindelof space.

Problem 3: Give an example to show that every Lindelof space need not be a separable
space.

Solution: -Let X be any uncountable set and p € X.

I = p — exclusion topologyon X ie. 3 ={X}U{A S X |p ¢ A}.

I) (X,$)is acompact space.

Let {G, | 2 € A} be any open cover of X.
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Then X = U G, and p € X will imply p € G, for some 4, € A.
AEA

But by definition of 3, G;, = X. Hence, the open cover {G; | 2 € A} of X has a finite
sub-cover {GAO} of X.
This shows that (X, J) is a compact space.

I) (X,$) is a Lindelof space.
As every compact space is a Lindelof space we get (X, J) is a Lindelof space.

III) (X, ) is not a separable space.
Let if possible X is a separable space.
Hence 3 a countable set A such that A = X. Select any x € X — A, x # p . [ This is
possible as X — A is an uncountable set ]. Then x € A and x € A imply x € d(4) .
As {x} is an open set containing x, we get{x} N A —{x} # @. Butasx € X — A, we
have {x}N A =@ . Thus {x} N A — {x} = @ ; a contradiction.Hence our assumption is
wrong.
Therefore (X, J) is not a separable. Thus there exists a Lindelof space which not a

separable space.

Problem 4: Show that for a metric space (X, d), the following statements are equivalent:

(1) The metric space X is separable.

(2) The metric space X is a Lindelof space.

(3) The metric space X is a second axiom space.
Solution:-We know a metric space is separable if and only if it is a second axiom space and a
metric space is a Lindelof if and only if it is a second axiom space.

Hence for a metric space (X, d), the given three statements are equivalent.

Problem 5: Show that every subspace of a separable metric space is separable.

Solution: -Let X be a separable metric space and let Y be its subspace. Then X is a second axiom
space (see Theorem 2.5). As subspace of a second axiom space is a second axiom space we get Y
is a second axiom space (see Unit (9) Theorem 1.4)

This shows that any subspace of a separable metric space is a separable metric space.
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Problem 6: Show that the open subspace of a separable space is separable.

Solution: Let (X, ) be a separable space and let (Y, J*) be its open subspace. Then as Y is open
isopeninX, J* € J.

As X is a separable space, 3 a countable dense set say A in X i.e. A = X.
Define B = ANY. Then B is countable subset of Y.

Claim: B =Y.

Lety €Y.LetG* beanyopensetinY. ThenG* € Jandy € G".
Asy€eA,weget, G*NA—{y} 0

ie. (G"NY)NA—-{y}+ 0

ie.G*N(YNA) —{y}+ 0

ie.G*NB—{y}+ 0.

But this shows that y € Y is a limit point of B. Hence B = Y.

Problem 7: Show that continuous image of a separable space is a separable space.
Solution: - Let (X, J) be a separable space. Let (X*, 3*) be any topological space.
Let f:X — X be an onto continuous mapping.

To prove that (X*, J*) is a separable space.

Let (X, ) be a separable space. Hence 3 a countable subset A of X such that A = X. As fis onto,

f(X) = X*. f:X - X* being continuous we get f[A] € f[A] (See Unit (5) Theorem 2.5).
Hence f[X] < f[A] implies X* € f[A] i.e.X* = f[A] . Thus f[A] is a countable dense
subset of X*. Hence X* is a separable space. Thus continuous image (X*, J*) of a separable space

(X, 3) is a separable space. Continuous image of a separable space is a separable space.

Exercises

State whether the following statements are true or false.
1) Every Lindelof space is a separable space.

2) Every separable space is a Lindelof space.

3) Every metric space is a separable space.

4) Every subspace of a separable space is a separable space.
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5) Every discrete topological space is a separable space.

6) Co-finite topological space defined on an uncountable set is a separable space.
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Unit 12

7 - Spaces

§1 Definition and Examples.

§ 2 Characterizations and properties.
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§1 Definition and Examples

Definition 1.1: A topological space (X, J) is said to be a T — space if it satisfies the
following axiom of Kolomogrov:
“If x and y are two distinct points of X then there exists an open set which contains

one of them but not the other.”

Examples 1.2:

(1) Any discrete topological space (X, §) with |X| > 2 is a Tp — space. Forx = y, {x} € J
such that x € {x} and y € {x}.

(2) Any co-finite topological space (X, ) is Ty — space.
Case (1): X is finite. In this case § = §(X) and hence (X, ) is a T, — space.
Case (2): X is infinite. Given x # y in X, X — {x} € J such that y € X — {x} and
x & X —{x}

(3) Any co-countable topological space (X, J) is Ty — space (proof as in (2) ).

@ LetX=NandJ={0}U{N}U {4, |n=1,23,..} where A, ={1,2, ...,n}.
Then (X, J) is a T — space.
Form #nin X, eitherm <norn <m. Letm <n. Thenm € 4, butn € 4,,
and 4,, € 3.

(5) Let (X, J) be p — inclusion topological space (p € X).
Here 3 = {@} U{A < X | p € A}. This space is a Ty — space. For p # x in X there
does exist an open set {p} containing p but not x and for x #y (both different from
p) there does exist an open set {p, x} containing x but not y.

(6) Let (X, ) be p — exclusion topological space (p € X).
Here § = {X} U{A € X | p € A}. This space is a Tp — space. Forp # x in X, {x} €
such that x € {x} and p € {x}. For x # y (both different from p) then {x} € J such
that x € {x} buty & {x}.

Page | 149



T, - Spaces

(7) Every metric space is a Ty —space. Let (X, d) be a metric space and let § be the

topology on X induced by d. Let x # y in X. Thend(x,y) =71 > 0. Then S (x, g) €EJ

suchthatx € S (x, g) buty € S (x, g)
Hence (X, d) is a T — space.

(8) (R, 3, ) is a Tp — space. Let x # y in X. Then |x — y| > 0. Take |x — y| = r. Then
(x —g,x +§) € 3, such that x € (x —g,x +§) buty & (x —g,x +§) Hence
(R, J,) is a Ty — space.

(9) Any indiscrete topological space (X, J) is not a T — space.

Remark: As any T - topological space need not be a T — topological space, the

set of Ty — topological spaces is a proper subset of all topological spaces.

§ 2 Characterizations and properties
Theorem 2.1: A topological space (X, J) is a Ty — space if and only if the closures of distinct
points of X are distinct. i.e. for x # y in X, {x} # {y}.
Proof: Only if part.

Let (X, J) be a T — space and x # y in X. Hence by definition of a T — space ,

there exists G € Jsuchthatx EGandy € G.G €F. X — G isclosed set =

X-6)=X-6.
AsYEX—G,{y}SX—G.Hence(y}S(X—G)=X—G.Asx ¢ X — G wegetx & {y}.
Thusxembutx(,i_{y_} = mim
If part.

Let (X, ) be a topological space such that for x # y in X, {x} # {y}.
Without loss of generality assume that 3 z € X such that z € {x}and z ¢ {y_}
Claim that x & {y}.
If x & {y}, then {x} € {y} will imply {x} ﬁ = {y}. In this case as z € {x} we get z € {y};
which is not true by the choice of z. Hence x ¢ {y}. Define G = X — {y}. Then G being the
complement of closed set, G € S and x € G and y € G (since y € {y}). This shows that (X, %)

is a Ty — space.
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Theorem 2.2: A topological space (X, J) is a Ty — space if and only if whenever x and y are
distinct points of X either x & {y_} ory ¢ {x}.
Proof: Only if part.

Let (X, ) be a Ty — space and let x # y in X. Hence by definition of a T¢ — space, for
x#yinX,3G € Jsuchthatx € G andy € G.
GEI = X—GisclosedsetinX=(X—-6G)=X—G.AsyeX —G,{y} S X —G.
Hence {y} € (X — G) = X — G. Butx € X — G implies x ¢ {y}. Thus for x # y in X, we
getx & {y_}
If part.

Assume that (X, J) is a topological space such that for any two distinct points x and y
in X, either x & {y_} ory ¢ {x}. Assume that x ¢ m Define ¢ = X — {y_} Then G € 3,
x €Gandy ¢ G (since y ¢ {y} ). But this shows that for x # y, 3 an open set containing one
but not the other. Similarly if y & {x}, then 3 an openset H = X — {x} containing y but not x.

Hence (X, J) is a Ty — space.

Theorem 2.3: Being Ty — space is a hereditary property.

Proof: Let (X, J) be a Ty — space and let (Y, J*) be a subspace of (X, ).

To prove that (Y, J*) is a Ty — space.

Here3* ={GNY|GEJ}andY C X. Lety #zinY. AsY C X,y #zinX.

X being a Ty — space, there exists an open set Gin X suchthaty € G and z € G.

Define G* = G NY. Then G* € J*and G* contains y but not z. This shows that (Y, J*) is a

Ty — space. As any subspace of a Ty — space (X, J) is a Ty — space, the result follows.

Theorem 2.4: Being a T — space is a topological property.

Proof: Let (X, J) and (Y, J*) be any two topological spaces and f: X — Y be a
homeomorphism. Let (X, J) be a Ty — space. To prove that (Y, J*) is a T — space.

Lety; # y, inY. f: X — Y being onto, there exist x4, x, in X such that f(x;) = y; and
f(x;) = y,. As f is one-one, f(x;) # f(x;) = x; # x,. As X is a T — space, for x; # x,

in X there exists an open set G in X such that x; € G and x, € G. f being an open map,
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f(G) € §*. Thus for y; # y, in Y, there exists f(G) € J* such that y; € f(G) and y, ¢
f(G).
This shows that (Y, J*) is a Ty — space. Thus any homeomorphic image of a Ty — space is a

Ty — space. Hence the result.

Corollary 2.5: The property of a space being Ty — space is preserved by one-one, onto open

maps.

Theorem 2.6: Let (X, J) be a Ty — space and J* = J. Then(X, J*) is also Ty — space.

Proof: To prove that (X, J*) is Ty — space.

Let x # y in X. As (X, J) be a Ty — space, for x # y in X, there exists G € J such that x € G
andy € G. AsJ* = 3, G € J". Thus for x # y in X, there exists G € J" suchthatx € G
and y € G. Hence (X,J*) is a T — space.

Let {x,,} be a sequence of points in a topological space (X, J). The sequence {x,,} is said to be
convergent to x € X, if for any open set G containing x 3 N such that x,, € G for all

n=>N.

Remark: In a T — space, a sequence may converge to more than one point (In fact it may
converge to every point of the space).
For this, consider the following example:

LetX=NandletJ ={@}U{4, |n=12,.. }where A, ={n,n+1,n+2,..}.
Then (X, J) is a Ty — space. Let {x,,} be any sequence in (X, J). Fix up any x € X. The open
sets containing t are A4, 4,, ... , 4, . For each A, we get x,, € A, forn > r . But this shows

that x,, - t. Thus, any t € X is a limit point of {x,,} .
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Exercises

Prove or disprove the following statements
1) The set of Ty — topological spaces is a proper subset of the set of all topological
spaces.
2) The property of a space being a Ty — space is preserved by continuous maps.
3) The property of a space being a Ty — space is a hereditary property.
4) The property of a space being a Ty — space is a topological property.
5) A topological space (X, J) is a Ty — space if and only if whenever x and y are distinct

points of X have distinct closures.
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Unit 13

7 - Spaces

§1 Definition and Examples.
§2 Characterizations and Properties.
§3 T; - spaces and countably compact spaces.
§4 T; - spaces and First axiom spaces (f.a.s.).

§5 Solved problems.
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Unit 13: 7, - Spaces

§1 Definition and Examples.

Definition 1.1 : A topological space is a T — space if it satisfies the following axiom of

Frechet :
“If x and y are two distinct points of X, then there exist two open sets, one containing x

but not y, and the other containing y but not x”.

Remarks:
(1) Obviously , every T; — space is a Ty — space ( follows by the Definition ).
(2) Let(X,3) beaT;—space and J* = . Then (X,J*) is also T, — space.

Examples 1.2:
T, — spaces:
(1) Any discrete topological space (X, J) with |X| > 2 is a T| — space.
Let x # y in X. Define G = {x} and H = {y}. Then G,H € J such that
XxX€EGbuty & Gandy € H but x € H. Hence (X, ) is a T| — space.

(2) Any co-finite topological space (X, §) with X is an infinite set, is a T; — space.
Let x # y in X. Define G = X — {y} and H = X — {x}. Then G, H € J such that

Xx€EGbuty & Gandy € Hbut x ¢ H. Hence (X,J) is a T| — space.

(3) Any co-countable topological space with X as an uncountable set is a T; — space (proof as

in Example 2 ).

(4) Any metric space is a T| — space.
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Let (X, d) be a metric space and let  be induced topology on X. Let x # y in X.
Then d(x,y) = r > 0. Define G = S(x,7/3) and H = S(y,r/3). ThenG,H € 3, x € G
buty € G and y € H but x € H. Hence, any metric space is a T — space.

(5) (R, 3,)is a T; —space. Let x # y in R. Then |x — y| = r > 0. Define G = (x —g,x +§)

and H = (y—g,y+§).ThenG,HESsuchthathGbuty% Gandy € Hbutx ¢ H.

Hence (R, J,,) is a T — space.

Non T, — spaces:

(6) Any indiscrete topological space (X, J) is not a T| — space.

(7) Let (X, ) be a topological space. ¥ is p — exclusion topology (p € X).
ie. 3={ACS X |p¢ A} U{X}. If x # p then A any open sets G, H € J such that x € G
butp € G and p € H but x € H ( as X is the only open set containing p ). Hence the

topological space (X, J) is not a T — space.

(8) Let (X, ) be a topological space where  ={A S X |p € A} U {@}. (p € X). (i.e.isp
inclusion topology). Then (X, J) is not a T| — space as for x # p, every open set

A containing x contains p also.

Remark: Every T; — space is a Ty — space but not conversely .
Every Ty — space need not be T; — space. For this consider the following examples:
(1) Let X =R and 3 = {(a,)| a € R} U {R, @}. Then forx # y in R if x < y then
y € (x,) and x & (x, o). This shows that (R, J) is a Ty — space. But (R, J) is not a
T — space, as for x # y with x < y, there does not exists an open set containing x but
noty.
Q) LetX =NandJ={@0}U{N}U {4, |n=1,2,.. } where 4,, = {1,2,3,...,n}.
Then (X, J) is a Ty — space (see example in §). But (X, J) is not a T| — space. [Let
m # n in X. Assume m < n. Then any open set containing n contains m. Hence (X, ) is

not a T — space.]
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Hence the set of T; — topological spaces is a proper subset of all Ty — topological

spaces .

§ 2 Characterizations and Properties
Theorem 2.1: A topological space (X, J) is a T; — space if and only if {x} is a closed in X for
each x € X.
Proof: Only if part.
Let (X, %) be a T — space and let x € X. To prove that {x} = {x}. Let y € {x} such

that y & {x}. Asy # x and X is a T — space, there exist G,H € J suchthatx € Gbuty & G
andy € Hbut x € H.
y € {x} = y is a limit point of {x}

=[Gn{x}]-{y}#0 ...(asyeGandG € )

={x}—{y}# @ ....(sincex € G)

= @ # @ ; a contradiction.
Hence {x} € {x}. As always {x} € {x}, we get {x} = {x}.
If part .

Let (X, ) be a T — space such that {x} is closed set for each x € X. To prove that
(X, ) is a T, —space. Let y # x in X. As {x} = {x}, we gety & {x} = {x}. Hence
y € X —{x} =X — {x}. Similarly x & {y} = {y} will imply x € X — {y} = X — {y}. Define
G=X-{x}=X—{x}andH=X —{y} =X —{y}. Then G, H € I suchthaty € G butx & G
and x € H but y ¢ H. Hence, (X,J) be a T| — space.

Theorem 2.2: A Topological space (X, J) is a Ty — space if and only if any finite subset of X is
closed.
Proof: Only if part.

Let (X,J) be a T| — space. By Theorem 1, {x} is a closed set in X for each x € X. Let A

be any finite subset of X. Let A = {xq, x5, ..., x,}. Then A = U {x;}
=1

n n
U{xl}] = U{x_l} (see Unit 3, Theorem 3.4)
1=1 i=1

= A=
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= U{xi} (since {x} = {x}Vi,1 <i<n)

=A
Hence, any finite subset A of X is closed in X.
If part.
Let any finite subset A of X is closed in topological space (X, J). Then obviously {x} is

closed in X for every x € {x}. Hence by Theorem 2.1, (X, ) is aT, — space.

Theorem 2.3: A topological space (X, J) is aT; — space if and only if the topology J is stronger
than co-finite topology on X.
Proof: Only if part.

Let (X,J) be a T — space. Let §* denote the co-finite topology on X. To prove that
J* < 3. Let G € J*. By definition of J*, X — G is a finite set. As (X,J) is a T| —space X — G is
a closed set in (X, ) ( see Theorem 2.2). Hence G € . This shows that §* < J.
If part.

Let (X, J) be a topological space and J* be a co-finite topology on X such that J* < .
To prove that (X, J) is a Ty — space. Select x € X. Then X — {x} € I* = X — {x} € J. But this

shows that {x} is a closed set in X. Hence by Theorem 2.1, (X,J) is a T — space.

Theorem 2.4: Being a T; — space is a hereditary property.

Proof: Let (X, J) be a T| — space and let (Y, J*) be a subspace of (X, J). ThenY € X and

I ={GNY|GeJ}. Lety#zinY.Theny #zinX (asY € X ). As X is a T; — space, 3
G,H € JIsuchthaty EGbutz¢& Gandz € Hbuty € H. DefineG* =GNYand H* =HNY.
Then G*,H* € J* suchthaty € G*butz € G* and z € H* but y ¢ H*. This shows that (Y, J*) is
a T, — space. Thus any subspace of a T; — space is a T; — space. Hence being a T — space is a

hereditary property.
Theorem 2.5 :- Let (X*, J*) be a one point compactification of (X, J). (X, ) is a T; — space if

and only if (X*, J*)is a T; — space.
Proof: Only if part.

Page | 160



T, - spaces

Let (X, ) be a T — space. To prove that (X*, 3*) is a T; — space. Here X* = X U {0},
cogXandJ ={A S X" |0 € Aand X* — Ais a closed compact subset of X}. Let x # y in X™.
Case (1): x # coandy # . Thenx,y € X and x # y in X. As X is a T| — space there exists
G,He JIsuchthatx EGbuty € Gandy €E Hbutx € H. AsG,H € 3", we get forx # y in X~
withx # coandy # 0,3 G,H € J" suchthatx E Gbuty € G andy € H butx € H.

Case (2): x # 00 = x € X = {x}isclosed in X (since X is a T; — space). Thus {x} is a
closed compact subset of X.
Define A = X* — {x}. Then € A and X* — A = {x} is a closed compact subset of X.
Hence A € J*. Thus for x # oo in X, there exists open sets X and A in X such that
x € Xbutoo & X and 0 € A but x ¢ A. From case (1) and case (2) it follows that (X*, 3*) is a
T, — space.
If part.
Let (X*,3*) be a T; — space. As (X, ) is a subspace of (X*, J*) (see §one point

compactification), by Theorem 2.4, we get (X, J) is a T — space.

Theorem 2.6: Being a T; — space is a topological property.

Proof: Let (X,J) be a T| — space. Let (Y, J*) be a topological space and f: X — Y be a
homeomorphism. To prove that (Y, J*) is a T — space. Leta # b in Y. f being onto, 3 x,y € X
such that f(x) =aand f(y) =b. As f isone-onea #b = x # y in X. X being a T; — space,
3G,H € Jsuchthatx € Gbuty € Gandy € H but x € H. Define G* = f(G) and H* = f(H).
f being an open map, G*, H* € J*. Furthera € G* butb € G*and b € H* buta € H*. This
shows that (Y, J*) is a T| — space. As homeomorphic image of a T| — space is a T — space , the

result follows.

Corollary 2.7: The property of a space being T — space is preserved under bijective open

mappings.
Remark: T, — space need not be preserved under continuous functions.

Continuous image of a T — space need not be a T; — space . For this consider the following

example .
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Let (X, J,) be a discrete topological space and (X, J,) be an indiscrete topological space
(]X] = 2). Consider the identity map i: (X, J;) — (X, J,). Then i is continuous. (X, J;) is a

T, - space but continuous image of (X, J;) i.e. (X,J,) is not a T| — space.

Theorem 2.8: For any set X there exists a unique smallest topology J such that (X, ) is a

T, — space.

Proof: Let  be the co-finite topology defined on X. Then (X, J) is a T; — space (see Example 2).
Further if §* is a topology on X such that (X, J*) is a T| — space, then J* = J (see Theorem 2.3).
This shows that there exists a unique smallest topology J — the co-finite topology — such

that (X, J) is a T| — space.

Theorem 2.9: Let (X, J) be a T; — space and let A € X. If a point x € X is a limit point of A,
then any open set ( neighbourhood ) containing x contains infinitely many points of A.

Proof: Let (X, J) be a T| — space and x € X is a limit point of A. Let G € J such that x € G.
Then G N A — {x} # @. Define F = G N A — {x}. Assume that F is finite. (X, J) being a

T, — space, F is closed set in (X, J) (by Theorem 2.2). Then X — F is an open set containing x.
Hence G N (X — F) is an open set containing x and actually, G N (X — F) N A = {x}. Hence
[GN(X—F)]nA—{x} =0, this contradicts the fact that x is a limit point of A. Hence G N A

must be an infinite set i.e. G contains infinite elements of A.

Theorem 2.10: Let (X, J) be a first axiom space, T — space. x € X is a limit point of E if and
only if there exists a sequence of distinct points in E converging to x.

Proof: If part .

Let {x,} denote a sequence of distinct points of E converging to x.

Claim: x is a limit point of E.

Let G be any open set containing x. As x,, — x, 3 N such that x,, € G forn > N. As the point
of the sequence are distinct, x, # x Vn = N. Butthen G N E — {x} # @. This shows that x is
limit point of E.

Only if part.

Let x be a limit point of E. As X is a F.A.S. 3 a monotonically decreasing countable local base,

say {B,(x)} at x. As X is a T| — space and x is a limit point of E, any open set containing x
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contains infinitely many points of E. As B, (x) is an open set containing x, B,,(x) contains
infinitely many points of E, V n € N.
Thus B, (x) N E — {x} must be infinite. Hence we can select points x,, different from previously
selected x;, (k < n) such that x, € B,(x) NE —{x}, Vn € N.
Claim: x,, — x.

Let G be any open set containing x. Then 3 n € N such that x € B,(x) € G. By choice of x,, ,
X, € B,(x)NE —{x}ie. x, € GNE —{x}and hence x,, — x.

Note that for the proof of ‘If part’ is true in any topological space.

Remark: In a T; - space a sequence may converge to more than one limit. In fact it may
converge to every point of the space.

For this consider the following example.

Let {x,,} be any sequence in (X, J), where (X, J) is co-finite topological space with X an infinite
set. Let x € X. To prove that x,, — x. Let G € Jsuchthatx € G. G € J = X — G is a finite
set. Find the largest n, € N such that x,,, € X — G. Thenas X = G U (X — G) we get x,, € G for
all n > n,. But this shows that x,, — x in (X, J). As this is true for any x € X, we get any

sequence in (X, ) converges to each x € X.

§3 T; — spaces and countably compact spaces

We know that a T — space (X, ) is countably compact if any infinite subset of X has a limit
point. The countably compact T, — spaces have very important properties. The equivalent

conditions countably compact to be aT; — spaces are mentioned in the following theorems.

Theorem 3.1: Let (X, J) be a T; — space. (X, J) is a countably compact if and only if every
countable open cover of it has a finite sub-cover.
Proof: Only if part.

Let (X, ) be a countably compact space. To prove that any countable open subset of X

has a finite sub-cover. Suppose this is not true. Hence there exists a countable open cover

say {G, }n=1 of X, which has no finite sub-cover i.e. X = U G, for any finite n. For each
i=1
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n € N, define

F,=X—

n
s
i=1

Then each F, is a non-empty, closed set and F; D F, D F3 D ---

Select from each E,, a point x,, and define E = {x, |[n €N, x, € E, }.
Claim that E is not finite set. .

For if E is finite, then there exists some point say x,,, which will be in each F,. But then

oo co co
Xp € ﬂFn = X, EX—Uan(Z)ast UGn;acontradiction.
n=1 n=1 n=1

As E is an infinite set and X is a countably compact space, E has a limit point say x in X. As X is
a T — space, any open set containing x must contain infinite points of E (see Theorem 2.9 ).

But this in turn will imply that x is a limit point of each set E,, = {x,,, X431, -} ,n € N.

E, € F, = d(E,) < d(F,). AsE,isaclosed set, d(F,) € F, .

Hencex € F,Vn €N.

oo co co
Thus x € ﬂ F, = xeX- U G, = @ since X = U G, ; a contradiction.
n=1 n=1 n=1

Thus our assumption is wrong. Hence any countable open cover of X has a finite sub-cover.
If part.

Assume that any countable open cover of X has a finite sub-cover.
To prove that X is countably compact.
Suppose that X is not countably compact. Then there must exist an infinite subset say A of X
such that E has no limit point in X. Hence d(A) = @ As A is infinite, select an infinite
sequence {x,},—, of points of A. Define B = {x, |n € N}. AsB S A = d(B) € d(4).
Asd(A) = @, we getd(B) = Q.
i.e. B has no limit point in X. Hence, each x,, is not a limit point of B. But then there exists an
open set G,, containing x,, suchthat G, N B ={x,} :V n€ N.Asd(B) = @, we get B is

closed set. Hence X — B is open set in X.

e
n=1

(since G, N B ={ x,}and B = {x,, | n € N} ). Hence by assumption, for countable open cover

NowX=BU(X—-B) = X = n (X — B)

Page | 164



T, - spaces

{ Gp}n=1 U (X — B) of X, there exists a finite sub-cover. But this is not possible since each G,, is
required to cover the points x,, (since G, N B = { x,} ). Hence X must be a countably compact

space.

Theorem3.2: Let (X, J) be a T — space. (X, ) is countably compact if and only if every
countable family of closed subsets of X, which has finite intersection property, has non-empty
intersection.

Proof: Only if part .

Let X be a countably compact space. Let X denote family of closed sets having finite

ﬂFi;t(Z).

F,eX

intersection property (f.i.p.). To prove

Let ﬂ F; = @.Then ﬂ Fil =X = U F/'=X (hereF' =X —F).
FeX FeX F,eX

As F is closed, F’ is an open set. Hence {F'} ¢4 forms a countable open cover for X.

n
By Theorem 3.1, this open cover has a finite sub-cover. Hence X = U F'.
i=1

n n
But then ﬂ F; = @, contradicts the fact that K satisfies f.i.p. Hence ﬂ F; # Q.

=1 =1
If part.
Assume that any countable family of closed sets satisfying f.i.p. has non-empty intersection
in (X, J). To prove that (X, J) is countably compact space. Let { G;};—; be any countable open
cover of X. If this countable open cover, has no finite sub-cover, then the countable family

{ G{};=1 of closed set will satisfy f.i.p.

n

Hence by assumption ﬂ G; # @.Butthen X # U G;; a contradiction.

=1 i=1
This shows that the countable open cover { G;};—; of X has a finite sub-cover. Hence by

Theorem 3.1,(X, ) is a countably compact space.
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Theorem 3.3: A T, — space X is countably compact if and only if every infinite open covering of
X has a proper sub-cover.
Proof: Only if part.

Let X be a T, countably compact space. To prove that any infinite open covering of X has
a proper sub-cover.
Let this be not true i.e. 3 an infinite open cover U of X that fails to have a proper sub-cover. But
this means that each member of U contains a point, which does not, belong to any other member
of U. Thus 3 an infinite subset A of X such that A N O is singleton set for each 0 € U. As X is

countably compact, the infinite set A has a limit point say x in X.
Nowx € X and X = OUUO = x € 0 forsome O € U.
(S

x being a limit point of A, AN 0 — {x} # @. But by choice of A, A N O is singleton set. As x is
limit point of A and X is a T — space, any open set containing x must contain infinite points of A
(see Theorem 2.9 ); which is not true. Hence our assumption is wrong. This proves that any
arbitrary open cover has a proper sub-cover.
If part.

Assume that any arbitrary open cover of X has a proper sub-cover and X is a T — space.
To prove that X is countably compact.
Let X be not countably compact then there exists an infinite subset A of X which has no limit
point in X. As d(A4)=0, A = A. Therefore A is closed set in X. For any a € A, as a is not a limit
point of A, 3 an open set G, such that a € G, and G,N A — {a} = @.
Asa € Aand a € G, we getG,N A = {a} (as Go,n —{a} =0).

Thus A = U{a} c J G,.

acA a€cA

X=AU(X—A)C UGa

La€A

U (X —A4).

This shows that {{G,},e4 U (X — A)} forms an open cover for X. But this open cover has no

proper sub-cover for X ; a contradiction. Therefore, X is countably compact.

Theorem 3.4: Let X be a Ty — space. X is countably compact if and only if every sequence in X

has a limit point.
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Proof: Only if part.

Let X be countably compact. Let {x,,} be any sequence in X. Let x,, = x for infinitely
many n, then obviously x is a limit point of {x,}. Let x,, be distinct points of X.
Then A = {x,,| n € N} is an infinite subset of X. As X is countably compact, A has a limit point
in X. say x.
Claim that x,, = x.
Suppose {x,, } does not converge to x. Then there exists an open set G in X such that x € G and
an integer m such that x,, € G for n > mi.e. x, € X — G for n = m. Then the open set

containing x will contain only finite number of points x4, X5, ..., X;,—1 Of A. D

As X is a Ty — space and x is a limit point of A imply the open set G containing x must contain

infinitely many points of A ( see Theorem 2.9 ). 1)

As (I) and (IT) contradicts each other our assumption is wrong. Therefore {x,,} converges to x in
X.
If part.

Assume that every sequence {x,,} in X has a limit point in X.
To prove that X is countably compact. It is enough to prove that any countable open cover of X
has finite sub-cover as X is a T — space (see Theorem3.1)

Suppose there exists a countable sub-cover {G, },,ey of X, which has no finite sub-cover. Let
n
V, = UGk , n € N.Then by assumption,Vj, # X : Vne€N. V; =G, # X.
k=1

Fix up x4 € G;. Letn,; = 1. Select x, € V, such that x, & V;. Select x3 € G5 such that

x5 & G; U G,. Continuing in this way, there exists a sequence {x,} in X. By assumption {x,,} has
a limit point say x in X. As x,, > x,3 ny € N suchthatx € V, . But V;, € 3,x € V, and V},|
does not contains terms of {x; } for k > n, , this contradicts the fact that x,, - x.

Hence X must be countably compact.
Combining all the equivalent conditions we get

Theorem 3.5: For a T — space X following statements are equivalent :
(1) X is countably compact.

(2) Every countable open cover of X has a finite sub-cover..
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(3) Every countable family of closed subsets of X having f.i.p. will have a non-empty
intersection.
(4) Every infinite open cover of X has a proper sub-cover.

(5) Every sequence of X has a limit point in X.

§4 T, — spaces and First axiom spaces (f.a.s.)
Let (X,J) be a T — space . Recall that X is a f.a.s. if there exists a countable local

base {B,(x)},-; at each xin X.

Theorem 4.1: Let (X, ) be a Ty — space and f.a.s. Let E € X. A point x € X is a limit point of E
if and only if there exists a sequence of distinct points of E converging to x.
Proof: Only if part —

Let x be a limit point of E. As X is f.a.s., there exists a countable monotonically
decreasing local base {B,,(x)},-1 at x. Now x € B,,(x) and B,(x) € 3 = B,(x) N E —{x} #
@; Vn € N. Further as X is T1 — space and x is limit point of E, each B,,(x) contains infinite
number of distinct points of E (see Theorem 2.9).

Hence B,(x) N E — {x} must be an infinite set. Hence by induction select x,, € B,,(x) N E — {x}
such that x,, is different from x4, x5, ..., X;,_1 -

As {B,,(x)} is monotonically decreasing family, x,, = x.

Thus if x is limit point of E ,then 3 a sequence of distinct points of E converging to x.

If part —

Let {x,,} be a sequence of distinct points of E converging to x. To prove that x is a limit point
of E. Let G be an open set containing x. Butx,, » x and x € G, G is openin X = 3 N such
that x,, € G forn > N. Since the points x,, are distinct points of X, G N E — {x} # @ . Hence x
is a limit point of E.

[Note that for the proof of ‘If part’, X is T, — space and f.a.s., both are not used. Hence the if

part is true in any T — space. ]

Theorem 4.2:- For each x in first axiom, T; — space X,
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x} = ﬁBn(x) :

where {B,,(x)},eny is a countable local base at x.
Proof: As X is a first axiom space, 3 a countable local base {B,,(x)} at x.

Hence {x} S ﬂ B,(x).Lety € ﬂ B, (x) such thaty # x.

neN nenN

Then X being a T; —space, 3 G € Jsuchthatx EGbuty € G. Asx €EGand G € J, Iny €N

such that B,,(x) € G. But then y € G; a contradiction.

Hence ﬂ B, (x) € {x}.

neN
Thus {x} = ﬂ B, (x).
neN
Remarks:
. . ~ 1 1
(1) (R,3,)is a first axiom, T; — space. Hence ﬂ <x X + E) = {x}
n=1

since the family {(x —% , X+ %) | x € (x —% , X+ %) , vV n} is a countable local base at x.

1
(2) Any metric space is first axiom, T; — space. Hence ﬂ S (x 'E) = {x}

n=1

since the family {S (x ,%) |x €S (x , %) , Vv n} is a countable local base at x.

§5 Solved problems

Probleml: Let (X, J) be a T| — space. If J is closed for arbitrary intersection, then show that  is
the discrete topology on X.

Solution :-By data, J is closed for arbitrary intersection and hence any union of closed sets in X

isaclosed setin X. Let 4 € X.

Then A = U{a} = Ais aclosed set in X (since {a} is a closed set in X).

acA

Thus, any subset of X is closed in X. Hence J is the discrete topology on X.
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Problem 2 :-Let (X, J) be a T — space and B(x) be a local base at x € X. Show that fory # x
there exists B € B(x) such that y ¢ B.

Solution: Let (X, J) be a T; — space. As y # x, there exist G € J such that x € G buty € G.

As x € G and G € ¥, by definition of local base, 3 B € B(x) suchthatx € B € G. Asy & G we
gety € B. Hence the result.

Problem 3: Let X be a T; — space and 4 is finite subset of X then no point of 4 is limit point

of A.

Solution :-Let (X, ) be a T| — space and let A = {a, a,, ..., a, } be a finite subset of X. As X is a
T, — space, by Theorem 2, A is a closed set. Hence A = AU d(4) = A i.e. d(4) € A. Hence,
limit points of A must be members of A. Claim that a; € A is not a limit point of A.

Let B = {a,,as, ..., a,} . B being a finite subset of a T, space, B is closed in (X, J). Hence X — B
isopenin(X,3). Asa; EX—B={a;}and X —B) N A —{a;} = {a,;} —{a,} = 0, we geta,;
is not a limit point of A. Similarly, we can prove that any a; € A is not a limit point of A.

Hence d(4) = @.

Problem 4: Show that a finite topological space (X, J) is a T| — space if and only if (X, J) is a
discrete space.
Solution :- Only if part.

Let (X, J) be a finite T; — space. To prove § = (X). Let A € X. Then X — A being finite,
X — Aisclosed in (X,3) (see Theorem 2). Hence A is openin X i.e. A € .
Thus A € (X)) = A € J. Hence § = (X). This shows that (X, J) is a discrete topological
space.
If part.

Let (X, J) be a discrete topological space. Then for x # y in X, define G = {x} and
H ={y}. ThenG,H € J, suchthatx € Gbuty ¢ G andy € H butx ¢ H. Hence (X,J) isa T| —

space. [Note that (X, J) is a finite space — is not used]

Problem 5: Let a T; — topology 3 on X be generated by finite family of subsets of X. Show that

o~

3 is the discrete topology on X.

Page | 170



T, - spaces

Solution: As J is generated by a finite family of subsets of X, J must be finite i.e. there are only
finite number of open sets in X. Hence there exists only finite number of closed sets in X. As X

is a T — space, singleton sets are closed in X. Thus the family of singleton sets in X is finite.

n
Hence X = U{xi} = X is a finite set. As J is a T topology defined on a finite set X,
i=1

3 must be the discrete topology on X.

Problem 6: Show that a topological space (X, J) is a T;- space if and only if

ﬂ{G|GES,xEG}={x}.

Solution :-Only if part.
Let (X, J) be a T| — space. To prove that N{G | G € J,x € G} = {x}.
Lety e {G|GEJ,x €G}suchthaty # x.Asy #x,3G,H € Jsuchthatx € Gbuty & G.

By the choice of y,x € G,G € 3 = y € G; a contradiction.

Hence ﬂ{G |G €J,x€G}={x}.

If part.

Let ﬂ{G |G €J,x € G} = {x} for any x € X.

To prove that (X, J) is a Ty — space. Leta # b in X.

Then {a} = ﬂ{c 1G €S,a€G)and{b) = ﬂ{c 1GES,bEG)
Asa+#b, b¢{a} = b(Eﬂ{GIGES,aEG}.

Hence 3 an open set G such thata € G butb € G.
Similarly as @ € (b} = a ¢ ﬂ{cw €%,b€G)

Hence 3 an open set H such thath € H but a € H.

This shows that (X, J) is a T — space.

Problem 7: Show that a topological space (X, J) is a T; — space if and only if the intersection of

all neighbourhoods of any arbitrary point of X is a singleton set.

Page | 171



T, - spaces

Solution :-Only if part .

Let (X,J) be a T — space. To prove that N{N |N is anbd. of x,x € G} = {x}.
Lety € N{N |N isanbd. of x,x € G} such thaty # x.

Asy # x,3G,H € Jsuchthatx € Gbuty € G

By the choice of y,x € G,G € 3 = y € G; a contradiction.

Hence N{N |N isanbd.ofx,x € G} = {x}.

If part.

Let ﬂ{N [N is anbd. of x ,x € G} = {x} for any x € X.
To prove that (X, J) is a Ty — space. Leta # b in X.

Then {a} = ﬂ{zv INis anbd.ofa,a € G} and {b} = ﬂ{zv IN is anbd.ofb b € G}.

Asa#h, b¢la) = be ﬂ{N|Nisanbd.ofx,xEG}.

Hence 3anbd. N of a € N such that b ¢ M

Similarly asa € {bp} = a & N{N |Nisanbd. of x,x € G} hence 3 nbd. M of b such
thata € M. As N and M are neighbourhoods of a and b respectively, there exists open sets G and
Hsuchthat a € G € Nand b € H S M. Hence 3 an open set G such thata € Gbutb € G.
and 3 an open set H such that b € H buta &€ H.

This shows that (X, J) is a T — space.

Exercises

1) Let(X,3J) be aT; - space and let A be finite subset of X. Then no point of A is limit
point of A.

2) A finite topological space (X, J) is a T; — space if and only if for two distinct points x and
y of X, there exist a nbd. N of x not containing y, and a nbd. M of y not

containing x.

3) Give an example of each of the following .
a) AT, — space which is countably compact.

b) A T, —space which is not countably compact.
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¢) A countably compact which is a T; — space.

d) A countably compact space which is not a T, — space.

e) AT, —space whichis first countable.
f) A T;-space whichis not first countable.
g) First countable space whichis aT;— space.

h) First countable space whichis not a T; — space.

T, - spaces
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Unit 14

7, - Spaces

§1 Definition and Examples.
§2 Characterizations and Properties .
§3 T, - spaces and compact spaces

§4 Convergent sequences in T, — spaces.
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§1 Definition and Examples

Definition1.1: A topological space (X, J) is a T, — space or Hausdorff space if it satisfies the
following axiom of Hausdorff:

“If x and y are two distinct points of X, then there exist two disjoint open sets one
containing x and the other containing y”.
Remarks: (1) Obviously, every T, — space is a T; — space and hence a Ty — space (follows by the
Definition).

(2) Let(X, ) be a T, — space and J* = J. Then (X, J*) is also T, — space.

Examples 1.2:
T, — spaces.
(1) Any discrete topological space (X, J) with [X| > 2 is a T, — space.
For x # y in X, {x} and {y} are two disjoint open sets containing x and y respectively.
(2) Any metric space is a T, — space.

Let (X, d) be a metric space and let ¥ be the induced topology on X by the metric d.
Letx # yin X. Thend(x,y) =r > 0. Then S (x, g) and S (y, g) are two disjoint open

sets containing x and y respectively. Hence (X, d) is a T, — space.

(3) (R, J,) is a T, — space.
Letx # yinR. Then |x —y| =r > 0. (x—g ,x+§) and(y—g ,y+§) are disjoint
open sets in R containing x and y respectively. Hence (R, J,,) is a T, — space.

(4) Fort’s space is a T, — space.
Let X be any uncountable set and let oo be a fixed point of X .
LetJ={G S X|o0&G} U{G S X| o €GandX — G is finite}. Then J is a topology
onX. Define§; ={G S X|wogG} andJ, ={G S X| o0 € G and X — G is finite}
then§ = J; U J, is a topology on X . This Fort’s space (X, ) is a T, — space.
Letx # y in X.
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Case 1: Let x and y both are different from oo . Then G = {x} and H = {y} are disjoint
open sets containing x and y respectively.

Case 2: Let y = 0. Then G = X — {0} and H = {oo} are disjoint open sets containing x
and oo respectively. Thus from both the cases we get the Fort’s space (X, J) is a T, —

space.

Non T, — spaces.

(1) Any indiscrete topological space (X, J) is not a T, — space.

(2) Any co-finite topological space (X, ) with X an infinite set is not a T, — space.

[Note that if X is finite, then co-finite topology J on X is discrete topology on X and
hence in this case (X, J) is a T, — space.]

Let G,H € Jsuchthat G N H = @. G is open = X — ( is finite set.
Hisopen = X — H is finiteset. G N H =@ = G € X — H = ( is a finite set.

As X = G U (X — G), we get X is a finite set; a contradiction. This shows that no two
open sets in X are disjoint. Hence (X, J) is not a T, — space.

(3) Let (X, J) be a p-inclusion topology (p € X). I ={0}U{A S X |p € A}. (X,J) isnot a
T, — space. For p # x in X we cannot find two disjoint open sets one containing p and
other containing x.

(4) Let (X, J) be a p-exclusion topology (p € X). I ={X}U{A S X |p ¢ A}.

Case (1):x #y (x #pandy # p). {x},{y} € I suchthat x € {x},y € {y} and
in{y} =0.

Case (2): x # p. As X is the only open set containing p, in this case we cannot find
disjoint open sets one containing p and other containing x.

Hence (X, J) is not a T, — space.

B)LetX=NandJ={0} U{N}U{4, |n=123,..} where A, = {1,2, ...,n}.

Let m # n in X. Assume m < n. Then by definition of J any open set containing n must
contain m. Hence (X, J) is not a T, — space.

6) Let X =NandJ={0}U{N}U{4, |n=123,..} where A, ={n,n+1,n+2,..}.
Let m # n in X. Then if m < n, then every open set containing m must contain n.

Hence (X, ) is not a T, — space.
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Remark: Every T; — space need not be a T, — space .
We know that co-finite topological space is a T| — space (see Example in § ) But . any co-

finite topological space (X, J) with X an infinite set is not a T, — space. Hence we get every
T, — space need not be a T, — space. Thus the collection of all T, — spaces is a proper subset of
the collection of all T — spaces. As every T, — space is a T — space, all the properties of T; —
space hold for T, — space.
e.g. (1) Every finite subset of a T, — space is closed in it.

(2) Finite T, — space is the discrete topological space.

(3)Distinct points have distinct closures in a T, — space.

§2 Characterizations and Properties

Theorem 2.1: Let (X, J) be a T— space.Then (X, J) is a T, — space if and only if the
intersection of all closed neighbourhoods of a point x in X is {x} .

Proof: -Only if part -

Let (X, ) be a T, — space. To prove that N {N | N is a closed nbd. of x} = {x}.

Let y € n{N | Nisaclosed nbd. of x} suchthaty # x . As (X, J) be a T, — space and x # y
inX.Hence3 G ,H € Jsuchthatx e G, y€EHandNH =0 .

Hence x € G € X - H. But this shows that X — H is a closed nbd. of x .But by the choice of y,
y € X — H ; a contradiction. Hence N {N | N is a closed nbd. of x} = {x}.

If part —

Let N {N | N is a closed nbd. of x} = {x} for each x in X. To prove that X is a T, — space.

Letx # yinX. Hence y € {x} =N {N | N is a closed nbd. of x} implies y € N, for some closed
nbd. N of x. As N is a nbd.of x there exists an open set G such thatx € G & N. Thus for x # y
in X there exist disjoint open sets G and X — N such thatx € G andy € X — N.

This shows that X is a T, — space.
Theorem 2.2: A T — space (X, J) is a T, — space if and only if for any x # y in X, 3 basic open

setsU and V suchthatx e U,y € VandU NV = Q.
Proof: Only if part —
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Let (X,3J) be aT,—spaceand x # y in X. Hence 3 G ,H € J such thatx € G,y € H and
GNH=@.LetB beabase fory.ThenforG,H€JF IB;,B, € Bsuchthatx € B; € G and
x € B, € H (by definition of base). Thus there exists basic open sets B; and B, such that

X €By,y €EB,and B; N B, = Q.

If part —

To prove (X, J) that is a T, — space.

Let x # y in X . By assumption, 3 basic open sets B; , B, € B such that x € B;,y € B, and

By N B, = 0. AsB € J, there exist disjoint sets B, , B, in J such that x € B;,y € B,.

Hence (X, ) is a T, — space.

Theorem 2.3: Being T, — space is a hereditary property.

Proof: Let (X, J) be a T, — space and let (Y, J*) be a subspace of (X, ).

ThenY C X andJ* ={GNY|GEJ}. Lety#zinY.AsY S X,y #zinX.

X being a T, — space, there exist G,H € Jsuchthaty € Gandz € Hand G N H = Q.
DefineG* =GNYand H* =HNY.ThenG*,H* € 3" suchthaty € G*, z € H* and

G* N H* = @. But this shows that (Y, J*) is a T, — space. As any subspace of a T, — space (X, J)

is a T, — space, the result follows.

Theorem?2.4: Being a T, — space is a topological property.

Proof: Let (X,J) and (Y, J*) be any two topological spaces and f: X — Y be a homeomorphism.
Let (X, ) be a T, — space. To prove that (Y, J*) is a T, — space.

Lety; # y, in Y. f: X — Y being one-one and onto, there exist x; # x, in X such that

f(x1) =y, and f(x;) = y,. As X is a T, — space, there exist G, H € J such that x; € G and

X, € Hand G N H = @. f being an open map, f(G), f(H) € J*. Thus y, € f(G), y, € f(H)
and f(G) N f(H) = @. But this in turns shows that (Y, J*) is a T, — space. Thus any

homeomorphic image of a T, — space is a T, — space. Hence the result.

Corollary 2.5: The property of a space being T, — space is preserved by one-one, onto open

maps.
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Theorem 2.6: Let (X, J) be a topological space and (Y, J*) be a Hausdorff space. Let f: X > Y
and g: X — Y be continuous mappings. The set {x € X | f(x) = g(x)} is closed in X.

Proof: Let A={x€ X |f(x) =g(x)}.Selectanyt € X — A. Then f(t) # g(t) ast & A.
As f(t) # g(t)in Y and Y is a T, —space, 3 G*, H* € J* such that f(t) € G*, g(t) € H* and
G*'NH" = 0.

f:X - Y is continuous and g: X — Y is continuous = f~1(G*) and g1 (H*) € J.

Hence 0 = f"1(G)ng 1 (H) ES D

fec =>tef 16"

gt) eH* = te g 1(HY).

Thust € f~Y(G*)Nng 1 (H*) =0 1D

Again for any x € 0, we getx € f~1(G*) n g7 (H*) i.e. f(x) € G* and g(x) € H*.

AsG*NH* =@ ,wemust have f(x) # g(x) . Thusx €0 = x¢A = x€X —A.
Hence O € X — A (IOI)
Thus fort e X — A, 30 € §suchthatt € 0 € X — A (from (I), (II) and (II)).

But this shows that each point of X — A is its interior point. Hence X — A is an open set.

This proves that A is a closed set.

Theorem 2.7: Le-t (X, ) be any topological space and let (Y, J*) be a T, — space. Let f and g be
continuous mappings of X into Y. If f and g agree on a dense subset of X, then f = g on the
whole X.

Proof: Let D= {x € X | f(x) = g(x)} .Then D is dense subset of X .

To prove that f(x) = g(x), Vx € X.

By Theorem 2.6, D = D. D being dense in X, D = X. Thus D = X.

Therefore, f(x) = g(x) for all x € X.

Theorem2.8: Let (X, ) be a T, — space and f: X — X be a continuous map. Then

A={x € X|f(x)=x}isaclosed set in X.

Proof: f: X — X be a continuous map. Let I: X — X be the identity map. Then I is a continuous
map. Hence by Theorem 2.7, the set A = {x € X | f(x) = I(x)} is closed in X.

But as I(x) = x we get the set {x € X | f(x) = x} is closed set in X.
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§3 T, — spaces and compact spaces

Theorem 3.1: Let (X, J) be a Hausdorff — space and (X, J*) be a compact space such that § €
J*. ThenJ = J*.

Proof: 3 € J*. Hence only to prove that 3* € 3 . LetG* € J*. G* € J* implies X — G" is
closed in (X, J*). Hence X — G* is compact in (X, J*) (see Theorem ...)

As X — G* is a compact subset of a T, - space (X, J) we get X — G* is a closed subset of (X, )
(see Theorem 3.1). Hence G*is anopensetin(X,J) ThusG* € J* = G* € .

Hence J* € J. AsJ S J andJ" S Jwegety =3

Theorem 3.2: Any compact subset of a T, — space is closed.
Proof: Let (X,J) be a T, — space and let F be any compact subset of X. To prove that F is
closed. Fix up any x € X — F. Then for each y € F we get x # y. As X is a T, — space,

3 disjoint open sets G and G,, such that x € G, and y € G,,. As this is true for any y € F,

n

F = U{y} c U G, = {Gy}yEF forms an open cover for F. As F is compact, F € U Gy,

YyEF YEF =1

Find corresponding G, € J such that such thatx € Gy, and G, N G,, =@, Vi, 1 <i<n.
n n

DeﬁneH=UGyi andGzﬂGxi. ThenG,HEJZ,GNH =0, x€EGand F € H.

i=1 i=1
AsGNH=0,wegetGNF =@.Butthen G € X — F. Thus for givenx € X — F, 3 an open
set G in X such that x € G © X — F. This shows that each point of X — F is its interior point.

Hence X — F is an open set. This proves that F is a closed set.
Remark: Compact subset of any T — space need not be closed set.
For this consider an indiscrete topological space (X, J). Let A be any subset of X. Then A is

compact in X, but A is not closed in (X, J).

Theorem 3.3: A T — space (X, J) is a Hausdorff space if and only if any two disjoint compact

subsets of X can be separated by disjoint open sets.
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Proof: Only if part —
Let (X, J) be T, — space and let A, B be disjoint compact sets in X.
Fix up any a € A. Then for eachx € B we geta # x (AN B = ). As X is a T, — space,

3G,, H, € suchthata € G,,x E Hyand G, N H, = 0. AsB = U {x} c U H,
xe B xe B

we get {H, },eg form an open cover of B. B being compact, this open cover has finite sub-cover

for B say {Hxi}:;l :

n
Define H = U H,,.Then H € Jand B < H .For the corresponding sets G, € J,
i=1

n
define G, = ﬂGxi.ThenGa €EJ,a€GandG,NH =0. AsA = U{a} c UGa,
i=1

acA a€cA

m
we get {G,}qeq forms an open cover for A. As A is compact, A © U Ga,-
i=1

m
DeﬁneG=UGai.ThenGES.FurtherasGanHz(Z) Va ,wegetGNH=0.

i=1
Thus for the disjoint compact setsAand B 3 G ,H € Jsuchthat AS ¢G,B S HandG NH = Q.
If part —

Assume that any two disjoint compact subsets of X can be separated by disjoint open sets. To
prove that X is a T, — space. Let x # y in X. Then {x} and {y} are compact disjoint subsets of X.
By assumption3 G ,H € J suchthat {x} € G, {y} € H and G N H = @. But this in turns shows
that 3 open sets G and H such that x € G and y € H. Hence X is a T, — space.

Corollary 3.4: Let (X, J) be a T— space . (X, J) is a Hausdorff space if and only if for any
compact set Fand foranyx € F3G,H € Jsuchthatx € G, F S HandGNH =0Q.
Proof :-The proof follows from Theorem 3.3 and the fact that {x} and F are disjoint compact

setsin X .

Corollary 3.5: Let (X, ) be a compact, T, — space. If F is closed setin X and a € F (a € X),
then there exists G,H € J suchthata € G ,F S Hand G N H = Q.
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Proof: We know that any closed subset of a compact space is compact (see ). Hence F is
compact subset of a T, — space X and a & F. Therefore by Corollary 3.4 3 G,H € J such
thata € G,F S Hand G N H = Q.

Corollary 3.6: Let (X, J) be a compact, T, — space. Let F;, F, be two disjoint closed subsets of
X. Then there exists two disjoint open sets ¢ and H in X such that F; € G and F, € H.
Proof: Fix up any point x € F,. Then x € F; and F; is closed subset of compact T, — space X.
By Corollary 3.4 there exist open sets G, and H, in X such thatx € H,. , F; € G,
and G, N H, = Q.
AsF, = U {x} c U H, we get an open cover {H, },cp, for the set F,.

X€EF, X€EF,

As F), is closed subset of a compact space X, F, itself is a compact. Hence the open cover

n
{H, }xcF, has a finite sub-cover. Let F, = U H,, .Find corresponding sets G, € J
i=1

suchthat F; € Gy, Vi 1<i<mn, G, NHy =0.
n n

Define G = ﬂGxi and H = UHxi.ThenG,HES,Fl CG,Fb,€CHandGNH=0Q.
i=1 i=1

Hence the result.

Theorem 3.7: Every continuous mapping of a compact space into Hausdorff space is closed.
Proof: Let (X, J) be compact space and let (Y, J*) be a Hausdorff space. Let f: X — Y be a
continuous map. To show that f is a closed map. Let F be any closed set in X. To prove

that f(F) is closed in Y. F is closed in X and X is compact = F is compact (see ...).

f:X — Y is continuous and F is compact in X = f(F) is compact subset (see ...) of Y. As Y is
a T, — space, f(F) is closed subset of Y (see Theorem 3.2). This in turns shows that f is closed

map.

Corollary 3.8: Every bijective continuous mapping of a compact space onto a Hausdorff space

is a homeomorphism.
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Corollary 3.9: If f is a one-one continuous mapping of the compact space X onto the

T, —space Y. Then f is an open map and hence f is a homeomorphism.

Proof: To prove f is an open map. Let G be an open set in X. Then F = X — G is closed in X.
As F is closed subset of a compact space X, F is a compact subset of X (see ...). Continuous
image of compact space being compact (see ...), f(F) is compact in Y. But as Y is a T, — space,
f(F)isclosedinY (see Theorem 3.2).

Hence Y — f(F) =Y — f(X — G) is an open set in X .

Now Y — f(X — G) = f(G) (since f is one-one and onto = f(X) =Y)

= f(G)isopeninY.

This shows that f is an open mapping. As f is continuous, bijective and open, f is a

homeomorphism.

Recall that a topological space (X, J) is locally compact if each point of X is contained in
a compact neighbourhood .
Theorem 3.10: Let (X, J) be a locally compact, Hausdorff space. Then the one point
compactification (X*,J*) of (X,J) is a Hausdorff space.
Proof: Let x # y in X™.
Case l: x,y € X.
As X is a Hausdorff space, 3G ,H € Jsuchthatx € G, yEHand GNH =0. As3J S J" we
getG,H € 3" suchthatx € G, yE Hand G N H = Q.
Case 2: x =00 ,x # y.
Then y € X. As X is locally compact, 3 a compact neighbourhood, say N of y in X.
As X is a T, — space, N is closed subset of X (see ...). Hence X* — N € 3" and oo € X* — N .
Thus for oo # y 3 disjoint open sets G and X* — N in X* such thaty € G, oo € X* — N and
GN(X*—N)=0...[Nisnbdof yin(X,J) = 3 G € Jsuchthaty € G S N. But then
GNnX*—=N)=0a].

Thus from both cases (X*, *) is a Hausdorff space.

Remark: If (X,3J) is a locally compact, the one point compactification (X*, J*) of (X, J) is a

compact, Hausdorff space.
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§4 Convergent sequences in T, — spaces.
Let (X, ) be a T, — space. Let {x,,} be a sequence of points of X. We say that the
sequence {x,} converges to a point x in X if for any open set G containing x there exists N

suchthat x, €G Vn>N.

Remark: Convergent sequence in a topological space need not converge to unique limit.
In a co-finite topological space defined on an infinite set any sequence converges to each point of

the space. But in T, — space convergent sequence has a unique limit.

Theorem 4.1: Let (X, ) be a T, — space. Any convergent sequence in X converges to a unique
point in X.

Proof: Let {x,} be a sequence of points of a T, — space X and let it converge to two distinct
points say x and y in X. As X is a T, — space, for x # y in X, there exist G, H € J such that
x€Gandy €€EHand G NH = @. As x, — x and x € G there exists N; such that

Xp € G Vn = Nj. Similarly x,, — y and y € H there exists N, such thatx, € H Vn > N,.
Define N = max(N,, N,) then xy € G N H = @; a contradiction. Hence there does not exists any

convergent sequence in T, — space, converging to two distinct points in it.

Theorem 4.2: Let (X, J) be a first axiom space. Then (X, J) is a T, — space if and only if every
convergent sequence in X has a unique limit.

Proof: Only if part —

As X is a T, — space, every convergent sequence in X has a unique limit (see Theorem 4.1 ).
[Note that for the proof of ‘Only if part’ the property that X is a F.A.S. is not used].

If part —

Let (X, ) be a first axiom space such that every convergent sequence in X has a unique limit.
To prove that X is a T, — space.

Let if possible(X, ) is not a T, — space. Then 3 x # y in X such that for any open sets G, H in X
withx €eG,y€E H,GNH #0.

X is a F.A.S. = 3 a countable decreasing local base, say {B,,(x)} at x and 3 a countable
decreasing local base, say {B,(y)} aty .

By assumption B, (x) N B,(y) # @, Vn € N. Select x,, € B,,(x) N B,,(y), Vn € N.
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Consider the sequence {x,} in X. Claim that x,, — x.

Let G be any open set in X such that x € G. As {B,,(x)} is a countable local base at x, 3 N such
that By (x) € G. But then x,, € G forn = N ({B,,(x)} being decreasing local base).

This shows that x,, — x. Similarly, we can prove that x,, = y . Thus 3 a convergent sequence
{x,} in X converging to two distinct points x and y in X ; a contradiction. Hence X must be a

T, — space.

Remarks:
(1) The converse of the Theorem 4.1 need not be true.
i.e. Every convergent sequence in a topological space (X, J) may converge to a
unique point in X . But this need not imply that (X, J§) is a T, — space.
For this consider the following topological spaces .
(a) co-countable topological space (X, J) (X is uncountable set).
(X, ) is not a T, — space, since no two open sets in (X, J) will be disjoint (see example
... ) Let {x,,} be any convergent sequence in X. Then {x,,} converges to the unique point
in X.
(b) Consider the indiscrete topological space (X, J) with |X| = 2. Then X is not a T, — space
though each convergent sequence in (X, J) converge to unique point in X.
(2) The converse of the Theorem 4.1 is true if (X, J) is a first axiom space ( see the proof of

Theorem 4.2 ).

Exercises

(I) Let(X,$) be a compact, Hausdorff space. Show that
(1) X is not a compact with any topology larger than and different from 3.
(2) X is not a Hausdorff space with any topology smaller than and different from J
(II)  Show that the property of a space being T, — space is not preserved by continuous maps.
(IIT) Prove or disprove the following statements.
(1) Any compact subset of a compact space is closed.
(2) Any closed subset of a compact space is compact..

(3) Continuous mapping of the compact space into a T, — space is a closed mapping.
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(4) Continuous mapping of the Hausdorff space into a compact space is a closed
mapping.
(5) Continuous mapping of the compact space into any T — space is a closed mapping .
(6) Continuous mapping of the compact space into a compact space is a closed mapping.
(7) Continuous mapping of the compact space into a T, — space is a homeomorphism.
(8) Convergent sequence in a topological space converges to a unique limit.
(9) Convergent sequence in a Hausdorff topological space converges to a unique limit.
(10) If every convergent sequence in a topological space converges to a unique limit then
the space is a Hausdorff space .
(IV) Let (X,J) be a T— space. Show that the following statements are equivalent.
(1) (X, ) be a T, — space.
(2) The intersection of all closed neighbourhoods of a point x in X is {x}.
(3) Given finite number of distinct points x;, X5, ..., X, there exist neighbourhoods
N;, N,,...,N, of points x;, x5, ..., X, respectively, which are pair wise disjoint.
(V) State whether the following statements are true or false.
(1) Every discrete T — space is a T, — space.
(2) Every indiscrete T — space is a T, — space.
(3) Ina T, — space {x} = {x}, Vx € X.
(4) InaT,—space x #y = mim
(5) Ina T, —space N {N | N is a nhd.of x} = {x}.
(6) If every convergent sequence in topological space X converges to unique limit, then X
is a T, — space.
(7) In a T, — space every convergent sequence converges to a unique limit.
(8) Every f.a.s. is a T, — space.
(9) Every T, — space is a f.a.s.
(10) Every T, — space is compact.
(11) Every T, — space is a Ty — space.
(12) Every Ty — space is a T, — space.
(13) Every T, — space is a T} — space.
(14) Every T, — space is a T, — space.
(15) Every T — space is a T, — space.
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(16) Every subspace of T, — space is a T; — space.
(17) Being a T, — space is a topological property.
(18) Homeomorphic image of a T, — space is a T — space.

(19) Continuous image of a T, — space is a T; — space.

- Spaces
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Unit 15

Regular spaces and T; - spaces

§1 Definition and Examples of regular spaces.

§2 Characterizations and Properties of regular spaces.
§3 Definition and Examples of T; spaces.

§4 Properties of T; spaces.

§5 Solved Examples.
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Unit 15: Regular spaces and T; - spaces

§1 Definition and Examples.
Definition 1.1:- A topological space (X, ) is said to be regular if it satisfies the following axiom
of Vietoris:

“If F is closed set in X and if p is a point of X not in F, then there exist disjoint open sets

G and H suchthat p € G and F € H”.

Examples 1.2:

1) Every discrete T-space (x, J) with |X| > 1 is a regular space.

2)LetX ={a,b,c}and I ={0,X ,{a},{b,c}} The topological space {x,J) is a regular
space.

The family of closed sets in (x,J) is X ={@,X,{a},{b,c}}.

Casel:a € {b,c} Thentake G ={a}and H ={b,c}. GGHE J. GNH =@,a € G and
{b,c}c H.

Case2:b ¢ {a} TakeG ={b,c}and H ={a}. Then GG HE §. GNH =0,
be{b,c}<SGand{a} SF.

Case3:-c ¢ {a}. TakeG={b,c}andH={a}.Then GHE J. c €G,{a} S H
andGNH=0.

Thus given a closed set F and a point p € F there exist disjoint open sets one containing p and
the other containing F.

This shows that the T-space (X, J) is a regular space.

3) Every metric space is a regular space.

Let (X, d) be a metric space and  denote the topology induced by d on X. Let F be any closed
setand p € F,(p€X).Asp & F=F,d(p,F)#0.Letr =d(p,F).

Define G, = S(p , 7"/2) and G, = U S (y , r/4)_

YyEF

Page | 193



Regular spaces and T; - spaces

Then G,,G, € 3, p€ G, and F S G, only to prove that G, NG, = 0.
Let 3 € Gy NG, Then d(p, 3) < T/, forsome x €F
d(p,x) = d(p,3)+d(3,x)
<Yat'/a="T/2
Hence d(p,x)<r = x€S(p,r)
Butthenx € S(p,r)NF = (Z)(Sincer = d(p,F));acontradiction.
Hence, Gy N G, = @ . Thus given p € F , Fis a closed set in (X,d) = 3 disjoint open sets one

containing p and other containing F. Hence, the metric space (X, d) is a regular space.

4) (R, J,,) is a regular space.
Proof:- Letd (x,y) = [x —yland S(x,r) = (x—71,x +71).
Then the topology J, is induced by the metric d on R and hence by Example 3,

(R, J,) is a regular space.

S) Let X = R and Let 3 denote the topology on R having the open intervals and the set Q of
rational Numbers as a sub-basis.
Proof:- Define F = R — Q. Then F is closed set in (R, J). 1 € F and there does not exist only

two disjoint sets one containing 1 and other containing F. Hence (R, J)is not a regular space.

§2 Characterizations and Properties of regular spaces
Theorem 2.1: A topological space (X, J) is regular if and only if for any point x € X and any
open set G containing x, there exists an open set H suchthatx € H and H € G
(orxCH CHCG).
Proof:- Only if part

Let X be a regular space and x € G, G isanopensetinX = X — ( is a closed set and
x € X—G.AsXisaregular spaced H,K €3 suchthatx € H, X — G € K and
HNK=0.Now X—-GSK = G2X—-K.
HNK=¢ = HCSX-K = HCX—-K =X-—K (Since X — K is a closed set).
Thusx € H S X — K € G. Thus 3 an open set H such that x e Hand H € G
If Part
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Let F be a closed set in X and Let x € F. Then X — F is an open set and
x € X — F . By assumption, 3 an open set H such thatx € H and H € X — F.
Define K=X—H . ThenK € § and H € H
= HNK=Hn(X-H) =¢ (~ X—H €X—H).
Thus for x & F,3 disjoint open sets H and K such that x € H and F < K. Hence (X,J) is a

regular space.

Theorem 2.2: Let (X, ) be a topological space. The following statements equivalent.

1) Xis aregular space.

2) For any sub-basic open set G containing a point x, there exists an open set H such that
x€EHand HCG.

Proof: 1) = 2)

G is a sub-basic open set = G € J. Hence, by Theorem 2.1, the implication follows.

2) =>1)

Let G be any open set and x € G. By the definition of the sub-base there exist members of J say

U, U, ... .. , Uy, of the sub base such that

n
X € ﬂUl cG
i=1

AsU;€e I3 Vi,1<i<nand x € U;, by Theorem 2.1 , 3 an open set H; such that

x €EH;and H, € U; foreachi, 1<i<n.
n n n
Thus we get x € U; € H, c U €SG
i=1 i=1 i=1
n 7
Define HzﬂHi Thenx € Hand H € G .|~ H = (ﬂHl> c

=1

n
H,
1=1 i=1

Hence, by the Theorem 2.1, X is a regular space.

Theorem 2.3: Let (X, J) be a regular space. The following statements are equivalent:
1) Xis aregular space.
2) Foreach x € X andanbd. Uofx, 3anbd. Vofx suchthat V €U .

3) For each x € X and a closed set F not containing x, there exists a nbd. V of x such that
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VNF =09.

Proof: 1) = 2)
Let U be anbd.of x € X. Hence 3 anopen set Gsuchthatx € H € H € G.
Thus 3 a nbd. H ofx suchthat H € U.
2) = 3)

Let F be a closed set such that x & F. But then X — F is a nbd of x. By (2), there exists a
nbd. V of x suchthat V € X —F . Hence 3anbd. V of x suchthat V N F = @.
3) =>1)

Let Fbe a closed set and let x & F.By (3), 3anbd. Vofx suchthat V nF = @.
VNF=0¢ =F cX-V.

Visanbdofx = 3Janopenset H suchthatx € H € V.
Define K =X —V. ThenK € Sand H N K = 0.
Thus 3 H,K € Jsuchthatx € H, F S Kand H NK = Q.

Hence, (X,$) is a regular space.

Theorem 2.4: A topological space (X, J) is a regular space if and only if the family of closed
nbds of any point of X forms a local base at that point.
Proof:- Only if part

Let (X, ) be a regular space. Let N be any nbd of a point x, Hence 3 G € J such that
x € G S N. As X is a regular space, 3 an open set H in X such that x € H and H € G (By
Theorem 2.1). But this shows that x € H € N. Hence the family of closed nbds of x forms a
local base at x.
If part

Let the family of closed nbds of any point of X forms a local base at that point. To prove
that X is a regular space. Let x € X and let F be a closed set such that x € F. Then X — F is a
nbd of x. By assumption 3 a closed nbd. K of x suchthatx € K € X — F.

Define G = interiorof K and H = X — K. Then G,H € §,x € G,F € H and
GNH=0.

Hence (X, ) is a regular space.
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Theorem 2.5: Being a regular space is a hereditary property.

Proof:- Let (X, ) be a regular space and let (Y, J*) be its subspace.

ThenJ* ={GNY|GeEJ}and Y C X.

Let F* be any closed set in (Y,J*)and Y & F*(y €Y).

F*isaclosedsetin (Y,3*) = F*=F NnY for some closed set F in (X, ).

As (X, 3) is aregular space, 3 H, K€ J suchthaty€e H, FS KandH NnK = 0.
Define H* =H NnYand K* =K nNnY.

Then H*, K* € §*, y€ H*, FFSK* and H*NK*=0.

This shows that (Y, J*) is a regular space.

As any sub-space of a regular space is a regular space, the result follows.

Theorem 2.6: Being a regular space is a topological property.

Proof:- Let (X, J) be a regular space. let (Y, J*) be any T-space and f : X — Y be

homeomorphism.

To prove (Y, J*) is a regular space. Let F* be aclosedsetinYand y € F*(y €Y).

AsFisonto,3 x € X such thaty = f(x). F*isaclosed set and f : X — Y is continuous
= f~1[F*]is a closed set in X.

As y g F*, x & f1[F*]. (X,3) is a regular space. Hence there exist G,H € J such that

X€EG, fTUIFF] €CHand G NH= 0.

Thus f(x) € £(G), fIf[F]] €f(H) and fF(GO)NFH) =0.

Define G* = f(G) and H* = f(H).

Then G*, H* € J*, y€G*and F* S H*andG* N H* = Q.

This shows that (Y, J*) is a regular space. As homeomorphic image of a regular space is a

regular space, the result follows.

Theorem 2.7: Let A be a compact subset of a regular space (X, J) . For any open set G
containing A, there exists a closed set F such that A € F <€ (.
Proof: We know that, a €A = a € G and G isopenin X.

As X is a regular space, by Theorem 2.1, 3 an open set G, such that a € G, € G, S G.

Thus A = U{a} c U G, shows that {G,},c4 forms an open cover for a compact set A .

a€cA ac A
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Hence A <

L

n
Gg; - Now G, €G Vi, 1<i<n = UGai cG.

n

n
Define F = U G_al . Then F is a closed set suchthat A € F € G.

=1

Hence the proof.

Theorem 2.8 : Let (X, J) be a regular space. Let A and B be disjoint subsets of X such that A is
closed and B is compact in X. Then 3 disjoint open sets in X one containing A and the other
containing B.

Proof:- ANB=@Q0 = b ¢ A forany b € B.

As X is a regular space, 3 disjoint open sets G, and Hy, in X such thatb € G, and A © H,

for eachb € B. Thus B = U{b} c U G, = {G,}pep forms an open cover for B.

bEB beB
n n

B being compact, B S U Gp, - Define G = U Gp, - Then G € 3.
i=1 i=1

n n
Find corresponding Hy,, V i. Then A < ﬂ Hy, . Define H = ﬂ Hy,
i=1 i=1

ThenH € § and A € H.
Thus 3 open sets G and Hin X suchthat BE G , ASH andGNH = Q.

Theorem 2.9: Closure of a compact subset of a regular space is compact.
Proof:- Let (X, J) be a regular space and let A be a compact subset of X. Let {G.} be any cover

for A . Then {G,} is also an open cover for A (Since A € A). As A is compact,

n n
AC U Gy, - Define G = U G- ThenG € Jand A S G.By Theorem 2.7, 3 a closed set F
i=1 i=1

n
suchthat ACF €G. AsSAC F=F. WegetAd €G i.e.A C UG“i'
i=1

But this implies that the open cover {G.} of A has a finite sub cover. Hence 4 is compact.
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§3 Definition and Examples of T; spaces.

Definition 3.1: Every regular, T, — space is said to be T3 — space.

Examples 3. 2:

1) Every discrete T — space {x, J) with |X| = 1 is a regular, T, — space and hence a T — space.
2) LetX ={a,b,c}and I={0,X,{a},{b,c}}. The T-space (X, J) is a regular space, but
not a T; — space. Hence this space is not a T3 — space.

3) Every metric space is a T3 — space.

Metric space (X, d) is a regular space (see Example 1.2 (3)). We also know that any metric space
(X,d) is a T — space (see Unit 13). Hence, any metric space is a T3 — space.

4) (R, J,) is a T3 — space.

S) Let X = Rand let J denote the topology on R having the open intervals and the set Q of
rational numbers as a sub-basis.

(R, J)is aT,; - space butnot a regular space and hence (R, J) is not a T space.
Remarks:-
(1) Iy <Jand (R, J, )isaT,—space will imply (R, J) is also a T, — space.

(See Unit 14).
(2) This example 5) shows that
1) (R, J)isaT; — space but not a regular space.
2) 3, <3 and (R,J,) is a regular space but (R, J) is not a regular space.

Hence a topology finer than a regular topology on X need not be a regular topology on X.

§4 Properties of T; spaces

Theorem 4.1: Every Tz — space is a T, — space.

Proof:- Let (X,J) be a T; —space. Let x # yin X . As X is a T| — space {y} is a closed set in X .
As x #y we getx & {y}. As X is regular space, 3 an open set such thatx € G, F € H and

G N H = @ . But this shows that (X, J) is a T, — space.
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Theorem 4.2: Being a T3 — space is a hereditary property.

Proof:- Let (X,J) be a T; — space and let (Y, J*) be its subspace.

(X,3) be aregular space = (Y, J*) is a regular space (By Theorem 2.5).
(X,3)isa T, —space = (Y,J*)isa T, - space (see Unit 13).

Hence, (Y,J*) is T; — space.

Theorem 4.3: Being a T3 — space is topological property.

Proof:- Let (X,J) be a T5 — space. Let (Y,J*) be any T-space and f : X —» Y bea
homeomorphism.

(X,3) be aregular space = (Y, J*) is a regular space (By Theorem 3) .

(X,3)isa T, —space = (Y,J*)isa T, - space (See Unit 13).

Hence (Y, J*) is Ts — space. As homeomorphic image of a T; — space is a T3 — space, the result

follows.

Theorem 4.4: Every regular, Ty — space is a T3 — space.
Proof:- Let (X, ) be a regular Ty — space. Let x # y in X.
As X isa To—space { x } # {y} (See Theorem 2.1 Unit 12).
Let 33€{x} suchthat 3¢ {y}.
Claim: x ¢ {y}.
Let x € {y} such that {x} < {y}
= {x}c{y} ={y}
= z € {y} ;acontradiction.
Hence x & {v}.
As (X, ) is aregular space,3 G,H € S suchthatx € G, {y} S H andGNH = Q.

But then forx # y, 3 G,H € J suchthatx € G,y € HandG N H = (.
This shows that X is a T, — space. As every T, — space is a T — space, we get (X, J) isa

T3z — space.
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Theorem 4.5: A compact, T, — space is a regular space and hence T3 — space.
Proof:- Let(X,J) be a compact space, T, — space. Let F be a closed set and x ¢ F.Then F is a
compact subset of X ( see Unit 7). Hence3 an open set such thatx € G ,F S H
and G N H = @ (See Unit 14).
Hence (X, ) is a regular space. As every T, — space is a T — space, (X, J) isa

Tz — space.

§5 Solved problems
Problem 1: Give an example of T, — space which is not a T3 — space.
Solution: Consider a topology J on R defined as follows.
The I nbhds of any non-zero point in R are as in usual topology for R but J nbhds of 0 have the
form N — A where A is nbhd of 0 in the usual topology and
A ={%:n= 1,2,...,n}.
Then R with this topology is a Hausdorff space since this topology on R is finer than the usual
topology which is Hausdorff.

But A is - closed and cannot be separated from 0 by disjoint open sets, and so (R, J) is not a

T3 — space (by definition).

Problem 2: A T, — space need not be regular.
Solution: Let J,, denote the usual topology on R.
Let § denotes the smallest topology on R containing J,, U {R — A} where A = {% 'nE N} :
Then 3, <3
I) Claim: (R, ) is a T, — space.
(R,J,)is a T, —space = (R, 3) is a T, — space (see Unit 14).
II) Claim: (R, ) is not a regular space.
A is a closed set in (R, J) (since R — A € ) and 0 € A. As A any open set containing 0
and disjoint with A (as any open set in (R, J,,) contains a member of A), (R, J) is not a
regular space.

Hence, (R, J) is a T, - space but (R, J) is not a regular space.
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Exercises

Prove or disprove the following statements.
1) Every T, — space is a regular space.
2) Every T, — space is a Ts- space.
3) Homeomorphic image of a regular space is a regular space.
4) Sub-space of a regular space is a regular space.
5) A compact T, — space is a regular space.
6) A compact, T, — space is a Tz — space
7) Every regular, Ty — space 1s a Ts — space.
8) (R,J,)isaT;— space.
9) Being a T3 space is a hereditary property.

10) Co-finite topological space is a regular space.
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Unit 16

Normal spaces and T, — spaces

§1 Definition and Examples of normal spaces.
§2 Characterizations and properties of normal spaces.
§3 Definition and Properties of T, spaces.

§4 Solved examples.
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Unit 16: Normal spaces and T, — spaces

§1 Definition and Examples of normal spaces

Definition 1.1: A topological space (X, J) is said to be normal if for any two disjoint closed sets

F; and F, in X, 3 two disjoint open sets G; and G; in X such that F;€ G, and F,€G,.

Example 1.2:

Normal spaces.

1) (R,S,) is a normal space.

Let F; and F, be any two disjoint closed sets in (R, J,,).

FiNF, =@ = F, S X— F,.Thusforeach x € F;,3 r > 0 such that

(x—7r, x+r) € X— F, (since X — F, is an open set in X).
T T
Hence (x—z,x+5)nF2 =0.

LetG = U (x—g, x+g).

X€EF1

Then G € J, and F; S G (1)

Similarly foreach x € F, ,3 r > Osuchthat(x—g, x+£) c X— F,.

Hence (x—g, x+£) nF =0. LetHzxgz(x—g, x+£).

Then H € Jand F, € H 2)

Only to prove that G N H = Q.

letae GNH. aeG =a € (x—g, x+§),f0rsomexEF1.

a€H = a € (y—g,y+§) For some y € F, but then

|x —al < and |y—a|<§.

Hence |[x —y|l=Ix—a+a—-y| <|x—al+|y—aq]

Asrand e are real numbers, they are comparable.
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Casel:Let r < €.
Then |x — y| < €. Hence x € (y — €,y + €) By the choice of €,
(y—€y+€) €CX—F,. Hence x€E(y—€,y+€) = x €X—F, = x & F;; whichis
contradiction.
Case2.Let e < 7.
Then |[x —y| < r.Hence y € (x —1r,x +71).
By the choice of 7, (x — 7, x+1r) € X —F, ,willimplyy € X —F,ie.y & F, ; which is
contradiction.
Hence G N H = Q.
Thus given two disjoint closed sets F; and F, in R, 3 two disjoint open sets G and H such that

F; € G and F, € H. Hence (R,S,) is a normal space.

2) LetX ={a,b,c}and J = {@, X, {a},{b}, {a, b}} Then (X,S) is a topological space.
The Family of closed sets X is given by K = {@, X, {b, c},{c, a}, {c}}

Each pair of disjoint closed sets contains @. Hence the space is (X, J) a normal space.

Non - normal spaces.

1) Let X={(x,y) | x,y € R,y > 0} .For each (p,a) € X define

Ne(p,a) = {(x,y) | /(x —p)? + (y — @)% < € where € < q,if a > 0}
Ne(,0) = {(x,9) | y(x —p)2 + (y — @)% < € where € > 0}

Define for each (p,a) € X,
Ne(p,a) ={(,y) €X | Jx—p)*+(y—a)2 <€}, ifq>0
Ne(p,a) = {(x,y) € X | J(x —p)2 + (y —a)2 < e } U {(p,0)}

Define

N(p,q) ={Nec(p,a) |e < qandq >0} U {Nc(p,0) | e > 0}
Define B = {N(p,q) / (p,a) € X}. Then B forms a base for some topology J on X.

Let F = {(p,0) | p is arational} and K = {(p, 0) | p is a irrational}.
Then F and K are disjoint closed sets in X.As there do not exist two open sets G and H such that

FCS G, K<cHandGnNnH=0,weget (X,3J) is not a normal space.
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§2 Characterizations and properties of normal spaces

Theorem 2.1: A topological space X is normal if and only if for any closed set F and an open
set G containing F, there exists an open set H such that F € H C H cG.

Proof: Only if part

Let X be a normal space. Let F be a closed set and G be an open set such that F € G. Then

X —Gisaclosed set and FN (X — G) = @. As X is normal, 3 open sets H and K in X such that
FEH, X-GESKad HNK = Q.

HNK=0 = H S X—Kand X—-GSK =X—-KCG.

Hence H € X — K < G.

Therefore H S X — K and X — Kisaclosedset= H € X—K =X — K.

Hence HE G or X — K < G. Thus 3 open sets H in X such that

FCHCHCG.

If part

Assume that for any closed set F and an open set G containing F, there exists an open set H such
thaa FSHCSH CG.

To prove that (X, , J,) is normal. Let F and K be disjoint closed sets in X.

FNK=0 = FcX-K.

As F is a closed set and X — K is an open set , by assumption 3 open sets H in X such that,
FCHCHCX—-K Weget KSX—H.

Define G =X —H. Thus 3 G,H € S suchthat F € H,K € G and

H N G = @. But this shows that X is a normal space.

Theorem 2.2: A topological space (X, J) is normal if and only if for any closed set F and an
open set G containing F, there exist an open set H and a closed set K such that
FCHCKCQG.

Proof: Only if part

Let (X,J) be a normal space. Let F be a closed set and G be an open set in X such that F € G.

By Theorem 2.1, there exists an open set H such that

Page | 207



Normal spaces and T, — spaces

F S H € H € G. Define K = H. Then K is closed set in X. Thus 3 open sets H and a closed set

Ksuchthat FEH S K € G

If part

Assume that for any closed set F and an open set G containing F, there exists an open set H and
aclosed set Ksuchthat FE H € K C G.

To prove that {(x,J) be a normal space. Let F; and F, be any two disjoint closed sets in X.

Then F; NF, =0 = F, €S X—F,

As F;is a closed and X — F, is an open set, by assumption, 3 open set H and a closed set K such
that F; CHCK € X—F,. ThenF, CHandF, € X —K.

Define ¢ =X — K. Then G,H € J suchthat F; S Hand F, € G and G N H = @ . This

shows that (X, J) is a normal space.

Theorem 2.3: Urysohn’s Lemma
A topological space (X, J) is normal if and only if for every two disjoint closed sets F;
and F, of X and closed interval [a, b] , there exists a continuous mapping f : X — [a, b] such
that f[F; ] ={a} and f [F,] = {b}.
Proof: Only if part:
Let (X,J) be a normal space and F;, F, be two disjoint closed sets in X.
I] First we prove that 3 a continuous function f : X — [0, 1] such that
fIFi]={0}and f[F,]={1}FFnF,=0 =F SX-F
As F, isclosed in X, X — F, is open. Hence by Theorem 2.1, 3 an open set G1/2 in X such that

F1 g Gl/z g Gl/z gX_FZ (1)

Again F; € G1 /o , Fyis closed and G1 /o is open and X is normal will imply, 3 an open set say

G1 /a such that ,

F, (;1/4 - (;1/4 - G1/2 (2)
Further G1 /o cX-F, G /o is closed and X — F, is open and X is normal will imply 3 an

open set say G3 /s such that

G1/2 §G3/4 §G3/4 CX-—-F, 3)
From (1), (2) and (3) we get,
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F, < 61/4QT/4Q Gy, S T/Z S Gs, ETMEX—FZ
Continue this process.
Define D = {zﬂn lm=1,2,.;n= 1,2,...} . Then D is a countable set and
forr,s € D with r <s we get,
FS G,€ G.€ G, S G, €CX-F,
Define f: X - [0,1] by
f(x)=1 if x€F,
=inf{reD/x€ G} ifx ¢F,
Obviously, f [F,] = {1}.
If x€ Fy thenf(x)=inf {r/r€D}=0 (Sincex € G,,V r €D inthis case)
Hence f [F;] = {0}.
To prove that f is continuous.
Let (c,d) < [0,1]. To prove that £~ ((c,d)) € s.
Now x € f1((c,d) = f(x)€e(cd)
= c< f(x)<d
= 0<c<f(x)<d <1
Find p,q €D suchthat, 0 <c <p<f(x)<q <d <1
Nowp€Dand p <f(x) = x & G,.
Further g € Dand f(x) <q = x€ G,
Thus when p <x < g, x € G; — G, . This shows that f"*[(c,d)]| € G, — G, .
Similarly if x € G;, x € G, ,then x € G, NG, .
Therefore, b < f(x) <q = f(x) € (c,d).
Hence G, NG, S f~'[(cd)].
Combining both the inclusions we get f™* [(¢,d )] = G, NG, .
As Gq —G_p =Gy N (X—G_p) is an open set in X .
But this in turn shows that f is a continuous map. Thus for disjoint closed sets F; and F, in X,
3 a continuous function f : X — [0,1] suchthat f [F;] ={0}and f [F,] ={1}.
II] To prove that 3 a continuous function h : X — [a, b] such that
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h[F]={a} and h[F,]={b}.
We know that g: [ 0,1 ] — [a, b] defined by g(x) = a + (b — a)x is a continuous
function. As composition of two continuous functions is a continuous function ,
h = gof : X - [a,b] is a continuous function. Further h(x) = g[ f(x)];V x € X.
If x € F;, then h(x) = g[ f(x)] =h(x)=g[0] =a+(h—a).0 =a.
Thus h [F; ]| = {a}.
If x € F,, then h(x) =g[f(x)] =h(x) =g[1] =a+ (b —a).1 =b.
Thus h[F,] = {b}.
If part:
Let (X, ) be a topological space such that for any two disjoint closed sets F; and F, in
X, 3 a continuous function f: X — [0, 1] such that f [F, ] = {a} and f [F,] = {b}.
To prove that (X, ) is normal.
Let F, and F, be any two closed sets. By assumption 3 a continuous function f : X — [0,1]

such that f [F;] = {a}and f [F,] ={b}.

As|a ,b;a and ( =2 ,b|areopenin[ a,b]and f is continuous, we get
2 2

a a

F, C f—l[[a,”z;“)] and F, C [(”2;“ bl

This shows that (X, ) is normal.

ft [[ a, =2 )] and f~1 [( bra ,a] ] are open in X. Further they are disjoint and

Theorem 2.4: Any compact, regular space is normal.

Proof:-Let (X, J ) be a compact, regular space. Let F and K be any two disjoint sets in X. As X
is compact, K is a compact subset of X (see Unit 6). Thus F is a closed subset of X and K is a
compact subset of X with F N K = @. As X is regular space, 3 disjoint open sets G and H such
that F € G and K < H (see Unit 15). But this shows that (X, J ) is a normal space.

Remark: Every regular space need not be normal but a compact, regular space is a normal

space.

Theorem 2.5: Compact, Hausdorff space is normal.
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Proof:-Let (X,J ) be a compact, T, — space. Let F and K be any two disjoint closed sets in X.
X being T , 3 two disjoint open sets G and Hin X suchthat F € G,K SHandGNH =0Q

(see Unit 14). Hence X is normal.

Remark: A compact space need not be normal but a compact, Hausdorff space is normal and a

compact regular space is normal.

Theorem 2.6: Every regular, Lindelof space is normal.

Proof: Let (X, J ) be a regular, Lindelof space. Let F and K be any two disjoint closed subsets of
X.Fixupany x € F. Thenx ¢ K = x € X — K and X — K is an open set in X.

As X is a regular space, 3 open set G, in X suchthat x € G, € G, € X — K.

Hence F=U {x} c UGx.

X€EF X€EF

This shows that {G, }, ¢r forms an open cover for F . As X is a Lindelof space, and F is a closed
subset of X, we get F is a Lindelof space.

Hence the open cover {G, }, ¢ of F contains a countable sub cover.

LetFEUGx.
n=1

In the same way we can find a countable cover {H,};cy of K.

n n

Define U, = G, — U(E) and V, = H,, — U(El)

i=1 i=1

Then U, and V,, are open sets in X for each n.

Define U = U U, and V = UVn
n=1 n=1

Then U and V are open sets in X suchthat F €U and K SV and UNV = Q.

Hence (X, ) is a normal space.

Corollary 2.7: Every regular, second axiom space is normal.
Proof:- Every second axiom space is a Lindelof space. Hence by Theorem 2.6 we get every

regular second axiom space is a normal space.
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Theorem 2.8: Being a normal space is a topological property.

Proof:-Let (X, J ) be a normal space. Let (Y, J*) be any T-space and Let f : X — Y be a
homeomorphism.

To prove that Y is normal.

Let F* and K* be any two disjoint closed sets in (Y, J*). f : X — Y being continuous,
fF*] and f~1[K*] are two disjoint closed sets in (X, ). As X is a normal space ,3 two
disjoint open sets G and H in X such that f71[F*] € G and f~1[K*] € H. As f is an open
map. f(G) and f(H) are open sets in Y. Further F* € f(G) and

K*< f(H)and f(G) n f(H) =f(G nH) = f(@) = @. Thus any two disjoint closed sets F

and K in Y can be separated by disjoint open sets in Y. Hence (Y, J*) is a normal space.
Corollary 2.9: Every closed continuous image of a normal space is normal.

Theorem 2.10: Closed subspace of a normal space is normal.

Proof:- Let (X ,J ) be a normal space. Let (Y, J*) be a closed subspace of (X, J ). To prove that
(Y,3*) is normal. Let F* and K* be any two disjoint closed sets in (Y, J*).

Then F* =FNnY and K* = K NY for some closed sets F and K in X (see Unit (4)). AsY isa
closed subset of X, F* = F NY is a closed subset of X. Similarly, K* is a closed subset of X.
Further F* N K* = @ and (X, 3 ) is a normal space will imply the existence of two disjoint open
sets Gand Hin X suchthat F* € Gand K* € H .

Butthen G* =G NY and H* = H NY are disjoint open sets in (Y, J*) such that F € G* and

K € H*. Hence (Y, ") is a normal space.

Remark:- Subspace of a normal space need not be normal. Hence being a normal space is not a

hereditary property. But by Theorem 2.10, being a normal space is closed hereditary.

§3 Definition and Properties of T4 spaces

Definition 3.1: A topological space which is both normal and T, is called a Ts-space.

Theorem 3.2: Every Compact, Hausdorff space is a T4 — space.
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Proof:- Every Compact, Hausdorff space is a normal space (see Theorem 2.5)
and every Hausdorff space is a T1 — space (see Unit 14). Hence Every Compact, Hausdorff space

is a T4 — space.

Theorem 3.3: Every T, — space is a T3 — space.
Proof:- Let (X ,J ) is a T, — space. To prove that (X ,J ) is a regular space. Let F be any closed
setinX and x & F. As (X ,J ) is a T; — space, {x} is a closed set in (X, ).
x¢F = {x}nF=20
As X is a normal space,3 G,H € J suchthat {x} S G, FSH and GNH = 0.
But this in turn implies that X is a regular space. As X is a regular, T; — space.

We get X is a T3— space.
Corollary 3.4: Every T4 space is a regular space.

Theorem 3.5: Being a T, - space is a topological property.
Proof: We know that the property of being a T; — space is a topological property and the
property of a space being a normal space is also a topological property. Hence the property of

being a T, — space is a topological property.

§4 Solved examples
1) Show that any metric space is normal.
Solution: Let (X, d) be a metric space and let  be the topology induced by d on X.
To prove that (X, ) is a normal space.Let F be any closed set and G be any open set in
X suchthat F € G .As G is open, for each x € F 3 (> 0 such that S(r, r4) € G.
Define H = U S(x+r1y/2)

XEF

Then H is an open set in X and F € H .Further,

E=U S (x + Iy /2)

XEF
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= |JseFrn

X€EF

c U S(x+ry)

X€EF

C G (By Construction)

Thus given a closed set F and an open set G with F S G, 3 an open set H such that

FSH S H S G.Hence (X,3 ) is a normal space(see theorem 2.1).

2) Give an example of a normal space which is not regular.
Solution:-Let X={a,b,c} and J = {@, X, {a}, {b}, {a, b}} Then < x, T > is a topological
space.
I) (X,3J)isnotregular.
The Family of closed sets »# = {@, X, {b, c}, {c,a},{c}} For a & {b, c} ,there do not exist
two disjoint open sets one containing a and other containing {b,c}.
Hence < x,J > is not a regular space.
II) (X, ) isanormal space.
The pair of disjoint closed sets contains @.Hence the space is a normal space.

Thus every normal space need not be a regular space.

Remark: This space (X, ) is normal but it is not a Ti-space (Since {a} is not a closed set in
X).Hence this space is not a T4-space.Thus this example also shows that every normal space

need not be a T4-space.

3) Give an example to show that subspace of a normal space need not be normal.
Solution: Let (X, J ) be any discrete T-space with X as an uncountable set.
Let X] = X; U {«} be any point compactification of X;.

Let (X,3J ) be any discrete topological space with X, as an infinite set.

Let X; = X, U {f} be one point compactification on of X,.
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Define X = X; X X, . Let § denote the product topology on X. The product

space (X ,J ) is a compact space as X; and X; both are compact spaces. The product
space (X ,J ) is a T»-space. Hence the product space is a normal space (see Theorem 2.5)
Define Y = X — {a, $}. Consider the subspace (Y,J*) of (X,3).

Then A = {(a,y) | y € X} and B = { (x,6) | x € X, } are disjoint closed sets in X.

As these disjoint closed closed sets are not contained in any disjoint open sets in (Y, J*)
we get (Y, J*) is not a normal space. Thus this example shows that subspace of a normal

space need not be normal.

Give an example of a regular space which is not normal.

Solution: Niemytzki’s space is a regular space but not normal.

Show that every T3 space need not be a T4 space.
Solution: Let X={(x,y) | x,y € R, y > 0}
For each (p,a) € X define,

Ne(p,a) = {(x,y) |\/(x—p)2 + (y—a)? <e where e <gq,if a> O}

Ne(,0) ={(x,y) | /(x —p)* + (y — @)% < e where € > 0}
Define for each (p,a) € X,

Ne(p,@) = {(6,y) | €XJG—pP ¥ G- <€), if >0
Ne(p,a) ={(x, ) eX | Jx—-p)*+ G —a)2 <e}u{(p,0)}

Define

N(,q) ={Nc(p,a) |[e<qandq >0}

U {Ne(p,0) | e > 0}

Define B ={N(p,q) | (n,a) € X}
Then B forms a base for some topology 3 on X.
(X,3)isaTsspace.
Let F = {(p,0) | p is a rational} and K = {(p, 0) | p is a irrational}
Then F and K are disjoint closed sets in X. As there do not exists two open sets G and H

suchthat F € G ,K € Hand G N H = @, we get (X,J ) is not a normal space and
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hence (X, J) is not a T4 space. Thus every T3 space need not be a T4 space. T4 space This

space is called Niemytzki space.

Remark:- This example also shows that

1.Subspace of a T4-space need not be a T4-space.

2.Subspace of a T4-space need not be a normal space.

6)

Exercises

Give an example to show that every normal space need not be a T4-space.
Solution:-Let X={a,b,c} and J = {(Z), X, {a},{b},{a, b}}. Then (X, ) is a topological
space.

(X, ) is a normal space as the pair of disjoint closed sets contains @ but it is not a
T;-space (Since {a} is not a closed set in X). Hence this space is not a T4-space.

This example shows that every normal space need not be a T4-space.

I) Prove or disprove the following statements.

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)

Being a normal space is a hereditary property.

Being a normal space is a closed hereditary property.
Every normal space is a T4-space.

Every regular space is a Ts-space

Every Tsspace is a T4-space

Subspace of a T4-space is a normal space.

Subspace of a T4-space is a T4 space.

Every normal space is regular.

Every regular space is normal.

Being a normal space is a topological property.
Being a T, space is a topological property.

Every T, space is a regular space.

Every Compact, Hausdorff space is a T4 — space.
Every Compact, Hausdorff space is a normal space.

Every Compact space is a T4 — space.
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16) Every Hausdorff space is a normal space.

17) Every closed continuous image of a normal space is normal.
18) Every continuous image of a normal space is normal.

19) Every Compact, regular space is a normal space.

20) Every second axiom regular space is a normal space.

IT) Show by an counter example that a subspace of a normal space need not be normal
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Unit 17

Completely normal spaces and 7_ - spaces

§1 Definition and Examples.
§2 Properties and characterizations.

§3 Ts - spaces.
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Unit 17: Completely normal spaces and 7_ - Spaces

§1 Definition and Examples
Definition 1.1: A topological space (X, J) is said to be completely normal if it satisfies the
following axiom.

If A and B are two separated subsets of X, then there exists two disjoint open sets, one

containing A and the other containing B.

Examples 1.2:

1) Any discrete topological space is completely normal.

2) Every metric space is completely normal.
Let (X, J) be a metric space and Let  be the topology introduced by d. To prove that
(X, ) is completely normal. Let A and B be separated sets in X.
Therefore AN B=@ and BN A=0.
Hence a€A = a¢B = 31, >0 suchthatS(a,r,) NB = Q.
Similattyh€EB = b ¢A = 31, >0 suchthatS(h,r,) NA = Q.

Define G=U{S(a,ra/2)| aEA} and H=U{S(b,rb/2)|bEB}

By the definition of §, S(a, r) € V x € X and r > 0. We get G, H are open sets.

Further aES(a,ra/Z) VaeAdA = A=U{a} c U{S(a,ra/z) /aEA}

acA

= A CG.
Similarly B € H .
Claimthat GN H=0.

Let GN H+®. Henced zeEGNH.zZzEG = z€ S(a,ra/z) for some a € A.

ZEH = zES(b,rb/Z) for some b € B.

Hence d(a, z) < ras, and d(b,rb/z) < Ty, -
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Hence d(a, b) < d(a,z)+ d(z,b)
< T‘a/2 + Tb/z.

<1,
But d(a,b) <7r, = beS(a,r,)
= beS(a,r,)NB=0; a contradiction.
Hence G N H = Q.
Thus given two separated sets A and B in X, 3 disjoint sets G and H such that
A S G,and BCS H.

Hence X is a completely normal space.

§2 Properties and characterizations

Theorem 2.1: Every completely normal space is normal.

Proof:

Let F; , F, be any two disjoint closed sets in a completely normal space (X, ).

AsF,=F,andF,=F,wegetF,NF,=0 = F,n F,=@¢ and F;, N F, = .

Thus F; and F, are separated sets in X. Hence by definition, 3 disjoint open sets G and H such

that F;, € G and F, € H. This shows that (X, J) is normal.

Remark: Converse of the Theorem 2.1 need not be true.

1.e. Normal space need not be completely normal.

For this consider the following example.
LetX ={a,b,c,d}and § = {@,{a},{a,b},{a,c},{a, b, c}, X} . The family of closed sets is
given by, X = {@,{b, c,d},{c,d}, {b,d},{d}, X}.

(I) To prove that (X, J) is normal.

ey

Let A and B be any two disjoint closed sets in X. Then one of them must be empty.
Let A=0Q .TakeG=@andH =X.ThenG,HEJ, GNH=0, ASGand B € H.
Hence (X, J) is a normal space.

To prove that (X , J) is not completely normal.

By Theorem 2.3, it is sufficient to prove that there exists a subspace (Y, J*) of (X , J)
such that (Y, §*) is not normal.

Define Y = {a, b, c}. The relative topology J* onY is given by,
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3 =1{0,{a} {a b} {a,c} Y}

Here, KX* = {@,{b,c},{c},{b}, Y} denotes the family of closed sets in (Y , J*)

{b} and {c} are disjoint closed sets in Y which are not separated by disjoint open sets
in (Y ,3*) . Hence (Y ,J*) is not normal.

As there exists a subspace (Y, J*) of (X ,3J) such that (Y, J*) is not normal.

Hence (X, J) is not completely normal. [A normal space is completely normal if and

only if each subspace of it is normal]

This example also shows that any T4 — space need not be completely normal.

Theorem 2.2: Being a completely normal space is a hereditary property.
Proof:- Let (X ,J) be a complete normal space and Let (X*, J*) be its subspace. To prove that
(X*, ") is a completely normal space.

Let A and B be any two separated sets in (X*, J*).
Claim that A and B be are separated subsets of (X,J). A and B are separated in (X*, J*).
= ANC(B)=0and B n C*(4) =0.
= AN[CB)N X*]=0 andBNn[CA)N X*]=0 .
= [AnX]InCB) =0 and [B N X*|NnC(4) =0.
= A and B are separated sets in X.
As X is a completely normal space,3 G,H € J suchthat A € G,BS HandG NH = Q.
DefineG* =A NX*and H* =H NnX*. ThenG*,H* € F".
G-NH*=GNHN X*=@, AS G*and B € H*. This shows that (X*,J*) is a
completely normal space.

Thus as any subspace of a completely normal space is completely normal, the result

follows.

Theorem 2.3: A topological space (X ,J) is a completely normal space if and only if every

subspace of X is normal.

Proof: -¢ Only if part’ follows by Theorem 2.1 and Theorem 2.2.Hence to prove ‘if part’ only
Let (X ,J) be a topological space such that each subspace of X is normal. To prove

(X, ) is completely normal.
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Let A and B be any two separated setsin X. Then ANB =@ andBNnA=0.
DefineX*=X—[A nB] = (X —-A4)n (X — B).
Let 3* = {G N X* | G € T} be the relative topology on X*. As A is closed in X, AN X* is
closed in X*. Similarly, B N X* is closed in X*.
Further (AN X*)N(BNn X*)=(An B)nX*
= AN BNn[X-—An B)]=9.
Thus AN X* and B N X* are disjoint closed subsets of X*. As X* is normal,
3 G, H* € ¥ suchthat (AN X*)S G*and (BN X*) S H* and G*Nn H* = Q.
As G', HEZJZ = G"=GN X" and H* =HnN X* forsomeG,H € .
Claim that A € G and B<S G .
1 AnB=g¢ = AC(X-B)
AnBcSB = X—-[An B] 2(X-1B).
= X*2(X-B)2 4
Thus A € X*, Similarly we get B € X™.
2] AnX* = An[X-(An B)]
= ANn[(X—-A)uU (X - B)]
= [An[x-AlJU[An[X - B]]
= QUA = A
[ACA = An[X-A] = 0.
ANB=0 = Ac(X—-B) = A(X-B) =4
Thus A N X* = A, Similarly we get B N X* = B.
3] AcX® = A=AnX" € AnX* € G S G
Thus A € G, similarly we get B & H.
Thus for given any pair of separated setsin A and Bin (X,J)3 G,H € J suchthatA € G
andBS€ H and G N H = Q.

Hence (X, J) is a completely normal space.

Example: Let X={a,b,c,d}andJ = {0,{a},{a b}, {a,c},{abc} X}
Take X* = { a, b, c} then the relative topology J* and X* is given by as follows,
I =1{0,{a},{a,b},{a,c},X*}. {b}and {c} are disjoint closed sets in (X*,T*).
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As there are no disjoint open sets G and H in (X*, J*) such that {b} € G and {c} € H.
We get (X*,J*) is not a normal space. Hence by the Theorem2.3 , (X, J) is not a completely

normal space.

Theorem 2.4: Being a completely normal space is a topological property.
Proof:- Let (X,3J) be a complete normal space. Let (X*,J*) be any topological space and let
f:X — X" be a homomorphism. To prove that X* is a completely normal space.
Let A and B be any two separated sets in X*. Hence AN B = @ and B N A.
Since f is continuous f~1[A] € f~'[A]and f-1[B] € f'[B].
Hence f' [Al nf~'[B] € f'[Aln f'[Al=f""[An B]l=f""d]= 0.
Therefore, f~HA]l nf~[B]= 0 (D)
Similarly we can show that f~1[A] N f~[B]= @ )
From(1) and (2) we get f1[A] and f ~1[B] are separated sets in X. As X is a completely

normal space 3 disjoint open sets say G, H in X such that f™1[A] € G and f~1[B] € H.

As fisonto, A= f[ f'[A]] and B = f[f~'[B]].

Hence A = f[f7*[A]] € f(G) and B = f[ f~'[B]] < f(H).

Further f(G) N f(H) = f(GNH) = @ (Since f is one — one).

Further f is an open map = f(G), f(H) € J".

Thus for two disjoint separated sets A and B in X* there exist f(G), f(H) € J* one containing A
and the other containing B.

Hence (X*,J*) is a completely normal space.

As homeomorphic image of a completely normal space is completely normal, the result follows.

Theorem 2.5: Every regular, second axiom space is completely normal.
Proof: Let (X, J) be a regular, s.a.s. To prove that (X, J) is completely normal. Let A and B be
separated setsin X.ie. ANB =0 and BNA=0.

xX€EA = x¢B = x€X-B = 3G, €5.

suchthatx € G, € G, S X —B.
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Hence {G, | x € A} will form an open cover for A. As X is s.a.s. the open covering
{G, | x € A} of A can be reducible to a countable sub-covering (See Unit (9) Theorem 1.8)

Denote it by { G;};cy- Similarly for B 3 a countable sub-covering { H; }icn-

Define G = U [Gn— UE and H = U H, — U(Z]

neN isn neN isn

Define U, = Gn—UE VneN and V, = Hn—UEL VneN

isn isn

Then for each n, U,, and 1}, are open sets. Hence U U, = G and U V, = H are open.
ilEN ilEN

FurtherU, NV, =@ Vne€Nandk €N.

Hence G N H = @ (by the definition of U,, and 1}, ).

Further A € U G, and G, € G, SX—B Vn implyAd CG.

neN

Similarly B € G. Thus for separated sets A and B of X, 3 disjoint sets G and H such that
A CSG and B CG.

Hence X is a completely normal space.

§3 Ts - spaces

Definition 3.1: A Ts- space is a completely normal, T;- space.

Theorem 3.2: Every Ts- space is a T4 — space.

Proof: - As every completely normal space is normal we get every Ts — space is a T4- space.

Remark:- Converse of Theorem3.2 need not be true.
r.e. every Ty4- space need not be a Ts- space.

See remark after Theorem 2.1.
Theorem 3.3: Being a Ts- space is a topological property.

Proof: - We know that being a completely normal space is a topological property and being a

T;- space is a topological property. Hence being a Ts-space 1is a topological property.
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Theorem 3.4: Being a Ts-space is a hereditary property.

Proof: - we know that being a completely normal space is a hereditary property. Also being a

T, — space is a hereditary property. Hence being a Ts — space is a hereditary property.

Exercises

Prove or Disprove the following statements.

1)
2)
3)
4)
5)
6)
7
8)

Every completely normal space is normal.

Every normal space is completely normal.

Any subspace of a completely normal space is completely normal
Any subspace of a completely normal space is normal.

Being a Ts — space is a hereditary property.

Being a Ts — space is a topological property.

Every Ts — space is aT4 — space.

Every T4 — space is aTs- space.
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Unit 18

Completely regular spaces
and'T;, Spaces

§1 Definition and examples.
§2 Characterizations and properties.

§3 T,1 spaces or Tichonov spaces.
2

§4 Solved Problems.

Page | 229



Completely reqular spaces and Ty spaces

Page | 230



Completely reqular spaces and Ty spaces

Unit 18: Completely regular spaces and T, spaces

§1 Definition and examples

Definition 1.1: A topological space (X, J) is said to be regular if it satisfies the following axiom.
“If F is a closed subset of X and x is a point of X not in F, Then there exist a

continuous function f: X — [0,1] suchthat f(x) =0and f(F) = {1}.

Examples 1.2:
1) Fort’s space is a completely regular space.
2) Every metric space is a completely regular space.

3) (R, 3, ) is a completely regular space.

§2 Characterizations and properties
Theorem 2.1: A topological space (X, J) is completely regular if and only if for every x € X and
every open set containing x , there exists a continuous mapping f:X — [0,1] such that
fx)=0andfly]=1, Vy€eX—G.
Proof:- Only if part.
Let X be a completely regular x € G where G is an open set in X. Then X-G is a closed

set in X with x € X — G. As X is completely regular, 3 a continuous function f: X — [0,1]
such that f(x) =0and f(X —G) = {1}
i.e. f(y)=1foreachy € X —G.
If part.
Assume that for every x € X and every open set containing, there exists a continuous mapping
f:X — [0,1] suchthat f(x) =0 and f[y] =1, Vy€e X —G.

To prove that X is a completely regular space. Let F be a closed set and x & F.
Then X — F is an open set containing x. Hence by assumption, 3 a continuous real valued
function
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f:X —[0,1]suchthat f(x)=0andf(X—-G)=1 VyeX—[X—F]
i.e.f(x)=0and f(y) =1,Vy€EF.

Hence ( X,3) is a completely regular space.

Theorem 2.2: Let (X, J) be completely regular space. Let N be neighborhood of x € X.
Then 3 a continuous function f:X — [0,1] suchthat f(x) =0and f(y) =1, VyeX —N
and conversely.
Proof:- As N is neighborhood of x € X, 3 an open set G in X such that x € G S N.
Hence x € X — G, where X — G is a closed set in X.

As X is completely regular, 3 continuous function f: X — [0, 1] such that
f(x) =0 and f[X —G] = {1}.
AsGEN = X—N cX—-G weget f(y)=1foreachy € X —N.
Conversely, assume that 3 a continuous function f:X — [0,1] such that
fx)=0andf(y)=1, VYyeX—N
To prove that (X,J) be completely regular space. Let G be an open set in X such that x € G.
As G is neighborhood of x € X, 3 a continuous function f: X — [0, 1] such that
fx)=0andf(y)=1,VyeX—aG.
Hence by Theorem 2.1, (X, J) is a completely regular space.

Theorem 2.3: Let (X, J) be a completely regular space.Let Fis a closed setin X and x & F .
Then 3 a continuous function f: X — [0, 1] such that f(x) = 1 and f(F) = {0}.

Proof: Let x € F and F be a closed set in X. As X is a completely regular space 3 a continuous
function g: X — [0,1] such that g(x) = 0and g(F) = {1}.

Define the function g: X — [0,1] by f(x) =1 —g(x), Vx € X.

Then f is a continuous function and f(0) =1—g(0) =1—-0 =1 and
f)=1-g(1)=1-1=0.

Thus 3 a continuous function f: X — [0, 1] such that f(0) = 1 and g(1) = 0.

Theorem 2.4: Being a completely regular space is a topological property.
Proof: - Let (X, J) be a completely regular space. Let (X*, J*) be any topological space and

f:X — X* be a homomorphism. To prove that X* is a completely regular space. Let F* be a
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closed setin X* and x* & F* (x* € X*).
As fis onto, 3 x € X such that f(x) = x*. As fis a continuous function, f~1[F*] is a
closed set in X.
x*¢ F* = x*¢ f71[F].
Hence X being a completely regular space, 3 a continuous function g: X — [0, 1]
such that g(x) = 0and g[f~1(F*)] = {1}
Thus g[f~'(x)] =0 and g[f~'(F)]= {1}
= [gof T (x) =0 and [gof'1(F)={1}
Now go f~1:X* — [0,1]
f~1: X* — X is a continuous as f is a homeomorphism.
Hence g o f~1is a continuous map (see Theorem ... in Continuous function)
Thus for x* € F* 3 a continuous function go f~1:X* — [0, 1] such that
[gof™'](x)=0 and [go f~'](F*)={1}.
Hence X™ is a completely regular space. As homeomorphic image of a completely regular

space is a completely regular space, we get being a completely regular space is a topological

property.

Theorem 2.5: Being a completely regular space is a hereditary property.
Proof: - Let (X,J) be completely regular space and Let (X*,J*) be its subspace. To prove that
(X*,3*) is completely regular. Let F* be any closed set in X* and x* ¢ F* (x* € X*).
As F* is a closed set in X*,3 a closed set F in X such that,
F*=Fn X x*"¢ F*¥ = x*¢ F* (x*€ X*).
As (X, J) is a completely regular space and x* € F 3 a continuous function f: X — [0,1]

such that f(x*) = 0 and f(F) = {1}.

Let g denote the restriction of f to X*. Then g is a real valued continuous function
defined on X* such that g(x*) = 0 and g(F*) = {y}.

Hence X* is a completely regular space. Thus subspace of a completely regular space is a
completely regular space. Hence the property of being a completely regular space is a hereditary

space.
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Theorem 2.6: Every completely regular space is regular.
Proof: Let (X, J) be a completely regular space. To prove that (X, J) is regular. Let F be a closed
setand x € F (x € X). A's X is a completely regular, 3 a continuous function f: X — [0,1]
such that f(x) = 0 and f( F) = {1}. We know that (R, J,,) is a Hausdorff space.
Hence [0,1] (being a subspace of (R, J,,)) is a Hausdorff space.
As0 = 1in[0,1],3 disjoint open sets G and H in [0,1] such that 0 € G and 1 € H.
But f:X — [0,1] is continuous = f~1(G) € J and fTL(H)ES.
Furtherx € f~1(G)and F € f~1(H). Thus for x € F, 3 disjoint open sets f~1(G)
and f~1(H) in X such that x € f71(G) and F S f~1(H).

Hence (X, ) is a regular space.

Theorem 2.7: A normal space is completely regular if and only if it is regular.
Proof: - As every completely regular space is a regular space (see Theorem2.6), the proof of
‘only if “part follows immediately,
To prove if part, assume that X is a normal, regular space. To prove that X is completely
regular space. Let F be a closed set and x € F (x € X). Then X — F is an open set containing x.
As X is a regular space, an open set G in X such that x € G € G S X — F (see Theorem
I in ... Regular spaces /T3 — space).
As G SX—F weget GNF = Q.
Thus as G and F are disjoint closed sets in a normal space X. Hence 3 continuous function
f:X —[0,1] suchthat f(G) = {0}and f(F) = {1} (by Urysohn's Lemma).
Asx € G we get f(x) = 0and f(F) = {1}. Hence X is a completely regular space.

Corollary 2.8: Any compact, T, — space is completely regular.
Proof:- We know that compact, T, — space is both normal and regular (see Theorems ...and ...

T, — space) . Hence by Theorem 2.7, any compact, T, — space is completely regular.
Corollary 2.9: Any compact, regular space is completely regular.

Proof:- We know that any compact regular space is normal (see Theorem ....Normal spaces)

Hence by Theorem 2.7, it is a completely regular space.
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Theorem 2.10: Every locally compact, Hausdorff space is completely regular.
Proof: - Let (X, J) be a countably compact, Hausdorff space. Let (X*, J*) be one point
compactification of (X,J).X* = X U { o} where oo ¢ X and
J*={G € X* | X* — G is a closed, compact subset of X } U .
Claim 1: (X*,J")is a Hausdorff space.
Letx #y in X*.
Casel:-x,y € X andx # y.

As X is a T, — space, 3 disjoint open sets G and H in (X, J) suchthat x € G andy € H
But then G,H € J" and hence in this case x and y are separated by disjoint open sets in X ™.
Case2:- x =0 €X  i.e.x€X andy € X.

As X is a locally compact space and y € X, y is an interior point of some compact
subset say K. Let G be an open set in X such that x € G € K. As K is a compact subset of a
T, — space, K is a closed in X and hence X* — K is open in X*.Thus x € G, « € X — K and G,
X* — K are disjoint open sets in X™.
Thus from both the cases we get (X*, J*) is a Hausdorff space.

Claim 3:- (X*, J*) is a completely regular. As (X*, J*) is a compact, Hausdorff space, it is
completely regular (By Corollary2.7).
Claim 4:- (X, J) is a completely regular. We know that (X, J) is a subspace of (X*,J*) and
(X*,3*) is a completely regular space. Hence (X,S) is a completely regular space (see Theorem

2.4).

§3 T,1 spaces or Tichonov spaces
2

Definition 3.1: Completely regular, T — space is called a Tichonov space or a T,1 space.
2
Theorem 3.2: Every Tichonov space ( T;1 space) is a T3 — space.
2
Proof:- As every completely regular space is regular (Theorem 6), every Tichonov space
(T;1 space) is a T3 — space.
2

Theorem 3.3: Every space T4 — space is a Tichonov space ( T,1 space ).
2

Page | 235



Completely reqular spaces and Ty spaces

Proof: Let (X, J) be a T4 — space i.e. (X,) is a normal T — space. To prove that (X, ) is a
Tichonov space. Let x & F where F is a closed set in X (x € X). As X is a Ty — space, {x} is a
closed set in X.

x¢&F = {x}NF = @. Hence as X is normal , 3 a continuous function f: X — [ 0,1]

such that f({x}) = {0} and f( F ) = {1} (By Urysohn's Lemma).

Thus for x € F,3 a continuous function f: X — [0, 1] such that

f(x) =0and f(F) = {1}

Hence X is a completely regular space.

Theorem 3.4: If x # y in a Tichonov | T;1 space X, then 3 a continuous function such that
2

fO) = f(y).
Proof:- Let (X ,J) be a Tichonov space and x # y in X. As X is a T; — space {y} is a closed set

inX. x #y = x & {y}. X being a completely regular space, 3 a continuous function
f:X — [0,1] such that f(x) = 0and f({y}) = {1}. i.e. f(y) = 1.
Hence f(x) # f(y).

Theorem 3.5: Being Tichonov space ( T;1 ) is a topological property.
2

Proof: - We know that being a completely regular space is a topological property and being a

T, — space is also a topological property. Hence being a Tichonov space ( T,1 ) is a topological
2

property.

Theorem 3.6: Being a Tichonov ( T,1 ) space is a hereditary property.
2

Proof: We know that being a completely regular space is a hereditary property and being a

T, — space is a hereditary property. Hence being a Tichonov ( T,1 ) space is a hereditary
2

property.

§4 Solved Problems

Problem 1: Fort’s space is a completely regular space (T 1 space).
2

Solution: Fort’s space is a compact, Hausdorff space (see ).
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Hence by Corollary2.8, Fort’s space is completely regular.

Again as Fort’s space is a T; — space (being a Hausdorff space ) it is a T;1 space.
2

Problem 2: Define the topology JonR by J = {0, R} U {(a,») | a € R}. Show that (R, )
is not a completely regular space.
Solution:
Il (R,SJ) is normal.

The family of closed sets in R is » = {@,R} U {[a, »)/ a € R}.
Hence A and B are disjoint sets in R, then A = @ or B = @. Hence if A = @, then G = @ and
H = R are disjoint open sets containing A and B respectively. Hence (R,S) is normal space.
IT] (R, ) is not a regular space.

Let F =[1,0).Then F is a closed set in R and 0 € F. As the only open set containing F
is R, we get (R, ) is not a regular space.

Hence form (I) and (IT), (R, J) is not a completely regular space.

Problem 3: Every metric space is a completely regular space.

Solution: Let (X, d) be a metric space and let § denote the topology on X induced by the metric
d. Let Fbe any closed setin X and x € F (x € X). Then{x } N F = @ and {x } is a closed set
in X (Since (X, ) is a T| — space, ( see T — space). As every metric space is normal (see
Normal spaces). By Urysohn’s Lemma, 3 continuous function f: X — [0,1]

such that f({x}) = {0}and f(F) = {1}. Butthen f(x) = 0and f(F) = {1}.

Therefore (X, J) is a completely regular space.

Exercises

I) Let(X,3) be a completely regular space. Show that for any pair of disjoint subsets A and B
such that A is compact and B is closed in X, there exists a real valued continuous function f
on X suchthat f(A)={0} and f(B)={1}.

IT) Prove or disprove the following statements.

1) Every completely regular space is regular.

2) Every regular space is completely regular.
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3)
4)
5)
6)
7)
8)
9)
10)

Completely reqular spaces and Ty spaces

Homeomorphic image of a completely regular space is a completely regular space.
Subspace of a completely regular space is a completely regular space.

A normal space is completely regular if it is regular.

Any subspace of a normal, completely regular is regular.

Any subspace of a normal, regular is completely regular.

Any compact, regular space is completely regular.

Any compact, T, — space is completely regular.

Any countably compact, T, — space is completely regular.
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Unit 19
Product Spaces and Quotient Spaces

§1 Definition and Basic concepts.
§2 Product Invariant Properties.

§3 Quotient topology.
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Unit 19: Product Spaces and Quotient Spaces

§1 Definition and Basic concepts

Theorem 1.1: Let (X, J;) and (Y, J,) be two T-spaces.

XXY={(x,y)|x€eX,yeY}. Let B={G, X G,| G € J; and G, € T}

Then B is a base for some topology on X X Y.

Proof : Obviously, B is a family of subsets of X X Y. As X € J; and Y € J,, we get

X xY =U{B|B € 8B}.

Further let G, X G, € B, H; X H, € Band (x,y) € (G, X G,) N (H; X H,).

Then (x,y) € (G, N G,) X (H, N Hy). As G, N G, € J; and H; X H, € T, we get

(G, N G,) X (H, N Hy) € B. Thus (x,y) € (G; N G,) X (H, N Hy) = (G X H)) N (G, X Hy).
This shows that both the conditions of the Theorem are satisfied. Hence B is base for some

topology Jon X X Y.

Definition 1.2: The topology J defined on X X Y for which
B={GXH|GESJI,and H € J,} is a base is called the product topology on X X Y and the T-

space (X X Y, 3) is called product space, where J is product topology on X X Y.

Theorem1.3: Let (X, J,) and (Y, J,) be two T-spaces. If B, is a base for J; and B, is a base
for J,, then B, X B, is base for the product topology on X X Y.
Proof:
1)B;,S3,,B,€SF, = B, xB,cB.
(2) Let O be any open set containing (x, y) in the product space X X Y . Then as B is base for
,weget, 3G €J; and H € F, such that (x,y) EGXH < O.
Asx€GandG € J;, 3B; € B, suchthatx € B; € G.
Similarly 3 B, € B, such thaty € B, € H.
Thus (x,y) € By X B, € G X H < O.
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As By X B, € B we get, for given (x,y) €0,0 € J I B, X B, € Bsuchthat (x,y) €
B, X B, € O.
Hence from (1) and (2), B is a base for the product topology Jon X X Y.

Probleml1.4: Let X = {a,b,c}, J; ={0,{a}, X}, Y ={p,q, 1, s} and

3 = 0.} Aa} (v, g} {r.sh {p, 7, sk g, 53, 1Y

Find the base for the product topology of X X Y.

Solution: B, is the base for ; , where B, = {{a}, X}. B, is the base for J, , where B, =
{w}.{q}, {r,s3}.

B =B, x B, = {{a} x {p},{a} x {q},{a} x {r, s}, X x {p}, X x {q}, X x {r, s}

:{ {ap)}, {(a, @)}, {(a,1),(a,s)}, {(a,p),(b,p),(c,p)}, }
{(a, @), (b, @), (c,q)}, {(a,7),(b,7),(c,7),(a5s),(b,s),(c,s)}

This family B is the base for the product topology Jon X X Y.

Theoreml1.5: Let (X, ;) and (Y, J,) be two T-spaces. Let (X X Y, J) be a product space. Let
[Ix : X XY —>Xand[][y : X XY — Y be the projection mappings. Then
(I) ]lx and []y are continuous, open mappings.
(II)  The product topology J on X X Y is the smallest topology for which the projections
are continuous.
Proof:
@
1) Jlx:X XY — X. To prove that [[yx is continuous. Let G be any open set in X.
LetG €3, = G xY € J (by definition of ) and hence, [[x*(G) =G XY € J . But
this shows that [[y is continuous.

2) To prove that [[x is open. Let O € J then by definition of ¥ ,

o=|Jlxmiren, 6es,, mes)

(by definition of the base).

Hence,

M:(0) = T [ JiGax a1 aen, ey, e
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= Jimte xmi1aen, Ges, mes

= U{ Gy|1EN,GLETZ }EST, ...(as J, is a topology)
This shows that [y is an open map.
3) Asin 1) and 2) we can prove that [[y is a continuous, open mapping.
(II) Let 3" be any other topology on X X Y such that the projection maps [[x and [[y are both
continuous. To prove that § < J*.

Let O € 3 . Then by definition of 3,
o=|JGixtml s e, 1en

= u{(GanHa)n(XXYH G,€J1,HH€EJ,,LEA,}

= u{(Glxy)n(XXH/l)l 6163111{/16321/16/\1}

= u{l_[)_(l(Gl) nnl?l(Hl) I Gl E31' Hﬂ ESZ IA' EA:}

As for any G, € F;, [[x*(Gy) € I and for any Hy € 3, , [[y*(Hy) € I*, we get,

[Tx*(G) N [Iy*(Hy) € I* . I* being topology on X X Y, we get O € F* .
ThusO €3 = O € J* and hence § € J".
This shows that the product topology J on X X Y is the smallest topology for which the

projections are continuous.

Theorem1.6: For any fixedy € Y, g: X X {y} - X defined by g(x,y) =x, Vx E€Xisa
homeomorphism.
For any fixed x € X, h:{x} XY — Y defined by h(x,y) =y, Vy €Y is a homeomorphism.
Proof: I] To prove that g is a homeomorphism.
(1) g is one-one:
Let, g(xq,y) = g(x,,y) forx,, x, € X.
Thenx; = x; = (x1, ¥) = (xz, y).
But this shows that g is one-one.
(2) g is onto:
Let x € X. Then (x,y) € X X {y} and g(x,y) = x. This shows that g is onto.
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(3) g is continuous:
As[]x : X XY — X is continuous and g is the restriction of []x to the subspace X X {y},
we get, g is a continuous mapping.

(4) g is open:
Let O be any open set in X X {y} . Then 3 an open set O in X X Y such that
O'=0nXx{y).

asO=| Jiaix | Ges,, Hes,,1en
We get,
g(0") = glOn (X x {y}]

=g|( UG xH)n@&xON| GreSy, HieSp, 1€ )]

=g JLGn0x 0O G eS, H €3, 4 € )

=g|| JGxthin D] 61631,H,1€32,/1€A}]

= gl xHyn{yD]| GL€J1, H€J,, 1€}
=| gl x{y}]| GL€J, yEH, A €A}

= u{g[GAXQ]I 616311}]61-11:/16/\}

= u{Gl | G, €31} ...(bydefinitionof g)

€ 31-
This shows that g is open.

From (1) to (4) we get, g is homeomorphism.
Hence X X {y} is homeomorphic with X for any fixed y € Y.
II] As inI] we can prove that {x} X Y is homeomorphic with Y under the homeomorphism

h:{x} xY — Y defined by h(x,y) =y, Vy €Y.

§2 Product Invariant Properties

Theorem 2.1: Let (X, J;) and (Y, J,) be two T-spaces. Let (X X Y, J) be a product space. The

product space X X Y is connected if and only if both X and Y are connected spaces.
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Proof: Only if part.

Let X X Y be a connected space.

To prove that X and Y both are connected spaces.

We know that [[x : X X Y = X is continuous, onto, open mapping.

Hence X X Y is connected = X is connected.

Similarly, as [[y : X X Y = Y is continuous, onto, open mapping, X X Y is connected implies Y
is connected.

Hence, if the product space X X Y is connected then both X and Y are connected.

If part.

Let X and Y be connected spaces.

To prove that product space X X Y is connected.

Let (x4, y,) and (x5, y,) be distinct points of X X Y. As {x,} X Y is homeomorphic with Y (see
Theorem ...). We get {x;} X Y is connected space (see Theorem ...). Similarly X X {y,}is a
homeomorphic image of X (see Theorem ...). As Y is a connected set we get X X {y,} is
connected set(see Theorem ...). Further as (xq,y,) € ({x} X Y) n (X X {y,}), we get,

{x1} xY)n (X x {y,}) # 0. Hence by Theorem ..., we get, ({x;} X Y) U (X X {y,}) isa
connected space.

Thus for(xy, y;) # (x5, ¥,) in X X Y, 3 aconnected set ({x,} X Y) U (X X {y,}) containing

them. Hence X X Y is a connected space.

Theorem2.2:- Let (X, ;) and (Y, J,) be two topological spaces. Let (X X Y, ) be their product
space. The product space X X Y is compact if and only if each of the spaces is compact.

Proof:- Only if part.

Let X X Y be a compact space.

We know that continuous image of a compact space is compact.

As[]x : X XY = X is continuous, onto, open mapping, we get X is compact (see Theorem ...).
Similarly, [[y : X X Y — Y is continuous, onto, open mapping. Hence Y is a compact space.

If part .

Let X and Y be compact spaces. To prove that X X Y is a compact space. It is enough to prove

that any basic open cover of X X Y has a finite sub-cover.
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Let {G; X H; | A € A} be any basic open cover for X X Y. Then {G; X H; | A € A} is also a basic
open cover for {x} X Y, for some fixed x € X.
As {x} X Y is a homeomorphic with Y and Y is compact, we get {x} X Y is compact.

Hence 3 finite sub-cover for the given basic open cover for {x} X Y.

n
Let {x}xY C U(GM X Hj,).

=1

Define G(x) =

L

n
Gy, - Then G(x) €J; Vx € Xand x € G(x).

=1

Consider the family {G (x) x Hy | 1<i< n}. Then this family forms a finite open cover

for {x} x Y.

x € G(x)and G(x) € 3y = {G(x)},ex forms an open cover for X. As X is compact this open

cover of X has a finite sub-cover.

m
LetX = U G(x;) .
j=1

Now for each G(xj) , find lej such that G(xj) c lej Vj, 1<j<m, A €A
Find corresponding H,lj , Aj € Aso that lej X H,lj € {Gy X Hy | 1 €A}

Thus the basic open cover {G; X H; | A € A} of X X Y has a finite sub-cover
{6y, xHy | €N, 1<) <m}

Hence X X Y is a compact space.

Theorem2.3: The product space (X X Y, ) is a first axiom space iff both (X,J;) and (Y,J,)
are first axiom spaces.
Proof: Only if part.

Let (X X Y,3J) be a first axiom space. We know that the projection map [[x : X XY - X
is a continuous, onto, open map.

Hence, X is a first axiom spaces. Similarly, as the projection map [[y : X XY — Y is
continuous, onto and open map, Y is a first axiom spaces.

If part.

Page | 246



Product Spaces and Quotient Spaces

Let (X,J;) and (Y, ;) be first axiom spaces. To prove that (X X Y, J) is a first axiom
spaces. Let (x,y) € X XY.Thenx € X and y € Y. As (X, J,) is a first axiom spaces, 3 a
countable local base say {B,(x)} at x in (X, J;). Similarly, as (Y, J,) is a first axiom spaces, 3 a
countable local base say {D,,(y)}atyin (Y,3,).

Define® = { B;(x) x D;(¥) | i, j € N}.

(1) Bi(x)xD;(y) € 3 Vi,j€EN.

(2) (x,y) €B;(x) xD;j(y) Vi,j EN.

(3) Let (x,y) € G X Hwhere G XH € B.

Where B is a base for the product topology J. Then x € G and G € J;imply 3 x € N such that
x € B,(x) € G.similarly y € H and H € §, imply 3 m € N suchthaty € D,,(y) € G X H.
Shows that the family { B;(x) X D;(y) } forms a countable base at (x, y) in (X X Y, F). Hence

(X X Y,3) is a First axiom spaces.

Theorem2.4: The product space (X X Y, J) is a second axiom space if and only if both (X, ;)
and (Y,$,) are second axiom spaces.
Proof:- Only if part .

Let X X Y be a second axiom space. Consider the projection map [[x : X XY = X .
Then [[x is continuous, open and onto map.

Hence, we get X is a second axiom space. Similarly, as the projection map [[yx : X XYV —
X is a continuous open and onto, we get Y is a second axiom space.
If part .

Let (X,J,) and (Y, J,) be second axiom spaces. To prove that (X X Y, J) is a second
axiom space. As (X, J;) is a second axiom space, 3 a countable base say {B,,} for J;.
Similarly, as (Y, J,) is a second axiom space, 3 a countable base say { D, } for 3.

Consider the family { B;(x) x D;(y)| i,j € N}. This will form a countable base for .

Hence (X X Y,3) is a second axiom space.

Theorem 2.5:-The product space (X X Y, J) is a completely regular space if and only if both
(X,3,) and (Y,3,) are completely regular spaces.
Proof:- Only if part .
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Let X X Y be a completely regular space. Consider the projection map [[x : X XYV = X .
Then [[x is continuous, open and onto map.
Hence , we get X is a completely regular space. Similarly, as the projection map [] :
X XY — X is a continuous open and onto, we get Y is a completely regular space.
If part.
Let (X,J,) and (Y, J,) be two completely regular spaces.
To prove that the product space (X X Y, J) is a completely regular space. Let (x,y) € X X Y and
O be an open set in X X Y such that (x,y) € O. By definition of § ,3 G € §; and H € J, such
that (x,y) EGXH S O.Thusx €EG, y € H.
X is completely regular = 3 a continuous function f: X — [0,1] such that f(x) = 0 and
f&X—-6)={1}.
Y is completely regular = 3 a continuous function g: ¥ — [0,1] such that g(y) = 0 and
g(X —H) ={1}.
Define h: X X Y — [0,1] by h(x,y) = max {f(x), g(y)} Vx, yE X XY.
(1) Then h is a continuous function [since both f and g are continuous]
(2) h(x,y) =max {f(x), g(»)} =0
(3) Let(u,v) e XxY)—(GxH)
= (u,v) ¢ (G xH)
= ué&Gorv ¢H.

Letu & G. Then f(u) =1.

h(u,v) =max{f(w), gw)} =1.

Letv ¢ H. Then g(v) = 1.

h(u,v) =max{f(w), gw)} =1.

Thus h[(X X Y) — (G x H)] = {1}.
AsGXHCO,[XxY—-0]c€ (XxY)— (G xH).Hence, h[X xY — O] = {1}.

This shows that X X Y is a completely regular space.
Theorem2.6: The product space (X X Y, J) is a Ty — space if and only if both (X, J;) and

(Y,3,) are T, — spaces.
Proof: Only if part.
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Let X X Y be a Ty — space. Consider the projection map [[x : X X Y — X . Then [[x is
continuous, open and onto map.

Hence, we get X is a T — space. Similarly, as the projection map [[x : X XY =» X isa
continuous open and onto, we get Y is a Ty — space.
If part.
Let (X,J,) and (Y, J,) be two T, — spaces and (X X Y, J) be their product space. To prove
that (X X Y,J) is a Ty — space. Let (xq,y,) # (x3,¥,) in X X Y. Then either x; # x, or y; # y,.
Assume that x; # x, . As X is a T — space and x; # x, in X, 3 open set G in (X, ) such
that x; € G but x, € G. Butthen (x1,y,) € G XY and (x,,y,) € G X Y. As G X Y is open sets in

the product space X X Y, the result follows.

Theorem2.7: The product space (X X Y, J) is a T — space if and only if both (X, J;) and
(Y,3,) are T — spaces.
Proof: Only if part.

Let X X Y be a T; — space. Consider the projection map [[x : X X Y = X . Then [[ is
continuous, open and onto map.

Hence, we get X is a T — space. Similarly, as the projection map [[x : X XY = X isa
continuous open and onto, we get Y is a T; — space.
If part.
Let (X,J,) and (Y, J,) be two T, — spaces and (X X Y, J) be their product space. To prove
that (X X Y,J) is a T| — space. Let (xq,y,) # (x3,¥,) in X X Y. Then either x; # x, or y; # y,.
Assume that x; # x, . As X is a T| — space and x; # x, in X, 3 open sets G and H in (X, ) such
that x; € G but x, € Gand x, € H but x; € H. But then (x4,y,) € G XY, (x3,y,) € G XY
and (x1,y1) € H XY, (x,,y,) EH XY.AsG XY and H XY are open sets in the product

space X X Y, the result follows.

Theorem2.8:- The product space (X X Y, ) is a T, — space if and only if both (X, ;) and
(Y,3,) are T, — spaces.
Proof:- Only if part.

Let X X Y be a T, — space. Consider the projection map [[x : X X Y = X . Then [[ is

continuous, open and onto map.
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Hence, we get X is a T, — space. Similarly, as the projection map [[x : X XY = X isa
continuous open and onto, we get Y is a T, — space.
If part.
Let (X, J,) and (Y, J,) be two T, — spaces.
To prove that the product space (X X Y, J) is a T, — space. Let (x4, y;) and (x5, y,) be distinct
points of X X Y. Then either x; # x, and y; # y,. Let x; # x,. As X is T» — space, and x; # x,,
inX,3G,H € J;suchthatx; € G, x, € Hand G N H = @. Define O; = G XY and
O, =HXY.ThenO;,0,€3J, O, N0, =(GNH) XY =0, (x1,y;) € Oy and
(x4,y2) € O, . Hence, the product space (X X Y, ) is a T, — space.

Theorem2.9: If the product space (X X Y, J) is a separable, then both (X, J,) and (Y,J,) are
separable spaces.

Proof:- Only if part.

Let (X X Y, J) be a separable space. Then 3 a countable dense set say A X Bin X X Y.
Claim: A is countable dense set in X.

Let x € X . If possible, assume that x € A. Then foranyy € Y, (x,y) EAXB..
x&d(4),3GEJ;suchthatx EGandGNA—{x}=0.

Butthen GNA =@ (sincex €4 = x & A).

Inthiscase GNY €3, (x,y) € G XY and
GxV)NUAXB)—{(x,y)}=GnAXx¥NB) —{(x,N}=09.

This contradicts the fact that (x,y) € A X B.

Hence, eachx € X mustbeinAdie. A=X.

Thus, there exists a countable dense set A in X, X is separable space.

Similarly, we can prove that the countable set B is dense in Y.

Hence X and Y are separable spaces when X X Y is separable space.

If part.

Let (X, J,) and (Y, J,) be separable spaces.

To prove that (X X Y, ) is separable.

Let C and D be countable dense sets in X and Y respectively.

Then C X D is a countable subset of X X Y.

Claimthat CXD =X X Y.
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Let(x,y) EXxY.Ifx ¢ C =Cud(c), wegetx & d(C).
Hence 3G € J; suchthat G N C — {x} = @. Butthen G N C = Q.
Consider G XY € 5. As(x,y) e G XY, weget(GNY)N(CxD)—{(x,y)}+ 0.
But(GNnY)N(CxD)—{(x,y)}=GnY)n (Y xD)—{(x,y)}
=0 ...(GNC=0)
This is absurd.
Hence (x,y) G XY = (x,y) €d(C X D)
~ CXD=XXY.
Hence C X D is a countable dense set in X X Y.

Therefore X X Y is a separable space.

§3 Quotient topology

We know that product topology is the smallest topology on the domain for which
projection maps are continuous .Also we know that indiscrete topology is the smallest
topology on the co —domain Y for which any function f:X — Y is continuous . Now our aim is

to find the largest topology on Y for which f:X — Y is continuous, if exists.

Theorem 3.1: Let (X, J) be topological space and let f be a mapping of X onto a set Y.
Define 3* ={G € Y | f~1(G) € I} .Then
(1) 3" is a topology on Y.
(2) f:(X,3) — (Y,J¥) is a continuous function.
(3) 3" is the largest topology on Y for which f: X — Y is continuous.
(4) F € Y is closed in (Y, J*) if and only if f 1 (F) is closed in (X, ).
Proof: (1) 3" is a topologyon Y.
() f@)=0, 0eI = 0T
fFTAY)=X, X€J = Y € F* (since f is onto)
(i) LetA,B € 3*. Then f~1(4) € Jand f"1(B) €.
Therefore, f~1(A) N f~1(B) e Jie. fT1(ANB)ES.
But this shows that AN B € §* .
(iii) A; € 3* VA € A, where A is any indexing set . Then f71(4;) EJ VA EA.
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€5.

n

3 being a topology, Uf_l(Az) EJie [T
AEA

AEA

But this shows that U A; EJ.
AEA

From (i), (ii) and (iii) we get, 3 is a topology on Y.

(2) f:(X,3) — (Y, J*) is a continuous function.
Let G € §*. Then by definition of J*, f1(G) € J. Hence f is continuous.

(3) LetJ; denote a topology on Y such that f: (X, J) — (Y, J;) is continuous function.
To prove that J; € J".
Let G € J;. Then by continuity of f, f~1(G) € J. But then by definition of J*, G € J*.
Thus G € §; = G € §*. Hence §; S J".

This shows that, J* is the largest topology on Y for which f: X — Y is continuous.

(4) F c Y isclosed in (Y, 3*)
SY-FeJn
S fI(Y-F)ES.
SX-fU(FeS.
& f71(F) is closed in (X, ).

Definition 3.2: Let (X, J) be a topological space. Y is any non-empty set. f: X — Y is an onto

mapping. The largest topology 3* onY for which f is J - 3 continuous, is called the quotient

topology for Y (relative to f and J) and the map f is called the quotient map.

Notethat GEJ* & fH(G)ES.

Theorem 3.3: Let (X, J) and (Y, J’) be two topological spaces. f: X — Y is onto, continuous

map. If f is either open or closed, then ' is the quotient topology on Y.

Proof: I] Let f: X — Y be continuous, onto, open.

To prove that ' is the quotient topology on Y.

By definition of quotient topology J* onY, J' < J*.
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To prove that §* < J'.
Let G € §*. Then f~1[G] € 3. As f is open, f[f[G]] €T .
Hence G € §'. Therefore, 3* < §¥'.
Combining both inclusions, we get, §' = J".
II] Let f: X = Y be continuous and closed.
To prove J' = J*.
J' < J*,as J* is largest topology for which f is continuous.
Hence to prove §* < J'. Let G € F*.
Then f~1[G] € = X — f7[G] is closed in X.
= f[X — f~'[G]] is closed in Y.
= fIf~1(Y) — f~1(G)] isclosed in Y.
= fIf (Y = G)]isclosed in Y.
= (Y —G)isclosedin?Y.
= Gisopenin?Y.
=G€eJ .

Thus §* < J'.Combining both inclusions we get §' = J*.

Corollary3.4: Let f be continuous map of a compact space (X,J) onto a Hausdorff
space (Y, J*). Then J* is the quotient topology on'Y.
Proof: We know that a continuous map of a compact space onto a Hausdorff space is a closed

map. Hence f is a closed mapping. By Theorem, J* is the quotient topology onY.

Corollary 3.5: Let f: X — Y be a continuous map and let Y have the quotient topology (relative
to f). Then g:Y — Z is continuous if and only if g o f is continuous.

Proof: Composition of two continuous functions is always continuous.

Hence ‘Only if part’ follows.

For ‘If part’, assume that g o f is continuous map.

To prove that g is continuous.

Let G is openin Z.

gof:X - Ziscontinuous= [go f]"HG)ES.
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= [flog NG ET
= g (@] €S
= g G)eF .......... (by definition of J*)

Thus any G open in Z we get g~1(G) is open in Y. Hence g: Y — Z is continuous.

Theorem 3.6: Let (X,J) be a topological space. Y is any non-empty set. f: X — Y is an onto
mapping If X is compact ( connected, separable or Lindelof ) then so is Y with the quotient
topology.

Proof: Since f: X — Y is continuous, onto, the result follows.

[Continuous image of a compact (connected, separable or Lindelof) space is a compact

(connected, separable or Lindelof) space].

Definition: Let (X, ) be a topological space and R an equivalence relation on X. Let 7 be the
quotient map of X onto the quotient set X / g of X over R so that m(x) = [x] is the equivalence

class to which x belongs. Then the quotient space is the family X / R With quotient topology

(relative to m).

Exercises

(I) Show that X X Y has each of the properties listed below if and only if both X and Y have the
same properties .

(1) To

(i) Ty

(iii) T,

(1v) regularity.

(v) complete regularity.

(vi) first axiom.

(vii) second axiom.

(viil) separability.

(II) By an example show that the product space of two normal spaces need not be normal .
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(II) Let (X, ) be a topological space. Y is any non-empty set.
f:X — Y is an onto mapping . Show that Y with the quotient topology is a T; — space if
and only if f~1[{y}]isclosedinX, Vy €Y.
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The Urysohn Metrization Theorem

Unit 20 : The Urysohn Metrization Theorem

The Urysohn Metrization Theorem tells us under which conditions a topologica space X is
metrizable, i.e. when there exists a metric on the underlying set of X that induces the topology of X.
The main ideais to impose such conditions on X that will make it possble to embed X into a metric
space Y, by homeomorphicaly identifying X with asubspace of Y.

Let us sart with some definitions. A topologies space X is said to be regular if for any point
x] X andany closedset Bj X not containing X, there exist two digoint open setscontaining x and
B respectively. The space X is sad to be normal if for any two digoint closed sets B, and B, there
exist two digoint open sets containing B; and B, respectively.

Example:

An example of aHausdorff space which isnor normd is given by the set R , where the usual
topology is enhanced by requiring that the set {1/n|n1 N} isclosed. Examples of spaceswhich are
regular but not normal exist, but are complicated.

Lemma: Every regular space with a countable basisis normal.

Proof : First, using regularity and countable basis, construct a countable covering {U;} of B, by

open sets whose closures do not intersect B,. Smilarly, construct an open countable covering {Vi } of
B, digoint from B,. Then define
, n__ , n__
U,=U,\JVi and v, =v,\[ JU;
i=1 i=1
Show thet these setsare open and the collection {U |} coversB; and{V,} coversB,. Findlly
showthat U':=J, and V"=V, aedigoint.

Next, we will prove one of the very deep basic reaults.
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Urysohn Lemma : Let X beanormal space, and let A and B be digoint subsetsof X. Thereexistsa
continuous map f : X ® [0,1] suchthat f (x) =0 forevery xi A, and f(x)=1 forevery xi B.

Proof : Let Q bethe st of rational numbers on theinterva [0, 1]. For each rationa number g onthis
interval wewill definean openset U ;1 X such that whenever p < g, wehave U p1 U q

Hint : Enumerae dl the rationd numbers on the interva (so that the first two elements are 1 and 0)
and then define U, = X / B and dl other U ;s can be defined inductively by using normity of X.

Now let us extend the definition of U, to al rationad numbers by defining U, =f if g is
negative, and U, = X if q> 1.

Next, for each x| X define Q(x) to be the set of those rationd numbers such that the
corresponding set U, containsx. Show that Q(x) isbounded below and define f (x) asitsinfimum.

Now wewill show that f (x) isthedesired function. Firgt, show thetif x] U, ,then f (X) £r
andif xI U, ,then f(x)3r.

Now provethe continuity f (x) of by showing that for any x,1 X andanopeninterva (c, d)
containing f (X, ) , there exist aneighbourhood U of x, suchthat f (U)1 (c,d) . [Why would this
imply continuity 7] For this choosetwo rational numbersgy; and g, suchthat c <q, < f (xo) <q, <d
andtake U =U , \U .

Next, we will construct the metric space 'Y for the embedding. Actudly, asatopoligica space

the space Y is simply the product of N copies of R with the product topology. Let
d (a,b) =min{|a- bl,1} bethe so-called standard bounded metricon R [show that thisisindeed a

metric]. Thenif x and y are two points of Y, define,

D(x.y) =sumM%
|

Show that thisisindeed a metric.

Proposition : The metric D induces the product topology on y =g N.

Proof : Firg, let U be open in the metric topology and let x| U . Wewill find an open s¢t V in the
product topology suchthat x| V1 U . Choose and e-bal centered a x, which liesin U. Then
choose N large enough 0 1/ N < e . Show that the following set satisfies the requirement :
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V=(x-ex+e) . (xy-exy+e) R"R ..

Conversdly, consder abassdement V =PV =PV, for the product topology, such
thet V; isopenin R and V, =R for dl but finitdy many indicesiy,..., i, . Given xT Vv ,wewill findan
open ball U in metric topology, which contains x and is contained in V. Choose an interval
(x; - €, % +e;) containedin V; suchthat e; <1 and define,

e=min{e/i|i =iy,...i\}
Now show that the ball of radius e centered at x iscontained in V..
Next we need the following technica result :

Lemma : Let X be a regular space with a countable basis. There exist a countable collection of
continuous functions f,,: X ® [0,1] such that for any x,1 X and any neighbourhood U of x,,

there exist anindex n suchthat f,(x,) >0 and f, =0 outside U.

Proof : Given x, and U, useregularity to choose two open sets B, and B,,, from the countable basis
containing X, and contained in U such that By | B,,- Then use the Urysohn lemmato congtruct a

function gy, suchthat g, (Bn)=1and g, (X \By,)=0. Now show that this collection of
functions satisfies our reguirement.

Fndly we will prove the main result :

Urysohn Metrization Theorem : Every regular space X with a countable basis is metrizable,

Proof :  Given the collection of functions { f,} from the previous lemma, and y =g N with the
product topology, we defineamap F: X ® Y asfollows:

FO)=(1,(0, 5(%,..)

Show that is a continuous map. Also show that it isinjective.
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In order to finish the proof, we need to show that for each openset U in X, theset F(U) is
openin F(X).Let o beapointof F(U).Let X, U besuchthat F(x,) =2, and choose an
index N suchthat fy (X,)>0 and fy (X\U)=0.Now we et

W=pyt((0¥))Nf(X)

where p \ istheprojection Y ® R onto the Nth multiple. Show that W isan open subset of F (X)
suchthat z,T W1 F(U).

Give an example of a Hausdorff space with a countable basis which is not metrizable.
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