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Preface

The subject of Differential Equations is a well established part of mathe-
matics and its systematic development goes back to the early days of the de-
velopment of Calculus. Many recent advances in mathematics, paralleled by
a renewed and flourishing interaction between mathematics, the sciences, and
engineering, have again shown that many phenomena in the applied sciences,
modelled by differential equations will yield some mathematical explanation of
these phenomena (at least in some approximate sense).

The intent of this set of notes is to present several of the important existence
theorems for solutions of various types of problems associated with differential
equations and provide qualitative and quantitative descriptions of solutions. At
the same time, we develop methods of analysis which may be applied to carry
out the above and which have applications in many other areas of mathematics,
as well.

As methods and theories are developed, we shall also pay particular attention
to illustrate how these findings may be used and shall throughout consider
examples from areas where the theory may be applied.

As differential equations are equations which involve functions and their
derivatives as unknowns, we shall adopt throughout the view that differen-
tial equations are equations in spaces of functions. We therefore shall, as we
progress, develop existence theories for equations defined in various types of
function spaces, which usually will be function spaces which are in some sense
natural for the given problem.
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Chapter I

Analysis In Banach Spaces

1 Introduction

This chapter is devoted to developing some tools from Banach space val-
ued function theory which will be needed in the following chapters. We first
define the concept of a Banach space and introduce a number of examples of
such which will be used later. We then discuss the notion of differentiability of
Banach–space valued functions and state an infinite dimensional version of Tay-
lor’s theorem. As we shall see, a crucial result is the implicit function theorem
in Banach spaces, a version of this important result, suitable for our purposes
is stated and proved. As a consequence we derive the Inverse Function theorem
in Banach spaces and close this chapter with an extension theorem for func-
tions defined on proper subsets of the domain space (the Dugundji extension
theorem).

In this chapter we shall mainly be concerned with results for not necessarily
linear functions; results about linear operators which are needed in these notes
will be quoted as needed.

2 Banach Spaces

Let E be a real (or complex) vector space which is equipped with a norm
‖ · ‖, i.e. a function ‖ · ‖ : E → R+ having the properties:

i) ‖u‖ ≥ 0, for every u ∈ E,

ii) ‖u‖ = 0 is equivalent to u = 0 ∈ E,

iii) ‖λu‖ = |λ|‖u‖, for every scalar λ and every u ∈ E,

iv) ‖u+ v‖ ≤ ‖u‖ + ‖v‖, for all u, v,∈ E (triangle inequality).

A norm ‖ · ‖ defines a metric d : E × E → R+ by d(u, v) = ‖u − v‖ and
(E, ‖ · ‖) or simply E (if it is understood which norm is being used) is called a

3
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Banach space if the metric space (E, d), d defined as above, is complete (i.e. all
Cauchy sequences have limits in E).

If E is a real (or complex) vector space which is equipped with an inner product,
i.e. a mapping

〈·, ·〉 : E × E → R (or C (the complex numbers))

satisfying

i) 〈u, v〉 = 〈v, u〉, u, v ∈ E

ii) 〈u + v, w〉 = 〈u,w〉 + 〈v, w〉, u, v, w ∈ E

iii) 〈λu, v〉 = λ〈u, v〉, λ ∈ C, u, v,∈ E

iv) 〈u, u〉 ≥ 0, u ∈ E, and 〈u, u〉 = 0 if and only if u = 0,

then E is a normed space with the norm defined by

‖u‖ =
√

〈u, u〉, u ∈ E.

If E is complete with respect to this norm, then E is called a Hilbert space.
An inner product is a special case of what is known as a conjugate linear

form, i.e. a mapping b : E × E → C having the properties (i)–(iv) above (with
〈·, ·〉 replaced by b(·, ·)); in case E is a real vector space, then b is called a bilinear
form.

The following collection of spaces are examples of Banach spaces. They will
frequently be employed in the applications presented later. The verification that
the spaces defined are Banach spaces may be found in the standard literature
on analysis.

2.1 Spaces of continuous functions

Let Ω be an open subset of Rn, define

C0(Ω,Rm) = {f : Ω → R
m such that f is continuous on Ω}.

Let

‖f‖0 = sup
x∈Ω

|f(x)|, (1)

where | · | is a norm in Rm.
Since the uniform limit of a sequence of continuous functions is again con-

tinuous, it follows that the space

E = {f ∈ C0(Ω,Rm) : ‖f‖0 <∞}

is a Banach space.
If Ω is as above and Ω′ is an open set with Ω̄ ⊂ Ω′, we let C0(Ω̄,Rm) = {the

restriction to Ω̄ of f ∈ C0(Ω′,Rm)}. If Ω is bounded and f ∈ C0(Ω̄,Rm),
then ‖f‖0 < +∞. Hence C0(Ω̄,Rm) is a Banach space.
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2.2 Spaces of differentiable functions

Let Ω be an open subset of Rn. Let β = (i1, · · · , in) be a multiindex, i.e.
ik ∈ Z (the nonnegative integers), 1 ≤ k ≤ n. We let |β| =

∑n
k=1 ik. Let

f : Ω → Rm, then the partial derivative of f of order β,Dβf(x), is given by

Dβf(x) =
∂|β|f(x)

∂i1x1 · · · ∂inxn
,

where x = (x1, · · · , xn). Define Cj(Ω,Rm) = {f : Ω → Rm such that Dβf is
continuous for all β, |β| ≤ j}.

Let

‖f‖j =

j
∑

k=0

max
|β|≤k

‖Dβf‖0. (2)

Then, using further convergence results for families of differentiable functions it
follows that the space

E = {f ∈ Cj(Ω,Rm) : ‖f‖j < +∞}

is a Banach space.
The space Cj(Ω̄,Rm) is defined in a manner similar to the space C0(Ω̄,Rm)

and if Ω is bounded Cj(Ω̄,Rm) is a Banach space.

2.3 Hölder spaces

Let Ω be an open set in Rn. A function f : Ω → Rm is called Hölder
continuous with exponent α, 0 < α ≤ 1, at a point x ∈ Ω, if

sup
y 6=x

|f(x) − f(y)|
|x− y|α <∞,

and Hölder continuous with exponent α, 0 < α ≤ 1, on Ω if it is Hölder contin-
uous with the same exponent α at every x ∈ Ω. For such f we define

Hα
Ω(f) = sup

x 6=y

x,y∈Ω

|f(x) − f(y)|
|x− y|α . (3)

If f ∈ Cj(Ω,Rm) and Dβf, |β| = j, is Hölder continuous with exponent α on
Ω, we say f ∈ Cj,α(Ω,Rm). Let

‖f‖j,α = ‖f‖j + max
|β|=j

Hα
Ω(Dβf),

then the space

E = {f ∈ Cj,α(Ω,Rm) : ‖f‖j,α <∞}

is a Banach space.
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As above, one may define the space Cj,α(Ω,Rm). And again, if Ω is bounded,
Cj,α(Ω,Rm) is a Banach space.

We shall also employ the following convention

Cj,0(Ω,Rm) = Cj(Ω,Rm)

and

Cj,0(Ω̄,Rm) = Cj(Ω̄,Rm).

2.4 Functions with compact support

Let Ω be an open subset of Rn. A function f : Ω → Rm is said to have
compact support in Ω if the set

supp f = closure{x ∈ Ω : f(x) 6= 0} = {x ∈ Ω : f(x) 6= 0}

is compact.
We let

Cj,α
0 (Ω,Rm) = {f ∈ Cj,α(Ω,Rm) : supp f is a compact subset of Ω}

and define Cj,α
0 (Ω̄,Rm) similarly.

Then, again, if Ω is bounded, the space Cj,α
0 (Ω̄,Rm) is a Banach space and

Cj,α
0 (Ω̄,Rm) = {f ∈ Cj,α(Ω̄,Rm) : f(x) = 0, x ∈ ∂Ω}.

2.5 L
p spaces

Let Ω be a Lebesgue measurable subset of Rn and let f : Ω → Rm be a
measurable function. Let, for 1 ≤ p <∞,

‖f‖Lp =

(∫

Ω

|f(x)|pdx
)1/p

,

and for p = ∞, let

‖f‖L∞ = essupx∈Ω|f(x)|,

where essup denotes the essential supremum.
For 1 ≤ p ≤ ∞, let

Lp(Ω,Rm) = {f : ‖f‖Lp < +∞}.

Then Lp(Ω,Rm) is a Banach space for 1 ≤ p ≤ ∞. The space L2(Ω,Rm) is a
Hilbert space with inner product defined by

〈f, g〉 =

∫

Ω

f(x) · g(x)dx,

where f(x) · g(x) is the inner product of f(x) and g(x) in the Hilbert space
(Euclidean space) Rn.
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2.6 Weak derivatives

Let Ω be an open subset of Rn. A function f : Ω → Rm is said to belong to
class Lp

loc(Ω,R
m), if for every compact subset Ω′ ⊂ Ω, f ∈ Lp(Ω′,Rm). Let β =

(β1, . . . , βn) be a multiindex. Then a locally integrable function v ∈ L1
loc(Ω,R

m)
is called the βth weak derivative of f if it satisfies

∫

Ω

vφdx = (−1)|β|
∫

Ω

fDβφdx, for all φ ∈ C∞
0 (Ω). (4)

We write v = Dβf and note that, up to a set of measure zero, v is uniquely
determined. The concept of weak derivative extends the classical concept of
derivative and has many similar properties (see e.g. [18]).

2.7 Sobolev spaces

We say that f ∈ W k(Ω,Rm), if f has weak derivatives up to order k, and
set

W k,p(Ω,Rm) = {f ∈ W k(Ω,Rm) : Dβf ∈ Lp(Ω,Rm), |β| ≤ k}.

Then the vector space W k,p(Ω,Rm) equipped with the norm

‖f‖W k,p =





∫

Ω

∑

|β|≤k

|Dβf |pdx





1/p

(5)

is a Banach space. The space Ck
0 (Ω,Rm) is a subspace of W k,p(Ω,Rm), it’s

closure in W k,p(Ω,Rm), denoted by W k,p
0 (Ω,Rm), is a Banach subspace which,

in general, is a proper subspace.
For p = 2, the spaces W k,2(Ω,Rm) and W k,2

0 (Ω,Rm) are Hilbert spaces with
inner product 〈f, g〉 given by

〈f, g〉 =

∫

Ω

∑

|α|≤k

Dαf ·Dαgdx. (6)

These spaces play a special role in the linear theory of partial differential equa-
tions, and in case Ω satisfies sufficient regularity conditions (see [1], [41]), they
may be identified with the following spaces.

Consider the space Ck(Ω̄,Rm) as a normed space using the ‖ · ‖W k,p norm.
It’s completion is denoted by Hk,p(Ω,Rm). If p = 2 it is a Hilbert space with

inner product given by (6). Hk,p
0 (Ω,Rm) is the completion of C∞

0 (Ω,Rm) in
Hk,p(Ω,Rm).

2.8 Spaces of linear operators

Let E andX be normed linear spaces with norms ‖·‖E and ‖·‖X , respectively.
Let

L(E;X) = {f : E → X such that f is linear and continuous}.
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For f ∈ L(E;X), let

‖f‖L = sup
‖x‖E≤1

‖f(x)‖X . (7)

Then ‖ · ‖L is a norm for L(E;X). This space is a Banach space, whenever X
is.

Let E1, . . . , En and X be n+1 normed linear spaces, let L(E1, . . . , En;X) =
{f : E1 × · · · × En → X such that f is multilinear (i.e. f is linear in each
variable separately) and continuous}. Let

‖f‖ = sup{‖f(x1, . . . , xn)‖X : ‖x1‖E1
≤ 1, . . . , ‖xn‖En

≤ 1}, (8)

then L(E1, . . . , En;X) with the norm defined by (8) is a normed linear space.
It again is a Banach space, whenever X is.

If E and X are normed spaces, one may define the spaces

L1(E;X) = L(E;X)
L2(E;X) = L(E; L1(E;X))

...
...

...
Ln(E;X) = L(E; Ln−1(E;X)), n ≥ 2.

We leave it as an exercise to show that the spaces L(E, . . . , E;X) (E repeated
n times) and Ln(E;X) may be identified (i.e. there exists an isomorphism
between these spaces which is norm preserving (see e.g. [43]).

3 Differentiability, Taylor’s Theorem

3.1 Gâteaux and Fréchet differentiability

Let E and X be Banach spaces and let U be an open subset of E. Let

f : U → X

be a function. Let x0 ∈ U , then f is said to be Gâteaux differentiable (G-
differentiable) at x0 in direction h, if

lim
t→0

1

t
{f(x0 + th) − f(x0)} (9)

exists. It said to be Fréchet differentiable (F-differentiable) at x0, if there exists
T ∈ L(E;X) such that

f(x0 + h) − f(x0) = T (h) + o(‖h‖) (10)

for ‖h‖ small, here o(‖h‖) means that

lim
‖h‖→0

o(‖h‖)
‖h‖ = 0.
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(We shall use the symbol ‖ · ‖ to denote both the norm of E and the norm of
X , since it will be clear from the context in which space we are working.) We
note that Fréchet differentiability is a more restrictive concept.

It follows from this definition that the Fréchet–derivative of f at x0, if it
exists, is unique. We shall use the following symbols interchangeably for the
Fréchet–derivative of f at x0; Df(x0), f

′(x0), df(x0), where the latter is usually
used in case X = R. We say that f is of class C1 in a neighborhood of x0 if f
is Fréchet differentiable there and if the mapping

Df : x 7→ Df(x)

is a continuous mapping into the Banach space L(E;X).

If the mapping

Df : U → L(E;X)

is Fréchet–differentiable at x0 ∈ U , we say that f is twice Fréchet–differentiable
and we denote the second F–derivative by D2f(x0), or f ′′(x0), or d2f(x0). Thus
D2f(x0) ∈ L2(E;X). In an analogous way one defines higher order differentia-
bility.

If h ∈ E, we shall write

Dnf(x0)(h, · · · , h) as Dnf(x0)h
n,

(see Subsection 2.8).

If f : Rn → Rn is Fréchet differentiable at x0, then Df(x0) is given by the
Jacobian matrix

Df(x0) =

(

∂fi

∂xj

∣

∣

∣

∣

x=x0

)

,

and if f : Rn → R is Fréchet differentiable, then Df(x0) is represented by the
gradient vector ∇f(x0), i.e.

Df(x0)(h) = ∇f(x0) · h,

where “·” is the dot product in Rn, and the second derivative D2f(x0) is given

by the Hessian matrix
(

∂2f
∂xi∂xj

)

∣

∣

∣

∣

x=x0

, i.e.

D2f(x0)h
2 = hT

(

∂2f

∂xi∂xj

)

h,

where hT is the transpose of the vector h.
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3.2 Taylor’s formula

1 Theorem Let f : E → X and all of its Fréchet–derivatives Df, · · · , Dmf be
continuous on an open set U . Let x and x + h be such that the line segment
connecting these points lies in U . Then

f(x+ h) − f(x) =

m−1
∑

k=1

1

k!
Dkf(x)hk +

1

m!
Dmf(z)hm, (11)

where z is a point on the line segment connecting x to x + h. The remainder
1

m!D
mf(z)hm is also given by

1

(m− 1)!

∫ 1

0

(1 − s)m−1Dmf(x0 + sh)hmds. (12)

We shall not give a proof of this result here, since the proof is similar to the one
for functions f : Rn → Rm (see e.g. [14]).

3.3 Euler-Lagrange equations

In this example we shall discuss a fundamental problem of variational cal-
culus to illustrate the concepts of differentiation just introduced; specifically we
shall derive the so called Euler-Lagrange differential equations. The equations
derived give necessary conditions for the existence of minima (or maxima) of
certain functionals.

Let g : [a, b]×R2 → R be twice continuously differentiable. Let E = C2
0 [a, b]

and let T : E → R be given by

T (u) =

∫ b

a

g(t, u(t), u′(t))dt.

It then follows from elementary properties of the integral, that T is of class C1.
Let u0 ∈ E be such that there exists an open neighborhood U of u0 such that

T (u0) ≤ T (u) (13)

for all u ∈ U (u0 is called an extremal of T ). Since T is of class C1 we obtain
that for u ∈ U

T (u) = T (u0) +DT (u0)(u− u0) + o(‖u− u0‖).
Hence for fixed v ∈ E and ǫ ∈ R small,

T (u0 + ǫv) = T (u0) +DT (u0)(ǫv) + o(|ǫ|‖v‖).
It follows from (13) that

0 ≤ DT (u0)(ǫv) + o(|ǫ|‖v‖)
and hence, dividing by ‖ǫv‖,

0 ≤ DT (u0)

(

± v

‖v‖

)

+
o(‖ǫv‖)
‖ǫv‖ ,
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where ‖ · ‖ is the norm in E. It therefore follows, letting ǫ → 0, that for
every v ∈ E, DT (u0)(v) = 0. To derive the Euler–Lagrange equation, we must
compute DT (u0). For arbitrary h ∈ E we have

T (u0 + h) =
∫ b

a
g(t, u0(t) + h(t), u′0(t) + h′(t))dt

=
∫ b

a g(t, u0(t), u
′
0(t)dt

+
∫ b

a
∂g
∂p (t, u0(t), u

′
0(t))h(t)dt

+
∫ b

a
∂g
∂q (t, u0(t), u

′
0(t))h

′(t)dt+ o(‖h‖),

where p and q denote generic second, respectively, third variables in g. Thus

DT (u0)(h) =

∫ b

a

∂g

∂p
(t, u0(t), u

′
0(t))h(t)dt+

∫ b

a

∂g

∂q
(t, u0(t), u

′
0(t))h

′(t)dt.

For notation’s sake we shall now drop the arguments in g and its partial deriva-
tives. We compute

∫ b

a

∂g

∂q
h′dt =

[

∂g

∂q
h

]b

a

−
∫ b

a

h
d

dt

(

∂g

∂q

)

dt,

and since h ∈ E, it follows that

DT (u0)(h) =

∫ b

a

[

∂g

∂p
− d

dt

∂g

∂q

]

hdt. (14)

Since DT (u0)(h) = 0 for all h ∈ E, it follows that

∂g

∂p
(t, u0(t), u

′
0(t)) −

d

dt

∂g

∂q
(t, u0(t), u

′
0(t)) = 0, (15)

for a ≤ t ≤ b (this fact is often referred to as the fundamental lemma of the
calculus of variations). Equation (15) is called the Euler-Lagrange equation. If
g is twice continuously differentiable (15) becomes

∂g

∂p
− ∂2g

∂t∂q
− ∂2g

∂p∂q
u′0 −

∂2g

∂q2
u′′0 = 0, (16)

where it again is understood that all partial derivatives are to be evaluated at
(t, u0(t), u

′
0(t)). We hence conclude that an extremal u0 ∈ E must solve the

nonlinear differential equation (16).

4 Some Special Mappings

Throughout our text we shall have occasion to study equations defined by
mappings which enjoy special kinds of properties. We shall briefly review some
such properties and refer the reader for more detailed discussions to standard
texts on analysis and functional analysis (e.g. [14]).



12

4.1 Completely continuous mappings

Let E and X be Banach spaces and let Ω be an open subset of E, let

f : Ω → X

be a mapping. Then f is called compact, whenever f(Ω′) is precompact in

X for every bounded subset Ω′ of Ω (i.e. f(Ω′) is compact in X). We call f
completely continuous whenever f is compact and continuous. We note that if
f is linear and compact, then f is completely continuous.

2 Lemma Let Ω be an open set in E and let f : Ω → X be completely continuous,
let f be F-differentiable at a point x0 ∈ Ω. Then the linear mapping T = Df(x0)
is compact, hence completely continuous.

Proof. Since T is linear it suffices to show that T ({x : ‖x‖ ≤ 1}) is precompact
in X . (We again shall use the symbol ‖ · ‖ to denote both the norm in E and
in X .) If this were not the case, there exists ǫ > 0 and a sequence {xn}∞n=1 ⊂
E, ‖xn‖ ≤ 1, n = 1, 2, 3, · · · such that

‖Txn − Txm‖ ≥ ǫ, n 6= m.

Choose 0 < δ < 1 such that

‖f(x0 + h) − f(x0) − Th‖ < ǫ

3
‖h‖,

for h ∈ E, ‖h‖ ≤ δ. Then for n 6= m

‖f(x0 + δxn) − f(x0 + δxm)‖ ≥ δ‖Txn − Txm‖

− ‖f(x0 + δxn) − f(x0) − δTxn‖ − ‖f(x0 + δxm) − f(x0) − δTxm‖

≥ δǫ− δǫ
3 − δǫ

3 = δǫ
3 .

Hence the sequence {f(x0 + δxn)}∞n=1 has no convergent subsequence. On the
other hand, for δ > 0, small, the set {x0 + δxn}∞n=1 ⊂ Ω, and is bounded,
implying by the complete continuity of f that {f(x0 + δxn)}∞n=1 is precompact.
We have hence arrived at a contradiction.

4.2 Proper mappings

Let M ⊂ E, Y ⊂ X and let f : M → Y be continuous, then f is called
a proper mapping if for every compact subset K of Y , f−1(K) is compact in
M . (Here we consider M and Y as metric spaces with metrics induced by the
norms of E and X , respectively.)
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3 Lemma Let h : E → X be completely continuous and let g : E → X be proper,
then f = g − h is a proper mapping, provided that f is coercive, i.e.

‖f(x)‖ → ∞ as ‖x‖ → ∞. (17)

Proof. Let K be a compact subset of X and let N = f−1(K). Let {xn}∞n=1

be a sequence in N . Then there exists {yn}∞n=1 ⊂ K such that

yn = g(xn) − h(xn). (18)

Since K is compact, the sequence {yn}∞n=1 has a convergent subsequence, and
since f is coercive the sequence {xn}∞n=1 must be bounded, further, because
h is completely continuous, the sequence {h(xn)}∞n=1 must have a convergent
subsequence. It follows that the sequence {g(xn)}∞n=1 has a convergent sub-
sequence. Relabeling, if necessary, we may assume that all three sequences
{yn}∞n=1, {g(xn)}∞n=1 and {h(xn)}∞n=1 are convergent. Since

g(xn) = yn + h(xn)

and g is proper, it follows that {xn}∞n=1 converges also, say xn → x; hence N
is precompact. That N is also closed follows from the fact that g and h are
continuous.

4 Corollary Let h : E → E be a completely continuous mapping, and let f =
id − h be coercive, then f is proper (here id is the identity mapping).

Proof. We note that id : E → E is a proper mapping.
In finite dimensional spaces the concepts of coercivity and properness are

equivalent, i.e. we have:

5 Lemma Let f : Rn → Rm be continuous, then f is proper if and only if f is
coercive.

4.3 Contraction mappings, the Banach fixed point theo-

rem

Let M be a subset of a Banach space E. A function f : M → E is called a
contraction mapping if there exists a constant k, 0 ≤ k < 1 such that

‖f(x) − f(y)‖ ≤ k‖x− y‖, for all x, y ∈M. (19)

6 Theorem Let M be a closed subset of E and f : M → M be a contraction
mapping, then f has a unique fixed point in M ; i.e. there exists a unique x ∈M
such that

f(x) = x . (20)
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Proof. If x, y ∈M both satisfy (20), then

‖x− y‖ = ‖f(x) − f(y)‖ ≤ k‖x− y‖,

hence, since k < 1, x must equal y, establishing uniqueness of a fixed point.
To proof existence, we define a sequence {xn}∞n=0 ⊂M inductively as follows:

Choose x0 ∈M and let

xn = f(xn−1), n ≥ 1. (21)

(21) implies that for any j ≥ 1

‖f(xj) − f(xj−1)‖ ≤ kj‖x1 − x0‖,

and hence if m > n

xm − xn = xm − xm−1 + xm−1 − . . .+ xn+1 − xn

= f(xm−1) − f(xm−2) + . . .+ f(xn) − f(xn−1)

and therefore

‖xm − xn‖ ≤ ‖x1 − x0‖(kn + . . .+ km−1) =
kn − km

1 − k
‖x1 − x0‖. (22)

It follows from (22) that {xn}∞n=0 is a Cauchy sequence in E, hence

lim
n→∞

xn = x

exists and since M is closed, x ∈M . Using (21) we obtain that (20) holds.

7 Remark We note that the above theorem, Theorem 6, also holds if E is a
complete metric space with metric d. This is easily seen by replacing ‖x− y‖ by
d(x, y) in the proof.

In the following example we provide an elementary approach to the existence
and uniqueness of a solution of a nonlinear boundary value problem (see [13]).
The approach is based on the Lp theory of certain linear differential operators
subject to boundary constraints.

Let T > 0 be given and let

f : [0, T ]× R × R → R

be a mapping satisfying Carathéodory conditions; i.e. f(t, u, u′) is continuous
in (u, u′) for almost all t and measurable in t for fixed (u, u′).

We consider the Dirichlet problem, i.e. the problem of finding a function u
satisfying the following differential equation subject to boundary conditions

{

u′′ = f(t, u, u′), 0 < t < T,
u = 0, t ∈ {0, T }. (23)

In what is to follow, we shall employ the notation that | · | stands for absolute
value in R and ‖ · ‖2 the norm in L2(0, T ).

We have the following results:
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8 Theorem Let f satisfy

|f(t, u, v)−f(t, ũ, ṽ)| ≤ a|u−ũ|+b|v− ṽ|, ∀u, ũ, v, ṽ ∈ R, 0 < t < T,(24)

where a, b are nonegative constants such that

a

λ1
+

b√
λ1

< 1, (25)

and λ1 is the principal eigenvalue of −u′′ subject to the Dirichlet boundary
conditions u(0) = 0 = u(T ) (i.e. the smallest number λ such that the problem

{

−u′′ = λu, 0 < t < T,
u = 0, t ∈ {0, T }. (26)

has a nontrivial solution). Then problem (23) has a unique solution u ∈
C1

0 ([0, T ]), with u′ absolutely continuous and the equation (23) being satisfied
almost everywhere.

Proof. Results from elementary differential equations tell us that λ1 is the
first positive number λ such that the problem (26) has a nontrivial solution, i.e.

λ1 = π2

T 2 .
To prove the theorem, let us, for v ∈ L1(0, T ), put

Av = f(·, w, w′), (27)

where

w(t) = − t

T

∫ T

0

∫ τ

0

v(s)dsdτ +

∫ t

0

∫ τ

0

v(s)dsdτ,

which, in turn may be rewritten as

w(t) =

∫ T

0

G(t, s)v(s)ds, (28)

where

G(t, s) = − 1

T

{

(T − t)s, if 0 ≤ s ≤ t
t(T − s), if t ≤ s ≤ T.

(29)

It follows from (24) that the operator A is a mapping of L1(0, T ) to any
Lq(0, T ), q ≥ 1. On the other hand we have that the imbedding

Lq(0, T ) →֒ L1(0, T ), q ≥ 1,

u ∈ Lq(0, T ) 7→ u ∈ L1(0, T ),

is a continuous mapping, since

‖u‖L1 ≤ T
q

q−1 ‖u‖Lq .
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We hence may consider

A : Lq(0, T ) → Lq(0, T ),

for any q ≥ 1. In carrying out the computations in the case q = 2, the follow-
ing inequalities will be used; their proofs may be obtained using Fourier series

methods, and will be left as an exercise. We have for w(t) =
∫ T

0 G(t, s)v(s)ds
that

‖w‖L2 ≤ 1

λ1
‖v‖L2,

from which easily follows, via an integration by parts, that

‖w′‖L2 ≤ 1√
λ1

‖v‖L2

Using these facts in the computations one obtains the result that A is a con-
traction mapping.

On the other hand, if v ∈ L2(0, T ) is a fixed point of A, then

u(t) =

∫ T

0

G(t, s)v(s)ds

is in C1
0 (0, T ) and u′′ ∈ L2(0, T ) and u solves (23).

9 Remark It is clear from the proof that in the above the real line R may be
replaced by Rm thus obtaining a result for systems of boundary value problems.

10 Remark In case T = π, λ1 = 1 and condition (25) becomes

a+ b < 1,

whereas a classical result of Picard requires

a
π2

8
+ b

π

2
< 1,

(see [21] where also other results are cited).

11 Remark Theorem 8 may be somewhat extended using a result of Opial [31]
which says that for u ∈ C0[0, T ], with u′ absolutely continuous, we have that

∫ T

0

|u(x)||u′(x)|dx ≤ T

4

∫ T

0

|u′(x)|2dx. (30)

The derivation of such a statement is left as an exercise.



4. SOME SPECIAL MAPPINGS 17

4.4 The implicit function theorem

Let us now assume we have Banach spaces E,X,Λ and let

f : U × V → X,

(where U is open in E, V is open in Λ) be a continuous mapping satisfying the
following condition:

• For each λ ∈ V the map f(·, λ) : U → X is Fréchet-differentiable on U
with Fréchet derivative

Duf(u, λ) (31)

and the mapping (u, λ) 7→ Duf(u, λ) is a continuous mapping from U ×V
to L(E,X).

12 Theorem (Implicit Function Theorem) Let f satisfy (31) and let there ex-
ist (u0, λ0) ∈ U×V such that Duf(u0, λ0) is a linear homeomorphism of E onto
X (i.e. Duf(u0, λ0) ∈ L(E,X) and [Duf(u0, λ0)]

−1 ∈ L(X,E)). Then there
exist δ > 0 and r > 0 and unique mapping u : Bδ(λ0) = {λ : ‖λ−λ0‖ ≤ δ} → E
such that

f(u(λ), λ) = f(u0, λ0), (32)

and ‖u(λ) − u0‖ ≤ r, u(λ0) = u0.

Proof. Let us consider the equation

f(u, λ) = f(u0, λ0)

which is equivalent to

[Duf(u0, λ0)]
−1(f(u, λ) − f(u0, λ0)) = 0, (33)

or

u = u− [Duf(u0, λ0)]
−1(f(u, λ) − f(u0, λ0))

def
= G(u, λ). (34)

The mapping G has the following properties:

i) G(u0, λ0) = u0,

ii) G and DuG are continuous in (u, λ),

iii) DuG(u0, λ0) = 0.
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Hence

‖G(u1, λ) −G(u2, λ)‖
≤

(

sup0≤t≤1 ‖DuG(u1 + t(u2 − u1), λ)‖
)

‖u1 − u2‖
≤ 1

2‖u1 − u2‖,
(35)

provided ‖u1 − u0‖ ≤ r, ‖u2 − u0‖ ≤ r, where r is small enough. Now

‖G(u, λ) − u0‖ = ‖G(u, λ) −G(u0, λ0)‖ ≤ ‖G(u, λ) −G(u0, λ)‖

+‖G(u0, λ) −G(u0, λ0)‖ ≤ 1

2
‖u− u0‖ + ‖G(u0, λ) −G(u0, λ0)‖

≤ 1

2
r +

1

2
r,

provided ‖λ− λ0‖ ≤ δ is small enough so that ‖G(u0, λ) −G(u0, λ0)‖ ≤ 1
2r.

Let Bδ(λ0) = {λ : ‖λ−λ0‖ ≤ δ} and define M = {u : Bδ(λ0) → E such that
u is continuous, u(λ0) = u0, ‖u(λ)−u0‖0 ≤ r, and ‖u‖0 = supλ∈Bδ(λ0) ‖u(λ)‖ <
+∞}. Then M is a closed subset of a Banach space and (35) defines an equation

u(λ) = G(u(λ), λ) (36)

in M .
Define g by (here we think of u as an element of M)

g(u)(λ) = G(u(λ), λ),

then g : M → M and it follows by (36) that

‖g(u)− g(v)‖0 ≤ 1

2
‖u− v‖0,

hence g has a unique fixed point by the contraction mapping principle (Theorem
6).

13 Remark If in the implicit function theorem f is k times continuously differen-
tiable, then the mapping λ 7→ u(λ) inherits this property.

14 Example As an example let us consider the nonlinear boundary value problem

u′′ + λeu = 0, 0 < t < π, u(0) = 0 = u(π). (37)

This is a one space-dimensional mathematical model from the theory of com-
bustion (cf [3]) and u represents a dimensionless temperature. We shall show,
by an application of Theorem 12, that for λ ∈ R, in a neighborhood of 0, (37)
has a unique solution of small norm in C2([0, π],R).
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To this end we define

E = C2
0 ([0, π],R)

X = C0[0, π]

Λ = R,

these spaces being equipped with their usual norms (see earlier examples). Let

f : E × Λ → X

be given by

f(u, λ) = u′′ + λeu.

Then f is continuous and f(0, 0) = 0. (When λ = 0 (no heat generation) the
unique solution is u ≡ 0.) Furthermore, for u0 ∈ E, Duf(u0, λ) is given by (the
reader should carry out the verification)

Duf(u0, λ)v = v′′ + λeu0(x)v,

and hence the mapping

(u, λ) 7→ Duf(u, λ)

is continuous. Let us consider the linear mapping

T = Duf(0, 0) : E → X.

We must show that this mapping is a linear homeomorphism. To see this we
note that for every h ∈ X , the unique solution of

v′′ = h(t), 0 < t < π, v(0) = 0 = v(π),

is given by (see also (28))

v(t) =

∫ π

0

G(t, s)h(s)ds, (38)

where

G(x, s) =

{

− 1
π (π − t)s, 0 ≤ s ≤ t

− 1
π t(π − s), t ≤ s ≤ π.

From the representation (38) we may conclude that there exists a constant c
such that

‖v‖2 = ‖T−1h‖2 ≤ c‖h‖0,
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i.e. T−1 is one to one and continuous. Hence all conditions of the implicit func-
tion theorem are satisfied and we may conclude that for each λ, λ sufficiently
small, (37) has a unique small solution u ∈ C2([0, π],R), furthermore the map
λ 7→ u(λ) is continuous from a neighborhood of 0 ∈ R to C2([0, π],R). We later
shall show that this ‘solution branch’ (λ, u(λ)) may be globally continued. To
this end we note here that the set {λ > 0 : (37) has a solution } is bounded
above. We observe that if λ > 0 is such that (37) has a solution, then the
corresponding solution u must be positive, u(x) > 0, 0 < x < π. Hence

0 = u′′ + λeu > u′′ + λu. (39)

Let v(t) = sin t, then v satisfies

v′′ + v = 0, 0 < t < π, v(0) = 0 = v(π). (40)

From (39) and (40) we obtain

0 >

∫ π

0

(u′′v − v′′u)dt+ (λ− 1)

∫ π

0

uvdt,

and hence, integrating by parts,

0 > (λ− 1)

∫ π

0

uvdx,

implying that λ < 1.

5 Inverse Function Theorems

We next proceed to the study of the inverse of a given mapping and provide
two inverse function theorems. Since the first result is proved in exactly the
same way as its finite dimensional analogue (it is an immediate consequence of
the implicit function theorem) we shall not prove it here (see again [14]).

15 Theorem Let E and X be Banach spaces and let U be an open neighborhood
of a ∈ E. Let f : U → X be a C1 mapping with Df(a) a linear homeomorphism
of E onto X . Then there exist open sets U ′ and V , a ∈ U ′, f(a) ∈ V and a
uniquely determined function g such that:

i) V = f(U ′),

ii) f is one to one on U ′,

iii) g : V → U ′, g(V ) = U ′, g(f(u)) = u, for every u ∈ U ′,

iv) g is a C1 function on V and Dg(f(a)) = [Df(a)]−1.
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16 Example Consider the forced nonlinear oscillator (periodic boundary value
problem)

u′′ + λu+ u2 = g, u(0) = u(2π), u′(0) = u′(2π) (41)

where g is a continuous 2π − periodic function and λ ∈ R, is a parameter. Let
E = C2([0, 2π],R)∩{u : u(0) = u(2π), u′(0) = u′(2π)}, and X = C0([0, 2π],R),
where both spaces are equipped with the norms discussed earlier. Then for
certain values of λ, (41) has a unique solution for all forcing terms g of small
norm.

Let

f : E → X

be given by

f(u) = u′′ + λu + u2.

Then Df(u) is defined by

(Df(u))(v) = v′′ + λv + 2uv,

and hence the mapping

u 7→ Df(u)

is a continuous mapping of E to L(E;X), i.e. f is a C1 mapping. It follows
from elementary differential equations theory (see eg. [4]) that the problem

v′′ + λv = h,

has a unique 2π–periodic solution for every 2π–periodic h as long as λ 6= n2,
n = 1, 2, . . ., and that ‖v‖2 ≤ C‖h‖0 for some constant C (only depending upon
λ). Hence Df(0) is a linear homeomorphism of E onto X . We thus conclude
that for given λ 6= n2, (32) has a unique solution u ∈ E of small norm for every
g ∈ X of small norm.

We note that the above example is prototypical for forced nonlinear oscilla-
tors. Virtually the same arguments can be applied (the reader might carry out
the necessary calculations) to conclude that the forced pendulum equation

u′′ + λ sinu = g (42)

has a 2π- periodic response of small norm for every 2π - periodic forcing term
g of small norm, as long as λ 6= n2, n = 1, 2, . . . .

In many physical situations (see the example below) it is of interest to know
the number of solutions of the equation describing this situation. The following
result describes a class of problems where the precise number of solutions (for
every given forcing term) may be obtained by simply knowing the number of
solutions for some fixed forcing term.

Let M and Y metric spaces (e.g. subsets of Banach spaces with metric
induced by the norms).
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17 Theorem Let f : M → Y be continuous, proper and locally invertible (e.g.
Theorem 15 is applicable at each point). For y ∈ Y let

N(y) = cardinal number of {f−1(y)} = #{f−1(y)}.
Then the mapping

y 7→ N(y)

is finite and locally constant.

Proof. We first show that for each y ∈ Y , N(y) is finite. Since {y} is compact
{f−1(y)} is compact also, because f is a proper mapping. Since f is locally
invertible, there exists, for each u ∈ {f−1(y)} a neighborhood Ou such that

Ou ∩ ({f−1(y)}\{u}) = ∅,
and thus {f−1(y)} is a discrete and compact set, hence finite.

We next show that N is a continuous mapping to the nonnegative integers,
which will imply that N is constant–valued. Let y ∈ Y and let {f−1(y)} =
{u1, . . . , un}. We choose disjoint open neighborhoods Oi of ui, 1 ≤ i ≤ n and
let I =

⋂n
i=1 f(Oi). Then there exist open sets Vi, ui ∈ Vi such that f is a

homeomorphism from Vi to I. We next claim that there exists a neighborhood
W ⊂ I of y such that N is constant on W . For if not, there will exist a sequence
{ym}, with ym → y, such that as m → ∞, N(ym) > N(y) (note that for
any v ∈ I, v has a preimage in each Vi which implies N(v) ≥ N(y), v ∈ I!).
Hence there exists a sequence {ξm}, ξm 6∈ ⋃n

i=1 Vi, such that f(ξm) = ym.
Since f−1({yn} ∪ {y}) is compact, the sequence {ξn} will have a convergent
subsequence, say ξnj

→ ξ. And since f is continuous, f(ξ) = y. Hence ξ = ui,
for some i, a contradiction to ξ 6∈ ⋃n

i=1 Vi.

18 Corollary Assume Y is connected, then N(Y ) is constant.

Examples illustrating this result will be given later in the text.

6 The Dugundji Extension Theorem

In the course of developing the Brouwer and Leray–Schauder degree and in
proving some of the classical fixed point theorems we need to extend mappings
defined on proper subsets of a Banach space to the whole space in a suitable
manner. The result which guarantees the existence of extensions having the
desired properties is the Dugundji extension theorem ([16]) which will be estab-
lished in this section.

In proving the theorem we need a result from general topology which we
state here for convenience (see e.g [16]). We first give some terminology.

Let M be a metric space and let {Oλ}λ∈Λ, where Λ is an index set, be an
open cover of M . Then {Oλ}λ∈Λ is called locally finite if every point u ∈ M
has a neighborhood U such that U intersects at most finitely many elements of
{Oλ}λ∈Λ.
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19 Lemma Let M be a metric space. Then every open cover of M has a locally
finite refinement.

20 Theorem Let E and X be Banach spaces and let f : C → K be a continuous
mapping, where C is closed in E and K is convex in X . Then there exists a
continuous mapping

f̃ : E → K

such that

f̃(u) = f(u), u ∈ C.

Proof. For each u ∈ E\C let

ru =
1

3
dist(u,C)

and

Bu = {v ∈ E : ‖v − u‖ < ru}.

Then
diamBu ≤ dist(Bu, C).

The collection {Bu}u∈E\C is an open cover of the metric space E\C and hence
has a locally finite refinement {Oλ}λ∈Λ, i.e.

i)
⋃

λ∈Λ Oλ ⊃ E\C,

ii) for each λ ∈ Λ there exists Bu such that Oλ ⊂ Bu

iii) {Oλ}λ∈Λ is locally finite.

Define

q : E\C → (0,∞)

by

q(u) =
∑

λ∈Λ

dist(u,E\Oλ). (43)

The sum in the right hand side of (43) contains only finitely many terms, since
{Oλ}λ∈Λ is locally finite. This also implies that q is a continuous function.

Define

ρλ(u) =
dist(u,E\Oλ)

q(u)
, λ ∈ Λ, u ∈ E\C.

It follows for λ ∈ Λ and u ∈ E\C that

0 ≤ ρλ(u) ≤ 1,
∑

λ∈Λ

ρλ(u) = 1.
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For each λ ∈ Λ choose uλ ∈ C such that

dist(uλ,Oλ) ≤ 2dist(C,Oλ)

and define

f̃(u) =

{

f(u), u ∈ C
∑

λ∈Λ ρλ(u)f(uλ), u 6∈ C.

Then f̃ has the following properties:

i) f̃ is defined on E and is an extension of f .

ii) f̃ is continuous on the interior of C.

iii) f̃ is continuous on E\C.

These properties follow immediately from the definition of f̃ . To show that f̃ is
continuous on E it suffices therefore to show that f̃ is continuous on ∂C. Let
u ∈ ∂C, then since f is continuous we may, for given ǫ > 0, find 0 < δ = δ(u, ǫ)
such that

‖f(u)− f(v)‖ ≤ ǫ, if ‖u− v‖ ≤ δ, v ∈ C.

Now for v ∈ E\C

‖f̃(u) − f̃(v)‖ = ‖f(u) −
∑

λ∈Λ

ρλ(v)f(uλ)‖ ≤
∑

λ∈Λ

ρλ(v)‖f(u) − f(uλ)‖.

If ρλ(v) 6= 0, λ ∈ Λ, then dist(v,E\Oλ) > 0, i.e. v ∈ Oλ. Hence ‖v − uλ‖ ≤
‖v−w‖ + ‖w− uλ‖ for any w ∈ Oλ. Since ‖v−w‖ ≤ diamOλ we may take the
infimum for w ∈ Oλ and obtain

‖v − uλ‖ ≤ diamOλ + dist(uλ,Oλ).

Now Oλ ⊂ Bu1
for some u1 ∈ E\C. Hence, since

diamOλ ≤ diamBu1
≤ dist(Bu1

, C) ≤ dist(C,Oλ),

we get

‖v − uλ‖ ≤ 3dist(C,Oλ) ≤ 3‖v − u‖.

Thus for λ such that ρλ(v) 6= 0 we get ‖u−uλ‖ ≤ ‖v−u‖+‖v−uλ‖ ≤ 4‖u−v‖.
Therefore if ‖u − v‖ ≤ δ/4, then ‖u − uλ‖ ≤ δ, and ‖f(u) − f(uλ)‖ ≤ ǫ, and
therefore

‖f̃(u) − f̃(v)‖ ≤ ǫ
∑

λ∈Λ

ρλ(v) = ǫ.
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21 Corollary Let E, X be Banach spaces and let f : C → X be continuous, where
C is closed in E. Then f has a continuous extension f̃ to E such that

f̃(E) ⊂ cof(C),

where cof(C) is the convex hull of f(C).

22 Corollary Let K be a closed convex subset of a Banach space E. Then there
exists a continuous mapping f : E → K such that f(E) = K and f(u) = u,
u ∈ K, i.e. K is a continuous retract of E.

Proof. Let id : K → K be the identity mapping. This map is continuous.
Since K is closed and convex we may apply Corollary 21 to obtain the desired
conclusion.

7 Exercises

1. Supply all the details for the proof of Theorem 8.

2. Compare the requirements discussed in Remark 10.

3. Derive an improved result as suggested by Remark 11.

4. Establish the assertion of Remark 13.

5. Supply the details of the proof of Example 14.

6. Prove Theorem 15.

7. Carry out the program laid out by Example 16 to discuss the nonlinear
oscillator given by (42).
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Chapter II

The Method of

Lyapunov-Schmidt

1 Introduction

In this chapter we shall develop an approach to bifurcation theory which,
is one of the original approaches to the theory. The results obtained, since the
implicit function theorem plays an important role, will be of a local nature. We
first develop the method of Liapunov–Schmidt and then use it to obtain a local
bifurcation result. We then use this result in several examples. Later in the
text it will be used to derive a Hopf bifurcation theorem.

2 Splitting Equations

Let X and Y be real Banach spaces and let F be a mapping

F : X × R → Y (1)

and let F satisfy the following conditions:

F (0, λ) = 0, ∀λ ∈ R, (2)

and

F is C2 in a neighborhood of {0} × R. (3)

We shall be interested in obtaining existence of nontrivial solutions (i.e. u 6= 0)
of the equation

F (u, λ) = 0 (4)

We call λ0 a bifurcation value or (0, λ0) a bifurcation point for (4) provided
every neighborhood of (0, λ0) in X × R contains solutions of (4) with u 6= 0.

It then follows from the implicit function theorem that the following holds.
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1 Theorem If the point (0, λ0) is a bifurcation point for the equation

F (u, λ) = 0, (5)

then the Fréchet derivative Fu(0, λ0) cannot be a linear homeomorphism of X
to Y.

The types of linear operators Fu(0, λ0) we shall consider are so-called Fred-
holm operators.

2 Definition A linear operator L : X → Y is called a Fredholm operator pro-
vided:

• The kernel of L, kerL, is finite dimensional.

• The range of L, imL, is closed in Y.

• The cokernel of L, cokerL, is finite dimensional.

The following lemma which is a basic result in functional analysis will be
important for the development to follow, its proof may be found in any standard
text, see e.g. [38].

3 Lemma Let Fu(0, λ0) be a Fredholm operator from X to Y with kernel V and
cokernel Z. Then there exists a closed subspace W of X and a closed subspace
T of Y such that

X = V ⊕W
Y = Z ⊕ T.

The operator Fu(0, λ0) restricted to W, Fu(0, λ0)|W : W → T, is bijective and
since T is closed it has a continuous inverse. Hence Fu(0, λ0)|W is a linear
homeomorphism of W onto T.

We recall that W and Z are not uniquely given.
Using Lemma 3 we may now decompose every u ∈ X and F uniquely as

follows:

u = u1 + u2, u1 ∈ V, u2 ∈W,
F = F1 + F2, F1 : X → Z, F2 : X → T.

(6)

Hence equation (5) is equivalent to the system of equations

F1(u1, u2, λ) = 0,
F2(u1, u2, λ) = 0.

(7)

We next let L = Fu(0, λ0) and using a Taylor expansion we may write

F (u, λ) = F (0, λ0) + Fu(0, λ0)u+N(u, λ). (8)

or

Lu+N(u, λ) = 0, (9)
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where

N : X × R → Y. (10)

Using the decomposition of X we may write equation (9) as

Lu2 +N(u1 + u2, λ) = 0. (11)

Let Q : Y → Z and I −Q : Y → T be projections determined by the decompo-
sition, then equation (10) implies that

QN(u, λ) = 0. (12)

Since by Lemma 3, L|W : W → T has an inverse L−1 : T → W we obtain
from equation (11) the equivalent system

u2 + L−1(I −Q)N(u1 + u2, λ) = 0. (13)

We note, that since Z is finite dimensional, equation (12) is an equation in a
finite dimensional space, hence if u2 can be determined as a function of u1 and λ,
this equation will be a finite set of equations in finitely many variables (u1 ∈ V,
which is also assumed finite dimensional!)

Concerning equation (12) we have the following result.

4 Lemma Assume that Fu(0, λ0) is a Fredholm operator with W nontrivial.
Then there exist ǫ > 0, δ > 0 and a unique solution u2(u1, λ) of equation
(13) defined for |λ − λ0| + ‖u1‖ < ǫ with ‖u2(u1, λ)‖ < δ. This function solves
the equation F2(u1, u2(u1, λ), λ) = 0.

Proof. We employ the implicit function theorem to analyze equation (13).
That this may be done follows from the fact that at u1 = 0 and λ = λ0 equation
(13) has the unique solution u2 = 0 and the Fréchet derivative at this point
with respect to u2 is simply the identity mapping on W.

Hence, using Lemma 4, we will have nontrivial solutions of equation (5) once
we can solve

F1(u1, u2(u1, λ), λ) = QF (u1 + u2(u1, λ), λ) = 0 (14)

for u1, whenever |λ−λ0|+‖u1‖ < ǫ. This latter set of equations, usually referred
to as the set of bifurcation equations, is, even though a finite set of equations in
finitely many unknowns, the more difficult part in the solution of equation (5).

The next sections present situations where these equations may be solved.

5 Remark We note that in the above considerations at no point was it required
that λ be a one dimensional parameter.
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3 Bifurcation at a Simple Eigenvalue

In this section we shall consider the analysis of the bifurcation equation (14)
in the particular case that the kernel V and the cokernel Z of Fu(0, λ0) both
have dimension 1.

We have the following theorem.

6 Theorem In the notation of the previous section assume that the kernel V and
the cokernel Z of Fu(0, λ0) both have dimension 1. Let V = span{φ} and let
Q be a projection of Y onto Z. Furthermore assume that the second Fréchet
derivative Fuλ satisfies

QFuλ(0, λ0)(φ, 1) 6= 0. (15)

Then (0, λ0) is a bifurcation point and there exists a unique curve

u = u(α), λ = λ(α),

defined for α ∈ R in a neighborhood of 0 so that

u(0) = 0, u(α) 6= 0, α 6= 0, λ(0) = λ0

and

F (u(α), λ(α)) = 0.

Proof. Since V is one dimensional u1 = αφ. Hence for |α| small and λ near λ0

there exists a unique u2(α, λ) such that

F2(αφ, u2(α, λ), λ) = 0.

We hence need to solve for λ = λ(α) in the equation

QF (αφ+ u2(α, λ), λ) = 0.

We let µ = λ− λ0 and define

g(α, µ) = QF (αφ+ u2(α, λ), λ).

Then g maps a neighborhood of the origin of R2 into R.
Using Taylor’s theorem we may write

F (u, λ) = Fuu+Fλµ+
1

2
{Fuu(u, u) + 2Fuλ(u, λ) + Fλλ(µ, µ)}+R,(16)

where R contains higher order remainder terms and all Fréchet derivatives above
are evaluated at (0, λ0).

Because of (2) we have that Fλ and Fλλ in the above are the zero operators,
hence, by applying Q to (16) we obtain

QF (u, λ) =
1

2
{QFuu(u, u) + 2QFuλ(u, µ)} +QR, (17)
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and for α 6= 0

g(α,µ)
α = 1

2

{

QFuu(φ+ u2(α,λ)
α , αφ+ u2(α, λ))

+ 2QFuλ(φ+ u2(α,λ)
α , µ)

}

+ 1
αQR.

(18)

It follows from Lemma 4 that the term u2(α,λ)
α is bounded for α in a neigh-

borhood of 0. The remainder formula of Taylor’s theorem implies a similar
statement for the term 1

αQR. Hence

h(α, µ) =
g(α, µ)

α
= O(α), as α→ 0.

We note that in fact h(0, 0) = 0, and

∂h(0, 0)

∂µ
= QFuλ(0, λ0)(φ, 1) 6= 0.

We hence conclude by the implicit function theorem that there exists a unique
function µ = µ(α) defined in a neighborhood of 0 such that

h(α, µ(α)) = 0.

We next set

u(α) = αφ+ u2(α, λ0 + µ(α)), λ = λ0 + µ(α).

This proves the theorem.
The following example will serve to illustrate the theorem just established.

7 Example The point (0, 0) is a bifurcation point for the ordinary differential
equation

u′′ + λ(u + u3) = 0 (19)

subject to the periodic boundary conditions

u(0) = u(2π), u′(0) = u′(2π). (20)

To see this, we choose

X = C2[0, 2π] ∩ {u : u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π)},

Y = C[0, 2π] ∩ {u : u(0) = u(2π)},

both equipped with the usual norms, and

F : X × R → Y
(u, λ) 7→ u′′ + λ(u + u3).

Then F belongs to class C2 with Fréchet derivative

Fu(0, λ0)u = u′′ + λ0u. (21)
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This linear operator has a nontrivial kernel whenever λ0 = n2, n = 0, 1, · · · .
The kernel being one dimensional if and only if λ0 = 0.

We see that h belongs to the range of Fu(0, 0) if and only if
∫ 2π

0
h(s)ds = 0,

and hence the cokernel will have dimension 1 also. A projection Q : Y →
Z then is given by Qh = 1

2π

∫ 2π

0
h(s)ds. Computing further, we find that

Fuλ(0, 0)(u, λ) = λu, and hence, since we may choose φ = 1, Fuλ(0, 0)(1, 1) = 1.
Applying Q we get Q1 = 1. We may therefore conclude by Theorem 6 that
equation (19) has a solution u satisfying the boundary conditions (20) which is
of the form

u(α) = α+ u2(α, λ(α)).



Chapter III

Degree Theory

1 Introduction

In this chapter we shall introduce an important tool for the study of non-
linear equations, the degree of a mapping. We shall mainly follow the analytic
development commenced by Heinz in [22] and Nagumo in [29]. For a brief
historical account we refer to [42].

2 Definition of the Degree of a Mapping

Let Ω be a bounded open set in Rn and let f : Ω̄ → Rn be a mapping which
satisfies

• f ∈ C1(Ω,Rn) ∩C(Ω̄,Rn), (1)

• y ∈ Rn is such that

y /∈ f(∂Ω), (2)

• if x ∈ Ω is such that f(x) = y then

f ′(x) = Df(x) (3)

is nonsingular.

1 Proposition If f satisfies (1), (2), (3), then the equation

f(x) = y (4)

has at most a finite number of solutions in Ω.

2 Definition Let f satisfy (1), (2), (3). Define

d(f,Ω, y) =

k
∑

i=1

sgn det f ′(xi) (5)
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where x1, · · · , xk are the solutions of (4) in Ω and

sgn det f ′(xi) =







+1, if det f ′(xi) > 0

−1, if det f ′(xi) < 0, i = 1, · · · , k.

If (4) has no solutions in Ω we let d(f,Ω, y) = 0.

The Brouwer degree d(f,Ω, y) to be defined for mappings f ∈ C(Ω̄,Rn)
which satisfy (2) will coincide with the number just defined in case f satisfies
(1), (2), (3). In order to give this definition in the more general case we need a
sequence of auxiliary results.

The proof of the first result, which follows readily by making suitable changes
of variables, will be left as an exercise.

3 Lemma Let φ : [0,∞) → R be continuous and satisfy

φ(0) = 0, φ(t) ≡ 0, t ≥ r > 0,

∫

Rn

φ(|x|)dx = 1. (6)

Let f satisfy the conditions (1), (2), (3). Then

d(f,Ω, y) =

∫

Ω

φ(|f(x) − y|)det f ′(x)dx, (7)

provided r is sufficiently small.

4 Lemma Let f satisfy (1) and (2) and let r > 0 be such that |f(x)−y| > r, x ∈
∂Ω. Let φ : [0,∞) → R be continuous and satisfy:

φ(s) = 0, s = 0, r ≤ s, and

∫ ∞

0

sn−1φ(s)ds = 0. (8)

Then
∫

Ω

φ(|f(x) − y|) det f ′(x)dx = 0. (9)

Proof. We note first that it suffices to proof the lemma for functions f which
are are of class C∞ and for functions φ that vanish in a neighborhood of 0. We
also note that the function φ(|f(x) − y|) det f ′(x) vanishes in a neighborhood
of ∂Ω, hence we may extend that function to be identically zero outside Ω and

∫

Ω

φ(|f(x) − y|) det f ′(x)dx =

∫

Ω′

φ(|f(x) − y|) det f ′(x)dx,

where Ω′ is any domain with smooth boundary containing Ω.
We let

ψ(s) =

{

s−n
∫ s

0
ρn−1φ(ρ)dρ, 0 < s <∞

0, s = 0.
(10)
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Then ψ, so defined is a C1 function, it vanishes in a neighborhood of 0 and in
the interval [r,∞). Further ψ satisfies the differential equation

sψ′(s) + nψ(s) = φ(s). (11)

It follows that the functions

gj(x) = ψ(|x|)xj , j = 1, · · · , n

belong to class C1 and

gj(x) = 0, |x| ≥ r,

and furthermore that for j = 1, · · · , n the functions gj(f(x)−y) are C1 functions
which vanish in a neighborhood of ∂Ω. If we denote by aji(x) the cofactor of

the element ∂fi

∂xj
in the Jacobian matrix f ′(x), it follows that

div (aj1(x), aj2(x), · · · , ajn(x)) = 0, j = 1, · · · , n.

We next define for i = 1, · · · , n

vi(x) =

n
∑

j=1

aji(x)g
j(f(x) − y)

and show that the function v = (v1, v2, · · · , vn) has the property that

divv = φ(|f(x) − y|) det f ′(x),

and hence the result follows from the divergence theorem.

5 Lemma Let f satisfy (1) and (2) and let φ : [0,∞) → R be continuous, φ(0) =

0, φ(s) ≡ 0 for s ≥ r, where 0 < r ≤ minx∈∂Ω |f(x) − y|,
∫

Rn

φ(|x|)dx = 1.

Then for all such φ, the integrals
∫

Ω

φ(|f(x) − y|) det f ′(x)dx (12)

have a common value.

Proof. Let Φ = {φ ∈ C([0,∞),R) : φ(0) = 0, φ(s) ≡ 0, s ≥ r}. Put

Lφ =

∫ ∞

0

sn−1φ(s)ds

Mφ =

∫

Rn

φ(|x|)dx

Nφ =

∫

Ω

φ(|f(x) − y|) det f ′(x)dx.
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Then L,M,N are linear functionals. It follows from Lemma 4 that Mφ = 0
and Nφ = 0, whenever Lφ = 0. Let φ1, φ2 ∈ Φ with Mφ1 = Mφ2 = 1, then

L((Lφ2)φ1 − (Lφ1)φ2) = 0.

It follows that

(Lφ2)(Mφ1) − (Lφ1)(Mφ2) = 0,

Lφ2 − Lφ1 = L(φ2 − φ1) = 0,

and

N(φ2 − φ1) = 0,

i.e.

Nφ2 = Nφ1.

6 Lemma Let f1 and f2 satisfy (1), (2), (3) and let ǫ > 0 be such that

|fi(x) − y| > 7ǫ, x ∈ ∂Ω, i = 1, 2, (13)

|f1(x) − f2(x)| < ǫ, x ∈ Ω̄, (14)

then

d(f1,Ω, y) = d(f2,Ω, y).

Proof. We may, without loss, assume that y = 0, since by Definition 2

d(f,Ω, y) = d(f − y,Ω, 0).

let g ∈ C1[0,∞) be such that

g(s) = 1, 0 ≤ s ≤ 2ǫ

0 ≤ g(r) ≤ 1, 2ǫ ≤ r < 3ǫ

g(r) = 0, 3ǫ ≤ r <∞. (15)

Consider

f3(x) = [1 − g(|f1(x)|)]f1(x) + g(|f1(x)|)f2(x),

then

f3 ∈ C1(Ω,Rn) ∩C(Ω̄,Rn)

and

|fi(x) − fk(x)| < ǫ, i, k = 1, 2, 3, x ∈ Ω̄
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|fi(x)| > 6ǫ, x ∈ ∂Ω, i = 1, 2, 3.

Let φi ∈ C[0,∞), i = 1, 2 be continuous and be such that

φ1(t) = 0, 0 ≤ t ≤ 4ǫ, 5ǫ ≤ t ≤ ∞

φ2(t) = 0, ǫ ≤ t <∞, φ2(0) = 0
∫

Rn

φi(|x|)dx = 1, i = 1, 2.

We note that

f3 ≡ f1, if |f1| > 3ǫ

f3 ≡ f2, if |f1| < 2ǫ.

Therefore

φ1(|f3(x)|)det f ′
3(x) = φ1(|f1(x)|)det f ′

1(x)

φ2(|f3(x)|)det f ′
3(x) = φ2(|f2(x)|)det f ′

2(x).
(16)

Integrating both sides of (16) over Ω and using Lemmas 4 and 5 we obtain the
desired conclusion.

7 Corollary Let f satisfy conditions (1), (2), (3), then for ǫ > 0 sufficiently
small any function g which also satisfies these conditions and which is such that
|f(x) − g(x)| < ǫ, x ∈ Ω̄, has the property that d(f,Ω, y) = d(g,Ω, y).

Up to now we have shown that if f and g satisfy conditions (1), (2), (3)
and if they are sufficiently “close” then they have the same degree. In order
to extend this definition to a broader class of functions, namely those which do
not satisfy (3) we need a version of Sard’s Theorem (Lemma 8) (an important
lemma of Differential Topology) whose proof may be found in [40], see also [44].

8 Lemma If Ω is a bounded open set in Rn, f satisfies (1), (2), and

E = {x ∈ Ω : det f ′(x) = 0}. (17)

Then f(E) does not contain a sphere of the form {z : |z − y| < r}.

This lemma has as a consequence the obvious corollary:

9 Corollary Let

F = {h ∈ R
n : y + h ∈ f(E)}, (18)

where E is given by (17), then F is dense in a neighborhood of 0 ∈ Rn and

f(x) = y + h, x ∈ Ω, h ∈ F

implies that f ′(x) is nonsingular.
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We thus conclude that for all ǫ > 0, sufficiently small, there exists h ∈ F ,
0 < |h| < ǫ, such that d(f,Ω, y + h) = d(f − h,Ω, y) is defined by Definition 2.
It also follows from Lemma 6 that for such h, d(f,Ω, y + h) is constant. This
justifies the following definition.

10 Definition Let f satisfy (1) and (2). We define

d(f,Ω, y) = lim
h→ 0
h ∈ F

d(f − h,Ω, y). (19)

Where F is given by (18) and d(f − h,Ω, y) is defined by Definition 2.

We next assume that f ∈ C(Ω̄,Rn) and satisfies (2). Then for ǫ > 0 suffi-
ciently small there exists g ∈ C1(Ω,Rn)

⋂

C(Ω̄,Rn) such that y 6∈ g(∂Ω) and

‖f − g‖ = max
x∈Ω̄

|f(x) − g(x)| < ǫ/4

and there exists, by Lemma 8, g̃ satisfying (1), (2), (3) such that ‖g − g̃‖ <
ǫ/4 and if h̃ satisfies (1), (2), (3) and ‖g − h̃‖ < ǫ/4, ‖g̃ − h̃‖ < ǫ/2, then
d(g̃,Ω, y) = d(h̃,Ω, y) provided ǫ is small enough. Thus f may be approximated
by functions g̃ satisfying (1), (2), (3) and d(g̃,Ω, y) = constant provided ‖f− g̃‖
is small enough. We therefore may define d(f,Ω, y) as follows.

11 Definition Let f ∈ C(Ω̄,Rn) be such that y 6∈ f(∂Ω). Let

d(f,Ω, y) = lim
g→f

d(g,Ω, y) (20)

where g satisfies (1), (2), (3).
The number defined by (20) is called the Brouwer degree of f at y relative

to Ω.

It follows from our considerations above that d(f,Ω, y) is also given by for-
mula (7), for any φ which satisfies:

φ ∈ C([0,∞),R), φ(0) = 0, φ(s) ≡ 0, s ≥ r > 0,

∫

Rn

φ(|x|)dx = 1,

where r < min
x∈∂Ω

|f(x) − y|.

3 Properties of the Brouwer Degree

We next proceed to establish some properties of the Brouwer degree of a
mapping which will be of use in computing the degree and also in extending the
definition to mappings defined in infinite dimensional spaces and in establishing
global solution results for parameter dependent equations.
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12 Proposition (Solution property) Let f ∈ C(Ω̄,Rn) be such that y 6∈ f(∂Ω)
and assume that d(f,Ω, y) 6= 0. Then the equation

f(x) = y (21)

has a solution in Ω.

The proof is a straightforward consequence of Definition 11 and is left as an
exercise.

13 Proposition (Continuity property) Let f ∈ C(Ω̄,Rn) and y ∈ Rn be such
that d(f,Ω, y) is defined. Then there exists ǫ > 0 such that for all g ∈ C(Ω̄,Rn)
and ŷ ∈ R with ‖f − g‖ + |y − ŷ| < ǫ

d(f,Ω, y) = d(g,Ω, ŷ).

The proof again is left as an exercise.
The proposition has the following important interpretation.

14 Remark If we let C = {f ∈ C(Ω̄,Rn) : y /∈ f(∂Ω)} then C is a metric space
with metric ρ defined by ρ(f, g) = ‖f − g‖. If we define the mapping d : C → N

(integers) by d(f) = d(f,Ω, y), then the theorem asserts that d is a continuous
function from C to N (equipped with the discrete topology). Thus d will be
constant on connected components of C.

Using this remark one may establish the following result.

15 Proposition (Homotopy invariance property) Let f, g ∈ C(Ω̄,Rn) with
f(x) and g(x) 6= y for x ∈ ∂Ω and let h : [a, b] × Ω̄ → Rn be continuous such
that h(t, x) 6= y, (t, x) ∈ [a, b] × ∂Ω. Further let h(a, x) = f(x), h(b, x) = g(x),
x ∈ Ω̄. Then

d(f,Ω, y) = d(g,Ω, y);

more generally, d(h(t, ·),Ω, y) = constant for a ≤ t ≤ b.

The next corollary may be viewed as an extension of Rouché’s theorem concern-
ing the equal number of zeros of certain analytic functions. This extension will
be the content of one of the exercises at the end of this chapter.

16 Corollary Let f ∈ C(Ω̄,Rn) be such that d(f,Ω, y) is defined. Let g ∈
C(Ω̄,Rn) be such that |f(x) − g(x)| < |f(x) − y|, x ∈ ∂Ω. Then d(f,Ω, y) =
d(g,Ω, y).

Proof. For 0 ≤ t ≤ 1 and x ∈ ∂Ω we have that

|y − tg(x) − (1 − t)f(x)| = |(y − f(x)) − t(g(x) − f(x))|

≥ |y − f(x)| − t|g(x) − f(x)|
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> 0 since 0 ≤ t ≤ 1,

hence h : [0, 1] × Ω̄ → Rn given by h(t, x) = tg(x) + (1 − t)f(x) satisfies the
conditions of Proposition 15 and the conclusion follows from that proposition.

As an immediate corollary we have the following:

17 Corollary Assume that f and g are mappings such that f(x) = g(x), x ∈ ∂Ω,
then d(f,Ω, y) = d(g,Ω, y) if the degree is defined, i.e. the degree only depends
on the boundary data.

18 Proposition (Additivity property) Let Ω be a bounded open set which is
the union of m disjoint open sets Ω1, · · · ,Ωm, and let f ∈ C(Ω̄,Rn) and y ∈ Rn

be such that y 6∈ f(∂Ωi), i = 1, · · · ,m. Then

d(f,Ω, y) =

m
∑

i=1

d(f,Ωi, y).

19 Proposition (Excision property) Let f ∈ C(Ω̄,Rn) and let K be a closed
subset of Ω̄ such that y 6∈ f(∂Ω ∪K). Then

d(f,Ω, y) = d(f,Ω \K, y).

20 Proposition (Cartesian product formula) Assume that Ω = Ω1 × Ω2 is a
bounded open set in Rn with Ω1 open in Rp and Ω2 open in Rq, p + q = n.
For x ∈ Rn write x = (x1, x2), x1 ∈ Rp, x2 ∈ Rq. Suppose that f(x) =
(f1(x1), f2(x2)) where f1 : Ω̄1 → Rp, f2 : Ω̄2 → Rq are continuous. Suppose
y = (y1, y2) ∈ Rn is such that yi /∈ fi(∂Ωi), i = 1, 2. Then

d(f,Ω, y) = d(f1,Ω1, y1)d(f2,Ω2, y2). (22)

Proof. Using an approximation argument, we may assume that f, f1 and f2
satisfy also (1) and (3) (interpreted appropriately). For such functions we have

d(f,Ω, y) =
∑

x∈f−1(y)

sgn det f ′(x)

=
∑

x∈f−1(y)

sgn det





f ′
1(x1) 0

0 f ′
2(x2)





=
∑

xi ∈ f−1(yi)
i = 1, 2

sgn det f ′
1(x1) sgn det f ′

2(x2)

=
2
∏

i=1

∑

xi∈f−1

i (yi)

sgn det f ′
i(xi) = d(f1,Ω1, y1)d(f2,Ω2, y2).

To give an example to show how the above properties may be used we prove
Borsuk’s theorem and the Brouwer fixed point theorem.
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3.1 The theorems of Borsuk and Brouwer

21 Theorem (Borsuk) Let Ω be a symmetric bounded open neighborhood of
0 ∈ Rn (i.e. if x ∈ Ω, then −x ∈ Ω) and let f ∈ C(Ω̄,Rn) be an odd mapping
(i.e. f(x) = −f(−x)). Let 0 /∈ f(∂Ω), then d(f,Ω, 0) is an odd integer.

Proof. Choose ǫ > 0 such that Bǫ(0) = {x ∈ Rn : |x| < ǫ} ⊂ Ω. Let
α : Rn → R be a continuous function such that

α(x) ≡ 1, |x| ≤ ǫ, α(x) = 0, x ∈ ∂Ω, 0 ≤ α(x) ≤ 1, x ∈ R
n

and put

g(x) = α(x)x + (1 − α(x))f(x)

h(x) =
1

2
[g(x) − g(−x)] ,

then h ∈ C(Ω̄,Rn) is odd and h(x) = f(x), x ∈ ∂Ω, h(x) = x, |x| < ǫ. Thus by
Corollary 16 and the remark following it

d(f,Ω, 0) = d(h,Ω, 0).

On the other hand, the excision and additivity property imply that

d(h,Ω, 0) = d(h,Bǫ(0), 0) + d(h,Ω \Bǫ(0), 0),

where ∂Bǫ(0) has been excised. It follows from Definition 2 that d(h,Bǫ(0), 0) =
1, and it therefore suffices to show that (letting Θ = Ω \Bǫ(0)) d(h,Θ, 0) is an
even integer. Since Θ̄ is symmetric, 0 /∈ Θ, 0 /∈ h(∂Θ), and h is odd one may
show (see [40]) that there exists h̃ ∈ C(Ω̄,Rn) which is odd, h̃(x) = h(x), x ∈ ∂Θ
and is such that h̃(x) 6= 0, for those x ∈ Θ with xn = 0. Hence

d(h,Θ, 0) = d(h̃,Θ, 0) = d(h̃,Θ \ {x : xn = 0}, 0) (23)

where we have used the excision property. We let

Θ1 = {x ∈ Θ : xn > 0}, Θ2 = {x ∈ Θ : xn < 0},

then by the additivity property

d(h̃,Θ \ {x : xn = 0}, 0) = d(h̃,Θ1, 0) + d(h̃,Θ2, 0).

Since Θ2 = {x : −x ∈ Θ1} and h̃ is odd one may now employ approximation
arguments to conclude that d(h̃,Θ1, 0) = d(h̃,Θ2, 0), and hence conclude that
the integer given by (23) is even.

22 Theorem (Brouwer fixed point theorem) Let f ∈ C(Ω̄,Rn), Ω = {x ∈
Rn : |x| < 1}, be such that f : Ω̄ → Ω̄. Then f has a fixed point in Ω, i.e. there
exists x ∈ Ω̄ such that f(x) = x.
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Proof. Assume f has no fixed points in ∂Ω. Let h(t, x) = x− tf(x), 0 ≤ t ≤ 1.
Then h(t, x) 6= 0, 0 ≤ t ≤ 1, x ∈ ∂Ω and thus d(h(t, 0),Ω, 0) = d(h(0, 0),Ω, 0)
by the homotopy property. Since d(id,Ω, 0) = 1 it follows from the solution
property that the equation x− f(x) = 0 has a solution in Ω.

Theorem 22 remains valid if the unit ball of Rn is replaced by any set home-
omorphic to the unit ball (replace f by g−1fg where g is the homeomorphism).
That the Theorem also remains valid if the unit ball is replaced in arbitrary
compact convex set (or a set homeomorphic to it) may be proved using the
extension theorem of Dugundji (Theorem I.20).

4 Completely Continuous Perturbations of the

Identity in a Banach Space

4.1 Definition of the degree

Let E be a real Banach space with norm ‖ · ‖ and let Ω ⊂ E be a bounded
open set. Let F : Ω̄ → E be continuous and let F (Ω̄) be contained in a finite
dimensional subspace of E. The mapping

f(x) = x+ F (x) = (id + F )(x) (24)

is called a finite dimensional perturbation of the identity in E.

Let y be a point in E and let Ẽ be a finite dimensional subspace of E
containing y and F (Ω̄) and assume

y /∈ f(∂Ω). (25)

Select a basis e1, · · · , en of Ẽ and define the linear homeomorphism T : Ẽ → Rn

by

T

(

n
∑

i=1

ciei

)

= (c1, · · · , cn) ∈ R
n.

Consider the mapping

TFT−1 : T (Ω̄ ∩ Ẽ) → R
n,

then, since y /∈ f(∂Ω), it follows that

T (y) /∈ TfT−1(T (∂Ω ∩ Ẽ)).

Let Ω0 denote the bounded open set T (Ω∩ Ẽ) in Rn and let f̃ = TfT−1, y0 =
T (y). Then d(f̃ ,Ω0, y0) is defined.

It is an easy exercise in linear algebra to show that the following lemma
holds.
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23 Lemma The integer d(f̃ ,Ω0, y0) calculated above is independent of the choice
the finite dimensional space Ẽ containing y and F (Ω̄) and the choice of basis of
Ẽ.

We hence may define

d(f,Ω, y) = d(f̃ ,Ω0, y0),

where f̃ ,Ω0, y0 are as above.

Recall that a mapping F : Ω̄ → E is called completely continuous if F is
continuous and F (Ω̄) is precompact in E (i.e. F (Ω) is compact). More generally
if D is any subset of E and F ∈ C(D,E), then F is called completely continuous
if F (V ) is precompact for any bounded subset V of D.

We shall now demonstrate that if f = id+F , with F completely continuous
(f is called a completely continuous perturbation of the identity) and y 6∈ f(∂Ω),
then an integer valued function d(f,Ω, y) (the Leray Schauder degree of f at y
relative to Ω) may be defined having much the same properties as the Brouwer
degree. In order to accomplish this we need the following lemma.

24 Lemma Let f : Ω̄ → E be a completely continuous perturbation of the identity
and let y /∈ f(∂Ω). Then there exists an integer d with the following property:
If h : Ω̄ → E is a finite dimensional continuous perturbation of the identity such
that

sup
x∈Ω

‖f(x) − h(x)‖ < inf
x∈∂Ω

‖f(x) − y‖, (26)

then y /∈ h(∂Ω) and d(h,Ω, y) = d.

Proof. That y /∈ h(∂Ω) follows from (26). Let h1 and h2 be any two such
mappings. Let k(t, x) = th1(x) + (1 − t)h2(x), 0 ≤ t ≤ 1, x ∈ Ω̄, then if
t ∈ (0, 1) and x ∈ Ω̄ are such that k(t, x) = y it follows that

‖f(x) − y‖ = ‖f(x) − th1(x) − (1 − t)h2(x)‖
= ‖t(f − (x) − h1(x)) + (1 − t)(f(x) − h2(x))‖
≤ t‖f(x) − h1(x)‖ + (1 − t)‖f(x) − h2(x)‖
< infx∈∂Ω ‖f(x) − y‖ (see (26)),

from which follows that x /∈ ∂Ω. Let Ẽ be a finite dimensional subspace contain-
ing y and (hi − id)(Ω̄), then d(hi,Ω, y) = d(ThiT

−1, T (Ω ∩ Ẽ), T (y)), where T
is given as above. Then (k(t, ·)− id)(Ω̄) is contained in Ẽ and Tk(t, ·)T−1(x) 6=
T (y), x ∈ T (∂Ω ∩ Ẽ). Hence we may use the homotopy invariance property of
Brouwer degree to conclude that

d(Tk(t, ·)T−1, T (∂Ω ∩ Ẽ), T (y)) = constant,

i.e.,

d(h1,Ω, y) = d(h2,Ω, y).
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It follows from Lemma 24 that if a finite dimensional perturbation of the
identity h exists which satisfies (26), then we may define d(f,Ω, y) = d, where d
is the integer whose existence follows from this lemma. In order to accomplish
this we need an approximation result.

Let M be a compact subset of E. Then for every ǫ > 0 there exists a finite
covering of M by spheres of radius ǫ with centers at y1, · · · , yn ∈ M . Define
µi : M → [0,∞) by

µi(y) = ǫ− ‖y − yi‖, if ‖y − yi‖ ≤ ǫ
= 0, otherwise

and let

λi(y) =
µi(y)

∑n
j=1 µj(y)

, 1 ≤ i ≤ n.

Since not all µi vanish simultaneously, λi(y) is non–negative and continuous on
M and further

∑n
i=1 λi(y) = 1. The operator Pǫ defined by

Pǫ(y) =

n
∑

i=1

λi(y)yi (27)

is called a Schauder projection operator on M determined by ǫ, and y1, · · · , yn.
Such an operator has the following properties:

25 Lemma • Pǫ : M → co{y1, · · · , yn}
(the convex hull of y1, · · · , yn) is continuous.

• Pǫ(M) is contained in a finite dimensional subspace of E.

• ‖Pǫy − y‖ ≤ ǫ, y ∈M.

26 Lemma Let f : Ω̄ → E be a completely continuous perturbation of the identity.
Let y /∈ f(∂Ω). Let ǫ > 0 be such that ǫ < infx∈∂Ω ‖f(x) − y‖. Let Pǫ

be a Schauder projection operator determined by ǫ and points {y1, · · · , yn} ⊂
(f − id)(Ω̄). Then d(id + PǫF,Ω, y) = d, where d is the integer whose existence
is established by Lemma 24.

Proof. The properties of Pǫ (cf Lemma 25) imply that for each x ∈ Ω̄

‖PǫF (x) − F (x)‖ ≤ ǫ inf
x∈∂Ω

‖f(x) − y‖,

and the mapping id+PǫF is a continuous finite dimensional perturbation of the
identity.

27 Definition The integer d whose existence has been established by Lemma 26
is called the Leray-Schauder degree of f relative to Ω and the point y and is
denoted by

d(f,Ω, y).
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4.2 Properties of the degree

28 Proposition The Leray–Schauder degree has the solution, continuity, homo-
topy invariance, additivity, and excision properties similar to the Brouwer de-
gree; the Cartesian product formula also holds.

Proof. (solution property). We let Ω be a bounded open set in E and f :
Ω̄ → E be a completely continuous perturbation of the identity, y a point in E
with y /∈ f(∂Ω) and d(f,Ω, y) 6= 0. We claim that the equation f(x) = y has
a solution in E. To see this let {ǫn}∞n=1 be a decreasing sequence of positive
numbers with limn→∞ ǫn = 0 and ǫ1 < infx∈∂Ω ‖f(x)−y‖. Let Pǫi

be associated
Schauder projection operators. Then

d(f,Ω, y) = d(id + Pǫn
F,Ω, y), n = 1, 2, · · · ,

where

d(id + Pǫn
F,Ω, y) = d(id + TnPǫn

FT−1
n , Tn(Ω ∩ Ẽn), Tn(y)),

and the spaces Ẽn are finite dimensional. Hence the solution property of
Brouwer degree implies the existence of a solution zn ∈ Tn(Ω ∩ Ẽn) of the
equation

z + TnPǫn
FT−1

n (z) = T (y),

or equivalently a solution xn ∈ Ω ∩ Ẽn of

x+ Pǫn
F (x) = y.

The sequence {xn}∞n=1 is a bounded sequence ({xn}∞n=1 ⊂ Ω), thus, since F is
completely continuous there exists a subsequence {xni

}∞i=1 such that F (xni
) →

u ∈ F (Ω̄). We relabel the subsequence and call it again {xn}∞n=1. Then

‖xn − xm‖ = ‖Pǫn
F (xn) − Pǫm

F (xm)‖
≤ ‖Pǫn

F (xn) − F (xn)‖ + ‖Pǫm
F (xm) − F (xm)‖

+ ‖F (xn) − F (xm)‖ < ǫn + ǫm + ‖F (xn) − F (xm)‖.

We let ǫ > 0 be given and choose N such that n,m ≥ N imply ǫn, ǫm < ǫ/3 and
‖F (xn)−F (xm)‖ < ǫ/3. Thus ‖xn − xm‖ < ǫ. The sequence {xn}∞n=1 therefore
is a Cauchy sequence, hence has a limit, say x. It now follows that x ∈ Ω̄ and
solves the equation f(x) = y, hence, since y /∈ f(∂Ω) we have that x ∈ Ω.

4.3 Borsuk’s theorem and fixed point theorems

29 Theorem (Borsuk’s theorem) Let Ω be a bounded symmetric open neigh-
borhood of 0 ∈ E and let f : Ω̄ → E be a completely continuous odd perturba-
tion of the identity with 0 /∈ f(∂Ω). Then d(f,Ω, 0) is an odd integer.

Proof. Let ǫ > 0 be such that ǫ < infx∈∂Ω ‖f(x)‖ and let Pǫ be an associated
Schauder projection operator. Let fǫ = id + Pǫf and put h(x) = 1/2[fǫ(x) −
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fǫ(−x)]. Then h is a finite dimensional perturbation of the identity which is
odd and

‖h(x) − f(x)‖ ≤ ǫ.

Thus d(f,Ω, 0) = d(h,Ω ∩ Ẽ, 0), but

d(h,Ω, 0) = d(ThT−1, T (Ω ∩ Ẽ), 0).

On the other hand T (Ω ∩ Ẽ) is a symmetric bounded open neighborhood of
0 ∈ T (Ω ∩ Ẽ) and ThT−1 is an odd mapping, hence the result follows from
Theorem 21.

We next establish extensions of the Brouwer fixed point theorem to Banach
spaces.

30 Theorem (Schauder fixed point theorem) LetK be a compact convex sub-
set of E and let F : K → K be continuous. Then F has a fixed point in K.

Proof. Since K is a compact there exists r > 0 such that K ⊂ Br(0) = {x ∈
E : ‖x‖ < r}. Using the Extension Theorem (Theorem I.20) we may continu-
ously extend F to Br(0). Call the extension F̃ . Then F̃ (Br(0)) ⊂ coF (K) ⊂ K,
where coF (K) is the convex hull of F (K), i.e. the smallest convex set containing
F (K). Hence F̃ is completely continuous. Consider the homotopy

k(t, x) = x− tF̃ (x), 0 ≤ t ≤ 1.

Since tF̃ (K) ⊂ tK ⊂ Br(0), 0 ≤ t ≤ 1, x ∈ Br(0), it follows that k(t, x) 6= 0,
0 ≤ t ≤ 1, x ∈ ∂Br(0). Hence by the homotopy invariance property of the
Leray–Schauder degree

constant = d(k(t, ·), Br(0), 0) = d(id, Br(0), 0) = 1.

The solution property of degree therefore implies that the equation

x− F̃ (x) = 0

has a solution in x ∈ Br(0), and hence in K, i.e.

x− F (x) = 0.

In many applications the mapping F is known to be completely continuous
but it is difficult to find a compact convex set K such that F : K → K, whereas
closed convex sets K having this property are more easily found. In such a case
the following result may be applied.

31 Theorem (Schauder) Let K be a closed, bounded, convex subset of E and
let F be a completely continuous mapping such that F : K → K. Then F has
a fixed point in K.

Proof. Let K̃ = coF (K). Then since F (K) is compact it follows from a
theorem of Mazur (see eg. [17], [38], and [43]) that K̃ is compact and K̃ ⊂ K.
Thus F : K̃ → K̃ and F has fixed point in K̃ by Theorem 30. Therefore F has
a fixed point in K.
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5 Exercises

1. Let [a, b] be a compact interval in R and let f : [a, b] → R be a continuous
function such that f(a)f(b) 6= 0. Verify the following.

(i) If f(b) > 0 > f(a), then d(f, (a, b), 0) = 1

(ii) If f(b) < 0 < f(a), then d(f, (a, b), 0) = −1

(iii) If f(a)f(b) > 0, then d(f, (a, b), 0) = 0.

2. Identify R2 with the complex plane. Let Ω be a bounded open subset of
R2 and let f and g be functions which are analytic in Ω and continuous on
Ω̄. Let f(z) 6= 0, z ∈ ∂Ω and assume that |f(z) − g(z)| < |f(z)|, z ∈ ∂Ω.
Show that f and g have precisely the same number of zeros, counting
multiplicities, in Ω. This result is called Rouché’s theorem.

3. Let Ω be a bounded open subset of Rn and let

f, g ∈ C(Ω̄,Rn) with f(x) 6= 0 6= g(x), x ∈ ∂Ω.

Further assume that

f(x)

|f(x)| 6=
−g(x)
|g(x)| , x ∈ ∂Ω.

Show that d(f,Ω, 0) = d(g,Ω, 0).

4. Let Ω ⊂ Rn be a bounded open neighborhood of 0 ∈ Rn, let f ∈ C(Ω,Rn)
be such that 0 /∈ f(∂Ω) and either

f(x) 6= x

|x| |f(x)|, x ∈ ∂Ω

or

f(x) 6= − x

|x| |f(x)|, x ∈ ∂Ω.

Show that the equation f(x) = 0 has a solution in Ω.

5. Let Ω be as in Exercise 4 and let f ∈ C(Ω̄,Rn) be such that 0 /∈ f(∂Ω).
Let n be odd. Show there exists λ (λ 6= 0) ∈ R and x ∈ ∂Ω such that
f(x) = λx. (This is commonly called the hedgehog theorem.)

6. Let Bn = {x ∈ Rn : |x| < 1}, Sn−1 = ∂Bn. Let f, g ∈ C(Bn,Rn) be such
that f(Sn−1), g(Sn−1) ⊂ Sn−1 and |f(x) − g(x)| < 2, x ∈ Sn−1. Show
that d(f,Bn, 0) = d(g,Bn, 0).

7. Let f be as in Exercise 6 and assume that f(Sn−1) does not equal Sn−1.
Show that d(f,Bn, 0) = 0.



48

8. Let A be an n × n real matrix for which 1 is not an eigenvalue. Let Ω
be a bounded open neighborhood of 0 ∈ Rn. Show, using linear algebra
methods, that

d (id −A,Ω, 0) = (−1)β,

where β equals the sum of the algebraic multiplicities of all real eigenvalues
µ of A with µ > 1.

9. Let Ω ⊂ Rn be a symmetric bounded open neighborhood of 0 ∈ Rn and
let f ∈ C(Ω̄,Rn) be such that 0 /∈ f(∂Ω). Also assume that

f(x)

|f(x)| 6=
f(−x)
|f(−x)| , x ∈ ∂Ω.

Show that d(f,Ω, 0) is an odd integer.

10. Let Ω be as in Exercise 9 and let f ∈ C(Ω̄,Rn) be an odd function such
that f(∂Ω) ⊂ Rm, where m < n. Show there exists x ∈ ∂Ω such that
f(x) = 0.

11. Let f and Ω be as in Exercise 10 except that f is not necessarily odd.
Show there exists x ∈ ∂Ω such that f(x) = f(−x).

12. Let K be a bounded, open, convex subset of E. Let F : K̄ → E be
completely continuous and be such that F (∂K) ⊂ K. Then F has a fixed
point in K.

13. Let Ω be a bounded open set in E with 0 ∈ Ω. Let F : Ω̄ → E be
completely continuous and satisfy

‖x− F (x)‖2 ≥ ‖F (x)‖2, x ∈ ∂Ω.

then F has a fixed point in Ω̄.

14. Provide detailed proofs of the results of Section 3.

15. Provide detailed proofs of the results of Section 4.



Chapter IV

Global Solution Theorems

1 Introduction

In this chapter we shall consider a globalization of the implicit function theo-

rem (see Chapter I) and provide some global bifurcation results. Our main tools
in establishing such global results will be the properties of the Leray Schauder

degree and a topological lemma concerning continua in compact metric spaces.

2 The Continuation Principle of Leray-Schauder

In this section we shall extend the homotopy property of Leray-Schauder
degree (Proposition III.28) to homotopy cylinders having variable cross sections
and from it deduce the Leray-Schauder continuation principle. As will be seen
in later sections, this result also allows us to derive a globalization of the implicit
function theorem and results about global bifurcation in nonlinear equations.

Let O be a bounded open (in the relative topology) subset of E × [a, b] ,
where E is a real Banach space, and let

F : Ō → E

be a completely continuous mapping. Let

f(u, λ) = u− F (u, λ) (1)

and assume that

f(u, λ) 6= 0, (u, λ) ∈ ∂O (2)

(here ∂O is the boundary of O in E × [a, b]).

1 Theorem (The generalized homotopy principle) Let f be given by (1)
and satisfy (2). Then for a ≤ λ ≤ b,

d(f(·, λ), Oλ, 0) = constant,

(here Oλ = {u ∈ E : (u, λ) ∈ O}).

49
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Proof. We may assume that O 6= ∅ and that

a = inf{λ : Oλ 6= ∅}, b = sup{λ : Oλ 6= ∅}.
We let

Ô = O ∪Oa × (a− ǫ, a] ∪Ob × [b, b+ ǫ),

where ǫ > 0 is fixed. Then Ô is a bounded open subset of E × R. Let F̃ be
the extension of F to E × R whose existence is guaranteed by the Dugundji
extension theorem (Theorem I.20). Let

f̃(u, λ) = (u − F̃ (u, λ), λ− λ∗),

where a ≤ λ∗ ≤ b is fixed. Then f̃ is a completely continuous perturbation of
the identity in E × R.

Furthermore for any such λ∗

f̃(u, λ) 6= 0, (u, λ) ∈ ∂Ô,

and hence d(f̃ , Ô, 0) is defined and constant (for such λ∗). Let 0 ≤ t ≤ 1, and
consider the vector field

f̃t(u, λ) = (u− tF̃ (u, λ) − (1 − t)F̃ (u, λ∗), λ− λ∗),

then f̃t(u, λ) = 0 if and only if λ = λ∗ and u = F̃ (u, λ∗). Thus, our hypotheses
imply that f̃t(u, λ) 6= 0 for (u, λ) ∈ ∂Ô and t ∈ [0, 1]. By the homotopy
invariance principle (Proposition III.28) we therefore conclude that

d(f̃1, Ô, 0) = d(f̃ , Ô, 0) = d(f̃0, Ô, 0).

On the other hand,

d(f̃0, Ô, 0) = d(f̃0, Oλ∗ × (a− ǫ, b+ ǫ), 0),

by the excision property of degree (Proposition III.28). Using the Cartesian
product formula (Proposition III.28), we obtain

d(f̃0, Oλ∗ × (a− ǫ, b+ ǫ), 0) = d(f(·, λ∗), Oλ∗ , 0).

This completes the proof.
As an immediate consequence we obtain the continuation principle of Leray-

Schauder.

2 Theorem (Leray–Schauder Continuation Theorem) LetO be a bounded
open subset of E × [a, b] and let f : Ō → E be given by (1) and satisfy (2).
Furthermore assume that

d(f(·, a), Oa, 0) 6= 0.

Let

S = {(u, λ) ∈ Ō : f(u, λ) = 0}.
Then there exists a closed connected set C in S such that

Ca ∩Oa 6= ∅ 6= Cb ∩Ob.
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Proof. It follows from Theorem 1 that

d(f(·, a), Oa, 0) = d(f(·, b), Ob, 0).

Hence

Sa × {a} = A 6= ∅ 6= B = Sb × {b}.

Using the complete continuity of F we may conclude that S is a compact metric
subspace of E × [a, b]. We now apply Whyburn’s lemma (see [44]) with X = S.
If there is no such continuum (as asserted above) there will exist compact sets
XA, XB in X such that

A ⊂ XA, B ⊂ XB, XA ∩XB = ∅, XA ∪XB = X.

We hence may find an open set U ⊂ E × [a, b] such that A ⊂ U ∩ O = V and
S ∩ ∂V = ∅ = Vb. Therefore

d(f(·, λ), Vλ, 0) = constant, λ ≥ a.

On the other hand, the excision principle implies that

d(f(·, a), Va, 0) = d(f(·, a), Oa, 0).

Since Vb = ∅, these equalities yield a contradiction, and there exists a con-
tinuum as asserted.

In the following examples we shall develop, as an application of the above
results, some basic existence results for the existence of solutions of nonlinear
boundary value problems.

3 Example Let I = [0, 1] and let g : [0, 1]× R → R be continuous. Consider the
nonlinear Dirichlet problem

{

u′′ + g(x, u) = 0, in I
u = 0, on ∂I.

(3)

Let there exist constants a < 0 < b such that

g(x, a) > 0 > g(x, b), x ∈ Ω.

Then (3) has a solution u ∈ C2([0, 1],R) such that

a < u(x) < b, x ∈ I.

Proof. To see this, we consider the one parameter family of problems
{

u′′ + λg(x, u) = 0, in I
u = 0, on ∂I.

(4)

Let G be defined by

G(u)(x) = g(x, u(x)),
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then (4) is equivalent to the operator equation

u = λLG(u), u ∈ C([0, 1],R) = E, (5)

where for each v ∈ E, w = LG(v) is the unique solution of

w′′ + g(x, v) = 0, in I
w = 0, on ∂I.

It follows that for each v ∈ E, LG(v) ∈ C2(I) and since C2(I) is compactly
embedded in E that

LG(·) : E → E

is a completely continuous operator. Let O = {(u, λ) : u ∈ E, a < u(x) <
b, x ∈ I, 0 ≤ λ ≤ 1}. Then O is an open and bounded set in E × [0, 1]. If
(u, λ) ∈ ∂O is a solution of (4), then there will either exist x ∈ I such that
u(x) = b or there exists x ∈ I such that u(x) = a and λ > 0. In either case, (3)
yields, via elementary calculus, a contradiction. Hence (4) has no solutions in
∂O. Therefore

d(id − λLG,Oλ, 0) = d(id, O0, 0) = 1,

and Theorem 2 implies the existence of a continuum C of solutions of (5), hence
of (4), such that C ∩ E × {0} = {0} and C ∩ E × {1} 6= ∅.

3 A Globalization of the Implicit Function The-

orem

Assume that

F : E × R → E

is a completely continuous mapping and consider the equation

f(u, λ) = u− F (u, λ) = 0. (6)

Let (u0, λ0) be a solution of (6) such that the condition of the implicit func-

tion theorem (Theorem I.12) hold at (u0, λ0). Then there is a solution curve
{(u(λ), λ)} of (6) defined in a neighborhood of λ0, passing through (u0, λ0).
Furthermore the conditions of Theorem I.12 imply that the solution u0 is an
isolated solution of (6) at λ = λ0, and if O is an isolating neighborhood, we
have that

d(f(·, λ0), O, 0) 6= 0. (7)

We shall now show that condition (7) alone suffices to guarantee that equa-
tion (6) has a global solution branch in the half spaces E × [λ0,∞) and E ×
(−∞, λ0].
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4 Theorem Let O be a bounded open subset of E and assume that for λ = λ0

equation (6) has a unique solution in O and let (7) hold. Let

S
+ = {(u, λ) ∈ E × [λ0,∞) : (u, λ) solves (6)}

and

S
− = {(u, λ) ∈ E × (−∞, λ0] : (u, λ) solves (6)}.

Then there exists a continuum C+ ⊂ S
+ (C− ⊂ S

−) such that:

1. C+
λ0

∩O = {u0} (C−
λ0

∩O = {u0}),
2. C+ is either unbounded in E×[λ0,∞) (C− is unbounded in E×(−∞, λ0])

or C+
λ0

∩ (E\O) 6= ∅ (C−
λ0

∩ (E\O) 6= ∅).
Proof. Let C+ be the maximal connected subset of S+ such that 1. above
holds. Assume that C+ ∩ (E\O) = ∅ and that C+ is bounded in E × [λ0,∞).
Then there exists a constant R > 0 such that for each (u, λ) ∈ C+ we have that
||u|| + |λ| < R. Let

S
+
2R = {(u, λ) ∈ S

+ : ||u|| + |λ| ≤ 2R},
then S

+
2R is a compact subset of E × [λ0,∞), and hence is a compact metric

space. There are two possibilities: Either S
+
2R = C+ or else there exists (u, λ) ∈

S
+
2R such that (u, λ) /∈ C+. In either case, we may find a bounded open set

U ⊂ E × [λ0,∞) such that Uλ0
= O, S

+
2R ∩ ∂U = ∅, C+ ⊂ U . It therefore

follows from Theorem 1 that

d(f(·, λ0), Uλ0
, 0) = constant, λ ≥ λ0,

where this constant is given by

d(f(·, λ0), Uλ0
, 0) = d(f(·, λ0), O, 0)

which is nonzero, because of (7). On the other hand, there exists λ∗ > λ0

such that Uλ∗ contains no solutions of (6) and hence d(f(·, λ∗), Uλ∗ , 0) = 0,
contradicting (7). (To obtain the existence of an open set U with properties
given above, we employ again Whyburn’s lemma ([44]).)

The existence of C− with the above listed properties is demonstrated in a
similar manner.

5 Remark The assumption of Theorem 4 that u0 is the unique solution of (6)
inside the set O, was made for convenience of proof. If one only assumes (7), one
may obtain the conclusion that the set of all such continua is either bounded in
the right (left) half space, or else there exists one such continuum which meets
the λ = λ0 hyperplane outside the set O.

6 Remark If the component C+ of Theorem 4 is bounded and Õ is an isolating
neighborhood of C+ ∩ (E\O)×{λ0}, then it follows from the excision property,
Whyburn’s lemma, and the generalized homotopy principle that

d(f(·, λ0), O, 0) = −d(f(·, λ0), Õ, 0).



54

This observation has the following important consequence. If equation (6)
has, for λ = λ0 only isolated solutions and if the integer given by (7) has the
same sign with respect to isolating neighborhoods O for all such solutions where
(7) holds, then all continua C+ must be unbounded.

7 Example Let p(z), z ∈ C, be a polynomial of degree n whose leading coeffi-
cient is ( without loss in generality) assumed to be 1 and let q(z) =

∏n
i=1(z−ai),

where a1, . . . , an are distinct complex numbers. Let

f(z, λ) = λp(z) + (1 − λ)q(z).

Then f may be considered as a continuous mapping

f : R
2 × R → R

2.

Furthermore for λ ∈ [0, r], r > 0, there exists a constant R such that any
solution of

f(z, λ) = 0, (8)

satisfies |z| < R. For all λ ≥ 0, (8) has only isolated solutions and for λ = 0
each such solution has the property that

d(f(·, 0), Oi, 0) = 1,

where Oi is an isolating neighborhood of ai. Hence, for each i, there exists a
continuum C+

i of solutions of (8) which is unbounded with respect to λ, and
must therefore reach every λ−level, in particular, the level λ = 1. We conclude
that each zero of p(z) must be connected to some ai (apply the above argument
backwards from the λ = 1−level, if need be).

4 The Theorem of Krein-Rutman

In this section we shall employ Theorem 4 to prove an extension of the
Perron-Frobenius theorem about eigenvalues for positive matrices. The Krein-

Rutman theorem [26] is a generalization of this classical result to positive com-
pact operators on a not necessarily finite dimensional Banach space.

Let E be a real Banach space and let K be a cone in E, i.e., a closed convex
subset of E with the properties:

• For all u ∈ K, t ≥ 0, tu ∈ K.

• K ∩ {−K} = {0}.

It is an elementary exercise to show that a cone K induces a partial order ≤ on
E by the convention u ≤ v if and only if v−u ∈ K. A linear operator L : E → E
is called positive whenever K is an invariant set for L, i.e. L : K → K. If K is
a cone whose interior intK is nonempty, we call L a strongly positive operator,
whenever L : K\{0} → intK.
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8 Theorem Let E be a real Banach space with a cone K and let L : E → E be
a positive compact linear operator. Assume there exists w ∈ K, w 6= 0 and a
constant m > 0 such that

w ≤ mLw, (9)

where ≤ is the partial order induced by K. Then there exists λ0 > 0 and
u ∈ K, ||u|| = 1, such that

u = λ0Lu. (10)

Proof. Restrict the operator L to the cone K and denote by L̃ the Dugundji
extension of this operator to E. Since L is a compact linear operator, the
operator L̃ is a completely continuous mapping with L̃(E) ⊂ K. Choose ǫ > 0
and consider the equation

u− λL̃(u + ǫw) = 0. (11)

For λ = 0, equation (11) has the unique solution u = 0 and we may apply
Theorem 4 to obtain an unbounded continuum C+

ǫ ⊂ E × [0,∞) of solutions
of (11). Since L̃(E) ⊂ K, we have that u ∈ K, whenever (u, λ) ∈ C+

ǫ , and
therefore u = λL(u + ǫw). Thus

λLu ≤ u,
λǫ

m
≤ λǫLw ≤ u.

Applying L to this last inequality repeatedly, we obtain by induction that
(

λ

m

)n

ǫw ≤ u. (12)

Since w 6= 0, by assumption, it follows from (12) that λ ≤ m. Thus, if (u, λ) ∈
C+

ǫ , it must be case that λ ≤ m, and hence that C+
ǫ ⊂ K × [0,m]. Since C+

ǫ

is unbounded, we conclude that for each ǫ > 0, there exists λǫ > 0, uǫ ∈
K, ||uǫ|| = 1, such that

uǫ = λǫL(uǫ + ǫw).

Since L is compact, the set {(uǫ, λǫ)} will contain a convergent subsequence
(letting ǫ→ 0), converging to, say, (u, λ0). Since clearly ||u|| = 1, it follows that
λ0 > 0.

If it is the case that L is a strongly positive compact linear operator, much
more can be asserted; this will be done in the theorem of Krein-Rutman which
we shall establish as a corollary of Theorem 8.

9 Theorem Let E have a cone K, whose interior, intK 6= ∅. Let L be a strongly
positive compact linear operator. Then there exists a unique λ0 > 0 with the
following properties:

1. There exists u ∈ intK, with u = λ0Lu.
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2. If λ(∈ R) 6= λ0 is such that there exists v ∈ E, v 6= 0, with v = λLv,
then v /∈ K ∪ {−K} and λ0 < |λ|.

Proof. Choose w ∈ K\{0}, then, since Lw ∈ intK, there exists δ > 0,
small such that Lw − δw ∈ intK, i.e., in terms of the partial order δw ≤ Lw.
We therefore may apply Theorem 8 to obtain λ0 > 0 and u ∈ K such that
u = λ0Lu. Since L is strongly positive, we must have that u ∈ intK. If
(v, λ) ∈ (K\{0}) × (0,∞) is such that v = λLv, then v ∈ intK. Hence, for all
δ > 0, sufficiently small, we have that u−δv ∈ intK. Consequently, there exists
a maximal δ∗ > 0, such that u− δ∗v ∈ K, i.e. u− rv /∈ K, r > δ∗. Now

L(u− δ∗v) =
1

λ0
(u− λ0

λ
δ∗v),

which implies that u − λ0

λ δ
∗v ∈ intK, unless u − δ∗v = 0. If the latter holds,

then λ0 = λ, if not, then λ0 < λ, because δ∗ is maximal. If λ0 < λ, we may
reverse the role of u and v and also obtain λ < λ0, a contradiction. Hence it
must be the case that λ = λ0. We have therefore proved that λ0 is the only
characteristic value of L having an eigendirection in the cone K and further
that any other eigenvector corresponding to λ0 must be a constant multiple of
u, i.e. λ0 is a characteristic value of L of geometric multiplicity one, i.e the
dimension of the kernel of id − λ0L equals one.

Next let λ 6= λ0 be another characteristic value of L and let v 6= 0 be such
that v /∈ K ∪{−K}. Again, for |δ| small, u− δv ∈ intK and there exists δ∗ > 0,
maximal, such that u − δ∗v ∈ K, and there exists δ∗ < 0, minimal, such that
u− δ∗v ∈ K. Now

L(u− δ∗v) =
1

λ0
(u− λ0

λ
δ∗v) ∈ K,

and

L(u− δ∗v) =
1

λ0
(u − λ0

λ
δ∗v) ∈ K.

Thus, if λ > 0, we conclude that λ0 < λ, whereas, if λ < 0, we get that
λ0δ

∗ < λδ∗, and λ0δ∗ > λδ∗, i.e λ2
0 < λ2.

As observed above we have that λ0 is a characteristic value of geometric
multiplicity one. Before giving an application of the above result, we shall
establish that λ0, in fact also has algebraic multiplicity one. Recall from the
Riesz theory of compact linear operators (viz. [27], [43]) that the operator
id− λ0L has the following property:

There exists a minimal integer n such that

ker(id − λ0L)n = ker(id − λ0L)n+1 = ker(id − λ0L)n+2 = . . . ,

and the dimension of the generalized eigenspace ker(id − λ0L)n is called
the algebraic multiplicity of λ0.
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With this terminology, we have the following addition to Theorem 9.

10 Theorem Assume the conditions of Theorem 9 and let λ0 be the characteristic
value of L, whose existence is established there. Then λ0 is a characteristic
value of L of algebraic multiplicity one.

Proof. We assume the contrary. Then, since ker(id− λ0L) has dimension one
(Theorem 9), it follows that there exists a smallest integer n > 1 such that the
generalized eigenspace is given by ker(id−λ0L)n. Hence, there exists a nonzero
v ∈ E such that (id − λ0L)nv = 0 and (id − λ0L)n−1v = w 6= 0. It follows
from Theorem 9 and its proof that w = ku, where u is given by Theorem 9 and
k may assumed to be positive. Let z = (id − λ0L)n−2v, then z − λ0Lz = ku,
and hence, by induction, we get that λm

0 L
mz = z − mku, for any positive

integer m. It follows therefore that z /∈ K, for otherwise 1
mz − ku ∈ K, for any

integer m, implying that −ku ∈ K, a contradiction. Since u ∈ intK, there exist
α > 0 and y ∈ K such that z = αu − y. Then λm

0 L
mz = αu − λm

0 L
my, or

λm
0 L

my = y +mku. Choose β > 0, such that y ≤ βu, then λm
0 L

my ≤ βu, and
by the above we see that y + mku ≤ βu. Dividing this inequality my m and
letting m→ ∞, we obtain that ku ∈ −K, a contradiction.

11 Remark It may be the case that, aside from real characteristic values, L also
has complex ones. If µ is such a characteristic value, then it may be shown
that |µ| > λ0, where λ0 is as in Theorem 10. We refer the interested reader to
Krasnosel’skii [24] for a verification.

5 Global Bifurcation

As before, let E be a real Banach space and let f : E × R → E have the
form

f(u, λ) = u− F (u, λ), (13)

where F : E × R → E is completely continuous. We shall now assume that

F (0, λ) ≡ 0, λ ∈ R, (14)

and hence that the equation

f(u, λ) = 0, (15)

has the trivial solution for all values of λ. We shall now consider the question of
bifurcation from this trivial branch of solutions and demonstrate the existence
of global branches of nontrivial solutions bifurcating from the trivial branch.
Our main tools will again be the properties of the Leray-Schauder degree and
Whyburn’s lemma.

We shall see that this result is an extension of the local bifurcation theorem,
Theorem II.6.
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12 Theorem Let there exist a, b ∈ R with a < b, such that u = 0 is an isolated
solution of (15) for λ = a and λ = b, where a, b are not bifurcation points,
furthermore assume that

d(f(·, a), Br(0), 0) 6= d(f(·, b), Br(0), 0), (16)

where Br(0) = {u ∈ E : ||u|| < r} is an isolating neighborhood of the trivial
solution. Let

S = {(u, λ) : (u, λ) solves (15) with u 6= 0} ∪ {0} × [a, b]

and let C ⊂ S be the maximal connected subset of S which contains {0}× [a, b].
Then either

(i) C is unbounded in E × R,

or else

(ii) C ∩ {0} × (R\[a, b]) 6= ∅.

Proof. Define a class U of subsets of E × R as follows

U = {Ω ⊂ E × R : Ω = Ω0 ∪ Ω∞},

where Ω0 = Br(0) × [a, b], and Ω∞ is a bounded open subset of (E\{0}) × R.
We shall first show that (15) has a nontrivial solution (u, λ) ∈ ∂Ω for any such
Ω ∈ U. To accomplish this, let us consider the following sets:







K = f−1(0) ∩ Ω,
A = {0} × [a, b],
B = f−1(0) ∩ (∂Ω\(Br(0) × {a} ∪Br(0) × {b})).

(17)

We observe that K may be regarded as a compact metric space and A and
B are compact subsets of K. We hence may apply Whyburn’s lemma to deduce
that either there exists a continuum in K connecting A to B or else, there is
a separation KA, KB of K, with A ⊂ KA, B ⊂ KB. If the latter holds,
we may find open sets U, V in E × R such that KA ⊂ U, KB ⊂ V , with
U ∩ V = ∅. We let Ω∗ = Ω ∩ (U ∪ V ) and observe that Ω∗ ∈ U. It follows, by
construction, that there are no nontrivial solutions of (15) which belong to ∂Ω∗;
this, however, is impossible, since, it would imply, by the generalized homotopy
and the excision principle of Leray-Schauder degree, that d(f(·, a), Br(0), 0) =
d(f(·, b), Br(0), 0), contradicting (16). We hence have that for each Ω ∈ U there
is a continuum C of solutions of (15) which intersects ∂Ω in a nontrivial solution.

We assume now that neither of the alternatives of the theorem hold, i.e we
assume that C is bounded and C ∩ {0} × (R\[a, b]) = ∅. In this case, we may,
using the boundednes of C, construct a set Ω ∈ U, containing no nontrivial
solutions in its boundary, thus arriving once more at a contradiction.

We shall, throughout this text, apply the above theorem to several problems
for nonlinear differential equations. Here we shall, for the sake of illustration
provide two simple one dimensional examples.
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13 Example Let f : R × R → R, be given by

f(u, λ) = u(u2 + λ2 − 1).

It is easy to see that S is given by

S = {(u, λ) : u2 + λ2 = 1} ∪ {0} × (−∞,∞),

and hence that (0,−1) and (0, 1) are the only bifurcation points from the trivial
solution. Furthermore, the bifurcating continuum is bounded. Also one may
quickly check that (16) holds with a, b chosen in a neighborhood of λ = −1 and
also in a neighborhood of λ = 1.

14 Example Let f : R × R → R be given by

f(u, λ) = (1 − λ)u + u sin
1

u
.

In this case S is given by

S = {(u, λ) : λ− 1 = sin
1

u
} ∪ {0} × [0, 2],

which is an unbounded set, and we may check that (16) holds, by choosing a < 0
and b > 2.

In many interesting cases the nonlinear mapping F is of the special form

F (u, λ) = λBu + o(||u||), as ||u|| → 0, (18)

where B is a compact linear operator. In this case bifurcation points from the
trivial solution are isolated, in fact one has the following necessary conditions
for bifurcation.

15 Proposition Assume that F has the form (18), where B is the Fréchet deriva-
tive of F . If (0, λ0) is a bifurcation point from the trivial solution for equation
(15), then λ0 is a characteristic value of B.

Using this result, Theorem 12, and the Leray-Schauder formula for comput-
ing the degree of a compact linear perturbation of the identity (an extension to
infinite dimensions of Exercise 8 of Chapter III), we obtain the following result.

16 Theorem Assume that F has the form (18) and let λ0 be a characteristic value
of B which is of odd algebraic multiplicity. Then there exists a continuum C of
nontrivial solutions of (15) which bifurcates from the set of trivial solutions at
(0, λ0) and C is either unbounded in E × R or else C also bifurcates from the
trivial solution set at (0, λ1), where λ1 is another characteristic value of B.
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Proof. Since λ0 is isolated as a characteristic value, we may find a < λ0 < b
such that the interval [a, b] contains, besides λ0, no other characteristic values.
It follows that the trivial solution is an isolated solution (in E) of (15) for λ = a
and λ = b. Hence, d(f(·, a), Br(0), 0) and d(f(·, b), Br(0), 0) are defined for
r, sufficiently small and are, respectively, given by d(id − aB,Br(0), 0), and
d(id− bB,Br(0), 0). On the other hand,

d(id − aB,Br(0), 0) = (−1)βd(id − bB,Br(0), 0),

where β equals the algebraic multiplicity of λ0 as a characteristic value of B.
Since β is odd, by assumption, the result follows from Theorem 12 and Propo-
sition 15.

The following example serves to demonstrate that, in general, not every
characteristic value will yield a bifurcation point.

17 Example The system of scalar equations
{

x = λx+ y3

y = λy − x3 (19)

has only the trivial solution x = 0 = y for all values of λ. We note, that λ0 = 1
is a characteristic value of the Fréchet derivative of multiplicity two.

As a further example let us consider a boundary value problem for a second
order ordinary differential equation, the pendulum equation.

18 Example Consider the boundary value problem
{

u′′ + λ sinu = 0, x ∈ [0, π]
u(0) = 0, u(π) = 0.

(20)

As already observed this problem is equivalent to an operator equation

u = λF (u),

where

F : C[0, π] → C[0, π]

is a completely continuous operator which is continuously Fréchet differentiable
with Fréchet derivative F ′(0). Thus to find the bifurcation points for (20) we
must compute the eigenvalues of F ′(0). On the other hand, to find these eigen-
values is equivalent to finding the values of λ for which

{

u′′ + λu = 0, x ∈ [0, π]
u(0) = 0, u(π) = 0

(21)

has nontrivial solutions. These values are given by

λ = 1, 4, · · ·k2, · · · , k ∈ N.
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Furthermore we know from elementary differential equations that each such
eigenvalue has a one-dimensonal eigenspace and one may convince oneself that
the above theorem may be applied at each such eigenvalue and conclude that
each value

(0, k2), k ∈ N

is a bifurcation point for (20).

6 Exercises

1. Prove Proposition 15.

2. Supply the details for the proof of Theorem 12.

3. Perform the calculations indicated in Example 13.

4. Perform the calculations indicated in Example 14.

5. Prove Proposition 15.

6. Supply the details for the proof of Theorem 16.

7. Prove the assertion of Example 17.

8. Provide the details for Example 18.

9. In Example 18 show that the second alternative of Theorem 16 cannot
hold.
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Part II

Ordinary Differential

Equations

63





Chapter V

Existence and Uniqueness

Theorems

1 Introduction

In this chapter, we shall present the basic existence and uniqueness theo-
rems for solutions of initial value problems for systems of ordinary differential
equations. To this end let D be an open connected subset of R × RN , N ≥ 1,
and let

f : D → R
N

be a continuous mapping.
We consider the differential equation

u′ = f(t, u), ′ =
d

dt
. (1)

and seek sufficient conditions for the existence of solutions of (1), where u ∈
C1(I,RN ), with I an interval, I ⊂ R, is called a solution, if (t, u(t)) ∈ D, t ∈ I
and

u′(t) = f(t, u(t)), t ∈ I.

Simple examples tell us that a given differential equation may have a multi-
tude of solutions, in general, whereas some constraints on the solutions sought
might provide existence and uniqueness of the solution. The most basic such
constraints are given by fixing an initial value of a solution. By an initial value

problem we mean the following:

• Given a point (t0, u0) ∈ D we seek a solution u of (1) such that

u(t0) = u0. (2)

We have the following proposition whose proof is straightforward:
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1 Proposition A function u ∈ C1(I,RN ), with I ⊂ R, and I an interval con-
taining t0 is a solution of the initial value problem (1), satisfying the initial
condition (2) if and only if (t, u(t)) ∈ D, t ∈ I and

u(t) = u(t0) +

∫ t

t0

f(s, u(s))ds. (3)

We shall now, using Proposition 1, establish some of the classical and basic
existence and existence/uniqueness theorems.

2 The Picard-Lindelöf Theorem

We say that f satisfies a local Lipschitz condition on the domain D, provided
for every compact set K ⊂ D, there exists a constant L = L(K), such that for
all (t, u1), (t, u2) ∈ K

|f(t, u1) − f(t, u2)| ≤ L|u1 − u2|.

For such functions, one has the following existence and uniqueness theorem.
This result is usually called the Picard-Lindelöf theorem

2 Theorem Assume that f : D → RN satisfies a local Lipschitz condition on
the domain D, then for every (t0, u0) ∈ D equation (1) has a unique solution
satisfying the initial condition (2) on some interval I.

We remark that the theorem as stated is a local existence and uniqueness
theorem, in the sense that the interval I, where the solution exists will depend
upon the initial condition. Global results will follow from this result, by extend-
ing solutions to maximal intervals of existence, as will be seen in a subsequent
section.
Proof. Let (t0, u0) ∈ D, then, since D is open, there exist positive constants
a and b such that

Q = {(t, u) : |t− t0| ≤ a, |u− u0| ≤ b} ⊂ D.

Let L be the Lipschitz constant for f associated with the set Q. Further let

m = max(t,u)∈Q |f(t, u)|,
α = min{a, b

m}.

Let L̃ be any constant, L̃ > L, and define

M = {u ∈ C
(

[t0 − α, t0 + α],RN
)

: |u(t) − u0| ≤ b, |t− t0| ≤ α}.

In C
(

[t0 − α, t0 + α],RN
)

we define a new norm as follows:

‖u‖ = max
|t−t0|≤α

e−L̃|t−t0||u(t)|.
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And we let ρ(u, v) = ‖u − v‖, then (M,ρ) is a complete metric space. Next
define the operator T on M by:

(Tu)(t) = u0 +

∫ t

t0

f(s, u(s))ds, |t− t0| ≤ α. (4)

Then

|(Tu)(t) − u0| ≤ |
∫ t

t0

|f(s, u(s))|ds|,

and, since u ∈M,

|(Tu)(t) − u0| ≤ αm ≤ b.

Hence

T : M →M.

Computing further, we obtain, for u, v ∈M that

|(Tu)(t) − (Tv)(t)| ≤ |
∫ t

t0
|f(s, u(s)) − f(s, v(s))|ds|

≤ L|
∫ t

t0
|u(s) − v(s)|ds|,

and hence

e−L̃|t−t0||(Tu)(t) − (Tv)(t)| ≤ e−L̃|t−t0|L|
∫ t

t0
|u(s) − v(s)|ds|

≤ L
L̃
‖u− v‖,

and hence

ρ(Tu, T v) ≤ L

L̃
ρ(u, v),

proving that T is a contraction mapping. The result therefore follows from the
contraction mapping principle, Theorem I.6.

We remark that, since T is a contraction mapping, the contraction mapping
theorem gives a constructive means for the solution of the initial value prob-
lem in Theorem 2 and the solution may in fact be obtained via an iteration
procedure. This procedure is known as Picard iteration.

In the next section, we shall show, that without the assumption of a local
Lipschitz condition, we still get the existence of solutions.

3 The Cauchy-Peano Theorem

The following result, called the Cauchy-Peano theorem provides the local
solvability of initial value problems.

3 Theorem Assume that f : D → RN is continuous. Then for every (t0, u0) ∈ D
the initial value problem (1), (2) has a solution on some interval I, t0 ∈ I.
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Proof. Let (t0, u0) ∈ D, and let Q,α,m be as in the proof of Theorem 2. Con-
sider the space E = C([t0 −α, t0 +α],RN ) with norm ‖u‖ = max|t−t0|≤α |u(t)|.
Then E is a Banach space. We let M be as defined in the proof of Theorem
2 and note that M is a closed, bounded convex subset of E and further that
T : M → M. We hence may apply the Schauder fixed point theorem (Theorem
III.30) once we verify that T is completely continuous on M. To see this we
note, that, since f is continuous, it follows that T is continuous. On the other
hand, if {un} ⊂M, then

|(Tun)(t) − (Tun)(t̄)| ≤ |
∫ t

t̄
|f(s, un(s))|ds|

≤ m|t− t̄|.

Hence {Tun} ⊂ M, is a uniformly bounded and equicontinuous family in E.
It therefore has a uniformly convergent subsequence (as follows from the theo-
rem of Ascoli-Arzèla [36]), showing that {Tun} is precompact and hence T is
completely continuous. This completes the proof.

We note from the above proofs (of Theorems 2 and 3) that for a solution
u thus obtained, both (t0 ± α, u(t0 ± α)) ∈ D. We hence may reapply these
theorems with initial conditions given at t0 ± α and conditions u(t0 ± α) and
thus continue solutions to larger intervals (in the case of Theorem 2 uniquely
and in the case of Theorem 3 not necessarily so.) We shall prove below that this
continuation process leads to maximal intervals of existence and also describes
the behavior of solutions as one approaches the endpoints of such maximal
intervals.

3.1 Carathéodory equations

In many situations the nonlinear term f is not continuous as assumed above
but satisfies the so-called Carathéodory conditions on any parallelepipedQ ⊂ D,
where Q is as given in the proof of Theorem 2, i.e.,

• f is measurable in t for each fixed u and continuous in u for almost all t,

• for each Q there exists a function m ∈ L1(t0 − a, t0 + a) such that

|f(t, u)| ≤ m(t), (t, u) ∈ Q.

Under such assumptions we have the following extension of the Cauchy-Peano
theorem, Theorem 3:

4 Theorem Let f satisfy the Carathéodory conditions on D. Then for every
(t0, u0) ∈ D the initial value problem (1), (2) has a solution on some interval I,
t0 ∈ I, in the sense that there exists an absolutely continuous function u : I →
RN which satisfies the initial condition (2) and the differential equation (1) a.e.
in I.
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Proof. Let (t0, u0) ∈ D, and choose

Q = {(t, u) : |t− t0| ≤ a, |u− u0| ≤ b} ⊂ D.

Let

M = {u ∈ C
(

[t0 − α, t0 + α],RN
)

: |u(t) − u0| ≤ b, |t− t0| ≤ α},

where α ≤ a is to be determined.

Next define the operator T on M by:

(Tu)(t) = u0 +

∫ t

t0

f(s, u(s))ds, |t− t0| ≤ α.

Then, because of the Carathéodory conditions, Tu is a a continuous function
and

|(Tu)(t) − u0| ≤ |
∫ t

t0

|f(s, u(s))|ds|.

Further, since u ∈M,

|(Tu)(t) − u0| ≤
∫ t0+α

t0−α

m(s)ds ≤ ‖m‖L1[t0−α,t0+α] ≤ b,

for α small enough. Hence

T : M →M.

One next shows (see the Exercise 14 below) that T is a completely continuous
mapping, hence will have a fixed point in M by the Schauder Fixed Point
Theorem. That fixed points of T are solutions of the initial value problem (1),
(2), in the sense given in the theorem, is immediate.

4 Extension Theorems

In this section we establish a basic result about maximal intervals of existence
of solutions of initial value problems. We first prove the following lemma.

5 Lemma Assume that f : D → RN is continuous and let D̃ be a subdomain
of D, with f bounded on D̃. Further let u be a solution of (1) defined on a
bounded interval (a, b) with (t, u(t)) ∈ D̃, t ∈ (a, b). Then the limits

lim
t→a+

u(t), lim
t→b−

u(t)

exist.
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Proof. Let t0 ∈ (a, b), then u(t) = u(t0) +
∫ t

t0
f(s, u(s))ds. Hence for t1, t2 ∈

(a, b), we obtain

|u(t1) − u(t2)| ≤ m|t1 − t2|,

where m is a bound on f on D̃. Hence the above limits exist.
We may therefore, as indicated above, continue the solution beyond the

interval (a, b), to the left of a and the right of b.
We say that a solution u of (1) has maximal interval of existence (ω−, ω+),

provided u cannot be continued as a solution of (1) to the right of ω+ nor to
the left of ω−.

The following theorem holds.

6 Theorem Assume that f : D → RN is continuous and let u be a solution of
(1) defined on some interval I. Then u may be extended as a solution of (1) to
a maximal interval of existence (ω−, ω+) and (t, u(t)) → ∂D as t→ ω±.

Proof. We establish the existence of a right maximal interval of existence; a
similar argument will yield the existence of a left maximal one and together the
two will imply the existence of a maximal interval of existence.

Let u be a solution of (1) with u(t0) = u0 defined on an interval I = [t0, au).
We say that two solutions v, w of (1), (2) satisfy

v � w, (5)

if and only if:

• u ≡ v ≡ w on [t0, au),

• v is defined on Iv = [t0, av), av ≥ au,
w is defined on Iw = [t0, aw), aw ≥ au,

• aw ≥ av,

• v ≡ w on Iv.

We see that � is a partial order on the set of all solutions S of (1), (2) which agree
with u on I. One next verifies that the conditions of the Hausdorff maximum
principle (see [37]) hold and hence that S contains a maximal element, ũ. This
maximal element ũ cannot be further extended to the right.

Next let u be a solution of (1), (2) with right maximal interval of existence
[t0, ω+). We must show that (t, u(t)) → ∂D as t → ω+, i.e., given any compact
set K ⊂ D, there exists tK , such that (t, u(t)) /∈ K, for t > tK . If ω+ = ∞, the
conclusion clearly holds. On the other hand, if ω+ <∞, we proceed indirectly.
In which case there exists a compact set K ⊂ D, such that for every n = 1, 2, · · ·
there exists tn, 0 < ω+− tn < 1

n , and (tn, u(tn)) ∈ K. Since K is compact, there
will be a subsequence, call it again {(tn, u(tn))} such that {(tn, u(tn))} converges
to, say, (ω+, u

∗) ∈ K. Since (ω+, u
∗) ∈ K, it is an interior point of D. We may

therefore choose a constant a > 0, such that Q = {(t, u) : |ω+−t| ≤ a, |u−u∗| ≤
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a} ⊂ D, and thus for n large (tn, u(tn)) ∈ Q. Let m = max(t,u)∈Q |f(t, u)|, and
let n be so large that

0 < ω+ − tn ≤ a

2m
, |u(tn) − u∗| ≤ a

2
.

Then

|u(tn) − u(t)| < m(ω+ − tn) ≤ a

2
, for t≤t < ω+,

as an easy indirect argument shows.
It therefore follows that

lim
t→ω+

u(t) = u∗,

and we may extend u to the right of ω+ contradicting the maximality of u.

7 Corollary Assume that f : [t0, t0 +a]×RN → RN is continuous and let u be a
solution of (1) defined on some right maximal interval of existence I ⊂ [t0, t0+a].
Then, either I = [t0, t0 + a], or else I = [t0, ω+), ω+ < t0 + a, and

lim
t→ω+

|u(t)| = ∞.

We also consider the following corollary, which is of importance for differen-
tial equations whose right hand side have at most linear growth. I.e., we assume
that the following growth condition holds:

|f(t, u)| ≤ α(t)|u| + β(t). (6)

8 Corollary Assume that f : (a, b)×RN → RN is continuous and let f satisfy (6),
where α, β ∈ L1(a, b) are nonnegative continuous functions. Then the maximal
interval of existence (ω−, ω+) is (a, b) for any solution of (1).

Proof. If u is a solution of (1), then u satisfies the integral equation (3) and
hence, because of (6), we obtain

|u(t)| ≤ |u(t0)| + |
∫ t

t0

|[α(s)|u(s)| + β(s)]ds. (7)

Considering the case t ≥ t0, the other case being similar, we let

v(t) =

∫ t

t0

[|α(s)||u(s)| + |β(s)|]ds,

and c = |u(t0)|. Then an easy calculation yields

v′ − α(t)v ≤ α(t)c + β(t),

and hence

v(t) ≤ e
R

t

t0
α(τ)dτ

∫ t

t0

e
R

s

t0
α(τ)dτ

[α(s)c+ β(s)]ds,

from which, using Corollary 7, follows that ω+ = b.
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5 Dependence upon Initial Conditions

Let again D be an open connected subset of R × RN , N ≥ 1, and let

f : D → R
N

be a continuous mapping.
We consider the initial value problem

u′ = f(t, u), u(t0) = u0, (8)

and assume we have conditions which guarantee that (8) has a unique solution

u(t) = u(t, t0, u0), (9)

for every (t0, u0) ∈ D. We shall now present conditions which guarantee that
u(t, t0, u0) depends either continuously or smoothly on the initial condition
(t0, u0).

A somewhat more general situation occurs frequently, where the function f
also depends upon parameters, λ ∈ Rm, i.e. (8) is replaced by the parameter
dependent problem

u′ = f(t, u, λ), u(t0) = u0, (10)

and solutions u then are functions of the type

u(t) = u(t, t0, u0, λ), (11)

provided (10) is uniquely solvable. This situation is a special case of the above,
as we may augment the original system (10) as

u′ = f(t, u, λ), u(t0) = u0,
λ′ = 0, λ(t0) = λ,

(12)

and obtain an initial value problem for a system of equations of higher dimension
which does not depend upon parameters.

5.1 Continuous dependence

We first prove the following proposition.

9 Theorem Assume that f : D → RN is a continuous mapping and that (8) has
a unique solution u(t) = u(t, t0, u0), for every (t0, u0) ∈ D. Then the solution
depends continuously on (t0, u0), in the following sense: If {(tn, un)} ⊂ D con-
verges to (t0, u0) ∈ D, then given ǫ > 0, there exists nǫ and an interval Iǫ such
that for all n ≥ nǫ, the solution un(t) = u(t, tn, un), exists on Iǫ and

max
t∈Iǫ

|u(t) − un(t)| ≤ ǫ.
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Proof. We rely on the proof of Theorem 3 and find that for given ǫ > 0, there
exists nǫ such that {(tn, un)} ⊂ Q̃, where

Q̃ = {(t, u) : |t− t0| ≤
α

2
, |u− u0| ≤

b

2
} ⊂ Q,

and Q is the set given in the proof of Theorems 2 and 3. Using the proof of The-
orem 3 we obtain a common compact interval Iǫ of existence of the sequence
{un} and {(t, un(t))} ⊂ Q, for t ∈ Iǫ. The sequence {un} hence will be uni-
formly bounded and equicontinuous on Iǫ and will therefore have a subsequence
converging uniformly on Iǫ. Employing the integral equation (3) we see that
the limit must be a solution of (8) and hence, by the uniqueness assumption
must equal u. Since this is true for every subsequence, the whole sequence must
converge to u, completing the proof.

We have the following corollary, which asserts continuity of solutions with
respect to the differential equation. The proof is similar to the above and will
hence be omitted.

10 Corollary Assume that fn : D → RN , n = 1, 2, · · · , are continuous mappings
and that (8) (with f = fn) has a unique solution un(t) = u(t, tn, un), for
every (tn, un) ∈ D. Then the solution depends continuously on (t0, u0), in the
following sense: If {(tn, un)} ⊂ D converges to (t0, u0) ∈ D, and fn converges
to f, uniformly on compact subsets of D, then given ǫ > 0, there exists nǫ and
an interval Iǫ such that for all n ≥ nǫ, the solution un(t) = u(t, tn, un), exists
on Iǫ and

max
t∈Iǫ

|u(t) − un(t)| ≤ ǫ.

5.2 Differentiability with respect to initial conditions

In the following we shall employ the convention u = (u1, u2, · · · , uN). We
have the following theorem.

11 Theorem Assume that f : D → RN is a continuous mapping and that the
partial derivatives ∂f

∂ui , 1 ≤ i ≤ N are continuous also. Then the solution
u(t) = u(t, t0, u0), of (8) is of class C1 in the variable u0. Further, if J(t) is the
Jacobian matrix

J(t) = J(t, t0, u0) =

(

∂f

∂u

)

u=u(t,t0,u0)

,

then

y(t) =
∂u

∂ui
(t, t0, u0)

is the solution of the initial value problem

y′ = J(t)y, y(t0) = ei, 1 ≤ i ≤ N,

where ei ∈ Rn is given by ek
i = δik, with δik the Kronecker delta.



74

Proof. Let ei be given as above and let u(t) = u(t, t0, u0), uh(t) = u(t, t0, u0 +
hei), where |h| is sufficiently small so that uh exists. We note that u and uh

will have a common interval of existence, whenever |h| is sufficiently small. We
compute

(uh(t) − u(t))
′
= f(t, uh(t)) − f(t, u(t)).

Letting

yh(t) =
uh(t) − u(t)

h
,

we get yh(t0) = ei. If we let

G(t, y1, y2) =

∫ 1

0

∂f

∂u
(t, sy1 + (1 − s)y2)ds,

we obtain that yh is the unique solution of

y′ = G(t, u(t), uh(t))y, y(t0) = ei.

Since G(t, u(t), uh(t)) → J(t) as h→ 0, we may apply Corollary 10 to conclude
that yh → y uniformly on a neighborhood of t0.

6 Differential Inequalities

We consider in RN the following partial orders:

x ≤ y ⇔ xi ≤ yi, 1 ≤ i ≤ N,
x < y ⇔ xi < yi, 1 ≤ i ≤ N.

For a function u : I → RN , where I is an open interval, we consider the Dini
derivatives

D+u(t) = lim suph→0+
u(t+h)−u(t)

h ,

D+u(t) = lim infh→0+
u(t+h)−u(t)

h ,

D−u(t) = lim suph→0−
u(t+h)−u(t)

h ,

D−u(t) = lim infh→0−
u(t+h)−u(t)

h ,

where lim sup and lim inf are taken componentwise.

12 Definition A function f : RN → RN is said to be of type K (after Kamke [23])
on a set S ⊂ RN , whenever

f i(x) ≤ f i(y), ∀x, y ∈ S, x ≤ y, xi = yi.

The following theorem on differential inequalities is of use in obtaining esti-
mates on solutions.



6. DIFFERENTIAL INEQUALITIES 75

13 Theorem Assume that f : [a, b] × RN → RN is a continuous mapping which
is of type K for each fixed t. Let u : [a, b] → RN be a solution of (1) and let
v : [a, b] → RN be continuous and satisfy

D−v(t) > f(t, v(t)), a < t ≤ b,
v(a) > u(a),

(13)

then v(t) > u(t), a ≤ t ≤ b.
If z : [a, b] → RN is continuous and satisfies

D−z(t) < f(t, z(t)), a < t ≤ b,
z(a) < u(a),

(14)

then z(t) < u(t), a ≤ t ≤ b.

Proof. We prove the first part of the theorem. The second part follows along
the same line of reasoning. By continuity of u and v, there exists δ > 0, such
that

v(t) > u(t), a ≤ t ≤ a+ δ.

If the inequality does not hold throughout [a, b], there will exist a first point c
and an index i such that

v(t) > u(t), a ≤ t < c, v(c) ≥ u(c), vi(c) = ui(c).

Hence (since f is of type K)

D−vi(c) > f i(c, v(c)) ≥ f i(c, u(c)) = ui′(c).

On the other hand,

D−vi(c) = lim suph→0−
vi(c+h)−vi(c)

h

≤ lim suph→0−
ui(c+h)−ui(c)

h = ui′(c),

a contradiction.

14 Definition A solution u∗ of (1) is called a right maximal solution on an interval
I, if for every t0 ∈ I and any solution u of (1) such that

u(t0) ≤ u∗(t0),

it follows that

u(t) ≤ u∗(t), t0 ≤ t ∈ I.

Right minimal solutions are defined similarly.

15 Theorem Assume that f : D → RN is a continuous mapping which is of type
K for each t. Then the initial value problem (8) has a unique right maximal
(minimal) solution for each (t0, u0) ∈ D.
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Proof. That maximal and minimal solutions are unique follows from the defi-
nition. Choose 0 < ǫ ∈ RN and let vn be any solution of

v′ = f(t, v, λ) +
ǫ

n
, v(t0) = u0 +

ǫ

n
. (15)

Then, given a neighborhood U of (t0, u0) ∈ D, there exists an interval [t0, t1] of
positive length such that all vn are defined on this interval with {(t, vn(t))} ⊂
U, t0 ≤ t ≤ t1, for all n sufficiently large. On the other hand it follows from
Theorem 13 that

vn(t) > vm(t), t0 ≤ t ≤ t1, n < m.

The sequence {vn} is therefore unformly bounded and equicontinuous on [t0, t1],
hence will have a subsequence which converges uniformly to a solution u∗ of (8).
Since the sequence is monotone, the whole sequence will, in fact, converge to u∗.
Applying Theorem 13 once more, we obtain that u∗ is right maximal on [t0, t1],
and extending this solution to a right maximal interval of existence as a right
maximal solution, completes the proof.

We next prove an existence theorem for initial value problems which allows
for estimates of the solution in terms of given solutions of related differential
inequalities.

16 Theorem Assume that f : [a, b]×RN → RN is a continuous mapping which is
of type K for each fixed t. Let v, z : [a, b] → RN be continuous and satisfy

D+v(t) ≥ f(t, v(t)), a ≤ t < b,
D+z(t) ≤ f(t, z(t)), a ≤ t < b,

z(t) ≤ v(t), a ≤ t ≤ b.
(16)

Then for every u0, z(a) ≤ u0 ≤ v(a), there exists a solution u of (8) (with
t0 = a) such that

z(t) ≤ u(t) ≤ v(t), a ≤ t ≤ b.

The functions z and v are called, respectively, sub- and supersolutions of (8).
Proof. Define f̄(t, x) = f(t, x̄) − (x− x̄), where for 1 ≤ i ≤ N,

x̄i =







vi(t) , if xi > vi(t),
xi , if zi(t) ≤ xi ≤ vi(t),
zi(t) , if xi < zi(t).

Then f̄ is continuous and has at most linear growth, hence the initial value
problem (8), with f replaced by f̄ has a solution u that extends to [a, b] (see
Corollary 8). We show that z(t) ≤ u(t) ≤ v(t), a ≤ t ≤ b, and hence may
conclude that u solves the original initial value problem (8). To see this, we
shall prove that for any ǫ > 0 we have that

zi(t) − ǫ ≤ ui(t) ≤ vi(t) + ǫ, t ∈ [a, b], i = 1, · · · , N.
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This we argue indirectly and suppose there exists ǫ > 0 a value c ∈ (a, b) and i
such that

ui(c) = vi(c) + ǫ, ui(t) ≥ vi(t) + ǫ, c < t ≤ t1 ≤ b.

Since ūi(t) = vi(t), c < t ≤ t1 and ūk(t) ≤ vk(t), c < t ≤ t1, k 6= i, we get
that

f̄ i(t, u(t)) = f(t, ū(t)) − (ui(t) − vi(t)) ≤ f i(t, v(t)) − ǫ < D+vi(t), c < t ≤ t1.

On the other hand we have, for h > 0, small, that

ui(t+ h) − ui(c) ≥ vi(t+ h) + ǫ− (vi(c) + ǫ,

and hence

ui′(c) ≥ D+vi(c),

contradicting what has been concluded above. Since ǫ > 0 was arbitrary, we
conclude that

u(t) ≤ v(t).

That

u(t) ≥ vz(t)

may be proved in a similar way.

17 Corollary Assume the hypotheses of Theorem 16 and that f satisfies a local
Lipschitz condition. Assume furthermore that

z(a) ≤ z(b), v(a) ≥ v(b).

Then the problem

u′ = f(t, u), u(a) = u(b) (17)

has a solution u with

z(t) ≤ u(t) ≤ v(t), a ≤ t ≤ b.

Proof. Since f satisfies a local Lipschitz condition, initial value problems are
uniquely solvable. Hence for every u0, z(a) ≤ u0 ≤ v(a), there exists a unique
solution u(t, u0) of (8) (with t0 = a) such that

z(t) ≤ u(t) ≤ v(t), a ≤ t ≤ b,

as follows from Theorem 16. Define the mapping

T : {x : z(a) ≤ x ≤ v(a)} → {x : z(b) ≤ x ≤ v(b)}
by

Tx = u(b, x),
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then, since by hypothesis {x : z(a) ≤ x ≤ v(a)} ⊃ {x : z(b) ≤ x ≤ v(b)}
and since {x : z(a) ≤ x ≤ v(a)} is convex, it follows by Brouwer’s fixed point
theorem (Theorem III.22) and the fact that T is continuous (Theorem 9) that
T has a fixed point, completing the proof.

An important consequence of this corollary is that if in addition f is a
function which is periodic in t with period b− a, then Corollary 17 asserts the
existence of a periodic solution (of period b− a).

The following results use comparison and differential inequality arguments
to provide a priori bounds and extendability results.

18 Theorem Assume that F : [a, b]×R+ → R+ is a continuous mapping and that
f : [a, b] × RN → RN is continuous also and

|f(t, x)| ≤ F (t, |x|), a ≤ t ≤ b, x ∈ R
N .

Let u : [a, b] → RN be a solution of (1) and let v : [a, b] → R+ be the continuous
and right maximal solution of

v′(t) = F (t, v(t)), a ≤ t ≤ b,
v(a) ≥ |u(a)|, (18)

then v(t) ≥ |u(t)|, a ≤ t ≤ b.

Proof. Let z(t) = |u(t)|, then z is continuous and D−z(t) = D−z(t). Further

D−z(t) = lim infh→0+
|u(t)|−|u(t−h)|

h

≤ limh→0+
|u(t−h)−u(t)|

h
= |f(t, u(t))| ≤ F (t, z(t)).

Hence, by Theorem 15 (actually its corollary (Exercise 6)), we conclude that
v(t) ≥ |u(t)|, a ≤ t ≤ b.

7 Uniqueness Theorems

In this section we provide supplementary conditions which guarantee the
uniqueness of solutions of ivp’s.

19 Theorem Assume that F : (a, b) × R+ → R+ is a continuous mapping and
that f : (a, b) × RN → RN is a continuous also and

|f(t, x) − f(t, y)| ≤ F (t, |x− y|), a ≤ t ≤ b, x, y ∈ R
N .

Let F (t, 0) ≡ 0 and let, for any c ∈ (a, b), w ≡ 0 be the only solution of
w′ = F (t, w) on (a, c) such that w(t) = 0(µ(t)), t → a where µ is a given
positive and continuous function. Then (1) cannot have distinct solutions such
that |u(t) − v(t)| = 0(µ(t)), t→ a.
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Proof. Let u, v be distinct solutions of (1) such that |u(t)−v(t)| = 0(µ(t)), t→
a. Let z(t) = |u(t) − v(t)|. Then z is continuous and

D+z(t) ≤ |f(t, u(t)) − f(t, v(t))| ≤ F (t, z(t)).

The proof is completed by employing arguments like those used in the proof of
Theorem 18.

20 Remark Theorem 19 does not require that f be defined for t = a. The advan-
tage of this may be that a = −∞ or that f may be singular there. A similar
result, of course, holds for t→ b− .

8 Exercises

1. Prove Proposition 1.

2. Prove Corollary 10.

3. Verify that the space (M,ρ) in the proof of Theorem 2 is a complete metric
space.

4. Complete the details in the proof of Theorem 11.

5. State and prove a theorem similar to Theorem 11, providing a differential
equation for ∂u

∂λ whenever f = f(t, u, λ) also depends upon a parameter λ.

6. Prove the following result: Assume that f : [a, b]× RN → RN is a contin-
uous mapping which is of type K for each fixed t. Let u : [a, b] → RN be
a right maximal solution of (1) and let z : [a, b] → RN be continuous and
satisfy

D−z(t) ≤ f(t, z(t)), a < t ≤ b,
z(a) ≤ u(a),

(19)

then z(t) ≤ u(t), a ≤ t ≤ b.

7. Show that a real valued continuous function z(t) is nonincreasing on an
interval [a, b] if and only if D−z ≤ 0 on (a, b].

8. Assume that f : [a,∞) × RN → RN is a continuous mapping such that

|f(t, x)| ≤M(t)L(|x|), a ≤ t <∞, x ∈ R
N ,

where M and L > 0 are continuous functions on their respective domains
and

∫ ∞ ds

L(s)
= ∞.

Prove that ω+ = ∞ for all solutions of (1).
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9. Give the details of the proof of Theorem 18.

10. Assume that f : [a, b) × RN → RN is a continuous mapping and assume
the conditions of Theorem 19 with µ ≡ 1. Then the initial value problem

u′ = f(t, u), u(a) = u0 (20)

has at most one solution.

11. Assume that f : [a, b) × RN → RN is a continuous mapping and that

|f(t, x) − f(t, y)| ≤ c
|x− y|
t− a

, t > a, x, y ∈ R
N , 0 < c < 1 (21)

Then the initial value problem (20) has at most one solution.

12. The previous exercise remains valid if (21) is replaced by

(f(t, x) − f(t, y)) · (x− y) ≤ c
|x− y|2
t− a

, t > a, x, y ∈ R
N , 0 ≤ c <

1

2
.

13. Assume that f : [a, b) × RN → RN is a continuous mapping and that

(f(t, x) − f(t, y)) · (x− y) ≤ 0, t ≥ a, x, y ∈ R
N .

Then every initial value problem is uniquely solvable to the right. This
exercise, of course follows from the previous one. Give a more elementary
and direct proof. Note that unique solvability to the left of an initial
point is not guaranteed. How must the above condition be modified to
guarantee uniqueness to the left of an initial point?

14. Provide the details in the proof of Theorem 4.

15. Establish a result similar to Theorem 6 assuming that f satisfies Carathéodory
conditions.



Chapter VI

Linear Ordinary Differential

Equations

1 Introduction

In this chapter we shall employ what has been developed to give a brief
overview of the theory of linear ordinary differential equations. The results ob-
tained will be useful in the study of stability of solutions of nonlinear differential
equations as well as bifurcation theory for periodic orbits and many other facets
where linearization techniques are of importance. The results are also of interest
in their own right.

2 Preliminaries

Let I ⊂ R be a real interval and let

A : I → L(RN ,RN)

f : I → R
N

be continuous functions. We consider here the system of ordinary differential
equations

u′ = A(t)u + f(t), t ∈ I, (1)

and

u′ = A(t)u, t ∈ I. (2)

Using earlier results we may establish the following basic proposition (see Ex-
ercise 1).

1 Proposition For any given f , initial value problems for (1) are uniquely solv-
able and solutions are defined on all of I.
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2 Remark More generally we may assume that A and f are measurable on I
and locally integrable there, in which case the conclusion of Proposition 1 still
holds. We shall not go into details for this more general situation, but leave it
to the reader to present a parallel development.

3 Proposition The set of solutions of (2) is a vector space of dimension N .

Proof. That the solution set forms a vector space is left as an exercise (Exercise
2, below). To show that the dimension of this space is N, we employ the
uniqueness principle above. Thus let t0 ∈ I, and let uk(t), k = 1, · · · , N be the
solution of (2) such that

uk(t0) = ek, e
i
k = δki (Kronecker delta). (3)

It follows that for any set of constants a1, · · · , aN ,

u(t) =

N
∑

1

aiui(t) (4)

is a solution of (2). Further, for given ξ ∈ RN , the solution u of (2) such that
u(t0) = ξ is given by (4) with ai = ξi, i = 1, · · · , N.

Let the N ×N matrix function Φ be defined by

Φ(t) = (ui
j(t)), 1 ≤ i, j ≤ N, (5)

i.e., the columns of Φ are solutions of (2). Then (4) takes the form

u(t) = Φ(t)a, a = (a1, · · · , aN )T . (6)

Hence for given ξ ∈ RN , the solution u of (2) such that u(t1) = ξ, t1 ∈ I,
is given by (6) provided that Φ(t1) is a nonsingular matrix, in which case a
may be uniquely determined. That this matrix is never singular, provided it is
nonsingular at some point, is known as the Abel-Liouville lemma, whose proof
is left as an exercise below.

4 Lemma If g(t) = detΦ(t), then g satisfies

g(t) = g(t0)e
R

t

t0
traceA(s)

ds. (7)

Hence, if Φ is defined by (5), where u1, · · · , uN are solutions of (2), then Φ(t) is
nonsingular for all t ∈ I if and only if Φ(t0) is nonsingular for some t0 ∈ I.

2.1 Fundamental solutions

A nonsingular N ×N matrix function Ψ whose columns are solutions of (2)
is called a fundamental matrix solution or a fundamental system of (2). Such a
matrix is a nonsingular solution of the matrix differential equation

Ψ′ = A(t)Ψ. (8)

The following proposition characterizes the set of fundamental solutions; its
proof is again left as an exercise.
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5 Proposition Let Φ be a given fundamental matrix solution of (2). Then every
other fundamental matrix solution has the form Ψ = ΦC, where C is a constant
nonsingular N ×N matrix. Furthermore the set of all solutions of (2) is given
by

{Φc : c ∈ R
N},

where Φ is a fundamental system.

2.2 Variation of constants

It follows from Propositions 3 and 5 that all solutions of (1) are given by

{Φ(t)c+ up(t) : c ∈ R
N},

where Φ is a fundamental system of (2) and up is some particular solution of (1).
Hence the problem of finding all solutions of (1) is solved once a fundamental
system of (2) is known and some particular solution of (1) has been found. The
following formula, known as the variation of constants formula, shows that a
particular solution of (1) may be obtained from a fundamental system.

6 Proposition Let Φ be a fundamental matrix solution of (2) and let t0 ∈ I.
Then

up(t) = Φ(t)

∫ t

t0

Φ−1(s)f(s)ds (9)

is a solution of (1). Hence the set of all solutions of (1) is given by

{Φ(t)

(

c+

∫ t

t0

Φ−1(s)f(s)ds

)

: c ∈ R
N},

where Φ is a fundamental system of (2).

3 Constant Coefficient Systems

In this section we shall assume that the matrix A is a constant matrix and
thus have that solutions of (2) are defined for all t ∈ R. In this case a fundamental
matrix solution Φ is given by

Φ(t) = etAC, (10)

where C is a nonsingular constant N ×N matrix and

etA =

∞
∑

0

tnAn

n!
.

Thus the solution u of (2) with u(t0) = ξ is given by

u(t) = e(t−t0)Aξ.
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To compute etA we use the (complex) Jordan canonical form J of A. Since A
and J are similar, there exists a nonsingular matrix P such that A = PJP−1

and hence etA = PetJP−1. We therefore compute etJ . On the other hand J has
the form

J =











J0

J1

. . .

Js











,

where

J0 =











λ1

λ2

. . .

λq











,

is a q × q diagonal matrix whose entries are the simple (algebraically) and
semisimple eigenvalues of A, repeated according to their multiplicities, and for
1 ≤ i ≤ s,

Ji =















λq+i 1
λq+i 1

. . .
. . .

1
λq+i















is a qi × qi matrix, with

q +

s
∑

1

qi = N.

By the laws of matrix multiplication it follows that

etJ =











etJ0

etJ1

. . .

etJs











,

and

etJ0 =











eλ1t

eλ2t

. . .

eλqt











.
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Further, since Ji = λq+iIri
+ Zi, where Iri

is the ri × ri identity matrix and Zi

is given by

Zi =















0 1
0 1

. . .
. . .

1
0















,

we obtain that

etJi = etλq+iIri etZi = etλq+ietZi .

An easy computation now shows that

etZi =













1 t t2

2! · · · tri−1

ri−1!

0 1 t · · · tri−2

ri−2!

...
...

... · · ·
...

0 0 0 · · · 1













.

Since P is a nonsingular matrix etAP = PetJ is a fundamental matrix solution
as well. Also, since J and P may be complex we obtain the set of all real
solutions as

{RePetJc, ImPetJc : c ∈ C
N}.

The above considerations have the following proposition as a consequence.

7 Proposition Let A be an N ×N constant matrix and consider the differential
equation

u′ = Au. (11)

Then:

1. All solutions u of (11) satisfy u(t) → 0, as t→ ∞, if and only if Reλ < 0,
for all eigenvalues λ of A.

2. All solutions u of (11) are bounded on [0,∞), if and only if Reλ ≤ 0, for
all eigenvalues λ of A and those with zero real part are semisimple.

4 Floquet Theory

Let A(t), t ∈ R be an N × N continuous matrix which is periodic with
respect to t of period T, i.e., A(t+ T ) = A(t), −∞ < t <∞, and consider the
differential equation

u′ = A(t)u. (12)

We shall associate to (12) a constant coefficient system which determines the
asymptotic behavior of solutions of (12). To this end we first establish some
facts about fundamental solutions of (12).
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8 Proposition Let Φ(t) be a fundamental matrix solution of (12), then so is
Ψ(t) = Φ(t+ T ).

Proof. Since Φ is a fundamental matrix it is nonsingular for all t, hence Ψ is
nonsingular. Further

Ψ′(t) = Φ′(t+ T ) = A(t+ T )Φ(t+ T )
= A(t)Φ(t + T )
= A(t)Ψ(t).

It follows by our earlier considerations that there exists a nonsingular con-
stant matrix Q such that

Φ(t+ T ) = Φ(t)Q.

Since Q is nonsingular, there exists a matrix R (see exercises at the end of this
chapter) such that

Q = eTR.

Letting C(t) = Φ(t)e−tR we compute

C(t+ T ) = Φ(t+ T )e−(t+T )R

= Φ(t)Qe−TRe−tR

= Φ(t)e−tR = C(t).

We have proved the following proposition.

9 Proposition Let Φ(t) be a fundamental matrix solution of (12), then there
exists a nonsingular periodic (of period T ) matrix C and a constant matrix R
such that

Φ(t) = C(t)etR. (13)

From this representation we may immediately deduce conditions which guaran-
tee the existence of nontrivial T− periodic and mT− periodic (subharmonics)
solutions of (12).

10 Corollary For any positive integer m (12) has a nontrivial mT−periodic so-
lution if and only if Φ−1(0)Φ(T ) has an m−th root of unity as an eigenvalue,
where Φ is a fundamental matrix solution of (12).

Proof. The properties of fundamental matrix solutions guarantee that the
matrix Φ−1(0)Φ(T ) is uniquely determined by the equation and Proposition 9
implies that

Φ−1(0)Φ(T ) = eTR.

On the other hand a solution u of (12) is given by

u(t) = C(t)etRd,
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where u(0) = C(0)d. Hence u is periodic of period mT if and only if

u(mT ) = C(mT )emTRd = C(0)emTRd = C(0)d.

Which is the case if and only if emTR =
(

eTR
)m

has 1 as an eigenvalue.
Let us apply these results to the second order scalar equation

y′′ + p(t)y = 0, (14)

(Hill’s equation) where p : R → R is a T -periodic function. Equation (14) may
be rewritten as the system

u′ =

(

0 1
−p(t) 0

)

u. (15)

Let y1 be the solution of (14) such that

y1(0) = 1, y′1(0) = 0,

and y2 the solution of (14) such that

y2(0) = 0, y′2(0) = 1.

Then

Φ(t) =

(

y1(t) y2(t)
y′1(t) y′2(t)

)

will be a fundamental solution of (15)and

detΦ(t) = e
R

t

0
traceA(s)ds = 1,

by the Abel-Liouville formula (7). Hence (14), or equivalently (15), will have a
mT−periodic solution if and only if Φ(T ) has an eigenvalue λ which is an m−th
root of unity. The eigenvalues of Φ(T ) are solutions of the equation

det

(

y1(T ) − λ y2(T )
y′1(T ) y′2(T ) − λ

)

= 0,

or

λ2 − aλ+ 1 = 0,

where

a = y1(T ) + y′2(T ).

Therefore

λ =
a±

√
a2 − 4

2
.
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5 Exercises

1. Prove Proposition 1.

2. Prove that the solution set of (2) forms a vector space over either the real
field or the field of complex numbers.

3. Verify the Abel-Liouville formula (7).

4. Prove Proposition 5. Also give an example to show that for a nonsingular
N ×N constant matrix C, and a fundamental solution Φ, Ψ = CΦ need
not be a fundamental solution.

5. Let [0,∞) ⊂ I and assume that all solutions of (2) are bounded on [0,∞).
Let Φ be a fundamental matrix solution of (2). Show that Φ−1(t) is

bounded on [0,∞) if and only if
∫ t

0
A(s)ds is bounded from below. If this

is the case, prove that no solution u of (2) may satisfy u(t) → 0 as t→ ∞
unless u ≡ 0.

6. Let [0,∞) ⊂ I and assume that all solutions of (2) are bounded on [0,∞).
Further assume that the matrix Φ−1(t) is bounded on [0,∞). Let B :
[0,∞) → RN×N be continuous and such that

∫ ∞

0

|A(s) −B(s)|ds <∞.

Then all solutions of

u′ = B(t)u (16)

are bounded on [0,∞).

7. Assume the conditions of the previous exercise. Show that corresponding
to every solution u of (2) there exists a unique solution v of (16) such that

lim
t→∞

|u(t) − v(t)| = 0.

8. Assume that

∫ ∞

0

|B(s)|ds <∞.

Show that any solution, not the trivial solution, of (16) tends to a nonzero
limit as t → ∞ and for any c ∈ RN , there exists a solution v of (16) such
that

lim
t→∞

v(t) = c.
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9. Prove Proposition 7 using what has been developed about the matrix
exponential etA.

10. Give an alternate verification of Proposition 7 using the following facts
from Linear Algebra for a given matrix A.

(a) Let λ be an eigenvalue of A of algebraic multiplicity m, then there
exists a minimal integer q such that

ker(A− λI)q = ker(A− λI)q+1 = ker(A− λI)q+2 = · · ·
and the dimension

dim ker(A− λI)q = m.

The space ker(A−λI)q is called the generalized eigenspace associated
with λ.

(b) If λ and µ are different eigenvalues of A their generalized eigenspaces
only have the zero vector in common.

Using the above and the fact that etA may be written as

etA = etλet(A−λI),

deduce the proposition.

11. Let Q be a nonsingular square matrix. Use the Jordan normal form and
block multiplication rules for matrices to deduce that there exists a square
matrix X such that

Q = eX .

12. Give necessary and sufficient conditions in order that all solutions u of
(12) satisfy

lim
t→∞

u(t) = 0.

13. Show that there exists a nonsingular C1 matrix L(t) such that the substi-
tution u = L(t)v reduces (12) to a constant coefficient system v′ = Bv.

14. Provide conditions on a = y1(T ) + y′2(T ) in order that (14) have a

T, 2T, · · · , mT − periodic

solution, where the period should be the minimal period.

15. Consider equation (1), where both A and f are T−periodic. Use the vari-
ation of constants formula to discuss the existence of T−periodic solutions
of (1).
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Chapter VII

Periodic Solutions

1 Introduction

In this chapter we shall develop, using the linear theory developed in the
previous chapter together with the implicit function theorem and degree theory,
some of the basic existence results about periodic solutions of periodic nonlinear
systems of ordinary differential equations. In particular, we shall mainly be
concerned with systems of the form

u′ = A(t)u + f(t, u), (1)

where

A : R → RN × RN

f : R × RN → RN

are continuous and T−periodic with respect to t. We call the equation nonres-

onant provided the linear system

u′ = A(t)u (2)

has as its only T− periodic solution the trivial one; we call it resonant, other-
wise.

2 Preliminaries

We recall from Chapter 6 that the set of all solutions of the equation

u′ = A(t)u + g(t), (3)

is given by

u(t) = Φ(t)c+ Φ(t)

∫ t

t0

Φ−1(s)g(s)ds, c ∈ R
N , (4)

where Φ is a fundamental matrix solution of the linear system (2). On the
other hand it follows from Floquet theory (Section VI.4) that Φ has the form
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Φ(t) = C(t)etR, where C is a continuous nonsingular periodic matrix of period
T and R is a constant matrix (viz. Proposition VI.9). As we may choose Φ such
that Φ(0) = I (the N ×N identity matrix), it follows that (with this choice)

C(0) = C(T ) = I

and

u(T ) = eTR

(

c+

∫ T

0

Φ−1(s)g(s)ds, c ∈ R
N

)

,

hence u(0) = u(T ) = c if and only if

c = eTR

(

c+

∫ T

0

Φ−1(s)g(s)ds, c ∈ R
N

)

. (5)

We note that equation (5) is uniquely solvable for every g, if and only if

I − eTR

is a nonsingular matrix. That is, we have the following result:

1 Proposition Equation (3) has a unique T−periodic solution for every T−periodic
forcing term g if and only if eTR − I is a nonsingular matrix. If this is the case,
the periodic solution u is given by the following formula:

u(t) = Φ(t)

(

(I − eTR)−1eTR

∫ T

0

Φ−1(s)g(s)ds +

∫ t

0

Φ−1(s)g(s)ds

)

.(6)

This proposition allows us to formulate a fixed point equation whose solution
will determine T− periodic solutions of equation (1). The following section is
devoted to results of this type.

3 Perturbations of Nonresonant Equations

In the following let

E = {u ∈ C([0, T ],RN) : u(0) = u(T )}

with ‖u‖ = maxt∈[0,T ] |u(t)| and let S : E → E be given by

(Su)(t) = Φ(t)
(

(I − eTR)−1eTR
∫ T

0
Φ−1(s)f(s, u(s))ds

+
∫ t

0 Φ−1(s)f(s, u(s))ds
)

.
(7)

2 Proposition Assume that I − eTR is nonsingular, then (1) has a T− periodic
solution u, whenever the operator S given by equation (7) has a fixed point in
the space E.
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For f as given above let us define

P (r) = max{|f(t, u)| : 0 ≤ t ≤ T, |u| ≤ r}. (8)

We have the following theorem.

3 Theorem Assume that A and f are as above and that I − eTR is nonsingular,
then (1) has a T− periodic solution u, whenever

lim inf
r→∞

P (r)

r
= 0, (9)

where P is defined by (8).

Proof. Let us define

B(r) = {u ∈ E : ‖u‖ ≤ r},
then for u ∈ B(r) we obtain

‖Su‖ ≤ KP (r),

where S is the operator defined by equation (7) andK is a constant that depends
only on the matrix A. Hence

S : B(r) → B(r),

provided that

KP (r) ≤ r,

which holds, by condition (9), for some r sufficiently large. Since S is completely
continuous the result follows from the Schauder fixed point theorem (Theorem
III.30).

As a corollary we immediately obtain:

4 Corollary Assume that A and f are as above and that I − eTR is nonsingular,
then

u′ = A(t)u + ǫf(t, u) (10)

has a T− periodic solution u, provided that ǫ is sufficiently small.

Proof. Using the operator S associated with equation (10) we obtain for
u ∈ B(r)

‖Su‖ ≤ |ǫ|KP (r),

thus for given r > 0, there exists ǫ 6= 0 such that

|ǫ|KP (r) ≤ r,

and S will have a fixed point in B(r).
The above corollary may be considerably extended using the global contin-

uation theorem Theorem IV.4. Namely we have the following result.
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5 Theorem Assume that A and f are as above and that I − eTR is nonsingular.
Let

S
+ = {(u, ǫ) ∈ E × [0,∞) : (u, ǫ) solves (10)}

and

S
− = {(u, ǫ) ∈ E × (−∞, 0] : (u, ǫ) solves (10)}.

Then there exists a continuum C+ ⊂ S+ (C− ⊂ S−) such that:

1. C+
0 ∩ E = {0} (C−

0 ∩ E = {0}),

2. C+ is unbounded in E × [0,∞) (C− is unbounded in E × (−∞, 0]).

Proof. The proof follows immediately from Theorem IV.4 by noting that the
existence of T−periodic solutions of equation (10) is equivalent to the existence
of solutions of the operator equation

u− S(ǫ, u) = 0,

where

S(ǫ, u)(t) = Φ(t)
(

(I − eTR)−1eTR
∫ T

0
Φ−1(s)ǫf(s, u(s))ds

+
∫ t

0 Φ−1(s)ǫf(s, u(s))ds
)

.

4 Resonant Equations

4.1 Preliminaries

We shall now consider the equation subject to constraint

u′ = f(t, u),
u(0) = u(T ),

(11)

where

f : R × R
N → R

N

is continuous. Should f be T−periodic with respect to t, then a T−periodic
extension of a solution of (11) will be a T− periodic solution of the equation.
We view (11) as a perturbation of the equation u′ = 0, i.e. we are in the case
of resonance.

We now let

E = {u ∈ C([0, T ],RN)}
with ‖u‖ = maxt∈[0,T ] |u(t)| and let S : E → E be given by

(Su)(t) = u(T ) +

∫ t

0

f(s, u(s))ds, (12)
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then clearly S : E → E is a completely continuous mapping because of the
continuity assumption on f.

The following lemma holds.

6 Lemma An element u ∈ E is a solution of (11) if and only if it is a fixed point
of the operator S given by (12).

This lemma, whose proof is immediate, gives us an operator equation in the
space E whose solutions are solutions of the problem (11).

4.2 Homotopy methods

We shall next impose conditions on the finite dimensional vector field

x ∈ RN 7→ g(x)

g(x) = −
∫ T

0
f(s, x)ds,

(13)

which will guarantee the existence of solutions of an associated problem

u′ = ǫf(t, u),
u(0) = u(T ),

(14)

where ǫ is a small parameter. We have the following theorem.

7 Theorem Assume that f is continuous and there exists a bounded open set
Ω ⊂ RN such that the mapping g defined by (13) does not vanish on ∂Ω. Further
assume that

d(g,Ω, 0) 6= 0, (15)

where d(g,Ω, 0) is the Brouwer degree. Then problem (14) has a solution for all
sufficiently small ǫ.

Proof. We define the bounded open set G ⊂ E by

G = {u ∈ E : u : [0, T ] → Ω}. (16)

For u ∈ Ḡ define

u(t, λ) = λu(t) + (1 − λ)u(T ), 0 ≤ λ ≤ 1, (17)

and let

a(t, λ) = λt+ (1 − λ)T, 0 ≤ λ ≤ 1. (18)

For 0 ≤ λ ≤ 1, 0 ≤ ǫ ≤ 1, define S : E × [0, 1] × [0, 1] → E by

S(u, λ, ǫ)(t) = u(T ) + ǫ

∫ a(t,λ)

0

f(s, u(s, λ))ds. (19)
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Then S is a completely continuous mapping and the theorem will be proved
once we show that

d(id − S(·, 1, ǫ), G, 0) 6= 0, (20)

for ǫ sufficiently small, for if this is the case, S(·, 1, ǫ) has a fixed point in G
which is equivalent to the assertion of the theorem.

To show that (20) holds we first show that S(·, λ, ǫ) has no zeros on ∂G for
all λ ∈ [0, 1] and ǫ sufficiently small. This we argue indirectly and hence obtain
sequences {un} ⊂ ∂G, {λn} ⊂ [0, 1], and {ǫn}, ǫn → 0, such that

un(T ) + ǫn

∫ a(t,λn)

0

f(s, un(s, λn))ds ≡ un(t), 0 ≤ t ≤ T,

and hence

∫ T

0

f(s, un(s, λn))ds = 0, n = 1, 2, · · · .

Without loss in generality, we may assume that the sequences mentioned con-
verge to, say, u and λ0 and the following must hold:

u(t) ≡ u(T ) = a ∈ ∂Ω.

Hence also

un(t, λn) → u(t, λ0) ≡ u(T ),

which further implies that

∫ T

0

f(s, a)ds = 0,

where a ∈ ∂Ω, in contradiction to the assumptions of the theorem. Thus

d(id − S(·, 0, ǫ), G, 0) = d(id − S(·, 1, ǫ), G, 0)

by the homotopy invariance property of Leray-Schauder degree, for all ǫ suffi-
ciently small. On the other hand

d(id − S(·, 0, ǫ), G, 0) = d(id − S(·, 0, ǫ), G ∩ RN , 0)
= d(id − S(·, 0, ǫ),Ω, 0)
= d(g,Ω, 0) 6= 0,

if ǫ > 0 and (−1)Nd(g,Ω, 0), if ǫ < 0, completing the proof.

8 Corollary Assume the hypotheses of Theorem 7 and assume that all possible
solutions u, for 0 < ǫ ≤ 1, of equation (14) are such that u /∈ ∂G, where G is
given by (16). Then (11) has a T− periodic solution.
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4.3 A Liénard type equation

In this section we apply Corollary 8 to prove the existence of periodic solu-
tions of Liénard type oscillators of the form

x′′ + h(x)x′ + x = e(t), (21)

where

e : R → R

is a continuous T− periodic forcing term and

h : R → R

is a continuous mapping. We shall prove the following result.

9 Theorem Assume that T < 2π. Then for every continuous T− periodic forcing
term e, equation (21) has a T− periodic response x.

We note that, since aside from the continuity assumption, nothing else is

assumed about h, we may, without loss in generality, assume that
∫ T

0
e(s)ds = 0,

as follows from the substitution

y = x−
∫ T

0

e(s)ds.

We hence shall make that assumption. In order to apply our earlier results, we
convert (21) into a system as follows:

x′ = y
y′ = −h(x)y − x− e(t),

(22)

and put

u =

(

x
y

)

, f(t, u) =

(

y
−h(x)y − x− e(t)

)

. (23)

We next shall show that the hypotheses of Theorem 7 and Corollary 8 may be
satisfied by choosing

Ω =

{

u =

(

x
y

)

: |x| < R, |y| < R

}

, (24)

where R is a sufficiently large constant. We note that (15) holds for such choices
of Ω for any R > 0. Hence, if we are able to provide a priori bounds for solutions
of equation (14) for 0 < ǫ ≤ 1 for f given as above, the result will follow. Now

u =

(

x
y

)

,

is a solution of (14) whenever x satisfies

x′′ + ǫh(x)x′ + ǫ2x = ǫ2e(t). (25)
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Integrating (25) from 0 to T, we find that

∫ T

0

x(s)ds = 0.

Multiplying (25) by x and integrating we obtain

−‖x′‖2
L2 + ǫ2‖x‖2

L2 = ǫ2〈x, e〉L2 , (26)

where 〈x, e〉L2 =
∫ T

0 x(s)e(s)ds. Now, since

‖x‖2
L2 ≤ T 2

4π2
‖x′‖2

L2 , (27)

we obtain from (26)

(

1 − T 2

4π2

)

‖x′‖2
L2 ≤ −ǫ2〈x, e〉L2 , (28)

from which follows that

‖x′‖L2 ≤
(

2πT

4π2 − T 2

)

‖e‖L2, (29)

from which, in turn, we obtain

‖x‖∞ ≤
√
T

(

2πT

4π2 − T 2

)

‖e‖L2, (30)

providing an a priori bound on ‖x‖∞. We let

(

2πT

4π2 − T 2

)

‖e‖L2 = M,

q = max
|x|≤M

|h(x)|, p = ‖e‖∞.

Then

‖x′′‖∞ ≤ ǫq‖x′‖∞ + ǫ2(M + p).

Hence, by Landau’ s inequality (Exercise 6, below), we obtain

‖x′‖2
∞ ≤ 4M(ǫq‖x′‖∞ + ǫ2(M + p)),

from which follows a bound on ‖x′‖∞ which is independent of ǫ, for 0 ≤ ǫ ≤ 1.
These considerations complete the proof Theorem 9.



4. RESONANT EQUATIONS 99

4.4 Partial resonance

This section is a continuation of of what has been discussed in Subsection
4.2. We shall impose conditions on the finite dimensional vector field

x ∈ Rp 7→ g(x)

g(x) = −
∫ T

0 f(s, x, 0)ds,
(31)

which will guarantee the existence of solutions of an associated problem

u′ = ǫf(t, u, v),
v′ = Bv + ǫh(t, u, v)
u(0) = u(T ), v(0) = v(T ),

(32)

where ǫ is a small parameter and

f : R × Rp × Rq → Rp

h : R × Rp × Rq → Rq

are continuous and T−periodic with respect to t, p+q = N. Further B is a q×q
constant matrix with the property that the system v′ = Bv is nonresonant, i.e.
only has the trivial solution as a T−periodic solution. We have the following
theorem.

10 Theorem Assume the above and there exists a bounded open set Ω ⊂ Rp such
that the mapping g defined by (31) does not vanish on ∂Ω. Further assume that

d(g,Ω, 0) 6= 0, (33)

where d(g,Ω, 0) is the Brouwer degree. Then problem (32) has a solution for all
sufficiently small ǫ.

Proof. To prove the existence of a T− periodic solution (u, v) of equation (32)
is equivalent to establishing the existence of a solution of

u(t) = u(T ) + ǫ
∫ t

0
f(s, u(s), v(s))ds

v(t) = eBtv(T ) + ǫeBt
∫ t

0
e−Bsh(s, u(s), v(s))ds.

(34)

We consider equation (34) as an equation in the Banach space

E = C([0, T ],Rp) × C([0, T ],Rq).

Let Λ be a bounded neighborhood of 0 ∈ Rq. We define the bounded open set
G ⊂ E by

G = {(u, v) ∈ E : u : [0, T ] → Ω, v : [0, T ] → Λ}. (35)

For (u, v) ∈ Ḡ, define as in Subsection 4.2,

u(t, λ) = λu(t) + (1 − λ)u(T ), 0 ≤ λ ≤ 1, (36)

and let

a(t, λ) = λt+ (1 − λ)T, 0 ≤ λ ≤ 1. (37)
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For 0 ≤ λ ≤ 1, 0 ≤ ǫ ≤ 1 define S = (S1, S2) : E × [0, 1]× [0, 1] → E by

S1(u, v, λ, ǫ)(t) = u(T ) + ǫ
∫ a(t,λ)

0 f(s, u(s, λ), λv(s))ds

S2(u, v, λ, ǫ)(t) = eBtv(T ) + λǫeBt
∫ t

0 e
−Bsh(s, u(s), v(s))ds

. (38)

Then S is a completely continuous mapping and the theorem will be proved
once we show that

d(id − S(·, ·, 1, ǫ), G, 0) 6= 0, (39)

for ǫ sufficiently small, for if this is the case, S(·, 1, ǫ) has a fixed point in G
which is equivalent to the assertion of the theorem.

To show that (39) holds we first show that S(·, λ, ǫ) has no zeros on ∂G for
all λ ∈ [0, 1] and ǫ sufficiently small. This we argue in a manner similar to the
proof of Theorem 7. Hence

d(id − S(·, ·, 0, ǫ), G, 0) = d(id − S(·, ·, 1, ǫ), G, 0)

by the homotopy invariance property of Leray-Schauder degree, for all ǫ suffi-
ciently small. On the other hand

d(id − S(·, ·, 0, ǫ), G, 0)

= d((−ǫ
∫ T

0
f(s, ·, 0)ds, id − S2(·, ·0, ǫ)), G, (0, 0))

= d(−ǫ
∫ T

0
f(s, ·, 0)ds,Ω, 0)d(id − S2(·, ·0, ǫ), G̃, 0)

= sgn det(I − eBT )d(−ǫ
∫ T

0
f(s, ·, 0)ds,Ω, 0) 6= 0,

where G̃ = C([0, T ],Λ), completing the proof.
As before, we obtain the following corollary.

11 Corollary Assume the hypotheses of Theorem 10 and assume that all possible
solutions u, v, for 0 < ǫ ≤ 1, of equation (32) are such that u, v /∈ ∂G, where G
is given by (35). Then (32) has a T− periodic solution for ǫ = 1.

5 Exercises

1. Consider equation (1) with A a constant matrix. Give conditions that
I − eTR be nonsingular, where I − eTR is given as in Theorem 3. Use
Theorem 5 to show that equation (1) has a T−periodic solution provided
the set of T−periodic solutions of (10) is a priori bounded for 0 ≤ ǫ < 1.

2. Prove Corollary 8.

3. Let f satisfy for some R > 0

f(t, x) · x 6= 0, |x| = R, 0 ≤ t ≤ T.

Prove that (11) has a T−periodic solution u with |u(t)| < R, 0 ≤ t ≤ T.
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4. Let Ω ⊂ RN be an open convex set with 0 ∈ Ω and let f satisfy

f(t, x) · n(x) 6= 0, x ∈ ∂Ω, 0 ≤ t ≤ T,

where for each x ∈ ∂Ω, n(x) is an outer normal vector to Ω at x. Prove
that (11) has a T−periodic solution u : [0, T ] → Ω.

5. Verify inequality (27).

6. Let x ∈ C2[0,∞). Use Taylor expansions to prove Landau’s inequality

‖x′‖2
∞ ≤ 4‖x‖∞‖x′′‖∞.

7. Complete the details in the proof of Theorem 10.

8. Assume that the unforced Liénard equation (i.e. equation (21) with e ≡ 0)
has a nontrivial T−periodic solution x. Show that T ≥ 2π.

9. Prove Corollary 11.
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Chapter VIII

Stability Theory

1 Introduction

In Chapter VI we studied in detail linear and perturbed linear systems of
differential equations. In the case of constant or periodic coefficients we found
criteria which describe the asymptotic behavior of solutions (viz. Proposition 7
and Exercise 11 of Chapter 6.) In this chapter we shall consider similar problems
for general systems of the form

u′ = f(t, u), (1)

where

f : R × R
N → R

N

is a continuous function.
If u : [t0,∞) → RN is a given solution of (1), then discussing the behavior

of another solution v of this equation relative to the solution u, i.e. discussing
the behavior of the difference v−u is equivalent to studying the behavior of the
solution z = v − u of the equation

z′ = f(t, z + u(t)) − f(t, u(t)), (2)

relative to the trivial solution z ≡ 0. Thus we may, without loss in generality,
assume that (1) has the trivial solution as a reference solution, i.e.

f(t, 0) ≡ 0,

an assumption we shall henceforth make.

2 Stability Concepts

There are various stability concepts which are important in the asymptotic
behavior of systems of differential equations. We shall discuss here some of them
and their interrelationships.
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1 Definition We say that the trivial solution of (1) is:

(i) stable (s) on [t0,∞), if for every ǫ > 0 there exists δ > 0 such that any
solution v of (1) with |v(t0)| < δ exists on [t0,∞) and satisfies |v(t)| < ǫ, t0 ≤
t <∞;

(ii) asymptotically stable (a.s) on [t0,∞), if it is stable and limt→∞ v(t) = 0,
where v is as in (i);

(iii) unstable (us), if it is not stable;

(iv) uniformly stable (u.s) on [t0,∞), if for every ǫ > 0 there exists δ > 0
such that any solution v of (1) with |v(t1)| < δ, t1 ≥ t0 exists on [t1,∞) and
satisfies |v(t)| < ǫ, t1 ≤ t <∞;

(v) uniformly asymptotically stable (u.a.s), if it is uniformly stable and there
exists δ > 0 such that for all ǫ > 0 there exists T = T (ǫ) such that any solution v
of (1) with |v(t1)| < δ, t1 ≥ t0 exists on [t1,∞) and satisfies |v(t)| < ǫ, t1 +T ≤
t <∞;

(v) strongly stable (s.s) on [t0,∞), if for every ǫ > 0 there exists δ > 0
such that any solution v of (1) with |v(t1)| < δ exists on [t0,∞) and satisfies
|v(t)| < ǫ, t0 ≤ t <∞.

2 Proposition The following implications are valid:

u.a.s ⇒ a.s
⇓ ⇓

s.s ⇒ u.s ⇒ s.

If the equation (1) is autonomous, i.e. f is independent of t, then the above
implications take the from

u.a.s ⇔ a.s
⇓ ⇓
u.s ⇔ s.

The following examples of scalar differential equations will serve to illustrate
the various concepts.

3 Example 1. The zero solution of u′ = 0 is stable but not asymptotically
stable.

2. The zero solution of u′ = u2 is unstable.

3. The zero solution of u′ = −u is uniformly asymptotically stable.

4. The zero solution of u′ = a(t)u is asymptotically stable if and only if

limt→∞
∫ t

t0
a(s)ds = −∞. It is uniformly stable if and only if

∫ t

t1
a(s)ds is

bounded above for t ≥ t1 ≥ t0. Letting a(t) = sin log t + cos log t− α one
sees that asymptotic stability holds but uniform stability does not.
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3 Stability of Linear Equations

In the case of a linear system (A ∈ C(R → L(RN ,RN )))

u′ = A(t)u, (3)

a particular stability property of any solution is equivalent to that stability
property of the trivial solution. Thus one may ascribe that property to the
equation and talk about the equation (3) being stable, uniformly stable, etc.
The stability concepts may be expressed in terms of conditions imposed on a
fundamental matrix Φ.

4 Theorem Let Φ be a fundamental matrix solution of (3). Then equation (3)
is :

(i) stable if and only if there exists K > 0 such that

|Φ(t)| ≤ K, t0 ≤ t <∞; (4)

(ii) uniformly stable if and only if there exists K > 0 such that

|Φ(t)Φ−1(s)| ≤ K, t0 ≤ s ≤ t <∞; (5)

(iii) strongly stable if and only if there exists K > 0 such that

|Φ(t)| ≤ K, |Φ−1(t)| ≤ K, t0 ≤ t <∞; (6)

(iv) asymptotically stable if and only if

lim
t→∞

|Φ(t)| = 0; (7)

(v) uniformly asymptotically stable if and only if there exist K > 0, α > 0
such that

|Φ(t)Φ−1(s)| ≤ Ke−α(t−s), t0 ≤ s ≤ t <∞. (8)

Proof. We shall demonstrate the last part of the theorem and leave the demon-
stration of the remaining parts as an exercise. We may assume without loss in
generality that Φ(t0) = I, the N × N identity matrix, since conditions (4) -
(8) will hold for any fundamental matrix if and only if they hold for a par-
ticular one. Thus, let us assume that (8) holds. Then the second part of the
theorem guarantees that the equation is uniformly stable. Moreover, for each
ǫ, 0 < ǫ < K, if we put T = − 1

α log ǫ
K , then for ξ ∈ RN , |ξ| ≤ 1, we have

|Φ(t)Φ−1(t1)ξ| ≤ Ke−α(t−t1), if t1 + T < t. Thus we have uniform asymptotic
stability.

Conversely, if the equation is uniformly asymptotically stable, then there
exists δ > 0 and for all ǫ, 0 < ǫ < δ, there exists T = T (ǫ) > 0 such that if
|ξ| < δ, then

|Φ(t)Φ−1(t1)ξ| < ǫ, t ≥ t1 + T, t1 ≥ t0.
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In particular

|Φ(t+ T )Φ−1(t)ξ| < ǫ, |ξ| < δ,

or

|Φ(t+ T )Φ−1(t)
ξ

δ
| < ǫ

δ

and thus

|Φ(t+ T )Φ−1(t)| ≤ ǫ

δ
< 1, t ≥ t0.

Furthermore, since we have uniform stability,

|Φ(t+ h)Φ−1(t)| ≤ K, t0 ≤ t, 0 ≤ h ≤ T.

If t ≥ t1, we obtain for some integer n, that t1 + nT ≤ t < t1 + (n+ 1)T, and

|Φ(t)Φ−1(t1)| ≤ |Φ(t)Φ−1(t1 + nT )||Φ(t1 + nT )Φ−1(t1)|
≤ K|Φ(t1 + nT )Φ−1(t1 + (n− 1)T )|
· · · |Φ(t1 + T )Φ−1(t1)|
≤ K

(

ǫ
δ

)n
.

Letting α = − 1
T log ǫ

δ , we get

|Φ(t)Φ−1(t1)| ≤ Ke−nαT = Ke−nαT e−αT δ
ǫ

< K δ
ǫ e

−α(t−t1), t ≥ t1 ≥ t0.

In the case that the matrix A is independent of t one obtains the following
corollary.

5 Corollary Equation (3) is stable if and only if every eigenvalue of A has non-
positive real part and those with zero real part are semisimple. It is strongly
stable if and only if all eigenvalues of A have zero real part and are semisimple.
It is asymptotically stable if and only if all eigenvalues have negative real part.

Using the Abel-Liouville formula, we obtain the following result.

6 Theorem Equation (3) is unstable whenever

lim sup
t→∞

∫ t

t0

traceA(s)ds = ∞. (9)

If (3) is stable, then it is strongly stable if and only if

lim inf
t→∞

∫ t

t0

traceA(s)ds > −∞. (10)

Additional stability criteria for linear systems abound. The following concept of
the measure of a matrix due to Lozinskii and Dahlquist (see [7]) is particularly
useful in numerical computations. We provide a brief discussion.
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7 Definition For an N ×N matrix A we define

µ(A) = lim
h→0+

|I + hA| − |I|
h

, (11)

where | · | is a matrix norm induced by a norm | · | in RN and I is the N ×N
identity matrix.

We have the following proposition:

8 Proposition For any N ×N matrix A, µ(A) exists and satisfies:

1. µ(αA) = αµ(A), α ≥ 0;

2. |µ(A)| ≤ |A|;

3. µ(A+B) ≤ µ(A) + µ(B);

4. |µ(A) − µ(B)| ≤ |A−B|.

If u is a solution of equation (3), then the function r(t) = |u(t)| has a right
derivative r′+(t) at every point t for every norm | · | in RN and r′+(t) satisfies

r′+(t) − µ(A(t))r(t) ≤ 0. (12)

Using this inequality we obtain the following proposition.

9 Proposition Let A : [t0,∞) → RN×N be a continuous matrix and let u be a
solution of (3) on [t0,∞). Then

|u(t)|e−
R

t

t0
µ(A(s))ds

, t0 ≤ t <∞ (13)

is a nonincreasing function of t and

|u(t)|e
R

t

t0
µ(−A(s))ds

, t0 ≤ t <∞ (14)

is a nondecreasing function of t. Furthermore

|u(t0)|e−
R

t

t0
µ(−A(s))ds ≤ |u(t)| ≤ |u(t0)|e

R

t

t0
µ(A(s))ds

. (15)

This proposition has, for constant matrices A, the immediate corollary.

10 Corollary For any N ×N constant matrix A the following inequalities hold.

e−tµ(−A) ≤
∣

∣etA
∣

∣ ≤ etµ(A).

The following theorem provides stability criteria for the system (3) in terms of
conditions on the measure of the coefficient matrix. Its proof is again left as an
exercise.

11 Theorem The system (3) is:
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1. unstable, if

lim inf
t→∞

∫ t

t0

µ(−A(s))ds = −∞;

2. stable, if

lim sup
t→∞

∫ t

t0

µ(A(s))ds <∞;

3. asymptotically stable, if

lim
t→∞

∫ t

t0

µ(A(s))ds = −∞;

4. uniformly stable, if

µ(A(t)) ≤ 0, t ≥ t0;

5. uniformly asymptotically stable, if

µ(A(t)) ≤ −α < 0, t ≥ t0.

4 Stability of Nonlinear Equations

In this section we shall consider stability properties of nonlinear equations
of the form

u′ = A(t)u + f(t, u), (16)

where

f : R × R
N → R

N

is a continuous function with

|f(t, x)| ≤ γ(t)|x|, x ∈ R
N , (17)

where γ is some positive continuous function andA is a continuousN×N matrix
defined on R. The results to be discussed are consequences of the variation of
constants formula (Proposition VI.6) and the stability theorem Theorem 4. We
shall only present a sample of results. We refer to [7], [5], [20], and [21], where
further results are given. See also the exercises below.

Throughout this section Φ(t) will denote a fundamental matrix solution of
the homogeneous (unperturbed) linear problem (3). We hence know that if u is
a solution of equation (16), then u satisfies the integral equation

u(t) = Φ(t)

(

Φ−1(t0)u(t0) +

∫ t

t0

Φ−1(s)f(s, u(s))ds

)

. (18)

The following theorem will have uniform and strong stability as a conse-
quence.
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12 Theorem Let f satisfy (17) with
∫∞

γ(s)ds <∞. Further assume that

|Φ(t)Φ−1(s)| ≤ K, t0 ≤ s ≤ t <∞.

Then there exists a positive constant L = L(t0) such that any solution u of (16)
is defined for t ≥ t0 and satisfies

|u(t)| ≤ L|u(t1)|, t ≥ t1 ≥ t0.

If in addition Φ(t) → 0 as t→ ∞, then u(t) → 0 as t→ ∞.

Proof. If u is a solution of of (16) it also satisfies (18). Hence

|u(t)| ≤ K|u(t1)| +K

∫ t

t1

γ(s)|u(s)|ds, t ≥ t1,

and

|u(t)| ≤ K|u(t1)|eK
R

t

t1
γ(s)ds ≤ L|u(t1)|, t ≥ t1,

where

L = Ke
K

R

∞
t0

γ(s)ds
.

To prove the remaining part of the theorem, we note from (1) that

|u(t)| ≤ |Φ(t)|
(

|Φ−1(t0)u(t0)| + |
∫ t1

t0
Φ−1(s)f(s, u(s))ds|

)

+ |
∫ t

t1
Φ(t)Φ−1(s)f(s, u(s))ds|

Now
∣

∣

∣

∣

∫ t

t1

Φ(t)Φ−1(s)f(s, u(s))ds

∣

∣

∣

∣

≤ KL|u(t0)|
∫ ∞

t1

γ(s)ds.

This together with the fact that Φ(t) → 0 as t→ ∞ completes the proof.

13 Remark It follows from Theorem 4 that the conditions of the above theo-
rem imply that the perturbed system (16) is uniformly (asymptotically) stable
whenever the unperturbed system is uniformly (asymptotically) stable. The
conditions of Theorem 12 also imply that the zero solution of the perturbed
system is strongly stable, whenever the unperturbed system is strongly stable.

A further stability result is the following. Its proof is delegated to the exer-
cises.

14 Theorem Assume that there exist K > 0, α > 0 such that

|Φ(t)Φ−1(s)| ≤ Ke−α(t−s), t0 ≤ s ≤ t <∞. (19)

and f satisfies (17) with γ < α
K a constant. Then any solution u of (16) is

defined for t ≥ t0 and satisfies

|u(t)| ≤ Ke−β(t−t1)|u(t1)|, t ≥ t1 ≥ t0,

where β = α− γK > 0.
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15 Remark It again follows from Theorem 4 that the conditions of the above
theorem imply that the perturbed system (16) is uniformly asymptotically stable
whenever the unperturbed system is uniformly asymptotically stable.

5 Lyapunov Stability

5.1 Introduction

In this section we shall introduce some geometric ideas, which were first
formulated by Poincaré and Lyapunov, about the stability of constant solutions
of systems of the form

u′ = f(t, u), (20)

where

f : R × R
N → R

N

is a continuous function. As observed earlier, we may assume that f(t, 0) =
0 and we discuss the stability properties of the trivial solution u ≡ 0. The
geometric ideas amount to constructing level surfaces in RN which shrink to 0
and which have the property that orbits associated with (20) cross these level
surfaces transversally toward the origin, thus being guided to the origin. To
illustrate, let us consider the following example.

x′ = ax− y + kx
(

x2 + y2
)

y′ = x− ay + ky
(

x2 + y2
)

,
(21)

where a is a constant |a| < 1. Obviously x = 0 = y is a stationary solution of
(21). Now consider the family of curves in R2 given by

v(x, y) = x2 − 2axy + y2 = constant, (22)

a family of ellipses which share the origin as a common center. If we consider an
orbit {(x(t), y(t)) : t ≥ t0} associated with (21), then as t varies, the orbit will
cross members of the above family of ellipses. Computing the scalar product of
the tangent vector of an orbit with the gradient to an ellipse we find:

∇v · (x′, y′) = 2k
(

x2 + y2
) (

x2 + y2 − 2axy
)

,

which is clearly negative, whenever k is (and positive if k is). Of course, we
may view v(x(t), y(t)) as a norm of the point (x(t), y(t)) and ∇v · (x′, y′) =
d
dtv(x(t), y(t)). Thus, if k < 0, v(x(t), y(t)) will be a strictly decreasing function
and hence should approach a limit as t → ∞. That this limit must be zero
follows by an indirect argument. That is, the orbit tends to the origin and the
zero solution attracts all orbits, and hence appears asymptotically stable.
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5.2 Lyapunov functions

Let

v : R × R
N → R, v(t, 0) = 0, t ∈ R

be a continuous functional. We shall introduce the following terminology.

16 Definition The functional v is called:

1. positive definite, if there exists a continuous nondecreasing function φ :
[0,∞) → [0,∞), with φ(0) = 0, φ(r) 6= 0, r 6= 0 and

φ(|x|) ≤ v(t, x), x ∈ R
N , t ≥ t0;

2. radially unbounded, if it is positive definite and

lim
r→∞

φ(r) = ∞;

3. decrescent, if it is positive definite and there exists a continuous increasing
function ψ : [0,∞) → [0,∞), with ψ(0) = 0, and

ψ(|x|) ≥ v(t, x), x ∈ R
N , t ≥ t0.

We have the following stability criteria.

17 Theorem Let there exist a positive definite functional v and δ0 > 0 such that
for every solution u of (20) with |u(t0)| ≤ δ0, the function v∗(t) = v(t, u(t)) is
nonincreasing with respect to t, then the trivial solution of (20) is stable.

Proof. Let 0 < ǫ ≤ δ0 be given and choose δ = δ(ǫ) such that v(t0, u0) < φ(ǫ),
for |u0| < δ. Let u be a solution of (20) with u(t0) = u0. Then v∗(t) = v(t, u(t))
is nonincreasing with respect to t, and hence

v∗(t) ≤ v∗(t0) = v(t0, u0).

Therefore

φ(|u(t)|) ≤ v(t, u(t)) = v∗(t) ≤ v∗(t0) = v(t0, u0) < φ(ǫ).

Since φ is nondecreasing, the result follows.
If v is also decrescent we obtain the stronger result.

18 Theorem Let there exist a positive definite functional v which is decrescent
and δ0 > 0 such that for every solution u of (20) with |u(t1)| ≤ δ0, t1 ≥ t0 the
function v∗(t) = v(t, u(t)) is nonincreasing with respect to t, then the trivial
solution of (20) is uniformly stable.
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Proof. We have already shown that the trivial solution is stable. Let 0 < ǫ ≤ δ0
be given and let δ = ψ−1(φ(ǫ)). Let u be a solution of (20) with u(t1) = u0 with
|u0| < δ. Then

φ(|u(t)|) ≤ v(t, u(t)) = v∗(t) ≤ v∗(t1)
= v(t1, u0) ≤ ψ(|u0|)
< ψ(δ) = φ(ǫ).

The result now follows from the monotonicity assumption on φ.
As an example we consider the two dimensional system

x′ = a(t)y + b(t)x
(

x2 + y2
)

y′ = −a(t)x+ b(t)y
(

x2 + y2
)

,
(23)

where the coefficient functions a and b are continuous with b ≤ 0. We choose
v(x, y) = x2 + y2, then, since

dv∗

dt
=
∂v

∂t
+ ∇v · f(t, u).

we obtain

dv∗

dt
= 2b(t)

(

x2 + y2
)2 ≤ 0.

Since v is positive definite and decrescent, it follows from Theorem 18 that the
trivial solution of (23) is uniformly stable.

We next prove an instability theorem.

19 Theorem Assume there exists a continuous functional

v : R × R
N → R

with the properties:

1. there exists a continuous increasing function ψ : [0,∞) → [0,∞), such
that ψ(0) = 0 and

|v(t, x)| ≤ ψ(|x|);

2. for all δ > 0, and t1 ≥ t0, there exists x0, |x0| < δ such that v(t1, x0) < 0;

3. if u is any solution of (23) with u(t) = x, then

lim
h→0+

v(t+ h, u(t+ h)) − v(t, x)

h
≤ −c(|x|),

where c is a continuous increasing function with c(0) = 0.

Then the trivial solution of (23) is unstable.
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Proof. Assume the trivial solution is stable. Then for every ǫ > 0 there exists
δ > 0 such that any solution u of (23) with |u(t0)| < δ exists on [t0,∞) and
satisfies |u(t)| < ǫ, t0 ≤ t <∞. Choose x0, |x0| < δ such that v(t0, x0) < 0 and
let u be a solution with u(t0) = x0. Then

|v(t, u(t))| ≤ ψ(|u(t)|) ≤ ψ(ǫ). (24)

The third property above implies that v(t, u(t)) is nonincreasing and hence for
t ≥ t0,

v(t, u(t)) ≤ v(t0, x0) < 0.

Thus

|v(t0, x0)| ≤ ψ(|u(t)|)
and

ψ−1(|v(t0, x0)|) ≤ |u(t)|.
We therefore have

v(t, u(t)) ≤ v(t0, x0) −
∫ t

t0

c(|u(s)|)ds,

which by (24) implies that

v(t, u(t)) ≤ v(t0, x0) − (t− t0)c(ψ
−1(|v(t0, x0)|),

and thus

lim
t→∞

v(t, u(t)) = −∞,

contradicting (24).
We finally develop some asymptotic stability criteria.

20 Theorem Let there exist a positive definite functional v(t, x) such that

dv∗

dt
=
dv(t, u(t))

dt
≤ −c(v(t, u(t)),

for every solution u of (20) with |u(t0)| ≤ δ0, with c a continuous increasing
function and c(0) = 0. Then the trivial solution is asymptotically stable. If v is
also decrescent. Then the asymptotic stability is uniform.

Proof. The hypotheses imply that the trivial solution is stable, as was proved
earlier. Hence, if u is a solution of (20) with |u(t)| ≤ δ0, then

v0 = lim
t→∞

v(t, u(t))

exists. An easy indirect argument shows that v0 = 0. Hence, since v is positive
definite,

lim
t→∞

φ(|u(t)|) = 0,
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implying that

lim
t→∞

|u(t)| = 0,

since φ is increasing. The proof that the trivial solution is uniformly asymptot-
ically stable, whenever v is also decrescent, is left as an exercise.

In the next section we shall employ the stability criteria just derived, to,
once more study perturbed linear systems, where the associated linear system
is a constant coefficient system. This we do by showing how appropriate Lya-
punov functionals may be constructed. The construction is an exercise in linear
algebra.

5.3 Perturbed linear systems

Let A be a constant N × N matrix and let g : [t0,∞) × RN → RN be a
continuous function such that

g(t, x) = o(|x|),

uniformly with respect to t ∈ [t0,∞). We shall consider the equation

u′ = Au + g(t, u) (25)

and show how to construct Lyapunov functionals to test the stability of the
trivial solution of this system.

The type of Lyapunov functional we shall be looking for are of the form

v(x) = xTBx,

where B is a constant N × N matrix, i.e. we are looking for v as a quadratic
form. If u is a solution of (25) then

dv∗

dt
=
dv(t, u(t))

dt

= uT
(

ATB +BA
)

u+ gT (t, u)Bu+ uTBg(t, u).

(26)

Hence, givenA, ifB can be found so that C = ATB+BA has certain definiteness
properties, then the results of the previous section may be applied to determine
stability or instability of the trivial solution. To proceed along these lines we
need some linear algebra results.

21 Proposition Let A be a constant N ×N matrix having the property that for
any eigenvalue λ of A, −λ is not an eigenvalue. Then for any N ×N matrix C,
there exists a unique N ×N matrix B such that C = ATB +BA.

Proof. On the space of N ×N matrices define the bounded linear operator L
by

L(B) = ATB +BA.
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Then L may be viewed as a bounded linear operator of RN×N to itself, hence it
will be a bijection provided it does not have 0 as an eigenvalue. Once we show
the latter, the result follows. Thus let µ be an eigenvalue of L, i.e., there exists
a nonzero matrix B such that

L(B) = ATB +BA = µB.

Hence

ATB +B(A− µI) = 0.

From this follows

B(A − µI)n =
(

−AT
)n
B,

for any integer n ≥ 1, hence for any polynomial p

Bp(A− µI) = p(−AT )B. (27)

Since, on the other hand, if F and G are two matrices with no common eigen-
values, there exists a polynomial p such that p(F ) = I, p(G) = 0, (27) implies
that A−µI and −AT must have a common eigenvalue. From which follows that
µ is the sum of two eigenvalues of A, which, by hypothesis cannot equal 0.

This proposition has the following corollary.

22 Corollary Let A be a constant N ×N matrix. Then for any N ×N matrix C,
there exists µ > 0 and a uniqueN×N matrix B such that 2µB+C = ATB+BA.

Proof. Let

S = {λ ∈ C : λ = λ1 + λ2},

where λ1 and λ2 are eigenvalues of A. Since S is a finite set, there exists r0 > 0,
such that λ(6= 0) ∈ S implies that |λ| > r0. Choose 0 < µ ≤ r0 and consider the
matrix A1 = A− µI. We may now apply Proposition 21 to the matrix A1 and
find for a given matrix C, a unique matrix B such that C = AT

1 B + BA1, i.e.
2µBC = ATB +BA.

23 Corollary Let A be a constant N × N matrix having the property that all
eigenvalues λ of A have negative real parts. Then for any negative definite
N ×N matrix C, there exists a unique positive definite N ×N matrix B such
that C = ATB +BA.

Proof. Let C be a negative definite matrix and let B be given by Proposition
21, which may be applied since all eigenvalues of A have negative real part. Let
v(x) = xTBx, and let u be a solution of u′ = Au, u(0) = x0 6= 0. Then

dv∗

dt
=
dv(u(t))

dt
= uT

(

ATB +BA
)

u = uTCu ≤ −µ|u|2,
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since C is negative definite. Since limt→∞ u(t) = 0 (all eigenvalues of A have
negative real part!), it follows that limt→∞ v(u(t)) = 0. We also have

v(u(t)) ≤ v(x0) −
∫ t

0

µ|u(s)|2ds,

from which follows that v(x0) > 0. Hence B is positive definite.
The next corollary follows from stability theory for linear equations and what

has just been discussed.

24 Corollary A necessary and sufficient condition that an N ×N matrix A have
all of its eigenvalues with negative real part is that there exists a unique positive
definite matrix B such that

ATB +BA = −I.
We next consider the nonlinear problem (25) with

g(t, x) = o(|x|), (28)

uniformly with respect to t ∈ [t0,∞), and show that for certain types of matrices
A the trivial solution of the perturbed system has the same stability property
as that of the unperturbed problem. The class of matrices we shall consider is
the following.

25 Definition We call an N ×N matrix A critical if all its eigenvalues have non-
positive real part and there exists at least one eigenvalue with zero real part.
We call it noncritical otherwise.

26 Theorem Assume A is a noncritical N × N matrix and let g satisfy (28).
Then the stability behavior of the trivial solution of (25) is the same as that
of the trivial solution of u′ = Au, i.e the trivial solution of (25) is uniformly
asymptotically stable if all eigenvalues of A have negative real part and it is
unstable if A has an eigenvalue with positive real part.

Proof. (i) Assume all eigenvalues of A have negative real part. By the above
exists a unique positive definite matrix B such that

ATB +BA = −I.
Let v(x) = xTBx. Then v is positive definite and if u is a solution of (25) it
satisfies

dv∗

dt
=
dv(u(t))

dt

= −|u(t)|2 + gT (t, u)Bu+ uTBg(t, u).

(29)

Now

|gT (t, u)Bu+ uTBg(t, u)| ≤ 2|g(t, u)||B||u|.
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Choose r > 0 such that |x| ≤ r implies

|g(t, u)| ≤ 1

4
|B|−1|u|,

then

dv∗

dt
≤ −1

2
|u(t)|2,

as long as |u(t)| ≤ r. The result now follows from Theorem 20.
(ii) Let A have an eigenvalue with positive real part. Then there exists µ > 0

such that 2µ < |λi +λj |, for all eigenvalues λi, λj of A, and a unique matrix B
such that

ATB +BA = 2µB − I,

as follows from Corollary 22. We note that B cannot be positive definite nor
positive semidefinite for otherwise we must have, letting v(x) = xTBx,

dv∗

dt
= 2µv∗(t) − |u(t)|2,

or

e−2µtv∗(t) − v∗(0) = −
∫ t

0

e−2µs|u(s)|2ds

i.e

0 ≤ v∗(0) −
∫ t

0

e−2µs|u(s)|2ds

for any solution u, contradicting the fact that solutions u exist for which

∫ t

0

e−2µs|u(s)|2ds

becomes unbounded as t → ∞ (see Chapter ??). Hence there exists x0 6= 0,
of arbitrarily small norm, so that v(x0) < 0. Let u be a solution of (25). If
the trivial solution were stable, then |u(t)| ≤ r for some r > 0. Again letting
v(x) = xTBx we obtain

dv∗

dt
= 2µv∗(t) − |u(t)|2 + gT (t, u)Bu + uTBg(t, u).

We can choose r so small that

2|g(t, u)||B||u| ≤ 1

2
|u|2, |u| ≤ r,

hence

e−2µtv∗(t) − v∗(0) ≤ −1

2

∫ t

0

e−2µs|u(s)|2ds,
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i.e.

v∗(t) ≤ e2µtv∗(0) → −∞,

contradicting that v∗(t) is bounded for bounded u.Hence u cannot stay bounded,
and we have instability.

If it is the case that the matrix A is a critical matrix, the trivial solution of
the linear system may still be stable or it may be unstable. In either case, one
may construct examples, where the trivial solution of the perturbed problem
has either the same or opposite stability behavior as the unperturbed system.

6 Exercises

1. Prove Proposition 2.

2. Verify the last part of Example 3.

3. Prove Theorem 4.

4. Establish a result similar to Corollary 5 for linear periodic systems.

5. Prove Theorem 6.

6. Show that the zero solution of the scalar equation

x′′ + a(t)x = 0

is strongly stable, whenever it is stable.

7. Prove Proposition 8.

8. Establish inequality (12).

9. Prove Proposition 9.

10. Prove Corollary 10.

11. Prove Theorem 11.

12. Show that if
∫∞

µ(A(s))ds exists, then any nonzero solution u of (3)
satisfies

lim sup
t→∞

|u(s)| <∞.

On the other hand, if
∫∞

µ(−A(s))ds exists, then

0 6= lim inf
t→∞

|u(s)| ≤ ∞.

13. If A is a constant N × N matrix show that µ(A) is an upper bound for
the real parts of the eigenvalues of A.
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14. Verify the following table:

|x| |A| µ(A)

maxi |xi| maxi

∑

k |aik| maxi

(

aii +
∑

k 6=i |aik|
)

∑

i |xi| maxk

∑

i |aik| maxk

(

akk +
∑

i6=k |aik|
)

√
∑

i |xi|2 λ∗ λ∗

where λ∗, λ∗ are, respectively, the square root of the largest eigenvalue of
ATA and the largest eigenvalue of 1

2

(

AT +A
)

.

15. Prove that if |A|2 =
∑

i

∑

j a
2
ij , then

µ(A) =
trace(A)√

N
.

16. If the linear system (3) is uniformly (asymptotically) stable and

B : [t0,∞) → R
N×N

is continuous and satisfies

∫ ∞
|B(s)|ds <∞,

then the system

u′ = (A(t) +B(t))u

is uniformly (asymptotically) stable.

17. Prove Theorem 14.

18. If the linear system (3) is uniformly asymptotically stable andB : [t0,∞) →
RN×N is continuous and satisfies

lim
t→∞

|B(t)| = 0,

then the system

u′ = (A(t) +B(t))u

is also uniformly asymptotically stable.

19. Complete the proof of Theorem 20.
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20. Consider the Liénard oscillator

x′′ + f(x)x′ + g(x) = 0,

where f and g are continuous functions with g(0) = 0. Assume that there
exist α > 0, β > 0 such that

∫ x

0

g(s)ds < β ⇒ |x| < α,

and

0 < |x| < α ⇒ g(x)F (x) > 0,

where F (x) =
∫ x

0
f(s)ds. The equation is equivalent to the system

x′ = y − F (x), y′ = −g(x).

Using the functional v(x, y) = 1
2y

2 +
∫ x

0 g(s)ds prove that the trivial solu-
tion is asymptotically stable.

21. Let a be a positive constant. Use the functional v(x, y) = 1
2

(

y2 + x2
)

to
show that the trivial solution of

x′′ + a
(

1 − x2
)

x′ + x = 0,

is asymptotically stable. What can one say about the zero solution of

x′′ + a
(

x2 − 1
)

x′ + x = 0,

where again a is a positive constant?

22. Prove Corollary 23.

23. Consider the situation of Proposition 21 and assume all eigenvalues of
A have negative real part. Show that for given C the matrix B of the
Proposition is given by

B =

∫ ∞

0

eAT tCeAtdt.

Hint: Find a differential equation that is satisfied by the matrix

P (t) =

∫ ∞

t

eAT (τ−t)CeA(τ−t)dτ

and show that it is a constant matrix.
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24. Consider the system

x′ = y + ax
(

x2 + y2
)

y′ = −x+ ay
(

x2 + y2
)

.

Show that the trivial solution is stable if a > 0 and unstable if a < 0.
Contrast this with Theorem 26.

25. Show that the trivial solution of

x′ = −2y3

y′ = x

is stable. Contrast this with Theorem 26.
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Chapter IX

Invariant Sets

1 Introduction

In this chapter, we shall present some of the basic results about invariant
sets for solutions of initial value problems for systems of autonomous (i.e. time
independent) ordinary differential equations. We let D be an open connected
subset of RN , N ≥ 1, and let

f : D → R
N

be a locally Lipschitz continuous mapping.
We consider the initial value problem

u′ = f(u)
u(0) = u0 ∈ D

(1)

and seek sufficient conditions on subsets M ⊂ D for solutions of (1) to have the
property that {u(t)} ⊂ M, t ∈ I, whenever u0 ∈ M, where I is the maximal
interval of existence of the solution u. We note that the initial value problem (1)
is uniquely solvable since f satisfies a local Lipschitz condition (viz. Chapter
V). Under these assumptions, we have for each u0 ∈ D a maximal interval of
existence Iu0

and a function

u : Iu0
→ D

t 7→ u(t, u0),
(2)

i.e., we obtain a mapping

u : Iu0
×D → D

(t, u0) 7→ u(t, u0).
(3)

Thus if we let

U = ∪v∈DIv × {v} ⊂ R × R
N ,

we obtain a mapping

u : U → D,

which has the following properties:

123
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1 Lemma 1. u is continuous,

2. u(0, u0) = u0, ∀u0 ∈ D

3. for each u0 ∈ D, s ∈ Iu0
and t ∈ Iu(s,u0) we have s + t ∈ Iu0

and
u(s+ t, u0) = u(t, u(s, u0)).

A mapping having the above properties is called a flow on D and we shall
henceforth, in this chapter, use this term freely and call u the flow determined

by f.

2 Orbits and Flows

Let u be the flow determined by f via the initial value problem (1). We shall
use the following (standard) convention. If S ⊂ Iu0

= (t−u0
, t+u0

),

u(S, u0) = {v : v = u(t, u0), t ∈ S ⊂ Iu0
}.

We shall call

γ(v) = u(Iv, v)

the orbit of v,

γ+(v) = u([0, t+v ), v)

the positive semiorbit of v and

γ−(v) = u((t−v , 0]), v)

the negative semiorbit of v.
Furthermore, we call v ∈ D a stationary or critical point of the flow, when-

ever f(v) = 0. It is, of course immediate, that if v ∈ D is a stationary point,
then Iv = R and

γ(v) = γ+(v) = γ−(v) = {v}.
We call v ∈ D a periodic point of period T of the flow, whenever there exists
T > 0, such that u(0, v) = u(T, v). If v is a periodic point which is not a critical
point, one calls T > 0 its minimal period, provided u(0, v) 6= u(t, v), 0 < t < T.

We have the following proposition.

2 Proposition Let u be the flow determined by f and let v ∈ D. Then either:

1. v is a stationary point, or

2. v is a periodic point having a minimal positive period, or

3. the flow u(·, v) is injective.

If γ+(v) is relatively compact, then t+(v) = +∞, if γ−(v) is relatively com-
pact, then t−(v) = −∞, whereas if γ(v) is relatively compact, then Iv = R.
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3 Invariant Sets

A subset M ⊂ D is called positively invariant with respect to the the flow u
determined by f, whenever

γ+(v) ⊂M, ∀v ∈M,

i.e.,

γ+(M) ⊂M.

We similarly call M ⊂ D negatively invariant provided

γ−(M) ⊂M,

and invariant provided

γ(M) ⊂M.

We note that a set M is invariant if and only if it is both positively and
negatively invariant.

We have the following proposition:

3 Proposition Let u be the flow determined by f and let V ⊂ D. Then there
exists a smallest positively invariant subset M, V ⊂ M ⊂ D and there exists a
largest invariant set M̃, M̃ ⊂ V. Also there exists a largest negatively invariant
subset M, V ⊃ M and there exists a smallest invariant set M̃, M̃ ⊃ V. As a
consequence V contains a largest invariant subset and is contained in a smallest
invariant set.

As a corollary we obtain:

4 Corollary (i) If a set M is positively invariant with respect to the flow u, then
so are M and intM.
(ii) A closed set M is positively invariant with respect to the flow u if and only
if for every v ∈ ∂M there exists ǫ > 0 such that u([0, ǫ), v) ⊂M.
(iii) A set M is positively invariant if and only if compM (the complement of
M) is negatively invariant.
(iv) If a set M is invariant, then so is ∂M. If ∂M is invariant, then so are M,
R \M, and intM.

We now provide a geometric condition on ∂M which will guarantee the
invariance of a set M and, in particular will aid us in finding invariant sets.

We have the following theorem, which provides a relationship between the
vector field f and the set M (usually called the subtangent condition) in order
that invariance holds.

5 Theorem Let M ⊂ D be a closed set. Then M is positively invariant with
respect to the flow u determined by f if and only if for every v ∈M

lim inf
t→0+

dist(v + tf(v),M)

t
= 0. (4)
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Proof. Let v ∈M, then a Taylor expansion yields,

u(t, v) = v + tf(v) + o(t), t > 0.

Hence, if M is positively invariant,

dist(v + tf(v),M) ≤ |u(t, v) − v − tf(v)| = o(t),

proving the necessity of (4).

Next, let v ∈ M, and assume (4) holds. Choose a compact neighborhood
B of v such that B ⊂ D and choose ǫ > 0 so that u([0, ǫ], v) ⊂ B. Let w(t) =
dist(u(t, v),M), then for each t ∈ [0, ǫ] there exists vt ∈ M such that w(t) =
|u(t, v) − vt)| and limt→0+ vt = v. It follows that for some constant L,

w(t + s) = |u(t+ s, v) − vt+s|
≤ w(t) + |u(t+ s, v) − u(t, v) − sf(u(t, v))|
+s|f(u(t, v)) − f(vt)| + |vt + sf(vt) − vt+s|
≤ w(t) + sLw(t) + dist(vt + tf(vt),M),

because f satisfies a local Lipschitz condition. Hence

D+w(t) ≤ Lw(t), 0 ≤ t < ǫ, w(0) = 0,

or

D+

(

e−Ltw(t)
)

≤ 0, 0 ≤ t < ǫ, w(0) = 0,

which implies w(t) ≤ 0, 0 ≤ t < ǫ, i.e. w(t) ≡ 0.

We remark here that condition (4) only needs to be checked for points v ∈
∂M since it obviously holds for interior points.

We next consider some special cases where the set M is given as a smooth
manifold. We have the following theorem.

6 Theorem Let φ ∈ C1(D,R) be a function which is such that every value v ∈
φ−1(0) is a regular value, i.e. ∇φ(v) 6= 0. Let M = φ−1(−∞, 0], then M is
positively invariant with respect to the flow determined by f if and only if

∇φ(v) · f(v) ≤ 0, ∀v ∈ ∂M = φ−1(0). (5)

We leave the proof as an exercise. We remark that the set M given in the
previous theorem will be negatively invariant provided the reverse inequality
holds and hence invariant if and only if

∇φ(v) · f(v) = 0, ∀v ∈ ∂M = φ−1(0),

in which case φ(u(t, v)) ≡ 0, ∀v ∈ ∂M, i.e. φ is a first integral for the differential
equation.
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4 Limit Sets

In this section we shall consider semiorbits and study their limit sets.
Let γ+(v), v ∈ D be the positive semiorbit associated with v ∈ D. We define

the set Γ+(v) as follows:

Γ+(v) = {w : ∃{tn}, tn ր t+v , u(tn, v) → w}. (6)

The set Γ+(v) is the set of limit points of γ+(v) and is called the positive limit
set of v. (Note that if t+v <∞, then Γ+(v) ⊂ ∂D.) In a similar vein one defines
limit sets for negative semiorbits γ−(v), v ∈ D. Namely we define the set Γ−(v)
as follows:

Γ−(v) = {w : ∃{tn}, tn ց t−v , u(tn, v) → w}. (7)

The set Γ−(v) is the set of limit points of γ−(v) and is called the negative limit
set of v. (Again note that if t−v > −∞, then Γ−(v) ⊂ ∂D.)

For all the results discussed below for positive limit sets there is an analagous
result for negative limit sets; we shall not state these results.

We have the following proposition:

7 Proposition (i) γ+(v) = γ+(v) ∪ Γ+(v).

(ii) Γ+(v) = ∩w∈γ+(v)γ+(w).

(iii) If γ+(v) is bounded, then Γ+(v) 6= ∅ and compact.

(iv) If Γ+(v) 6= ∅ and bounded, then

lim
t→t+v

dist
(

u(t, v),Γ+(v)
)

= 0.

(v) Γ+(v) ∩D is an invariant set.

Proof. We leave most of the proof to the exercises and only discuss the verifi-
cation of the last part of the proposition. Thus let us assume that Γ+(v)∩D 6= ∅.
It then follows that t+v = ∞. Let w ∈ Γ+(v) ∩D. Then there exists a sequence
{tn}∞n=1, tn ր ∞, such that u(tn, v) → w. For each n ≥ 1, the function

un(t) = u(t+ tn, v)

is the unique solution of

u′ = f(u), u(0) = u(tn, v),

and hence the maximal interval of existence of un will contain the interval
[−tn,∞). Since u(tn, v) → w, there will exist a subsequence of {un(t)}, which
we relabel as {un(t)} converging to the solution, call it y, of

u′ = f(u), u(0) = w.
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We note that given any compact interval [a, b] the sequence {un(t)} will be
defined on [a, b] for n sufficiently large and hence y will be defined on [a, b]. Since
this interval is arbitrary it follows that y is defined on (−∞,∞). Furthermore
for any t0

y(t0) = lim
n→∞

un(t0) = lim
n→∞

u(t0 + tn, v),

and hence y(t0) ∈ Γ+(v). Hence solutions through points of Γ+(v) are defined
for all time and their orbit remains in Γ+(v), showing that Γ+(v) ∩ D is an
invariant set.

8 Theorem If γ+(v) is contained in a compact subset K ⊂ D, then Γ+(v) 6= ∅
is a compact connected set, i.e a continuum.

Proof. We already know (cf. Proposition 7) that Γ+(v) is a compact set. Thus
we need to show it is connected. Suppose it is not. Then there exist nonempty
disjoint compact sets M and N such that

Γ+(v) = M ∪N.

Let δ = inf{|v − w| : v ∈ M, w ∈ N} > 0. Since M ⊂ Γ+(v) and N ⊂ Γ+(v),
there exist values of t arbitrarily large such that dist(u(t, v),M) < δ

2 and values

of t arbitrarily large such that dist(u(t, v), N) < δ
2 and hence there exists a

sequence {tn → ∞} such that dist(u(tn, v),M) = δ
2 . The sequence {u(tn, v)}

must have a convergent subsequence and hence has a limit point which is in
neither M nor N, a contradiction.

4.1 LaSalle’s theorem

In this section we shall return again to invariant sets and consider Lyapunov
type functions and their use in determining invariant sets.

Thus let φ : D → R be a C1 function. We shall use the following notation

φ′(v) := ∇φ(v) · f(v).

9 Lemma Assume that φ′(v) ≤ 0, ∀v ∈ D. Then for all v ∈ D, φ is constant on
the set Γ+(v) ∩D.

10 Theorem Let there exist a compact set K ⊂ D such that φ′(v) ≤ 0, ∀v ∈ K.
Let

K̃ = {v ∈ K : φ′(v) = 0}

and let M be the largest invariant set contained in K̃. Then for all v ∈ D such
that γ+(v) ⊂ K

lim
t→∞

dist (u(t, v),M) = 0.
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Proof. Let v ∈ D such that γ+(v) ⊂ K, then, using the previous lemma, we
have that φ is constant on Γ+(v), which is an invariant set and hence contained
in M.

11 Theorem (LaSalle’s Theorem) Assume thatD = RN and let φ′(x) ≤ 0, ∀x ∈
RN . Furthermore suppose that φ is bounded below and that φ(x) → ∞ as
|x| → ∞. Let E = {v : φ′(v) = 0}, then

lim
t→∞

dist (u(t, v),M) = 0,

for all v ∈ RN , where M is the largest invariant set contained in E.

As an example to illustrate Theorem 11 consider the oscillator

mx′′ + hx′ + kx = 0,

where m,h, k are positive constants. This equation may be written as

x′ = y
y′ = − k

mx− h
my.

We choose

φ(x, y) =
1

2

(

my2 + kx2
)

and obtain that

φ′(x, y) = −hy2.

Hence E = {(x, y) : y = 0}. The largest invariant set contained in E is the
origin, hence all solution orbits tend to the origin.

5 Two Dimensional Systems

In this section we analyze limit sets for two dimensional systems in somewhat
more detail and prove a classical theorem (the Theorem of Poincaré-Bendixson)
about periodic orbits of such systems. Thus we shall assume throughout this
section that N = 2.

Let v ∈ D be a regular (i.e. not critical) point of f. We call a compact
straight line segment l ⊂ D through v a transversal through v, provided it
contains only regular points and if for all w ∈ l, f(w) is not parallel to the
direction of l.

We shall need the following observation.

12 Lemma Let v ∈ D be a regular point of f. Then there exists a transversal l
containing v in its relative interior. Also every orbit associated with f which
crosses l, crosses l in the same direction.
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Proof. Let v be a regular point of f. Choose a neighborhood V of v consisting
of regular points only. Let η ∈ R2 be any direction not parallel to f(v), i.e.
η × f(v) 6= 0, (here × is the cross product in R3). We may restrict V further
such that η × f(w) 6= 0, ∀w ∈ V, and is bounded away from 0 on V. We then
may take l to be the intersection of the straight line through v with direction η
and V . The proof is completed by observing that

η × f(w) = (0, 0, |η||f(w)| sin θ),

where θ is the angle between η and f(w).

13 Lemma Let v be an interior point of some transversal l. Then for every ǫ > 0
there exists a circular disc Dǫ with center at v such that for every w ∈ Dǫ,
u(t, w) will cross l in time t, |t| < ǫ.

Proof. Let v ∈ int l and let

l = {z : z = v + sη, s0 ≤ s ≤ s1}.

Let B be a disc centered at v containing only regular points of f. Let L(t, w) =
au1(t, w) + bu2(t, w) + c, u = (u1, u2), where u(t, w) is the solution with initial
condition w and au1 + bu2 + c = 0 is the equation of the straight line containing
l. Then L(0, v) = 0, and ∂L

∂t (0, v) = (a, b) · f(v) 6= 0. We hence may apply the
implicit function theorem to complete the proof.

14 Lemma Let l be a transversal and let Γ = {w = u(t, v) : a ≤ t ≤ b} be a
closed arc of an orbit u associated with f which has the property that u(t1, v) 6=
u(t2, v), a ≤ t1 < t2 ≤ b. Then if Γ intersects l it does so at a finite number of
points whose order on Γ is the same as the order on l. If the orbit is periodic it
intersects l at most once.

The proof relies on the Jordan curve theorem and is left as an exercise. The
next lemma follows immediately from the previous two.

15 Lemma Let γ+(v) be a semiorbit which does not intersect itself and let w ∈
Γ+(v) be a regular point of f. Then any transversal containing w in its interior
contains no other points of Γ+(v) in its interior.

16 Lemma Let γ+(v) be a semiorbit which does not intersect itself and which is
contained in a compact set K ⊂ D and let all points in Γ+(v) be regular points
of f. Then Γ+(v) contains a periodic orbit.

Proof. Let w ∈ Γ+(v). it follows from Proposition 7 that Γ+(v) is an invariant
set and hence that γ+(w) ⊂ Γ+(v), and thus also Γ+(w) ⊂ Γ+(v). Let z ∈
Γ+(w), and let l be a transversal containing z in its relative interior. It follows
that the semiorbit γ+(w) must intersect l and by the above for an infinite
number of values of t. On the other hand, the previous lemma implies that all
these point of intersection must be the same.
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It therefore follows from Lemma 16 that every point in Γ+(v) is a point on
some periodic orbit of a minimal positive period. On the other hand, it also
follows from earlier results that Γ+(v) is a compact connected set. Hence, if for
some w ∈ Γ+(v), γ(w) 6= Γ+(v), then Γ+(v)\γ(w) must be a relatively open set
with A = Γ+(v) \ γ(w) ∩ γ(w) 6= ∅. One now easily obtains a contradiction by
examining transversals through points of A. One hence concludes that in fact
under the hypotheses of Lemma 16, the limit set Γ+(v) is a periodic orbit. We
summarize the above in the following theorem.

17 Theorem (Poincaré-Bendixson) Let γ+(v) be a semiorbit which does not
intersect itself and which is contained in a compact set K ⊂ D and let all points
in Γ+(v) be regular points of f. Then Γ+(v) is the orbit of a periodic solution
uT with smallest positive period T.

18 Theorem Let Γ be a periodic orbit of (1) which together with its interior is
contained in a compact set K ⊂ D. Then there exists at least one singular point
of f in the interior of D.

Proof. Let

Ω = intΓ.

Then f is continuous on Ω and does not vanish on Γ = ∂Ω. Let us assume
that f has no stationary points in Ω. Then for each w ∈ Ω, Γ+(w) is a periodic
orbit. We partially order the collection {Γα}α∈I , where I is an index set, of all
periodic orbits which are contained in Ω, by saying that

Γα ≤ Γβ ⇔ intΓα ⊂ intΓβ.

One now employs the Hausdorff minimum principle together with Theorem 17
to arrive at a contradiction.

6 Exercises

1. Prove Lemma 1. Also provide conditions in order that the mapping u be
smooth, say of class C1.

2. Let u be the flow determined by f (see Lemma 1). Show that if Iu0
=

(t−u0
, t+u0

), then −t−u0
: D → [0,∞] and t+u0

: D → [0,∞] are lower semicon-
tinuous functions of u0.

3. Prove Proposition 2.

4. Prove Proposition 3 and Corollary 4.

5. Prove Theorem 6.
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6. Consider the three dimensional system of equations (the Lorenz system)

x′ = −σx+ σy
y′ = rx− y − xz
z′ = −bz + xy,

where σ, r, b are positive parameters.

Find a family of ellipsoids which are positively invariant sets for the flow
determined by the system.

7. Prove Theorem 6.

8. Extend Theorem 6 to the case where

M = ∩m
i=1v

−1
i (−∞, 0].

Consider the special case where each φi is affine linear, i.e M is a paral-
lelepiped.

9. Prove Proposition 7.

10. Prove Lemma 9.

11. Prove Theorem 17.

12. Prove Theorem 18.

13. Complete the proof of Lemma 12.

14. Prove Lemma 14.

15. Let u be a solution whose interval of existence is R which is not periodic
and let γ+(u(0)) and γ−(u(0)) be contained in a compact set K ⊂ D.
Prove that Γ+(u(0)) and Γ−(u(0)) are distinct periodic orbits provided
they contain regular points only.

16. Prove that rest points and periodic orbits are invariant sets.

17. Consider the system

x′ = y − x3 + µx
y′ = −x,

where µ is a real parameter. Show that periodic orbits exist for all µ > 0
and that these orbits collapse to the origin as µ → 0. Also show that no
periodic orbits exist for µ ≤ 0.



Chapter X

Hopf Bifurcation

1 Introduction

This chapter is devoted to a version of the classical Hopf bifurcation theo-
rem which establishes the existence of nontrivial periodic orbits of autonomous
systems of differential equations which depend upon a parameter and for which
the stability properties of the trivial solution changes as the parameter is var-
ied. The proof we give is base on the method of Lyapunov-Schmidt presented
in Chapter II.

2 A Hopf Bifurcation Theorem

Let

f : R
n × R → R

n,

be a C2 mapping which is such that

f(0, α) = 0, all α ∈ R.

We consider the system of ordinary differential equations depending on a pa-
rameter α

du

dt
+ f(u, α) = 0, (1)

and prove a theorem about the existence of nontrivial periodic solutions of this
system. Results of the type proved here are referred to as Hopf bifurcation

theorems.
We establish the following theorem.

1 Theorem Assume that f satisfies the following conditions:

1. For some given value of α = α0, i =
√
−1 and −i are eigenvalues of

fu(0, α0) and ±ni, n = 0, 2, 3, · · · , are not eigenvalues of fu(0, α0);
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2. in a neighborhood of α0 there is a curve of eigenvalues and eigenvectors

fu(0, α)a(α) = β(α)a(α)

a(α0) 6= 0, β(α0) = i, Re dβ
dα |α0

6= 0.
(2)

Then there exist positive numbers ǫ and η and a C1 function

(u, ρ, α) : (−η, η) → C1
2π × R × R,

where C1
2π is the space of 2π periodic C1 Rn− valued functions, such that

(u(s), ρ(s), α(s)) solves the equation

du

dτ
+ ρf(u, α) = 0, (3)

nontrivially, i.e. u(s) 6= 0, s 6= 0 and

ρ(0) = 1, α(0) = α0, u(0) = 0. (4)

Furthermore, if (u1, α1) is a nontrivial solution of (1) of period 2πρ1, with
|ρ1−1| < ǫ, |α1 −α0| < ǫ, |u1(t)| < ǫ, t ∈ [0, 2πρ1], then there exists s ∈ (−η, η)
such that ρ1 = ρ(s), α1 = α(s) and u1(ρ1t) = u(s)(τ +θ), τ = ρ1t ∈ [0, 2π], θ ∈
[0, 2π).

Proof. We note that u(t) will be a solution of (1) of period 2πρ, whenever
u(τ), τ = ρt is a solution of period 2π of (3). We thus let X = C1

2π and Y =
C2π be Banach spaces of C1, respectively, continuous 2π− periodic functions
endowed with the usual norms and define an operator

F : X × R × R → Y
(u, ρ, α) 7→ u′ + ρf(u, α), ′ = d

dτ .
(5)

Then F belongs to class C2 and we seek nontrivial solutions of the equation

F (u, ρ, α) = 0, (6)

with values of ρ close to 1, α close to α0, and u 6= 0.
We note that

F (0, ρ, α) = 0, for all ρ ∈ R, α ∈ R.

Thus the claim is that the value (1, α0) of the two dimensional parameter (ρ, α)
is a bifurcation value. Theorem II.1 tells us that

u′ + fu(0, α0)u

cannot be a linear homeomorphism of X onto Y. This is guaranteed by the
assumptions, since the functions

φ0 = Re(eiτa(α0)), φ1 = Im(eiτa(α0))

are 2π− periodic solutions of

u′ + fu(0, α0)u = 0, (7)
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and they span the the kernel of Fu(0, 1, α0),

kerFu(0, 1, α0) = {φ0, φ1 = −φ′0}.

It follows from the theory of linear differential equations that the image, imFu(0, 1, α0),
is closed in Y and that

imFu(0, 1, α0) = {f ∈ Y : 〈f, ψi〉 = 0, i = 0, 1},

where 〈·, ·〉 denotes the L2 inner product and {ψ0, ψ1} forms a basis for ker{−u′+
fT

u (0, α0)u}, the differential equation adjoint operator of u′ +fu(0, α0)u. In fact
ψ1 = ψ′

0 and 〈φi, ψj〉 = δij , the Kronecker delta. Thus Fu(0, 1, α0) is a linear
Fredholm mapping from X to Y having a two dimensional kernel as well as a
two dimensional cokernel. We now write, as in the beginning of Chapter II,

X = V ⊕W
Y = Z ⊕ T.

We let U be a neighborhood of (0, 1, α0, 0) in V × R × R × R and define G
on U as follows

G(v, ρ, α, s) =

{

1
sF (s(φ0 + v), ρ, α), s 6= 0
Fu(0, ρ, α)(φ0 + v), s = 0.

We now want to solve the equation

G(v, ρ, α, s) = 0,

for v, ρ, α in terms of s in a neighborhood of 0 ∈ R. We note that G is C1 and

G(v, ρ, α, 0) = (φ0 + v)′ + ρfu(0, α)(φ0 + v).

Hence

G(0, ρ, α, 0) = φ′0 + ρfu(0, α)φ0.

Thus, in order to be able to apply the implicit function theorem, we need to
differentiate the map

(v, ρ, α) 7→ G(v, ρ, α, s)

evaluate the result at (0, 1, α0, 0) and show that this derivative is a linear home-
omorphism of V × R × R onto Y.

Computing the Taylor expansion, we obtain

G(v, ρ, α, s) = G(0, 1, α0, s) +Gρ(0, 1, α0, s)(ρ− 1)
Gα(0, 1, α0, s)(α− α0) +Gv(0, 1, α0, s)v + · · · , (8)

and evaluating at s = 0 we get

Gv,ρ,α(0, 1, α0, 0)(v, ρ− 1, α− α0) = fv(0, α0)φ0(ρ− 1)
+fvα(0, α0)φ0(α− α0)
+(v′ + fv(0, α0)v).

(9)
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Note that the mapping

v 7→ v′ + fv(0, α0)v

is a linear homeomorphism of V onto T. Thus we need to show that the map

(ρ, α) 7→ fv(0, α0)φ0(ρ− 1) + fvα(0, α0)φ0(α− α0)

only belongs to T if ρ = 1 and α = α0 and for all ψ ∈ Z there exists a unique
(ρ, α) such that

fv(0, α0)φ0(ρ− 1) + fvα(0, α0)φ0(α− α0) = ψ.

By the characterization of T, we have that

fv(0, α0)φ0(ρ− 1) + fvα(0, α0)φ0(α− α0) ∈ T

if and only if

< fv(0, α0)φ0, ψi > (ρ− 1)+ < fvα(0, α0)φ0, ψi > (α− α0) = 0,
i = 1, 2.

(10)

Since

fvα(0, α0)φ0 = −φ′0 = φ1,

we may write equation (10) as two equations in the two unknowns ρ − 1 and
α− α0,

< fvα(0, α0)φ0, ψ0 > (α− α0) = 0
(ρ− 1)+ < fvα(0, α0)φ0, ψ1 > (α− α0) = 0,

(11)

which has only the trivial solution if and only if

< fvα(0, α0)φ0, ψ0 > 6= 0.

Computing this latter expression, one obtains

< fvα(0, α0)φ0, ψ0 >= Reβ′(0),

which by hypothesis is not zero. The uniqueness assertion we leave as an exer-
cise.

For much further discussion of Hopf bifurcation we refer to [19].
The following example of the classical Van der Pol oscillator from nonlinear

electrical circuit theory (see [19]) will serve to illustrate the applicability of the
theorem.

2 Example Consider the nonlinear oscillator

x′′ + x− α(1 − x2)x′ = 0. (12)

This equation has for for certain small values of α nontrivial periodic solu-
tions with periods close to 2π.
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We first transform (12) into a system by setting

u =

(

u1

u2

)

=

(

x
x′

)

and obtain

u′ +

(

0 −1
1 −α

)

+

(

0
u2

1u2

)

=

(

0
0

)

(13)

We hence obtain that

f(u, α) =

(

0 −1
1 −α

)

+

(

0
u2

1u2

)

and

fu(0, α) =

(

0 −1
1 −α

)

,

whose eigenvalues satisfy

β(α + β) + 1 = 0.

Letting α0 = 0, we get β(0) = ±i, and computing dβ
dα = β′ we obtain 2ββ′+β′α+

β = 0, or β′ = −β
α+2β = − 1

2 , for α = 0. Thus by Theorem II.1 there exists η > 0

and continuous functions α(s), ρ(s), s ∈ (−η, η) such that α(0) = 0, ρ(0) = 1
and (12) has for s 6= 0 a nontrivial solution x(s) with period 2πρ(s). This
solution is unique up to phase shift.
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Chapter XI

Sturm-Liouville Boundary

Value Problems

1 Introduction

In this chapter we shall study a very classical problem in the theory of
ordinary differential equations, namely linear second order differential equations
which are parameter dependent and are subject to boundary conditions. While
the existence of eigenvalues (parameter values for which nontrivial solutions
exist) and eigenfunctions (corresponding nontrivial solutions) follows easily from
the abstract Riesz spectral theory for compact linear operators, it is instructive
to deduce the same conclusions using some of the results we have developed up
to now for ordinary differential equations. While the theory presented below is
for some rather specific cases, much more general problems and various other
cases may be considered and similar theorems may be established. We refer to
the books [5], [6] and [21] where the subject is studied in some more detail.

2 Linear Boundary Value Problems

Let I = [a, b] be a compact interval and let p, q, r ∈ C(I,R), with p, r positive
on I. Consider the linear differential equation

(p(t)x′)
′
+ (λr(t) + q(t))x = 0, t ∈ I, (1)

where λ is a complex parameter.
We seek parameter values (eigenvalues) for which (1) has nontrivial solutions

(eigensolutions or eigenfunctions) when it is subject to the set of boundary
conditions

x(a) cosα− p(a)x′(a) sinα = 0
x(b) cosβ − p(b)x′(b) sinβ = 0,

(2)

where α and β are given constants and (without loss in generality, 0 ≤ α <
π, 0 < β ≤ π). Such a boundary value problem is called a Sturm-Liouville

boundary value problem.
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We note that (2) is equivalent to the requirement

c1x(a) + c2x
′(a) = 0, |c1| + |c2| 6= 0

c3x(b) + c4x
′(b) = 0, |c3| + |c4| 6= 0.

(3)

We have the following lemma.

1 Lemma Every eigenvalue of equation (1) subject to the boundary conditions
(2) is real.

Proof. Let the differential operator L be defined by

L(x) = (px′)
′
+ qx.

Then, if λ is an eigenvalue

L(x) = −λrx,

for some nontrivial x which satisfies the boundary conditions. Hence also

L(x̄) = −λrx = −λ̄rx̄.

Therefore

x̄L(x) − xL(x̄) = −(λ− λ̄)rxx̄.

Hence
∫ b

a

(x̄L(x) − xL(x̄)) dt = −(λ− λ̄)

∫ b

a

rxx̄dt.

Integrating the latter expression and using the fact that both x and x̄ satisfy
the boundary conditions we obtain the value 0 for this expression and hence
λ = λ̄.

We next let u(t, λ) = u(t) be the solution of (1) which satisfies the (initial)
conditions

u(a) = sinα, p(a)u′(a) = cosα,

then u 6= 0 and satisfies the first set of boundary conditions. We introduce the
following transformation (Prüfer transformation)

ρ =
√

u2 + p2(u′)2, φ = arctan
u

pu′
.

Then ρ and φ are solutions of the differential equations

ρ′ = −
[

(λr + q) − 1

p

]

ρ sinφ cosφ (4)

and

φ′ =
1

p
cos2 φ+ (λr + q) sin2 φ. (5)
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Further φ(a) = α. (Note that the second equation depends upon φ only, hence,
once φ is known, ρ may be determined by integrating a linear equation and
hence u is determined.

We have the following lemma describing the
dependence of φ upon λ.

2 Lemma Let φ be the solution of (5) such that φ(a) = α. Then φ satisfies the
following conditions:

1. φ(b, λ) is a continuous strictly increasing function of λ;

2. limλ→∞ φ(b, λ) = ∞;

3. limλ→−∞ φ(b, λ) = 0.

Proof. The first part follows immediately from the discussion in Sections V.5
and V.6. To prove the other parts of the lemma, we find it convenient to make
the change of independent variable

s =

∫ t

a

dτ

p(τ)
,

which transforms equation (1) to

x′′ + p(λr + q)x = 0, ′ =
d

ds
. (6)

We now apply the Prüfer transformation to (6) and use the comparison theorems
in Section V.6 to deduce the remaining parts of the lemma.

Using the above lemma we obtain the existence of eigenvalues, namely we
have the following theorem.

3 Theorem The boundary value problem (1)-(2) has an unbounded infinite se-
quence of eigenvalues

λ0 < λ1 < λ2 < · · ·

with

lim
n→∞

λn = ∞.

The eigenspace associated with each eigenvalue is one dimensional and the eigen-
functions associated with λk have precisely k simple zeros in (a, b).

Proof. The equation

β + kπ = φ(b, λ)

has a unique solution λk, for k = 0, 1, · · · . This set {λk}∞k=0 has the desired
properties.

We also have the following lemma.
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4 Lemma Let ui, i = j, k, j 6= k be eigenfunctions of the boundary value prob-
lem (1)-(2) corresponding to the eigenvalues λj and λk. Then uj and uk are
orthogonal with respect to the weight function r, i.e.

〈uj , uk〉 =

∫ b

a

rujuk = 0. (7)

In what is to follow we denote by {ui}∞i=0 the set of eigenfunctions whose
existence is guaranteed by Theorem 3 with ui an eigenfunction corresponding
to λi, i = 0, 1, · · · which has been normalized so that

∫ b

a

ru2
i = 1. (8)

We also consider the nonhomogeneous boundary value problem

(p(t)x′)
′
+ (λr(t) + q(t))x = rh, t ∈ I, (9)

where h ∈ L2(a, b) is a given function, the equation being subject to the bound-
ary conditions (2) and solutions being interpreted in the Carathéodory sense.

We have the following result.

5 Lemma For λ = λk equation (9) has a solution subject to the boundary con-
ditions (2) if and only if

∫ b

a

rukh = 0.

If this is the case, and w is a particular solution of (9)-(2), then any other
solution has the form w + cuk, where c is an arbitrary constant.

Proof. Let v be a solution of (p(t)x′)′ + (λkr(t) + q(t))x = 0, which is linearly
independent of uk, then

(ukv
′ − u′kv) =

c

p
,

where c is a nonzero constant. One verifies that

w(t) =
1

c

(

v(t)

∫ t

a

rukh+ uk

∫ b

t

rvh

)

is a solution of (9)-(2) (for λ = λk), whenever
∫ b

a
rukh = 0 holds.

3 Completeness of Eigenfunctions

We note that it follows from Lemma 5 that (9)-(2) has a solution for every

λk, k = 0, 1, 2, · · · if and only if
∫ b

a
rukh = 0, for k = 0, 1, 2, · · · . Hence, since

{ui}∞i=0 forms an orthonormal system for the Hilbert space L2
r(a, b) (i.e. L2(a, b)

with weight function r defining the inner product), {ui}∞i=0 will be a complete
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orthonormal system, once we can show that
∫ b

a
ukh = 0, for k = 0, 1, 2, · · · ,

implies that h = 0 (see [37]). The aim of this section is to prove completeness.
The following lemma will be needed in this discussion.

6 Lemma If λ 6= λk, k = 0, 1, · · · (9) has a solution subject to the boundary
conditions (2) for every h ∈ L2(a, b).

Proof. For λ 6= λk, k = 0, 1, · · · we let u be a nontrivial solution of (1) which
satisfies the first boundary condition of (2) and let v be a nontrivial solution of
(1) which satisfies the second boundary condition of (2). Then

uv′ − u′v =
c

p

with c a nonzero constant. Define the Green’s function

G(t, s) =
1

c

{

v(t)u(s), a ≤ s ≤ t
v(s)u(t), t ≤ s ≤ b.

(10)

Then

w(t) =

∫ b

a

G(t, s)r(s)h(s)ds

is the unique solution of (9) - (2).
We have the following corollary.

7 Corollary Lemma 6 defines a continuous mapping

G : L2(a, b) → C1[a, b], (11)

by

h 7→ G(h) = w.

Further

〈Gh,w〉 = 〈h,Gw〉.
Proof. We merely need to examine the definition ofG(t, s) as given by equation
(10).

Let us now let

S = {w ∈ L2(a, b) : 〈ui, h〉 = 0, i = 0, 1, 2, · · ·}. (12)

Using the definition of G we obtain the lemma.

8 Lemma G : S → S.

We note that S is a linear manifold in L2(a, b) which is weakly closed, i.e. if
{xn} ⊂ S is a sequence such that

〈xn, h〉 → 〈x, h〉, ∀h ∈ L2(a, b),

then x ∈ S.
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9 Lemma If S 6= {0}, then there exists x ∈ S such that

〈G(x), x〉 6= 0.

Proof. If 〈G(x), x〉 = 0 for all x ∈ S, then, since S is a linear manifold, we
have for all x, y ∈ S and α ∈ R

0 = 〈G(x + αy), x+ αy〉
= 2α〈G(y), x〉,

in particular, choosing x = G(y) we obtain a contradiction, since for y 6= 0
G(y) 6= 0.

10 Lemma If S 6= {0}, then there exists x ∈ S\{0} and µ 6= 0 such that

G(x) = µx.

Proof. Since there exists x ∈ S such that 〈G(x), x〉 6= 0 we set

µ =

{

inf{〈G(x), x〉 : x ∈ S, ‖x‖ = 1, if 〈G(x), x〉 ≤ 0, ∀x ∈ S}
sup{〈G(x), x〉 : x ∈ S, ‖x‖ = 1, if 〈G(x), x〉 > 0, for some x ∈ S}.

We easily see that there exists x0 ∈ S, ‖x0‖ = 1 such that 〈G(x0), x0〉 = µ 6= 0.
If S is one dimensional, then G(x0) = µx0. If S has dimension greater than 1,
then there exists 0 6= y ∈ S such that 〈y, x0〉 = 0. Letting z = x0+ǫy√

1+ǫ2
we find

that 〈G(z), z〉 has an extremum at ǫ = 0 and thus obtain that 〈G(x0), y〉 = 0,
for any y ∈ S with 〈y, x0〉 = 0. Hence since 〈G(x0)−µx0, x0〉 = 0 it follows that
〈G(x0), G(x0) − µx0〉 = 0 and thus 〈G(x0) − µx0, G(x0) − µx0〉 = 0, proving
that µ is an eigenvalue.

Combining the above results we obtain the following completeness theorem.

11 Theorem The set of eigenfunctions {ui}∞i=0 forms a complete orthonormal sys-
tem for the Hilbert space L2

r(a, b).

Proof. Following the above reasoning, we merely need to show that S =
{0}. If this is not the case, we obtain, by Lemma 10, a nonzero element h ∈
S and a nonzero number µ such that G(h) = µh. On the other hand w =
G(h) satisfies the boundary conditions (2) and solves (9); hence h satisfies the
boundary conditions and solves the equation

(p(t)h′)
′
+ (λr(t) + q(t))h =

r

µ
h, t ∈ I, (13)

i.e. λ − 1
µ = λj for some j. Hence h = cuj for some nonzero constant c,

contradicting that h ∈ S.
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4 Exercises

1. Find the set of eigenvalues and eigenfunctions for the boundary value
problem

x′′ + λx = 0
x(0) = 0 = x′(1).

2. Supply the details for the proof of Lemma 2.

3. Prove Lemma 4.

4. Prove that the Green’s function given by (10) is continuous on the square

[a, b]2 and that ∂G(t,s)
∂t is continuous for t 6= s. Discuss the behavior of this

derivative as t→ s.

5. Provide the details of the proof of Corollary 7. Also prove that G :
L2(a, b) → L2(a, b) is a compact mapping.

6. Let G(t, s) be defined by equation (10). Show that

G(t, s) =

∞
∑

i=0

ui(t)ui(s)

λ− λi
,

where the convergence is in the L2 norm.

7. Replace the boundary conditions (2) by the periodic boundary conditions

x(a) = x(b), x′(a) = x′(b).

Prove that the existence and completeness part of the above theory may be
established provided the functions satisfy p(a) = p(b), q(a) = q(b), r(a) =
r(b).

8. Apply the previous exercise to find the eigenvalues and eigenfunctions for
the boundary value problem

x′′ + λx = 0,
x(0) = x(2π)
x′(0) = x′(2π).

9. Let the differential operator L be given by

L(x) = (tx′)′ +
m2

t
x, 0 < t < 1.

and consider the eigenvalue problem

L(x) = −λtx.
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In this case the hypotheses imposed earlier are not applicable and other
types of boundary conditions than those given by (3) must be sought in
order that a development parallel to that given in Section 2 may be made.
Establish such a theory for this singular problem. Extend this to more
general singular problems.
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