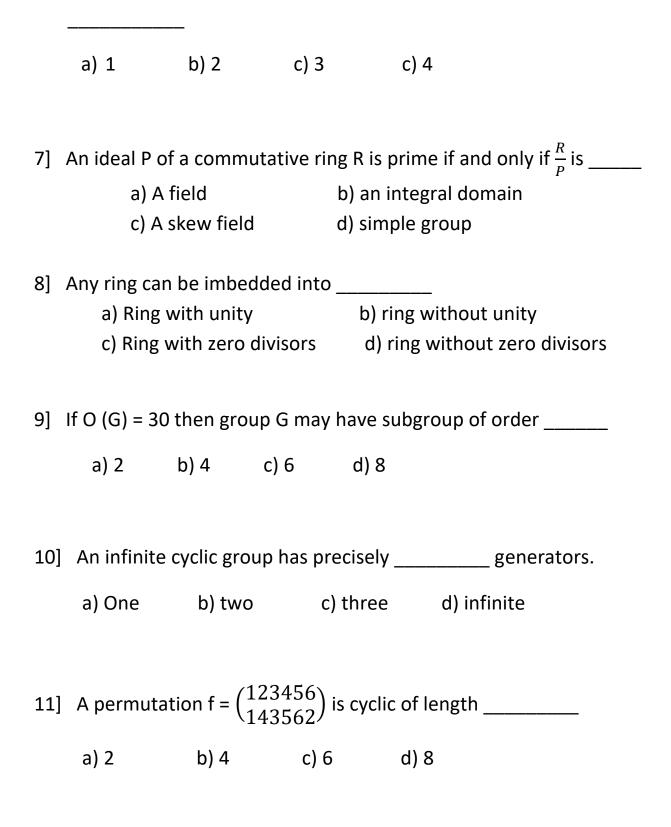
Padmabhushan Dr. Vasantraodada Patil Mahavidyala, Tasgaon, Department of Mathematics Sub: Modern Algebra [Paper – X] (MCQ)

Practice Questions Paper

1] For Euler's ϕ function ϕ (10) = b) 5 c) 9 d) 10 a) 4 2] If O(G) = 20, then group G may have subgroup of order b) 5 c) 7 d) 9 a) 3 3] The identity permutation is always ______ permutation. a) Transposition b) disjoint c) odd d) even 4] A quotient group of a cyclic group is group. a) Symmetric b) not symmetric c) cyclic d) not cyclic 5] A homomorphism from a group G to itself is called of G. a) Epimorphism b) monomorphism c) Endomorphism d) automorphism

6] If < Z, +,. > is a ring of integers modulo 3, then characteristic of Z_3 is



12] If G is finite group and N is normal subgroup of G, then $O\left(\frac{G}{N}\right) =$ _____

a) O (G) b) O (G).O (N) c)
$$\frac{O(N)}{O(G)}$$
 d) $\frac{O(G)}{O(N)}$

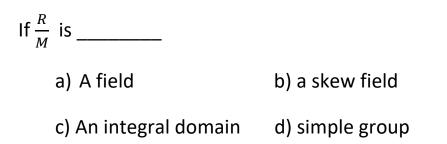
13] An onto homomorphism is called ______

- a) Automorphism b) monomorphism
- c) Epimorphism d) endomorphism

14] An element X in a ring R is called nilpotent if ______ for some Positive integer n.

a) $X^n = X$ b) $X^n = 0$ c) $X^n = e$ d) $X^n = 1$

15] An ideal M of commutative ring R with unity is maximal if and only



16] If G is a group of order 20 then it cannot have a subgroup of order

a) 2 b) 5 c) 3 d) 4

17] Every quotient group of a cyclic is _____

- a) Cyclic b) non-cyclic
- c) non-abelian d) symmetric
- 18] If H and K be two normal subgroup of group G, such that H <u>C</u> K

then _____ a) $\frac{G}{K} \cong \frac{G/_K}{H/_K}$ b) $\frac{G}{H} \cong \frac{G/_K}{H/_K}$ c) $\frac{G}{H} \cong \frac{G/_H}{K/_H}$ d) $\frac{G}{K} \cong \frac{G/_H}{K/_H}$

19] A commutative division ring is called _____

a) A filed b) semi-prime ring

c) simple ring d) an integral domain

20] An element X of a ring R is said to be a nilpotent if _____

a)
$$X^2 = 0$$
 b) $X^2 = e$

c) $X^n = 0$ for some positive integer d) $X^n = e$

21] Let R be a commutative ring with unity an ideal M of R is maximal ideal of R and only if R/M is ______ a) Integral domain b) division ring

c) Simple ring d) field

22] A cyclic of length two is called _____

- a) An even permutation b) disjoint permutation
- c) A transposition d) an idempotent

23] If G is a finite group and H is a subgroup of G then number of Distinct right cosets of H in G is equal to ______ a) $\frac{O(H)}{O(G)}$ b) $\frac{O(G)}{O(H)}$ c) O (G) d) O (H)

24] For the Euler's function, $\varphi(26) =$ _____ a) 12 b) 4 c) 25 d) None of these

25] For the Euler's function, $\varphi(11) =$ _____

a) 3	b) 5	c) 7	d) 10
------	------	------	-------

26] A one-one homomorphism is called ______

- a) Endomorphism b) epimorphism
- c) Automorphism d) monomorphism
- 27] An element e in a ring R such that e² = e is known as ______element.
 - a) Identityb) nilpotentc) Idempotentd) unity
- 28] If P is a proper ideal of a ring R such that $ab \in P$ implies $a \in P$ or

 $b \in P$ then P is called _____ ideal of R.

- a) A maximal b) a prime
- c) A semi-prime d) none of these
- 29] For the ring (Z,+,.) the mapping f: $Z \rightarrow Z$ defined by f (n) = 2n,

 $\forall n \in Z$ is _____

a) Not a homomorphism b) epimorphism

c) Endomorphism d) monomorphism

- 30] For the ring of integer modulo 5, (Z,+,.), where $Z_5 = \{0,1,2,3,4\}$ Characteristics of Z_5 is ______ a) 1 b) 3 c) 4 d) 5
- 31] If $p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 4 & 6 & 3 & 5 & 8 & 7 & 2 \end{pmatrix}$ be a cyclic permutation, then length of permutation P is ______ a) 5 b) 6 c) 7 d) 8

32] Subtraction is not a binary operation on the set of _____

- a) Real number b) rational numbers
- c) Integer d) natural numbers
- 33] If H is a subgroup of G such that Ha = aH for all $a \in G$, then H is a

_____ Subgroup of G.

- a) Normal b) not normal
- c) Quotient d) not quotient

34] If $(Z_4,+,.)$ is a ring of integer modulo 4, then characteristic of Z_4



35] If A, B are two ideals of a ring R, then

a)
$$\frac{A+B}{A} \cong \frac{B}{A \cap B}$$

b) $\frac{A}{A+B} \cong \frac{B}{A \cap B}$
c) $\frac{A \cap B}{A+B} \cong \frac{A}{B}$
d) $\frac{A+B}{B} \cong \frac{A \cap B}{A}$

36] If G is cyclic group of order 13, then the number of generators of

37] The union of all distinct right cosets of H in G is ______

- a) Equal to H b) not equal to H
- c) Equal to G d) not equal to G

38] A group G having no nontrivial normal subgroup, then group G is _____ group.

a) Alternatingb) conjugatec) Simpled) symmetric

39] Let R be a ring, an element $0 \neq a \in R$ is called zero divisor if there

is $0 \neq b \in \mathbb{R}$ such that _____ a) ab = a b) ab = bc) ab = 0 d) $ab \neq 0$

40] Let B <u>C</u> A be two ideals of a ring R, then _____

a) $\frac{A}{F}$	$\frac{A}{R} \simeq \frac{R/B}{A/B}$	b)	$\frac{R}{A}\cong$	$\frac{R/B}{A/B}$
c) $\frac{R}{A}$	$\frac{R}{A} \cong \frac{A/B}{R/B}$	d)	$\frac{A}{B}\cong$	$\frac{R/B}{A/B}$

41] If G is a group then the subgroup { $x \in G | xa = ax$ for all $a \in G$ } is

called _____

a) Centre of group	b) normalizer of a
--------------------	--------------------

c) Right coset d) left coset

42] Number of generators of a finite cyclic group of order n is _____

a) n b) n + 1 c) n! d) ϕ (n)

43] A subjective homomorphism is called ______

a) Endomorphism b) epimorphm

c) Automorphism d) monomorphism

44] one-one mapping is also called as _____

a) Subjective b) injective

c) Objective d) projective

45) Onto mapping is also called as _____

a) objective b) subjective

c) Injective d) ejective

46] one-one and onto mapping is called as _____

a) Injective b) bijetive

c) Subjective d) projective

47] An integer ______ is called as prime number.

a) P > 1 b) p < 1 c) p = 1 d) p = 0

48] If b is a positive integer and a is any integer then their exit q and r
Such that, ______
a) a = qa
b) a = qb
c) a = qb+r
d) a = qb-r

49] Let G be any non-empty set and * be a binary composition then,
a , b ∈ G ⇒ a * b ∈ G is called as ______
a) Associative property
b) closure property
c) Identity property
d) inverse property

50] Let G be any non-empty set and * be a binary composition then,

a * (b * c) = (a * b) * c is called as _____

a) Associative property b) closure property

c) Identity property d) inverse property

51] Let G be any non-empty set and * be a binary composition then,

a * e = a = e * a is called as _____

52] Let G be any non-empty set and * be a binary composition then,

 $a * a^{-1} = e = a^{-1} * a$ is called as _____

- a) Associative property b) closure property
- c) Identity property d) inverse property

53] Let < G, * > be a group then, a * b = b * a for all a, b \in G is called as

- a) Finite group b) commutative group
- c) Semi group d) order of group

54] A non-empty subset H of group G is sub group of G iff a, b \in H \Longrightarrow

a) $ab \in H$ b) $ab \in G$ c) $ab^{-1} \in H$ d) $ab^{-1} \in G$

55] If G be a group then $z(G) = \{x \in G \mid xg = gx \text{ for all } g \in G \}$ is called as

a) centre of group	b) normalize of a
c) Right coset	d) left coset

56] Let H be the subgroup of G and a E G any element then,

 $aH = {ah / h \in H}$ is called _____

a) Right coset b) left coset

c) coset d) none of these

57] Let H be the subgroup of G and a E G any element then,

Ha = $\{ha / h \in H\}$ is called _____

a) Right coset b) left coset

c) coset d) none of these

58] Let H be the subgroup of G such that right coset of H in G is equal

to the left coset of H in G is called as _____

a) Right coset b) left coset

c) coset d) none of these

59] Let H be subgroup of group G Ha = H iff _____

a) a E H b) a E G c) h E H d) h E G

60] Let H is subgroup of G then, Ha = Hb iff _____

a) $ab \in G$ b) $ab \in H$ c) $ab^{-1} \in H$ d) $ab^{-1} \in G$

61] A cyclic group is _____

a) Semi group b) cyclic group

c) Abelian d) none of these

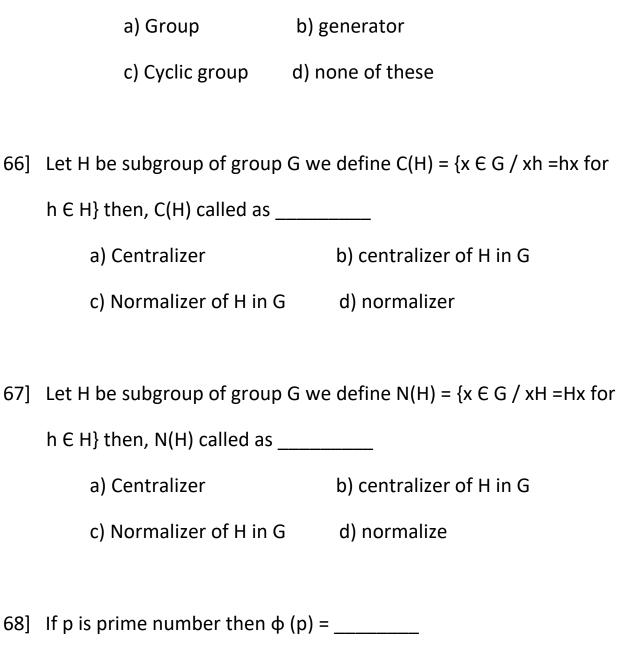
62] A subgroup of cyclic group is _____

a) Semi group b) cyclic group

c) Abelian d) none of these

63] Let, $O(a) = 1 \leftrightarrow$ _____ a) a = e b) $a \neq e$ c) $a^n = e$ d) $a^n \neq e$

64] Let $O(a) = n \leftrightarrow$ _____ a) a = e b) $a \neq e$ c) $a^n = e$ d) $a^n \neq e$ 65] Order of cyclic group is equal to the order of its _____



a) p b) p-1 c) p+1 d) 0

69] Let a , n any two integer such that gcd(a , n) = 1 then _____

a) $a^{\phi(n)} \equiv modn$ b) $a^{\phi(n)} \equiv 1(modn)$

c)
$$a^{\phi(n)} \equiv n$$
 d) $a^{\phi(n)} \equiv 1$

70] The group $G \neq \{e\}$ is called as _____

a) Group b) semi group

c) Normal group d) simple group

71] A mapping $f: G \rightarrow G'$ then, f(a * b) = f(a).f(b) for all $a, b \in G$ is called

as _____

a) Isomorphism	b) monomorphism
c) Homomorphism	d) endomorphism

72] A mapping $f: G \rightarrow G'$ then f is one-one, onto, homomorphism then

it is called as _____

a) Isomorphism b) monomorphism

c) Homomorphism d) endomorphism

73] If f : G \rightarrow G' is homomorphism then, f'(x⁻¹) = _____

a) f(x) b) $[f(x)]^{-1}$ c) $f(x)^{-1}$ d) x

74] If $f: G \rightarrow G'$ is homomorphism then, $f(x^n) =$ _____

a) f(x) b) f(n) c) $[f(x)]^n$ d) $[f(x)]^{-1}$

75] Let $f: G \rightarrow G'$ be a homomorphism then, Ker $f = \{x \in G / f(x) = e'\}$

is called as _____

- a) Homomorphism b) kernel of homomorphism
- c) Kernel of f d) none of these

76] Let $f: G \rightarrow G'$ be the homomorphism then Ker f is _____

a) Kernel f b) homomorphism

c) Normal subgroup of G d) subgroup of G

77] A homomorphism f : G \rightarrow G' is one-one iff _____

a) Kerf=e b) Kerf≠e

c) Ker f ≠ {e} d) Ker f = {e}

78] If f : G \rightarrow G' is onto homomorphism with K = Ker f then _____

a)
$$\frac{K}{G} = G^{\mathrm{I}}$$
 b) $\frac{G}{k} = G^{\mathrm{I}}$ c) $\frac{G}{K} \cong G$ d) $\frac{G}{k} \cong G^{\mathrm{I}}$

79] Let H and K be two subgroup of G where H is normal in G then

a)
$$\frac{HK}{H} \approx \frac{K}{H \cap K}$$

b) $\frac{H}{HK} \cong \frac{K}{H \cap K}$
c) $\frac{HK}{H} \cong \frac{K}{H \cap K}$
d) $\frac{HK}{H} \cong \frac{K}{H \cup K}$

80] Let S be any non-empty set any one-one, onto mapping $f: S \rightarrow S'$ is

called as _____

- a) Permutation b) homomorphism
- c) Permutation of S d) none of these

81] Every group G is isomorphic to _____

- a) Permutation b) isomorphic group
- c) Isomorphic d) permutation group

82] Let < R , + > is an abelian group then, a, b \in R \implies a + b \in R is

called as _____

- a) Associative property b) closure property
- c) Distributive property d) commutative property

- 83] Let < R , + > is an abelian group then, a+(b+c) = (a+b)+c ∀ a,b,c ∈ R is called as _____
 - a) Associative property b) closure property
 - c) Distributive property d) commutative property
- 84] Let < R , + > is an abelian group then, $a+b = b+a \quad \forall a, b \in R$ is

called as _____

- a) Associative propertyb) closure propertyc) Distributive propertyd) commutative property
- 85] Let < R, + > is an abelian group then, a.(b+c) = a.b + a.c
 - $(a+b).c = a.c + b.c \quad \forall a,b,c \in R$ is called as _____
 - a) Associative property b) closure property
 - c) Distributive property d) commutative property

86] A ring R such that, $ab = ba \forall a, b \in R$ is called as _____

- a) Ring with unity b) commutative ring
- c) Ring d) none of these

87]	A ring R such that, a.e = a = e.a	∀ a ∈ R is called as
-	a) Ring with unity	b) commutative ring
	c) Ring	d) none of these
88]	A ring R such that, $x^2 = x \forall x \in$	R is called as
	a) Ring	b) Boolean group
	c) Boolean ring	d) commutative ring
89]	A Boolean ring is	
	a) Ring	b) Boolean group
	c) Boolean ring	d) commutative ring

90] A commutative ring is called as _____

a) Field b) integral domain

c) Skew field d) simple group

91] A field is an _____

a) Integral domain

b) division ring

c) Simple ring d) field

92] A non-zero finite integral domain is a _____

- a) Integral domain b) division ring
- c) Simple ring d) field

93] Let R be a ring if their exist positive number n such that,

Ch R = n \iff na = 0 \forall a \in R is called as _____

- a) Ring b) characteristics of ring
- c) Simple ring d) integral domain

94] Let R_1 and R_2 be two ring then, $R = \{(a,b) / a \in R_1, b \in R_2\}$ is called

as _____

a) Nilpotent b) ring

c) Product of ring d) ideal

95] A non-empty subset I of ring R then, a ∈ I, r ∈ R ⇒ ra ∈ I is called

as _____

a) Left ideal b) right ideal

96] A non-empty subset I of ring R then, , a \in I , r \in R \Longrightarrow ar \in I $% \label{eq:subset}$ is called

	as	
	a) Left ideal	b) right ideal
	c) Ideal	d) none of these
97]	A ring $R \neq \{0\}$ is called as _	
	a) Field	b) ring
	c) Division ring	d) simple ring
98]	A division ring is a	
	a) Simple ring	b) integral domain
	c) Ring	d) commutative ring
99]	Let $f : R \rightarrow R'$ is homomorp	hism then, f(0) =
	a) 0 b) 0'	c) e d) e'

100] Let $f : R \rightarrow R'$ is homomorphism then, f(-a) =______

a) f(a) b) f(0) c) -f(0) d) -f(a)

101] Let $f : R \rightarrow R'$ is homomorphism Ker $f = \{0\}$ iff f is _____

a) one-oneb) ontoc) Homomorphismd) none of these

102] If $f : R \rightarrow R'$ is an onto homomorphism with K = Ker f then _____

a)
$$\frac{R}{K} = R^{I}$$

b) $\frac{R}{K} \approx R^{I}$
c) $\frac{R}{K} \neq R^{I}$
d) $\frac{R}{K} \cong R^{I}$

103] If $f : R \rightarrow R'$ is onto homomorphism then homomorphic image R'

is isomorphic to _____

a) Quotient ring of R b) Ker f

c) Image R d) none of these

104] an ideal P ≠ R of ring R is called as _____

a) Maximal ideal b) prime ideal

c) Ideal d) ring

105]	Let R be a ring and ideal M ≠ R is called as	
	a) Maximal ideal	b) prime ideal
	c) Ideal	d) ring
106]] let R be commutative ring with unity an ideal P and R is prin	
	Ideal if and only if $\frac{R}{P}$ is an	
	a) Field	b) integral domain
	c) Skew field	d) none of these
107]	every quotient group of cycl	ic group is
	a) Finite group	b) semi group
	c) Cyclic group	d) commutative group
108]	every subgroup of an abelian group is	
	a) Normal	b) cyclic group
	c) Normal subgroup	d) semi group

109] find the reminder of 8^{103} is divisible by 13.

a) 4 b) 5 c) 6 d) 7

110] find the reminder of 3^{47} is divisible by 23.

a) 1 b) 2 c) 3 d) 4