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Chapter 1

Matrices

1.1 Definition of a Matrix

Definition 1.1.1 (Matrix) A rectangular array of numbers is called a matrix.

We shall mostly be concerned with matrices having real numbers as entries.

The horizontal arrays of a matrix are called its rows and the vertical arrays are called its columns.

A matrix having m rows and n columns is said to have the order m× n.

A matrix A of order m× n can be represented in the following form:

A =









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn









,

where aij is the entry at the intersection of the ith row and jth column.

In a more concise manner, we also denote the matrix A by [aij ] by suppressing its order.

Remark 1.1.2 Some books also use









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn









to represent a matrix.

Let A =

[

1 3 7

4 5 6

]

. Then a11 = 1, a12 = 3, a13 = 7, a21 = 4, a22 = 5, and a23 = 6.

A matrix having only one column is called a column vector; and a matrix with only one row is

called a row vector.

Whenever a vector is used, it should be understood from the context whether it is

a row vector or a column vector.

Definition 1.1.3 (Equality of two Matrices) Two matrices A = [aij ] and B = [bij ] having the same order

m× n are equal if aij = bij for each i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

In other words, two matrices are said to be equal if they have the same order and their corresponding

entries are equal.

9



10 CHAPTER 1. MATRICES

Example 1.1.4 The linear system of equations 2x + 3y = 5 and 3x + 2y = 5 can be identified with the

matrix

[

2 3 : 5

3 2 : 5

]

.

1.1.1 Special Matrices

Definition 1.1.5 1. A matrix in which each entry is zero is called a zero-matrix, denoted by 0. For

example,

02×2 =

[

0 0

0 0

]

and 02×3 =

[

0 0 0

0 0 0

]

.

2. A matrix having the number of rows equal to the number of columns is called a square matrix. Thus,

its order is m×m (for some m) and is represented by m only.

3. In a square matrix, A = [aij ], of order n, the entries a11, a22, . . . , ann are called the diagonal entries

and form the principal diagonal of A.

4. A square matrix A = [aij ] is said to be a diagonal matrix if aij = 0 for i 6= j. In other words, the

non-zero entries appear only on the principal diagonal. For example, the zero matrix 0n and

[

4 0

0 1

]

are a few diagonal matrices.

A diagonal matrixD of order n with the diagonal entries d1, d2, . . . , dn is denoted byD = diag(d1, . . . , dn).

If di = d for all i = 1, 2, . . . , n then the diagonal matrix D is called a scalar matrix.

5. A square matrix A = [aij ] with aij =

{

1 if i = j

0 if i 6= j

is called the identity matrix, denoted by In.

For example, I2 =

[

1 0

0 1

]

, and I3 =






1 0 0

0 1 0

0 0 1




 .

The subscript n is suppressed in case the order is clear from the context or if no confusion arises.

6. A square matrix A = [aij ] is said to be an upper triangular matrix if aij = 0 for i > j.

A square matrix A = [aij ] is said to be an lower triangular matrix if aij = 0 for i < j.

A square matrix A is said to be triangular if it is an upper or a lower triangular matrix.

For example






2 1 4

0 3 −1

0 0 −2




 is an upper triangular matrix. An upper triangular matrix will be represented

by









a11 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...

0 0 · · · ann









.

1.2 Operations on Matrices

Definition 1.2.1 (Transpose of a Matrix) The transpose of an m × n matrix A = [aij ] is defined as the

n×m matrix B = [bij ], with bij = aji for 1 ≤ i ≤ m and 1 ≤ j ≤ n. The transpose of A is denoted by At.
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That is, by the transpose of an m× n matrix A, we mean a matrix of order n×m having the rows

of A as its columns and the columns of A as its rows.

For example, if A =

[

1 4 5

0 1 2

]

then At =






1 0

4 1

5 2




 .

Thus, the transpose of a row vector is a column vector and vice-versa.

Theorem 1.2.2 For any matrix A, we have (At)t = A.

Proof. Let A = [aij ], A
t = [bij ] and (At)t = [cij ]. Then, the definition of transpose gives

cij = bji = aij for all i, j

and the result follows. �

Definition 1.2.3 (Addition of Matrices) let A = [aij ] and B = [bij ] be are two m×n matrices. Then the

sum A+B is defined to be the matrix C = [cij ] with cij = aij + bij .

Note that, we define the sum of two matrices only when the order of the two matrices are same.

Definition 1.2.4 (Multiplying a Scalar to a Matrix) Let A = [aij ] be an m × n matrix. Then for any

element k ∈ R, we define kA = [kaij ].

For example, if A =

[

1 4 5

0 1 2

]

and k = 5, then 5A =

[

5 20 25

0 5 10

]

.

Theorem 1.2.5 Let A,B and C be matrices of order m× n, and let k, ℓ ∈ R. Then

1. A+B = B +A (commutativity).

2. (A+B) + C = A+ (B + C) (associativity).

3. k(ℓA) = (kℓ)A.

4. (k + ℓ)A = kA+ ℓA.

Proof. Part 1.

Let A = [aij ] and B = [bij ]. Then

A+B = [aij ] + [bij ] = [aij + bij ] = [bij + aij ] = [bij ] + [aij ] = B +A

as real numbers commute.

The reader is required to prove the other parts as all the results follow from the properties of real

numbers. �

Exercise 1.2.6 1. Suppose A+B = A. Then show that B = 0.

2. Suppose A+B = 0. Then show that B = (−1)A = [−aij ].

Definition 1.2.7 (Additive Inverse) Let A be an m× n matrix.

1. Then there exists a matrix B with A+ B = 0. This matrix B is called the additive inverse of A, and

is denoted by −A = (−1)A.

2. Also, for the matrix 0m×n, A+0 = 0+A = A. Hence, the matrix 0m×n is called the additive identity.
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1.2.1 Multiplication of Matrices

Definition 1.2.8 (Matrix Multiplication / Product) Let A = [aij ] be an m× n matrix and B = [bij ] be

an n× r matrix. The product AB is a matrix C = [cij ] of order m× r, with

cij =

n∑

k=1

aikbkj = ai1b1j + ai2b2j + · · ·+ ainbnj.

Observe that the product AB is defined if and only if

the number of columns of A = the number of rows of B.

For example, if A =

[

1 2 3

2 4 1

]

and B =






1 2 1

0 0 3

1 0 4




 then

AB =

[

1 + 0 + 3 2 + 0 + 0 1 + 6 + 12

2 + 0 + 1 4 + 0 + 0 2 + 12 + 4

]

=

[

4 2 19

3 4 18

]

.

Note that in this example, while AB is defined, the product BA is not defined. However, for square

matrices A and B of the same order, both the product AB and BA are defined.

Definition 1.2.9 Two square matrices A and B are said to commute if AB = BA.

Remark 1.2.10 1. Note that if A is a square matrix of order n then AIn = InA. Also for any d ∈ R,

the matrix dIn commutes with every square matrix of order n. The matrices dIn for any d ∈ R

are called scalar matrices.

2. In general, the matrix product is not commutative. For example, consider the following two

matrices A =

[

1 1

0 0

]

and B =

[

1 0

1 0

]

. Then check that the matrix product

AB =

[

2 0

0 0

]

6=
[

1 1

1 1

]

= BA.

Theorem 1.2.11 Suppose that the matrices A, B and C are so chosen that the matrix multiplications are

defined.

1. Then (AB)C = A(BC). That is, the matrix multiplication is associative.

2. For any k ∈ R, (kA)B = k(AB) = A(kB).

3. Then A(B + C) = AB +AC. That is, multiplication distributes over addition.

4. If A is an n× n matrix then AIn = InA = A.

5. For any square matrix A of order n and D = diag(d1, d2, . . . , dn), we have

• the first row of DA is d1 times the first row of A;

• for 1 ≤ i ≤ n, the ith row of DA is di times the ith row of A.

A similar statement holds for the columns of A when A is multiplied on the right by D.

Proof. Part 1. Let A = [aij ]m×n, B = [bij ]n×p and C = [cij ]p×q. Then

(BC)kj =

p
∑

ℓ=1

bkℓcℓj and (AB)iℓ =

n∑

k=1

aikbkℓ.
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Therefore,

(
A(BC)

)

ij
=

n∑

k=1

aik
(
BC

)

kj
=

n∑

k=1

aik
(

p
∑

ℓ=1

bkℓcℓj
)

=

n∑

k=1

p
∑

ℓ=1

aik
(
bkℓcℓj

)
=

n∑

k=1

p
∑

ℓ=1

(
aikbkℓ

)
cℓj

=

p
∑

ℓ=1

(
n∑

k=1

aikbkℓ
)
cℓj =

t∑

ℓ=1

(
AB
)

iℓ
cℓj

=
(
(AB)C

)

ij
.

Part 5. For all j = 1, 2, . . . , n, we have

(DA)ij =

n∑

k=1

dikakj = diaij

as dik = 0 whenever i 6= k. Hence, the required result follows.

The reader is required to prove the other parts. �

Exercise 1.2.12 1. Let A and B be two matrices. If the matrix addition A + B is defined, then prove

that (A+B)t = At +Bt. Also, if the matrix product AB is defined then prove that (AB)t = BtAt.

2. Let A = [a1, a2, . . . , an] and B =









b1

b2
...

bn









. Compute the matrix products AB and BA.

3. Let n be a positive integer. Compute An for the following matrices:

[

1 1

0 1

]

,






1 1 1

0 1 1

0 0 1




 ,






1 1 1

1 1 1

1 1 1




 .

Can you guess a formula for An and prove it by induction?

4. Find examples for the following statements.

(a) Suppose that the matrix product AB is defined. Then the product BA need not be defined.

(b) Suppose that the matrix products AB and BA are defined. Then the matrices AB and BA can

have different orders.

(c) Suppose that the matrices A and B are square matrices of order n. Then AB and BA may or

may not be equal.

1.3 Some More Special Matrices

Definition 1.3.1 1. A matrix A over R is called symmetric if At = A and skew-symmetric if At = −A.

2. A matrix A is said to be orthogonal if AAt = AtA = I.

Example 1.3.2 1. Let A =






1 2 3

2 4 −1

3 −1 4




 and B =






0 1 2

−1 0 −3

−2 3 0




 . Then A is a symmetric matrix and

B is a skew-symmetric matrix.
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2. Let A =






1√
3

1√
3

1√
3

1√
2

− 1√
2

0
1√
6

1√
6

− 2√
6




 . Then A is an orthogonal matrix.

3. Let A = [aij ] be an n×n matrix with aij =







1 if i = j + 1

0 otherwise
. Then An = 0 and Aℓ 6= 0 for 1 ≤ ℓ ≤

n − 1. The matrices A for which a positive integer k exists such that Ak = 0 are called nilpotent

matrices. The least positive integer k for which Ak = 0 is called the order of nilpotency.

4. Let A =

[

1 0

0 0

]

. Then A2 = A. The matrices that satisfy the condition that A2 = A are called

idempotent matrices.

Exercise 1.3.3 1. Show that for any square matrix A, S = 1
2 (A + At) is symmetric, T = 1

2 (A − At) is

skew-symmetric, and A = S + T.

2. Show that the product of two lower triangular matrices is a lower triangular matrix. A similar statement

holds for upper triangular matrices.

3. Let A and B be symmetric matrices. Show that AB is symmetric if and only if AB = BA.

4. Show that the diagonal entries of a skew-symmetric matrix are zero.

5. Let A,B be skew-symmetric matrices with AB = BA. Is the matrix AB symmetric or skew-symmetric?

6. Let A be a symmetric matrix of order n with A2 = 0. Is it necessarily true that A = 0?

7. Let A be a nilpotent matrix. Show that there exists a matrix B such that B(I +A) = I = (I +A)B.

1.3.1 Submatrix of a Matrix

Definition 1.3.4 A matrix obtained by deleting some of the rows and/or columns of a matrix is said to be

a submatrix of the given matrix.

For example, if A =

[

1 4 5

0 1 2

]

, a few submatrices of A are

[1], [2],

[

1

0

]

, [1 5],

[

1 5

0 2

]

, A.

But the matrices

[

1 4

1 0

]

and

[

1 4

0 2

]

are not submatrices of A. (The reader is advised to give reasons.)

Miscellaneous Exercises

Exercise 1.3.5 1. Complete the proofs of Theorems 1.2.5 and 1.2.11.

2. Let x =

[

x1

x2

]

, y =

[

y1

y2

]

, A =

[

1 0

0 −1

]

and B =

[

cos θ − sin θ

sin θ cos θ

]

. Geometrically interpret y = Ax

and y = Bx.

3. Consider the two coordinate transformations
x1 = a11y1 + a12y2

x2 = a21y1 + a22y2
and

y1 = b11z1 + b12z2

y2 = b21z1 + b22z2
.
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(a) Compose the two transformations to express x1, x2 in terms of z1, z2.

(b) If xt = [x1, x2], yt = [y1, y2] and zt = [z1, z2] then find matrices A,B and C such that

x = Ay, y = Bz and x = Cz.

(c) Is C = AB?

4. For a square matrix A of order n, we define trace of A, denoted by tr (A) as

tr (A) = a11 + a22 + · · · ann.

Then for two square matrices, A and B of the same order, show the following:

(a) tr (A+B) = tr (A) + tr (B).

(b) tr (AB) = tr (BA).

5. Show that, there do not exist matrices A and B such that AB −BA = cIn for any c 6= 0.

6. Let A and B be two m× n matrices and let x be an n× 1 column vector.

(a) Prove that if Ax = 0 for all x, then A is the zero matrix.

(b) Prove that if Ax = Bx for all x, then A = B.

7. Let A be an n× n matrix such that AB = BA for all n× n matrices B. Show that A = αI for some

α ∈ R.

8. Let A =






1 2

2 1

3 1




 . Show that there exist infinitely many matrices B such that BA = I2. Also, show

that there does not exist any matrix C such that AC = I3.

1.3.1 Block Matrices

Let A be an n ×m matrix and B be an m × p matrix. Suppose r < m. Then, we can decompose the

matrices A and B as A = [P Q] and B =

[

H

K

]

; where P has order n× r and H has order r × p. That

is, the matrices P and Q are submatrices of A and P consists of the first r columns of A and Q consists

of the last m − r columns of A. Similarly, H and K are submatrices of B and H consists of the first r

rows of B and K consists of the last m− r rows of B. We now prove the following important theorem.

Theorem 1.3.6 Let A = [aij ] = [P Q] and B = [bij ] =

[

H

K

]

be defined as above. Then

AB = PH +QK.

Proof. First note that the matrices PH and QK are each of order n × p. The matrix products PH

and QK are valid as the order of the matrices P,H,Q and K are respectively, n× r, r× p, n× (m− r)

and (m−r)×p. Let P = [Pij ], Q = [Qij ], H = [Hij ], and K = [kij ]. Then, for 1 ≤ i ≤ n and 1 ≤ j ≤ p,

we have

(AB)ij =

m∑

k=1

aikbkj =

r∑

k=1

aikbkj +

m∑

k=r+1

aikbkj

=

r∑

k=1

PikHkj +

m∑

k=r+1

QikKkj

= (PH)ij + (QK)ij = (PH +QK)ij .



16 CHAPTER 1. MATRICES

�

Theorem 1.3.6 is very useful due to the following reasons:

1. The order of the matrices P,Q,H and K are smaller than that of A or B.

2. It may be possible to block the matrix in such a way that a few blocks are either identity matrices

or zero matrices. In this case, it may be easy to handle the matrix product using the block form.

3. Or when we want to prove results using induction, then we may assume the result for r × r

submatrices and then look for (r + 1)× (r + 1) submatrices, etc.

For example, if A =

[

1 2 0

2 5 0

]

and B =






a b

c d

e f




 , Then

AB =

[

1 2

2 5

][

a b

c d

]

+

[

0

0

]

[e f ] =

[

a+ 2c b+ 2d

2a+ 5c 2b+ 5d

]

.

If A =






0 −1 2

3 1 4

−2 5 −3




 , then A can be decomposed as follows:

A =






0 −1 2

3 1 4

−2 5 −3




 , or A =






0 −1 2

3 1 4

−2 5 −3




 , or

A =






0 −1 2

3 1 4

−2 5 −3




 and so on.

Suppose A =

m1 m2

n1

n2

[

P Q

R S

]

and B =

s1 s2

r1

r2

[

E F

G H

]

. Then the matrices P, Q, R, S and

E, F, G, H, are called the blocks of the matrices A and B, respectively.

Even if A+B is defined, the orders of P and E may not be same and hence, we may not be able

to add A and B in the block form. But, if A+B and P +E is defined then A+B =

[

P + E Q+ F

R+G S +H

]

.

Similarly, if the product AB is defined, the product PE need not be defined. Therefore, we can talk

of matrix product AB as block product of matrices, if both the products AB and PE are defined. And

in this case, we have AB =

[

PE +QG PF +QH

RE + SG RF + SH

]

.

That is, once a partition of A is fixed, the partition of B has to be properly chosen for

purposes of block addition or multiplication.

Exercise 1.3.7 1. Compute the matrix product AB using the block matrix multiplication for the matrices

A =











1 0 0 1

0 1 1 1

0 1 1 0

0 1 0 1











and B =











1 2 2 1

1 1 2 1

1 1 1 1

−1 1 −1 1











.

2. Let A =

[

P Q

R S

]

. If P,Q,R and S are symmetric, what can you say about A? Are P,Q,R and S

symmetric, when A is symmetric?
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3. Let A = [aij ] and B = [bij ] be two matrices. Suppose a1, a2, . . . , an are the rows of A and

b1, b2, . . . , bp are the columns of B. If the product AB is defined, then show that

AB = [Ab1, Ab2, . . . , Abp] =









a1B

a2B
...

anB









.

[That is, left multiplication by A, is same as multiplying each column of B by A. Similarly, right

multiplication by B, is same as multiplying each row of A by B.]

1.4 Matrices over Complex Numbers

Here the entries of the matrix are complex numbers. All the definitions still hold. One just needs to

look at the following additional definitions.

Definition 1.4.1 (Conjugate Transpose of a Matrix) 1. Let A be anm×n matrix over C. If A = [aij ]

then the Conjugate of A, denoted by A, is the matrix B = [bij ] with bij = aij .

For example, Let A =

[

1 4 + 3i i

0 1 i− 2

]

. Then

A =

[

1 4− 3i −i
0 1 −i− 2

]

.

2. Let A be an m× n matrix over C. If A = [aij ] then the Conjugate Transpose of A, denoted by A∗, is

the matrix B = [bij ] with bij = aji.

For example, Let A =

[

1 4 + 3i i

0 1 i− 2

]

. Then

A∗ =






1 0

4− 3i 1

−i −i− 2




 .

3. A square matrix A over C is called Hermitian if A∗ = A.

4. A square matrix A over C is called skew-Hermitian if A∗ = −A.

5. A square matrix A over C is called unitary if A∗A = AA∗ = I.

6. A square matrix A over C is called Normal if AA∗ = A∗A.

Remark 1.4.2 If A = [aij ] with aij ∈ R, then A∗ = At.

Exercise 1.4.3 1. Give examples of Hermitian, skew-Hermitian and unitary matrices that have entries

with non-zero imaginary parts.

2. Restate the results on transpose in terms of conjugate transpose.

3. Show that for any square matrix A, S = A+A∗

2 is Hermitian, T = A−A∗

2 is skew-Hermitian, and

A = S + T.

4. Show that if A is a complex triangular matrix and AA∗ = A∗A then A is a diagonal matrix.



18 CHAPTER 1. MATRICES



Chapter 2

Linear System of Equations

2.1 Introduction

Let us look at some examples of linear systems.

1. Suppose a, b ∈ R. Consider the system ax = b.

(a) If a 6= 0 then the system has a unique solution x = b
a .

(b) If a = 0 and

i. b 6= 0 then the system has no solution.

ii. b = 0 then the system has infinite number of solutions, namely all x ∈ R.

2. We now consider a system with 2 equations in 2 unknowns.

Consider the equation ax + by = c. If one of the coefficients, a or b is non-zero, then this linear

equation represents a line in R2. Thus for the system

a1x+ b1y = c1 and a2x+ b2y = c2,

the set of solutions is given by the points of intersection of the two lines. There are three cases to

be considered. Each case is illustrated by an example.

(a) Unique Solution

x+ 2y = 1 and x+ 3y = 1. The unique solution is (x, y)t = (1, 0)t.

Observe that in this case, a1b2 − a2b1 6= 0.

(b) Infinite Number of Solutions

x+ 2y = 1 and 2x+ 4y = 2. The set of solutions is (x, y)t = (1− 2y, y)t = (1, 0)t + y(−2, 1)t

with y arbitrary. In other words, both the equations represent the same line.

Observe that in this case, a1b2 − a2b1 = 0, a1c2 − a2c1 = 0 and b1c2 − b2c1 = 0.

(c) No Solution

x+ 2y = 1 and 2x+ 4y = 3. The equations represent a pair of parallel lines and hence there

is no point of intersection.

Observe that in this case, a1b2 − a2b1 = 0 but a1c2 − a2c1 6= 0.

3. As a last example, consider 3 equations in 3 unknowns.

A linear equation ax+ by + cz = d represent a plane in R
3 provided (a, b, c) 6= (0, 0, 0). As in the

case of 2 equations in 2 unknowns, we have to look at the points of intersection of the given three

planes. Here again, we have three cases. The three cases are illustrated by examples.

19
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(a) Unique Solution

Consider the system x+y+z = 3, x+4y+2z = 7 and 4x+10y−z = 13. The unique solution

to this system is (x, y, z)t = (1, 1, 1)t; i.e. the three planes intersect at a point.

(b) Infinite Number of Solutions

Consider the system x + y + z = 3, x + 2y + 2z = 5 and 3x + 4y + 4z = 11. The set of

solutions to this system is (x, y, z)t = (1, 2− z, z)t = (1, 2, 0)t + z(0,−1, 1)t, with z arbitrary:

the three planes intersect on a line.

(c) No Solution

The system x + y + z = 3, x + 2y + 2z = 5 and 3x + 4y + 4z = 13 has no solution. In this

case, we get three parallel lines as intersections of the above planes taken two at a time.

The readers are advised to supply the proof.

2.2 Definition and a Solution Method

Definition 2.2.1 (Linear System) A linear system of m equations in n unknowns x1, x2, . . . , xn is a set of

equations of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

... (2.2.1)

am1x1 + am2x2 + · · ·+ amnxn = bm

where for 1 ≤ i ≤ n, and 1 ≤ j ≤ m; aij , bi ∈ R. Linear System (2.2.1) is called homogeneous if

b1 = 0 = b2 = · · · = bm and non-homogeneous otherwise.

We rewrite the above equations in the form Ax = b, where

A =









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn









, x =









x1

x2
...

xn









, and b =









b1

b2
...

bm









The matrix A is called the coefficient matrix and the block matrix [A b] , is the augmented

matrix of the linear system (2.2.1).

Remark 2.2.2 Observe that the ith row of the augmented matrix [A b] represents the ith equation

and the jth column of the coefficient matrix A corresponds to coefficients of the jth variable xj . That

is, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, the entry aij of the coefficient matrix A corresponds to the ith equation

and jth variable xj ..

For a system of linear equations Ax = b, the system Ax = 0 is called the associated homogeneous

system.

Definition 2.2.3 (Solution of a Linear System) A solution of the linear system Ax = b is a column vector

y with entries y1, y2, . . . , yn such that the linear system (2.2.1) is satisfied by substituting yi in place of xi.

That is, if yt = [y1, y2, . . . , yn] then Ay = b holds.

Note: The zero n-tuple x = 0 is always a solution of the system Ax = 0, and is called the trivial

solution. A non-zero n-tuple x, if it satisfies Ax = 0, is called a non-trivial solution.
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2.2.1 A Solution Method

Example 2.2.4 Let us solve the linear system x+ 7y + 3z = 11, x+ y + z = 3, and 4x+ 10y − z = 13.

Solution:

1. The above linear system and the linear system

x+ y + z = 3 Interchange the first two equations.

x+ 7y + 3z = 11 (2.2.2)

4x+ 10y − z = 13

have the same set of solutions. (why?)

2. Eliminating x from 2nd and 3rd equation, we get the linear system

x+ y + z = 3

6y + 2z = 8 (obtained by subtracting the first

equation from the second equation.)

6y − 5z = 1 (obtained by subtracting 4 times the first equation

from the third equation.) (2.2.3)

This system and the system (2.2.2) has the same set of solution. (why?)

3. Eliminating y from the last two equations of system (2.2.3), we get the system

x+ y + z = 3

6y + 2z = 8

7z = 7 obtained by subtracting the third equation

from the second equation. (2.2.4)

which has the same set of solution as the system (2.2.3). (why?)

4. The system (2.2.4) and system

x+ y + z = 3

3y + z = 4 divide the second equation by 2

z = 1 divide the second equation by 2 (2.2.5)

has the same set of solution. (why?)

5. Now, z = 1 implies y =
4− 1

3
= 1 and x = 3− (1+1) = 1. Or in terms of a vector, the set of solution

is { (x, y, z)t : (x, y, z) = (1, 1, 1)}.

2.3 Row Operations and Equivalent Systems

Definition 2.3.1 (Elementary Operations) The following operations 1, 2 and 3 are called elementary op-

erations.

1. interchange of two equations, say “interchange the ith and jth equations”;

(compare the system (2.2.2) with the original system.)
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2. multiply a non-zero constant throughout an equation, say “multiply the kth equation by c 6= 0”;

(compare the system (2.2.5) and the system (2.2.4).)

3. replace an equation by itself plus a constant multiple of another equation, say “replace the kth equation

by kth equation plus c times the jth equation”.

(compare the system (2.2.3) with (2.2.2) or the system (2.2.4) with (2.2.3).)

Observations:

1. In the above example, observe that the elementary operations helped us in getting a linear system

(2.2.5), which was easily solvable.

2. Note that at Step 1, if we interchange the first and the second equation, we get back to the linear

system from which we had started. This means the operation at Step 1, has an inverse operation.

In other words, inverse operation sends us back to the step where we had precisely started.

It will be a useful exercise for the reader to identify the inverse operations at each step in

Example 2.2.4.

So, in Example 2.2.4, the application of a finite number of elementary operations helped us to obtain

a simpler system whose solution can be obtained directly. That is, after applying a finite number of

elementary operations, a simpler linear system is obtained which can be easily solved. Note that the

three elementary operations defined above, have corresponding inverse operations, namely,

1. “interchange the ith and jth equations”,

2. “divide the kth equation by c 6= 0”;

3. “replace the kth equation by kth equation minus c times the jth equation”.

It will be a useful exercise for the reader to identify the inverse operations at each step in

Example 2.2.4.

Definition 2.3.2 (Equivalent Linear Systems) Two linear systems are said to be equivalent if one can be

obtained from the other by a finite number of elementary operations.

The linear systems at each step in Example 2.2.4 are equivalent to each other and also to the original

linear system.

Lemma 2.3.3 Let Cx = d be the linear system obtained from the linear system Ax = b by a single

elementary operation. Then the linear systems Ax = b and Cx = d have the same set of solutions.

Proof. We prove the result for the elementary operation “the kth equation is replaced by kth equation

plus c times the jth equation.” The reader is advised to prove the result for other elementary operations.

In this case, the systems Ax = b and Cx = d vary only in the kth equation. Let (α1, α2, . . . , αn)

be a solution of the linear system Ax = b. Then substituting for αi’s in place of xi’s in the kth and jth

equations, we get

ak1α1 + ak2α2 + · · · aknαn = bk, and aj1α1 + aj2α2 + · · · ajnαn = bj.

Therefore,

(ak1 + caj1)α1 + (ak2 + caj2)α2 + · · ·+ (akn + cajn)αn = bk + cbj . (2.3.1)

But then the kth equation of the linear system Cx = d is

(ak1 + caj1)x1 + (ak2 + caj2)x2 + · · ·+ (akn + cajn)xn = bk + cbj. (2.3.2)
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Therefore, using Equation (2.3.1), (α1, α2, . . . , αn) is also a solution for the kth Equation (2.3.2).

Use a similar argument to show that if (β1, β2, . . . , βn) is a solution of the linear system Cx = d then

it is also a solution of the linear system Ax = b.

Hence, we have the proof in this case. �

Lemma 2.3.3 is now used as an induction step to prove the main result of this section (Theorem

2.3.4).

Theorem 2.3.4 Two equivalent systems have the same set of solutions.

Proof. Let n be the number of elementary operations performed on Ax = b to get Cx = d. We prove

the theorem by induction on n.

If n = 1, Lemma 2.3.3 answers the question. If n > 1, assume that the theorem is true for n = m.

Now, suppose n = m+1. Apply the Lemma 2.3.3 again at the “last step” (that is, at the (m+1)th step

from the mth step) to get the required result using induction. �

Let us formalise the above section which led to Theorem 2.3.4. For solving a linear system of equa-

tions, we applied elementary operations to equations. It is observed that in performing the elementary

operations, the calculations were made on the coefficients (numbers). The variables x1, x2, . . . , xn

and the sign of equality (that is, “ = ”) are not disturbed. Therefore, in place of looking at the system

of equations as a whole, we just need to work with the coefficients. These coefficients when arranged in

a rectangular array gives us the augmented matrix [A b].

Definition 2.3.5 (Elementary Row Operations) The elementary row operations are defined as:

1. interchange of two rows, say “interchange the ith and jth rows”, denoted Rij ;

2. multiply a non-zero constant throughout a row, say “multiply the kth row by c 6= 0”, denoted Rk(c);

3. replace a row by itself plus a constant multiple of another row, say “replace the kth row by kth row

plus c times the jth row”, denoted Rkj(c).

Exercise 2.3.6 Find the inverse row operations corresponding to the elementary row operations that have

been defined just above.

Definition 2.3.7 (Row Equivalent Matrices) Two matrices are said to be row-equivalent if one can be

obtained from the other by a finite number of elementary row operations.

Example 2.3.8 The three matrices given below are row equivalent.





0 1 1 2

2 0 3 5

1 1 1 3





−−→
R12






2 0 3 5

0 1 1 2

1 1 1 3






−−−−−→
R1(1/2)






1 0 3
2

5
2

0 1 1 2

1 1 1 3




 .

Whereas the matrix






0 1 1 2

2 0 3 5

1 1 1 3




 is not row equivalent to the matrix






1 0 1 2

0 2 3 5

1 1 1 3




 .
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2.3.1 Gauss Elimination Method

Definition 2.3.9 (Forward/Gauss Elimination Method) Gaussian elimination is a method of solving a

linear system Ax = b (consisting of m equations in n unknowns) by bringing the augmented matrix

[A b] =









a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm









to an upper triangular form








c11 c12 · · · c1n d1

0 c22 · · · c2n d2
...

...
. . .

...
...

0 0 · · · cmn dm









.

This elimination process is also called the forward elimination method.

The following examples illustrate the Gauss elimination procedure.

Example 2.3.10 Solve the linear system by Gauss elimination method.

y + z = 2

2x+ 3z = 5

x+ y + z = 3

Solution: In this case, the augmented matrix is






0 1 1 2

2 0 3 5

1 1 1 3




 . The method proceeds along the fol-

lowing steps.

1. Interchange 1st and 2nd equation (or R12).

2x+ 3z = 5

y + z = 2

x+ y + z = 3






2 0 3 5

0 1 1 2

1 1 1 3




 .

2. Divide the 1st equation by 2 (or R1(1/2)).

x+ 3
2z = 5

2

y + z = 2

x+ y + z = 3






1 0 3
2

5
2

0 1 1 2

1 1 1 3




 .

3. Add −1 times the 1st equation to the 3rd equation (or R31(−1)).

x+ 3
2z = 5

2

y + z = 2

y − 1
2z = 1

2






1 0 3
2

5
2

0 1 1 2

0 1 − 1
2

1
2




 .

4. Add −1 times the 2nd equation to the 3rd equation (or R32(−1)).

x+ 3
2z = 5

2

y + z = 2

− 3
2z = − 3

2






1 0 3
2

5
2

0 1 1 2

0 0 − 3
2 − 3

2




 .
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5. Multiply the 3rd equation by −2
3 (or R3(− 2

3 )).

x+ 3
2z = 5

2

y + z = 2

z = 1






1 0 3
2

5
2

0 1 1 2

0 0 1 1




 .

The last equation gives z = 1, the second equation now gives y = 1. Finally the first equation gives

x = 1. Hence the set of solutions is (x, y, z)t = (1, 1, 1)t, a unique solution.

Example 2.3.11 Solve the linear system by Gauss elimination method.

x+ y + z = 3

x+ 2y + 2z = 5

3x+ 4y + 4z = 11

Solution: In this case, the augmented matrix is






1 1 1 3

1 2 2 5

3 4 4 11




 and the method proceeds as follows:

1. Add −1 times the first equation to the second equation.

x+ y + z = 3

y + z = 2

3x+ 4y + 4z = 11






1 1 1 3

0 1 1 2

3 4 4 11




 .

2. Add −3 times the first equation to the third equation.

x+ y + z = 3

y + z = 2

y + z = 2






1 1 1 3

0 1 1 2

0 1 1 2




 .

3. Add −1 times the second equation to the third equation

x+ y + z = 3

y + z = 2






1 1 1 3

0 1 1 2

0 0 0 0




 .

Thus, the set of solutions is (x, y, z)t = (1, 2− z, z)t = (1, 2, 0)t + z(0,−1, 1)t, with z arbitrary. In other

words, the system has infinite number of solutions.

Example 2.3.12 Solve the linear system by Gauss elimination method.

x+ y + z = 3

x+ 2y + 2z = 5

3x+ 4y + 4z = 12

Solution: In this case, the augmented matrix is






1 1 1 3

1 2 2 5

3 4 4 12




 and the method proceeds as follows:

1. Add −1 times the first equation to the second equation.

x+ y + z = 3

y + z = 2

3x+ 4y + 4z = 12






1 1 1 3

0 1 1 2

3 4 4 12




 .
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2. Add −3 times the first equation to the third equation.

x+ y + z = 3

y + z = 2

y + z = 3






1 1 1 3

0 1 1 2

0 1 1 3




 .

3. Add −1 times the second equation to the third equation

x+ y + z = 3

y + z = 2

0 = 1






1 1 1 3

0 1 1 2

0 0 0 1




 .

The third equation in the last step is

0x+ 0y + 0z = 1.

This can never hold for any value of x, y, z. Hence, the system has no solution.

Remark 2.3.13 Note that to solve a linear system, Ax = b, one needs to apply only the elementary

row operations to the augmented matrix [A b].

2.4 Row Reduced Echelon Form of a Matrix

Definition 2.4.1 (Row Reduced Form of a Matrix) A matrix C is said to be in the row reduced form if

1. the first non-zero entry in each row of C is 1;

2. the column containing this 1 has all its other entries zero.

A matrix in the row reduced form is also called a row reduced matrix.

Example 2.4.2 1. One of the most important examples of a row reduced matrix is the n × n identity

matrix, In. Recall that the (i, j)th entry of the identity matrix is

Iij = δij =







1 if i = j

0 if i 6= j.
.

δij is usually referred to as the Kronecker delta function.

2. The matrices








0 1 0 −1 0

0 0 0 0 0

0 0 1 1 0

0 0 0 0 1







and








0 1 0 4 0

0 0 0 0 1

0 0 1 1 0

0 0 0 0 0







are also in row reduced form.

3. The matrix








1 0 0 0 5

0 1 1 1 2

0 0 0 1 1

0 0 0 0 0







is not in the row reduced form. (why?)

Definition 2.4.3 (Leading Term, Leading Column) For a row-reduced matrix, the first non-zero entry of

any row is called a leading term. The columns containing the leading terms are called the leading

columns.
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Definition 2.4.4 (Basic, Free Variables) Consider the linear system Ax = b in n variables and m equa-

tions. Let [C d] be the row-reduced matrix obtained by applying the Gauss elimination method to the

augmented matrix [A b]. Then the variables corresponding to the leading columns in the first n columns of

[C d] are called the basic variables. The variables which are not basic are called free variables.

The free variables are called so as they can be assigned arbitrary values and the value of the basic

variables can then be written in terms of the free variables.

Observation: In Example 2.3.11, the solution set was given by

(x, y, z)t = (1, 2− z, z)t = (1, 2, 0)t + z(0,−1, 1)t, with z arbitrary.

That is, we had two basic variables, x and y, and z as a free variable.

Remark 2.4.5 It is very important to observe that if there are r non-zero rows in the row-reduced form

of the matrix then there will be r leading terms. That is, there will be r leading columns. Therefore,

if there are r leading terms and n variables, then there will be r basic variables and

n− r free variables.

2.4.1 Gauss-Jordan Elimination

We now start with Step 5 of Example 2.3.10 and apply the elementary operations once again. But this

time, we start with the 3rd row.

I. Add −1 times the third equation to the second equation (or R23(−1)).

x+ 3
2z = 5

2

y = 2

z = 1






1 0 3
2

5
2

0 1 0 1

0 0 1 1




 .

II. Add −3
2 times the third equation to the first equation (or R13(− 3

2 )).

x = 1

y = 1

z = 1






1 0 0 1

0 1 0 1

0 0 1 1




 .

III. From the above matrix, we directly have the set of solution as (x, y, z)t = (1, 1, 1)t.

Definition 2.4.6 (Row Reduced Echelon Form of a Matrix) A matrix C is said to be in the row reduced

echelon form if

1. C is already in the row reduced form;

2. The rows consisting of all zeros comes below all non-zero rows; and

3. the leading terms appear from left to right in successive rows. That is, for 1 ≤ ℓ ≤ k, let iℓ be the

leading column of the ℓth row. Then i1 < i2 < · · · < ik.

Example 2.4.7 SupposeA =






0 1 0 2

0 0 0 0

0 0 1 1




 andB =






0 0 0 1 0

1 1 0 0 0

0 0 0 0 1




 are in row reduced form. Then the

corresponding matrices in the row reduced echelon form are respectively,






0 1 0 2

0 0 1 1

0 0 0 0




 and






1 1 0 0 0

0 0 0 1 0

0 0 0 0 1




 .
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Definition 2.4.8 (Row Reduced Echelon Matrix) A matrix which is in the row reduced echelon form is

also called a row reduced echelon matrix.

Definition 2.4.9 (Back Substitution/Gauss-Jordan Method) The procedure to get to Step II of Example

2.3.10 from Step 5 of Example 2.3.10 is called the back substitution.

The elimination process applied to obtain the row reduced echelon form of the augmented matrix is called

the Gauss-Jordan elimination.

That is, the Gauss-Jordan elimination method consists of both the forward elimination and the backward

substitution.

Method to get the row-reduced echelon form of a given matrix A

Let A be an m× n matrix. Then the following method is used to obtain the row-reduced echelon form

the matrix A.

Step 1: Consider the first column of the matrix A.

If all the entries in the first column are zero, move to the second column.

Else, find a row, say ith row, which contains a non-zero entry in the first column. Now, interchange

the first row with the ith row. Suppose the non-zero entry in the (1, 1)-position is α 6= 0. Divide

the whole row by α so that the (1, 1)-entry of the new matrix is 1. Now, use the 1 to make all the

entries below this 1 equal to 0.

Step 2: If all entries in the first column after the first step are zero, consider the right m × (n − 1)

submatrix of the matrix obtained in step 1 and proceed as in step 1.

Else, forget the first row and first column. Start with the lower (m− 1)× (n− 1) submatrix of the

matrix obtained in the first step and proceed as in step 1.

Step 3: Keep repeating this process till we reach a stage where all the entries below a particular row,

say r, are zero. Suppose at this stage we have obtained a matrix C. Then C has the following

form:

1. the first non-zero entry in each row of C is 1. These 1’s are the leading terms of C

and the columns containing these leading terms are the leading columns.

2. the entries of C below the leading term are all zero.

Step 4: Now use the leading term in the rth row to make all entries in the rth leading column equal

to zero.

Step 5: Next, use the leading term in the (r − 1)th row to make all entries in the (r − 1)th leading

column equal to zero and continue till we come to the first leading term or column.

The final matrix is the row-reduced echelon form of the matrix A.

Remark 2.4.10 Note that the row reduction involves only row operations and proceeds from left to

right. Hence, if A is a matrix consisting of first s columns of a matrix C, then the row reduced form

of A will be the first s columns of the row reduced form of C.

The proof of the following theorem is beyond the scope of this book and is omitted.

Theorem 2.4.11 The row reduced echelon form of a matrix is unique.

Exercise 2.4.12 1. Solve the following linear system.
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(a) x+ y + z + w = 0, x− y + z + w = 0 and −x+ y + 3z + 3w = 0.

(b) x+ 2y + 3z = 1 and x+ 3y + 2z = 1.

(c) x+ y + z = 3, x+ y − z = 1 and x+ y + 7z = 6.

(d) x+ y + z = 3, x+ y − z = 1 and x+ y + 4z = 6.

(e) x+ y + z = 3, x+ y − z = 1, x+ y + 4z = 6 and x+ y − 4z = −1.

2. Find the row-reduced echelon form of the following matrices.

1.








−1 1 3 5

1 3 5 7

9 11 13 15

−3 −1 13







, 2.








10 8 6 4

2 0 −2 −4

−6 −8 −10 −12

−2 −4 −6 −8








2.4.2 Elementary Matrices

Definition 2.4.13 A square matrix E of order n is called an elementary matrix if it is obtained by

applying exactly one elementary row operation to the identity matrix, In.

Remark 2.4.14 There are three types of elementary matrices.

1. Eij , which is obtained by the application of the elementary row operation Rij to the identity

matrix, In. Thus, the (k, ℓ)th entry of Eij is (Eij)(k,ℓ) =







1 if k = ℓ and ℓ 6= i, j

1 if (k, ℓ) = (i, j) or (k, ℓ) = (j, i)

0 otherwise

.

2. Ek(c), which is obtained by the application of the elementary row operation Rk(c) to the identity

matrix, In. The (i, j)th entry of Ek(c) is (Ek(c))(i,j) =







1 if i = j and i 6= k

c if i = j = k

0 otherwise

.

3. Eij(c), which is obtained by the application of the elementary row operation Rij(c) to the identity

matrix, In. The (k, ℓ)th entry of Eij(c) is (Eij)(k,ℓ)







1 if k = ℓ

c if (k, ℓ) = (i, j)

0 otherwise

.

In particular,

E23 =






1 0 0

0 0 1

0 1 0




 , E1(c) =






c 0 0

0 1 0

0 0 1




 , and E23(c) =






1 0 0

0 1 c

0 0 1




 .

Example 2.4.15 1. Let A =






1 2 3 0

2 0 3 4

3 4 5 6




 . Then






1 2 3 0

2 0 3 4

3 4 5 6





−−→
R23






1 2 3 0

3 4 5 6

2 0 3 4




 =






1 0 0

0 0 1

0 1 0




A = E23A.

That is, interchanging the two rows of the matrix A is same as multiplying on the left by the corre-

sponding elementary matrix. In other words, we see that the left multiplication of elementary matrices

to a matrix results in elementary row operations.
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2. Consider the augmented matrix [A b] =






0 1 1 2

2 0 3 5

1 1 1 3




 . Then the result of the steps given below is

same as the matrix product

E23(−1)E12(−1)E3(1/3)E32(2)E23E21(−2)E13[A b].







0 1 1 2

2 0 3 5

1 1 1 3







−−→
R13







1 1 1 3

2 0 3 5

0 1 1 2







−−−−−→
R21(−2)







1 1 1 3

0 −2 1 −1

0 1 1 2







−−→
R23







1 1 1 3

0 1 1 2

0 −2 1 −1







−−−−→
R32(2)







1 1 1 3

0 1 1 2

0 0 3 3







−−−−−→
R3(1/3)







1 1 1 3

0 1 1 2

0 0 1 1







−−−−−→
R12(−1)







1 0 0 1

0 1 1 2

0 0 1 1







−−−−−→
R23(−1)







1 0 0 1

0 1 0 1

0 0 1 1







Now, consider an m × n matrix A and an elementary matrix E of order n. Then multiplying by E

on the right to A corresponds to applying column transformation on the matrix A. Therefore, for each

elementary matrix, there is a corresponding column transformation. We summarize:

Definition 2.4.16 The column transformations obtained by right multiplication of elementary matrices are

called elementary column operations.

Example 2.4.17 Let A =






1 2 3

2 0 3

3 4 5




 and consider the elementary column operation f which interchanges

the second and the third column of A. Then f(A) =






1 3 2

2 3 0

3 5 4




 = A






1 0 0

0 0 1

0 1 0




 = AE23.

Exercise 2.4.18 1. Let e be an elementary row operation and let E = e(I) be the corresponding ele-

mentary matrix. That is, E is the matrix obtained from I by applying the elementary row operation e.

Show that e(A) = EA.

2. Show that the Gauss elimination method is same as multiplying by a series of elementary matrices on

the left to the augmented matrix.

Does the Gauss-Jordan method also corresponds to multiplying by elementary matrices on the left?

Give reasons.

3. Let A and B be two m×n matrices. Then prove that the two matrices A,B are row-equivalent if and

only if B = PA, where P is product of elementary matrices. When is this P unique?

2.5 Rank of a Matrix

In previous sections, we solved linear systems using Gauss elimination method or the Gauss-Jordan

method. In the examples considered, we have encountered three possibilities, namely

1. existence of a unique solution,

2. existence of an infinite number of solutions, and
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3. no solution.

Based on the above possibilities, we have the following definition.

Definition 2.5.1 (Consistent, Inconsistent) A linear system is called consistent if it admits a solution

and is called inconsistent if it admits no solution.

The question arises, as to whether there are conditions under which the linear system Ax = b is

consistent. The answer to this question is in the affirmative. To proceed further, we need a few definitions

and remarks.

Recall that the row reduced echelon form of a matrix is unique and therefore, the number of non-zero

rows is a unique number. Also, note that the number of non-zero rows in either the row reduced form

or the row reduced echelon form of a matrix are same.

Definition 2.5.2 (Row rank of a Matrix) The number of non-zero rows in the row reduced form of a

matrix is called the row-rank of the matrix.

By the very definition, it is clear that row-equivalent matrices have the same row-rank. For a matrix A,

we write ‘row-rank (A)’ to denote the row-rank of A.

Example 2.5.3 1. Determine the row-rank of A =






1 2 1

2 3 1

1 1 2




 .

Solution: To determine the row-rank of A, we proceed as follows.

(a)






1 2 1

2 3 1

1 1 2






−−−−−−−−−−−−−→
R21(−2), R31(−1)






1 2 1

0 −1 −1

0 −1 1




 .

(b)






1 2 1

0 −1 −1

0 −1 1






−−−−−−−−−−−→
R2(−1), R32(1)






1 2 1

0 1 1

0 0 2




 .

(c)






1 2 1

0 1 1

0 0 2






−−−−−−−−−−−−→
R3(1/2), R12(−2)






1 0 −1

0 1 1

0 0 1




 .

(d)






1 0 −1

0 1 1

0 0 1





−−−−−−−−−−−→
R23(−1), R13(1)






1 0 0

0 1 0

0 0 1






The last matrix in Step 1d is the row reduced form ofA which has 3 non-zero rows. Thus, row-rank(A) = 3.

This result can also be easily deduced from the last matrix in Step 1b.

2. Determine the row-rank of A =






1 2 1

2 3 1

1 1 0




 .

Solution: Here we have

(a)






1 2 1

2 3 1

1 1 0





−−−−−−−−−−−−−→
R21(−2), R31(−1)






1 2 1

0 −1 −1

0 −1 −1




 .

(b)






1 2 1

0 −1 −1

0 −1 −1






−−−−−−−−−−−→
R2(−1), R32(1)






1 2 1

0 1 1

0 0 0




 .
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From the last matrix in Step 2b, we deduce row-rank(A) = 2.

Remark 2.5.4 Let Ax = b be a linear system withm equations and n unknowns. Then the row-reduced

echelon form of A agrees with the first n columns of [A b], and hence

row-rank(A) ≤ row-rank([A b]).

The reader is advised to supply a proof.

Remark 2.5.5 Consider a matrix A. After application of a finite number of elementary column oper-

ations (see Definition 2.4.16) to the matrix A, we can have a matrix, say B, which has the following

properties:

1. The first nonzero entry in each column is 1.

2. A column containing only 0’s comes after all columns with at least one non-zero entry.

3. The first non-zero entry (the leading term) in each non-zero column moves down in successive

columns.

Therefore, we can define column-rank of A as the number of non-zero columns in B. It will be

proved later that

row-rank(A) = column-rank(A).

Thus we are led to the following definition.

Definition 2.5.6 The number of non-zero rows in the row reduced form of a matrix A is called the rank of

A, denoted rank (A).

Theorem 2.5.7 Let A be a matrix of rank r. Then there exist elementary matrices E1, E2, . . . , Es and

F1, F2, . . . , Fℓ such that

E1E2 . . . Es A F1F2 . . . Fℓ =

[

Ir 0

0 0

]

.

Proof. Let C be the row reduced echelon matrix obtained by applying elementary row operations to

the given matrix A. As rank(A) = r, the matrix C will have the first r rows as the non-zero rows. So by

Remark 2.4.5, C will have r leading columns, say i1, i2, . . . , ir. Note that, for 1 ≤ s ≤ r, the iths column

will have 1 in the sth row and zero elsewhere.

We now apply column operations to the matrix C. Let D be the matrix obtained from C by succes-

sively interchanging the sth and iths column of C for 1 ≤ s ≤ r. Then the matrix D can be written in the

form

[

Ir B

0 0

]

, where B is a matrix of appropriate size. As the (1, 1) block of D is an identity matrix,

the block (1, 2) can be made the zero matrix by application of column operations to D. This gives the

required result. �

Exercise 2.5.8 1. Determine the ranks of the coefficient and the augmented matrices that appear in Part

1 and Part 2 of Exercise 2.4.12.

2. For any matrix A, prove that rank(A) = rank(At).

3. Let A be an n× n matrix with rank(A) = n. Then prove that A is row-equivalent to In.
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2.6 Existence of Solution of Ax = b

We try to understand the properties of the set of solutions of a linear system through an example, using

the Gauss-Jordan method. Based on this observation, we arrive at the existence and uniqueness results

for the linear system Ax = b. This example is more or less a motivation.

2.6.1 Example

Consider a linear system Ax = b which after the application of the Gauss-Jordan method reduces to a

matrix [C d] with

[C d] =













1 0 2 −1 0 0 2 8

0 1 1 3 0 0 5 1

0 0 0 0 1 0 −1 2

0 0 0 0 0 1 1 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0













.

For this particular matrix [C d], we want to see the set of solutions. We start with some observations.

Observations:

1. The number of non-zero rows in C is 4. This number is also equal to the number of non-zero rows

in [C d].

2. The first non-zero entry in the non-zero rows appear in columns 1, 2, 5 and 6.

3. Thus, the respective variables x1, x2, x5 and x6 are the basic variables.

4. The remaining variables, x3, x4 and x7 are free variables.

5. We assign arbitrary constants k1, k2 and k3 to the free variables x3, x4 and x7, respectively.

Hence, we have the set of solutions as















x1

x2

x3

x4

x5

x6

x7















=















8− 2k1 + k2 − 2k3

1− k1 − 3k2 − 5k3

k1

k2

2 + k3

4− k3

k3















=















8

1

0

0

2

4

0















+ k1















−2

−1

1

0

0

0

0















+ k2















1

−3

0

1

0

0

0















+ k3















−2

−5

0

0

1

−1

1















,
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where k1, k2 and k3 are arbitrary.

Let u0 =















8

1

0

0

2

4

0















, u1 =















−2

−1

1

0

0

0

0















, u2 =















1

−3

0

1

0

0

0















and u3 =















−2

−5

0

0

1

−1

1















.

Then it can easily be verified that Cu0 = d, and for 1 ≤ i ≤ 3, Cui = 0.

A similar idea is used in the proof of the next theorem and is omitted. The interested readers can

read the proof in Appendix 14.1.

2.6.2 Main Theorem

Theorem 2.6.1 [Existence and Non-existence] Consider a linear system Ax = b, where A is a m×n matrix,

and x, b are vectors with orders n×1, andm×1, respectively. Suppose rank (A) = r and rank([A b]) = ra.

Then exactly one of the following statement holds:

1. if ra = r < n, the set of solutions of the linear system is an infinite set and has the form

{u0 + k1u1 + k2u2 + · · ·+ kn−run−r : ki ∈ R, 1 ≤ i ≤ n− r},

where u0,u1, . . . ,un−r are n× 1 vectors satisfying Au0 = b and Aui = 0 for 1 ≤ i ≤ n− r.

2. if ra = r = n, the solution set of the linear system has a unique n× 1 vector x0 satisfying Ax0 = b.

3. If r < ra, the linear system has no solution.

Remark 2.6.2 Let A be an m × n matrix and consider the linear system Ax = b. Then by Theorem

2.6.1, we see that the linear system Ax = b is consistent if and only if

rank (A) = rank([A b]).

The following corollary of Theorem 2.6.1 is a very important result about the homogeneous linear

system Ax = 0.

Corollary 2.6.3 Let A be an m×n matrix. Then the homogeneous system Ax = 0 has a non-trivial solution

if and only if rank(A) < n.

Proof. Suppose the system Ax = 0 has a non-trivial solution, x0. That is, Ax0 = 0 and x0 6= 0. Under

this assumption, we need to show that rank(A) < n. On the contrary, assume that rank(A) = n. So,

n = rank(A) = rank
(
[A 0]

)
= ra.

Also A0 = 0 implies that 0 is a solution of the linear system Ax = 0. Hence, by the uniqueness of the

solution under the condition r = ra = n (see Theorem 2.6.1), we get x0 = 0. A contradiction to the fact

that x0 was a given non-trivial solution.

Now, let us assume that rank(A) < n. Then

ra = rank
(
[A 0]

)
= rank(A) < n.

So, by Theorem 2.6.1, the solution set of the linear system Ax = 0 has infinite number of vectors x

satisfying Ax = 0. From this infinite set, we can choose any vector x0 that is different from 0. Thus, we

have a solution x0 6= 0. That is, we have obtained a non-trivial solution x0. �

We now state another important result whose proof is immediate from Theorem 2.6.1 and Corollary

2.6.3.
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Proposition 2.6.4 Consider the linear system Ax = b. Then the two statements given below cannot hold

together.

1. The system Ax = b has a unique solution for every b.

2. The system Ax = 0 has a non-trivial solution.

Remark 2.6.5 1. Suppose x1,x2 are two solutions of Ax = 0. Then k1x1 + k2x2 is also a solution

of Ax = 0 for any k1, k2 ∈ R.

2. If u,v are two solutions of Ax = b then u − v is a solution of the system Ax = 0. That is,

u − v = xh for some solution xh of Ax = 0. That is, any two solutions of Ax = b differ by a

solution of the associated homogeneous system Ax = 0.

In conclusion, for b 6= 0, the set of solutions of the system Ax = b is of the form, {x0+xh}; where
x0 is a particular solution of Ax = b and xh is a solution Ax = 0.

2.6.3 Exercises

Exercise 2.6.6 1. For what values of c and k-the following systems have i) no solution, ii) a unique

solution and iii) infinite number of solutions.

(a) x+ y + z = 3, x+ 2y + cz = 4, 2x+ 3y + 2cz = k.

(b) x+ y + z = 3, x+ y + 2cz = 7, x+ 2y + 3cz = k.

(c) x+ y + 2z = 3, x+ 2y + cz = 5, x+ 2y + 4z = k.

(d) kx+ y + z = 1, x+ ky + z = 1, x+ y + kz = 1.

(e) x+ 2y − z = 1, 2x+ 3y + kz = 3, x+ ky + 3z = 2.

(f) x− 2y = 1, x− y + kz = 1, ky + 4z = 6.

2. Find the condition on a, b, c so that the linear system

x+ 2y − 3z = a, 2x+ 6y − 11z = b, x− 2y + 7z = c

is consistent.

3. Let A be an n × n matrix. If the system A2x = 0 has a non trivial solution then show that Ax = 0

also has a non trivial solution.

2.7 Invertible Matrices

2.7.1 Inverse of a Matrix

Definition 2.7.1 (Inverse of a Matrix) Let A be a square matrix of order n.

1. A square matrix B is said to be a left inverse of A if BA = In.

2. A square matrix C is called a right inverse of A, if AC = In.

3. A matrix A is said to be invertible (or is said to have an inverse) if there exists a matrix B such

that AB = BA = In.

Lemma 2.7.2 Let A be an n × n matrix. Suppose that there exist n × n matrices B and C such that

AB = In and CA = In, then B = C.
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Proof. Note that

C = CIn = C(AB) = (CA)B = InB = B.

�

Remark 2.7.3 1. From the above lemma, we observe that if a matrix A is invertible, then the inverse

is unique.

2. As the inverse of a matrix A is unique, we denote it by A−1. That is, AA−1 = A−1A = I.

Theorem 2.7.4 Let A and B be two matrices with inverses A−1 and B−1, respectively. Then

1. (A−1)−1 = A.

2. (AB)−1 = B−1A−1.

3. prove that (At)−1 = (A−1)t.

Proof. Proof of Part 1.

By definition AA−1 = A−1A = I. Hence, if we denote A−1 by B, then we get AB = BA = I. This again

by definition, implies B−1 = A, or equivalently (A−1)−1 = A.

Proof of Part 2.

Verify that (AB)(B−1A−1) = I = (B−1A−1)(AB). Hence, the result follows by definition.

Proof of Part 3.

We know AA−1 = A−1A = I. Taking transpose, we get

(AA−1)t = (A−1A)t = It ⇐⇒ (A−1)tAt = At(A−1)t = I.

Hence, by definition (At)−1 = (A−1)t. �

Exercise 2.7.5 1. If A is a symmetric matrix, is the matrix A−1 symmetric?

2. Show that every elementary matrix is invertible. Is the inverse of an elementary matrix, also an ele-

mentary matrix?

3. Let A1, A2, . . . , Ar be invertible matrices. Prove that the product A1A2 · · ·Ar is also an invertible

matrix.

4. If P and Q are invertible matrices and PAQ is defined then show that rank (PAQ) = rank (A).

5. Find matrices P and Q which are product of elementary matrices such that B = PAQ where A =[

2 4 8

1 3 2

]

and B =

[

1 0 0

0 1 0

]

.

6. Let A and B be two matrices. Show that

(a) if A+B is defined, then rank(A+B) ≤ rank(A) + rank(B),

(b) if AB is defined, then rank(AB) ≤ rank(A) and rank(AB) ≤ rank(B).

7. Let A be any matrix of rank r. Then show that there exists invertible matrices Bi, Ci such that

B1A =

[

R1 R2

0 0

]

, AC1 =

[

S1 0

S3 0

]

, B2AC2 =

[

A1 0

0 0

]

, and B3AC3 =

[

Ir 0

0 0

]

. Also, prove

that the matrix A1 is an r × r invertible matrix.
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8. Let A be an m × n matrix of rank r. Then A can be written as A = BC, where both B and C have

rank r and B is a matrix of size m× r and C is a matrix of size r × n.

9. Let A and B be two matrices such that AB is defined and rank (A) = rank (AB). Then show that

A = ABX for some matrix X. Similarly, if BA is defined and rank (A) = rank (BA), then A = Y BA

for some matrix Y. [Hint: Choose non-singular matrices P,Q and R such that PAQ =

[

A1 0

0 0

]

and

P (AB)R =

[

C 0

0 0

]

. Define X = R

[

C−1A1 0

0 0

]

Q−1.]

10. Let A = [aij ] be an invertible matrix and let B = [pi−jaij ] for some nonzero real number p. Find the

inverse of B.

11. If matrices B and C are invertible and the involved partitioned products are defined, then show that

[

A B

C 0

]−1

=

[

0 C−1

B−1 −B−1AC−1

]

.

12. Suppose A is the inverse of a matrix B. Partition A and B as follows:

A =

[

A11 A12

A21 A22

]

, B =

[

B11 B12

B21 B22

]

.

If A11 is invertible and P = A22 −A21(A
−1
11 A12), then show that

B11 = A−1
11 + (A−1

11 A12)P
−1(A21A

−1
11 ), B21 = −P−1(A21A

−1
11 ), B12 = −(A−1

11 A12)P
−1,

and B22 = P−1.

2.7.2 Equivalent conditions for Invertibility

Definition 2.7.6 A square matrix A or order n is said to be of full rank if rank (A) = n.

Theorem 2.7.7 For a square matrix A of order n, the following statements are equivalent.

1. A is invertible.

2. A is of full rank.

3. A is row-equivalent to the identity matrix.

4. A is a product of elementary matrices.

Proof. 1 =⇒ 2

Let if possible rank(A) = r < n. Then there exists an invertible matrix P (a product of elementary

matrices) such that PA =

[

B1 B2

0 0

]

, where B1 is an r×r matrix. Since A is invertible, let A−1 =

[

C1

C2

]

,

where C1 is an r × n matrix. Then

P = PIn = P (AA−1) = (PA)A−1 =

[

B1 B2

0 0

] [

C1

C2

]

=

[

B1C1 +B2C2

0

]

. (2.7.1)

Thus the matrix P has n − r rows as zero rows. Hence, P cannot be invertible. A contradiction to P

being a product of invertible matrices. Thus, A is of full rank.

2 =⇒ 3
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Suppose A is of full rank. This implies, the row reduced echelon form of A has all non-zero rows.

But A has as many columns as rows and therefore, the last row of the row reduced echelon form of A

will be (0, 0, . . . , 0, 1). Hence, the row reduced echelon form of A is the identity matrix.

3 =⇒ 4

Since A is row-equivalent to the identity matrix there exist elementary matrices E1, E2, . . . , Ek such

that A = E1E2 · · ·EkIn. That is, A is product of elementary matrices.

4 =⇒ 1

SupposeA = E1E2 · · ·Ek; where the Ei’s are elementary matrices. We know that elementary matrices

are invertible and product of invertible matrices is also invertible, we get the required result. �

The ideas of Theorem 2.7.7 will be used in the next subsection to find the inverse of an invertible

matrix. The idea used in the proof of the first part also gives the following important Theorem. We

repeat the proof for the sake of clarity.

Theorem 2.7.8 Let A be a square matrix of order n.

1. Suppose there exists a matrix B such that AB = In. Then A
−1 exists.

2. Suppose there exists a matrix C such that CA = In. Then A
−1 exists.

Proof. Suppose that AB = In. We will prove that the matrix A is of full rank. That is, rank (A) = n.

Let if possible, rank(A) = r < n. Then there exists an invertible matrix P (a product of elementary

matrices) such that PA =

[

C1 C2

0 0

]

. Let B =

[

B1

B2

]

, where B1 is an r × n matrix. Then

P = PIn = P (AB) = (PA)B =

[

C1 C2

0 0

][

B1

B2

]

=

[

C1B1 + C2B2

0

]

. (2.7.2)

Thus the matrix P has n− r rows as zero rows. So, P cannot be invertible. A contradiction to P being

a product of invertible matrices. Thus, rank (A) = n. That is, A is of full rank. Hence, using Theorem

2.7.7, A is an invertible matrix. That is, BA = In as well.

Using the first part, it is clear that the matrix C in the second part, is invertible. Hence

AC = In = CA.

Thus, A is invertible as well. �

Remark 2.7.9 This theorem implies the following: “if we want to show that a square matrix A of order

n is invertible, it is enough to show the existence of

1. either a matrix B such that AB = In

2. or a matrix C such that CA = In.

Theorem 2.7.10 The following statements are equivalent for a square matrix A of order n.

1. A is invertible.

2. Ax = 0 has only the trivial solution x = 0.

3. Ax = b has a solution x for every b.
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Proof. 1 =⇒ 2

Since A is invertible, by Theorem 2.7.7 A is of full rank. That is, for the linear system Ax = 0, the

number of unknowns is equal to the rank of the matrix A. Hence, by Theorem 2.6.1 the system Ax = 0

has a unique solution x = 0.

2 =⇒ 1

Let if possible A be non-invertible. Then by Theorem 2.7.7, the matrix A is not of full rank. Thus

by Corollary 2.6.3, the linear system Ax = 0 has infinite number of solutions. This contradicts the

assumption that Ax = 0 has only the trivial solution x = 0.

1 =⇒ 3

Since A is invertible, for every b, the system Ax = b has a unique solution x = A−1b.

3 =⇒ 1

For 1 ≤ i ≤ n, define ei = (0, . . . , 0, 1
︸︷︷︸

ith position

, 0, . . . , 0)t, and consider the linear system Ax = ei.

By assumption, this system has a solution xi for each i, 1 ≤ i ≤ n. Define a matrix B = [x1,x2, . . . ,xn].

That is, the ith column of B is the solution of the system Ax = ei. Then

AB = A[x1,x2 . . . ,xn] = [Ax1, Ax2 . . . , Axn] = [e1, e2 . . . , en] = In.

Therefore, by Theorem 2.7.8, the matrix A is invertible. �

Exercise 2.7.11 1. Show that a triangular matrix A is invertible if and only if each diagonal entry of A

is non-zero.

2. Let A be a 1 × 2 matrix and B be a 2 × 1 matrix having positive entries. Which of BA or AB is

invertible? Give reasons.

3. Let A be an n×m matrix and B be an m × n matrix. Prove that the matrix I − BA is invertible if

and only if the matrix I −AB is invertible.

2.7.3 Inverse and Gauss-Jordan Method

We first give a consequence of Theorem 2.7.7 and then use it to find the inverse of an invertible matrix.

Corollary 2.7.12 Let A be an invertible n×n matrix. Suppose that a sequence of elementary row-operations

reduces A to the identity matrix. Then the same sequence of elementary row-operations when applied to the

identity matrix yields A−1.

Proof. Let A be a square matrix of order n. Also, let E1, E2, . . . , Ek be a sequence of elementary row

operations such that E1E2 · · ·EkA = In. Then E1E2 · · ·EkIn = A−1. This implies A−1 = E1E2 · · ·Ek.

�

Summary: Let A be an n × n matrix. Apply the Gauss-Jordan method to the matrix [A In].

Suppose the row reduced echelon form of the matrix [A In] is [B C]. If B = In, then A
−1 = C or else

A is not invertible.

Example 2.7.13 Find the inverse of the matrix






2 1 1

1 2 1

1 1 2




 using Gauss-Jordan method.

Solution: Consider the matrix






2 1 1 1 0 0

1 2 1 0 1 0

1 1 2 0 0 1




 . A sequence of steps in the Gauss-Jordan method

are:
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1.






2 1 1 1 0 0

1 2 1 0 1 0

1 1 2 0 0 1






−−−−−→
R1(1/2)






1 1
2

1
2

1
2 0 0

1 2 1 0 1 0

1 1 2 0 0 1






2.






1 1
2

1
2

1
2 0 0

1 2 1 0 1 0

1 1 2 0 0 1






−−−−−→
R21(−1)
−−−−−→
R31(−1)






1 1
2

1
2

1
2 0 0

0 3
2

1
2 − 1

2 1 0

0 1
2

3
2 − 1

2 0 1






3.






1 1
2

1
2

1
2 0 0

0 3
2

1
2 − 1

2 1 0

0 1
2

3
2 − 1

2 0 1





−−−−−→
R2(2/3)






1 1
2

1
2

1
2 0 0

0 1 1
3 − 1

3
2
3 0

0 1
2

3
2 − 1

2 0 1






4.






1 1
2

1
2

1
2 0 0

0 1 1
3 − 1

3
2
3 0

0 1
2

3
2 − 1

2 0 1





−−−−−−−→
R32(−1/2)






1 1
2

1
2

1
2 0 0

0 1 1
3 − 1

3
2
3 0

0 0 4
3 − 1

3 − 1
3 1






5.






1 1
2

1
2

1
2 0 0

0 1 1
3 − 1

3
2
3 0

0 0 4
3 − 1

3 − 1
3 1






−−−−−→
R3(3/4)






1 1
2

1
2

1
2 0 0

0 1 1
3 − 1

3
2
3 0

0 0 1 − 1
4 − 1

4
3
4






6.







1 1

2

1

2

1

2
0 0

0 1 1

3

−1

3

2

3
0

0 0 1 −1

4

−1

4

3

4







−−−−−−−→
R23(−1/3)
−−−−−−−→
R13(−1/2)







1 1

2
0 5

8

1

8

−3

8

0 1 0 −1

4

3

4

−1

4

0 0 1 −1

4

−1

4

3

4







7.







1 1

2
0 5

8

1

8

−3

8

0 1 0 −1

4

3

4

−1

4

0 0 1 −1

4

−1

4

3

4







−−−−−−−→
R12(−1/2)







1 0 0 3

4

−1

4

−1

4

0 1 0 −1

4

3

4

−1

4

0 0 1 −1

4

−1

4

3

4






.

8. Thus, the inverse of the given matrix is






3/4 −1/4 −1/4

−1/4 3/4 −1/4

−1/4 −1/4 3/4




 .

Exercise 2.7.14 Find the inverse of the following matrices using Gauss-Jordan method.

(i)






1 2 3

1 3 2

2 4 7




 , (ii)






1 3 3

2 3 2

2 4 7




 , (iii)






2 −1 3

−1 3 −2

2 4 1




 .

2.8 Determinant

Notation: For an n× n matrix A, by A(α|β), we mean the submatrix B of A, which is obtained by

deleting the αth row and βth column.

Example 2.8.1 Consider a matrix A =






1 2 3

1 3 2

2 4 7




 . Then A(1|2) =

[

1 2

2 7

]

, A(1|3) =

[

1 3

2 4

]

, and

A(1, 2|1, 3) = [4].

Definition 2.8.2 (Determinant of a Square Matrix) Let A be a square matrix of order n. With A, we

associate inductively (on n) a number, called the determinant of A, written det(A) (or |A|) by

det(A) =







a if A = [a] (n = 1),
n∑

j=1

(−1)1+ja1j det
(
A(1|j)

)
, otherwise.
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Definition 2.8.3 (Minor, Cofactor of a Matrix) The number det (A(i|j)) is called the (i, j)th minor of

A. We write Aij = det (A(i|j)) . The (i, j)th cofactor of A, denoted Cij , is the number (−1)i+jAij .

Example 2.8.4 1. Let A =

[

a11 a12

a21 a22

]

. Then, det(A) = |A| = a11A11 − a12A12 = a11a22 − a12a21.

For example, for A =

[

1 2

2 1

]

det(A) = |A| = 1− 2 · 2 = −3.

2. Let A =






a11 a12 a13

a21 a22 a23

a31 a32 a33




 . Then,

det(A) = |A| = a11A11 − a12A12 + a13A13

= a11

∣
∣
∣
∣
∣

a22 a23

a32 a33

∣
∣
∣
∣
∣
− a12

∣
∣
∣
∣
∣

a21 a23

a31 a33

∣
∣
∣
∣
∣
+ a13

∣
∣
∣
∣
∣

a21 a22

a31 a32

∣
∣
∣
∣
∣

= a11(a22a33 − a23a32)− a12(a21a33 − a31a23) + a13(a21a32 − a31a22)

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31 (2.8.1)

For example, if A =






1 2 3

2 3 1

1 2 2




 then

det(A) = |A| = 1 ·
∣
∣
∣
∣
∣

3 1

2 2

∣
∣
∣
∣
∣
− 2 ·

∣
∣
∣
∣
∣

2 1

1 2

∣
∣
∣
∣
∣
+ 3 ·

∣
∣
∣
∣
∣

2 3

1 2

∣
∣
∣
∣
∣
= 4− 2(3) + 3(1) = 1.

Exercise 2.8.5 1. Find the determinant of the following matrices.

i)








1 2 7 8

0 4 3 2

0 0 2 3

0 0 0 5







, ii)








3 5 2 1

0 2 0 5

6 −7 1 0

2 0 3 0







, iii)






1 a a2

1 b b2

1 c c2




 .

2. Show that the determinant of a triangular matrix is the product of its diagonal entries.

Definition 2.8.6 A matrix A is said to be a singular matrix if det(A) = 0. It is called non-singular if

det(A) 6= 0.

The proof of the next theorem is omitted. The interested reader is advised to go through Appendix

14.3.

Theorem 2.8.7 Let A be an n× n matrix. Then

1. if B is obtained from A by interchanging two rows, then det(B) = − det(A),

2. if B is obtained from A by multiplying a row by c then det(B) = c det(A),

3. if all the elements of one row or column are 0 then det(A) = 0,

4. if B is obtained from A by replacing the jth row by itself plus k times the ith row, where i 6= j then

det(B) = det(A),

5. if A is a square matrix having two rows equal then det(A) = 0.



42 CHAPTER 2. LINEAR SYSTEM OF EQUATIONS

Remark 2.8.8 1. Many authors define the determinant using “Permutations.” It turns out that the

way we have defined determinant is usually called the expansion of the determinant along

the first row.

2. Part 1 of Lemma 2.8.7 implies that “one can also calculate the determinant by expanding along

any row.” Hence, for an n× n matrix A, for every k, 1 ≤ k ≤ n, one also has

det(A) =

n∑

j=1

(−1)k+jakj det
(
A(k|j)

)
.

Remark 2.8.9 1. Let ut = (u1, u2) and vt = (v1, v2) be two vectors in R2. Then consider the par-

allelogram, PQRS, formed by the vertices {P = (0, 0)t, Q = u, S = v, R = u+ v}. We

Claim: Area (PQRS) =

∣
∣
∣
∣
∣
det

([

u1 v1

u2 v2

])∣
∣
∣
∣
∣
= |u1v2 − u2v1|.

Recall that the dot product, u • v = u1v1 + u2v2, and
√
u • u =

√

(u21 + u22), is the length of the

vector u. We denote the length by ℓ(u). With the above notation, if θ is the angle between the

vectors u and v, then

cos(θ) =
u • v

ℓ(u)ℓ(v)
.

Which tells us,

Area(PQRS) = ℓ(u)ℓ(v) sin(θ) = ℓ(u)ℓ(v)

√

1−
(

u • v
ℓ(u)ℓ(v)

)2

=
√

ℓ(u)2 + ℓ(v)2 − (u • v)2 =
√

(u1v2 − u2v1)2

= |u1v2 − u2v1|.

Hence, the claim holds. That is, in R
2, the determinant is ± times the area of the parallelogram.

2. Let u = (u1, u2, u3),v = (v1, v2, v3) and w = (w1, w2, w3) be three elements of R3. Recall that the

cross product of two vectors in R3 is,

u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

Note here that if A = [ut,vt,wt], then

det(A) =

∣
∣
∣
∣
∣
∣
∣

u1 v1 w1

u2 v2 w2

u3 v3 w3

∣
∣
∣
∣
∣
∣
∣

= u • (v ×w) = v • (w × u) = w • (u× v).

Let P be the parallelopiped formed with (0, 0, 0) as a vertex and the vectors u,v,w as adjacent

vertices. Then observe that u × v is a vector perpendicular to the plane that contains the paral-

lelogram formed by the vectors u and v. So, to compute the volume of the parallelopiped P, we

need to look at cos(θ), where θ is the angle between the vector w and the normal vector to the

parallelogram formed by u and v. So,

volume (P ) = |w • (u× v)|.

Hence, | det(A)| = volume (P ).

3. Let u1,u2, . . . ,un ∈ R
n×1 and let A = [u1,u2, . . . ,un] be an n × n matrix. Then the following

properties of det(A) also hold for the volume of an n-dimensional parallelopiped formed with

0 ∈ R
n×1 as one vertex and the vectors u1,u2, . . . ,un as adjacent vertices:
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(a) If u1 = (1, 0, . . . , 0)t,u2 = (0, 1, 0, . . . , 0)t, . . . , and un = (0, . . . , 0, 1)t, then det(A) = 1. Also,

volume of a unit n-dimensional cube is 1.

(b) If we replace the vector ui by αui, for some α ∈ R, then the determinant of the new matrix

is α · det(A). This is also true for the volume, as the original volume gets multiplied by α.

(c) If u1 = ui for some i, 2 ≤ i ≤ n, then the vectors u1,u2, . . . ,un will give rise to an (n− 1)-

dimensional parallelopiped. So, this parallelopiped lies on an (n−1)-dimensional hyperplane.

Thus, its n-dimensional volume will be zero. Also, | det(A)| = |0| = 0.

In general, for any n× n matrix A, it can be proved that | det(A)| is indeed equal to the volume

of the n-dimensional parallelepiped. The actual proof is beyond the scope of this book.

2.8.1 Adjoint of a Matrix

Recall that for a square matrix A, the notations Aij and Cij = (−1)i+jAij were respectively used to

denote the (i, j)th minor and the (i, j)th cofactor of A.

Definition 2.8.10 (Adjoint of a Matrix) Let A be an n× n matrix. The matrix B = [bij ] with bij = Cji,

for 1 ≤ i, j ≤ n is called the Adjoint of A, denoted Adj(A).

Example 2.8.11 Let A =






1 2 3

2 3 1

1 2 2




 . Then Adj(A) =






4 2 −7

−3 −1 5

1 0 −1




 ;

as C11 = (−1)1+1A11 = 4, C12 = (−1)1+2A12 = −3, C13 = (−1)1+3A13 = 1, and so on.

Theorem 2.8.12 Let A be an n× n matrix. Then

1. for 1 ≤ i ≤ n,
n∑

j=1

aij Cij =
n∑

j=1

aij(−1)i+j Aij = det(A),

2. for i 6= ℓ,
n∑

j=1

aij Cℓj =
n∑

j=1

aij(−1)ℓ+j Aℓj = 0, and

3. A(Adj(A)) = det(A)In. Thus,

det(A) 6= 0 ⇒ A−1 =
1

det(A)
Adj(A). (2.8.2)

Proof. Let B = [bij ] be a square matrix with

• the ℓth row of B as the ith row of A,

• the other rows of B are the same as that of A.

By the construction of B, two rows (ith and ℓth) are equal. By Part 5 of Lemma 2.8.7, det(B) = 0. By

construction again, det
(
A(ℓ|j)

)
= det

(
B(ℓ|j)

)
for 1 ≤ j ≤ n. Thus, by Remark 2.8.8, we have

0 = det(B) =

n∑

j=1

(−1)ℓ+jbℓj det
(
B(ℓ|j)

)
=

n∑

j=1

(−1)ℓ+jaij det
(
B(ℓ|j)

)

=

n∑

j=1

(−1)ℓ+jaij det
(
A(ℓ|j)

)
=

n∑

j=1

aijCℓj .
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Now,

(

A
(
Adj(A)

)
)

ij

=

n∑

k=1

aik
(
Adj(A)

)

kj
=

n∑

k=1

aikCjk

=

{

0 if i 6= j

det(A) if i = j

Thus, A(Adj(A)) = det(A)In. Since, det(A) 6= 0, A
1

det(A)
Adj(A) = In. Therefore, A has a right

inverse. Hence, by Theorem 2.7.8 A has an inverse and

A−1 =
1

det(A)
Adj(A).

�

Example 2.8.13 Let A =






1 −1 0

0 1 1

1 2 1




 . Then

Adj(A) =






−1 1 −1

1 1 −1

−1 −3 1






and det(A) = −2. By Theorem 2.8.12.3, A−1 =






1/2 −1/2 1/2

−1/2 −1/2 1/2

1/2 3/2 −1/2




 .

The next corollary is an easy consequence of Theorem 2.8.12 (recall Theorem 2.7.8).

Corollary 2.8.14 If A is a non-singular matrix, then
(
Adj(A)

)
A = det(A)In and

n∑

i=1

aij Cik =

{

det(A) if j = k

0 if j 6= k
.

Theorem 2.8.15 Let A and B be square matrices of order n. Then det(AB) = det(A) det(B).

Proof. Step 1. Let det(A) 6= 0.

This means, A is invertible. Therefore, either A is an elementary matrix or is a product of elementary

matrices (see Theorem 2.7.7). So, let E1, E2, . . . , Ek be elementary matrices such that A = E1E2 · · ·Ek.

Then, by using Parts 1, 2 and 4 of Lemma 2.8.7 repeatedly, we get

det(AB) = det(E1E2 · · ·EkB) = det(E1) det(E2 · · ·EkB)

= det(E1) det(E2) det(E3 · · ·EkB)

= det(E1E2) det(E3 · · ·EkB)

=
...

= det(E1E2 · · ·Ek) det(B)

= det(A) det(B).

Thus, we get the required result in case A is non-singular.
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Step 2. Suppose det(A) = 0.

Then A is not invertible. Hence, there exists an invertible matrix P such that PA = C, where C =

[

C1

0

]

.

So, A = P−1C, and therefore

det(AB) = det((P−1C)B) = det(P−1(CB)) = det

(

P−1

[

C1B

0

])

= det(P−1) · det
([

C1B

0

])

as P−1 is non-singular

= det(P ) · 0 = 0 = 0 · det(B) = det(A) det(B).

Thus, the proof of the theorem is complete. �

Corollary 2.8.16 Let A be a square matrix. Then A is non-singular if and only if A has an inverse.

Proof. Suppose A is non-singular. Then det(A) 6= 0 and therefore, A−1 =
1

det(A)
Adj(A). Thus, A

has an inverse.

Suppose A has an inverse. Then there exists a matrix B such that AB = I = BA. Taking determinant

of both sides, we get

det(A) det(B) = det(AB) = det(I) = 1.

This implies that det(A) 6= 0. Thus, A is non-singular. �

Theorem 2.8.17 Let A be a square matrix. Then det(A) = det(At).

Proof. If A is a non-singular Corollary 2.8.14 gives det(A) = det(At).

If A is singular, then det(A) = 0. Hence, by Corollary 2.8.16, A doesn’t have an inverse. There-

fore, At also doesn’t have an inverse (for if At has an inverse then A−1 =
(
(At)−1

)t
). Thus again by

Corollary 2.8.16, det(At) = 0. Therefore, we again have det(A) = 0 = det(At).

Hence, we have det(A) = det(At). �

2.8.2 Cramer’s Rule

Recall the following:

• The linear system Ax = b has a unique solution for every b if and only if A−1 exists.

• A has an inverse if and only if det(A) 6= 0.

Thus, Ax = b has a unique solution for every b if and only if det(A) 6= 0.

The following theorem gives a direct method of finding the solution of the linear system Ax = b

when det(A) 6= 0.

Theorem 2.8.18 (Cramer’s Rule) Let Ax = b be a linear system with n equations in n unknowns. If

det(A) 6= 0, then the unique solution to this system is

xj =
det(Aj)

det(A)
, for j = 1, 2, . . . , n,

where Aj is the matrix obtained from A by replacing the jth column of A by the column vector b.
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Proof. Since det(A) 6= 0, A−1 =
1

det(A)
Adj(A). Thus, the linear system Ax = b has the solution

x =
1

det(A)
Adj(A)b. Hence, xj , the jth coordinate of x is given by

xj =
b1C1j + b2C2j + · · ·+ bnCnj

det(A)
=

det(Aj)

det(A)
.

�

The theorem implies that

x1 =
1

det(A)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b1 a12 · · · a1n

b2 a22 · · · a2n
...

...
. . .

...

bn an2 · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and in general

xj =
1

det(A)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 · · · a1j−1 b1 a1j+1 · · · a1n

a12 · · · a2j−1 b2 a2j+1 · · · a2n
...

. . .
...

...
...

. . .
...

a1n · · · anj−1 bn anj+1 · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

for j = 2, 3, . . . , n.

Example 2.8.19 Suppose that A =






1 2 3

2 3 1

1 2 2




 and b =






1

1

1




 . Use Cramer’s rule to find a vector x such

that Ax = b.

Solution: Check that det(A) = 1. Therefore x1 =

∣
∣
∣
∣
∣
∣
∣

1 2 3

1 3 1

1 2 2

∣
∣
∣
∣
∣
∣
∣

= −1,

x2 =

∣
∣
∣
∣
∣
∣
∣

1 1 3

2 1 1

1 1 2

∣
∣
∣
∣
∣
∣
∣

= 1, and x3 =

∣
∣
∣
∣
∣
∣
∣

1 2 1

2 3 1

1 2 1

∣
∣
∣
∣
∣
∣
∣

= 0. That is, xt = (−1, 1, 0).

2.9 Miscellaneous Exercises

Exercise 2.9.1 1. Let A be an orthogonal matrix. Show that detA = ±1.

2. If A and B are two n × n non-singular matrices, are the matrices A + B and A − B non-singular?

Justify your answer.

3. For an n× n matrix A, prove that the following conditions are equivalent:

(a) A is singular (A−1 doesn’t exist).

(b) rank(A) 6= n.

(c) det(A) = 0.

(d) A is not row-equivalent to In, the identity matrix of order n.

(e) Ax = 0 has a non-trivial solution for x.

(f) Ax = b doesn’t have a unique solution, i.e., it has no solutions or it has infinitely many solutions.
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4. Let A =











2 0 6 0 4

5 3 2 2 7

2 5 7 5 5

2 0 9 2 7

7 8 4 2 1











. We know that the numbers 20604, 53227, 25755, 20927 and 78421 are

all divisible by 17. Does this imply 17 divides det(A)?

5. Let A = [aij ]n×n where aij = xj−1
i . Show that det(A) =

∏

1≤i<j≤n

(xj − xi). [The matrix A is usually

called the Van-dermonde matrix.]

6. Let A = [aij ] with aij = max{i, j} be an n× n matrix. Compute detA.

7. Let A = [aij ] with aij = 1/(i+ j) be an n× n matrix. Show that A is invertible.

8. Solve the following system of equations by Cramer’s rule.

i) x+ y + z − w = 1, x+ y − z + w = 2, 2x+ y + z − w = 7, x+ y + z + w = 3.

ii) x− y + z − w = 1, x+ y − z + w = 2, 2x+ y − z − w = 7, x− y − z + w = 3.

9. Suppose A = [aij ] and B = [bij ] are two n × n matrices such that bij = pi−jaij for 1 ≤ i, j ≤ n for

some non-zero real number p. Then compute det(B) in terms of det(A).

10. The position of an element aij of a determinant is called even or odd according as i+ j is even or odd.

Show that

(a) If all the entries in odd positions are multiplied with −1 then the value of the determinant doesn’t

change.

(b) If all entries in even positions are multiplied with −1 then the determinant

i. does not change if the matrix is of even order.

ii. is multiplied by −1 if the matrix is of odd order.

11. Let A be an n×n Hermitian matrix, that is, A∗ = A. Show that detA is a real number. [A is a matrix

with complex entries and A∗ = At.]

12. Let A be an n× n matrix. Then show that

A is invertible ⇐⇒ Adj(A) is invertible.

13. Let A and B be invertible matrices. Prove that Adj(AB) = Adj(B)Adj(A).

14. Let P =

[

A B

C D

]

be a rectangular matrix with A a square matrix of order n and |A| 6= 0. Then show

that rank (P ) = n if and only if D = CA−1B.
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Chapter 3

Finite Dimensional Vector Spaces

Consider the problem of finding the set of points of intersection of the two planes 2x + 3y + z + u = 0

and 3x+ y + 2z + u = 0.

Let V be the set of points of intersection of the two planes. Then V has the following properties:

1. The point (0, 0, 0, 0) is an element of V.

2. For the points (−1, 0, 1, 1) and (−5, 1, 7, 0) which belong to V ; the point (−6, 1, 8, 1) = (−1, 0, 1, 1)+

(−5, 1, 7, 0) ∈ V.

3. Let α ∈ R. Then the point α(−1, 0, 1, 1) = (−α, 0, α, α) also belongs to V.

Similarly, for an m × n real matrix A, consider the set V, of solutions of the homogeneous linear

system Ax = 0. This set satisfies the following properties:

1. If Ax = 0 and Ay = 0, then x,y ∈ V. Then x+y ∈ V as A(x+ y) = Ax+Ay = 0+ 0 = 0. Also,

x+ y = y + x.

2. It is clear that if x,y, z ∈ V then (x+ y) + z = x+ (y + z).

3. The vector 0 ∈ V as A0 = 0.

4. If Ax = 0 then A(−x) = −Ax = 0. Hence, −x ∈ V.

5. Let α ∈ R and x ∈ V. Then αx ∈ V as A(αx) = αAx = 0.

Thus we are lead to the following.

3.1 Vector Spaces

3.1.1 Definition

Definition 3.1.1 (Vector Space) A vector space over F, denoted V (F), is a non-empty set, satisfying the

following axioms:

1. Vector Addition: To every pair u,v ∈ V there corresponds a unique element u⊕v in V such that

(a) u⊕ v = v ⊕ u (Commutative law).

(b) (u⊕ v)⊕w = u⊕ (v ⊕w) (Associative law).

(c) There is a unique element 0 in V (the zero vector) such that u⊕ 0 = u, for every u ∈ V (called

the additive identity).

49
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(d) For every u ∈ V there is a unique element −u ∈ V such that u⊕(−u) = 0 (called the additive

inverse).

⊕ is called vector addition.

2. Scalar Multiplication: For each u ∈ V and α ∈ F, there corresponds a unique element α⊙ u in

V such that

(a) α · (β ⊙ u) = (αβ)⊙ u for every α, β ∈ F and u ∈ V.

(b) 1⊙ u = u for every u ∈ V, where 1 ∈ R.

3. Distributive Laws: relating vector addition with scalar multiplication

For any α, β ∈ F and u,v ∈ V, the following distributive laws hold:

(a) α⊙ (u⊕ v) = (α⊙ u) ⊕ (α⊙ v).

(b) (α+ β)⊙ u = (α⊙ u) ⊕ (β ⊙ u).

Note: the number 0 is the element of F whereas 0 is the zero vector.

Remark 3.1.2 The elements of F are called scalars, and that of V are called vectors. If F = R, the

vector space is called a real vector space. If F = C, the vector space is called a complex vector

space.

We may sometimes write V for a vector space if F is understood from the context.

Some interesting consequences of Definition 3.1.1 is the following useful result. Intuitively, these

results seem to be obvious but for better understanding of the axioms it is desirable to go through the

proof.

Theorem 3.1.3 Let V be a vector space over F. Then

1. u⊕ v = u implies v = 0.

2. α⊙ u = 0 if and only if either u is the zero vector or α = 0.

3. (−1)⊙ u = −u for every u ∈ V.

Proof. Proof of Part 1.

For u ∈ V, by Axiom 1d there exists −u ∈ V such that −u⊕ u = 0.

Hence, u⊕ v = u is equivalent to

−u⊕ (u⊕ v) = −u⊕ u ⇐⇒ (−u⊕ u)⊕ v = 0 ⇐⇒ 0⊕ v = 0 ⇐⇒ v = 0.

Proof of Part 2.

As 0 = 0⊕ 0, using the distributive law, we have

α⊙ 0 = α⊙ (0⊕ 0) = (α⊙ 0) ⊕ (α ⊙ 0).

Thus, for any α ∈ F, the first part implies α⊙ 0 = 0. In the same way,

0⊙ u = (0 + 0)⊙ u = (0⊙ u) ⊕ (0⊙ u).

Hence, using the first part, one has 0⊙ u = 0 for any u ∈ V.

Now suppose α ⊙ u = 0. If α = 0 then the proof is over. Therefore, let us assume α 6= 0 (note that

α is a real or complex number, hence
1

α
exists and

0 =
1

α
⊙ 0 =

1

α
⊙ (α⊙ u) = (

1

α
α)⊙ u = 1⊙ u = u
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as 1⊙ u = u for every vector u ∈ V.

Thus we have shown that if α 6= 0 and α⊙ u = 0 then u = 0.

Proof of Part 3.

We have 0 = 0u = (1 + (−1))u = u+ (−1)u and hence (−1)u = −u. �

3.1.2 Examples

Example 3.1.4 1. The set R of real numbers, with the usual addition and multiplication (i.e., ⊕ ≡ +

and ⊙ ≡ ·) forms a vector space over R.

2. Consider the set R2 = {(x1, x2) : x1, x2 ∈ R}. For x1, x2, y1, y2 ∈ R and α ∈ R, define,

(x1, x2)⊕ (y1, y2) = (x1 + y1, x2 + y2) and α⊙ (x1, x2) = (αx1, αx2).

Then R2 is a real vector space.

3. Let Rn = {(a1, a2, . . . , an) : ai ∈ R, 1 ≤ i ≤ n}, be the set of n-tuples of real numbers. For

u = (a1, . . . , an), v = (b1, . . . , bn) in V and α ∈ R, we define

u⊕ v = (a1 + b1, . . . , an + bn) and α⊙ u = (αa1, . . . , αan)

(called component wise or coordinate wise operations). Then V is a real vector space with addition and

scalar multiplication defined as above. This vector space is denoted by Rn, called the real vector

space of n-tuples.

4. Let V = R+ (the set of positive real numbers). This is not a vector space under usual operations of

addition and scalar multiplication (why?). We now define a new vector addition and scalar multiplication

as

v1 ⊕ v2 = v1 · v2 and α⊙ v = vα

for all v1,v2,v ∈ R+ and α ∈ R. Then R+ is a real vector space with 1 as the additive identity.

5. Let V = R2. Define (x1, x2) ⊕ (y1, y2) = (x1 + y1 + 1, x2 + y2 − 3), α ⊙ (x1, x2) = (αx1 + α −
1, αx2 − 3α + 3) for (x1, x2), (y1, y2) ∈ R2 and α ∈ R. Then it can be easily verified that the vector

(−1, 3) is the additive identity and V is indeed a real vector space.

Recall
√
−1 is denoted i.

6. Consider the set C = {x+ iy : x, y ∈ R} of complex numbers.

(a) For x1 + iy1, x2 + iy2 ∈ C and α ∈ R, define,

(x1 + iy1)⊕ (x2 + iy2) = (x1 + x2) + i(y1 + y2) and

α⊙ (x1 + iy1) = (αx1) + i(αy1).

Then C is a real vector space.

(b) For x1 + iy1, x2 + iy2 ∈ C and α+ iβ ∈ C, define,

(x1 + iy1)⊕ (x2 + iy2) = (x1 + x2) + i(y1 + y2) and

(α+ iβ)⊙ (x1 + iy1) = (αx1 − βy1) + i(αy1 + βx1).

Then C forms a complex vector space.
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7. Consider the set Cn = {(z1, z2, . . . , zn) : zi ∈ C for 1 ≤ i ≤ n}. For (z1, . . . , zn), (w1, . . . , wn) ∈ Cn

and α ∈ F, define,

(z1, . . . , zn)⊕ (w1, . . . , wn) = (z1 + w1, . . . , zn + wn) and

α⊙ (z1, . . . , zn) = (αz1, . . . , αzn).

(a) If the set F is the set C of complex numbers, then Cn is a complex vector space having n-tuple

of complex numbers as its vectors.

(b) If the set F is the set R of real numbers, then Cn is a real vector space having n-tuple of complex

numbers as its vectors.

Remark 3.1.5 In Example 7a, the scalars are Complex numbers and hence i(1, 0) = (i, 0).

Whereas, in Example 7b, the scalars are Real Numbers and hence we cannot write i(1, 0) =

(i, 0).

8. Fix a positive integer n and let Mn(R) denote the set of all n × n matrices with real entries. Then

Mn(R) is a real vector space with vector addition and scalar multiplication defined by

A⊕B = [aij ]⊕ [bij ] = [aij + bij ], α⊙A = α⊙ [aij ] = [αaij ].

9. Fix a positive integer n. Consider the set, Pn(R), of all polynomials of degree ≤ n with coefficients

from R in the indeterminate x. Algebraically,

Pn(R) = {a0 + a1x+ a2x
2 + · · ·+ anx

n : ai ∈ R, 0 ≤ i ≤ n}.

Let f(x), g(x) ∈ Pn(R). Then f(x) = a0 + a1x + a2x
2 + · · ·+ anx

n and g(x) = b0 + b1x + b2x
2 +

· · ·+ bnx
n for some ai, bi ∈ R, 0 ≤ i ≤ n. It can be verified that Pn(R) is a real vector space with the

addition and scalar multiplication defined by:

f(x)⊕ g(x) = (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)x
n, and

α⊙ f(x) = αa0 + αa1x+ · · ·+ αanx
n for α ∈ R.

10. Consider the set P(R), of all polynomials with real coefficients. Let f(x), g(x) ∈ P(R). Observe that

a polynomial of the form a0 + a1x + · · · + amx
m can be written as a0 + a1x + · · · + amx

m + 0 ·
xm+1 + · · ·+ 0 · xp for any p > m. Hence, we can assume f(x) = a0 + a1x+ a2x

2 + · · ·+ apx
p and

g(x) = b0 + b1x+ b2x
2 + · · ·+ bpx

p for some ai, bi ∈ R, 0 ≤ i ≤ p, for some large positive integer p.

We now define the vector addition and scalar multiplication as

f(x) ⊕ g(x) = (a0 + b0) + (a1 + b1)x+ · · ·+ (ap + bp)x
p, and

α⊙ f(x) = αa0 + αa1x+ · · ·+ αapx
p for α ∈ R.

Then P(R) forms a real vector space.

11. Let C([−1, 1]) be the set of all real valued continuous functions on the interval [−1, 1]. For f, g ∈
C([−1, 1]) and α ∈ R, define

(f ⊕ g)(x) = f(x) + g(x), and

(α⊙ f)(x) = αf(x), for all x ∈ [−1, 1].

Then C([−1, 1]) forms a real vector space. The operations defined above are called point wise

addition and scalar multiplication.
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12. Let V and W be real vector spaces with binary operations (+, •) and (⊕,⊙), respectively. Consider

the following operations on the set V ×W : for (x1,y1), (x2,y2) ∈ V ×W and α ∈ R, define

(x1,y1)⊕′ (x2,y2) = (x1 + x2,y1 ⊕ y2), and

α ◦ (x1,y1) = (α • x1, α⊙ y1).

On the right hand side, we write x1 + x2 to mean the addition in V, while y1 ⊕ y2 is the addition in

W. Similarly, α • x1 and α ⊙ y1 come from scalar multiplication in V and W, respectively. With the

above definitions, V ×W also forms a real vector space.

The readers are advised to justify the statements made in the above examples.

From now on, we will use ‘u+ v’ in place of ‘u⊕ v’ and ‘α · u or αu’ in place of ‘α⊙ u’.

3.1.3 Subspaces

Definition 3.1.6 (Vector Subspace) Let S be a non-empty subset of V. S(F) is said to be a subspace

of V (F) if αu+βv ∈ S whenever α, β ∈ F and u,v ∈ S; where the vector addition and scalar multiplication

are the same as that of V (F).

Remark 3.1.7 Any subspace is a vector space in its own right with respect to the vector addition and

scalar multiplication that is defined for V (F).

Example 3.1.8 1. Let V (F) be a vector space. Then

(a) S = {0}, the set consisting of the zero vector 0,

(b) S = V

are vector subspaces of V. These are called trivial subspaces.

2. Let S = {(x, y, z) ∈ R3 : x + y − z = 0}. Then S is a subspace of R3. (S is a plane in R3 passing

through the origin.)

3. Let S = {(x, y, z) ∈ R3 : x + y + z = 3}. Then S is not a subspace of R3. (S is again a plane in R3

but it doesn’t pass through the origin.)

4. Let S = {(x, y, z) ∈ R
3 : z = x}. Then S is a subspace of R3.

5. The vector space Pn(R) is a subspace of the vector space P(R).

Exercise 3.1.9 1. Which of the following are correct statements?

(a) Let S = {(x, y, z) ∈ R3 : z = x2}. Then S is a subspace of R3.

(b) Let V (F) be a vector space. Let x ∈ V. Then the set {αx : α ∈ F} forms a vector subspace of V.

(c) Let W = {f ∈ C([−1, 1]) : f(1/2) = 0}. Then W is a subspace of the real vector space,

C([−1, 1]).

2. Which of the following are subspaces of Rn(R)?

(a) {(x1, x2, . . . , xn) : x1 ≥ 0}.
(b) {(x1, x2, . . . , xn) : x1 + 2x2 = 4x3}.
(c) {(x1, x2, . . . , xn) : x1is rational }.
(d) {(x1, x2, . . . , xn) : x1 = x23}.
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(e) {(x1, x2, . . . , xn) : either x1 or x2 or both is0}.
(f) {(x1, x2, . . . , xn) : |x1| ≤ 1}.

3. Which of the following are subspaces of i)Cn(R) ii)Cn(C)?

(a) {(z1, z2, . . . , zn) : z1is real }.
(b) {(z1, z2, . . . , zn) : z1 + z2 = z3}.
(c) {(z1, z2, . . . , zn) :| z1 |=| z2 |}.

3.1.4 Linear Combinations

Definition 3.1.10 (Linear Span) Let V (F) be a vector space and let S = {u1,u2, . . . ,un} be a non-empty

subset of V. The linear span of S is the set defined by

L(S) = {α1u1 + α2u2 + · · ·+ αnun : αi ∈ F, 1 ≤ i ≤ n}

If S is an empty set we define L(S) = {0}.

Example 3.1.11 1. Note that (4, 5, 5) is a linear combination of (1, 0, 0), (1, 1, 0), and (1, 1, 1) as (4, 5, 5) =

5(1, 1, 1)− 1(1, 0, 0) + 0(1, 1, 0).

For each vector, the linear combination in terms of the vectors (1, 0, 0), (1, 1, 0), and

(1, 1, 1) is unique.

2. Is (4, 5, 5) a linear combination of (1, 2, 3), (−1, 1, 4) and (3, 3, 2)?

Solution: We want to find α1, α2, α3 ∈ R such that

α1(1, 2, 3) + α2(−1, 1, 4) + α3(3, 3, 2) = (4, 5, 5). (3.1.1)

Check that 3(1, 2, 3)+(−1)(−1, 1, 4)+0(3, 3, 2) = (4, 5, 5). Also, in this case, the vector (4, 5, 5) does

not have a unique expression as linear combination of vectors (1, 2, 3), (−1, 1, 4) and

(3, 3, 2).

3. Verify that (4, 5, 5) is not a linear combination of the vectors (1, 2, 1) and (1, 1, 0)?

4. The linear span of S = {(1, 1, 1), (2, 1, 3)} over R is

L(S) = {α(1, 1, 1) + β(2, 1, 3) : α, β ∈ R}
= {(α+ 2β, α+ β, α+ 3β) : α, β ∈ R}
= {(x, y, z) ∈ R

3 : 2x− y = z}.

as 2(α+ 2β)− (α+ β) = α+ 3β, and if z = 2x− y, take α = 2y − x and β = x− y.

Lemma 3.1.12 (Linear Span is a subspace) Let V (F) be a vector space and let S be a non-empty subset

of V. Then L(S) is a subspace of V (F).

Proof. By definition, S ⊂ L(S) and hence L(S) is non-empty subset of V. Let u,v ∈ L(S). Then, for

1 ≤ i ≤ n there exist vectors wi ∈ S, and scalars αi, βi ∈ F such that u = α1w1 + α2w2 + · · ·+ αnwn

and v = β1w1 + β2w2 + · · ·+ βnwn. Hence,

u+ v = (α1 + β)w1 + · · ·+ (αn + βn)wn ∈ L(S).

Thus, L(S) is a vector subspace of V (F). �
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Remark 3.1.13 Let V (F) be a vector space and W ⊂ V be a subspace. If S ⊂W, then L(S) ⊂W is a

subspace of W as W is a vector space in its own right.

Theorem 3.1.14 Let S be a non-empty subset of a vector space V. Then L(S) is the smallest subspace of

V containing S.

Proof. For every u ∈ S, u = 1.u ∈ L(S) and therefore, S ⊆ L(S). To show L(S) is the smallest

subspace of V containing S, consider any subspace W of V containing S. Then by Proposition 3.1.13,

L(S) ⊆W and hence the result follows. �

Definition 3.1.15 Let A be an m × n matrix with real entries. Then using the rows at1, a
t
2, . . . , a

t
m ∈ Rn

and columns b1,b2, . . . ,bn ∈ Rm, we define

1. RowSpace(A) = L(a1, a2, . . . , am),

2. ColumnSpace(A) = L(b1,b2, . . . ,bn),

3. NullSpace(A), denoted N (A) as {xt ∈ Rn : Ax = 0}.

4. Range(A), denoted Im (A) = {y : Ax = y for some xt ∈ Rn}.

Note that the “column space” of a matrix A consists of all b such that Ax = b has a solution. Hence,

ColumnSpace(A) = Range(A).

Lemma 3.1.16 Let A be a real m × n matrix. Suppose B = EA for some elementary matrix E. Then

Row Space(A) = Row Space(B).

Proof. We prove the result for the elementary matrix Eij(c), where c 6= 0 and i < j. Let at1, a
t
2, . . . , a

t
m

be the rows of the matrix A. Then B = Eij(c)A gives us

Row Space(B) = L(a1, . . . , ai−1, ai + caj , . . . , am)

= {α1a1 + · · ·+ αi−1ai−1 + αi(ai + caj) + · · ·
+αmam : αℓ ∈ R, 1 ≤ ℓ ≤ m}

=

{
m∑

ℓ=1

αℓaℓ + αi · caj : αℓ ∈ R, 1 ≤ ℓ ≤ m

}

=

{
m∑

ℓ=1

βℓaℓ : βℓ ∈ R, 1 ≤ ℓ ≤ m

}

= L(a1, . . . , ai−1, ai, . . . , am)

= Row Space(A)

�

Theorem 3.1.17 Let A be an m× n matrix with real entries. Then

1. N (A) is a subspace of Rn;

2. the non-zero row vectors of a matrix in row-reduced form, forms a basis for the row-space. Hence

dim( Row Space(A)) = row rank of (A).
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Proof. Part 1) can be easily proved. Let A be an m×n matrix. For part 2), let D be the row-reduced

form of A with non-zero rows dt
1,d

t
2, . . . ,d

t
r. Then B = EkEk−1 · · ·E2E1A for some elementary matrices

E1, E2, . . . , Ek. Then, a repeated application of Lemma 3.1.16 implies Row Space(A) = Row Space(B).

That is, if the rows of the matrix A are at1, a
t
2, . . . , a

t
m, then

L(a1, a2, . . . , am) = L(b1,b2, . . . ,br).

Hence the required result follows. �

Exercise 3.1.18 1. Show that any two row-equivalent matrices have the same row space. Give examples

to show that the column space of two row-equivalent matrices need not be same.

2. Find all the vector subspaces of R2.

3. Let P and Q be two subspaces of a vector space V. Show that P ∩ Q is a subspace of V. Also show

that P ∪Q need not be a subspace of V. When is P ∪Q a subspace of V ?

4. Let P and Q be two subspaces of a vector space V. Define P +Q = {u+ v : u ∈ P,v ∈ Q}. Show
that P +Q is a subspace of V. Also show that L(P ∪Q) = P +Q.

5. Let S = {x1, x2, x3, x4} where x1 = (1, 0, 0, 0), x2 = (1, 1, 0, 0), x3 = (1, 2, 0, 0), x4 = (1, 1, 1, 0).

Determine all xi such that L(S) = L(S \ {xi}).

6. Let C([−1, 1]) be the set of all continuous functions on the interval [−1, 1] (cf. Example 3.1.4.11). Let

W1 = {f ∈ C([−1, 1]) : f(0.2) = 0}, and

W2 = {f ∈ C([−1, 1]) : f ′(
1

4
)exists }.

Are W1,W2 subspaces of C([−1, 1])?

7. Let V = {(x, y) : x, y ∈ R} over R. Define (x, y) ⊕ (x1, y1) = (x + x1, 0) and α ⊙ (x, y) = (αx, 0).

Show that V is not a vector space over R.

8. Recall that Mn(R) is the real vector space of all n× n real matrices. Prove that the following subsets

are subspaces of Mn(R).

(a) sln = {A ∈Mn(R) : trace(A) = 0}
(b) Symn = {A ∈Mn(R) : A = At}
(c) Skewn = {A ∈Mn(R) : A+At = 0}

9. Let V = R. Define x⊕ y = x− y and α⊙x = −αx. Which vector space axioms are not satisfied here?

In this section, we saw that a vector space has infinite number of vectors. Hence, one can start with

any finite collection of vectors and obtain their span. It means that any vector space contains infinite

number of other vector subspaces. Therefore, the following questions arise:

1. What are the conditions under which, the linear span of two distinct sets the same?

2. Is it possible to find/choose vectors so that the linear span of the chosen vectors is the whole vector

space itself?

3. Suppose we are able to choose certain vectors whose linear span is the whole space. Can we find

the minimum number of such vectors?

We try to answer these questions in the subsequent sections.
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3.2 Linear Independence

Definition 3.2.1 (Linear Independence and Dependence) Let S = {u1,u2, . . . ,um} be any non-empty

subset of V. If there exist some non-zero αi’s 1 ≤ i ≤ m, such that

α1u1 + α2u2 + · · ·+ αmum = 0,

then the set S is called a linearly dependent set. Otherwise, the set S is called linearly independent.

Example 3.2.2 1. Let S = {(1, 2, 1), (2, 1, 4), (3, 3, 5)}.Then check that 1(1, 2, 1)+1(2, 1, 4)+(−1)(3, 3, 5) =

(0, 0, 0). Since α1 = 1, α2 = 1 and α3 = −1 is a solution of (3.2.1), so the set S is a linearly dependent

subset of R3.

2. Let S = {(1, 1, 1), (1, 1, 0), (1, 0, 1)}. Suppose there exists α, β, γ ∈ R such that α(1, 1, 1)+β(1, 1, 0)+

γ(1, 0, 1) = (0, 0, 0). Then check that in this case we necessarily have α = β = γ = 0 which shows

that the set S = {(1, 1, 1), (1, 1, 0), (1, 0, 1)} is a linearly independent subset of R3.

In other words, if S = {u1,u2, . . . ,um} is a non-empty subset of a vector space V, then to check

whether the set S is linearly dependent or independent, one needs to consider the equation

α1u1 + α2u2 + · · ·+ αmum = 0. (3.2.1)

In case α1 = α2 = · · · = αm = 0 is the only solution of (3.2.1), the set S becomes a linearly

independent subset of V. Otherwise, the set S becomes a linearly dependent subset of V.

Proposition 3.2.3 Let V be a vector space.

1. Then the zero-vector cannot belong to a linearly independent set.

2. If S is a linearly independent subset of V, then every subset of S is also linearly independent.

3. If S is a linearly dependent subset of V then every set containing S is also linearly dependent.

Proof. We give the proof of the first part. The reader is required to supply the proof of other parts.

Let S = {0 = u1,u2, . . . ,un} be a set consisting of the zero vector. Then for any γ 6= o, γu1 + ou2 +

· · ·+0un = 0. Hence, for the system α1u1+α2u2+ · · ·+αmum = 0, we have a non-zero solution α1 = γ

and o = α2 = · · · = αn. Therefore, the set S is linearly dependent. �

Theorem 3.2.4 Let {v1,v2, . . . ,vp} be a linearly independent subset of a vector space V. Suppose there

exists a vector vp+1 ∈ V, such that the set {v1,v2, . . . ,vp,vp+1} is linearly dependent, then vp+1 is a linear

combination of v1,v2, . . . ,vp.

Proof. Since the set {v1,v2, . . . ,vp,vp+1} is linearly dependent, there exist scalars α1, α2, . . . , αp+1,

not all zero such that

α1v1 + α2v2 + · · ·+ αpvp + αp+1vp+1 = 0. (3.2.2)

Claim: αp+1 6= 0.

Let if possible αp+1 = 0. Then equation (3.2.2) gives α1v1 + α2v2 + · · · + αpvp = 0 with not all

αi, 1 ≤ i ≤ p zero. Hence, by the definition of linear independence, the set {v1,v2, . . . ,vp} is linearly

dependent which is contradictory to our hypothesis. Thus, αp+1 6= 0 and we get

vp+1 = − 1

αp+1
(α1v1 + · · ·+ αpvp).
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Note that αi ∈ F for every i, 1 ≤ i ≤ p+1 and hence − αi

αp+1
∈ F for 1 ≤ i ≤ p. Hence the result follows.

�

We now state two important corollaries of the above theorem. We don’t give their proofs as they are

easy consequence of the above theorem.

Corollary 3.2.5 Let {u1,u2, . . . ,un} be a linearly dependent subset of a vector space V. Then there exists

a smallest k, 2 ≤ k ≤ n such that

L(u1,u2, . . . ,uk) = L(u1,u2, . . . ,uk−1).

The next corollary follows immediately from Theorem 3.2.4 and Corollary 3.2.5.

Corollary 3.2.6 Let {v1,v2, . . . ,vp} be a linearly independent subset of a vector space V. Suppose there

exists a vector v ∈ V, such that v 6∈ L(v1,v2, . . . ,vp). Then the set {v1,v2, . . . ,vp,v} is also linearly

independent subset of V.

Exercise 3.2.7 1. Consider the vector space R2. Let u1 = (1, 0). Find all choices for the vector u2 such

that the set {u1,u2} is linear independent subset of R2. Does there exist choices for vectors u2 and

u3 such that the set {u1,u2,u3} is linearly independent subset of R2?

2. If none of the elements appearing along the principal diagonal of a lower triangular matrix is zero, show

that the row vectors are linearly independent in Rn. The same is true for column vectors.

3. Let S = {(1, 1, 1, 1), (1,−1, 1, 2), (1, 1,−1, 1)} ⊂ R4. Determine whether or not the vector (1, 1, 2, 1) ∈
L(S)?

4. Show that S = {(1, 2, 3), (−2, 1, 1), (8, 6, 10)} is linearly dependent in R3.

5. Show that S = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} is a linearly independent set in R
3. In general if {f1, f2, f3}

is a linearly independent set then {f1, f1 + f2, f1 + f2 + f3} is also a linearly independent set.

6. In R3, give an example of 3 vectors u,v and w such that {u,v,w} is linearly dependent but any set

of 2 vectors from u,v,w is linearly independent.

7. What is the maximum number of linearly independent vectors in R3?

8. Show that any set of k vectors in R3 is linearly dependent if k ≥ 4.

9. Is the set of vectors (1, 0), ( i, 0) linearly independent subset of C2 (R)?

10. Under what conditions on α are the vectors (1 + α, 1 − α) and (α − 1, 1 + α) in C2(R) linearly

independent?

11. Let u,v ∈ V and M be a subspace of V. Further, let K be the subspace spanned by M and u and H

be the subspace spanned by M and v. Show that if v ∈ K and v 6∈M then u ∈ H.

3.3 Bases

Definition 3.3.1 (Basis of a Vector Space) 1. A non-empty subset B of a vector space V is called a

basis of V if

(a) B is a linearly independent set, and

(b) L(B) = V, i.e., every vector in V can be expressed as a linear combination of the elements of B.
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2. A vector in B is called a basis vector.

Remark 3.3.2 Let {v1,v2, . . . ,vp} be a basis of a vector space V (F). Then any v ∈ V is a unique

linear combination of the basis vectors, v1,v2, . . . ,vp.

Observe that if there exists a v ∈W such that v = α1v1 +α2v2+ · · ·+αpvp and v = β1v1 +β2v2+

· · ·+ βpvp then

0 = v − v = (α1 − β1)v1 + (α2 − β2)v2 + · · ·+ (αp − βp)vp.

But then the set {v1,v2, . . . ,vp} is linearly independent and therefore the scalars αi − βi for 1 ≤ i ≤ p

must all be equal to zero. Hence, for 1 ≤ i ≤ p, αi = βi and we have the uniqueness.

By convention, the linear span of an empty set is {0}. Hence, the empty set is a basis of the vector

space {0}.

Example 3.3.3 1. Check that if V = {(x, y, 0) : x, y ∈ R} ⊂ R3, then B = {(1, 0, 0), (0, 1, 0)} or

B = {(1, 0, 0), (1, 1, 0)} or B = {(2, 0, 0), (1, 3, 0)} or · · · are bases of V.

2. For 1 ≤ i ≤ n, let ei = (0, . . . , 0, 1
︸︷︷︸

i th place

, 0, . . . , 0) ∈ R
n. Then, the set B = {e1, e2, . . . , en} forms

a basis of Rn. This set is called the standard basis of Rn.

That is, if n = 3, then the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} forms an standard basis of R3.

3. Let V = {(x, y, z) : x+y−z = 0, x, y, z ∈ R} be a vector subspace ofR3. Then S = {(1, 1, 2), (2, 1, 3), (1, 2, 3)} ⊂
V. It can be easily verified that the vector (3, 2, 5) ∈ V and

(3, 2, 5) = (1, 1, 2) + (2, 1, 3) = 4(1, 1, 2)− (1, 2, 3).

Then by Remark 3.3.2, S cannot be a basis of V.

A basis of V can be obtained by the following method:

The condition x+ y − z = 0 is equivalent to z = x+ y. we replace the value of z with x+ y to get

(x, y, z) = (x, y, x+ y) = (x, 0, x) + (0, y, y) = x(1, 0, 1) + y(0, 1, 1).

Hence, {(1, 0, 1), (0, 1, 1)} forms a basis of V.

4. Let V = {a+ ib : a, b ∈ R} and F = C. That is, V is a complex vector space. Note that any element

a+ ib ∈ V can be written as a+ ib = (a+ ib)1. Hence, a basis of V is {1}.

5. Let V = {a+ ib : a, b ∈ R} and F = R. That is, V is a real vector space. Any element a+ ib ∈ V is

expressible as a · 1+ b · i. Hence a basis of V is {1, i}.
Observe that i is a vector in C. Also, i 6∈ R and hence i · (1 + 0 · i) is not defined.

6. Recall the vector space P(R), the vector space of all polynomials with real coefficients. A basis of this

vector space is the set

{1, x, x2, . . . , xn, . . .}.

This basis has infinite number of vectors as the degree of the polynomial can be any positive integer.

Definition 3.3.4 (Finite Dimensional Vector Space) A vector space V is said to be finite dimensional if

there exists a basis consisting of finite number of elements. Otherwise, the vector space V is called infinite

dimensional.

In Example 3.3.3, the vector space of all polynomials is an example of an infinite dimensional vector

space. All the other vector spaces are finite dimensional.
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Remark 3.3.5 We can use the above results to obtain a basis of any finite dimensional vector space V

as follows:

Step 1: Choose a non-zero vector, say, v1 ∈ V. Then the set {v1} is linearly independent.

Step 2: If V = L(v1), we have got a basis of V. Else there exists a vector, say, v2 ∈ V such that

v2 6∈ L(v1). Then by Corollary 3.2.6, the set {v1,v2} is linearly independent.

Step 3: If V = L(v1,v2), then {v1,v2} is a basis of V. Else there exists a vector, say, v3 ∈ V such

that v3 6∈ L(v1,v2). So, by Corollary 3.2.6, the set {v1,v2,v3} is linearly independent.

At the ith step, either V = L(v1,v2, . . . ,vi), or L(v1,v2, . . . ,vi) 6= V.

In the first case, we have {v1,v2, . . . ,vi} as a basis of V.

In the second case, L(v1,v2, . . . ,vi) ⊂ V . So, we choose a vector, say, vi+1 ∈ V such that vi+1 6∈
L(v1,v2, . . . ,vi). Therefore, by Corollary 3.2.6, the set {v1,v2, . . . ,vi+1} is linearly independent.

This process will finally end as V is a finite dimensional vector space.

Exercise 3.3.6 1. Let S = {v1,v2, . . . ,vp} be a subset of a vector space V (F). Suppose L(S) = V but

S is not a linearly independent set. Then prove that each vector in V can be expressed in more than

one way as a linear combination of vectors from S.

2. Show that the set {(1, 0, 1), (1, i, 0), (1, 1, 1− i)} is a basis of C3(C).

3. Let A be a matrix of rank r. Then show that the r non-zero rows in the row-reduced echelon form of

A are linearly independent and they form a basis of the row space of A.

3.3.1 Important Results

Theorem 3.3.7 Let {v1,v2, . . . ,vn} be a basis of a given vector space V. If {w1,w2, . . . ,wm} is a set of

vectors from V with m > n then this set is linearly dependent.

Proof. Since we want to find whether the set {w1,w2, . . . ,wm} is linearly independent or not, we

consider the linear system

α1w1 + α2w2 + · · ·+ αmwm = 0 (3.3.1)

with α1, α2, . . . , αm as the m unknowns. If the solution set of this linear system of equations has more

than one solution, then this set will be linearly dependent.

As {v1,v2, . . . ,vn} is a basis of V and wi ∈ V, for each i, 1 ≤ i ≤ m, there exist scalars aij , 1 ≤ i ≤
n, 1 ≤ j ≤ m, such that

w1 = a11v1 + a21v2 + · · ·+ an1vn

w2 = a12v1 + a22v2 + · · ·+ an2vn

... =
...

wm = a1mv1 + a2mv2 + · · ·+ anmvn.

The set of equations (3.3.1) can be rewritten as

α1





n∑

j=1

aj1vj



+ α2





n∑

j=1

aj2vj



+ · · ·+ αm





n∑

j=1

ajmvj



 = 0

i.e.,

(
m∑

i=1

αia1i

)

v1 +

(
m∑

i=1

αia2i

)

v2 + · · ·+
(

m∑

i=1

αiani

)

vn = 0.
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Since the set {v1,v2, . . . ,vn} is linearly independent, we have

m∑

i=1

αia1i =

m∑

i=1

αia2i = · · · =
m∑

i=1

αiani = 0.

Therefore, finding αi’s satisfying equation (3.3.1) reduces to solving the system of homogeneous equations

Aα = 0 where αt = (α1, α2, . . . , αm) and A =









a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...

an1 an2 · · · anm









. Since n < m, i.e., the number

of equations is strictly less than the number of unknowns, Corollary 2.6.3 implies that the solution

set consists of infinite number of elements. Therefore, the equation (3.3.1) has a solution with not all

αi, 1 ≤ i ≤ m, zero. Hence, the set {w1,w2, . . . ,wm} is a linearly dependent set. �

Remark 3.3.8 Let V be a vector subspace of Rn with spanning set S. We give a method of finding a

basis of V from S.

1. Construct a matrix A whose rows are the vectors in S.

2. Use only the elementary row operations Ri(c) and Rij(c) to get the row-reduced form B of A (in

fact we just need to make as many zero-rows as possible).

3. Let B be the set of vectors in S corresponding to the non-zero rows of B.

Then the set B is a basis of L(S) = V.

Example 3.3.9 Let S = {(1, 1, 1, 1), (1, 1,−1, 1), (1, 1, 0, 1), (1,−1, 1, 1)} be a subset of R4. Find a basis of

L(S).

Solution: Here A =








1 1 1 1

1 1 −1 1

1 1 0 1

1 −1 1 1







. Applying row-reduction to A, we have








1 1 1 1

1 1 −1 1

1 1 0 1

1 −1 1 1








−−−−−−−−−−−−−−−−−−−−→
R12(−1), R13(−1), R14(−1)








1 1 1 1

0 0 −2 0

0 0 −1 0

0 −2 0 0








−−−−−→
R32(−2)








1 1 1 1

0 0 0 0

0 0 −1 0

0 −2 0 0







.

Observe that the rows 1, 3 and 4 are non-zero. Hence, a basis of L(S) consists of the first, third and fourth

vectors of the set S. Thus, B = {(1, 1, 1, 1), (1, 1, 0, 1), (1,−1, 1, 1)} is a basis of L(S).

Observe that at the last step, in place of the elementary row operation R32(−2), we can apply R23(− 1
2 )

to make the third row as the zero-row. In this case, we get {(1, 1, 1, 1), (1, 1,−1, 1), (1,−1, 1, 1)} as a basis

of L(S).

Corollary 3.3.10 Let V be a finite dimensional vector space. Then any two bases of V have the same

number of vectors.

Proof. Let {u1,u2, . . . ,un} and {v1,v2, . . . ,vm} be two bases of V with m > n. Then by the above

theorem the set {v1,v2, . . . ,vm} is linearly dependent if we take {u1,u2, . . . ,un} as the basis of V. This

contradicts the assumption that {v1,v2, . . . ,vm} is also a basis of V. Hence, we get m = n. �

Definition 3.3.11 (Dimension of a Vector Space) The dimension of a finite dimensional vector space V

is the number of vectors in a basis of V, denoted dim(V ).
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Note that the Corollary 3.2.6 can be used to generate a basis of any non-trivial finite dimensional

vector space.

Example 3.3.12 1. Consider the complex vector space C2(C). Then,

(a+ ib, c+ id) = (a+ ib)(1, 0) + (c+ id)(0, 1).

So, {(1, 0), (0, 1)} is a basis of C2(C) and thus dim(V ) = 2.

2. Consider the real vector space C2(R). In this case, any vector

(a+ ib, c+ id) = a(1, 0) + b(i, 0) + c(0, 1) + d(0, i).

Hence, the set {(1, 0), (i, 0), (0, 1), (0, i)} is a basis and dim(V ) = 4.

Remark 3.3.13 It is important to note that the dimension of a vector space may change if the under-

lying field (the set of scalars) is changed.

Example 3.3.14 Let V be the set of all functions f : Rn−→R with the property that f(x+y) = f(x)+f(y)

and f(αx) = αf(x). For f, g ∈ V, and t ∈ R, define

(f ⊕ g)(x) = f(x) + g(x) and

(t⊙ f)(x) = f(tx).

Then V is a real vector space.

For 1 ≤ i ≤ n, consider the functions

ei(x) = ei
(
(x1, x2, . . . , xn)

)
= xi.

Then it can be easily verified that the set {e1, e2, . . . , en} is a basis of V and hence dim(V ) = n.

The next theorem follows directly from Corollary 3.2.6 and Theorem 3.3.7. Hence, the proof is

omitted.

Theorem 3.3.15 Let S be a linearly independent subset of a finite dimensional vector space V. Then the

set S can be extended to form a basis of V.

Theorem 3.3.15 is equivalent to the following statement:

Let V be a vector space of dimension n. Suppose, we have found a linearly independent set S =

{v1,v2, . . . ,vr} ⊂ V. Then there exist vectors vr+1, . . . ,vn in V such that {v1,v2, . . . ,vn} is a basis of

V.

Corollary 3.3.16 Let V be a vector space of dimension n. Then any set of n linearly independent vectors

forms a basis of V. Also, every set of m vectors, m > n, is linearly dependent.

Example 3.3.17 Let V = {(v, w, x, y, z) ∈ R5 : v + x − 3y + z = 0} and W = {(v, w, x, y, z) ∈ R5 :

w − x− z = 0, v = y} be two subspaces of R5. Find bases of V and W containing a basis of V ∩W.
Solution: Let us find a basis of V ∩W. The solution set of the linear equations

v + x− 3y + z = 0, w − x− z = 0 and v = y

is given by

(v, w, x, y, z)t = (y, 2y, x, y, 2y − x)t = y(1, 2, 0, 1, 2)t + x(0, 0, 1, 0,−1)t.

Thus, a basis of V ∩W is

{(1, 2, 0, 1, 2), (0, 0, 1, 0,−1)}.
To find a basis of W containing a basis of V ∩W, we can proceed as follows:
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1. Find a basis of W.

2. Take the basis of V ∩W found above as the first two vectors and that of W as the next set of vectors.

Now use Remark 3.3.8 to get the required basis.

Heuristically, we can also find the basis in the following way:

A vector of W has the form (y, x + z, x, y, z) for x, y, z ∈ R. Substituting y = 1, x = 1, and z = 0 in

(y, x+ z, x, y, z) gives us the vector (1, 1, 1, 1, 0) ∈W. It can be easily verified that a basis of W is

{(1, 2, 0, 1, 2), (0, 0, 1, 0,−1), (1, 1, 1, 1, 0)}.

Similarly, a vector of V has the form (v, w, x, y, 3y−v−x) for v, w, x, y ∈ R. Substituting v = 0, w = 1, x = 0

and y = 0, gives a vector (0, 1, 0, 0, 0) ∈ V. Also, substituting v = 0, w = 1, x = 1 and y = 1, gives another

vector (0, 1, 1, 1, 2) ∈ V. So, a basis of V can be taken as

{(1, 2, 0, 1, 2), (0, 0, 1, 0,−1), (0, 1, 0, 0, 0), (0, 1, 1, 1, 2)}.

Recall that for two vector subspaces M and N of a vector space V (F), the vector subspace M +N

is defined by

M +N = {u+ v : u ∈M, v ∈ N}.

With this definition, we have the following very important theorem (for a proof, see Appendix 14.4.1).

Theorem 3.3.18 Let V (F) be a finite dimensional vector space and let M and N be two subspaces of V.

Then

dim(M) + dim(N) = dim(M +N) + dim(M ∩N). (3.3.2)

Exercise 3.3.19 1. Find a basis of the vector space Pn(R). Also, find dim(Pn(R)). What can you say

about the dimension of P(R)?

2. Consider the real vector space, C([0, 2π]), of all real valued continuous functions. For each n consider

the vector en defined by en(x) = sin(nx). Prove that the collection of vectors {en : 1 ≤ n <∞} is a

linearly independent set.

[Hint: On the contrary, assume that the set is linearly dependent. Then we have a finite set of vectors,

say {ek1
, ek2

, . . . , ekℓ
} that are linearly dependent. That is, there exist scalars αi ∈ R for 1 ≤ i ≤ ℓ not all

zero such that

α1 sin(k1x) + α2 sin(k2x) + · · ·+ αℓ sin(kℓx) = 0 for all x ∈ [0, 2π].

Now for different values of m integrate the function

∫ 2π

0

sin(mx) (α1 sin(k1x) + α2 sin(k2x) + · · ·+ αℓ sin(kℓx)) dx

to get the required result.]

3. Show that the set {(1, 0, 0), (1, 1, 0), (1, 1, 1)} is a basis of C3(C). Is it a basis of C3(R) also?

4. Let W = {(x, y, z, w) ∈ R4 : x+ y − z + w = 0} be a subspace of R4. Find its basis and dimension.

5. Let V = {(x, y, z, w) ∈ R4 : x + y − z + w = 0, x + y + z + w = 0} and W = {(x, y, z, w) ∈ R4 :

x − y − z + w = 0, x + 2y − w = 0} be two subspaces of R4. Find bases and dimensions of V, W,

V ∩W and V +W.

6. Let V be the set of all real symmetric n× n matrices. Find its basis and dimension. What if V is the

complex vector space of all n× n Hermitian matrices?
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7. If M and N are 4-dimensional subspaces of a vector space V of dimension 7 then show that M and

N have at least one vector in common other than the zero vector.

8. Let P = L{(1, 0, 0), (1, 1, 0)} and Q = L{(1, 1, 1)} be vector subspaces of R3. Show that P +Q = R3

and P ∩Q = {0}. If u ∈ R
3, determine uP ,uQ such that u = uP + uQ where uP ∈ P and uQ ∈ Q.

Is it necessary that uP and uQ are unique?

9. Let W1 be a k-dimensional subspace of an n-dimensional vector space V (F) where k ≥ 1. Prove that

there exists an (n− k)-dimensional subspace W2 of V such that W1 ∩W2 = {0} and W1 +W2 = V.

10. Let P and Q be subspaces of Rn such that P + Q = Rn and P ∩ Q = {0}. Then show that each

u ∈ Rn can be uniquely expressed as u = uP + uQ where uP ∈ P and uQ ∈ Q.

11. Let P = L{(1,−1, 0), (1, 1, 0)} and Q = L{(1, 1, 1), (1, 2, 1)} be vector subspaces of R3. Show that

P +Q = R3 and P ∩Q 6= {0}. Show that there exists a vector u ∈ R3 such that u cannot be written

uniquely in the form u = uP + uQ where uP ∈ P and uQ ∈ Q.

12. Recall the vector space P4(R). Is the set,

W = {p(x) ∈ P4(R) : p(−1) = p(1) = 0}

a subspace of P4(R)? If yes, find its dimension.

13. Let V be the set of all 2 × 2 matrices with complex entries and a11 + a22 = 0. Show that V is a real

vector space. Find its basis. Also let W = {A ∈ V : a21 = −a12}. Show W is a vector subspace of V,

and find its dimension.

14. Let A =








1 2 1 3 2

0 2 2 2 4

2 −2 4 0 8

4 2 5 6 10







, and B =








2 4 0 6

−1 0 −2 5

−3 −5 1 −4

−1 −1 1 2








be two matrices. For A and B find

the following:

(a) their row-reduced echelon forms.

(b) the matrices P1 and P2 such that P1A and P2B are in row-reduced form.

(c) a basis each for the row spaces of A and B.

(d) a basis each for the range spaces of A and B.

(e) bases of the null spaces of A and B.

(f) the dimensions of all the vector subspaces so obtained.

15. Let M(n,R) denote the space of all n× n real matrices. For the sets given below, check that they are

subspaces of M(n,R) and also find their dimension.

(a) sl(n,R) = {A ∈M(n,R) : tr(A) = 0}, where recall that tr(A) stands for trace of A.

(b) S(n,R) = {A ∈M(n,R) : A = At}.
(c) A(n,R) = {A ∈M(n,R) : A+At = 0}.

Before going to the next section, we prove that for any matrix A of order m× n

Row rank(A) = Column rank(A).
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Proposition 3.3.20 Let A be an m× n real matrix. Then

Row rank(A) = Column rank(A).

Proof. Let R1, R2, . . . , Rm be the rows of A and C1, C2, . . . , Cn be the columns of A. Note that

Row rank(A) = r, means that

dim
(
L(R1, R2, . . . , Rm)

)
= r.

Hence, there exists vectors

u1 = (u11, . . . , u1n),u2 = (u21, . . . , u2n), . . . ,ur = (ur1, . . . , urn) ∈ R
n

with

Ri ∈ L(u1,u2, . . . ,ur) ∈ R
n, for all i, 1 ≤ i ≤ m.

Therefore, there exist real numbers αij , 1 ≤ i ≤ m, 1 ≤ j ≤ r such that

R1 = α11u1 + α12u2 + · · ·+ α1rur = (

r∑

i=1

α1iui1,

r∑

i=1

α1iui2, . . . ,

r∑

i=1

α1iuin),

R2 = α21u1 + α22u2 + · · ·+ α2rur = (

r∑

i=1

α2iui1,

r∑

i=1

α2iui2, . . . ,

r∑

i=1

α2iuin),

and so on, till

Rm = αm1u1 + · · ·+ αmrur = (

r∑

i=1

αmiui1,

r∑

i=1

αmiui2, . . . ,

r∑

i=1

αmiuin).

So,

C1 =














r∑

i=1

α1iui1
r∑

i=1

α2iui1

...
r∑

i=1

αmiui1














= u11









α11

α21

...

αm1









+ u21









α12

α22

...

αm2









+ · · ·+ ur1









α1r

α2r

...

αmr









.

In general, for 1 ≤ j ≤ n, we have

Cj =














r∑

i=1

α1iuij
r∑

i=1

α2iuij

...
r∑

i=1

αmiuij














= u1j









α11

α21

...

αm1









+ u2j









α12

α22

...

αm2









+ · · ·+ urj









α1r

α2r

...

αmr









.

Therefore, we observe that the columns C1, C2, . . . , Cn are linear combination of the r vectors

(α11, α21, . . . , αm1)
t, (α12, α22, . . . , αm2)

t, . . . , (α1r, α2r, . . . , αmr)
t.

Therefore,

Column rank(A) = dim
(
L(C1, C2, . . . , Cn)

)
=≤ r = Row rank(A).

A similar argument gives

Row rank(A) ≤ Column rank(A).

Thus, we have the required result. �
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3.4 Ordered Bases

Let B = {u1,u2, . . . ,un} be a basis of a vector space V (F). As B is a set, there is no ordering of its

elements. In this section, we want to associate an order among the vectors in any basis of V.

Definition 3.4.1 (Ordered Basis) An ordered basis for a vector space V (F) of dimension n, is a ba-

sis {u1,u2, . . . ,un} together with a one-to-one correspondence between the sets {u1,u2, . . . ,un} and

{1, 2, 3, . . . , n}.

If the ordered basis has u1 as the first vector, u2 as the second vector and so on, then we denote this

ordered basis by

(u1,u2, . . . ,un).

Example 3.4.2 Consider P2(R), the vector space of all polynomials of degree less than or equal to 2 with

coefficients from R. The set {1− x, 1 + x, x2} is a basis of P2(R).

For any element a0 + a1x+ a2x
2 ∈ P2(R), we have

a0 + a1x+ a2x
2 =

a0 − a1
2

(1− x) +
a0 + a1

2
(1 + x) + a2x

2.

If (1−x, 1+x, x2) is an ordered basis, then
a0 − a1

2
is the first component,

a0 + a1
2

is the second component,

and a2 is the third component of the vector a0 + a1x+ a2x
2.

If we take (1 + x, 1 − x, x2) as an ordered basis, then
a0 + a1

2
is the first component,

a0 − a1
2

is the

second component, and a2 is the third component of the vector a0 + a1x+ a2x
2.

That is, as ordered bases (u1,u2, . . . ,un), (u2,u3, . . . ,un,u1), and (un,u1,u2, . . . ,un−1) are different

even though they have the same set of vectors as elements.

Definition 3.4.3 (Coordinates of a Vector) Let B = (v1,v2, . . . ,vn) be an ordered basis of a vector space

V (F) and let v ∈ V. If

v = β1v1 + β2v2 + · · ·+ βnvn

then the tuple (β1, β2, . . . , βn) is called the coordinate of the vector v with respect to the ordered basis B.
Mathematically, we denote it by [v]B = (β1, . . . , βn)

t, a column vector.

Suppose B1 = (u1,u2, . . . ,un) and B2 = (un,u1,u2, . . . ,un−1) are two ordered bases of V. Then for

any x ∈ V there exists unique scalars α1, α2, . . . , αn such that

x = α1u1 + α2u2 + · · ·+ αnun = αnun + α1u1 + · · ·+ αn−1un−1.

Therefore,

[x]B1
= (α1, α2, . . . , αn)

t and [x]B2
= (αn, α1, α2, . . . , αn−1)

t.

Note that x is uniquely written as
n∑

i=1

αiui and hence the coordinates with respect to an ordered

basis are unique.

Suppose that the ordered basis B1 is changed to the ordered basis B3 = (u2,u1,u3, . . . ,un). Then

[x]B3
= (α2, α1, α3, . . . , αn)

t. So, the coordinates of a vector depend on the ordered basis chosen.

Example 3.4.4 Let V = R3. Consider the ordered bases

B1 =
(
(1, 0, 0), (0, 1, 0), (0, 0, 1)

)
, B2 =

(
(1, 0, 0), (1, 1, 0), (1, 1, 1)

)
and B3 =

(
(1, 1, 1), (1, 1, 0), (1, 0, 0)

)
of

V. Then, with respect to the above bases we have

(1,−1, 1) = 1 · (1, 0, 0) + (−1) · (0, 1, 0) + 1 · (0, 0, 1).
= 2 · (1, 0, 0) + (−2) · (1, 1, 0) + 1 · (1, 1, 1).
= 1 · (1, 1, 1) + (−2) · (1, 1, 0) + 2 · (1, 0, 0).
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Therefore, if we write u = (1,−1, 1), then

[u]B1
= (1,−1, 1)t, [u]B2

= (2,−2, 1)t, [u]B3
= (1,−2, 2)t.

In general, let V be an n-dimensional vector space with ordered bases B1 = (u1,u2, . . . ,un) and

B2 = (v1,v2, . . . ,vn). Since, B1 is a basis of V, there exists unique scalars aij , 1 ≤ i, j ≤ n such that

vi =
n∑

l=1

aliul for 1 ≤ i ≤ n.

That is, for each i, 1 ≤ i ≤ n, [vi]B1
= (a1i, a2i, . . . , ani)

t.

Let v ∈ V with [v]B2
= (α1, α2, . . . , αn)

t. As B2 as ordered basis (v1,v2, . . . ,vn), we have

v =
n∑

i=1

αivi =
n∑

i=1

αi





n∑

j=1

ajiuj



 =
n∑

j=1

(
n∑

i=1

ajiαi

)

uj .

Since B1 is a basis this representation of v in terms of ui’s is unique. So,

[v]B1
=

(
n∑

i=1

a1iαi,

n∑

i=1

a2iαi, . . . ,

n∑

i=1

aniαi

)t

=









a11 · · · a1n

a21 · · · a2n
...

. . .
...

an1 · · · ann

















α1

α2

...

αn









= A[v]B2
.

Note that the ith column of the matrix A is equal to [vi]B1
, i.e., the ith column of A is the coordinate

of the ith vector vi of B2 with respect to the ordered basis B1. Hence, we have proved the following

theorem.

Theorem 3.4.5 Let V be an n-dimensional vector space with ordered bases B1 = (u1,u2, . . . ,un) and

B2 = (v1,v2, . . . ,vn). Let

A = [[v1]B1
, [v2]B1

, . . . , [vn]B1
] .

Then for any v ∈ V,

[v]B1
= A[v]B2

.

Example 3.4.6 Consider two bases B1 =
(
(1, 0, 0), (1, 1, 0), (1, 1, 1)

)
and B2 =

(
(1, 1, 1), (1,−1, 1), (1, 1, 0)

)

of R3.

1. Then

[(x, y, z)]B1
= (x− y) · (1, 0, 0) + (y − z) · (1, 1, 0) + z · (1, 1, 1)
= (x− y, y − z, z)t

and

[(x, y, z)]B2
= (

y − x

2
+ z) · (1, 1, 1) + x− y

2
· (1,−1, 1)

+(x− z) · (1, 1, 0)
= (

y − x

2
+ z,

x− y

2
, x− z)t.
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2. Let A = [aij ] =






0 2 0

0 −2 1

1 1 0




 . The columns of the matrix A are obtained by the following rule:

[(1, 1, 1)]B1
= 0 · (1, 0, 0) + 0 · (1, 1, 0) + 1 · (1, 1, 1) = (0, 0, 1)t,

[(1,−1, 1)]B1
= 2 · (1, 0, 0) + (−2) · (1, 1, 0) + 1 · (1, 1, 1) = (2,−2, 1)t

and

[(1, 1, 0)]B1
= 0 · (1, 0, 0) + 1 · (1, 1, 0) + 0 · (1, 1, 1) = (0, 1, 0)t.

That is, the elements of B2 =
(
(1, 1, 1), (1,−1, 1), (1, 1, 0)

)
are expressed in terms of the ordered basis

B1.

3. Note that for any (x, y, z) ∈ R3,

[(x, y, z)]B1
=






x− y

y − z

z




 =






0 2 0

0 −2 1

1 1 0











y−x
2 + z
x−y
2

x− z




 = A [(x, y, z)]B2

.

4. The matrix A is invertible and hence [(x, y, z)]B2
= A−1 [(x, y, z)]B1

.

In the next chapter, we try to understand Theorem 3.4.5 again using the ideas of ‘linear transforma-

tions / functions’.

Exercise 3.4.7 1. Determine the coordinates of the vectors (1, 2, 1) and (4,−2, 2) with respect to the

basis B =
(
(2, 1, 0), (2, 1, 1), (2, 2, 1)

)
of R3.

2. Consider the vector space P3(R).

(a) Show that B1 = (1− x, 1 + x2, 1− x3, 3+ x2 − x3) and B2 = (1, 1− x, 1 + x2, 1− x3) are bases

of P3(R).

(b) Find the coordinates of the vector u = 1+ x+ x2 + x3 with respect to the ordered basis B1 and

B2.

(c) Find the matrix A such that [u]B2
= A[u]B1

.

(d) Let v = a0 + a1x+ a2x
2 + a3x

3. Then verify the following:

[v]B1
=








−a1
−a0 − a1 + 2a2 − a3

−a0 − a1 + a2 − 2a3

a0 + a1 − a2 + a3








=








0 1 0 0

−1 0 1 0

−1 0 0 1

1 0 0 0















a0 + a1 − a2 + a3

−a1
a2

−a3








= [v]B2
.



Chapter 4

Linear Transformations

4.1 Definitions and Basic Properties

Throughout this chapter, the scalar field F is either always the set R or always the set C.

Definition 4.1.1 (Linear Transformation) Let V and W be vector spaces over F. A map T : V−→W is

called a linear transformation if

T (αu+ βv) = αT (u) + βT (v), for all α, β ∈ F, and u,v ∈ V.

We now give a few examples of linear transformations.

Example 4.1.2 1. Define T : R−→R2 by T (x) = (x, 3x) for all x ∈ R. Then T is a linear transformation

as

T (x+ y) = (x + y, 3(x+ y)) = (x, 3x) + (y, 3y) = T (x) + T (y).

2. Verify that the maps given below from Rn to R are linear transformations. Let x = (x1, x2, . . . , xn).

(a) Define T (x) =
n∑

i=1

xi.

(b) For any i, 1 ≤ i ≤ n, define Ti(x) = xi.

(c) For a fixed vector a = (a1, a2, . . . , an) ∈ R
n, define T (x) =

n∑

i=1

aixi. Note that examples (a)

and (b) can be obtained by assigning particular values for the vector a.

3. Define T : R2−→R3 by T ((x, y)) = (x+ y, 2x− y, x+ 3y).

Then T is a linear transformation with T ((1, 0)) = (1, 2, 1) and T ((0, 1)) = (1,−1, 3).

4. Let A be an m× n real matrix. Define a map TA : Rn−→Rm by

TA(x) = Ax for every xt = (x1, x2, . . . , xn) ∈ R
n.

Then TA is a linear transformation. That is, every m × n real matrix defines a linear transformation

from R
n to R

m.

5. Recall that Pn(R) is the set of all polynomials of degree less than or equal to n with real coefficients.

Define T : Rn+1−→Pn(R) by

T ((a1, a2, . . . , an+1)) = a1 + a2x+ · · ·+ an+1x
n

for (a1, a2, . . . , an+1) ∈ Rn+1. Then T is a linear transformation.

69
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Proposition 4.1.3 Let T : V−→W be a linear transformation. Suppose that 0V is the zero vector in V and

0W is the zero vector of W. Then T (0V ) = 0W .

Proof. Since 0V = 0V + 0V , we have

T (0V ) = T (0V + 0V ) = T (0V ) + T (0V ).

So, T (0V ) = 0W as T (0V ) ∈W. �

From now on, we write 0 for both the zero vector of the domain space and the zero vector of the

range space.

Definition 4.1.4 (Zero Transformation) Let V be a vector space and let T : V−→W be the map defined

by

T (v) = 0 for every v ∈ V.

Then T is a linear transformation. Such a linear transformation is called the zero transformation and is

denoted by 0.

Definition 4.1.5 (Identity Transformation) Let V be a vector space and let T : V−→V be the map

defined by

T (v) = v for every v ∈ V.

Then T is a linear transformation. Such a linear transformation is called the Identity transformation and is

denoted by I.

We now prove a result that relates a linear transformation T with its value on a basis of the domain

space.

Theorem 4.1.6 Let T : V−→W be a linear transformation and B = (u1,u2, . . . ,un) be an ordered basis

of V. Then the linear transformation T is a linear combination of the vectors T (u1), T (u2), . . . , T (un).

In other words, T is determined by T (u1), T (u2), . . . , T (un).

Proof. Since B is a basis of V, for any x ∈ V, there exist scalars α1, α2, . . . , αn such that x =

α1u1 + α2u2 + · · ·+ αnun. So, by the definition of a linear transformation

T (x) = T (α1u1 + · · ·+ αnun) = α1T (u1) + · · ·+ αnT (un).

Observe that, given x ∈ V, we know the scalars α1, α2, . . . , αn. Therefore, to know T (x), we just need

to know the vectors T (u1), T (u2), . . . , T (un) in W.

That is, for every x ∈ V, T (x) is determined by the coordinates (α1, α2, . . . , αn) of x with respect to

the ordered basis B and the vectors T (u1), T (u2), . . . , T (un) ∈ W. �

Exercise 4.1.7 1. Which of the following are linear transformations T : V−→W? Justify your answers.

(a) Let V = R2 and W = R3 with T
(
(x, y)

)
= (x+ y + 1, 2x− y, x+ 3y)

(b) Let V =W = R2 with T
(
(x, y)

)
= (x− y, x2 − y2)

(c) Let V =W = R2 with T
(
(x, y)

)
= (x− y, |x|)

(d) Let V = R2 and W = −→R4 with T
(
(x, y)

)
= (x + y, x− y, 2x+ y, 3x− 4y)

(e) Let V =W = R4 with T
(
(x, y, z, w)

)
= (z, x, w, y)

2. Recall that M2(R) is the space of all 2× 2 matrices with real entries. Then, which of the following are

linear transformations T :M2(R)−→M2(R)?
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(a) T (A) = At (b) T (A) = I +A (c) T (A) = A2

(d) T (A) = BAB−1, where B is some fixed 2× 2 matrix.

3. Let T : R −→ R be a map. Then T is a linear transformation if and only if there exists a unique c ∈ R

such that T (x) = cx for every x ∈ R.

4. Let A be an n× n real matrix. Consider the linear transformation

TA(x) = Ax for every x ∈ R
n.

Then prove that T 2(x) := T (T (x)) = A2x. In general, for k ∈ N, prove that T k(x) = Akx.

5. Use the ideas of matrices to give examples of linear transformations T, S : R3−→R3 that satisfy:

(a) T 6= 0, T 2 6= 0, T 3 = 0.

(b) T 6= 0, S 6= 0, S ◦ T 6= 0, T ◦ S = 0; where T ◦ S(x) = T
(
S(x)

)
.

(c) S2 = T 2, S 6= T.

(d) T 2 = I, T 6= I.

6. Let T : Rn −→ Rn be a linear transformation such that T 6= 0 and T 2 = 0. Let x ∈ Rn such

that T (x) 6= 0. Then prove that the set {x, T (x)} is linearly independent. In general, if T k 6= 0

for 1 ≤ k ≤ p and T p+1 = 0, then for any vector x ∈ R
n with T p(x) 6= 0 prove that the set

{x, T (x), . . . , T p(x)} is linearly independent.

7. Let T : Rn −→ Rm be a linear transformation, and let x0 ∈ Rn with T (x0) = y. Consider the sets

S = {x ∈ R
n : T (x) = y} and N = {x ∈ R

n : T (x) = 0}.

Show that for every x ∈ S there exists z ∈ N such that x = x0 + z.

8. Define a map T : C −→ C by T (z) = z, the complex conjugate of z. Is T linear on

(a) C over R (b) C over C.

9. Find all functions f : R2 −→ R2 that satisfy the conditions

(a) f( (x, x) ) = (x, x) and

(b) f( (x, y) ) = (y, x) for all (x, y) ∈ R2.

That is, f fixes the line y = x and sends the point (x1, y1) for x1 6= y1 to its mirror image along the

line y = x.

Is this function a linear transformation? Justify your answer.

Theorem 4.1.8 Let T : V−→W be a linear transformation. For w ∈W, define the set

T−1(w) = {v ∈ V : T (v) = w}.

Suppose that the map T is one-one and onto.

1. Then for each w ∈W, the set T−1(w) is a set consisting of a single element.

2. The map T−1 :W−→V defined by

T−1(w) = v whenever T (v) = w.

is a linear transformation.
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Proof. Since T is onto, for each w ∈ W there exists a vector v ∈ V such that T (v) = w. So, the set

T−1(w) is non-empty.

Suppose there exist vectors v1,v2 ∈ V such that T (v1) = T (v2). But by assumption, T is one-one

and therefore v1 = v2. This completes the proof of Part 1.

We now show that T−1 as defined above is a linear transformation. Let w1,w2 ∈W. Then by Part 1,

there exist unique vectors v1,v2 ∈ V such that T−1(w1) = v1 and T−1(w2) = v2. Or equivalently,

T (v1) = w1 and T (v2) = w2. So, for any α1, α2 ∈ F, we have T (α1v1 + α2v2) = α1w1 + α2w2.

Thus for any α1, α2 ∈ F,

T−1(α1w1 + α2w2) = α1v1 + α2v2 = α1T
−1(w1) + α2T

−1(w2).

Hence T−1 :W−→V, defined as above, is a linear transformation. �

Definition 4.1.9 (Inverse Linear Transformation) Let T : V−→W be a linear transformation. If the map

T is one-one and onto, then the map T−1 : W−→V defined by

T−1(w) = v whenever T (v) = w

is called the inverse of the linear transformation T.

Example 4.1.10 1. Define T : R2−→R2 by T ((x, y)) = (x + y, x− y). Then T−1 : R2−→R2 is defined

by

T−1((x, y)) = (
x+ y

2
,
x− y

2
).

Note that

T ◦ T−1((x, y)) = T (T−1((x, y))) = T ((
x+ y

2
,
x− y

2
))

= (
x+ y

2
+
x− y

2
,
x+ y

2
− x− y

2
)

= (x, y).

Hence, T ◦ T−1 = I, the identity transformation. Verify that T−1 ◦ T = I. Thus, the map T−1 is

indeed the inverse of the linear transformation T.

2. Recall the vector space Pn(R) and the linear transformation T : Rn+1−→Pn(R) defined by

T ((a1, a2, . . . , an+1)) = a1 + a2x+ · · ·+ an+1x
n

for (a1, a2, . . . , an+1) ∈ Rn+1. Then T−1 : Pn(R)−→Rn+1 is defined as

T−1(a1 + a2x+ · · ·+ an+1x
n) = (a1, a2, . . . , an+1)

for a1 + a2x+ · · ·+ an+1x
n ∈ Pn(R). Verify that T ◦ T−1 = T−1 ◦ T = I. Hence, conclude that the

map T−1 is indeed the inverse of the linear transformation T.

4.2 Matrix of a linear transformation

In this section, we relate linear transformation over finite dimensional vector spaces with matrices. For

this, we ask the reader to recall the results on ordered basis, studied in Section 3.4.

Let V and W be finite dimensional vector spaces over the set F with respective dimensions m and n.

Also, let T : V−→W be a linear transformation. Suppose B1 = (v1,v2, . . . ,vn) is an ordered basis of
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V. In the last section, we saw that a linear transformation is determined by its image on a basis of the

domain space. We therefore look at the images of the vectors vj ∈ B1 for 1 ≤ j ≤ n.

Now for each j, 1 ≤ j ≤ n, the vectors T (vj) ∈ W. We now express these vectors in terms of

an ordered basis B2 = (w1,w2, . . . ,wm) of W. So, for each j, 1 ≤ j ≤ n, there exist unique scalars

a1j , a2j , . . . , amj ∈ F such that

T (v1) = a11w1 + a21w2 + · · ·+ am1wm

T (v2) = a12w1 + a22w2 + · · ·+ am2wm

...

T (vn) = a1nw1 + a2nw2 + · · ·+ amnwm.

Or in short, T (vj) =
m∑

i=1

aijwi for 1 ≤ j ≤ n. In other words, for each j, 1 ≤ j ≤ n, the coordinates of

T (vj) with respect to the ordered basis B2 is the column vector [a1j , a2j, . . . , amj ]
t. Equivalently,

[T (vj)]B2
=









a1j

a2j
...

amj









.

Let [x]B1
= [x1, x2, . . . , xn]

t be the coordinates of a vector x ∈ V. Then

T (x) = T (

n∑

j=1

xjvj) =

n∑

j=1

xjT (vj)

=

n∑

j=1

xj(

m∑

i=1

aijwi)

=

m∑

i=1

(

n∑

j=1

aijxj)wi.

Define a matrix A by A =









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn









. Then the coordinates of the vector T (x) with

respect to the ordered basis B2 is

[T (x)]B2
=









∑n
j=1 a1jxj

∑n
j=1 a2jxj

...
∑n

j=1 amjxj









=









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

















x1

x2
...

xn









= A [x]B1
.

The matrix A is called the matrix of the linear transformation T with respect to the ordered bases B1

and B2, and is denoted by T [B1,B2].

We thus have the following theorem.

Theorem 4.2.1 Let V and W be finite dimensional vector spaces with dimensions n and m, respectively.

Let T : V−→W be a linear transformation. If B1 is an ordered basis of V and B2 is an ordered basis of W,

then there exists an m× n matrix A = T [B1,B2] such that

[T (x)]B2
= A [x]B1

.
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Remark 4.2.2 Let B1 = (v1,v2, . . . ,vn) be an ordered basis of V and B2 = (w1,w2, . . . ,wm) be an

ordered basis of W. Let T : V −→ W be a linear transformation with A = T [B1,B2]. Then the first

column of A is the coordinate of the vector T (v1) in the basis B2. In general, the ith column of A is the

coordinate of the vector T (vi) in the basis B2.

We now give a few examples to understand the above discussion and the theorem.

Example 4.2.3 1. Let T : R2−→R2 be a linear transformation, given by

T ( (x, y) ) = (x+ y, x− y).

We obtain T [B1,B2], the matrix of the linear transformation T with respect to the ordered bases

B1 =
(
(1, 0), (0, 1)

)
and B2 =

(
(1, 1), (1,−1)

)
of R

2.

For any vector

(x, y) ∈ R
2, [(x, y)]B1

=

[

x

y

]

as (x, y) = x(1, 0) + y(0, 1). Also, by definition of the linear transformation T, we have

T ( (1, 0) ) = (1, 1) = 1 · (1, 1) + 0 · (1,−1). So, [T ( (1, 0) )]B2
= (1, 0)t

and

T ( (0, 1) ) = (1,−1) = 0 · (1, 1) + 1 · (1,−1).

That is, [T ( (0, 1) )]B2
= (0, 1)t. So the T [B1,B2] =

[

1 0

0 1

]

. Observe that in this case,

[T ( (x, y) )]B2
= [(x+ y, x− y)]B2

= x(1, 1) + y(1,−1) =

[

x

y

]

, and

T [B1,B2] [(x, y)]B1
=

[

1 0

0 1

][

x

y

]

=

[

x

y

]

= [T ( (x, y) )]B2
.

2. Let B1 =
(
(1, 0, 0), (0, 1, 0), (0, 0, 1)

)
, B2 =

(
(1, 0, 0), (1, 1, 0), (1, 1, 1)

)
be two ordered bases of R3.

Define

T : R3−→R
3 by T (x) = x.

Then

T ((1, 0, 0)) = 1 · (1, 0, 0) + 0 · (1, 1, 0) + 0 · (1, 1, 1),
T ((0, 1, 0)) = −1 · (1, 0, 0) + 1 · (1, 1, 0) + 0 · (1, 1, 1), and
T ((0, 0, 1)) = 0 · (1, 0, 0) + (−1) · (1, 1, 0) + 1 · (1, 1, 1).

Thus, we have

T [B1,B2] = [[T ((1, 0, 0))]B2
, [T ((0, 1, 0))]B2

, [T ((0, 0, 1))]B2
]

= [(1, 0, 0)t, (−1, 1, 0)t, (0,−1, 1)t]

=






1 −1 0

0 1 −1

0 0 1




 .

Similarly check that T [B1,B1] =






1 0 0

0 1 0

0 0 1




 .



4.3. RANK-NULLITY THEOREM 75

3. Let T : R3−→R2 be define by T ((x, y, z)) = (x+ y − z, x+ z). Let B1 =
(
(1, 0, 0), (0, 1, 0), (0, 0, 1)

)

and B2 =
(
(1, 0), (0, 1)

)
be the ordered bases of the domain and range space, respectively. Then

T [B1,B2] =

[

1 1 −1

1 0 1

]

.

Check that that [T (x, y, z)]B2
= T [B1,B2] [(x, y, z)]B1

.

Exercise 4.2.4 Recall the space Pn(R) ( the vector space of all polynomials of degree less than or equal to

n). We define a linear transformation D : Pn(R)−→Pn(R) by

D(a0 + a1x+ a2x
2 + · · ·+ anx

n) = a1 + 2a2x+ · · ·+ nanx
n−1.

Find the matrix of the linear transformation D.

However, note that the image of the linear transformation is contained in Pn−1(R).

Remark 4.2.5 1. Observe that

T [B1,B2] = [[T (v1)]B2
, [T (v2)]B2

, . . . , [T (vn)]B2
].

2. It is important to note that

[T (x)]B2
= T [B1,B2] [x]B1

.

That is, we multiply the matrix of the linear transformation with the coordinates [x]B1
, of the

vector x ∈ V to obtain the coordinates of the vector T (x) ∈W.

3. If A is an m× n matrix, then A induces a linear transformation TA : Rn−→Rm, defined by

TA(x) = Ax.

We sometimes write A for TA. Suppose that the standard bases for Rn and Rm are the ordered

bases B1 and B2, respectively. Then observe that

T [B1,B2] = A.

4.3 Rank-Nullity Theorem

Definition 4.3.1 (Range and Null Space) Let V,W be finite dimensional vector spaces over the same set

of scalars and T : V−→W be a linear transformation. We define

1. R(T ) = {T (x) : x ∈ V }, and

2. N (T ) = {x ∈ V : T (x) = 0}.

Proposition 4.3.2 Let V and W be finite dimensional vector spaces and let T : V−→W be a linear trans-

formation. Suppose that (v1,v2, . . . ,vn) is an ordered basis of V. Then

1. (a) R(T ) is a subspace of W.

(b) R(T ) = L(T (v1), T (v2), . . . , T (vn)).

(c) dim(R(T )) ≤ dim(W ).

2. (a) N (T ) is a subspace of V.

(b) dim(N (T )) ≤ dim(V ).
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3. T is one-one ⇐⇒ N (T ) = {0} is the zero subspace of V ⇐⇒ {T (ui) : 1 ≤ i ≤ n} is a basis of

R(T ).

4. dim(R(T )) = dim(V ) if and only if N (T ) = {0}.

Proof. The results about R(T ) and N (T ) can be easily proved. We thus leave the proof for the

readers.

We now assume that T is one-one. We need to show that N (T ) = {0}.
Let u ∈ N (T ). Then by definition, T (u) = 0. Also for any linear transformation (see Proposition 4.1.3),

T (0) = 0. Thus T (u) = T (0). So, T is one-one implies u = 0. That is, N (T ) = {0}.
Let N (T ) = {0}. We need to show that T is one-one. So, let us assume that for some u,v ∈

V, T (u) = T (v). Then, by linearity of T, T (u−v) = 0. This implies, u−v ∈ N (T ) = {0}. This in turn

implies u = v. Hence, T is one-one.

The other parts can be similarly proved. �

Remark 4.3.3 1. The space R(T ) is called the range space of T and N (T ) is called the null

space of T.

2. We write ρ(T ) = dim(R(T )) and ν(T ) = dim(N (T )).

3. ρ(T ) is called the rank of the linear transformation T and ν(T ) is called the nullity of T.

Example 4.3.4 Determine the range and null space of the linear transformation

T : R3−→R
4 with T (x, y, z) = (x− y + z, y − z, x, 2x− 5y + 5z).

Solution: By Definition R(T ) = L(T (1, 0, 0), T (0, 1, 0), T (0, 0, 1)).We therefore have

R(T ) = L
(
(1, 0, 1, 2), (−1, 1, 0,−5), (1,−1, 0, 5)

)

= L
(
(1, 0, 1, 2), (1,−1, 0, 5)

)

= {α(1, 0, 1, 2) + β(1,−1, 0, 5) : α, β ∈ R}
= {(α+ β,−β, α, 2α+ 5β) : α, β ∈ R}
= {(x, y, z, w) ∈ R

4 : x+ y − z = 0, 5y − 2z + w = 0}.

Also, by definition

N (T ) = {(x, y, z) ∈ R
3 : T (x, y, z) = 0}

= {(x, y, z) ∈ R
3 : (x− y + z, y − z, x, 2x− 5y + 5z) = 0}

= {(x, y, z) ∈ R
3 : x− y + z = 0, y − z = 0,

x = 0, 2x− 5y + 5z = 0}
= {(x, y, z) ∈ R

3 : y − z = 0, x = 0}
= {(x, y, z) ∈ R

3 : y = z, x = 0}
= {(0, y, y) ∈ R

3 : y arbitrary}
= L((0, 1, 1))

Exercise 4.3.5 1. Let T : V−→W be a linear transformation and let {T (v1), T (v2), . . . , T (vn)} be

linearly independent in R(T ). Prove that {v1,v2, . . . ,vn} ⊂ V is linearly independent.
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2. Let T : R2−→R3 be defined by

T
(
(1, 0)

)
= (1, 0, 0), T

(
(0, 1)

)
= (1, 0, 0).

Then the vectors (1, 0) and (0, 1) are linearly independent whereas T
(
(1, 0)

)
and T

(
(0, 1)

)
are linearly

dependent.

3. Is there a linear transformation

T : R3 −→ R
2 such that T (1,−1, 1) = (1, 2), and T (−1, 1, 2) = (1, 0)?

4. Recall the vector space Pn(R). Define a linear transformation

D : Pn(R)−→Pn(R)

by

D(a0 + a1x+ a2x
2 + · · ·+ anx

n) = a1 + 2a2x+ · · ·+ nanx
n−1.

Describe the null space and range space of D. Note that the range space is contained in the space

Pn−1(R).

5. Let T : R3 −→ R3 be defined by

T (1, 0, 0) = (0, 0, 1), T (1, 1, 0) = (1, 1, 1) and T (1, 1, 1) = (1, 1, 0).

(a) Find T (x, y, z) for x, y, z ∈ R,

(b) Find R(T ) and N (T ). Also calculate ρ(T ) and ν(T ).

(c) Show that T 3 = T and find the matrix of the linear transformation with respect to the standard

basis.

6. Let T : R2 −→ R2 be a linear transformation with

T ((3, 4)) = (0, 1), T ((−1, 1)) = (2, 3).

Find the matrix representation T [B,B] of T with respect to the ordered basis B =
(
(1, 0), (1, 1)

)
of

R2.

7. Determine a linear transformation T : R3 −→ R3 whose range space is L{(1, 2, 0), (0, 1, 1), (1, 3, 1)}.

8. Suppose the following chain of matrices is given.

A −→ B1 −→ B1 −→ B2 · · · −→ Bk−1 −→ Bk −→ B.

If row space of B is in the row space of Bk and the row space of Bl is in the row space of Bl−1 for

2 ≤ l ≤ k then show that the row space of B is in the row space of A.

We now state and prove the rank-nullity Theorem. This result also follows from Proposition 4.3.2.

Theorem 4.3.6 (Rank Nullity Theorem) Let T : V−→W be a linear transformation and V be a finite

dimensional vector space. Then

dim(R(T )) + dim(N (T )) = dim(V ),

or equivalently ρ(T ) + ν(T ) = dim(V ).



78 CHAPTER 4. LINEAR TRANSFORMATIONS

Proof. Let dim(V ) = n and dim(N (T )) = r. Suppose {u1, u2, . . . , ur} is a basis of N (T ). Since

{u1, u2, . . . , ur} is a linearly independent set in V, we can extend it to form a basis of V (see Corollary

3.3.15). So, there exist vectors {ur+1, ur+2, . . . , un} such that {u1, . . . , ur, ur+1, . . . , un} is a basis of V.

Therefore, by Proposition 4.3.2

R(T ) = L(T (u1), T (u2), . . . , T (un))

= L(0, . . . ,0, T (ur+1), T (ur+2), . . . , T (un))

= L(T (ur+1), T (ur+2), . . . , T (un)).

We now prove that the set {T (ur+1), T (ur+2), . . . , T (un)} is linearly independent. Suppose the set is

not linearly independent. Then, there exists scalars, αr+1, αr+2, . . . , αn, not all zero such that

αr+1T (ur+1) + αr+2T (ur+2) + · · ·+ αnT (un) = 0.

That is,

T (αr+1ur+1 + αr+2ur+2 + · · ·+ αnun) = 0.

So, by definition of N (T ),

αr+1ur+1 + αr+2ur+2 + · · ·+ αnun ∈ N (T ) = L(u1, . . . , ur).

Hence, there exists scalars αi, 1 ≤ i ≤ r such that

αr+1ur+1 + αr+2ur+2 + · · ·+ αnun = α1u1 + α2u2 + · · ·+ αrur.

That is,

α1u1 ++ · · ·+ αrur − αr+1ur+1 − · · · − αnun = 0.

But the set {u1, u2, . . . , un} is a basis of V and so linearly independent. Thus by definition of linear

independence

αi = 0 for all i, 1 ≤ i ≤ n.

In other words, we have shown that {T (ur+1), T (ur+2), . . . , T (un)} is a basis of R(T ). Hence,

dim(R(T )) + dim(N (T )) = (n− r) + r = n = dim(V ).

�

Using the Rank-nullity theorem, we give a short proof of the following result.

Corollary 4.3.7 Let T : V−→V be a linear transformation on a finite dimensional vector space V. Then

T is one-one ⇐⇒ T is onto ⇐⇒ T is invertible.

Proof. By Proposition 4.3.2, T is one-one if and only if N (T ) = {0}. By the rank-nullity Theorem

4.3.6 N (T ) = {0} is equivalent to the condition dim(R(T )) = dim(V ). Or equivalently T is onto.

By definition, T is invertible if T is one-one and onto. But we have shown that T is one-one if and

only if T is onto. Thus, we have the last equivalent condition. �

Remark 4.3.8 Let V be a finite dimensional vector space and let T : V−→V be a linear transformation.

If either T is one-one or T is onto, then T is invertible.

The following are some of the consequences of the rank-nullity theorem. The proof is left as an

exercise for the reader.
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Corollary 4.3.9 The following are equivalent for an m× n real matrix A.

1. Rank (A) = k.

2. There exist exactly k rows of A that are linearly independent.

3. There exist exactly k columns of A that are linearly independent.

4. There is a k × k submatrix of A with non-zero determinant and every (k + 1)× (k + 1) submatrix of

A has zero determinant.

5. The dimension of the range space of A is k.

6. There is a subset of Rm consisting of exactly k linearly independent vectors b1,b2, . . . ,bk such that

the system Ax = bi for 1 ≤ i ≤ k is consistent.

7. The dimension of the null space of A = n− k.

Exercise 4.3.10 1. Let T : V−→W be a linear transformation.

(a) If V is finite dimensional then show that the null space and the range space of T are also finite

dimensional.

(b) If V and W are both finite dimensional then show that

i. if dim(V ) < dim(W ) then T is onto.

ii. if dim(V ) > dim(W ) then T is not one-one.

2. Let A be an m× n real matrix. Then

(a) if n > m, then the system Ax = 0 has infinitely many solutions,

(b) if n < m, then there exists a non-zero vector b = (b1, b2, . . . , bm)t such that the system Ax = b

does not have any solution.

3. Let A be an m× n matrix. Prove that

Row Rank (A) = Column Rank (A).

[Hint: Define TA : Rn−→Rm by TA(v) = Av for all v ∈ Rn. Let Row Rank (A) = r. Use Theorem

2.6.1 to show, Ax = 0 has n− r linearly independent solutions. This implies,

ν(TA) = dim({v ∈ Rn : TA(v) = 0}) = dim({v ∈ Rn : Av = 0}) = n− r.

Now observe that R(TA) is the linear span of columns of A and use the rank-nullity Theorem 4.3.6

to get the required result.]

4. Prove Theorem 2.6.1.

[Hint: Consider the linear system of equation Ax = b with the orders of A,x and b, respectively

as m × n, n × 1 and m × 1. Define a linear transformation T : Rn−→Rm by T (v) = Av. First

observe that if the solution exists then b is a linear combination of the columns of A and the linear

span of the columns of A give us R(T ). Note that ρ(A) = column rank(A) = dim(R(T )) = ℓ(say).

Then for part i) one can proceed as follows.

i) Let Ci1 , Ci2 , . . . , Ciℓ be the linearly independent columns of A. Then rank(A) < rank([A b])

implies that {Ci1 , Ci2 , . . . , Ciℓ ,b} is linearly independent. Hence b 6∈ L(Ci1 , Ci2 , . . . , Ciℓ). Hence,

the system doesn’t have any solution.

On similar lines prove the other two parts.]

5. Let T, S : V−→V be linear transformations with dim(V ) = n.
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(a) Show that R(T + S) ⊂ R(T ) +R(S). Deduce that ρ(T + S) ≤ ρ(T ) + ρ(S).

Hint: For two subspaces M,N of a vector space V, recall the definition of the vector subspace

M +N.

(b) Use the above and the rank-nullity Theorem 4.3.6 to prove ν(T + S) ≥ ν(T ) + ν(S)− n.

6. Let V be the complex vector space of all complex polynomials of degree at most n. Given k distinct

complex numbers z1, z2, . . . , zk, we define a linear transformation

T : V −→ C
k by T

(
P (z)

)
=
(
P (z1), P (z2), . . . , P (zk)

)
.

For each k ≥ 1, determine the dimension of the range space of T.

7. Let A be an n × n real matrix with A2 = A. Consider the linear transformation TA : Rn −→ Rn,

defined by TA(v) = Av for all v ∈ Rn. Prove that

(a) TA ◦ TA = TA (use the condition A2 = A).

(b) N (TA) ∩R(TA) = {0}.
Hint: Let x ∈ N (TA) ∩R(TA). This implies TA(x) = 0 and x = TA(y) for some y ∈ R

n. So,

x = TA(y) = (TA ◦ TA)(y) = TA
(
TA(y)

)
= TA(x) = 0.

(c) Rn = N (TA) +R(TA).

Hint: Let {v1, . . . ,vk} be a basis of N (TA). Extend it to get a basis {v1, . . . ,vk,vk+1, . . . ,vn}
of Rn. Then by Rank-nullity Theorem 4.3.6, {TA(vk+1), . . . , TA(vn)} is a basis of R(TA).

4.4 Similarity of Matrices

In the last few sections, the following has been discussed in detail:

Given a finite dimensional vector space V of dimension n, we fixed an ordered basis B. For any v ∈ V,

we calculated the column vector [v]B, to obtain the coordinates of v with respect to the ordered basis

B. Also, for any linear transformation T : V−→V, we got an n× n matrix T [B,B], the matrix of T with

respect to the ordered basis B. That is, once an ordered basis of V is fixed, every linear transformation

is represented by a matrix with entries from the scalars.

In this section, we understand the matrix representation of T in terms of different bases B1 and

B2 of V. That is, we relate the two n× n matrices T [B1,B1] and T [B2,B2]. We start with the following

important theorem. This theorem also enables us to understandwhy the matrix product is defined

somewhat differently.

Theorem 4.4.1 (Composition of Linear Transformations) Let V, W and Z be finite dimensional vec-

tor spaces with ordered bases B1,B2,B3, respectively. Also, let T : V−→W and S : W−→Z be linear

transformations. Then the composition map S ◦ T : V−→Z is a linear transformation and

(S ◦ T ) [B1,B3] = S[B2,B3] T [B1,B2].

Proof. Let B1 = (u1,u2, . . . ,un), B2 = (v1,v2, . . . ,vm) and B3 = (w1,w2, . . . ,wp) be ordered bases

of V,W and Z, respectively. Then

(S ◦ T ) [B1,B3] = [[S ◦ T (u1)]B3
, [S ◦ T (u2)]B3

, . . . , [S ◦ T (un)]B3
].
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Now for 1 ≤ t ≤ n,

(S ◦ T ) (ut) = S(T (ut)) = S

( m
∑

j=1

(T [B1,B2])jtvj

)

=

m
∑

j=1

(T [B1,B2])jtS(vj)

=

m
∑

j=1

(T [B1,B2])jt

p
∑

k=1

(S[B2,B3])kjwk

=

p
∑

k=1

(

m
∑

j=1

(S[B2,B3])kj(T [B1,B2])jt)wk

=

p
∑

k=1

(S[B2,B3] T [B1,B2])ktwk.

So,

[(S ◦ T ) (ut)]B3
= ((S[B2,B3] T [B1,B2])1t, . . . , (S[B2,B3] T [B1,B2])pt)

t.

Hence,

(S ◦ T ) [B1,B3] =
[
[(S ◦ T ) (u1)]B3

, . . . , [(S ◦ T ) (un)]B3

]
= S[B2,B3] T [B1,B2].

This completes the proof. �

Proposition 4.4.2 Let V be a finite dimensional vector space and let T, S : V−→V be a linear transforma-

tions. Then

ν(T ) + ν(S) ≥ ν(T ◦ S) ≥ max{ν(T ), ν(S)}.

Proof. We first prove the second inequality.

Suppose that v ∈ N (S). Then T ◦ S(v) = T (S(v)) = T (0) = 0. So, N (S) ⊂ N (T ◦ S). Therefore,
ν(S) ≤ ν(T ◦ S).

Suppose dim(V ) = n. Then using the rank-nullity theorem, observe that

ν(T ◦ S) ≥ ν(T ) ⇐⇒ n− ν(T ◦ S) ≤ n− ν(T ) ⇐⇒ ρ(T ◦ S) ≤ ρ(T ).

So, to complete the proof of the second inequality, we need to show that R(T ◦ S) ⊂ R(T ). This is true

as R(S) ⊂ V.

We now prove the first inequality.

Let k = ν(S) and let {v1,v2, . . . ,vk} be a basis of N (S). Clearly, {v1,v2, . . . ,vk} ⊂ N (T ◦ S) as

T (0) = 0. We extend it to get a basis {v1,v2, . . . ,vk,u1,u2, . . . ,uℓ} of N (T ◦ S).
Claim: The set {S(u1), S(u2), . . . , S(uℓ)} is linearly independent subset of N (T ).

As u1,u2, . . . ,uℓ ∈ N (T ◦ S), the set {S(u1), S(u2), . . . , S(uℓ)} is a subset of N (T ). Let if possible

the given set be linearly dependent. Then there exist non-zero scalars c1, c2, . . . , cℓ such that

c1S(u1) + c2S(u2) + · · ·+ cℓS(uℓ) = 0.

So, the vector
ℓ∑

i=1

ciui ∈ N (S) and is a linear combination of the basis vectors v1,v2, . . . ,vk of N (S).

Therefore, there exist scalars α1, α2, αk such that

ℓ∑

i=1

ciui =
k∑

i=1

αivi.

Or equivalently
ℓ∑

i=1

ciui +

k∑

i=1

(−αi)vi = 0.
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That is, the 0 vector is a non-trivial linear combination of the basis vectors v1,v2, . . . ,vk,u1,u2, . . . ,uℓ

of N (T ◦ S). A contradiction.

Thus, the set {S(u1), S(u2), . . . , S(uℓ)} is a linearly independent subset of N (T ) and so ν(T ) ≥ ℓ.

Hence,

ν(T ◦ S) = k + ℓ ≤ ν(S) + ν(T ).

�

Recall from Theorem 4.1.8 that if T is an invertible linear Transformation, then T−1 : V−→V is a

linear transformation defined by T−1(u) = v whenever T (v) = u. We now state an important result

about inverse of a linear transformation. The reader is required to supply the proof (use Theorem 4.4.1).

Theorem 4.4.3 (Inverse of a Linear Transformation) Let V be a finite dimensional vector space with

ordered bases B1 and B2. Also let T : V−→V be an invertible linear transformation. Then the matrix of T

and T−1 are related by

T [B1,B2]
−1 = T−1[B2,B1].

Exercise 4.4.4 For the linear transformations given below, find the matrix T [B,B].

1. Let B =
(
(1, 1, 1), (1,−1, 1), (1, 1,−1)

)
be an ordered basis of R3. Define T : R3−→R3 by T (1, 1, 1) =

(1,−1, 1), T (1,−1, 1) = (1, 1,−1), and T (1, 1,−1) = (1, 1, 1). Is T an invertible linear transforma-

tion? Give reasons.

2. Let B =
(
1, x, x2, x3)

)
be an ordered basis of P3(R). Define T : P3(R)−→P3(R) by

T (1) = 1, T (x) = 1 + x, T (x2) = (1 + x)2, and T (x3) = (1 + x)3.

Prove that T is an invertible linear transformation. Also, find T−1[B,B].

Let V be a vector space with dim(V ) = n. Let B1 = (u1,u2, . . . ,un) and B2 = (v1,v2, . . . ,vn} be

two ordered bases of V. Recall from Definition 4.1.5 that I : V−→V is the identity linear transformation

defined by I(x) = x for every x ∈ V. Suppose x ∈ V with [x]B1
= (α1, α2, . . . , αn)

t and [x]B2
=

(β1, β2, . . . , βn)
t.

We now express each vector in B2 as a linear combination of the vectors from B1. Since vi ∈ V, for

1 ≤ i ≤ n, and B1 is a basis of V, we can find scalars aij , 1 ≤ i, j ≤ n such that

vi = I(vi) =

n∑

j=1

ajiuj for all i, 1 ≤ i ≤ n.

Hence, [I(vi)]B1
= [vi]B1

= (a1i, a2i, · · · , ani)t and

I[B2,B1] = [[I(v1)]B1
, [I(v2)]B1

, . . . , [I(vn)]B1
]

=









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann









.

Thus, we have proved the following result.

Theorem 4.4.5 (Change of Basis Theorem) Let V be a finite dimensional vector space with ordered bases

B1 = (u1,u2, . . . ,un} and B2 = (v1,v2, . . . ,vn}. Suppose x ∈ V with [x]B1
= (α1, α2, . . . , αn)

t and

[x]B2
= (β1, β2, . . . , βn)

t. Then

[x]B1
= I[B2,B1] [x]B2

.
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Equivalently,








α1

α2

...

αn









=









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

















β1

β2
...

βn









.

Note: Observe that the identity linear transformation I : V−→V defined by I(x) = x for every

x ∈ V is invertible and

I[B2,B1]
−1 = I−1[B1,B2] = I[B1,B2].

Therefore, we also have

[x]B2
= I[B1,B2] [x]B1

.

Let V be a finite dimensional vector space and let B1 and B2 be two ordered bases of V. Let T : V−→V

be a linear transformation. We are now in a position to relate the two matrices T [B1,B1] and T [B2,B2].

Theorem 4.4.6 Let V be a finite dimensional vector space and let B1 = (u1,u2, . . . ,un) and B2 =

(v1,v2, . . . ,vn) be two ordered bases of V. Let T : V−→V be a linear transformation with B = T [B1,B1]

and C = T [B2,B2] as matrix representations of T in bases B1 and B2.

Also, let A = [aij ] = I[B2,B1], be the matrix of the identity linear transformation with respect to the

bases B1 and B2. Then BA = AC. Equivalently B = ACA−1.

Proof. For any x ∈ V , we represent [T (x)]B2
in two ways. Using Theorem 4.2.1, the first expression is

[T (x)]B2
= T [B2,B2] [x]B2

. (4.4.1)

Using Theorem 4.4.5, the other expression is

[T (x)]B2
= I[B1,B2] [T (x)]B1

= I[B1,B2] T [B1,B1] [x]B1

= I[B1,B2] T [B1,B1] I[B2,B1] [x]B2
. (4.4.2)

Hence, using (4.4.1) and (4.4.2), we see that for every x ∈ V,

I[B1,B2] T [B1,B1] I[B2,B1] [x]B2
= T [B2,B2] [x]B2

.

Since the result is true for all x ∈ V, we get

I[B1,B2] T [B1,B1] I[B2,B1] = T [B2,B2]. (4.4.3)

That is, A−1BA = C or equivalently ACA−1 = B. �

Another Proof:

Let B = [bij ] and C = [cij ]. Then for 1 ≤ i ≤ n,

T (ui) =

n∑

j=1

bjiuj and T (vi) =

n∑

j=1

cjivj .

So, for each j, 1 ≤ j ≤ n,

T (vj) = T (I(vj)) = T (

n
∑

k=1

akjuk) =

n
∑

k=1

akjT (uk)

=

n
∑

k=1

akj(

n
∑

ℓ=1

bℓkuℓ) =

n
∑

ℓ=1

(

n
∑

k=1

bℓkakj)uℓ
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and therefore,

[T (vj)]B1
=














n∑

k=1

b1kakj

n∑

k=1

b2kakj

...
n∑

k=1

bnkakj














= B









a1j

a2j
...

anj









.

Hence T [B2,B1] = BA.

Also, for each j, 1 ≤ j ≤ n,

T (vj) =
n∑

k=1

ckjvk =
n∑

k=1

ckjI(vk) =
n∑

k=1

ckj(
n∑

ℓ=1

aℓkuℓ)

=

n∑

ℓ=1

(

n∑

k=1

aℓkckj)uℓ

and so

[T (vj)]B1
=














n∑

k=1

a1kckj

n∑

k=1

a2kckj

...
n∑

k=1

ankckj














= A









c1j

c2j
...

cnj









.

This gives us T [B2,B1] = AC. We thus have AC = T [B2,B1] = BA.

Let V be a vector space with dim(V ) = n, and let T : V−→V be a linear transformation. Then for

each ordered basis B of V, we get an n× n matrix T [B,B]. Also, we know that for any vector space we

have infinite number of choices for an ordered basis. So, as we change an ordered basis, the matrix of

the linear transformation changes. Theorem 4.4.6 tells us that all these matrices are related.

Now, let A and B be two n× n matrices such that P−1AP = B for some invertible matrix P. Recall

the linear transformation TA : Rn−→Rn defined by TA(x) = Ax for all x ∈ Rn. Then we have seen that

if the standard basis of Rn is the ordered basis B, then A = TA[B,B]. Since P is an invertible matrix,

its columns are linearly independent and hence we can take its columns as an ordered basis B1. Then

note that B = TA[B1,B1]. The above observations lead to the following remark and the definition.

Remark 4.4.7 The identity (4.4.3) shows how the matrix representation of a linear transformation T

changes if the ordered basis used to compute the matrix representation is changed. Hence, the matrix

I[B1,B2] is called the B1 : B2 change of basis matrix.

Definition 4.4.8 (Similar Matrices) Two square matrices B and C of the same order are said to be similar

if there exists a non-singular matrix P such that B = PCP−1 or equivalently BP = PC.

Remark 4.4.9 Observe that if A = T [B,B] then

{S−1AS : S is n× n invertible matrix }

is the set of all matrices that are similar to the given matrix A. Therefore, similar matrices are just

different matrix representations of a single linear transformation.
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Example 4.4.10 1. Consider P2(R), with ordered bases

B1 =
(
1, 1 + x, 1 + x+ x2

)
and B2 =

(
1 + x− x2, 1 + 2x+ x2, 2 + x+ x2

)
.

Then

[1 + x− x2]B1
= 0 · 1 + 2 · (1 + x) + (−1) · (1 + x+ x2) = (0, 2,−1)t,

[1 + 2x+ x2]B1
= (−1) · 1 + 1 · (1 + x) + 1 · (1 + x+ x2) = (−1, 1, 1)t, and

[2 + x+ x2]B1
= 1 · 1 + 0 · (1 + x) + 1 · (1 + x+ x2) = (1, 0, 1)t.

Therefore,

I [B2,B1] = [[I(1 + x− x2)]B1
, [I(1 + 2x+ x2)]B1

, [I(2 + x+ x2)]B1
]

= [[1 + x− x2]B1
, [1 + 2x+ x2]B1

, [2 + x+ x2]B1
]

=







0 −1 1

2 1 0

−1 1 1






.

Find the matrices T [B1,B1] and T [B2,B2]. Also verify that

T [B2,B2] = I[B1,B2] T [B1,B1] I[B2,B1]

= I−1[B2,B1] T [B1,B1] I[B2,B1].

2. Consider two bases B1 =
(
(1, 0, 0), (1, 1, 0), (1, 1, 1)

)
and B2 =

(
(1, 1,−1), (1, 2, 1), (2, 1, 1)

)
of R3.

Suppose T : R3−→R3 is a linear transformation defined by

T ((x, y, z)) = (x+ y, x+ y + 2z, y− z).

Then

T [B1,B1] =






0 0 −2

1 1 4

0 1 0




 , and T [B2,B2] =






−4/5 1 8/5

−2/5 2 9/5

8/5 0 −1/5




 .

Find I[B1,B2] and verify,

I[B1,B2] T [B1,B1] I[B2,B1] = T [B2,B2].

Check that,

T [B1,B1] I[B2,B1] = I[B2,B1] T [B2,B2] =






2 −2 −2

−2 4 5

2 1 0




 .

Exercise 4.4.11 1. Let V be an n-dimensional vector space and let T : V−→V be a linear transformation.

Suppose T has the property that T n−1 6= 0 but T n = 0.

(a) Then prove that there exists a vector u ∈ V such that the set

{u, T (u), . . . , T n−1(u)}

is a basis of V.

(b) Let B = (u, T (u), . . . , T n−1(u)). Then prove that

T [B,B] =











0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0
...

. . .
. . .

...

0 0 · · · 1 0











.
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(c) Let A be an n × n matrix with the property that An−1 6= 0 but An = 0. Then prove that A is

similar to the matrix given above.

2. Let T : R3−→R3 be a linear transformation given by

T ((x, y, z)) = (x+ y + 2z, x− y − 3z, 2x+ 3y + z).

Let B be the standard basis and B1 =
(
(1, 1, 1), (1,−1, 1), (1, 1, 2)

)
be another ordered basis.

(a) Find the matrices T [B,B] and T [B1,B1].

(b) Find the matrix P such that P−1T [B,B] P = T [B1,B1].

3. Let T : R3−→R3 be a linear transformation given by

T ((x, y, z)) = (x, x + y, x+ y + z).

Let B be the standard basis and B1 =
(
(1, 0, 0), (1, 1, 0), (1, 1, 1)

)
be another ordered basis.

(a) Find the matrices T [B,B] and T [B1,B1].

(b) Find the matrix P such that P−1T [B,B] P = T [B1,B1].

4. Let B1 =
(
(1, 2, 0), (1, 3, 2), (0, 1, 3)

)
and B2 =

(
(1, 2, 1), (0, 1, 2), (1, 4, 6)

)
be two ordered bases of

R3.

(a) Find the change of basis matrix P from B1 to B2.

(b) Find the change of basis matrix Q from B2 to B1.

(c) Verify that PQ = I = QP.

(d) Find the change of basis matrix from the standard basis of R3 to B1. What do you notice?



Chapter 5

Inner Product Spaces

We had learned that given vectors ~i and ~j (which are at an angle of 90◦) in a plane, any vector in the

plane is a linear combination of the vectors ~i and ~j. In this section, we investigate a method by which

any basis of a finite dimensional vector can be transferred to another basis in such a way that the vectors

in the new basis are at an angle of 90◦ to each other. To do this, we start by defining a notion of inner

product (dot product) in a vector space. This helps us in finding out whether two vectors are at 90◦

or not.

5.1 Definition and Basic Properties

In R2, given two vectors x = (x1, x2), y = (y1, y2), we know the inner product x ·y = x1y1+x2y2. Note

that for any x,y, z ∈ R2 and α ∈ R, this inner product satisfies the conditions

x · (y + αz) = x · y + αx · z, x · y = y · x, and x · x ≥ 0

and x · x = 0 if and only if x = 0. Thus, we are motivated to define an inner product on an arbitrary

vector space.

Definition 5.1.1 (Inner Product) Let V (F) be a vector space over F. An inner product over V (F), denoted

by 〈 , 〉, is a map,

〈 , 〉 : V × V −→ F

such that for u,v,w ∈ V and a, b ∈ F

1. 〈au+ bv,w〉 = a〈u,w〉+ b〈v,w〉,

2. 〈u,v〉 = 〈v,u〉, the complex conjugate of 〈u,v〉, and

3. 〈u,u〉 ≥ 0 for all u ∈ V and equality holds if and only if u = 0.

Definition 5.1.2 (Inner Product Space) Let V be a vector space with an inner product 〈 , 〉. Then

(V, 〈 , 〉) is called an inner product space, in short denoted by ips.

Example 5.1.3 The first two examples given below are called the standard inner product or the dot

product on Rn and Cn, respectively..

1. Let V = R
n be the real vector space of dimension n. Given two vectors u = (u1, u2, . . . , un) and

v = (v1, v2, . . . , vn) of V, we define

〈u, v〉 = u1v1 + u2v2 + · · ·+ unvn = uvt.

Verify 〈 , 〉 is an inner product.

87
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2. Let V = Cn be a complex vector space of dimension n. Then for u = (u1, u2, . . . , un) and v =

(v1, v2, . . . , vn) in V, check that

〈u, v〉 = u1v1 + u2v2 + · · ·+ unvn = uv∗

is an inner product.

3. Let V = R2 and let A =

[

4 −1

−1 2

]

. Define 〈x,y〉 = xAyt. Check that 〈 , 〉 is an inner product.

Hint: Note that xAyt = 4x1y1 − x1y2 − x2y1 + 2x2y2.

4. let x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3., Show that 〈x,y〉 = 10x1y1 + 3x1y2 + 3x2y1 + 2x2y2 +

x2y3 + x3y2 + x3y3 is an inner product in R
3(R).

5. Consider the real vector space R2. In this example, we define three products that satisfy two conditions

out of the three conditions for an inner product. Hence the three products are not inner products.

(a) Define 〈x,y〉 = 〈(x1, x2), (y1, y2)〉 = x1y1. Then it is easy to verify that the third condition is

not valid whereas the first two conditions are valid.

(b) Define 〈x,y〉 = 〈(x1, x2), (y1, y2)〉 = x21 + y21 + x22 + y22 . Then it is easy to verify that the first

condition is not valid whereas the second and third conditions are valid.

(c) Define 〈x,y〉 = 〈(x1, x2), (y1, y2)〉 = x1y
3
1 + x2y

3
2 . Then it is easy to verify that the second

condition is not valid whereas the first and third conditions are valid.

Remark 5.1.4 Note that in parts 1 and 2 of Example 5.1.3, the inner products are uvt and uv∗,

respectively. This occurs because the vectors u and v are row vectors. In general, u and v are taken as

column vectors and hence one uses the notation utv or u∗v.

Exercise 5.1.5 Verify that inner products defined in parts 3 and 4 of Example 5.1.3, are indeed inner products.

Definition 5.1.6 (Length/Norm of a Vector) For u ∈ V, we define the length (norm) of u, denoted ‖u‖,
by ‖u‖ =

√

〈u,u〉, the positive square root.

A very useful and a fundamental inequality concerning the inner product is due to Cauchy and

Schwartz. The next theorem gives the statement and a proof of this inequality.

Theorem 5.1.7 (Cauchy-Schwartz inequality) Let V (F) be an inner product space. Then for any u,v ∈
V

|〈u,v〉| ≤ ‖u‖ ‖v‖.

The equality holds if and only if the vectors u and v are linearly dependent. Further, if u 6= 0, then

v = 〈v, u

‖u‖〉
u

‖u‖ .

Proof. If u = 0, then the inequality holds. Let u 6= 0. Note that 〈λu+ v, λu + v〉 ≥ 0 for all λ ∈ F.

In particular, for λ = −〈v,u〉
‖u‖2 , we get

0 ≤ 〈λu+ v, λu+ v〉
= λλ‖u‖2 + λ〈u,v〉 + λ〈v,u〉 + ‖v‖2

=
〈v,u〉
‖u‖2

〈v,u〉
‖u‖2 ‖u‖2 − 〈v,u〉

‖u‖2 〈u,v〉 − 〈v,u〉
‖u‖2 〈v,u〉+ ‖v‖2

= ‖v‖2 − |〈v,u〉|2
‖u‖2 .
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Or, in other words

|〈v,u〉|2 ≤ ‖u‖2‖v‖2

and the proof of the inequality is over.

Observe that if u 6= 0 then the equality holds if and only of λu+ v = 0 for λ = −〈v,u〉
‖u‖2 . That is, u

and v are linearly dependent. We leave it for the reader to prove

v = 〈v, u

‖u‖〉
u

‖u‖ .

�

Definition 5.1.8 (Angle between two vectors) Let V be a real vector space. Then for every u,v ∈ V, by

the Cauchy-Schwartz inequality, we have

−1 ≤ 〈u,v〉
‖u‖ ‖v‖ ≤ 1.

We know that cos : [0, π] −→ [−1, 1] is an one-one and onto function. Therefore, for every real number
〈u,v〉

‖u‖ ‖v‖ , there exists a unique θ, 0 ≤ θ ≤ π, such that

cos θ =
〈u,v〉

‖u‖ ‖v‖ .

1. The real number θ with 0 ≤ θ ≤ π and satisfying cos θ =
〈u,v〉

‖u‖ ‖v‖ is called the angle between the two

vectors u and v in V.

2. The vectors u and v in V are said to be orthogonal if 〈u,v〉 = 0.

3. A set of vectors {u1,u2, . . . ,un} is called mutually orthogonal if 〈ui,uj〉 = 0 for all 1 ≤ i 6= j ≤ n.

Exercise 5.1.9 1. Let {e1, e2, . . . , en} be the standard basis of Rn. Then prove that with respect to the

standard inner product on Rn, the vectors ei satisfy the following:

(a) ‖ei‖ = 1 for 1 ≤ i ≤ n.

(b) 〈ei, ej〉 = 0 for 1 ≤ i 6= j ≤ n.

2. Recall the following inner product on R2 : for x = (x1, x2)
t and y = (y1, y2)

t,

〈x,y〉 = 4x1y1 − x1y2 − x2y1 + 2x2y2.

(a) Find the angle between the vectors e1 = (1, 0)t and e2 = (0, 1)t.

(b) Let u = (1, 0)t. Find v ∈ R2 such that 〈v,u〉 = 0.

(c) Find two vectors x,y ∈ R2, such that ‖x‖ = ‖y‖ = 1 and 〈x,y〉 = 0.

3. Find an inner product in R2 such that the following conditions hold:

‖(1, 2)‖ = ‖(2,−1)‖ = 1, and 〈(1, 2), (2,−1)〉 = 0.

[Hint: Consider a symmetric matrix A =

[

a b

b c

]

. Define 〈x,y〉 = ytAx and solve a system of 3

equations for the unknowns a, b, c.]
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4. Let V be a complex vector space with dim(V ) = n. Fix an ordered basis B = (u1,u2, . . . ,un). Define

a map

〈 , 〉 : V × V −→ C by 〈u,v〉 =
n∑

i=1

aibi

whenever [u]B = (a1, a2, . . . , an)
t and [v]B = (b1, b2, . . . , bn)

t. Show that the above defined map is

indeed an inner product.

5. Let x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3. Show that

〈x,y〉 = 10x1y1 + 3x1y2 + 3x2y1 + 2x2y2 + x2y3 + x3y2 + x3y3

is an inner product in R
3(R). With respect to this inner product, find the angle between the vectors

(1, 1, 1) and (2,−5, 2).

6. Consider the set Mn×n(R) of all real square matrices of order n. For A,B ∈ Mn×n(R) we define

〈A,B〉 = tr(ABt). Then

〈A+B,C〉 = tr
(
(A+B)Ct

)
= tr(ACt) + tr(BCt) = 〈A,C〉 + 〈B,C〉.

〈A,B〉 = tr(ABt) = tr( (ABt)t ) = tr(BAt) = 〈B,A〉.

Let A = (aij). Then

〈A,A〉 = tr(AAt) =

n∑

i=1

(AAt)ii =

n∑

i=1

n∑

j=1

aijaij =

n∑

i=1

n∑

j=1

a2ij

and therefore, 〈A,A〉 > 0 for all non-zero matrices A. So, it is clear that 〈A,B〉 is an inner product on

Mn×n(R).

7. Let V be the real vector space of all continuous functions with domain [−2π, 2π]. That is, V =

C[−2π, 2π]. Then show that V is an inner product space with inner product
∫ 1

−1 f(x)g(x)dx.

For different values of m and n, find the angle between the functions cos(mx) and sin(nx).

8. Let V be an inner product space. Prove that

‖u+ v‖ ≤ ‖u‖+ ‖v‖ for every u,v ∈ V.

This inequality is called the triangle inequality.

9. Let z1, z2, . . . , zn ∈ C. Use the Cauchy-Schwartz inequality to prove that

|z1 + z2 + · · ·+ zn| ≤
√

n(|z1|2 + |z2|2 + · · ·+ |zn|2).

When does the equality hold?

10. Let x,y ∈ Rn. Observe that 〈x,y〉 = 〈y,x〉. Hence or otherwise prove the following:

(a) 〈x,y〉 = 0 ⇐⇒ ‖x− y‖2 = ‖x‖2 + ‖y‖2, (This is called Pythagoras Theorem).

(b) ‖x‖ = ‖y‖ ⇐⇒ 〈x+y,x−y〉 = 0, (x and y form adjacent sides of a rhombus as the diagonals

x+ y and x− y are orthogonal).

(c) ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2, (This is called the Parallelogram Law).

(d) 4〈x,y〉 = ‖x+ y‖2 − ‖x− y‖2 (This is called the polarisation identity).

Remark 5.1.10 i. Suppose the norm of a vector is given. Then, the polarisation identity

can be used to define an inner product.
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ii. Observe that if 〈x,y〉 = 0 then the parallelogram spanned by the vectors x and y is a

rectangle. The above equality tells us that the lengths of the two diagonals are equal.

Are these results true if x,y ∈ Cn(C)?

11. Let x,y ∈ Cn(C). Prove that

(a) 4〈x,y〉 = ‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2.
(b) If x 6= 0 then ‖x+ ix‖2 = ‖x‖2 + ‖ix‖2, even though 〈x, ix〉 6= 0.

(c) If ‖x+ y‖2 = ‖x‖2 + ‖y‖2 and ‖x+ iy‖2 = ‖x‖2 + ‖iy‖2 then show that 〈x,y〉 = 0.

12. Let V be an n-dimensional inner product space, with an inner product 〈 , 〉. Let u ∈ V be a fixed

vector with ‖u‖ = 1. Then give reasons for the following statements.

(a) Let S⊥ = {v ∈ V : 〈v,u〉 = 0}. Then S is a subspace of V of dimension n− 1.

(b) Let 0 6= α ∈ F and let S = {v ∈ V : 〈v,u〉 = α}. Then S is not a subspace of V.

(c) For any v ∈ S, there exists a vector v0 ∈ S⊥, such that v = v0 + αu.

Theorem 5.1.11 Let V be an inner product space. Let {u1,u2, . . . ,un} be a set of non-zero, mutually

orthogonal vectors of V.

1. Then the set {u1,u2, . . . ,un} is linearly independent.

2. ‖
n∑

i=1

αiui‖2 =
n∑

i=1

|αi|2‖ui‖2;

3. Let dim(V ) = n and also let ‖ui‖ = 1 for i = 1, 2, . . . , n. Then for any v ∈ V,

v =
n∑

i=1

〈v,ui〉ui.

In particular, 〈v,ui〉 = 0 for all i = 1, 2, . . . , n if and only if v = 0.

Proof. Consider the set of non-zero, mutually orthogonal vectors {u1,u2, . . . ,un}. Suppose there exist
scalars c1, c2, . . . , cn not all zero, such that

c1u1 + c2u2 + · · ·+ cnun = 0.

Then for 1 ≤ i ≤ n, we have

0 = 〈0,ui〉 = 〈c1u1 + c2u2 + · · ·+ cnun,ui〉 =
n∑

j=1

cj〈uj ,ui〉 = ci

as 〈uj ,ui〉 = 0 for all j 6= i and 〈ui,ui〉 = 1. This gives a contradiction to our assumption that some of

the ci’s are non-zero. This establishes the linear independence of a set of non-zero, mutually orthogonal

vectors.

For the second part, using 〈ui,uj〉 =
{

0 if i 6= j

‖ui‖2 if i = j
for 1 ≤ i, j ≤ n, we have

‖
n∑

i=1

αiui‖2 = 〈
n∑

i=1

αiui,

n∑

i=1

αiui〉 =
n∑

i=1

αi〈ui,

n∑

j=1

αjuj〉

=

n∑

i=1

αi

n∑

j=1

αj〈ui,uj〉 =
n∑

i=1

αiαi〈ui,ui〉

=

n∑

i=1

|αi|2‖ui‖2.
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For the third part, observe from the first part, the linear independence of the non-zero mutually

orthogonal vectors u1,u2, . . . ,un. Since dim(V ) = n, they form a basis of V. Thus, for every vector

v ∈ V, there exist scalars αi, 1 ≤ i ≤ n, such that v =
∑n

i=1 αiun. Hence,

〈v,uj〉 = 〈
n∑

i=1

αiui,uj〉 =
n∑

i=1

αi〈ui,uj〉 = αj .

Therefore, we have obtained the required result. �

Definition 5.1.12 (Orthonormal Set) Let V be an inner product space. A set of non-zero, mutually or-

thogonal vectors {v1,v2, . . . ,vn} in V is called an orthonormal set if ‖vi‖ = 1 for i = 1, 2, . . . , n.

If the set {v1,v2, . . . ,vn} is also a basis of V, then the set of vectors {v1,v2, . . . ,vn} is called an

orthonormal basis of V.

Example 5.1.13 1. Consider the vector space R2 with the standard inner product. Then the standard

ordered basis B =
(
(1, 0), (0, 1)

)
is an orthonormal set. Also, the basis B1 =

( 1√
2
(1, 1),

1√
2
(1,−1)

)

is an orthonormal set.

2. Let Rn be endowed with the standard inner product. Then by Exercise 5.1.9.1, the standard ordered

basis (e1, e2, . . . , en) is an orthonormal set.

In view of Theorem 5.1.11, we inquire into the question of extracting an orthonormal basis from

a given basis. In the next section, we describe a process (called the Gram-Schmidt Orthogonalisation

process) that generates an orthonormal set from a given set containing finitely many vectors.

Remark 5.1.14 The last part of the above theorem can be rephrased as “suppose {v1,v2, . . . ,vn} is

an orthonormal basis of an inner product space V. Then for each u ∈ V the numbers 〈u,vi〉 for 1 ≤ i ≤ n

are the coordinates of u with respect to the above basis”.

That is, let B = (v1,v2, . . . ,vn) be an ordered basis. Then for any u ∈ V,

[u]B = (〈u,v1〉, 〈u,v2〉, . . . , 〈u,vn〉)t.

5.2 Gram-Schmidt Orthogonalisation Process

Let V be a finite dimensional inner product space. Suppose u1,u2, . . . ,un is a linearly independent subset

of V. Then the Gram-Schmidt orthogonalisation process uses the vectors u1,u2, . . . ,un to construct

new vectors v1,v2, . . . ,vn such that 〈vi,vj〉 = 0 for i 6= j, ‖vi‖ = 1 and Span {u1,u2, . . . ,ui} =

Span {v1,v2, . . . ,vi} for i = 1, 2, . . . , n. This process proceeds with the following idea.

Suppose we are given two vectors u and v in a plane. If we want to get vectors z and y such that z

is a unit vector in the direction of u and y is a unit vector perpendicular to z, then they can be obtained

in the following way:

Take the first vector z =
u

‖u‖ . Let θ be the angle between the vectors u and v. Then cos(θ) =
〈u,v〉
‖u‖ ‖v‖ .

Defined α = ‖v‖ cos(θ) =
〈u,v〉
‖u‖ = 〈z,v〉. Then w = v − α z is a vector perpendicular to the unit

vector z, as we have removed the component of z from v. So, the vectors that we are interested in are

z and y =
w

‖w‖ .
This idea is used to give the Gram-Schmidt Orthogonalization process which we now describe.
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u

v

<v,u>
v  

u
u

 ||  ||

Figure 5.1: Gram-Schmidt Process

Theorem 5.2.1 (Gram-Schmidt Orthogonalization Process) Let V be an inner product space. Suppose

{u1,u2, . . . ,un} is a set of linearly independent vectors of V. Then there exists a set {v1,v2, . . . ,vn} of

vectors of V satisfying the following:

1. ‖vi‖ = 1 for 1 ≤ i ≤ n,

2. 〈vi,vj〉 = 0 for 1 ≤ i, j ≤ n, i 6= j and

3. L(v1,v2, . . . ,vi) = L(u1,u2, . . . ,ui) for 1 ≤ i ≤ n.

Proof. We successively define the vectors v1,v2, . . . ,vn as follows.

v1 =
u1

‖u1‖
.

Calculate w2 = u2 − 〈u2,v1〉v1, and let v2 =
w2

‖w2‖
.

Obtain w3 = u3 − 〈u3,v1〉v1 − 〈u3,v2〉v2, and let v3 =
w3

‖w3‖
.

In general, if v1,v2,v3,v4, . . . ,vi−1 are already obtained, we compute

wi = ui − 〈ui,v1〉v1 − 〈ui,v2〉v2 − · · · − 〈ui,vi−1〉vi−1, (5.2.1)

and define

vi =
wi

‖wi‖
.

We prove the theorem by induction on n, the number of linearly independent vectors.

For n = 1, we have v1 =
u1

‖u1‖
. Since u1 6= 0, v1 6= 0 and

‖v1‖2 = 〈v1,v1〉 = 〈 u1

‖u1‖
,

u1

‖u1‖
〉 = 〈u1,u1〉

‖u1‖2
= 1.

Hence, the result holds for n = 1.

Let the result hold for all k ≤ n − 1. That is, suppose we are given any set of k, 1 ≤ k ≤ n − 1

linearly independent vectors {u1,u2, . . . ,uk} of V. Then by the inductive assumption, there exists a set

{v1,v2, . . . ,vk} of vectors satisfying the following:

1. ‖vi‖ = 1 for 1 ≤ i ≤ k,

2. 〈vi,vj〉 = 0 for 1 ≤ i 6= j ≤ k, and
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3. L(v1,v2, . . . ,vi) = L(u1,u2, . . . ,ui) for 1 ≤ i ≤ k.

Now, let us assume that we are given a set of n linearly independent vectors {u1,u2, . . . ,un} of V.

Then by the inductive assumption, we already have vectors v1,v2, . . . ,vn−1 satisfying

1. ‖vi‖ = 1 for 1 ≤ i ≤ n− 1,

2. 〈vi,vj〉 = 0 for 1 ≤ i 6= j ≤ n− 1, and

3. L(v1,v2, . . . ,vi) = L(u1,u2, . . . ,ui) for 1 ≤ i ≤ n− 1.

Using (5.2.1), we define

wn = un − 〈un,v1〉v1 − 〈un,v2〉v2 − · · · − 〈un,vn−1〉vn−1. (5.2.2)

We first show that wn 6∈ L(v1,v2, . . . ,vn−1). This will also imply that wn 6= 0 and hence vn =
wn

‖wn‖
is well defined.

On the contrary, assume that wn ∈ L(v1,v2, . . . ,vn−1). Then there exist scalars α1, α2, . . . , αn−1

such that

wn = α1v1 + α2v2 + · · ·+ αn−1vn−1.

So, by (5.2.2)

un =
(
α1 + 〈un,v1〉

)
v1 +

(
α2 + 〈un,v2〉

)
v2 + · · ·+ (

(
αn−1 + 〈un,vn−1〉

)
vn−1.

Thus, by the third induction assumption,

un ∈ L(v1,v2, . . . ,vn−1) = L(u1,u2, . . . ,un−1).

This gives a contradiction to the given assumption that the set of vectors {u1,u2, . . . ,un} is linear

independent.

So, wn 6= 0. Define vn =
wn

‖wn‖
. Then ‖vn‖ = 1. Also, it can be easily verified that 〈vn,vi〉 = 0 for

1 ≤ i ≤ n− 1. Hence, by the principle of mathematical induction, the proof of the theorem is complete.

�

We illustrate the Gram-Schmidt process by the following example.

Example 5.2.2 Let {(1,−1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1)} be a linearly independent set in R4(R). Find an

orthonormal set {v1,v2,v3} such that L( (1,−1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1) ) = L(v1,v2,v3).

Solution: Let u1 = (1, 0, 1, 0). Define v1 =
(1, 0, 1, 0)√

2
. Let u2 = (0, 1, 0, 1). Then

w2 = (0, 1, 0, 1)− 〈(0, 1, 0, 1), (1, 0, 1, 0)√
2

〉v1 = (0, 1, 0, 1).

Hence, v2 =
(0, 1, 0, 1)√

2
. Let u3 = (1,−1, 1, 1). Then

w3 = (1,−1, 1, 1)− 〈(1,−1, 1, 1),
(1, 0, 1, 0)√

2
〉v1 − 〈(1,−1, 1, 1),

(0, 1, 0, 1)√
2

〉v2

= (0,−1, 0, 1)

and v3 =
(0,−1, 0, 1)√

2
.



5.2. GRAM-SCHMIDT ORTHOGONALISATION PROCESS 95

Remark 5.2.3 1. Let {u1,u2, . . . ,uk} be any basis of a k-dimensional subspace W of Rn. Then by

Gram-Schmidt orthogonalisation process, we get an orthonormal set {v1,v2, . . . ,vk} ⊂ Rn with

W = L(v1,v2, . . . ,vk), and for 1 ≤ i ≤ k,

L(v1,v2, . . . ,vi) = L(u1,u2, . . . ,ui).

2. Suppose we are given a set of n vectors, {u1,u2, . . . ,un} of V that are linearly dependent. Then

by Corollary 3.2.5, there exists a smallest k, 2 ≤ k ≤ n such that

L(u1,u2, . . . ,uk) = L(u1,u2, . . . ,uk−1).

We claim that in this case, wk = 0.

Since, we have chosen the smallest k satisfying

L(u1,u2, . . . ,ui) = L(u1,u2, . . . ,ui−1),

for 2 ≤ i ≤ n, the set {u1,u2, . . . ,uk−1} is linearly independent (use Corollary 3.2.5). So, by

Theorem 5.2.1, there exists an orthonormal set {v1,v2, . . . ,vk−1} such that

L(u1,u2, . . . ,uk−1) = L(v1,v2, . . . ,vk−1).

As uk ∈ L(v1,v2, . . . ,vk−1), by Remark 5.1.14

uk = 〈uk,v1〉v1 + 〈uk,v2〉v2 + · · ·+ 〈uk,vk−1〉vn−1.

So, by definition of wk, wk = 0.

Therefore, in this case, we can continue with the Gram-Schmidt process by replacing uk by uk+1.

3. Let S be a countably infinite set of linearly independent vectors. Then one can apply the Gram-

Schmidt process to get a countably infinite orthonormal set.

4. Let {v1,v2, . . . ,vk} be an orthonormal subset of Rn. Let B = (e1, e2, . . . , en) be the standard

ordered basis of Rn. Then there exist real numbers αij , 1 ≤ i ≤ k, 1 ≤ j ≤ n such that

[vi]B = (α1i, α2i, . . . , αni)
t.

Let A = [v1,v2, . . . ,vk]. Then in the ordered basis B, we have

A =









α11 α12 · · · α1k

α21 α22 · · · α2k

...
...

. . .
...

αn1 αn2 · · · αnk









is an n× k matrix.

Also, observe that the conditions ‖vi‖ = 1 and 〈vi,vj〉 = 0 for 1 ≤ i 6= j ≤ n, implies that

1 = ‖vi‖ = ‖vi‖2 = 〈vi,vi〉 =
n∑

j=1

α2
ji,

and 0 = 〈vi,vj〉 =
n∑

s=1
αsiαsj .







(5.2.3)
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Note that,

AtA =













v
t
1

v
t
2

...

v
t
k













[v1,v2, . . . ,vk]

=













‖v1‖2 〈v1,v2〉 · · · 〈v1,vk〉
〈v2,v1〉 ‖v2‖2 · · · 〈v2,vk〉

...
...

. . .
...

〈vk,v1〉 〈vk,v2〉 · · · ‖vk‖2













=













1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1













= Ik.

Or using (5.2.3), in the language of matrices, we get

AtA =









α11 α21 · · · αn1

α12 α22 · · · αn2

...
...

. . .
...

α1k α2k · · · αnk

















α11 α12 · · · α1k

α21 α22 · · · α2k

...
...

. . .
...

αn1 αn2 · · · αnk









= Ik.

Perhaps the readers must have noticed that the inverse of A is its transpose. Such matrices are called

orthogonal matrices and they have a special role to play.

Definition 5.2.4 (Orthogonal Matrix) A n×n real matrix A is said to be an orthogonal matrix if A At =

AtA = In.

It is worthwhile to solve the following exercises.

Exercise 5.2.5 1. Let A and B be two n × n orthogonal matrices. Then prove that AB and BA are

both orthogonal matrices.

2. Let A be an n× n orthogonal matrix. Then prove that

(a) the rows of A form an orthonormal basis of Rn.

(b) the columns of A form an orthonormal basis of Rn.

(c) for any two vectors x,y ∈ Rn×1, 〈Ax, Ay〉 = 〈x,y〉.
(d) for any vector x ∈ Rn×1, ‖Ax‖ = ‖x‖.

3. Let {u1,u2, . . . ,un} be an orthonormal basis of Rn. Let B = (e1, e2, . . . , en) be the standard basis of

R
n. Construct an n× n matrix A by

A = [u1,u2, . . . ,un] =









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann









where

ui =

n∑

j=1

ajiej , for 1 ≤ i ≤ n.

Prove that AtA = In. Hence deduce that A is an orthogonal matrix.

4. Let A be an n× n upper triangular matrix. If A is also an orthogonal matrix, then prove that A = In.
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Theorem 5.2.6 (QR Decomposition) Let A be a square matrix of order n. Then there exist matrices Q

and R such that Q is orthogonal and R is upper triangular with A = QR.

In case, A is non-singular, the diagonal entries of R can be chosen to be positive. Also, in this case, the

decomposition is unique.

Proof. We prove the theorem when A is non-singular. The proof for the singular case is left as an

exercise.

Let the columns of A be x1,x2, . . . ,xn. The Gram-Schmidt orthogonalisation process applied to the

vectors x1,x2, . . . ,xn gives the vectors u1,u2, . . . ,un satisfying

L(u1,u2, . . . ,ui) = L(x1,x2, . . . ,xi),

‖ui‖ = 1, 〈ui,uj〉 = 0,

}

for 1 ≤ i 6= j ≤ n. (5.2.4)

Now, consider the ordered basis B = (u1,u2, . . . ,un). From (5.2.4), for 1 ≤ i ≤ n, we have L(u1,u2, . . . ,ui) =

L(x1,x2, . . . ,xi). So, we can find scalars αji, 1 ≤ j ≤ i such that

xi = α1iu1 + α2iu2 + · · ·+ αiiui =
[
(α1i, . . . , αii, 0 . . . , 0)

t
]

B. (5.2.5)

Let Q = [u1,u2, . . . ,un]. Then by Exercise 5.2.5.3, Q is an orthogonal matrix. We now define an n× n

upper triangular matrix R by

R =









α11 α12 · · · α1n

0 α22 · · · α2n

...
...

. . .
...

0 0 · · · αnn









.

By using (5.2.5), we get

QR = [u1,u2, . . . ,un]









α11 α12 · · · α1n

0 α22 · · · α2n

...
...

. . .
...

0 0 · · · αnn









=

[

α11u1, α12u1 + α22u2, . . . ,
n∑

i=1

αinui

]

= [x1,x2, . . . ,xn] = A.

Thus, we see that A = QR, where Q is an orthogonal matrix (see Remark 5.2.3.4) and R is an upper

triangular matrix.

The proof doesn’t guarantee that for 1 ≤ i ≤ n, αii is positive. But this can be achieved by replacing

the vector ui by −ui whenever αii is negative.

Uniqueness: suppose Q1R1 = Q2R2 then Q−1
2 Q1 = R2R

−1
1 . Observe the following properties of

upper triangular matrices.

1. The inverse of an upper triangular matrix is also an upper triangular matrix, and

2. product of upper triangular matrices is also upper triangular.

Thus the matrix R2R
−1
1 is an upper triangular matrix. Also, by Exercise 5.2.5.1, the matrix Q−1

2 Q1 is

an orthogonal matrix. Hence, by Exercise 5.2.5.4, R2R
−1
1 = In. So, R2 = R1 and therefore Q2 = Q1. �

Suppose we have matrix A = [x1,x2, . . . ,xk] of dimension n×k with rank (A) = r. Then by Remark

5.2.3.2, the application of the Gram-Schmidt orthogonalisation process yields a set {u1,u2, . . . ,ur} of
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orthonormal vectors of Rn. In this case, for each i, 1 ≤ i ≤ r, we have

L(u1,u2, . . . ,ui) = L(x1,x2, . . . ,xj), for some j, i ≤ j ≤ k.

Hence, proceeding on the lines of the above theorem, we have the following result.

Theorem 5.2.7 (Generalised QR Decomposition) Let A be an n × k matrix of rank r. Then A = QR,

where

1. Q is an n× r matrix with QtQ = Ir. That is, the columns of Q form an orthonormal set,

2. If Q = [u1,u2, . . . ,ur], then L(u1,u2, . . . ,ur) = L(x1,x2, . . . ,xk), and

3. R is an r × k matrix with rank (R) = r.

Example 5.2.8 1. Let A =








1 0 1 2

0 1 −1 1

1 0 1 1

0 1 1 1







. Find an orthogonal matrix Q and an upper triangular

matrix R such that A = QR.

Solution: From Example 5.2.2, we know that

v1 =
1√
2
(1, 0, 1, 0), v2 =

1√
2
(0, 1, 0, 1), v3 =

1√
2
(0,−1, 0, 1). (5.2.6)

We now compute w4. If we denote u4 = (2, 1, 1, 1)t then by the Gram-Schmidt process,

w4 = u4 − 〈u4,v1〉v1 − 〈u4,v2〉v2 − 〈u4,v3〉v3

=
1

2
(1, 0,−1, 0)t. (5.2.7)

Thus, using (5.2.6) and (5.2.7), we get

Q =
[
v1,v2,v3,v4

]
=









1√
2

0 0 1√
2

0 1√
2

−1√
2

0
1√
2

0 0 −1√
2

0 1√
2

1√
2

0









and

R =









√
2 0

√
2 3√

2

0
√
2 0

√
2

0 0
√
2 0

0 0 0 −1√
2









.

The readers are advised to check that A = QR is indeed correct.

2. Let A =








1 1 1 0

−1 0 −2 1

1 1 1 0

1 0 2 1







. Find a 4×3 matrix Q satisfying QtQ = I3 and an upper triangular matrix

R such that A = QR.

Solution: Let us apply the Gram Schmidt orthogonalisation to the columns ofA. Or equivalently to the

rows ofAt. So, we need to apply the process to the subset {(1,−1, 1, 1), (1, 0, 1, 0), (1,−2, 1, 2), (0, 1, 0, 1)}
of R4.
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Let u1 = (1,−1, 1, 1). Define v1 =
u1

2
. Let u2 = (1, 0, 1, 0). Then

w2 = (1, 0, 1, 0)− 〈u2,v1〉v1 = (1, 0, 1, 0)− v1 =
1

2
(1, 1, 1,−1).

Hence, v2 =
(1, 1, 1,−1)

2
. Let u3 = (1,−2, 1, 2). Then

w3 = u3 − 〈u3,v1〉v1 − 〈u3,v2〉v2 = u3 − 3v1 + v2 = 0.

So, we again take u3 = (0, 1, 0, 1). Then

w3 = u3 − 〈u3,v1〉v1 − 〈u3,v2〉v2 = u3 − 0v1 − 0v2 = u3.

So, v3 =
(0, 1, 0, 1)√

2
. Hence,

Q = [v1,v2,v3] =









1
2

1
2 0

−1
2

1
2

1√
2

1
2

1
2 0

1
2

−1
2

1√
2









, and R =






2 1 3 0

0 1 −1 0

0 0 0
√
2




 .

The readers are advised to check the following:

(a) rank (A) = 3,

(b) A = QR with QtQ = I3, and

(c) R a 3× 4 upper triangular matrix with rank (R) = 3.

Exercise 5.2.9 1. Determine an orthonormal basis of R4 containing the vectors (1,−2, 1, 3) and (2, 1,−3, 1).

2. Prove that the polynomials 1, x, 32x
2 − 1

2 ,
5
2x

3 − 3
2x form an orthogonal set of functions in the in-

ner product space C[−1, 1] with the inner product 〈f, g〉 =
∫ 1

−1
f(t)g(t)dt. Find the corresponding

functions, f(x) with ‖f(x)‖ = 1.

3. Consider the vector space C[−π, π] with the standard inner product defined in the above exercise. Find

an orthonormal basis for the subspace spanned by x, sinx and sin(x+ 1).

4. Let M be a subspace of Rn and dimM = m. A vector x ∈ Rn is said to be orthogonal to M if

〈x, y〉 = 0 for every y ∈M.

(a) How many linearly independent vectors can be orthogonal to M?

(b) If M = {(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0}, determine a maximal set of linearly independent

vectors orthogonal to M in R3.

5. Determine an orthogonal basis of vector subspace spanned by

{(1, 1, 0, 1), (−1, 1, 1,−1), (0, 2, 1, 0), (1, 0, 0, 0)} in R4.

6. Let S = {(1, 1, 1, 1), (1, 2, 0, 1), (2, 2, 4, 0)}. Find an orthonormal basis of L(S) in R4.

7. Let Rn be endowed with the standard inner product. Suppose we have a vector xt = (x1, x2, . . . , xn) ∈
R

n, with ‖x‖ = 1. Then prove the following:

(a) the set {x} can always be extended to form an orthonormal basis of Rn.

(b) Let this basis be {x,x2, . . . ,xn}. Suppose B = (e1, e2, . . . , en) is the standard basis of Rn. Let

A =

[

[x]B, [x2]B, . . . , [xn]B

]

. Then prove that A is an orthogonal matrix.

8. Let v,w ∈ Rn, n ≥ 1 with ‖u‖ = ‖w‖ = 1. Prove that there exists an orthogonal matrix A such that

Av = w. Prove also that A can be chosen such that det(A) = 1.
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5.3 Orthogonal Projections and Applications

Recall that given a k-dimensional vector subspace of a vector space V of dimension n, one can always

find an (n− k)-dimensional vector subspace W0 of V (see Exercise 3.3.19.9) satisfying

W +W0 = V and W ∩W0 = {0}.

The subspace W0 is called the complementary subspace of W in V. We now define an important class of

linear transformations on an inner product space, called orthogonal projections.

Definition 5.3.1 (Projection Operator) Let V be an n-dimensional vector space and let W be a k-

dimensional subspace of V. Let W0 be a complement of W in V. Then we define a map PW : V −→ V

by

PW (v) = w, whenever v = w +w0, w ∈W, w0 ∈ W0.

The map PW is called the projection of V onto W along W0.

Remark 5.3.2 The map P is well defined due to the following reasons:

1. W +W0 = V implies that for every v ∈ V, we can find w ∈ W and w0 ∈ W0 such that v = w+w0.

2. W ∩W0 = {0} implies that the expression v = w+w0 is unique for every v ∈ V.

The next proposition states that the map defined above is a linear transformation from V to V. We

omit the proof, as it follows directly from the above remarks.

Proposition 5.3.3 The map PW : V −→ V defined above is a linear transformation.

Example 5.3.4 Let V = R3 and W = {(x, y, z) ∈ R3 : x+ y − z = 0}.

1. Let W0 = L( (1, 2, 2) ). Then W ∩W0 = {0} and W +W0 = R3. Also, for any vector (x, y, z) ∈ R3,

note that (x, y, z) = w +w0, where

w = (z − y, 2z − 2x− y, 3z − 2x− 2y), and w0 = (x+ y − z)(1, 2, 2).

So, by definition,

PW ((x, y, z)) = (z − y, 2z − 2x− y, 3z − 2x− 2y) =






0 −1 1

−2 −1 2

−2 −2 3











x

y

z




 .

2. Let W0 = L( (1, 1, 1) ). Then W ∩W0 = {0} and W +W0 = R3. Also, for any vector (x, y, z) ∈ R3,

note that (x, y, z) = w +w0, where

w = (z − y, z − x, 2z − x− y), and w0 = (x+ y − z)(1, 1, 1).

So, by definition,

PW ( (x, y, z) ) = (z − y, z − x, 2z − x− y) =






0 −1 1

−1 0 1

−1 −1 2











x

y

z




 .

Remark 5.3.5 1. The projection map PW depends on the complementary subspace W0.

2. Observe that for a fixed subspace W, there are infinitely many choices for the complementary

subspace W0.
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3. It will be shown later that if V is an inner product space with inner product, 〈 , 〉, then the subspace

W0 is unique if we put an additional condition that W0 = {v ∈ V : 〈v,w〉 = 0 for all w ∈W}.

We now prove some basic properties about projection maps.

Theorem 5.3.6 Let W and W0 be complementary subspaces of a vector space V. Let PW : V −→ V be a

projection operator of V onto W along W0. Then

1. the null space of PW , N (PW ) = {v ∈ V : PW (v) = 0} =W0.

2. the range space of PW , R(PW ) = {PW (v) : v ∈ V } =W.

3. P 2
W = PW . The condition P 2

W = PW is equivalent to PW (I − PW ) = 0 = (I − PW )PW .

Proof. We only prove the first part of the theorem.

Let w0 ∈W0. Then w0 = 0+w0 for 0 ∈ W. So, by definition, P (w0) = 0. Hence, W0 ⊂ N (PW ).

Also, for any v ∈ V, let PW (v) = 0 with v = w + w0 for some w0 ∈ W0 and w ∈ W. Then by

definition 0 = PW (v) = w. That is, w = 0 and v = w0. Thus, v ∈W0. Hence N (PW ) =W0. �

Exercise 5.3.7 1. Let A be an n × n real matrix with A2 = A. Consider the linear transformation

TA : Rn −→ Rn, defined by TA(v) = Av for all v ∈ Rn. Prove that

(a) TA ◦ TA = TA (use the condition A2 = A).

(b) N (TA) ∩R(TA) = {0}.
Hint: Let x ∈ N (TA) ∩R(TA). This implies TA(x) = 0 and x = TA(y) for some y ∈ Rn. So,

x = TA(y) = (TA ◦ TA)(y) = TA
(
TA(y)

)
= TA(x) = 0.

(c) Rn = N (TA) +R(TA).

Hint: Let {v1, . . . ,vk} be a basis of N (TA). Extend it to get a basis {v1, . . . ,vk,vk+1, . . . ,vn}
of Rn. Then by Rank-nullity Theorem 4.3.6, {TA(vk+1), . . . , TA(vn)} is a basis of R(TA).

(d) Define W = R(TA) and W0 = N (TA). Then TA is a projection operator of Rn onto W along

W0.

Recall that the first three parts of this exercise was also given in Exercise 4.3.10.7.

2. Find all 2×2 real matrices A such that A2 = A. Hence or otherwise, determine all projection operators

of R2.

The next result uses the Gram-Schmidt orthogonalisation process to get the complementary subspace

in such a way that the vectors in different subspaces are orthogonal.

Definition 5.3.8 (Orthogonal Subspace of a Set) Let V be an inner product space. Let S be a non-empty

subset of V . We define

S⊥ = {v ∈ V : 〈v, s〉 = 0 for all s ∈ S}.

Example 5.3.9 Let V = R.

1. S = {0}. Then S⊥ = R.

2. S = R, Then S⊥ = {0}.

3. Let S be any subset of R containing a non-zero real number. Then S⊥ = {0}.
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Theorem 5.3.10 Let S be a subset of a finite dimensional inner product space V, with inner product 〈 , 〉.
Then

1. S⊥ is a subspace of V.

2. Let S be equal to a subspace W . Then the subspaces W and W⊥ are complementary. Moreover, if

w ∈W and u ∈ W⊥, then 〈u,w〉 = 0 and V =W +W⊥.

Proof. We leave the prove of the first part for the reader. The prove of the second part is as follows:

Let dim(V ) = n and dim(W ) = k. Let {w1,w2, . . . ,wk} be a basis of W. By Gram-Schmidt orthogo-

nalisation process, we get an orthonormal basis, say, {v1,v2, . . . ,vk} of W. Then, for any v ∈ V,

v −
k∑

i=1

〈v,vi〉vi ∈W⊥.

So, V ⊂W +W⊥. Also, for any v ∈ W ∩W⊥, by definition of W⊥, 0 = 〈v,v〉 = ‖v‖2. So, v = 0. That

is, W ∩W⊥ = {0}. �

Definition 5.3.11 (Orthogonal Complement) Let W be a subspace of a vector space V. The subspace

W⊥ is called the orthogonal complement of W in V.

Exercise 5.3.12 1. Let W = {(x, y, z) ∈ R3 : x + y + z = 0}. Find W⊥ with respect to the standard

inner product.

2. Let W be a subspace of a finite dimensional inner product space V . Prove that (W⊥)⊥ =W.

3. Let V be the vector space of all n × n real matrices. Then Exercise5.1.9.6 shows that V is a real

inner product space with the inner product given by 〈A,B〉 = tr(ABt). If W is the subspace given by

W = {A ∈ V : At = A}, determine W⊥.

Definition 5.3.13 (Orthogonal Projection) Let W be a subspace of a finite dimensional inner product

space V, with inner product 〈 , 〉. Let W⊥ be the orthogonal complement of W in V. Define PW : V −→ V

by

PW (v) = w where v = w + u, with w ∈W, and u ∈ W⊥.

Then PW is called the orthogonal projection of V onto W along W⊥.

Definition 5.3.14 (Self-Adjoint Transformation/Operator) Let V be an inner product space with inner

product 〈 , 〉. A linear transformation T : V −→ V is called a self-adjoint operator if 〈T (v),u〉 = 〈v, T (u)〉
for every u,v ∈ V.

Example 5.3.15 1. Let A be an n×n real symmetric matrix. That is, At = A. Then show that the linear

transformation TA : Rn −→ Rn defined by TA(x) = Ax for every xt ∈ Rn is a self-adjoint operator.

Solution: By definition, for every xt,yt ∈ R
n,

〈TA(x),y〉 = (y)tAx = (y)tAtx = (Ay)tx = 〈x, TA(y)〉.

Hence, the result follows.

2. Let A be an n×n Hermitian matrix, that is, A∗ = A. Then the linear transformation TA : Cn −→ Cn

defined by TA(z) = Az for every zt ∈ C
n is a self-adjoint operator.

Remark 5.3.16 1. By Proposition 5.3.3, the map PW defined above is a linear transformation.
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2. P 2
W = PW , (I − PW )PW = 0 = PW (I − PW ).

3. Let u,v ∈ V with u = u1 + u2 and v = v1 + v2 for some u1,v1 ∈ W and u2,v2 ∈ W⊥. Then we

know that 〈ui,vj〉 = 0 whenever 1 ≤ i 6= j ≤ 2. Therefore, for every u,v ∈ V,

〈PW (u),v〉 = 〈u1,v〉 = 〈u1,v1 + v2〉 = 〈u1,v1〉 = 〈u1 + u2,v1〉
= 〈u, PW (v)〉.

Thus, the orthogonal projection operator is a self-adjoint operator.

4. Let v ∈ V and w ∈ W. Then PW (w) = w for all w ∈ W. Therefore, using Remarks 5.3.16.2 and

5.3.16.3, we get

〈v − PW (v),w〉 = 〈
(

I − PW

)

(v), PW (w)〉 = 〈PW

(

I − PW

)

(v),w〉
= 〈0(v),w〉 = 〈0,w〉 = 0

for every w ∈W.

5. In particular, 〈v− PW (v), PW (v)−w〉 = 0 as PW (v) ∈W . Thus, 〈v− PW (v), PW (v)−w′〉 = 0,

for every w′ ∈W . Hence, for any v ∈ V and w ∈ W, we have

‖v −w‖2 = ‖v− PW (v) + PW (v)−w‖2

= ‖v− PW (v)‖2 + ‖PW (v) −w‖2

+2〈v− PW (v), PW (v) −w〉
= ‖v− PW (v)‖2 + ‖PW (v) −w‖2.

Therefore,

‖v−w‖ ≥ ‖v− PW (v)‖

and the equality holds if and only if w = PW (v). Since PW (v) ∈W, we see that

d(v,W ) = inf {‖v−w‖ : w ∈W} = ‖v − PW (v)‖.

That is, PW (v) is the vector nearest to v ∈W. This can also be stated as: the vector PW (v) solves

the following minimisation problem:

inf
w∈W

‖v−w‖ = ‖v− PW (v)‖.

5.3.1 Matrix of the Orthogonal Projection

The minimization problem stated above arises in lot of applications. So, it will be very helpful if the

matrix of the orthogonal projection can be obtained under a given basis.

To this end, let W be a k-dimensional subspace of Rn with W⊥ as its orthogonal complement. Let

PW : Rn −→ Rn be the orthogonal projection of Rn onto W . Suppose, we are given an orthonormal

basis B = (v1,v2, . . . ,vk) of W. Under the assumption that B is known, we explicitly give the matrix of

PW with respect to an extended ordered basis of Rn.

Let us extend the given ordered orthonormal basis B of W to get an orthonormal ordered basis

B1 = (v1,v2, . . . ,vk,vk+1 . . . ,vn) of Rn. Then by Theorem 5.1.11, for any v ∈ R
n, v =

n∑

i=1

〈v,vi〉vi.

Thus, by definition, PW (v) =
k∑

i=1

〈v,vi〉vi. Let A = [v1,v2, . . . ,vk]. Consider the standard orthogonal
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ordered basis B2 = (e1, e2, . . . , en) of R
n. Therefore, if vi =

n∑

j=1

ajiej , for 1 ≤ i ≤ k, then

A =













a11 a12 · · · a1k

a21 a22 · · · a2k

...
...

. . .
...

an1 an2 · · · ank













, [v]B2
=























n
∑

i=1

a1i〈v,vi〉
n
∑

i=1

a2i〈v,vi〉
...

n
∑

i=1

ani〈v,vi〉























and

[PW (v)]B2
=

























k
∑

i=1

a1i〈v,vi〉
k
∑

i=1

a2i〈v,vi〉
...

k
∑

i=1

ani〈v,vi〉

























.

Then as observed in Remark 5.2.3.4, AtA = Ik. That is, for 1 ≤ i, j ≤ k,

n∑

s=1

asiasj =

{

1 if i = j

0 if i 6= j.
(5.3.1)

Thus, using the associativity of matrix product and (5.3.1), we get

(AAt)(v) = A













a11 a21 · · · an1

a12 a22 · · · an2

...
...

. . .
...

a1k a2k · · · ank



































n
∑

i=1

a1i〈v,vi〉
n
∑

i=1

a2i〈v,vi〉
...

n
∑

i=1

ani〈v,vi〉























= A























n
∑

s=1

as1

(

n
∑

i=1

asi〈v,vi〉
)

n
∑

s=1

as2

(

n
∑

i=1

asi〈v,vi〉
)

...
n
∑

s=1

ask

(

n
∑

i=1

asi〈v,vi〉
)























= A























n
∑

i=1

(

n
∑

s=1

as1asi

)

〈v,vi〉
n
∑

i=1

(

n
∑

s=1

as2asi

)

〈v,vi〉
...

n
∑

i=1

(

n
∑

s=1

askasi

)

〈v,vi〉























= A













〈v,v1〉
〈v,v2〉

...

〈v,vk〉













=

























k
∑

i=1

a1i〈v,vi〉
k
∑

i=1

a2i〈v,vi〉
...

k
∑

i=1

ani〈v,vi〉

























= [PW (v)]B2
.

Thus PW [B2,B2] = AAt. Thus, we have proved the following theorem.

Theorem 5.3.17 Let W be a k-dimensional subspace of Rn and let PW : Rn −→ Rn be the orthogonal

projection of Rn onto W along W⊥. Suppose, B = (v1,v2, . . . ,vk) is an orthonormal ordered basis of W.

Define an n×k matrix A = [v1,v2, . . . ,vk]. Then the matrix of the linear transformation PW in the standard

orthogonal ordered basis (e1, e2, . . . , en) is AA
t.
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Example 5.3.18 Let W = {(x, y, z, w) ∈ R4 : x = y, z = w} be a subspace of W. Then an orthonormal

ordered basis of W is
( 1√

2
(1, 1, 0, 0),

1√
2
(0, 0, 1, 1)

)
,

and that of W⊥ is
( 1√

2
(1,−1, 0, 0),

1√
2
(0, 0, 1,−1)

)
.

Therefore, if PW : R4 −→ R
4 is an orthogonal projection of R4 onto W along W⊥, then the corresponding

matrix A is given by

A =









1√
2

0
1√
2

0

0 1√
2

0 1√
2









.

Hence, the matrix of the orthogonal projection PW in the ordered basis

B =
( 1√

2
(1, 1, 0, 0),

1√
2
(0, 0, 1, 1),

1√
2
(1,−1, 0, 0),

1√
2
(0, 0, 1,−1)

)

is

PW [B,B] = AAt =








1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2







.

It is easy to see that

1. the matrix PW [B,B] is symmetric,

2. PW [B,B]2 = PW [B,B], and

3.
(
I4 − PW [B,B]

)
PW [B,B] = 0 = PW [B,B]

(
I4 − PW [B,B]

)
.

Also, for any (x, y, z, w) ∈ R
4, we have

[(x, y, z, w)]B =

(
x+ y√

2
,
z + w√

2
,
x− y√

2
,
z − w√

2

)t

.

Thus, PW

(
(x, y, z, w)

)
=
x+ y

2
(1, 1, 0, 0)+

z + w

2
(0, 0, 1, 1) is the closest vector to the subspace W for any

vector (x, y, z, w) ∈ R4.

Exercise 5.3.19 1. Show that for any non-zero vector vt ∈ Rn, the rank of the matrix vvt is 1.

2. Let W be a subspace of a vector space V and let P : V −→ V be the orthogonal projection of V

ontoW along W⊥. Let B be an orthonormal ordered basis of V. Then prove that corresponding matrix

satisfies P [B,B]t = P [B,B].

3. Let A be an n × n matrix with A2 = A and At = A. Consider the associated linear transformation

TA : Rn −→ R
n defined by TA(v) = Av for all vt ∈ R

n. Then prove that there exists a subspace W

of Rn such that TA is the orthogonal projection of Rn onto W along W⊥.

4. Let W1 and W2 be two distinct subspaces of a finite dimensional vector space V. Let PW1
and PW2

be the corresponding orthogonal projection operators of V along W⊥
1 and W⊥

2 , respectively. Then by

constructing an example in R2, show that the map PW1
◦ PW2

is a projection but not an orthogonal

projection.
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5. LetW be an (n−1)-dimensional vector subspace of Rn and letW⊥ be its orthogonal complement. Let

B = (v1,v2, . . . ,vn−1,vn) be an orthogonal ordered basis of Rn with (v1,v2, . . . ,vn−1) an ordered

basis of W. Define a map

T : Rn −→ R
n by T (v) = w0 −w

whenever v = w+w0 for some w ∈W and w0 ∈W⊥. Then

(a) prove that T is a linear transformation,

(b) find the matrix, T [B,B], and
(c) prove that T [B,B] is an orthogonal matrix.

T is called the reflection along W⊥.



Chapter 6

Eigenvalues, Eigenvectors and

Diagonalization

6.1 Introduction and Definitions

In this chapter, the linear transformations are from a given finite dimensional vector space V to itself.

Observe that in this case, the matrix of the linear transformation is a square matrix. So, in this chapter,

all the matrices are square matrices and a vector x means x = (x1, x2, . . . , xn)
t for some positive integer

n.

Example 6.1.1 Let A be a real symmetric matrix. Consider the following problem:

Maximize (Minimize) xtAx such that x ∈ R
n and xtx = 1.

To solve this, consider the Lagrangian

L(x, λ) = xtAx− λ(xtx− 1) =

n∑

i=1

n∑

j=1

aijxixj − λ(

n∑

i=1

x2i − 1).

Partially differentiating L(x, λ) with respect to xi for 1 ≤ i ≤ n, we get

∂L

∂x1
= 2a11x1 + 2a12x2 + · · ·+ 2a1nxn − 2λx1,

∂L

∂x2
= 2a21x1 + 2a22x2 + · · ·+ 2a2nxn − 2λx2,

and so on, till
∂L

∂xn
= 2an1x1 + 2an2x2 + · · ·+ 2annxn − 2λxn.

Therefore, to get the points of extrema, we solve for

(0, 0, . . . , 0)t = (
∂L

∂x1
,
∂L

∂x2
, . . . ,

∂L

∂xn
)t =

∂L

∂x
= 2(Ax− λx).

We therefore need to find a λ ∈ R and 0 6= x ∈ R
n such that Ax = λx for the extremal problem.

Example 6.1.2 Consider a system of n ordinary differential equations of the form

d y(t)

dt
= Ay, t ≥ 0; (6.1.1)

107
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where A is a real n× n matrix and y is a column vector.

To get a solution, let us assume that

y(t) = ceλt (6.1.2)

is a solution of (6.1.1) and look into what λ and c has to satisfy, i.e., we are investigating for a necessary

condition on λ and c so that (6.1.2) is a solution of (6.1.1). Note here that (6.1.1) has the zero solution,

namely y(t) ≡ 0 and so we are looking for a non-zero c. Differentiating (6.1.2) with respect to t and

substituting in (6.1.1), leads to

λeλtc = Aeλtc or equivalently (A− λI)c = 0. (6.1.3)

So, (6.1.2) is a solution of the given system of differential equations if and only if λ and c satisfy (6.1.3).

That is, given an n×n matrix A, we are this lead to find a pair (λ, c) such that c 6= 0 and (6.1.3) is satisfied.

Let A be a matrix of order n. In general, we ask the question:

For what values of λ ∈ F, there exist a non-zero vector x ∈ F
n such that

Ax = λx? (6.1.4)

Here, Fn stands for either the vector space Rn over R or Cn over C. Equation (6.1.4) is equivalent to

the equation

(A− λI)x = 0.

By Theorem 2.6.1, this system of linear equations has a non-zero solution, if

rank (A− λI) < n, or equivalently det(A− λI) = 0.

So, to solve (6.1.4), we are forced to choose those values of λ ∈ F for which det(A − λI) = 0. Observe

that det(A− λI) is a polynomial in λ of degree n. We are therefore lead to the following definition.

Definition 6.1.3 (characteristic Polynomial) Let A be a matrix of order n. The polynomial det(A− λI)

is called the characteristic polynomial of A and is denoted by p(λ). The equation p(λ) = 0 is called the

characteristic equation of A. If λ ∈ F is a solution of the characteristic equation p(λ) = 0, then λ is called a

characteristic value of A.

Some books use the term eigenvalue in place of characteristic value.

Theorem 6.1.4 Let A = [aij ]; aij ∈ F, for 1 ≤ i, j ≤ n. Suppose λ = λ0 ∈ F is a root of the characteristic

equation. Then there exists a non-zero v ∈ Fn such that Av = λ0v.

Proof. Since λ0 is a root of the characteristic equation, det(A−λ0I) = 0. This shows that the matrix

A− λ0I is singular and therefore by Theorem 2.6.1 the linear system

(A− λ0In)x = 0

has a non-zero solution. �

Remark 6.1.5 Observe that the linear system Ax = λx has a solution x = 0 for every λ ∈ F. So, we

consider only those x ∈ Fn that are non-zero and are solutions of the linear system Ax = λx.

Definition 6.1.6 (Eigenvalue and Eigenvector) If the linear system Ax = λx has a non-zero solution

x ∈ Fn for some λ ∈ F, then

1. λ ∈ F is called an eigenvalue of A,
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2. 0 6= x ∈ Fn is called an eigenvector corresponding to the eigenvalue λ of A, and

3. the tuple (λ,x) is called an eigenpair.

Remark 6.1.7 To understand the difference between a characteristic value and an eigenvalue, we give

the following example.

Consider the matrix A =

[

0 1

−1 0

]

. Then the characteristic polynomial of A is

p(λ) = λ2 + 1.

Given the matrix A, recall the linear transformation TA : F2−→F2 defined by

TA(x) = Ax for every x ∈ F
2.

1. If F = C, that is, if A is considered a complex matrix, then the roots of p(λ) = 0 in C are ±i.
So, A has (i, (1, i)t) and (−i, (i, 1)t) as eigenpairs.

2. If F = R, that is, if A is considered a real matrix, then p(λ) = 0 has no solution in R. Therefore,

if F = R, then A has no eigenvalue but it has ±i as characteristic values.

Remark 6.1.8 Note that if (λ,x) is an eigenpair for an n×n matrix A then for any non-zero c ∈ F, c 6=
0, (λ, cx) is also an eigenpair for A. Similarly, if x1,x2, . . . ,xr are eigenvectors of A corresponding to

the eigenvalue λ, then for any non-zero (c1, c2, . . . , cr) ∈ Fr, it is easily seen that if
r∑

i=1

cixi 6= 0, then

r∑

i=1

cixi is also an eigenvector of A corresponding to the eigenvalue λ. Hence, when we talk of eigenvectors

corresponding to an eigenvalue λ, we mean linearly independent eigenvectors.

Suppose λ0 ∈ F is a root of the characteristic equation det(A − λ0I) = 0. Then A− λ0I is singular

and rank (A − λ0I) < n. Suppose rank (A − λ0I) = r < n. Then by Corollary 4.3.9, the linear system

(A − λ0I)x = 0 has n − r linearly independent solutions. That is, A has n − r linearly independent

eigenvectors corresponding to the eigenvalue λ0 whenever rank (A− λ0I) = r < n.

Example 6.1.9 1. Let A = diag(d1, d2, . . . , dn) with di ∈ R for 1 ≤ i ≤ n. Then p(λ) =
∏n

i=1(λ − di)

is the characteristic equation. So, the eigenpairs are

(d1, (1, 0, . . . , 0)
t), (d2, (0, 1, 0, . . . , 0)

t), . . . , (dn, (0, . . . , 0, 1)
t).

2. Let A =

[

1 1

0 1

]

. Then det(A − λI2) = (1 − λ)2. Hence, the characteristic equation has roots 1, 1.

That is 1 is a repeated eigenvalue. Now check that the equation (A − I2)x = 0 for x = (x1, x2)
t

is equivalent to the equation x2 = 0. And this has the solution x = (x1, 0)
t. Hence, from the above

remark, (1, 0)t is a representative for the eigenvector. Therefore, here we have two eigenvalues

1, 1 but only one eigenvector.

3. Let A =

[

1 0

0 1

]

. Then det(A− λI2) = (1− λ)2. The characteristic equation has roots 1, 1. Here, the

matrix that we have is I2 and we know that I2x = x for every xt ∈ R2 and we can choose any two

linearly independent vectors xt,yt from R
2 to get (1,x) and (1,y) as the two eigenpairs.

In general, if x1,x2, . . . ,xn are linearly independent vectors in Rn, then (1,x1), (1,x2), . . . , (1,xn)

are eigenpairs for the identity matrix, In.
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4. Let A =

[

1 2

2 1

]

. Then det(A − λI2) = (λ − 3)(λ + 1). The characteristic equation has roots 3,−1.

Now check that the eigenpairs are (3, (1, 1)t), and (−1, (1,−1)t). In this case, we have two distinct

eigenvalues and the corresponding eigenvectors are also linearly independent.

The reader is required to prove the linear independence of the two eigenvectors.

5. Let A =

[

1 −1

1 1

]

. Then det(A−λI2) = λ2−2λ+2. The characteristic equation has roots 1+ i, 1− i.

Hence, over R, the matrix A has no eigenvalue. Over C, the reader is required to show that the eigenpairs

are (1 + i, (i, 1)t) and (1− i, (1, i)t).

Exercise 6.1.10 1. Find the eigenvalues of a triangular matrix.

2. Find eigenpairs over C, for each of the following matrices:
[

1 0

0 0

]

,

[

1 1 + i

1− i 1

]

,

[

i 1 + i

−1 + i i

]

,

[

cos θ − sin θ

sin θ cos θ

]

, and

[

cos θ sin θ

sin θ − cos θ

]

.

3. Let A and B be similar matrices.

(a) Then prove that A and B have the same set of eigenvalues.

(b) Let (λ,x) be an eigenpair for A and (λ,y) be an eigenpair for B.What is the relationship between

the vectors x and y?

[Hint: Recall that if the matrices A and B are similar, then there exists a non-singular matrix

P such that B = PAP−1.]

4. Let A = (aij) be an n× n matrix. Suppose that for all i, 1 ≤ i ≤ n,
n∑

j=1

aij = a. Then prove that a

is an eigenvalue of A. What is the corresponding eigenvector?

5. Prove that the matrices A and At have the same set of eigenvalues. Construct a 2× 2 matrix A such

that the eigenvectors of A and At are different.

6. Let A be a matrix such that A2 = A (A is called an idempotent matrix). Then prove that its eigenvalues

are either 0 or 1 or both.

7. Let A be a matrix such that Ak = 0 (A is called a nilpotent matrix) for some positive integer k ≥ 1.

Then prove that its eigenvalues are all 0.

Theorem 6.1.11 Let A = [aij ] be an n× n matrix with eigenvalues λ1, λ2, . . . , λn, not necessarily distinct.

Then det(A) =
n∏

i=1

λi and tr(A) =
n∑

i=1

aii =
n∑

i=1

λi.

Proof. Since λ1, λ2, . . . , λn are the n eigenvalues of A, by definition,

det(A− λIn) = p(λ) = (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn). (6.1.5)

(6.1.5) is an identity in λ as polynomials. Therefore, by substituting λ = 0 in (6.1.5), we get

det(A) = (−1)n(−1)n
n∏

i=1

λi =

n∏

i=1

λi.
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Also,

det(A− λIn) =













a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

...
...

. . .
...

an1 an2 · · · ann − λ













(6.1.6)

= a0 − λa1 + λ2a2 + · · ·
+(−1)n−1λn−1an−1 + (−1)nλn (6.1.7)

for some a0, a1, . . . , an−1 ∈ F. Note that an−1, the coefficient of (−1)n−1λn−1, comes from the product

(a11 − λ)(a22 − λ) · · · (ann − λ).

So, an−1 =
n∑

i=1

aii = tr(A) by definition of trace.

But , from (6.1.5) and (6.1.7), we get

a0 − λa1 + λ2a2 + · · ·+ (−1)n−1λn−1an−1 + (−1)nλn

= (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn). (6.1.8)

Therefore, comparing the coefficient of (−1)n−1λn−1, we have

tr(A) = an−1 = (−1){(−1)
n∑

i=1

λi} =
n∑

i=1

λi.

Hence, we get the required result. �

Exercise 6.1.12 1. Let A be a skew symmetric matrix of order 2n+1. Then prove that 0 is an eigenvalue

of A.

2. Let A be a 3× 3 orthogonal matrix (AAt = I).If det(A) = 1, then prove that there exists a non-zero

vector v ∈ R3 such that Av = v.

Let A be an n × n matrix. Then in the proof of the above theorem, we observed that the charac-

teristic equation det(A − λI) = 0 is a polynomial equation of degree n in λ. Also, for some numbers

a0, a1, . . . , an−1 ∈ F, it has the form

λn + an−1λ
n−1 + an−2λ

2 + · · · a1λ+ a0 = 0.

Note that, in the expression det(A − λI) = 0, λ is an element of F. Thus, we can only substitute λ by

elements of F.

It turns out that the expression

An + an−1A
n−1 + an−2A

2 + · · · a1A+ a0I = 0

holds true as a matrix identity. This is a celebrated theorem called the Cayley Hamilton Theorem. We

state this theorem without proof and give some implications.

Theorem 6.1.13 (Cayley Hamilton Theorem) Let A be a square matrix of order n. Then A satisfies its

characteristic equation. That is,

An + an−1A
n−1 + an−2A

2 + · · · a1A+ a0I = 0

holds true as a matrix identity.
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Some of the implications of Cayley Hamilton Theorem are as follows.

Remark 6.1.14 1. Let A =

[

0 1

0 0

]

. Then its characteristic polynomial is p(λ) = λ2. Also, for

the function, f(x) = x, f(0) = 0, and f(A) = A 6= 0. This shows that the condition f(λ) = 0 for

each eigenvalue λ of A does not imply that f(A) = 0.

2. Suppose we are given a square matrix A of order n and we are interested in calculating Aℓ where

ℓ is large compared to n. Then we can use the division algorithm to find numbers α0, α1, . . . , αn−1

and a polynomial f(λ) such that

λℓ = f(λ)
(
λn + an−1λ

n−1 + an−2λ
2 + · · · a1λ+ a0

)

+α0 + λα1 + · · ·+ λn−1αn−1.

Hence, by the Cayley Hamilton Theorem,

Aℓ = α0I + α1A+ · · ·+ αn−1A
n−1.

That is, we just need to compute the powers of A till n− 1.

In the language of graph theory, it says the following:

“Let G be a graph on n vertices. Suppose there is no path of length n − 1 or less from a vertex v to a

vertex u of G. Then there is no path from v to u of any length. That is, the graph G is disconnected and

v and u are in different components.”

3. Let A be a non-singular matrix of order n. Then note that an = det(A) 6= 0 and

A−1 =
−1

an
[An−1 + an−1A

n−2 + · · ·+ a1I].

This matrix identity can be used to calculate the inverse.

Note that the vector A−1 (as an element of the vector space of all n× n matrices) is a linear combination

of the vectors I,A, . . . , An−1.

Exercise 6.1.15 Find inverse of the following matrices by using the Cayley Hamilton Theorem

i)






2 3 4

5 6 7

1 1 2




 ii)






−1 −1 1

1 −1 1

0 1 1




 iii)






1 −2 −1

−2 1 −1

0 −1 2




 .

Theorem 6.1.16 If λ1, λ2, . . . , λk are distinct eigenvalues of a matrix A with corresponding eigenvectors

x1,x2, . . . ,xk, then the set {x1,x2, . . . ,xk} is linearly independent.

Proof. The proof is by induction on the number m of eigenvalues. The result is obviously true if

m = 1 as the corresponding eigenvector is non-zero and we know that any set containing exactly one

non-zero vector is linearly independent.

Let the result be true for m, 1 ≤ m < k. We prove the result for m+ 1. We consider the equation

c1x1 + c2x2 + · · ·+ cm+1xm+1 = 0 (6.1.9)

for the unknowns c1, c2, . . . , cm+1. We have

0 = A0 = A(c1x1 + c2x2 + · · ·+ cm+1xm+1)

= c1Ax1 + c2Ax2 + · · ·+ cm+1Axm+1

= c1λ1x1 + c2λ2x2 + · · ·+ cm+1λm+1xm+1. (6.1.10)
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From equations (6.1.9) and (6.1.10), we get

c2(λ2 − λ1)x2 + c3(λ3 − λ1)x3 + · · ·+ cm+1(λm+1 − λ1)xm+1 = 0.

This is an equation in m eigenvectors. So, by the induction hypothesis, we have

ci(λi − λ1) = 0 for 2 ≤ i ≤ m+ 1.

But the eigenvalues are distinct implies λi − λ1 6= 0 for 2 ≤ i ≤ m + 1. We therefore get ci = 0 for

2 ≤ i ≤ m+ 1. Also, x1 6= 0 and therefore (6.1.9) gives c1 = 0.

Thus, we have the required result. �

We are thus lead to the following important corollary.

Corollary 6.1.17 The eigenvectors corresponding to distinct eigenvalues of an n × n matrix A are linearly

independent.

Exercise 6.1.18 1. For an n× n matrix A, prove the following.

(a) A and At have the same set of eigenvalues.

(b) If λ is an eigenvalue of an invertible matrix A then
1

λ
is an eigenvalue of A−1.

(c) If λ is an eigenvalue of A then λk is an eigenvalue of Ak for any positive integer k.

(d) If A and B are n× n matrices with A nonsingular then BA−1 and A−1B have the same set of

eigenvalues.

In each case, what can you say about the eigenvectors?

2. Let A and B be 2× 2 matrices for which det(A) = det(B) and tr(A) = tr(B).

(a) Do A and B have the same set of eigenvalues?

(b) Give examples to show that the matrices A and B need not be similar.

3. Let (λ1,u) be an eigenpair for a matrix A and let (λ2,u) be an eigenpair for another matrix B.

(a) Then prove that (λ1 + λ2,u) is an eigenpair for the matrix A+B.

(b) Give an example to show that if λ1, λ2 are respectively the eigenvalues of A and B, then λ1 + λ2

need not be an eigenvalue of A+B.

4. Let λi, 1 ≤ i ≤ n be distinct non-zero eigenvalues of an n × n matrix A. Let ui, 1 ≤ i ≤ n be

the corresponding eigenvectors. Then show that B = {u1,u2, . . . ,un} forms a basis of Fn(F). If

[b]B = (c1, c2, . . . , cn)
t then show that Ax = b has the unique solution

x =
c1
λ1

u1 +
c2
λ2

u2 + · · ·+ cn
λn

un.

6.2 diagonalization

Let A be a square matrix of order n and let TA : Fn−→Fn be the corresponding linear transformation.

In this section, we ask the question “does there exist a basis B of Fn such that TA[B,B], the matrix of

the linear transformation TA, is in the simplest possible form.”

We know that, the simplest form for a matrix is the identity matrix and the diagonal matrix. In

this section, we show that for a certain class of matrices A, we can find a basis B such that TA[B,B] is
a diagonal matrix, consisting of the eigenvalues of A. This is equivalent to saying that A is similar to a

diagonal matrix. To show the above, we need the following definition.
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Definition 6.2.1 (Matrix Diagonalization) A matrix A is said to be diagonalizable if there exists a non-

singular matrix P such that P−1AP is a diagonal matrix.

Remark 6.2.2 Let A be an n× n diagonalizable matrix with eigenvalues λ1, λ2, . . . , λn. By definition,

A is similar to a diagonal matrix D. Observe that D = diag(λ1, λ2, . . . , λn) as similar matrices have the

same set of eigenvalues and the eigenvalues of a diagonal matrix are its diagonal entries.

Example 6.2.3 Let A =

[

0 1

−1 0

]

. Then we have the following:

1. Let V = R2. Then A has no real eigenvalue (see Example 6.1.8 and hence A doesn’t have eigenvectors

that are vectors in R2. Hence, there does not exist any non-singular 2 × 2 real matrix P such that

P−1AP is a diagonal matrix.

2. In case, V = C2(C), the two complex eigenvalues of A are −i, i and the corresponding eigenvectors

are (i, 1)t and (−i, 1)t, respectively. Also, (i, 1)t and (−i, 1)t can be taken as a basis of C2(C). Define

a 2× 2 complex matrix by U = 1√
2

[

i −i
1 1

]

. Then

U∗AU =

[

−i 0

0 i

]

.

Theorem 6.2.4 let A be an n×n matrix. Then A is diagonalizable if and only if A has n linearly independent

eigenvectors.

Proof. Let A be diagonalizable. Then there exist matrices P and D such that

P−1AP = D = diag(λ1, λ2, . . . , λn).

Or equivalently, AP = PD. Let P = [u1,u2, . . . ,un]. Then AP = PD implies that

Aui = diui for 1 ≤ i ≤ n.

Since ui’s are the columns of a non-singular matrix P, they are non-zero and so for 1 ≤ i ≤ n, we get

the eigenpairs (di,ui) of A. Since, ui’s are columns of the non-singular matrix P, using Corollary 4.3.9,

we get u1,u2, . . . ,un are linearly independent.

Thus we have shown that if A is diagonalizable then A has n linearly independent eigenvectors.

Conversely, suppose A has n linearly independent eigenvectors ui, 1 ≤ i ≤ n with eigenvalues λi.

Then Aui = λiui. Let P = [u1,u2, . . . ,un]. Since u1,u2, . . . ,un are linearly independent, by Corollary

4.3.9, P is non-singular. Also,

AP = [Au1, Au2, . . . , Aun] = [λ1u1, λ2u2, . . . , λnun]

= [u1,u2, . . . ,un]









λ1 0 0

0 λ2 0
...

. . .
...

0 0 λn









= PD.

Therefore the matrix A is diagonalizable. �

Corollary 6.2.5 let A be an n × n matrix. Suppose that the eigenvalues of A are distinct. Then A is

diagonalizable.
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Proof. As A is an n×n matrix, it has n eigenvalues. Since all the eigenvalues of A are distinct, by Corol-

lary 6.1.17, the n eigenvectors are linearly independent. Hence, by Theorem 6.2.4, A is diagonalizable.

�

Corollary 6.2.6 Let A be an n × n matrix with λ1, λ2, . . . , λk as its distinct eigenvalues and p(λ) as its

characteristic polynomial. Suppose that for each i, 1 ≤ i ≤ k, (x − λi)
mi divides p(λ) but (x − λi)

mi+1

does not divides p(λ) for some positive integers mi. Then

A is diagonalizable if and only if dim
(
ker(A− λiI)

)
= mi for each i, 1 ≤ i ≤ k.

Or equivalently A is diagonalizable if and only if rank(A− λiI) = n−mi for each i, 1 ≤ i ≤ k.

Proof. As A is diagonalizable, by Theorem 6.2.4, A has n linearly independent eigenvalues. Also,
k∑

i=1

mi = n as deg(p(λ)) = n. Hence, for each eigenvalue λi, 1 ≤ i ≤ k, A has exactly mi linearly

independent eigenvectors. Thus, for each i, 1 ≤ i ≤ k, the homogeneous linear system (A − λiI)x = 0

has exactly mi linearly independent vectors in its solution set. Therefore, dim
(
ker(A − λiI)

)
≥ mi.

Indeed dim
(
ker(A− λiI)

)
= mi for 1 ≤ i ≤ k follows from a simple counting argument.

Now suppose that for each i, 1 ≤ i ≤ k, dim
(
ker(A−λiI)

)
= mi. Then for each i, 1 ≤ i ≤ k, we can

choose mi linearly independent eigenvectors. Also by Corollary 6.1.17, the eigenvectors corresponding to

distinct eigenvalues are linearly independent. Hence A has n =
k∑

i=1

mi linearly independent eigenvectors.

Hence by Theorem 6.2.4, A is diagonalizable. �

Example 6.2.7 1. Let A =






2 1 1

1 2 1

0 −1 1




 . Then det(A − λI) = (2 − λ)2(1 − λ). Hence, A has

eigenvalues 1, 2, 2. It is easily seen that
(
1, (1, 0,−1)t

)
and (

(
2, (1, 1,−1)t

)
are the only eigenpairs.

That is, the matrix A has exactly one eigenvector corresponding to the repeated eigenvalue 2. Hence,

by Theorem 6.2.4, the matrix A is not diagonalizable.

2. Let A =






2 1 1

1 2 1

1 1 2




 . Then det(A − λI) = (4 − λ)(1 − λ)2. Hence, A has eigenvalues 1, 1, 4.

It can be easily verified that (1,−1, 0)t and (1, 0,−1)t correspond to the eigenvalue 1 and (1, 1, 1)t

corresponds to the eigenvalue 4. Note that the set {(1,−1, 0)t, (1, 0,−1)t} consisting of eigenvectors

corresponding to the eigenvalue 1 are not orthogonal. This set can be replaced by the orthogonal

set {(1, 0,−1)t, (1,−2, 1)t} which still consists of eigenvectors corresponding to the eigenvalue 1 as

(1,−2, 1) = 2(1,−1, 0) − (1, 0,−1). Also, the set {(1, 1, 1), (1, 0,−1), (1,−2, 1)} forms a basis of

R3. So, by Theorem 6.2.4, the matrix A is diagonalizable. Also, if U =






1√
3

1√
2

1√
6

1√
3

0 −2√
6

1√
3

− 1√
2

1√
6




 is the

corresponding unitary matrix then U∗AU = diag(4, 1, 1).

Observe that the matrix A is a symmetric matrix. In this case, the eigenvectors are mutually orthogonal.

In general, for any n×n real symmetric matrix A, there always exist n eigenvectors and they are mutually

orthogonal. This result will be proved later.

Exercise 6.2.8 1. By finding the eigenvalues of the following matrices, justify whether or notA = PDP−1

for some real non-singular matrix P and a real diagonal matrix D.

i)

[

cos θ sin θ

− sin θ cos θ

]

ii)

[

cos θ sin θ

sin θ − cos θ

]

for any θ with 0 ≤ θ ≤ 2π.
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2. Let A be an n × n matrix and B an m ×m matrix. Suppose C =

[

A 0

0 B

]

. Then show that C is

diagonalizable if and only if both A and B are diagonalizable.

3. Let T : R5 −→ R5 be a linear transformation with rank (T − I) = 3 and

N (T ) = {(x1, x2, x3, x4, x5) ∈ R
5 | x1 + x4 + x5 = 0, x2 + x3 = 0}.

Then

(a) determine the eigenvalues of T ?

(b) find the number of linearly independent eigenvectors corresponding to each eigenvalue?

(c) is T diagonalizable? Justify your answer.

4. Let A be a non-zero square matrix such that A2 = 0. Show that A cannot be diagonalized. [Hint:

Use Remark 6.2.2.]

5. Are the following matrices diagonalizable?

i)








1 3 2 1

0 2 3 1

0 0 −1 1

0 0 0 4







, ii)






1 0 −1

0 1 0

0 0 2




 , iii)






1 −3 3

0 −5 6

0 −3 4




 .

6.3 Diagonalizable matrices

In this section, we will look at some special classes of square matrices which are diagonalizable. We

will also be dealing with matrices having complex entries and hence for a matrix A = [aij ], recall the

following definitions.

Definition 6.3.1 (Special Matrices) 1. A∗ = (aji), is called the conjugate transpose of the matrix

A.

Note that A∗ = At = A
t
.

2. A square matrix A with complex entries is called

(a) a Hermitian matrix if A∗ = A.

(b) a unitary matrix if A A∗ = A∗A = In.

(c) a skew-Hermitian matrix if A∗ = −A.
(d) a normal matrix if A∗A = AA∗.

3. A square matrix A with real entries is called

(a) a symmetric matrix if At = A.

(b) an orthogonal matrix if A At = AtA = In.

(c) a skew-symmetric matrix if At = −A.

Note that a symmetric matrix is always Hermitian, a skew-symmetric matrix is always skew-Hermitian

and an orthogonal matrix is always unitary. Each of these matrices are normal. If A is a unitary matrix

then A∗ = A−1.

Example 6.3.2 1. Let B =

[

i 1

−1 i

]

. Then B is skew-Hermitian.
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2. Let A = 1√
2

[

1 i

i 1

]

and B =

[

1 1

−1 1

]

. Then A is a unitary matrix and B is a normal matrix. Note

that
√
2A is also a normal matrix.

Definition 6.3.3 (Unitary Equivalence) Let A and B be two n × n matrices. They are called unitarily

equivalent if there exists a unitary matrix U such that A = U∗BU.

Exercise 6.3.4 1. Let A be any matrix. Then A = 1
2 (A + A∗) + 1

2 (A − A∗) where 1
2 (A + A∗) is the

Hermitian part of A and 1
2 (A−A∗) is the skew-Hermitian part of A.

2. Every matrix can be uniquely expressed as A = S + iT where both S and T are Hermitian matrices.

3. Show that A−A∗ is always skew-Hermitian.

4. Does there exist a unitary matrix U such that UAU−1 = B where

A =






1 1 4

0 2 2

0 0 3




 and B =






2 −1 3
√
2

0 1
√
2

0 0 3




 .

Proposition 6.3.5 Let A be an n× n Hermitian matrix. Then all the eigenvalues of A are real.

Proof. Let (λ,x) be an eigenpair. Then Ax = λx and A = A∗ implies

x∗A = x∗A∗ = (Ax)∗ = (λx)∗ = λx∗.

Hence

λx∗x = x∗(λx) = x∗(Ax) = (x∗A)x = (λx∗)x = λx∗x.

But x is an eigenvector and hence x 6= 0 and so the real number ‖x‖2 = x∗x is non-zero as well. Thus

λ = λ. That is, λ is a real number. �

Theorem 6.3.6 Let A be an n × n Hermitian matrix. Then A is unitarily diagonalizable. That is, there

exists a unitary matrix U such that U∗AU = D; where D is a diagonal matrix with the eigenvalues of A as

the diagonal entries.

In other words, the eigenvectors of A form an orthonormal basis of Cn.

Proof. We will prove the result by induction on the size of the matrix. The result is clearly true if

n = 1. Let the result be true for n = k − 1. we will prove the result in case n = k. So, let A be a k × k

matrix and let (λ1,x) be an eigenpair of A with ‖x‖ = 1. We now extend the linearly independent set

{x} to form an orthonormal basis {x,u2,u3, . . . ,uk} (using Gram-Schmidt Orthogonalisation) of Ck.

As {x,u2,u3, . . . ,uk} is an orthonormal set,

u∗
ix = 0 for all i = 2, 3, . . . , k.

Therefore, observe that for all i, 2 ≤ i ≤ k,

(Aui)
∗x = (ui ∗A∗)x = u∗

i (A
∗x) = u∗

i (Ax) = u∗
i (λ1x) = λ1(u

∗
ix) = 0.
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Hence, we also have x∗(Aui) = 0 for 2 ≤ i ≤ k. Now, define U1 = [x, u2, · · · ,uk] (with x,u2, . . . ,uk as

columns of U1). Then the matrix U1 is a unitary matrix and

U−1
1 AU1 = U∗

1AU1 = U∗
1 [Ax Au2 · · ·Auk]

=









x∗

u∗
2

...

u∗
k









[λ1x Au2 · · ·Auk] =









λ1x
∗x · · · x∗Auk

u∗
2(λ1x) · · · u∗

2(Auk)
...

. . .
...

u∗
k(λ1x) · · · u∗

k(Auk)









=









λ1 0

0
... B

0









,

where B is a (k − 1) × (k − 1) matrix. As the matrix U1 is unitary, U∗
1 = U−1

1 . So, A∗ = A gives

(U−1
1 AU1)

∗ = U−1
1 AU1. This condition, together with the fact that λ1 is a real number (use Propo-

sition 6.3.5), implies that B∗ = B. That is, B is also a Hermitian matrix. Therefore, by induction

hypothesis there exists a (k − 1)× (k − 1) unitary matrix U2 such that

U−1
2 BU2 = D2 = diag(λ2, . . . , λk).

Recall that , the entries λi, for 2 ≤ i ≤ k are the eigenvalues of the matrix B. We also know that two

similar matrices have the same set of eigenvalues. Hence, the eigenvalues of A are λ1, λ2, . . . , λk. Define

U = U1

[

1 0

0 U2

]

. Then U is a unitary matrix and

U−1AU =

(

U1

[

1 0

0 U2

])−1

A

(

U1

[

1 0

0 U2

])

=

([

1 0

0 U−1

2

]

U−1

1

)

A

(

U1

[

1 0

0 U2

])

=

[

1 0

0 U−1

2

]

(

U−1

1 AU1

)

[

1 0

0 U2

]

=

[

1 0

0 U−1

2

][

λ1 0

0 B

][

1 0

0 U2

]

=

[

λ1 0

0 U−1

2 BU2

]

=

[

λ1 0

0 D2

]

.

Thus, U−1AU is a diagonal matrix with diagonal entries λ1, λ2, . . . , λk, the eigenvalues of A. Hence,

the result follows. �

Corollary 6.3.7 Let A be an n× n real symmetric matrix. Then

1. the eigenvalues of A are all real,

2. the corresponding eigenvectors can be chosen to have real entries, and

3. the eigenvectors also form an orthonormal basis of Rn.

Proof. As A is symmetric, A is also an Hermitian matrix. Hence, by Proposition 6.3.5, the eigenvalues

of A are all real. Let (λ, x) be an eigenpair of A. Suppose xt ∈ C
n. Then there exist yt, zt ∈ R

n such

that x = y + iz. So,

Ax = λx =⇒ A(y + iz) = λ(y + iz).
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Comparing the real and imaginary parts, we get Ay = λy and Az = λz. Thus, we can choose the

eigenvectors to have real entries.

To prove the orthonormality of the eigenvectors, we proceed on the lines of the proof of Theorem

6.3.6, Hence, the readers are advised to complete the proof. �

Exercise 6.3.8 1. Let A be a skew-Hermitian matrix. Then all the eigenvalues of A are either zero or

purely imaginary. Also, the eigenvectors corresponding to distinct eigenvalues are mutually orthogonal.

[Hint: Carefully study the proof of Theorem 6.3.6.]

2. Let A be an n× n unitary matrix. Then

(a) the rows of A form an orthonormal basis of Cn.

(b) the columns of A form an orthonormal basis of Cn.

(c) for any two vectors x,y ∈ Cn×1, 〈Ax, Ay〉 = 〈x,y〉.
(d) for any vector x ∈ Cn×1, ‖Ax‖ = ‖x‖.
(e) for any eigenvalue λ A, |λ| = 1.

(f) the eigenvectors x,y corresponding to distinct eigenvalues λ and µ satisfy 〈x,y〉 = 0. That is, if

(λ,x) and (µ,y) are eigenpairs, with λ 6= µ, then x and y are mutually orthogonal.

3. Let A be a normal matrix. Then, show that if (λ,x) is an eigenpair for A then (λ,x) is an eigenpair

for A∗.

4. Show that the matrices A =

[

4 4

0 4

]

and B =

[

10 9

−4 −2

]

are similar. Is it possible to find a unitary

matrix U such that A = U∗BU?

5. Let A be a 2× 2 orthogonal matrix. Then prove the following:

(a) if det(A) = 1, then A =

[

cos θ − sin θ

sin θ cos θ

]

for some θ, 0 ≤ θ < 2π.

(b) if detA = −1, then there exists a basis of R2 in which the matrix of A looks like

[

1 0

0 −1

]

.

6. Describe all 2× 2 orthogonal matrices.

7. Let A =






2 1 1

1 2 1

1 1 2




 . Determine A301.

8. Let A be a 3× 3 orthogonal matrix. Then prove the following:

(a) if det(A) = 1, then A is a rotation about a fixed axis, in the sense that A has an eigenpair (1,x)

such that the restriction of A to the plane x⊥ is a two dimensional rotation of x⊥.

(b) if detA = −1, then the action of A corresponds to a reflection through a plane P, followed by a

rotation about the line through the origin that is perpendicular to P.

Remark 6.3.9 In the previous exercise, we saw that the matrices A =

[

4 4

0 4

]

and B =

[

10 9

−4 −2

]

are similar but not unitarily equivalent, whereas unitary equivalence implies similarity equivalence as

U∗ = U−1. But in numerical calculations, unitary transformations are preferred as compared to similarity

transformations. The main reasons being:
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1. Exercise 6.3.8.2 implies that an orthonormal change of basis leaves unchanged the sum of squares

of the absolute values of the entries which need not be true under a non-orthonormal change of

basis.

2. As U∗ = U−1 for a unitary matrix U, unitary equivalence is computationally simpler.

3. Also in doing “conjugate transpose”, the loss of accuracy due to round-off errors doesn’t occur.

We next prove the Schur’s Lemma and use it to show that normal matrices are unitarily diagonaliz-

able.

Lemma 6.3.10 (Schur’s Lemma) Every n × n complex matrix is unitarily similar to an upper triangular

matrix.

Proof. We will prove the result by induction on the size of the matrix. The result is clearly true

if n = 1. Let the result be true for n = k − 1. we will prove the result in case n = k. So, let A be a

k× k matrix and let (λ1, x) be an eigenpair for A with ‖x‖ = 1. Now the linearly independent set {x} is

extended, using the Gram-Schmidt Orthogonalisation, to get an orthonormal basis {x, u2, u3, . . . , uk}.
Then U1 = [x u2 · · ·uk] (with x, u2, . . . , uk as the columns of the matrix U1 ) is a unitary matrix and

U−1
1 AU1 = U∗

1AU1 = U∗
1 [Ax Au2 · · ·Auk]

=









x∗

u∗2
...

u∗k









[λ1x Au2 · · ·Auk] =









λ1 ∗
0
... B

0









where B is a (k − 1)× (k − 1) matrix. By induction hypothesis there exists a (k − 1)× (k − 1) unitary

matrix U2 such that U−1
2 BU2 is an upper triangular matrix with diagonal entries λ2, . . . , λk, the eigen

values of the matrix B. Observe that since the eigenvalues of B are λ2, . . . , λk the eigenvalues of A are

λ1, λ2, . . . , λk. Define U = U1

[

1 0

0 U2

]

. Then check that U is a unitary matrix and U−1AU is an upper

triangular matrix with diagonal entries λ1, λ2, . . . , λk, the eigenvalues of the matrix A. Hence, the result

follows. �

Exercise 6.3.11 1. Let A be an n×n real invertible matrix. Prove that there exists an orthogonal matrix

P and a diagonal matrix D with positive diagonal entries such that AAt = PDP−1.

2. Show that matrices A =






1 1 1

0 2 1

0 0 3




 and B =






2 −1
√
2

0 1 0

0 0 3




 are unitarily equivalent via the unitary

matrix U = 1√
2






1 1 0

1 −1 0

0 0
√
2




 . Hence, conclude that the upper triangular matrix obtained in the

”Schur’s Lemma” need not be unique.

3. Show that the normal matrices are diagonalizable.

[Hint: Show that the matrix B in the proof of the above theorem is also a normal matrix and if T

is an upper triangular matrix with T ∗T = TT ∗ then T has to be a diagonal matrix].

Remark 6.3.12 (The Spectral Theorem for Normal Matrices) Let A be an n× n normal

matrix. Then the above exercise shows that there exists an orthonormal basis {x1,x2, . . . ,xn} of

C
n(C) such that Axi = λixi for 1 ≤ i ≤ n.
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4. Let A be a normal matrix. Prove the following:

(a) if all the eigenvalues of A are 0, then A = 0,

(b) if all the eigenvalues of A are 1, then A = I.

We end this chapter with an application of the theory of diagonalization to the study of conic sections

in analytic geometry and the study of maxima and minima in analysis.

6.4 Sylvester’s Law of Inertia and Applications

Definition 6.4.1 (Bilinear Form) Let A be a n × n matrix with real entries. A bilinear form in x =

(x1, x2, . . . , xn)
t, y = (y1, y2, . . . , yn)

t is an expression of the type

Q(x,y) = xtAy =

n∑

i,j=1

aijxiyj .

Observe that if A = I (the identity matrix) then the bilinear form reduces to the standard real inner

product. Also, if we want it to be symmetric in x and y then it is necessary and sufficient that aij = aji

for all i, j = 1, 2, . . . , n. Why? Hence, any symmetric bilinear form is naturally associated with a real

symmetric matrix.

Definition 6.4.2 (Sesquilinear Form) Let A be a n× n matrix with complex entries. A sesquilinear form

in x = (x1, x2, . . . , xn)
t, y = (y1, y2, . . . , yn)

t is given by

H(x,y) =

n∑

i,j=1

aijxiyj .

Note that if A = I (the identity matrix) then the sesquilinear form reduces to the standard complex

inner product. Also, it can be easily seen that this form is ‘linear’ in the first component and ‘conjugate

linear’ in the second component. Also, if we want H(x,y) = H(y,x) then the matrix A need to be an

Hermitian matrix. Note that if aij ∈ R and x,y ∈ R
n, then the sesquilinear form reduces to a bilinear

form.

The expression Q(x,x) is called the quadratic form and H(x,x) the Hermitian form. We generally

write Q(x) and H(x) in place of Q(x,x) and H(x,x), respectively. It can be easily shown that for any

choice of x, the Hermitian form H(x) is a real number.

Therefore, in matrix notation, for a Hermitian matrix A, the Hermitian form can be rewritten as

H(x) = xtAx, where x = (x1, x2, . . . , xn)
t, and A = [aij ].

Example 6.4.3 Let A =

[

1 2− i

2 + i 2

]

. Then check that A is an Hermitian matrix and for x = (x1, x2)
t,

the Hermitian form

H(x) = x∗Ax = (x1, x2)

[

1 2− i

2 + i 2

](

x1

x2

)

= x1x1 + 2x2x2 + (2− i)x1x2 + (2 + i)x2x1

= |x1|2 + 2|x2|2 + 2Re[(2 − i)x1x2]

where ‘Re’ denotes the real part of a complex number. This shows that for every choice of x the Hermitian

form is always real. Why?
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The main idea is to express H(x) as sum of squares and hence determine the possible values that

it can take. Note that if we replace x by cx, where c is any complex number, then H(x) simply gets

multiplied by |c|2 and hence one needs to study only those x for which ‖x‖ = 1, i.e., x is a normalised

vector.

From Exercise 6.3.11.3 one knows that if A = A∗ (A is Hermitian) then there exists a unitary matrix

U such that U∗AU = D (D = diag(λ1, λ2, . . . , λn) with λi’s the eigenvalues of the matrix A which we

know are real). So, taking z = U∗x (i.e., choosing zi’s as linear combination of xj ’s with coefficients

coming from the entries of the matrix U∗), one gets

H(x) = x∗Ax = z∗U∗AUz = z∗Dz =

n∑

i=1

λi|zi|2 =

n∑

i=1

λi

∣
∣
∣
∣
∣
∣

n∑

j=1

uji
∗xj

∣
∣
∣
∣
∣
∣

2

. (6.4.1)

Thus, one knows the possible values that H(x) can take depending on the eigenvalues of the matrix A

in case A is a Hermitian matrix. Also, for 1 ≤ i ≤ n,
n∑

j=1

uji
∗xj represents the principal axes of the conic

that they represent in the n-dimensional space.

Equation (6.4.1) gives one method of writing H(x) as a sum of n absolute squares of linearly inde-

pendent linear forms. One can easily show that there are more than one way of writing H(x) as sum of

squares. The question arises, “what can we say about the coefficients when H(x) has been written as

sum of absolute squares”.

This question is answered by ‘Sylvester’s law of inertia’ which we state as the next lemma.

Lemma 6.4.4 Every Hermitian form H(x) = x∗Ax (with A an Hermitian matrix) in n variables can be

written as

H(x) = |y1|2 + |y2|2 + · · ·+ |yp|2 − |yp+1|2 − · · · − |yr|2

where y1, y2, . . . , yr are linearly independent linear forms in x1, x2, . . . , xn, and the integers p and r, 0 ≤ p ≤
r ≤ n, depend only on A.

Proof. From Equation (6.4.1) it is easily seen that H(x) has the required form. Need to show that p

and r are uniquely given by A.

Hence, let us assume on the contrary that there exist positive integers p, q, r, s with p > q such that

H(x) = |y1|2 + |y2|2 + · · ·+ |yp|2 − |yp+1|2 − · · · − |yr|2

= |z1|2 + |z2|2 + · · ·+ |zq|2 − |zq+1|2 − · · · − |zs|2.

Since, y = (y1, y2, . . . , yn)
t and z = (z1, z2, . . . , zn)

t are linear combinations of x1, x2, . . . , xn, we can find

a matrix B such that z = By. Choose yp+1 = yp+2 = · · · = yr = 0. Since p > q, Theorem 2.6.1, gives

the existence of finding nonzero values of y1, y2, . . . , yp such that z1 = z2 = · · · = zq = 0. Hence, we get

|y1|2 + |y2|2 + · · ·+ |yp|2 = −(|zq+1|2 + · · ·+ |zs|2).

Now, this can hold only if y1 = y2 = · · · = yp = 0, which gives a contradiction. Hence p = q.

Similarly, the case r > s can be resolved. �

Note: The integer r is the rank of the matrix A and the number r − 2p is sometimes called the

inertial degree of A.

We complete this chapter by understanding the graph of

ax2 + 2hxy + by2 + 2fx+ 2gy + c = 0

for a, b, c, f, g, h ∈ R. We first look at the following example.
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Example 6.4.5 Sketch the graph of 3x2 + 4xy + 3y2 = 5.

Solution: Note that

3x2 + 4xy + 3y2 = [x, y]

[

3 2

2 3

][

x

y

]

.

The eigenpairs for

[

3 2

2 3

]

are (5, (1, 1)t), (1, (1,−1)t). Thus,

[

3 2

2 3

]

=

[
1√
2

1√
2

1√
2

− 1√
2

][

5 0

0 1

] [
1√
2

1√
2

1√
2

− 1√
2

]

.

Let [

u

v

]

=

[
1√
2

1√
2

1√
2

− 1√
2

][

x

y

]

=

[
x+y√

2
x−y√

2

]

.

Then

3x2 + 4xy + 3y2 = [x, y]

[

3 2

2 3

][

x

y

]

= [x, y]

[
1√
2

1√
2

1√
2

− 1√
2

][

5 0

0 1

][
1√
2

1√
2

1√
2

− 1√
2

][

x

y

]

=
[
u, v

]

[

5 0

0 1

][

u

v

]

= 5u2 + v2.

Thus the given graph reduces to

5u2 + v2 = 5 or equivalently u2 +
v2

5
= 1.

Therefore, the given graph represents an ellipse with the principal axes u = 0 and v = 0. That is, the principal

axes are

y + x = 0 and x− y = 0.

The eccentricity of the ellipse is e = 2√
5
, the foci are at the points S1 = (−

√
2,
√
2) and S2 = (

√
2,−

√
2),

and the equations of the directrices are x− y = ± 5√
2
.

S1

S2

Figure 6.1: Ellipse
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Definition 6.4.6 (Associated Quadratic Form) Let ax2+2hxy+by2+2gx+2fy+c= 0 be the equation

of a general conic. The quadratic expression

ax2 + 2hxy + by2 =
[
x, y

]

[

a h

h b

] [

x

y

]

is called the quadratic form associated with the given conic.

We now consider the general conic. We obtain conditions on the eigenvalues of the associated

quadratic form to characterize the different conic sections in R2 (endowed with the standard inner

product).

Proposition 6.4.7 Consider the general conic

ax2 + 2hxy + by2 + 2gx+ 2fy + c = 0.

Prove that this conic represents

1. an ellipse if ab− h2 > 0,

2. a parabola if ab− h2 = 0, and

3. a hyperbola if ab− h2 < 0.

Proof. Let A =

[

a h

h b

]

. Then the associated quadratic form

ax2 + 2hxy + by2 =
[
x y

]
A

[

x

y

]

.

As A is a symmetric matrix, by Corollary 6.3.7, the eigenvalues λ1, λ2 of A are both real, the corre-

sponding eigenvectors u1,u2 are orthonormal and A is unitarily diagonalizable with

A =

[

ut
1

ut
2

][

λ1 0

0 λ2

]

[
u1 u2

]
. (6.4.2)

Let

[

u

v

]

=
[
u1 u2

]

[

x

y

]

. Then

ax2 + 2hxy + by2 = λ1u
2 + λ2v

2

and the equation of the conic section in the (u, v)-plane, reduces to

λ1u
2 + λ2v

2 + 2g1u+ 2f1v + c = 0.

Now, depending on the eigenvalues λ1, λ2, we consider different cases:

1. λ1 = 0 = λ2.

Substituting λ1 = λ2 = 0 in (6.4.2) gives A = 0. Thus, the given conic reduces to a straight line

2g1u+ 2f1v + c = 0 in the (u, v)-plane.

2. λ1 = 0, λ2 6= 0.

In this case, the equation of the conic reduces to

λ2(v + d1)
2 = d2u+ d3 for some d1, d2, d3 ∈ R.

(a) If d2 = d3 = 0, then in the (u, v)-plane, we get the pair of coincident lines v = −d1.
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(b) If d2 = 0, d3 6= 0.

i. If λ2 · d3 > 0, then we get a pair of parallel lines v = −d1 ±
√

d3
λ2
.

ii. If λ2 · d3 < 0, the solution set corresponding to the given conic is an empty set.

(c) If d2 6= 0. Then the given equation is of the form Y 2 = 4aX for some translates X = x + α

and Y = y + β and thus represents a parabola.

Also, observe that λ1 = 0 implies that the det(A) = 0. That is, ab− h2 = det(A) = 0.

3. λ1 > 0 and λ2 < 0.

Let λ2 = −α2. Then the equation of the conic can be rewritten as

λ1(u+ d1)
2 − α2(v + d2)

2 = d3 for some d1, d2, d3 ∈ R.

In this case, we have the following:

(a) suppose d3 = 0. Then the equation of the conic reduces to

λ1(u + d1)
2 − α2(v + d2)

2 = 0.

The terms on the left can be written as product of two factors as λ1, α2 > 0. Thus, in this

case, the given equation represents a pair of intersecting straight lines in the (u, v)-plane.

(b) suppose d3 6= 0. As d3 6= 0, we can assume d3 > 0. So, the equation of the conic reduces to

λ1(u + d1)
2

d3
− α2(v + d2)

2

d3
= 1.

This equation represents a hyperbola in the (u, v)-plane, with principal axes

u+ d1 = 0 and v + d2 = 0.

As λ1λ2 < 0, we have

ab− h2 = det(A) = λ1λ2 < 0.

4. λ1, λ2 > 0.

In this case, the equation of the conic can be rewritten as

λ1(u+ d1)
2 + λ2(v + d2)

2 = d3, for some d1, d2, d3 ∈ R.

we now consider the following cases:

(a) suppose d3 = 0. Then the equation of the ellipse reduces to a pair of perpendicular lines

u+ d1 = 0 and v + d2 = 0 in the (u, v)-plane.

(b) suppose d3 < 0. Then there is no solution for the given equation. Hence, we do not get any

real ellipse in the (u, v)-plane.

(c) suppose d3 > 0. In this case, the equation of the conic reduces to

λ1(u + d1)
2

d3
+
α2(v + d2)

2

d3
= 1.

This equation represents an ellipse in the (u, v)-plane, with principal axes

u+ d1 = 0 and v + d2 = 0.
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Also, the condition λ1λ2 > 0 implies that

ab− h2 = det(A) = λ1λ2 > 0.

�

Remark 6.4.8 Observe that the condition
[

u

v

]

=
[
u1 u2

]

[

x

y

]

implies that the principal axes of the conic are functions of the eigenvectors u1 and u2.

Exercise 6.4.9 Sketch the graph of the following surfaces:

1. x2 + 2xy + y2 − 6x− 10y = 3.

2. 2x2 + 6xy + 3y2 − 12x− 6y = 5.

3. 4x2 − 4xy + 2y2 + 12x− 8y = 10.

4. 2x2 − 6xy + 5y2 − 10x+ 4y = 7.

As a last application, we consider the following problem that helps us in understanding the quadrics.

Let

ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz + 2lx+ 2my + 2nz + q = 0 (6.4.3)

be a general quadric. Then we need to follow the steps given below to write the above quadric in the

standard form and thereby get the picture of the quadric. The steps are:

1. Observe that this equation can be rewritten as

xtAx+ btx+ q = 0,

where

A =






a d e

d b f

e f c




 , b =






2l

2m

2n




 , and x =






x

y

z




 .

2. As the matrix A is symmetric matrix, find an orthogonal matrix P such that P tAP is a diagonal

matrix.

3. Replace the vector x by y = P tx. Then writing yt = (y1, y2, y3), the equation (6.4.3) reduces to

λ1y
2
1 + λ2y

2
2 + λ3y

2
3 + 2l1y1 + 2l2y2 + 2l3y3 + q′ = 0 (6.4.4)

where λ1, λ2, λ3 are the eigenvalues of A.

4. Complete the squares, if necessary, to write the equation (6.4.4) in terms of the variables z1, z2, z3

so that this equation is in the standard form.

5. Use the condition y = P tx to determine the centre and the planes of symmetry of the quadric in

terms of the original system.
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Example 6.4.10 Determine the quadric 2x2 + 2y2 + 2z2 + 2xy + 2xz + 2yz + 4x+ 2y + 4z + 2 = 0.

Solution: In this case, A =






2 1 1

1 2 1

1 1 2




 and b =






4

2

4




 and q = 2. Check that for the orthonormal matrix

P =






1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −2√
6




, P tAP =






4 0 0

0 1 0

0 0 1




 . So, the equation of the quadric reduces to

4y21 + y22 + y23 +
10√
3
y1 +

2√
2
y2 −

2√
6
y3 + 2 = 0.

Or equivalently,

4(y1 +
5

4
√
3
)2 + (y2 +

1√
2
)2 + (y3 −

1√
6
)2 =

9

12
.

So, the equation of the quadric in standard form is

4z21 + z22 + z23 =
9

12
,

where the point (x, y, z)t = P ( −5
4
√
3
, −1√

2
, 1√

6
)t = (−3

4 ,
1
4 ,

−3
4 )t is the centre. The calculation of the planes of

symmetry is left as an exercise to the reader.



128 CHAPTER 6. EIGENVALUES, EIGENVECTORS AND DIAGONALIZATION



Part II

Ordinary Differential Equation

129





Chapter 7

Differential Equations

7.1 Introduction and Preliminaries

There are many branches of science and engineering where differential equations naturally arise. Now a

days there are applications to many areas in medicine, economics and social sciences. In this context, the

study of differential equations assumes importance. In addition, in the elementary study of differential

equations, we also see the applications of many results from analysis and linear algebra. Without

spending more time on motivation, (which will be clear as we go along) let us start with the following

notations. Suppose that y is a dependent variable and x is an independent variable. The derivatives of

y (with respect to x) are denoted by

y′ =
dy

dx
, y′′ =

d2y

dx2
, . . . , y(k) =

d(k)y

dx(k)
for k ≥ 3.

The independent variable will be defined for an interval I; where I is either R or an interval a < x <

b ⊂ R. With these notations, we ask the question: what is a differential equation?

A differential equation is a relationship between the independent variable and the unknown dependent

functions along with its derivatives.

Definition 7.1.1 (Ordinary Differential Equation, ODE) An equation of the form

f
(
x, y, y′, . . . , y(n)

)
= 0 for x ∈ I (7.1.1)

is called an Ordinary Differential Equation; where f is a known function from I ×Rn+1 to R. Also,

the unknown function y is to be determined.

Remark 7.1.2 Usually, Equation (7.1.1) is written as f
(
x, y, y′, . . . , y(n)

)
= 0, and the interval I is not

mentioned in most of the examples.

Some examples of differential equations are

1. y′ = 6 sinx+ 9;

2. y′′ + 2y2 = 0;

3.
√
y′ =

√
x+ cos y;

4. (y′)
2
+ y = 0.

5. y′ + y = 0.

131
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6. y′′ + y = 0.

7. y(3) = 0.

8. y′′ +m sin
(
y
)
= 0.

Definition 7.1.3 (Order of a Differential Equation) The order of a differential equation is the order of

the highest derivative occurring in the equation.

In Example 7.1, the order of Equations 1, 3, 4, 5 are one, that of Equations 2, 6 and 8 are two and

the Equation 7 has order three.

Definition 7.1.4 (Solution) A function y = f(x) is called a solution of a differential equation on I if

1. f is differentiable (as many times as the order of the equation) on I and

2. y satisfies the differential equation for all x ∈ I.

Example 7.1.5 1. Show that y = ce−2x is a solution of y′ + 2y = 0 on R for a constant c ∈ R.

Solution: Let x ∈ R. By direct differentiation we have y′ = −2ce−2x = −2y.

2. Show that for any constant a ∈ R, y =
a

1− x
is a solution of

(1− x)y′ − y = 0

on (−∞, 1) or on (1,∞). Note that y is not a solution on any interval containing 1.

Solution: It can be easily checked.

Remark 7.1.6 Sometimes a solution y is also called an integral. A solution of the form y = g(x) is

called an explicit solution. If y is given by an implicit relation h(x, y) = 0 and satisfies the differential

equation, then y is called an implicit solution.

Remark 7.1.7 Since the solution is obtained by integration, we may expect a constant of integration

(for each integration) to appear in a solution of a differential equation. If the order of the ODE is n, we

expect n(n ≥ 1) arbitrary constants.

To start with, let us try to understand the structure of a first order differential equation of the form

f(x, y, y′) = 0 (7.1.2)

and move to higher orders later. With this in mind let us look at:

Definition 7.1.8 (General Solution) A function y(x, c) is called a general solution of Equation (7.1.2) on

an interval I ⊂ R, if y(x, c) is a solution of Equation (7.1.2) for each x ∈ I, for a fixed c ∈ R but c is

arbitrary.

Remark 7.1.9 The family of functions {y(., c) : c ∈ R} is called a one parameter family of functions

and c is called a parameter. In other words, a general solution of Equation (7.1.2) is nothing but a one

parameter family of solutions of the Equation (7.1.2).

Example 7.1.10 1. Show that for each k ∈ R, y = kex is a solution of y′ = y. This is a general solution

as it is a one parameter family of solutions. Here the parameter is k.

Solution: This can be easily verified.
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2. Determine a differential equation for which a family of circles with center at (1, 0) and arbitrary radius,

a is an implicit solution.

Solution: This family is represented by the implicit relation

(x− 1)2 + y2 = a2, (7.1.3)

where a is a real constant. Then y is a solution of the differential equation

(x− 1) + y
dy

dx
= 0. (7.1.4)

The function y satisfying Equation (7.1.3) is a one parameter family of solutions or a general solution

of Equation (7.1.4).

3. Consider the one parameter family of circles with center at (c, 0) and unit radius. The family is

represented by the implicit relation

(x− c)2 + y2 = 1, (7.1.5)

where c is a real constant. Show that y satisfies
(
yy′
)2

+ y2 = 1.

Solution: We note that, differentiation of the given equation, leads to

(x − c) + yy′ = 0.

Now, eliminating c from the two equations, we get

(yy′)2 + y2 = 1.

In Example 7.1.10.2, we see that y is not defined explicitly as a function of x but implicitly defined

by Equation (7.1.3). On the other hand y =
1

1− x
is an explicit solution in Example 7.1.5.2. Solving a

differential equation means to find a solution.

Let us now look at some geometrical interpretations of the differential Equation (7.1.2). The Equation

(7.1.2) is a relation between x, y and the slope of the function y at the point x. For instance, let us find

the equation of the curve passing through (0,
1

2
) and whose slope at each point (x, y) is − x

4y
. If y is the

required curve, then y satisfies
dy

dx
= − x

4y
, y(0) =

1

2
.

It is easy to verify that y satisfies the equation x2 + 4y2 = 1.

Exercise 7.1.11 1. Find the order of the following differential equations:

(a) y2 + sin(y′) = 1.

(b) y + (y′)2 = 2x.

(c) (y′)3 + y′′ − 2y4 = −1.

2. Find a differential equation satisfied by the given family of curves:

(a) y = mx, m real (family of lines).

(b) y2 = 4ax, a real (family of parabolas).

(c) x = r2 cos θ, y = r2 sin θ, θ is a parameter of the curve and r is a real number (family of circles

in parametric representation).

3. Find the equation of the curve C which passes through (1, 0) and whose slope at each point (x, y) is
−x
y
.
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7.2 Separable Equations

In general, it may not be possible to find solutions of

y′ = f(x, y)

where f is an arbitrary continuous function. But there are special cases of the function f for which the

above equation can be solved. One such set of equations is

y′ = g(y)h(x). (7.2.1)

Equation (7.2.1) is called a Separable Equation. The Equation (7.2.1) is equivalent to

1

g(y)

dy

dx
= h(x).

Integrating with respect to x, we get

H(x) =

∫

h(x)dx =

∫
1

g(y)

dy

dx
dy =

∫
dy

g(y)
= G(y) + c,

where c is a constant. Hence, its implicit solution is

G(y) + c = H(x).

Example 7.2.1 1. Solve: y′ = y(y − 1).

Solution: Here, g(y) = y (y − 1) and h(x) = 1. Then

∫
dy

y (y − 1)
=

∫

dx.

By using partial fractions and integrating, we get

y =
1

1− ex+c
,

where c is a constant of integration.

2. Solve y′ = y2.

Solution: It is easy to deduce that y = − 1

x+ c
, where c is a constant; is the required solution.

Observe that the solution is defined, only if x+ c 6= 0 for any x. For example, if we let y(0) = a, then

y = − a

ax− 1
exists as long as ax− 1 6= 0.

7.2.1 Equations Reducible to Separable Form

There are many equations which are not of the form 7.2.1, but by a suitable substitution, they can be

reduced to the separable form. One such class of equation is

y′ =
g1(x, y)

g2(x, y)
or equivalently y′ = g(

y

x
)

where g1 and g2 are homogeneous functions of the same degree in x and y, and g is a continuous function.

In this case, we use the substitution, y = xu(x) to get y′ = xu′ + u. Thus, the above equation after

substitution becomes

xu′ + u(x) = g(u),

which is a separable equation in u. For illustration, we consider some examples.
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Example 7.2.2 1. Find the general solution of 2xyy′ − y2 + x2 = 0.

Solution: Let I be any interval not containing 0. Then

2
y

x
y′ − (

y

x
)2 + 1 = 0.

Letting y = xu(x), we have

2u(u′x+ u)− u2 + 1 = 0 or 2xuu′ + u2 + 1 = 0 or equivalently

2u

1 + u2
du

dx
= − 1

x
.

On integration, we get

1 + u2 =
c

x
or

x2 + y2 − cx = 0.

The general solution can be re-written in the form

(x− c

2
)2 + y2 =

c2

4
.

This represents a family of circles with center ( c2 , 0) and radius c
2 .

2. Find the equation of the curve passing through (0, 1) and whose slope at each point (x, y) is − x
2y .

Solution: If y is such a curve then we have

dy

dx
= − x

2y
and y(0) = 1.

Notice that it is a separable equation and it is easy to verify that y satisfies x2 + 2y2 = 2.

3. The equations of the type
dy

dx
=
a1x+ b1y + c1
a2x+ b2y + c2

can also be solved by the above method by replacing x by x+ h and y by y+ k, where h and k are to

be chosen such that

a1h+ b1k + c1 = 0 = a2h+ b2k + c2.

This condition changes the given differential equation into
dy

dx
=
a1x+ b1y

a2x+ b2y
. Thus, if x 6= 0 then the

equation reduces to the form y′ = g( yx ).

Exercise 7.2.3 1. Find the general solutions of the following:

(a)
dy

dx
= −x(ln x)(ln y).

(b) y−1 cos−1 +(ex + 1)
dy

dx
= 0.

2. Find the solution of

(a) (2a2 + r2) = r2 cos
dθ

dr
, r(0) = a.

(b) xex+y =
dy

dx
, y(0) = 0.

3. Obtain the general solutions of the following:

(a) {y − xcosec (
y

x
)} = x

dy

dx
.

(b) xy′ = y +
√

x2 + y2.

(c)
dy

dx
=

x− y + 2

−x+ y + 2
.

4. Solve y′ = y − y2 and use it to determine lim
x−→∞

y. This equation occurs in a model of population.
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7.3 Exact Equations

As remarked, there are no general methods to find a solution of Equation (7.1.2). The Exact Equations

is yet another class of equations that can be easily solved. In this section, we introduce this concept.

Let D be a region in xy-plane and let M and N be real valued functions defined on D. Consider an

equation

M(x, y) +N(x, y)
dy

dx
= 0, (x, y) ∈ D. (7.3.1)

In most of the books on Differential Equations, this equation is also written as

M(x, y)dx+N(x, y)dy = 0, (x, y) ∈ D. (7.3.2)

Definition 7.3.1 (Exact Equation) Equation (7.3.1) is called Exact if there exists a real valued twice con-

tinuously differentiable function f : R2−→R (or the domain is an open subset of R2) such that

∂f

∂x
=M and

∂f

∂y
= N. (7.3.3)

Remark 7.3.2 If Equation (7.3.1) is exact, then

∂f

∂x
+
∂f

∂y
· dy
dx

=
df(x, y)

dx
= 0.

This implies that f(x, y) = c (where c is a constant) is an implicit solution of Equation (7.3.1). In other

words, the left side of Equation (7.3.1) is an exact differential.

Example 7.3.3 The equation y+x dy
dx = 0 is an exact equation. Observe that in this example, f(x, y) = xy.

The proof of the next theorem is given in Appendix 14.6.2.

Theorem 7.3.4 Let M and N be twice continuously differentiable function in a region D. The Equation

(7.3.1) is exact if and only if
∂M

∂y
=
∂N

∂x
. (7.3.4)

Note: If the Equation (7.3.1) or Equation (7.3.2) is exact, then there is a function f(x, y) satisfying

f(x, y) = c for some constant c, such that

d(f(x, y)) =M(x, y)dx+N(x, y)dy = 0.

Let us consider some examples, where Theorem 7.3.4 can be used to easily find the general solution.

Example 7.3.5 1. Solve

2xey + (x2ey + cos y )
dy

dx
= 0.

Solution: With the above notations, we have

M = 2xey, N = x2ey + cos y,
∂M

∂y
= 2xey and

∂N

∂x
= 2xey.

Therefore, the given equation is exact. Hence, there exists a function G(x, y) such that

∂G

∂x
= 2xey and

∂G

∂y
= x2ey + cos y.
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The first partial differentiation when integrated with respect to x (assuming y to be a constant) gives,

G(x, y) = x2ey + h(y).

But then
∂G

∂y
=
∂(x2ey + h(y))

∂y
= N

implies dh
dy = cos y or h(y) = sin y + c where c is an arbitrary constant. Thus, the general solution of

the given equation is

x2ey + sin y = c.

The solution in this case is in implicit form.

2. Find values of ℓ and m such that the equation

ℓy2 +mxy
dy

dx
= 0

is exact. Also, find its general solution.

Solution: In this example, we have

M = ℓy2, N = mxy,
∂M

∂y
= 2ℓy and

∂N

∂x
= my.

Hence for the given equation to be exact, m = 2ℓ. With this condition on ℓ and m, the equation

reduces to

ℓy2 + 2ℓxy
dy

dx
= 0.

This equation is not meaningful if ℓ = 0. Thus, the above equation reduces to

d

dx
(xy2) = 0

whose solution is

xy2 = c

for some arbitrary constant c.

3. Solve the equation

(3x2ey − x2)dx+ (x3ey + y2)dy = 0.

Solution: Here

M = 3x2ey − x2 and N = x3ey + y2.

Hence, ∂M
∂y = ∂N

∂x = 3x2ey. Thus the given equation is exact. Therefore,

G(x, y) =

∫

(3x2ey − x2)dx = x3ey − x3

3
+ h(y)

(keeping y as constant). To determine h(y), we partially differentiate G(x, y) with respect to y and

compare with N to get h(y) = y3

3 . Hence

G(x, y) = x3ey − x3

3
+
y3

3
= c

is the required implicit solution.
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7.3.1 Integrating Factors

On may occasions,

M(x, y) +N(x, y)
dy

dx
= 0, or equivalently M(x, y)dx +N(x, y)dy = 0

may not be exact. But the above equation may become exact, if we multiply it by a proper factor. For

example, the equation

ydx− dy = 0

is not exact. But, if we multiply it with e−x, then the equation reduces to

e−xydx− e−xdy = 0, or equivalently d
(
e−xy

)
= 0,

an exact equation. Such a factor (in this case, e−x) is called an integrating factor for the given

equation. Formally

Definition 7.3.6 (Integrating Factor) A function Q(x, y) is called an integrating factor for the Equation

(7.3.1), if the equation

Q(x, y)M(x, y)dx+Q(x, y)N(x, y)dy = 0

is exact.

Example 7.3.7 1. Solve the equation ydx− xdy = 0, x, y > 0.

Solution: It can be easily verified that the given equation is not exact. Multiplying by 1
xy , the equation

reduces to
1

xy
ydx− 1

xy
xdy = 0, or equivalently d (lnx− ln y) = 0.

Thus, by definition,
1

xy
is an integrating factor. Hence, a general solution of the given equation is

G(x, y) =
1

xy
= c, for some constant c ∈ R. That is,

y = cx, for some constant c ∈ R.

2. Find a general solution of the differential equation

(
4y2 + 3xy

)
dx−

(
3xy + 2x2

)
dy = 0.

Solution: It can be easily verified that the given equation is not exact.

Method 1: Here the terms M = 4y2 + 3xy and N = −(3xy + 2x2) are homogeneous functions of

degree 2. It may be checked that an integrating factor for the given differential equation is

1

Mx+Ny
=

1

xy
(
x+ y

) .

Hence, we need to solve the partial differential equations

∂G(x, y)

∂x
=

y
(
4y + 3x

)

xy
(
x+ y

) =
4

x
− 1

x+ y
and (7.3.5)

∂G(x, y)

∂y
=

−x(3y + 2x)

xy
(
x+ y

) = −2

y
− 1

x+ y
. (7.3.6)

Integrating (keeping y constant) Equation (7.3.5), we have

G(x, y) = 4 ln |x| − ln |x+ y|+ h(y) (7.3.7)
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and integrating (keeping x constant) Equation (7.3.6), we get

G(x, y) = −2 ln |y| − ln |x+ y|+ g(x). (7.3.8)

Comparing Equations (7.3.7) and (7.3.8), the required solution is

G(x, y) = 4 ln |x| − ln |x+ y| − 2 ln |y| = ln c

for some real constant c. Or equivalently, the solution is

x4 = c
(
x+ y

)
y2.

Method 2: Here the terms M = 4y2 + 3xy and N = −(3xy + 2x2) are polynomial in x and y.

Therefore, we suppose that xαyβ is an integrating factor for some α, β ∈ R. We try to find this α and

β.

Multiplying the terms M(x, y) and N(x, y) with xαyβ, we get

M(x, y) = xαyβ
(
4y2 + 3xy

)
, and N(x, y) = −xαyβ(3xy + 2x2).

For the new equation to be exact, we need
∂M(x, y)

∂y
=
∂N(x, y)

∂x
. That is, the terms

4(2 + β)xαy1+β + 3(1 + β)x1+αyβ

and

−3(1 + α)xαy1+β − 2(2 + α)x1+αyβ

must be equal. Solving for α and β, we get α = −5 and β = 1. That is, the expression
y

x5
is also an

integrating factor for the given differential equation. This integrating factor leads to

G(x, y) = − y
3

x4
− y2

x3
+ h(y)

and

G(x, y) = − y
3

x4
− y2

x3
+ g(x).

Thus, we need h(y) = g(x) = c, for some constant c ∈ R. Hence, the required solution by this method

is

y2
(
y + x

)
= cx4.

Remark 7.3.8 1. If Equation (7.3.1) has a general solution, then it can be shown that Equation

(7.3.1) admits an integrating factor.

2. If Equation (7.3.1) has an integrating factor, then it has many (in fact infinitely many) integrating

factors.

3. Given Equation (7.3.1), whether or not it has an integrating factor, is a tough question to settle.

4. In some cases, we use the following rules to find the integrating factors.

(a) Consider a homogeneous equation M(x, y)dx+N(x, y)dy = 0. If

Mx+Ny 6= 0, then
1

Mx+Ny

is an Integrating Factor.
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(b) If the functions M(x, y) and N(x, y) are polynomial functions in x, y; then xαyβ works as an

integrating factor for some appropriate values of α and β.

(c) The equation M(x, y)dx + N(x, y)dy = 0 has e
∫
f(x)dx as an integrating factor, if f(x) =

1

N

(
∂M

∂y
− ∂N

∂x

)

is a function of x alone.

(d) The equation M(x, y)dx + N(x, y)dy = 0 has e−
∫
g(y)dy as an integrating factor, if g(y) =

1

M

(
∂M

∂y
− ∂N

∂x

)

is a function of y alone.

(e) For the equation

yM1(xy)dx + xN1(xy)dy = 0

with Mx−Ny 6= 0, the function
1

Mx−Ny
is an integrating factor.

Exercise 7.3.9 1. Show that the following equations are exact and hence solve them.

(a) (r + sin θ + cos θ)
dr

dθ
+ r(cos θ − sin θ) = 0.

(b) (e−x − ln y +
y

x
) + (−x

y
+ lnx+ cos y)

dy

dx
= 0.

2. Find conditions on the function g(x, y) so that the equation

(x2 + xy2) + {ax2y2 + g(x, y)}dy
dx

= 0

is exact.

3. What are the conditions on f(x), g(y), φ(x), and ψ(y) so that the equation

(φ(x) + ψ(y)) + (f(x) + g(y))
dy

dx
= 0

is exact.

4. Verify that the following equations are not exact. Further find suitable integrating factors to solve

them.

(a) y + (x + x3y2)
dy

dx
= 0.

(b) y2 + (3xy + y2 − 1)
dy

dx
= 0.

(c) y + (x + x3y2)
dy

dx
= 0.

(d) y2 + (3xy + y2 − 1)
dy

dx
= 0.

5. Find the solution of

(a) (x2y + 2xy2) + 2(x3 + 3x2y)
dy

dx
= 0 with y(1) = 0.

(b) y(xy + 2x2y2) + x(xy − x2y2)
dy

dx
= 0 with y(1) = 1.
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7.4 Linear Equations

Some times we might think of a subset or subclass of differential equations which admit explicit solutions.

This question is pertinent when we say that there are no means to find the explicit solution of
dy

dx
=

f(x, y) where f is an arbitrary continuous function in (x, y) in suitable domain of definition. In this

context, we have a class of equations, called Linear Equations (to be defined shortly) which admit explicit

solutions.

Definition 7.4.1 (Linear/Nonlinear Equations)

Let p(x) and q(x) be real-valued piecewise continuous functions defined on interval I = [a, b]. The equation

y′ + p(x)y = q(x), x ∈ I (7.4.1)

is called a linear equation, where y′ stands for
dy

dx
. Equation (7.4.1) is called Linear non-homogeneous if

q(x) 6= 0 and is called Linear homogeneous if q(x) = 0 on I.

A first order equation is called a non-linear equation (in the independent variable) if it is neither a linear

homogeneous nor a non-homogeneous linear equation.

Example 7.4.2 1. The equation y′ = sin y is a non-linear equation.

2. The equation y′ + y = sinx is a linear non-homogeneous equation.

3. The equation y′ + x2y = 0 is a linear homogeneous equation.

Define the indefinite integral P (x) =
∫
p(x)dx ( or

x∫

a

p(s)ds). Multiplying Equation (7.4.1) by eP (x),

we get

eP (x)y′ + eP (x)p(x)y = eP (x)q(x) or equivalently
d

dx
(eP (x)y) = eP (x)q(x).

On integration, we get

eP (x)y = c+

∫

eP (x)q(x)dx.

In other words,

y = ce−P (x) + e−P (x)

∫

eP (x)q(x)dx (7.4.2)

where c is an arbitrary constant is the general solution of Equation (7.4.1).

Remark 7.4.3 If we let P (x) =
x∫

a

p(s)ds in the above discussion, Equation (7.4.2) also represents

y = y(a)e−P (x) + e−P (x)

x∫

a

eP (s)q(s)ds. (7.4.3)

As a simple consequence, we have the following proposition.

Proposition 7.4.4 y = ce−P (x) (where c is any constant) is the general solution of the linear homogeneous

equation

y′ + p(x)y = 0. (7.4.4)

In particular, when p(x) = k, is a constant, the general solution is y = ce−kx, with c an arbitrary constant.
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Example 7.4.5 1. Comparing the equation y′ = y with Equation (7.4.1), we have

p(x) = −1 and q(x) = 0.

Hence, P (x) =
∫
(−1)dx = −x. Substituting for P (x) in Equation (7.4.2), we get y = cex as the

required general solution.

We can just use the second part of the above proposition to get the above result, as k = −1.

2. The general solution of xy′ = −y, x ∈ I (0 6∈ I) is y = cx−1, where c is an arbitrary constant. Notice

that no non-zero solution exists if we insist on the condition lim
x→0,x>0

y = 0.

A class of nonlinear Equations (7.4.1) (named after Bernoulli (1654−1705)) can be reduced to linear

equation. These equations are of the type

y′ + p(x)y = q(x)ya. (7.4.5)

If a = 0 or a = 1, then Equation (7.4.5) is a linear equation. Suppose that a 6= 0, 1. We then define

u(x) = y1−a and therefore

u′ = (1− a)y′y−a = (1− a)(q(x) − p(x)u)

or equivalently

u′ + (1− a)p(x)u = (1− a)q(x), (7.4.6)

a linear equation. For illustration, consider the following example.

Example 7.4.6 For m,n constants and m 6= 0, solve y′ −my + ny2 = 0.

Solution: Let u = y−1. Then u(x) satisfies

u′ +mu = n

and its solution is

u = Ae−mx + e−mx

∫

nemxdx = Ae−mx +
n

m
.

Equivalently

y =
1

Ae−mx + n
m

with m 6= 0 and A an arbitrary constant, is the general solution.

Exercise 7.4.7 1. In Example 7.4.6, show that u′ +mu = n.

2. Find the genral solution of the following:

(a) y′ + y = 4.

(b) y′ − 3y = 10.

(c) y′ − 2xy = 0.

(d) y′ − xy = 4x.

(e) y′ + y = e−x.

(f) sinhxy′ + y coshx = ex.

(g) (x2 + 1)y′ + 2xy = x2.

3. Solve the following IVP’s:

(a) y′ − 4y = 5, y(0) = 0.



7.5. MISCELLANEOUS REMARKS 143

(b) y′ + (1 + x2)y = 3, y(0) = 0.

(c) y′ + y = cosx, y(π) = 0.

(d) y′ − y2 = 1, y(0) = 0.

(e) (1 + x)y′ + y = 2x2, y(1) = 1.

4. Let y1 be a solution of y′ + a(x)y = b1(x) and y2 be a solution of y′ + a(x)y = b2(x). Then show that

y1 + y2 is a solution of

y′ + a(x)y = b1(x) + b2(x).

5. Reduce the following to linear equations and hence solve:

(a) y′ + 2y = y2.

(b) (xy + x3ey)y′ = y2.

(c) y′ sin(y) + x cos(y) = x.

(d) y′ − y = xy2.

6. Find the solution of the IVP

y′ + 4xy + xy3 = 0, y(0) =
1√
2
.

7.5 Miscellaneous Remarks

In Section 7.4, we have learned to solve the linear equations. There are many other equations, though

not linear, which are also amicable for solving. Below, we consider a few classes of equations which can

be solved. In this section or in the sequel, p denotes
dy

dx
or y′. A word of caution is needed here. The

method described below are more or less ad hoc methods.

1. Equations solvable for y:

Consider an equation of the form

y = f(x, p). (7.5.1)

Differentiating with respect to x, we get

dy

dx
= p =

∂f(x, p)

∂x
+
∂f(x, p)

∂p
· dp
dx

of equivalently p = g(x, p,
dp

dx
). (7.5.2)

Equation (7.5.2) can be viewed as a differential equation in p and x. We now assume that Equation

(7.5.2) can be solved for p and its solution is

h(x, p, c) = 0. (7.5.3)

If we are able to eliminate p between Equations (7.5.1) and (7.5.3), then we have an implicit

solution of the Equation (7.5.1).

Solve y = 2px− xp2.

Solution: Differentiating with respect to x and replacing
dy

dx
by p, we get

p = 2p− p2 + 2x
dp

dx
− 2xp

dp

dx
or (p+ 2x

dp

dx
)(1− p) = 0.

So, either

p+ 2x
dp

dx
= 0 or p = 1.
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That is, either p2x = c or p = 1. Eliminating p from the given equation leads to an explicit solution

y = 2x

√
c

x
− c or y = x.

The first solution is a one-parameter family of solutions, giving us a general solution. The latter

one is a solution but not a general solution since it is not a one parameter family of solutions.

2. Equations in which the independent variable x is missing:

These are equations of the type f(y, p) = 0. If possible we solve for y and we proceed. Sometimes

introducing an arbitrary parameter helps. We illustrate it below.

Solve y2 + p2 = a2 where a is a constant.

Solution: We equivalently rewrite the given equation, by (arbitrarily) introducing a new param-

eter t by

y = a sin t, p = a cos t

from which it follows
dy

dt
= a cos t; p =

dy

dx
=
dy

dt

/
dx

dt

and so
dx

dt
=

1

p

dy

dt
= 1 or x = t+ c.

Therefore, a general solution is

y = a sin(t+ c).

3. Equations in which y (dependent variable or the unknown) is missing:

We illustrate this case by an example.

Find the general solution of x = p3 − p− 1.

Solution: Recall that p = dy
dx . Now, from the given equation, we have

dy

dp
=
dy

dx
· dx
dp

= p(3p2 − 1).

Therefore,

y =
3

4
p4 − 1

2
p2 + c

(regarding p as a parameter). The desired solution in this case is in the parametric form, given by

x = t3 − t− 1 and y =
3

4
t4 − 1

2
t2 + c

where c is an arbitrary constant.

Remark 7.5.1 The readers are again informed that the methods discussed in 1), 2), 3) are more

or less ad hoc methods. It may not work in all cases.

Exercise 7.5.2 1. Find the general solution of y = (1 + p)x+ p2.

Hint: Differentiate with respect to x to get
dx

dp
= −(x+ 2p) ( a linear equation in x). Express the

solution in the parametric form

y(p) = (1 + p)x+ p2, x(p) = 2(1− p) + ce−p.

2. Solve the following differential equations:

(a) 8y = x2 + p2.
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(b) y + xp = x4p2.

(c) y2 log y − p2 = 2xyp.

(d) 2y + p2 + 2p = 2x(p+ 1).

(e) 2y = 2x2 + 4px+ p2.

7.6 Initial Value Problems

As we had seen, there are no methods to solve a general equation of the form

y′ = f(x, y) (7.6.1)

and in this context two questions may be pertinent.

1. Does Equation (7.6.1) admit solutions at all (i.e., the existence problem)?

2. Is there a method to find solutions of Equation (7.6.1) in case the answer to the above question is

in the affirmative?

The answers to the above two questions are not simple. But there are partial answers if some

additional restrictions on the function f are imposed. The details are discussed in this section.

For a, b ∈ R with a > 0, b > 0, we define

S = {(x, y) ∈ R
2 : |x− x0| ≤ a, |y − y0| ≤ b} ⊂ I × R.

Definition 7.6.1 (Initial Value Problems) Let f : S −→ R be a continuous function on a S. The problem

of finding a solution y of

y′ = f(x, y), (x, y) ∈ S, x ∈ I with y(x0) = y0 (7.6.2)

in a neighbourhood I of x0 (or an open interval I containing x0) is called an Initial Value Problem, henceforth

denoted by IVP.

The condition y(x0) = y0 in Equation (7.6.2) is called the initial condition stated at x = x0 and y0

is called the initial value.

Further, we assume that a and b are finite. Let

M = max{|f(x, y)| : (x, y) ∈ S}.

Such an M exists since S is a closed and bounded set and f is a continuous function and let h =

min(a, b
M ). The ensuing proposition is simple and hence the proof is omitted.

Proposition 7.6.2 A function y is a solution of IVP (7.6.2) if and only if y satisfies

y = y0 +

∫ x

x0

f(s, y(s))ds. (7.6.3)

In the absence of any knowledge of a solution of IVP (7.6.2), we now try to find an approximate

solution. Any solution of the IVP (7.6.2) must satisfy the initial condition y(x0) = y0. Hence, as a crude

approximation to the solution of IVP (7.6.2), we define

y0 = y0 for all x ∈ [x0 − h, x0 + h].
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Now the Equation (7.6.3) appearing in Proposition 7.6.2, helps us to refine or improve the approximate

solution y0 with a hope of getting a better approximate solution. We define

y1 = yo +

∫ x

x0

f(s, y0)ds

and for n = 2, 3, . . . , we inductively define

yn = y0 +

∫ x

x0

f(s, yn−1(s))ds for all x ∈ [x0 − h, x0 + h].

As yet we have not checked a few things, like whether the point (s, yn(s)) ∈ S or not. We formalise

the theory in the latter part of this section. To get ourselves motivated, let us apply the above method

to the following IVP.

Example 7.6.3 Solve the IVP

y′ = −y, y(0) = 1, −1 ≤ x ≤ 1.

Solution: From Proposition 7.6.2, a function y is a solution of the above IVP if and only if

y = 1−
∫ x

x0

y(s)ds.

We have y0 = y(0) ≡ 1 and

y1 = 1−
∫ x

0

ds = 1− x.

So,

y2 = 1−
∫ x

0

(1− s)ds = 1− x+
x2

2!
.

By induction, one can easily verify that

yn = 1− x+
x2

2!
− x3

3!
+ · · ·+ (−1)n

xn

n!
.

Note: The solution of the given IVP is

y = e−x and that lim
n−→∞

yn = e−x.

This example justifies the use of the word approximate solution for the yn’s.

We now formalise the above procedure.

Definition 7.6.4 (Picard’s Successive Approximations) Consider the IVP (7.6.2). For x ∈ I with |x −
x0| ≤ a, define inductively

y0(x) = y0 and for n = 1, 2, . . . ,

yn(x) = y0 +

∫ x

x0

f(s, yn−1(s))ds. (7.6.4)

Then y0, y1, . . . , yn, . . . are called Picard’s successive approximations to the IVP (7.6.2).

Whether Equation (7.6.4) is well defined or not is settled in the following proposition.

Proposition 7.6.5 The Picard’s approximates yn’s, for the IVP (7.6.2) defined by Equation (7.6.4) is well

defined on the interval |x− x0| ≤ h = min{a, b
M }, i.e., for x ∈ [x0 − h, x0 + h].
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Proof. We have to verify that for each n = 0, 1, 2, . . . , (s, yn) belongs to the domain of definition of f

for |s−x0| ≤ h. This is needed due to the reason that f(s, yn) appearing as integrand in Equation (7.6.4)

may not be defined. For n = 0, it is obvious that f(s, y0) ∈ S as |s− x0| ≤ a and |y0 − y0| = 0 ≤ b. For

n = 1, we notice that, if |x− x0| ≤ h then

|y1 − y0| ≤M |x− x0| ≤Mh ≤ b.

So, (x, y1) ∈ S whenever |x− x0| ≤ h.

The rest of the proof is by the method of induction. We have established the result for n = 1, namely

(x, y1) ∈ S if |x− x0| ≤ h.

Assume that for k = 1, 2, . . . , n− 1, (x, yk) ∈ S whenever |x−x0| ≤ h. Now, by definition of yn, we have

yn − y0 =

∫ x

x0

f(s, yn−1)ds.

But then by induction hypotheses (s, yn−1) ∈ S and hence

|yn − y0| ≤M |x− x0| ≤Mh ≤ b.

This shows that (x, yn) ∈ S whenever |x− x0| ≤ h. Hence (x, yk) ∈ S for k = n holds and therefore the

proof of the proposition is complete. �

Let us again come back to Example 7.6.3 in the light of Proposition 7.6.2.

Example 7.6.6 Compute the successive approximations to the IVP

y′ = −y, −1 ≤ x ≤ 1, |y − 1| ≤ 1 and y(0) = 1. (7.6.5)

Solution: Note that x0 = 0, y0 = 1, f(x, y) = −y, and a = b = 1. The set S on which we are studying the

differential equation is

S = {(x, y) : |x| ≤ 1, |y − 1| ≤ 1}.

By Proposition 7.6.2, on this set

M = max{|y| : (x, y) ∈ S} = 2 and h = min{1, 1/2} = 1/2.

Therefore, the approximate solutions yn’s are defined only for the interval [−1

2
,
1

2
], if we use Proposition

7.6.2.

Observe that the exact solution y = e−x and the approximate solutions yn’s of Example 7.6.3 exist

on [−1, 1]. But the approximate solutions as seen above are defined in the interval [−1

2
,
1

2
].

That is, for any IVP, the approximate solutions yn’s may exist on a larger interval as compared to

the interval obtained by the application of the Proposition 7.6.2.

We now consider another example.

Example 7.6.7 Find the Picard’s successive approximations for the IVP

y′ = f(y), 0 ≤ x ≤ 1, y ≥ 0 and y(0) = 0; (7.6.6)

where

f(y) =
√
y for y ≥ 0.
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Solution: By definition y0(x) = y0 ≡ 0 and

y1(x) = y0 +

∫ x

0

f(y0)ds = 0 +

∫ x

0

√
0ds = 0.

A similar argument implies that yn(x) ≡ 0 for all n = 2, 3, . . . and lim
n−→∞

yn(x) ≡ 0. Also, it can be easily

verified that y(x) ≡ 0 is a solution of the IVP (7.6.6).

Also y(x) =
x2

4
, 0 ≤ x ≤ 1 is a solution of Equation (7.6.6) and the {yn}’s do not converge to

x2

4
. Note

here that the IVP (7.6.6) has at least two solutions.

The following result is about the existence of a unique solution to a class of IVPs. We state the

theorem without proof.

Theorem 7.6.8 (Picard’s Theorem on Existence and Uniqueness) Let S = {(x, y) : |x− x0| ≤ a, |y −
y0| ≤ b}, and a, b > 0. Let f : S−→R be such that f as well as

∂f

∂y
are continuous on S. Also, let M,K ∈ R

be constants such that

|f | ≤M, |∂f
∂y

| ≤ K on S.

Let h = min{a, b/M}. Then the sequence of successive approximations {yn} (defined by Equation (7.6.4))

for the IVP (7.6.2) uniformly converges on |x− x0| ≤ h to a solution of IVP (7.6.2). Moreover the solution

to IVP (7.6.2) is unique.

Remark 7.6.9 The theorem asserts the existence of a unique solution on a subinterval |x− x0| ≤ h of

the given interval |x − x0| ≤ a. In a way it is in a neighbourhood of x0 and so this result is also called

the local existence of a unique solution. A natural question is whether the solution exists on the whole

of the interval |x− x0| ≤ a. The answer to this question is beyond the scope of this book.

Whenever we talk of the Picard’s theorem, we mean it in this local sense.

Exercise 7.6.10 1. Compute the sequence {yn} of the successive approximations to the IVP

y′ = y (y − 1), y(x0) = 0, x0 ≥ 0.

2. Show that the solution of the IVP

y′ = y (y − 1), y(x0) = 1, x0 ≥ 0

is y ≡ 1, x ≥ x0.

3. The IVP

y′ =
√
y, y(0) = 0, x ≥ 0

has solutions y1 ≡ 0 as well as y2 =
x2

4
, x ≥ 0. Why does the existence of the two solutions not

contradict the Picard’s theorem?

4. Consider the IVP

y′ = y, y(0) = 1 in {(x, y) : |x| ≤ a, |y| ≤ b}
for any a, b > 0.

(a) Compute the interval of existence of the solution of the IVP by using Theorem 7.6.8.

(b) Show that y = ex is the solution of the IVP which exists on whole of R.

This again shows that the solution to an IVP may exist on a larger interval than what is being implied

by Theorem 7.6.8.
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7.6.1 Orthogonal Trajectories

One among the many applications of differential equations is to find curves that intersect a given family

of curves at right angles. In other words, given a family F, of curves, we wish to find curve (or curves)

Γ which intersect orthogonally with any member of F (whenever they intersect). It is important to

note that we are not insisting that Γ should intersect every member of F, but if they intersect, the

angle between their tangents, at every point of intersection, is 90◦. Such a family of curves Γ is called

“orthogonal trajectories” of the family F. That is, at the common point of intersection, the tangents are

orthogonal. In case, the family F1 and F2 are identical, we say that the family is self-orthogonal.

Before procedding to an example, let us note that at the common point of intersection, the product

of the slopes of the tangent is −1. In order to find the orthogonal trajectories of a family of curves

F, parametrized by a constant c, we eliminate c between y and y′. This gives the slope at any point

(x, y) and is independent of the choice of the curve. Below, we illustrate, how to obtain the orthogonal

trajectories.

Example 7.6.11 Compute the orthogonal trajectories of the family F of curves given by

F : y2 = cx3, (7.6.7)

where c is an arbitrary constant.

Solution: Differentiating Equation (7.6.7), we get

2yy′ = 3cx2. (7.6.8)

Elimination of c between Equations (7.6.7) and (7.6.8), leads to

y′ =
3cx2

2y
=

3

2x
· cx

3

y
=

3y

2x
. (7.6.9)

At the point (x, y), if any curve intersects orthogonally, then (if its slope is y′) we must have

y′ = −2x

3y
.

Solving this differential equation, we get

y2 = −x
2

3
+ c.

Or equivalently, y2 + x2

3 = c is a family of curves which intersects the given family F orthogonally.

Below, we summarize how to determine the orthogonal trajectories.

Step 1: Given the family F (x, y, c) = 0, determine the differential equation,

y′ = f(x, y), (7.6.10)

for which the given family F are a general solution. Equation (7.6.10) is obtained by the elimination of

the constant c appearing in F (x, y, c) = 0 “using the equation obtained by differentiating this equation

with respect to x”.

Step 2: The differential equation for the orthogonal trajectories is then given by

y′ = − 1

f(x, y)
. (7.6.11)

Final Step: The general solution of Equation (7.6.11) is the orthogonal trajectories of the given family.

In the following, let us go through the steps.
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Example 7.6.12 Find the orthogonal trajectories of the family of stright lines

y = mx+ 1, (7.6.12)

where m is a real parameter.

Solution: Differentiating Equation (7.6.12), we get y′ = m. So, substituting m in Equation (7.6.12), we

have y = y′x+ 1. Or equivalently,

y′ =
y − 1

x
.

So, by the final step, the orthogonal trajectories satisfy the differential equation

y′ =
x

1− y
. (7.6.13)

It can be easily verified that the general solution of Equation (7.6.13) is

x2 + y2 − 2y = c, (7.6.14)

where c is an arbitrary constant. In other words, the orthogonal trajectories of the family of straight

lines (7.6.12) is the family of circles given by Equation (7.6.14).

Exercise 7.6.13 1. Find the orthogonal trajectories of the following family of curves (the constant c

appearing below is an arbitrary constant).

(a) y = x+ c.

(b) x2 + y2 = c.

(c) y2 = x+ c.

(d) y = cx2.

(e) x2 − y2 = c.

2. Show that the one parameter family of curves y2 = 4k(k + x), k ∈ R are self orthogonal.

3. Find the orthogonal trajectories of the family of circles passing through the points (1,−2) and (1, 2).

7.7 Numerical Methods

All said and done, the Picard’s Successive approximations is not suitable for computations on computers.

In the absence of methods for closed form solution (in the explicit form), we wish to explore “how

computers can be used to find approximate solutions of IVP” of the form

y′ = f(x, y), y(x0) = y0. (7.7.1)

In this section, we study a simple method to find the “numerical solutions” of Equation (7.7.1). The

study of differential equations has two important aspects (among other features) namely, the qualitative

theory, the latter is called ”Numerical methods” for solving Equation (7.7.1). What is presented here is

at a very rudimentary level nevertheless it gives a flavour of the numerical method.

To proceed further, we assume that f is a “good function” (there by meaning “sufficiently differen-

tiable”). In such case, we have

y(x+ h) = y + hy′ +
h2

2!
y′′ + · · ·
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xn = xx0 x1 x2

Figure 7.1: Partitioning the interval

which suggests a “crude” approximation y(x + h) ≃ y + hf(x, y) (if h is small enough), the symbol ≃
means “approximately equal to”. With this in mind, let us think of finding y, where y is the solution of

Equation (7.7.1) with x > x0. Let h =
x− x0
n

and define

xi = x0 + ih, i = 0, 1, 2, . . . , n.

That is, we have divided the interval [x0, x] into n equal intervals with end points x0, x1, . . . , x = xn.

Our aim is to calculate y : At the first step, we have y(x + h) ≃ y0 + hf
(
x0, y0

)
. Define y1 =

y0 + hf(x0, y0). Error at first step is

|y(x0 + h)− y1| = E1.

Similarly, we define y2 = y1 + hf(x1, y1) and we approximate y(x0 +2h) = y(x2) ≃ y1 + hf(x1, y1) = y2

and so on. In general, by letting yk = yk−1 + hf(xk−1, yk−1), we define (inductively)

y(x0 + (k + 1)h) = yk+1 ≃ yk + hf(xk, yk), k = 0, 1, 2, . . . , n− 1.

This method of calculation of y1, y2, . . . , yn is called the Euler’s method. The approximate solution of

Equation (7.7.1) is obtained by “linear elements” joining (x0, y0), (x1, y1), . . . , (xn, yn).

x x x x x 43210 x xn−1 n

1

2 n−1

ny

y

y

y

y
0

y
3

Figure 7.2: Approximate Solution
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Chapter 8

Second Order and Higher Order

Equations

8.1 Introduction

Second order and higher order equations occur frequently in science and engineering (like pendulum

problem etc.) and hence has its own importance. It has its own flavour also. We devote this section for

an elementary introduction.

Definition 8.1.1 (Second Order Linear Differential Equation) The equation

p(x)y′′ + q(x)y′ + r(x)y = c(x), x ∈ I (8.1.1)

is called a second order linear differential equation.

Here I is an interval contained in R; and the functions p(·), q(·), r(·), and c(·) are real valued continuous

functions defined on R. The functions p(·), q(·), and r(·) are called the coefficients of Equation (8.1.1) and

c(x) is called the non-homogeneous term or the force function.

Equation (8.1.1) is called linear homogeneous if c(x) ≡ 0 and non-homogeneous if c(x) 6= 0.

Recall that a second order equation is called nonlinear if it is not linear.

Example 8.1.2 1. The equation

y′′ +

√

9

ℓ
sin y = 0

is a second order equation which is nonlinear.

2. y′′ − y = 0 is an example of a linear second order equation.

3. y′′ + y′ + y = sinx is a non-homogeneous linear second order equation.

4. ax2y′′ + bxy′ + cy = 0 c 6= 0 is a homogeneous second order linear equation. This equation is called

Euler Equation of order 2. Here a, b, and c are real constants.

Definition 8.1.3 A function y defined on I is called a solution of Equation (8.1.1) if y is twice differentiable

and satisfies Equation (8.1.1).

Example 8.1.4 1. ex and e−x are solutions of y′′ − y = 0.

2. sinx and cosx are solutions of y′′ + y = 0.

153
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We now state an important theorem whose proof is simple and is omitted.

Theorem 8.1.5 (Superposition Principle) Let y1 and y2 be two given solutions of

p(x)y′′ + q(x)y′ + r(x)y = 0, x ∈ I. (8.1.2)

Then for any two real number c1, c2, the function c1y1 + c2y2 is also a solution of Equation (8.1.2).

It is to be noted here that Theorem 8.1.5 is not an existence theorem. That is, it does not assert the

existence of a solution of Equation (8.1.2).

Definition 8.1.6 (Solution Space) The set of solutions of a differential equation is called the solution space.

For example, all the solutions of the Equation (8.1.2) form a solution space. Note that y(x) ≡ 0 is

also a solution of Equation (8.1.2). Therefore, the solution set of a Equation (8.1.2) is non-empty. A

moments reflection on Theorem 8.1.5 tells us that the solution space of Equation (8.1.2) forms a real

vector space.

Remark 8.1.7 The above statements also hold for any homogeneous linear differential equation. That

is, the solution space of a homogeneous linear differential equation is a real vector space.

The natural question is to inquire about its dimension. This question will be answered in a sequence

of results stated below.

We first recall the definition of Linear Dependence and Independence.

Definition 8.1.8 (Linear Dependence and Linear Independence) Let I be an interval in R and let f, g :

I −→ R be continuous functions. we say that f, g are said to be linearly dependent if there are real numbers

a and b (not both zero) such that

af(t) + bg(t) = 0 for all t ∈ I.

The functions f(·), g(·) are said to be linearly independent if f(·), g(·) are not linear dependent.

To proceed further and to simplify matters, we assume that p(x) ≡ 1 in Equation (8.1.2) and that

the function q(x) and r(x) are continuous on I.

In other words, we consider a homogeneous linear equation

y′′ + q(x)y′ + r(x)y = 0, x ∈ I, (8.1.3)

where q and r are real valued continuous functions defined on I.

The next theorem, given without proof, deals with the existence and uniqueness of solutions of

Equation (8.1.3) with initial conditions y(x0) = A, y′(x0) = B for some x0 ∈ I.

Theorem 8.1.9 (Picard’s Theorem on Existence and Uniqueness) Consider the Equation (8.1.3) along

with the conditions

y(x0) = A, y′(x0) = B, for some x0 ∈ I (8.1.4)

where A and B are prescribed real constants. Then Equation (8.1.3), with initial conditions given by Equation

(8.1.4) has a unique solution on I.

A word of Caution: Note that the coefficient of y′′ in Equation (8.1.3) is 1. Before

we apply Theorem 8.1.9, we have to ensure this condition.

An important application of Theorem 8.1.9 is that the equation (8.1.3) has exactly 2 linearly inde-

pendent solutions. In other words, the set of all solutions over R, forms a real vector space of dimension

2.
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Theorem 8.1.10 Let q and r be real valued continuous functions on I. Then Equation (8.1.3) has exactly

two linearly independent solutions. Moreover, if y1 and y2 are two linearly independent solutions of Equation

(8.1.3), then the solution space is a linear combination of y1 and y2.

Proof. Let y1 and y2 be two unique solutions of Equation (8.1.3) with initial conditions

y1(x0) = 1, y′1(x0) = 0, and y2(x0) = 0, y′2(x0) = 1 for some x0 ∈ I. (8.1.5)

The unique solutions y1 and y2 exist by virtue of Theorem 8.1.9. We now claim that y1 and y2 are

linearly independent. Consider the system of linear equations

αy1(x) + βy2(x) = 0, (8.1.6)

where α and β are unknowns. If we can show that the only solution for the system (8.1.6) is α = β = 0,

then the two solutions y1 and y2 will be linearly independent.

Use initial condition on y1 and y2 to show that the only solution is indeed α = β = 0. Hence the

result follows.

We now show that any solution of Equation (8.1.3) is a linear combination of y1 and y2. Let ζ be

any solution of Equation (8.1.3) and let d1 = ζ(x0) and d2 = ζ′(x0). Consider the function φ defined by

φ(x) = d1y1(x) + d2y2(x).

By Definition 8.1.3, φ is a solution of Equation (8.1.3). Also note that φ(x0) = d1 and φ′(x0) = d2. So, φ

and ζ are two solution of Equation (8.1.3) with the same initial conditions. Hence by Picard’s Theorem

on Existence and Uniqueness (see Theorem 8.1.9), φ(x) ≡ ζ(x) or

ζ(x) = d1y1(x) + d2y2(x).

Thus, the equation (8.1.3) has two linearly independent solutions. �

Remark 8.1.11 1. Observe that the solution space of Equation (8.1.3) forms a real vector space of

dimension 2.

2. The solutions y1 and y2 corresponding to the initial conditions

y1(x0) = 1, y′1(x0) = 0, and y2(x0) = 0, y′2(x0) = 1 for some x0 ∈ I,

are called a fundamental system of solutions for Equation (8.1.3).

3. Note that the fundamental system for Equation (8.1.3) is not unique.

Consider a 2×2 non-singular matrix A =

[

a b

c d

]

with a, b, c, d ∈ R. Let {y1, y2} be a fundamental

system for the differential Equation 8.1.3 and yt = [y1, y2]. Then the rows of the matrix Ay =
[

ay1 + by2

cy1 + dy2

]

also form a fundamental system for Equation 8.1.3. That is, if {y1, y2} is a fundamental

system for Equation 8.1.3 then {ay1 + by2, cy1 + dy2} is also a fundamental system whenever

ad− bc = det(A) 6= 0.

Example 8.1.12 {1,x} is a fundamental system for y′′ = 0.

Note that {1− x, 1 + x} is also a fundamental system. Here the matrix is

[

1 −1

1 1

]

.

Exercise 8.1.13 1. State whether the following equations are second-order linear or second-

order non-linear equaitons.
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(a) y′′ + y sinx = 5.

(b) y′′ + (y′)2 + y sinx = 0.

(c) y′′ + yy′ = −2.

(d) (x2 + 1)y′′ + (x2 + 1)2y′ − 5y = sinx.

2. By showing that y1 = ex and y2 = e−x are solutions of

y′′ − y = 0

conclude that sinhx and coshx are also solutions of y′′ − y = 0. Do sinhx and coshx form a

fundamental set of solutions?

3. Given that {sinx, cos x} forms a basis for the solution space of y′′ + y = 0, find another basis.

8.2 More on Second Order Equations

In this section, we wish to study some more properties of second order equations which have nice

applications. They also have natural generalisations to higher order equations.

Definition 8.2.1 (General Solution) Let y1 and y2 be a fundamental system of solutions for

y′′ + q(x)y′ + r(x)y = 0, x ∈ I. (8.2.1)

The general solution y of Equation (8.2.1) is defined by

y = c1y1 + c2y2, x ∈ I

where c1 and c2 are arbitrary real constants. Note that y is also a solution of Equation (8.2.1).

In other words, the general solution of Equation (8.2.1) is a 2-parameter family of solutions, the

parameters being c1 and c2.

8.2.1 Wronskian

In this subsection, we discuss the linear independence or dependence of two solutions of Equation (8.2.1).

Definition 8.2.2 (Wronskian) Let y1 and y2 be two real valued continuously differentiable function on an

interval I ⊂ R. For x ∈ I, define

W (y1, y2) :=

∣
∣
∣
∣
∣

y1 y′1
y2 y′2

∣
∣
∣
∣
∣

= y1y
′
2 − y′1y2.

W is called the Wronskian of y1 and y2.

Example 8.2.3 1. Let y1 = cosx and y2 = sinx, x ∈ I ⊂ R. Then

W (y1, y2) =

∣
∣
∣
∣
∣

sinx cosx

cosx − sinx

∣
∣
∣
∣
∣
≡ −1 for all x ∈ I. (8.2.2)

Hence {cosx, sinx} is a linearly independent set.
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2. Let y1 = x2|x|, and y2 = x3 for x ∈ (−1, 1). Let us now compute y′1 and y′2. From analysis, we know

that y1 is differentiable at x = 0 and

y1(x) = −3x2 if x < 0 and y1(x) = 3x2 if x ≥ 0.

Therefore, for x ≥ 0,

W (y1, y2) =

∣
∣
∣
∣
∣

y1 y′1
y2 y′2

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

x3 3x2

x3 3x2

∣
∣
∣
∣
∣
= 0

and for x < 0,

W (y1, y2) =

∣
∣
∣
∣
∣

y1 y′1
y2 y′2

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

−x3 −3x2

x3 3x2

∣
∣
∣
∣
∣
= 0.

That is, for all x ∈ (−1, 1), W (y1, y2) = 0.

It is also easy to note that y1, y2 are linearly independent on (−1, 1). In fact,they are linearly independent

on any interval (a, b) containing 0.

Given two solutions y1 and y2 of Equation (8.2.1), we have a characterisation for y1 and y2 to be

linearly independent.

Theorem 8.2.4 Let I ⊂ R be an interval. Let y1 and y2 be two solutions of Equation (8.2.1). Fix a point

x0 ∈ I. Then for any x ∈ I,

W (y1, y2) =W (y1, y2)(x0) exp(−
∫ x

x0

q(s)ds). (8.2.3)

Consequently,

W (y1, y2)(x0) 6= 0 ⇐⇒W (y1, y2) 6= 0 for all x ∈ I.

Proof. First note that, for any x ∈ I,

W (y1, y2) = y1y
′
2 − y′1y2.

So

d

dx
W (y1, y2) = y1y

′′
2 − y′′1y2 (8.2.4)

= y1 (−q(x)y′2 − r(x)y2)− (−q(x)y′1 − r(x)y1) y2 (8.2.5)

= q(x)
(
y′1y2 − y1y

′
2

)
(8.2.6)

= −q(x)W (y1, y2). (8.2.7)

So, we have

W (y1, y2) =W (y1, y2)(x0) exp
(
−
∫ x

x0

q(s)ds
)
.

This completes the proof of the first part.

The second part follows the moment we note that the exponential function does not vanish. Alter-

natively, W (y1, y2) satisfies a first order linear homogeneous equation and therefore

W (y1, y2) ≡ 0 if and only if W (y1, y2)(x0) = 0.

�

Remark 8.2.5 1. If the Wronskian W (y1, y2) of two solutions y1, y2 of (8.2.1) vanish at a point

x0 ∈ I, then W (y1, y2) is identically zero on I.
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2. If any two solutions y1, y2 of Equation (8.2.1) are linearly dependent (on I), then W (y1, y2) ≡ 0

on I.

Theorem 8.2.6 Let y1 and y2 be any two solutions of Equation (8.2.1). Let x0 ∈ I be arbitrary. Then y1

and y2 are linearly independent on I if and only if W (y1, y2)(x0) 6= 0.

Proof. Let y1, y2 be linearly independent on I.

To show: W (y1, y2)(x0) 6= 0.

Suppose not. Then W (y1, y2)(x0) = 0. So, by Theorem 2.6.1 the equations

c1y1(x0) + c2y2(x0) = 0 and c1y
′
1(x0) + c2y

′
2(x0) = 0 (8.2.8)

admits a non-zero solution d1, d2. (as 0 =W (y1, y2)(x0) = y1(x0)y
′
2(x0)− y′1(x0)y2(x0).)

Let y = d1y1 + d2y2. Note that Equation (8.2.8) now implies

y(x0) = 0 and y′(x0) = 0.

Therefore, by Picard’s Theorem on existence and uniqueness of solutions (see Theorem 8.1.9), the solu-

tion y ≡ 0 on I. That is, d1y1 + d2y2 ≡ 0 for all x ∈ I with |d1| + |d2| 6= 0. That is, y1, y2 is linearly

dependent on I. A contradiction. Therefore, W (y1, y2)(x0) 6= 0. This proves the first part.

Suppose that W (y1, y2)(x0) 6= 0 for some x0 ∈ I. Therefore, by Theorem 8.2.4, W (y1, y2) 6= 0 for all

x ∈ I. Suppose that c1y1(x) + c2y2(x) = 0 for all x ∈ I. Therefore, c1y
′
1(x) + c2y

′
2(x) = 0 for all x ∈ I.

Since x0 ∈ I, in particular, we consider the linear system of equations

c1y1(x0) + c2y2(x0) = 0 and c1y
′
1(x0) + c2y

′
2(x0) = 0. (8.2.9)

But then by using Theorem 2.6.1 and the condition W (y1, y2)(x0) 6= 0, the only solution of the linear

system (8.2.9) is c1 = c2 = 0. So, by Definition 8.1.8, y1, y2 are linearly independent. �

Remark 8.2.7 Recall the following from Example 2:

1. The interval I = (−1, 1).

2. y1 = x2|x|, y2 = x3 and W (y1, y2) ≡ 0 for all x ∈ I.

3. The functions y1 and y2 are linearly independent.

This example tells us that Theorem 8.2.6 may not hold if y1 and y2 are not solutions of Equation (8.2.1)

but are just some arbitrary functions on (−1, 1).

The following corollary is a consequence of Theorem 8.2.6.

Corollary 8.2.8 Let y1, y2 be two linearly independent solutions of Equation (8.2.1). Let y be any solution

of Equation (8.2.1). Then there exist unique real numbers d1, d2 such that

y = d1y1 + d2y2 on I.

Proof. Let x0 ∈ I. Let y(x0) = a, y′(x0) = b. Here a and b are known since the solution y is given.

Also for any x0 ∈ I, by Theorem 8.2.6, W (y1, y2)(x0) 6= 0 as y1, y2 are linearly independent solutions of

Equation (8.2.1). Therefore by Theorem 2.6.1, the system of linear equations

c1y1(x0) + c2y2(x0) = a and c1y
′
1(x0) + c2y

′
2(x0) = b (8.2.10)

has a unique solution d1, d2.

Define ζ(x) = d1y1 + d2y2 for x ∈ I. Note that ζ is a solution of Equation (8.2.1) with ζ(x0) = a and

ζ′(x0) = b. Hence, by Picard’s Theorem on existence and uniqueness (see Theorem 8.1.9), ζ = y for all

x ∈ I. That is, y = d1y1 + d2y2. �



8.2. MORE ON SECOND ORDER EQUATIONS 159

Exercise 8.2.9 1. Let y1 and y2 be any two linearly independent solutions of y′′ + a(x)y = 0. Find

W (y1, y2).

2. Let y1 and y2 be any two linearly independent solutions of

y′′ + a(x)y′ + b(x)y = 0, x ∈ I.

Show that y1 and y2 cannot vanish at any x = x0 ∈ I.

3. Show that there is no equation of the type

y′′ + a(x)y′ + b(x)y = 0, x ∈ [0, 2π]

admiting y1 = sinx and y2 = x− π as its solutions; where a(x) and b(x) are any continuous functions

on [0, 2π]. [Hint: Use Exercise 8.2.9.2.]

8.2.2 Method of Reduction of Order

We are going to show that in order to find a fundamental system for Equation (8.2.1), it is sufficient to

have the knowledge of a solution of Equation (8.2.1). In other words, if we know one (non-zero) solution

y1 of Equation (8.2.1), then we can determine a solution y2 of Equation (8.2.1), so that {y1, y2} forms

a fundamental system for Equation (8.2.1). The method is described below and is usually called the

method of reduction of order.

Let y1 be an every where non-zero solution of Equation (8.2.1). Assume that y2 = u(x)y1 is a solution

of Equation (8.2.1), where u is to be determined. Substituting y2 in Equation (8.2.1), we have (after a

bit of simplification)

u′′y1 + u′(2y′1 + py1) + u(y′′1 + py′1 + qy1) = 0.

By letting u′ = v, and observing that y1 is a solution of Equation (8.2.1), we have

v′y1 + v(2y′1 + py1) = 0

which is same as
d

dx
(vy21) = −p(vy21).

This is a linear equation of order one (hence the name, reduction of order) in v whose solution is

vy21 = exp(−
∫ x

x0

p(s)ds), x0 ∈ I.

Substituting v = u′ and integrating we get

u =

∫ x

x0

1

y21(s)
exp(−

∫ s

x0

p(t)dt)ds, x0 ∈ I

and hence a second solution of Equation (8.2.1) is

y2 = y1

∫ x

x0

1

y21(s)
exp(−

∫ s

x0

p(t)dt)ds.

It is left as an exercise to show that y1, y2 are linearly independent. That is, {y1, y2} form a funda-

mental system for Equation (8.2.1).

We illustrate the method by an example.
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Example 8.2.10 Given that e y1 =
1

x
, x ≥ 1 is a solution of

x2y′′ + 4xy′ + 2y = 0, (8.2.11)

determine another solution y2 of (8.2.11), such that the solutions y1, y2, for x ≥ 1 are linearly independent.

Solution: With the notations used above, note that x0 = 1, p(x) =
4

x
, and y2(x) = u(x)y1(x), where u

is given by

u =

∫ x

1

1

y21(s)
exp

(

−
∫ s

1

p(t)dt

)

ds

=

∫ x

1

1

y21(s)
exp
(
ln(s4)

)
ds

=

∫ x

1

s2

s4
ds = 1− 1

x
;

where A and B are constants. So,

y2(x) =
1

x
− 1

x2
.

Since the term
1

x
already appears in y1, we can take y2 =

1

x2
. So,

1

x
and

1

x2
are the required two linearly

independent solutions of (8.2.11).

Exercise 8.2.11 In the following, use the given solution y1, to find another solution y2 so that the two

solutions y1 and y2 are linearly independent.

1. y′′ = 0, y1 = 1, x ≥ 0.

2. y′′ + 2y′ + y = 0, y1 = ex, x ≥ 0.

3. x2y′′ − xy′ + y = 0, y1 = x, x ≥ 1.

4. xy′′ + y′ = 0, y1 = 1, x ≥ 1.

5. y′′ + xy′ − y = 0, y1 = x, x ≥ 1.

8.3 Second Order equations with Constant Coefficients

Definition 8.3.1 Let a and b be constant real numbers. An equation

y′′ + ay′ + by = 0 (8.3.1)

is called a second order homogeneous linear equation with constant coefficients.

Let us assume that y = eλx to be a solution of Equation (8.3.1) (where λ is a constant, and is to be

determined). To simplify the matter, we denote

L(y) = y′′ + ay′ + by

and

p(λ) = λ2 + aλ+ b.

It is easy to note that

L(eλx) = p(λ)eλx.

Now, it is clear that eλx is a solution of Equation (8.3.1) if and only if

p(λ) = 0. (8.3.2)
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Equation (8.3.2) is called the characteristic equation of Equation (8.3.1). Equation (8.3.2) is a

quadratic equation and admits 2 roots (repeated roots being counted twice).

Case 1: Let λ1, λ2 be real roots of Equation (8.3.2) with λ1 6= λ2.

Then eλ1x and eλ2x are two solutions of Equation (8.3.1) and moreover they are linearly independent

(since λ1 6= λ2). That is, {eλ1x, eλ2x} forms a fundamental system of solutions of Equation (8.3.1).

Case 2: Let λ1 = λ2 be a repeated root of p(λ) = 0.

Then p′(λ1) = 0. Now,
d

dx
(L(eλx)) = L(xeλx) = p′(λ)eλx + xp(λ)eλx.

But p′(λ1) = 0 and therefore,

L(xeλ1x) = 0.

Hence, eλ1x and xeλ1x are two linearly independent solutions of Equation (8.3.1). In this case, we have

a fundamental system of solutions of Equation (8.3.1).

Case 3: Let λ = α+ iβ be a complex root of Equation (8.3.2).

So, α− iβ is also a root of Equation (8.3.2). Before we proceed, we note:

Lemma 8.3.2 Let y = u + iv be a solution of Equation (8.3.1), where u and v are real valued functions.

Then u and v are solutions of Equation (8.3.1). In other words, the real part and the imaginary part of a

complex valued solution (of a real variable ODE Equation (8.3.1)) are themselves solution of Equation (8.3.1).

Proof. exercise. �

Let λ = α+ iβ be a complex root of p(λ) = 0. Then

eαx(cos(βx) + i sin(βx))

is a complex solution of Equation (8.3.1). By Lemma 8.3.2, y1 = eαx cos(βx) and y2 = sin(βx) are

solutions of Equation (8.3.1). It is easy to note that y1 and y2 are linearly independent. It is as good as

saying {eλx cos(βx), eλx sin(βx)} forms a fundamental system of solutions of Equation (8.3.1).

Exercise 8.3.3 1. Find the general solution of the follwoing equations.

(a) y′′ − 4y′ + 3y = 0.

(b) 2y′′ + 5y = 0.

(c) y′′ − 9y = 0.

(d) y′′ + k2y = 0, where k is a real constant.

2. Solve the following IVP’s.

(a) y′′ + y = 0, y(0) = 0, y′(0) = 1.

(b) y′′ − y = 0, y(0) = 1, y′(0) = 1.

(c) y′′ + 4y = 0, y(0) = −1, y′(0) = −3.

(d) y′′ + 4y′ + 4y = 0, y(0) = 1, y′(0) = 0.

3. Find two linearly independent solutions y1 and y2 of the following equations.

(a) y′′ − 5y = 0.

(b) y′′ + 6y′ + 5y = 0.

(c) y′′ + 5y = 0.
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(d) y′′ + 6y′ + 9y = 0. Also, in each case, find W (y1, y2).

4. Show that the IVP

y′′ + y = 0, y(0) = 0 and y′(0) = B

has a unique solution for any real number B.

5. Consider the problem

y′′ + y = 0, y(0) = 0 and y′(π) = B. (8.3.3)

Show that it has a solution if and only if B = 0. Compare this with Exercise 4. Also, show that if

B = 0, then there are infinitely many solutions to (8.3.3).

8.4 Non Homogeneous Equations

Throughout this section, I denotes an interval in R. we assume that q(·), r(·) and f(·) are real valued

continuous function defined on I. Now, we focus the attention to the study of non-homogeneous equation

of the form

y′′ + q(x)y′ + r(x)y = f(x). (8.4.1)

We assume that the functions q(·), r(·) and f(·) are known/given. The non-zero function f(·) in

(8.4.1) is also called the non-homogeneous term or the forcing function. The equation

y′′ + q(x)y′ + r(x)y = 0. (8.4.2)

is called the homogeneous equation corresponding to (8.4.1).

Consider the set of all twice differentiable functions defined on I. We define an operator L on this

set by

L(y) = y′′ + q(x)y′ + r(x)y.

Then (8.4.1) and (8.4.2) can be rewritten in the (compact) form

L(y) = f (8.4.3)

L(y) = 0. (8.4.4)

The ensuing result relates the solutions of (8.4.1) and (8.4.2).

Theorem 8.4.1 1. Let y1 and y2 be two solutions of (8.4.1) on I. Then y = y1 − y2 is a solution of

(8.4.2).

2. Let z be any solution of (8.4.1) on I and let z1 be any solution of (8.4.2). Then y = z+z1 is a solution

of (8.4.1) on I.

Proof. Observe that L is a linear transformation on the set of twice differentiable function on I. We

therefore have

L(y1) = f and L(y2) = f.

The linearity of L implies that L(y1 − y2) = 0 or equivalently, y = y1 − y2 is a solution of (8.4.2).

For the proof of second part, note that

L(z) = f and L(z1) = 0

implies that

L(z + z1) = L(z) + L(z1) = f.

Thus, y = z + z1 is a solution of (8.4.1). �

The above result leads us to the following definition.
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Definition 8.4.2 (General Solution) A general solution of (8.4.1) on I is a solution of (8.4.1) of the form

y = yh + yp, x ∈ I

where yh = c1y1 + c2y2 is a general solution of the corresponding homogeneous equation (8.4.2) and yp is

any solution of (8.4.1) (preferably containing no arbitrary constants).

We now prove that the solution of (8.4.1) with initial conditions is unique.

Theorem 8.4.3 (Uniqueness) Suppose that x0 ∈ I. Let y1 and y2 be two solutions of the IVP

y′′ + qy′ + ry = f, y(x0) = a, y′(x0) = b. (8.4.5)

Then y1 = y2 for all x ∈ I.

Proof. Let z = y1 − y2. Then z satisfies

L(z) = 0, z(x0) = 0, z′(x0) = 0.

By the uniqueness theorem 8.1.9, we have z ≡ 0 on I. Or in other words, y1 ≡ y2 on I. �

Remark 8.4.4 The above results tell us that to solve (i.e., to find the general solution of (8.4.1)) or the

IVP (8.4.5), we need to find the general solution of the homogeneous equation (8.4.2) and a particular

solution yp of (8.4.1). To repeat, the two steps needed to solve (8.4.1), are:

1. compute the general solution of (8.4.2), and

2. compute a particular solution of (8.4.1).

Then add the two solutions.

Step 1. has been dealt in the previous sections. The remainder of the section is devoted to step 2., i.e.,

we elaborate some methods for computing a particular solution yp of (8.4.1).

Exercise 8.4.5 1. Find the general solution of the following equations:

(a) y′′ + 5y′ = −5. (You may note here that y = −x is a particular solution.)

(b) y′′ − y = −2 sinx. (First show that y = sinx is a particular solution.)

2. Solve the following IVPs:

(a) y′′ + y = 2ex, y(0) = 0 = y′(0). (It is given that y = ex is a particular solution.)

(b) y′′ − y = −2 cosx, y(0) = 0, y′(0) = 1. (First guess a particular solution using the idea given in

Exercise 8.4.5.1b )

3. Let f1(x) and f2(x) be two continuous functions. Let yi’s be particular solutions of

y′′ + q(x)y′ + r(x)y = fi(x), i = 1, 2;

where q(x) and r(x) are continuous functions. Show that y1 + y2 is a particular solution of y′′ +

q(x)y′ + r(x)y = f1(x) + f2(x).
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8.5 Variation of Parameters

In the previous section, calculation of particular integrals/solutions for some special cases have been

studied. Recall that the homogeneous part of the equation had constant coefficients. In this section, we

deal with a useful technique of finding a particular solution when the coefficients of the homogeneous

part are continuous functions and the forcing function f(x) (or the non-homogeneous term) is piecewise

continuous. Suppose y1 and y2 are two linearly independent solutions of

y′′ + q(x)y′ + r(x)y = 0 (8.5.1)

on I, where q(x) and r(x) are arbitrary continuous functions defined on I. Then we know that

y = c1y1 + c2y2

is a solution of (8.5.1) for any constants c1 and c2. We now “vary” c1 and c2 to functions of x, so that

y = u(x)y1 + v(x)y2, x ∈ I (8.5.2)

is a solution of the equation

y′′ + q(x)y′ + r(x)y = f(x), on I, (8.5.3)

where f is a piecewise continuous function defined on I. The details are given in the following theorem.

Theorem 8.5.1 (Method of Variation of Parameters) Let q(x) and r(x) be continuous functions defined

on I and let f be a piecewise continuous function on I. Let y1 and y2 be two linearly independent solutions

of (8.5.1) on I. Then a particular solution yp of (8.5.3) is given by

yp = −y1
∫
y2f(x)

W
dx+ y2

∫
y1f(x)

W
dx, (8.5.4)

where W = W (y1, y2) is the Wronskian of y1 and y2. (Note that the integrals in (8.5.4) are the indefinite

integrals of the respective arguments.)

Proof. Let u(x) and v(x) be continuously differentiable functions (to be determined) such that

yp = uy1 + vy2, x ∈ I (8.5.5)

is a particular solution of (8.5.3). Differentiation of (8.5.5) leads to

y′p = uy′1 + vy′2 + u′y1 + v′y2. (8.5.6)

We choose u and v so that

u′y1 + v′y2 = 0. (8.5.7)

Substituting (8.5.7) in (8.5.6), we have

y′p = uy′1 + vy′2, and y′′p = uy′′1 + vy′′2 + u′y′1 + v′y′2. (8.5.8)

Since yp is a particular solution of (8.5.3), substitution of (8.5.5) and (8.5.8) in (8.5.3), we get

u
(
y′′1 + q(x)y′1 + r(x)y1

)
+ v
(
y′′2 + q(x)y′2 + r(x)y2

)
+ u′y′1 + v′y′2 = f(x).

As y1 and y2 are solutions of the homogeneous equation (8.5.1), we obtain the condition

u′y′1 + v′y′2 = f(x). (8.5.9)
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We now determine u and v from (8.5.7) and (8.5.9). By using the Cramer’s rule for a linear system of

equations, we get

u′ = −y2f(x)
W

and v′ =
y1f(x)

W
(8.5.10)

(note that y1 and y2 are linearly independent solutions of (8.5.1) and hence the Wronskian, W 6= 0 for

any x ∈ I). Integration of (8.5.10) give us

u = −
∫
y2f(x)

W
dx and v =

∫
y1f(x)

W
dx (8.5.11)

( without loss of generality, we set the values of integration constants to zero). Equations (8.5.11) and

(8.5.5) yield the desired results. Thus the proof is complete. �

Before, we move onto some examples, the following comments are useful.

Remark 8.5.2 1. The integrals in (8.5.11) exist, because y2 and W (6= 0) are continuous functions

and f is a piecewise continuous function. Sometimes, it is useful to write (8.5.11) in the form

u = −
∫ x

x0

y2(s)f(s)

W (s)
ds and v =

∫ x

x0

y1(s)f(s)

W (s)
ds

where x ∈ I and x0 is a fixed point in I. In such a case, the particular solution yp as given by

(8.5.4) assumes the form

yp = −y1
∫ x

x0

y2(s)f(s)

W (s)
ds+ y2

∫

)xx0

y1(s)f(s)

W (s)
ds (8.5.12)

for a fixed point x0 ∈ I and for any x ∈ I.

2. Again, we stress here that, q and r are assumed to be continuous. They need not be constants.

Also, f is a piecewise continuous function on I.

3. A word of caution. While using (8.5.4), one has to keep in mind that the coefficient of y′′ in (8.5.3)

is 1.

Example 8.5.3 1. Find the general solution of

y′′ + y =
1

2 + sinx
, x ≥ 0.

Solution: The general solution of the corresponding homogeneous equation y′′ + y = 0 is given by

yh = c1 cosx+ c2 sinx.

Here, the solutions y1 = sinx and y2 = cosx are linearly independent over I = [0,∞) and W =

W (sinx, cosx) = 1. Therefore, a particular solution, yh, by Theorem 8.5.1, is

yp = −y1
∫

y2
2 + sinx

dx+ y2

∫
y1

2 + sinx
dx

= sinx

∫
cosx

2 + sinx
dx + cosx

∫
sinx

2 + sinx
dx

= −sinx ln(2 + sinx) + cosx (x− 2

∫
1

2 + sinx
dx). (8.5.13)

So, the required general solution is

y = c1 cosx+ c2 sinx+ yp

where yp is given by (8.5.13).
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2. Find a particular solution of

x2y′′ − 2xy′ + 2y = x3, x > 0.

Solution: Verify that the given equation is

y′′ − 2

x
y′ +

2

x2
y = x

and two linearly independent solutions of the corresponding homogeneous part are y1 = x and y2 = x2.

Here

W =W (x, x2) =

∣
∣
∣
∣
∣

x x2

1 2x

∣
∣
∣
∣
∣
= x2, x > 0.

By Theorem 8.5.1, a particular solution yp is given by

yp = −x
∫
x2 · x
x2

dx+ x2
∫
x · x
x2

dx

= −x
3

2
+ x3 =

x3

2
.

The readers should note that the methods of Section 8.7 are not applicable as the given equation is

not an equation with constant coefficients.

Exercise 8.5.4 1. Find a particular solution for the following problems:

(a) y′′ + y = f(x), 0 ≤ x ≤ 1 where f(x) =

{

0 if 0 ≤ x < 1
2

1 if 1
2 ≤ x ≤ 1.

(b) y′′ + y = 2 secx for all x ∈ (0, π2 ).

(c) y′′ − 3y′ + 2y = −2 cos(e−x), x > 0.

(d) x2y′′ + xy′ − y = 2x, x > 0.

2. Use the method of variation of parameters to find the general solution of

(a) y′′ − y = −ex for all x ∈ R.

(b) y′′ + y = sinx for all x ∈ R.

3. Solve the following IVPs:

(a) y′′ + y = f(x), x ≥ 0 where f(x) =

{

0 if 0 ≤ x < 1

1 if x ≥ 1.
with y(0) = 0 = y′(0).

(b) y′′ − y = |x| for all x ∈ [−1,∞) with y(−1) = 0 and y′(−1) = 1.

8.6 Higher Order Equations with Constant Coefficients

This section is devoted to an introductory study of higher order linear equations with constant coeffi-

cients. This is an extension of the study of 2nd order linear equations with constant coefficients (see,

Section 8.3).

The standard form of a linear nth order differential equation with constant coefficients is given by

Ln(y) = f(x) on I, (8.6.1)

where

Ln ≡ dn

dxn
+ a1

dn−1

dxn−1
+ · · ·+ an−1

d

dx
+ an
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is a linear differential operator of order n with constant coefficients, a1, a2, . . . , an being real constants

(called the coefficients of the linear equation) and the function f(x) is a piecewise continuous function

defined on the interval I. We will be using the notation y(n) for the nth derivative of y. If f(x) ≡ 0, then

(8.6.1) which reduces to

Ln(y) = 0 on I, (8.6.2)

is called a homogeneous linear equation, otherwise (8.6.1) is called a non-homogeneous linear equation.

The function f is also known as the non-homogeneous term or a forcing term.

Definition 8.6.1 A function y defined on I is called a solution of (8.6.1) if y is n times differentiable and

y along with its derivatives satisfy (8.6.1).

Remark 8.6.2 1. If u and v are any two solutions of (8.6.1), then y = u − v is also a solution of

(8.6.2). Hence, if v is a solution of (8.6.2) and yp is a solution of (8.6.1), then u = v + yp is a

solution of (8.6.1).

2. Let y1 and y2 be two solutions of (8.6.2). Then for any constants (need not be real) c1, c2,

y = c1y1 + c2y2

is also a solution of (8.6.2). The solution y is called the superposition of y1 and y2.

3. Note that y ≡ 0 is a solution of (8.6.2). This, along with the super-position principle, ensures that

the set of solutions of (8.6.2) forms a vector space over R. This vector space is called the solution

space or space of solutions of (8.6.2).

As in Section 8.3, we first take up the study of (8.6.2). It is easy to note (as in Section 8.3) that for

a constant λ,

Ln(e
λx) = p(λ)eλx

where,

p(λ) = λn + a1λ
n−1 + · · ·+ an (8.6.3)

Definition 8.6.3 (Characteristic Equation) The equation p(λ) = 0, where p(λ) is defined in (8.6.3), is

called the characteristic equation of (8.6.2).

Note that p(λ) is of polynomial of degree n with real coefficients. Thus, it has n zeros (counting with

multiplicities). Also, in case of complex roots, they will occur in conjugate pairs. In view of this, we

have the following theorem. The proof of the theorem is omitted.

Theorem 8.6.4 eλx is a solution of (8.6.2) on any interval I ⊂ R if and only if λ is a root of (8.6.3)

1. If λ1, λ2, . . . , λn are distinct roots of p(λ) = 0, then

eλ1x, eλ2x, . . . , eλnx

are the n linearly independent solutions of (8.6.2).

2. If λ1 is a repeated root of p(λ) = 0 of multiplicity k, i.e., λ1 is a zero of (8.6.3) repeated k times, then

eλ1x, xeλ1x, . . . , xk−1eλ1x

are linearly independent solutions of (8.6.2), corresponding to the root λ1 of p(λ) = 0.
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3. If λ1 = α+ iβ is a complex root of p(λ) = 0, then so is the complex conjugate λ1 = α− iβ. Then the

corresponding linearly independent solutions of (8.6.2) are

y1 = eαx
(
cos(βx) + i sin(βx)

)
and y2 = eαx

(
cos(βx) − i sin(βx)

)
.

These are complex valued functions of x. However, using super-position principle, we note that

y1 + y2
2

= eαx cos(βx) and
y1 − y2

2i
= eαx sin(βx)

are also solutions of (8.6.2). Thus, in the case of λ1 = α + iβ being a complex root of p(λ) = 0, we

have the linearly independent solutions

eαx cos(βx) and eαx sin(βx).

Example 8.6.5 1. Find the solution space of the differential equation

y′′′ − 6y′′ + 11y′ − 6y = 0.

Solution: Its characteristic equation is

p(λ) = λ3 − 6λ2 + 11λ− 6 = 0.

By inspection, the roots of p(λ) = 0 are λ = 1, 2, 3. So, the linearly independent solutions are ex, e2x, e3x

and the solution space is

{c1ex + c2e
2x + c3e

3x : c1, c2, c3 ∈ R}.

2. Find the solution space of the differential equation

y′′′ − 2y′′ + y′ = 0.

Solution: Its characteristic equation is

p(λ) = λ3 − 2λ2 + λ = 0.

By inspection, the roots of p(λ) = 0 are λ = 0, 1, 1. So, the linearly independent solutions are 1, ex, xex

and the solution space is

{c1 + c2e
x + c3xe

x : c1, c2, c3 ∈ R}.

3. Find the solution space of the differential equation

y(4) + 2y′′ + y = 0.

Solution: Its characteristic equation is

p(λ) = λ4 + 2λ2 + 1 = 0.

By inspection, the roots of p(λ) = 0 are λ = i, i,−i,−i. So, the linearly independent solutions are

sinx, x sin x, cosx, x cos x and the solution space is

{c1 sinx+ c2 cosx+ c3x sinx+ c4x cosx : c1, c2, c3, c4 ∈ R}.
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From the above discussion, it is clear that the linear homogeneous equation (8.6.2), admits n lin-

early independent solutions since the algebraic equation p(λ) = 0 has exactly n roots (counting with

multiplicity).

Definition 8.6.6 (General Solution) Let y1, y2, . . . , yn be any set of n linearly independent solution of

(8.6.2). Then

y = c1y1 + c2y2 + · · ·+ cnyn

is called a general solution of (8.6.2), where c1, c2, . . . , cn are arbitrary real constants.

Example 8.6.7 1. Find the general solution of y′′′ = 0.

Solution: Note that 0 is the repeated root of the characteristic equation λ3 = 0. So, the general

solution is

y = c1 + c2x+ c3x
2.

2. Find the general solution of

y′′′ + y′′ + y′ + y = 0.

Solution: Note that the roots of the characteristic equation λ3 + λ2 + λ + 1 = 0 are −1, i,−i. So,
the general solution is

y = c1e
−x + c2 sinx+ c3 cosx.

Exercise 8.6.8 1. Find the general solution of the following differential equations:

(a) y′′′ + y′ = 0.

(b) y′′′ + 5y′ − 6y = 0.

(c) yiv + 2y′′ + y = 0.

2. Find a linear differential equation with constant coefficients and of order 3 which admits the following

solutions:

(a) cosx, sinx and e−3x.

(b) ex, e2x and e3x.

(c) 1, ex and x.

3. Solve the following IVPs:

(a) yiv − y = 0, y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 1.

(b) 2y′′′ + y′′ + 2y′ + y = 0, y(0) = 0, y′(0) = 1, y′′(0) = 0.

4. Euler Cauchy Equations:

Let a0, a1, . . . , an−1 ∈ R be given constants. The equation

xn
dny

dxn
+ an−1x

n−1 d
n−1y

dxn−1
+ · · ·+ a0y = 0, x ∈ I (8.6.4)

is called the homogeneous Euler-Cauchy Equation (or just Euler’s Equation) of degree n. (8.6.4) is also

called the standard form of the Euler equation. We define

L(y) = xn
dny

dxn
+ an−1x

n−1 d
n−1y

dxn−1
+ · · ·+ a0y.
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Then substituting y = xλ, we get

L(xλ) =
(
λ(λ− 1) · · · (λ− n+ 1) + an−1λ(λ − 1) · · · (λ − n+ 2) + · · ·+ a0

)
xλ.

So, xλ is a solution of (8.6.4), if and only if

λ(λ− 1) · · · (λ− n+ 1) + an−1λ(λ − 1) · · · (λ − n+ 2) + · · ·+ a0 = 0. (8.6.5)

Essentially, for finding the solutions of (8.6.4), we need to find the roots of (8.6.5), which is a polynomial

in λ. With the above understanding, solve the following homogeneous Euler equations:

(a) x3y′′′ + 3x2y′′ + 2xy′ = 0.

(b) x3y′′′ − 6x2y′′ + 11xy′ − 6y = 0.

(c) x3y′′′ − x2y′′ + xy′ − y = 0.

For an alternative method of solving (8.6.4), see the next exercise.

5. Consider the Euler equation (8.6.4) with x > 0 and x ∈ I. Let x = et or equivalently t = lnx. Let

D = d
dt and d = d

dx . Then

(a) show that xd(y) = Dy(t), or equivalently x dy
dx = dy)

dt .

(b) using mathematical induction, show that xndny =
(
D(D − 1) · · · (D − n+ 1)

)
y(t).

(c) with the new (independent) variable t, the Euler equation (8.6.4) reduces to an equation with

constant coefficients. So, the questions in the above part can be solved by the method just

explained.

We turn our attention toward the non-homogeneous equation (8.6.1). If yp is any solution of (8.6.1)

and if yh is the general solution of the corresponding homogeneous equation (8.6.2), then

y = yh + yp

is a solution of (8.6.1). The solution y involves n arbitrary constants. Such a solution is called the

general solution of (8.6.1).

Solving an equation of the form (8.6.1) usually means to find a general solution of (8.6.1). The

solution yp is called a particular solution which may not involve any arbitrary constants. Solving

(8.6.1) essentially involves two steps (as we had seen in detail in Section 8.3).

Step 1: a) Calculation of the homogeneous solution yh and

b) Calculation of the particular solution yp.

In the ensuing discussion, we describe the method of undetermined coefficients to determine yp. Note

that a particular solution is not unique. In fact, if yp is a solution of (8.6.1) and u is any solution of

(8.6.2), then yp + u is also a solution of (8.6.1). The undetermined coefficients method is applicable for

equations (8.6.1).

8.7 Method of Undetermined Coefficients

In the previous section, we have seen than a general solution of

Ln(y) = f(x) on I (8.7.6)

can be written in the form

y = yh + yp,

where yh is a general solution of Ln(y) = 0 and yp is a particular solution of (8.7.6). In view of this, in

this section, we shall attempt to obtain yp for (8.7.6) using the method of undetermined coefficients in

the following particular cases of f(x);
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1. f(x) = keαx; k 6= 0, α a real constant

2. f(x) = eαx
(
k1 cos(βx) + k2 sin(βx)

)
; k1, k2, α, β ∈ R

3. f(x) = xm.

Case I. f(x) = keαx; k 6= 0, α a real constant.

We first assume that α is not a root of the characteristic equation, i.e., p(α) 6= 0. Note that Ln(e
αx) =

p(α)eαx. Therefore, let us assume that a particular solution is of the form

yp = Aeαx,

where A, an unknown, is an undetermined coefficient. Thus

Ln(yp) = Ap(α)eαx.

Since p(α) 6= 0, we can choose A =
k

p(α)
to obtain

Ln(yp) = keαx.

Thus, yp =
k

p(α)
eαx is a particular solution of Ln(y) = keαx.

Modification Rule: If α is a root of the characteristic equation, i.e., p(α) = 0, with multiplicity r,

(i.e., p(α) = p′(α) = · · · = p(r−1)(α) = 0 and p(r)(α) 6= 0) then we take, yp of the form

yp = Axreαx

and obtain the value of A by substituting yp in Ln(y) = keαx.

Example 8.7.1 1. Find a particular solution of

y′′ − 4y = 2ex.

Solution: Here f(x) = 2ex with k = 2 and α = 1. Also, the characteristic polynomial, p(λ) = λ2−4.

Note that α = 1 is not a root of p(λ) = 0. Thus, we assume yp = Aex. This on substitution gives

Aex − 4Aex = 2ex =⇒ −3Aex = 2ex.

So, we choose A =
−2

3
, which gives a particular solution as

yp =
−2ex

3
.

2. Find a particular solution of

y′′′ − 3y′′ + 3y′ − y = 2ex.

Solution: The characteristic polynomial is p(λ) = λ3 − 3λ2 + 3λ− 1 = (λ− 1)3 and α = 1. Clearly,

p(1) = 0 and λ = α = 1 has multiplicity r = 3. Thus, we assume yp = Ax3ex. Substituting it in the

given equation,we have

Aex
(
x3 + 9x2 + 18x+ 6

)
− 3Aex

(
x3 + 6x2 + 6x

)

+ 3Aex
(
x3 + 3x2

)
− Ax3ex = 2ex.

Solving for A, we get A =
1

3
, and thus a particular solution is yp =

x3ex

3
.
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3. Find a particular solution of

y′′′ − y′ = e2x.

Solution: The characteristic polynomial is p(λ) = λ3 − λ and α = 2. Thus, using yp = Ae2x, we get

A =
1

p(α)
=

1

6
, and hence a particular solution is yp =

e2x

6
.

4. Solve y′′′ − 3y′′ + 3y′ − y = 2e2x.

Exercise 8.7.2 Find a particular solution for the following differential equations:

1. y′′ − 3y′ + 2y = ex.

2. y′′ − 9y = e3x.

3. y′′′ − 3y′′ + 6y′ − 4y = e2x.

Case II. f(x) = eαx
(
k1 cos(βx) + k2 sin(βx)

)
; k1, k2, α, β ∈ R

We first assume that α + iβ is not a root of the characteristic equation, i.e., p(α + iβ) 6= 0. Here, we

assume that yp is of the form

yp = eαx
(
A cos(βx) +B sin(βx)

)
,

and then comparing the coefficients of eαx cosx and eαx sinx (why!) in Ln(y) = f(x), obtain the values

of A and B.

Modification Rule: If α+iβ is a root of the characteristic equation, i.e., p(α+iβ) = 0, with multiplicity

r, then we assume a particular solution as

yp = xreαx
(
A cos(βx) +B sin(βx)

)
,

and then comparing the coefficients in Ln(y) = f(x), obtain the values of A and B.

Example 8.7.3 1. Find a particular solution of

y′′ + 2y′ + 2y = 4ex sinx.

Solution: Here, α = 1 and β = 1. Thus α + iβ = 1 + i, which is not a root of the characteristic

equation p(λ) = λ2 + 2λ+ 2 = 0. Note that the roots of p(λ) = 0 are −1± i.

Thus, let us assume yp = ex (A sinx+B cosx) . This gives us

(−4B + 4A)ex sinx+ (4B + 4A)ex cosx = 4ex sinx.

Comparing the coefficients of ex cosx and ex sinx on both sides, we get A −B = 1 and A+ B = 0.

On solving for A and B, we get A = −B =
1

2
. So, a particular solution is yp =

ex

2
(sinx− cosx) .

2. Find a particular solution of

y′′ + y = sinx.

Solution: Here, α = 0 and β = 1. Thus α + iβ = i, which is a root with multiplicity r = 1, of the

characteristic equation p(λ) = λ2 + 1 = 0.

So, let yp = x (A cosx+B sinx) . Substituting this in the given equation and comparing the coefficients

of cosx and sinx on both sides, we get B = 0 and A = −1

2
. Thus, a particular solution is yp =

−1

2
x cosx.
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Exercise 8.7.4 Find a particular solution for the following differential equations:

1. y′′′ − y′′ + y′ − y = ex cosx.

2. y′′′′ + 2y′′ + y = sinx.

3. y′′ − 2y′ + 2y = ex cosx.

Case III. f(x) = xm.

Suppose p(0) 6= 0. Then we assume that

yp = Amx
m +Am−1x

m−1 + · · ·+A0

and then compare the coefficient of xk in Ln(yp) = f(x) to obtain the values of Ai for 0 ≤ i ≤ m.

Modification Rule: If λ = 0 is a root of the characteristic equation, i.e., p(0) = 0, with multiplicity r,

then we assume a particular solution as

yp = xr
(
Amx

m +Am−1x
m−1 + · · ·+A0

)

and then compare the coefficient of xk in Ln(yp) = f(x) to obtain the values of Ai for 0 ≤ i ≤ m.

Example 8.7.5 Find a particular solution of

y′′′ − y′′ + y′ − y = x2.

Solution: As p(0) 6= 0, we assume

yp = A2x
2 +A1x+A0

which on substitution in the given differential equation gives

−2A2 + (2A2x+A1)− (A2x
2 +A1x+A0) = x2.

Comparing the coefficients of different powers of x and solving, we get A2 = −1, A1 = −2 and A0 = 0.

Thus, a particular solution is

yp = −(x2 + 2x).

Finally, note that if yp1
is a particular solution of Ln(y) = f1(x) and yp2

is a particular solution of

Ln(y) = f2(x), then a particular solution of

Ln(y) = k1f1(x) + k2f2(x)

is given by

yp = k1yp1
+ k2yp2

.

In view of this, one can use method of undetermined coefficients for the cases, where f(x) is a linear

combination of the functions described above.

Example 8.7.6 Find a particular soltution of

y′′ + y = 2 sinx+ sin 2x.

Solution: We can divide the problem into two problems:

1. y′′ + y = 2 sinx.
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2. y′′ + y = sin 2x.

For the first problem, a particular solution (Example 8.7.3.2) is yp1
= 2

−1

2
x cosx = −x cosx.

For the second problem, one can check that yp2
=

−1

3
sin(2x) is a particular solution.

Thus, a particular solution of the given problem is

yp1
+ yp2

= −x cosx− 1

3
sin(2x).

Exercise 8.7.7 Find a particular solution for the following differential equations:

1. y′′′ − y′′ + y′ − y = 5ex cosx+ 10e2x.

2. y′′ + 2y′ + y = x+ e−x.

3. y′′ + 3y′ − 4y = 4ex + e4x.

4. y′′ + 9y = cosx+ x2 + x3.

5. y′′′ − 3y′′ + 4y′ = x2 + e2x sinx.

6. y′′′′ + 4y′′′ + 6y′′ + 4y′ + 5y = 2 sinx+ x2.



Chapter 9

Solutions Based on Power Series

9.1 Introduction

In the previous chapter, we had a discussion on the methods of solving

y′′ + ay′ + by = f(x);

where a, b were real numbers and f was a real valued continuous function. We also looked at Euler

Equations which can be reduced to the above form. The natural question is:

what if a and b are functions of x?

In this chapter, we have a partial answer to the above question. In general, there are no methods of

finding a solution of an equation of the form

y′′ + q(x)y′ + r(x)y = f(x), x ∈ I

where q(x) and r(x) are real valued continuous functions defined on an interval I ⊂ R. In such a

situation, we look for a class of functions q(x) and r(x) for which we may be able to solve. One such

class of functions is called the set of analytic functions.

Definition 9.1.1 (Power Series) Let x0 ∈ R and a0, a1, . . . , an, . . . ∈ R be fixed. An expression of the type

∞∑

n=0

an(x− x0)
n (9.1.1)

is called a power series in x around x0. The point x0 is called the center, and an’s are called the coefficients.

In short, a0, a1, . . . , an, . . . are called the coefficient of the power series and x0 is called the center.

Note here that an ∈ R is the coefficient of (x− x0)
n and that the power series converges for x = x0. So,

the set

S = {x ∈ R :

∞∑

n=0

an(x− x0)
n converges}

is a non-empty. It turns out that the set S is an interval in R.We are thus led to the following definition.

Example 9.1.2 1. Consider the power series

x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

In this case, x0 = 0 is the center, a0 = 0 and a2n = 0 for n ≥ 1. Also, a2n+1 =
(−1)n

(2n+ 1)!
, n =

1, 2, . . . . Recall that the Taylor series expansion around x0 = 0 of sinx is same as the above power

series.

175
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2. Any polynomial

a0 + a1x+ a2x
2 + · · ·+ anx

n

is a power series with x0 = 0 as the center, and the coefficients am = 0 for m ≥ n+ 1.

Definition 9.1.3 (Radius of Convergence) A real number R ≥ 0 is called the radius of convergence of the

power series (9.1.1), if the expression (9.1.1) converges for all x satisfying

|x− x0| < R and R is the largest such number.

From what has been said earlier, it is clear that the set of points x where the power series (9.1.1) is

convergent is the interval (−R + x0, x0 + R), whenever R is the radius of convergence. If R = 0, the

power series is convergent only at x = x0.

Let R > 0 be the radius of convergence of the power series (9.1.1). Let I = (−R + x0, x0 + R). In

the interval I, the power series (9.1.1) converges. Hence, it defines a real valued function and we denote

it by f(x), i.e.,

f(x) =

∞∑

n=1

an(x− x0)
n, x ∈ I.

Such a function is well defined as long as x ∈ I. f is called the function defined by the power series

(9.1.1) on I. Sometimes, we also use the terminology that (9.1.1) induces a function f on I.

It is a natural question to ask how to find the radius of convergence of a power series (9.1.1). We

state one such result below but we do not intend to give a proof.

Theorem 9.1.4 1. Let
∞∑

n=1
an(x−x0)n be a power series with center x0. Then there exists a real number

R ≥ 0 such that

∞∑

n=1

an(x− x0)
n converges for all x ∈ (−R+ x0, x0 + R).

In this case, the power series
∞∑

n=1
an(x− x0)

n converges absolutely and uniformly on

|x− x0| ≤ r for all r < R

and diverges for all x with

|x− x0| > R.

2. Suppose R is the radius of convergence of the power series (9.1.1). Suppose lim
n−→∞

n
√

|an| exists and
equals ℓ.

(a) If ℓ 6= 0, then R =
1

ℓ
.

(b) If ℓ = 0, then the power series (9.1.1) converges for all x ∈ R.

Note that lim
n−→∞

n
√

|an| exists if lim
n−→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
and

lim
n−→∞

n
√

|an| = lim
n−→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
.

Remark 9.1.5 If the reader is familiar with the concept of lim sup of a sequence, then we have a

modification of the above theorem.

In case, n
√

|an| does not tend to a limit as n −→ ∞, then the above theorem holds if we replace

lim
n−→∞

n
√

|an| by lim sup
n−→∞

n
√

|an|.
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Example 9.1.6 1. Consider the power series
∞∑

n=0
(x+ 1)n. Here x0 = −1 is the center and an = 1 for all

n ≥ 0. So, n
√

|an| = n
√
1 = 1. Hence, by Theorem 9.1.4, the radius of convergenceR = 1.

2. Consider the power series
∑

n≥0

(−1)n(x+ 1)2n+1

(2n+ 1)!
. In this case, the center is

x0 = −1, an = 0 for n even and a2n+1 =
(−1)n

(2n+ 1)!
.

So,

lim
n−→∞

2n+1
√

|a2n+1| = 0 and lim
n−→∞

2n
√

|a2n| = 0.

Thus, lim
n−→∞

n
√

|an| exists and equals 0. Therefore, the power series converges for all x ∈ R. Note that

the series converges to sin(x+ 1).

3. Consider the power series
∞∑

n=1

x2n. In this case, we have

a2n = 1 and a2n+1 = 0 for n = 0, 1, 2, . . . .

So,

lim
n−→∞

2n+1
√

|a2n+1| = 0 and lim
n−→∞

2n
√

|a2n| = 1.

Thus, lim
n−→∞

n
√

|an| does not exist.

We let u = x2. Then the power series
∞∑

n=1
x2n reduces to

∞∑

n=1
un. But then from Example 9.1.6.1, we

learned that
∞∑

n=1
un converges for all u with |u| < 1. Therefore, the original power series converges

whenever |x2| < 1 or equivalently whenever |x| < 1. So, the radius of convergence is R = 1. Note that

1

1− x2
=

∞∑

n=1

x2n for |x| < 1.

4. Consider the power series
∑

n≥0

nnxn. In this case, n
√

|an| = n
√
nn = n. doesn’t have any finite limit as

n −→ ∞. Hence, the power series converges only for x = 0.

5. The power series
∑

n≥0

xn

n!
has coefficients an =

1

n!
and it is easily seen that lim

n−→∞

∣
∣
∣
∣

1

n!

∣
∣
∣
∣

1
n

= 0 and the

power series converges for all x ∈ R. Recall that it represents ex.

Definition 9.1.7 Let f : I −→ R be a function and x0 ∈ I. f is called analytic around x0 if there exists a

δ > 0 such that

f(x) =
∑

n≥0

an(x− x0)
n for every x with |x− x0| < δ.

That is, f has a power series representation in a neighbourhood of x0.

9.1.1 Properties of Power Series

Now we quickly state some of the important properties of the power series. Consider two power series

∞∑

n=0

an(x− x0)
n and

∞∑

n=0

bn(x − x0)
n
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with radius of convergence R1 > 0 and R2 > 0, respectively. Let F (x) and G(x) be the functions defined

by the two power series defined for all x ∈ I, where I = (−R+ x0, x0 +R) with R = min{R1, R2}. Note
that both the power series converge for all x ∈ I.

With F (x), G(x) and I as defined above, we have the following properties of the power series.

1. Equality of Power Series

The two power series defined by F (x) and G(x) are equal for all x ∈ I if and only if

an = bn for all n = 0, 1, 2, . . . .

In particular, if
∞∑

n=0
an(x− x0)

n = 0 for all x ∈ I, then

an = 0 for all n = 0, 1, 2, . . . .

2. Term by Term Addition

For all x ∈ I, we have

F (x) +G(x) =

∞∑

n=0

(an + bn)(x− x0)
n

Essentially, it says that in the common part of the regions of convergence, the two power series

can be added term by term.

3. Multiplication of Power Series

Let us define

c0 = a0b0, and inductively cn =
n∑

j=1

an−jbj .

Then for all x ∈ I, the product of F (x) and G(x) is defined by

H(x) = F (x)G(x) =
∞∑

n=0

cn(x− x0)
n.

H(x) is called the “Cauchy Product” of F (x) and G(x).

Note that for any n ≥ o, the coefficient of xn in




∞∑

j=0

aj(x− x0)
j



 ·
( ∞∑

k=0

bk(x− x0)
k

)

is cn =

n∑

j=1

an−jbj.

4. Term by Term Differentiation

The term by term differentiation of the power series function F (x) is

∞∑

n=1

nan(x − x0)
n.

Note that it also has R1 as the radius of convergence as by Theorem 9.1.4 lim
n−→∞

n
√

|an| = · 1
R1

and

lim
n−→∞

n
√

|nan| = lim
n−→∞

n
√

|n| lim
n−→∞

n
√

|an| = 1 · 1

R1
.

Let 0 < r < R1. Then for all x ∈ (−r + x0, x0 + r), we have

d

dx
F (x) = F ′(x) =

∞∑

n=1

nan(x− x0)
n.

In other words, inside the region of convergence, the power series can be differentiated term by

term.
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In the following, we shall consider power series with x0 = 0 as the center. Note that by a transfor-

mation of X = x− x0, the center of the power series can be shifted to the origin.

Exercise 9.1.1 1. which of the following represents a power series (with center x0 indicated in the brack-

ets) in x?

(a) 1 + x2 + x4 + · · ·+ x2n + · · · (x0 = 0).

(b) 1 + sinx+ (sinx)2 + · · ·+ (sinx)n + · · · (x0 = 0).

(c) 1 + x|x| + x2|x2|+ · · ·+ xn|xn|+ · · · (x0 = 0).

2. Let f(x) and g(x) be two power series around x0 = 0, defined by

f(x) = x− x3

3!
+
x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · ·

and g(x) = 1− x2

2!
+
x4

4!
− · · ·+ (−1)n

x2n

(2n)!
+ · · · .

Find the radius of convergence of f(x) and g(x). Also, for each x in the domain of convergence, show

that

f ′(x) = g(x) and g′(x) = −f(x).

[Hint: Use Properties 1, 2, 3 and 4 mentioned above. Also, note that we usually call f(x) by sinx

and g(x) by cosx.]

3. Find the radius of convergence of the following series centerd at x0 = −1.

(a) 1 + (x+ 1) + (x+1)2

2! + · · ·+ (x+1)n

n! + · · · .
(b) 1 + (x+ 1) + 2(x+ 1)2 + · · ·+ n(x+ 1)n + · · · .

9.2 Solutions in terms of Power Series

Consider a linear second order equation of the type

y′′ + a(x)y′ + b(x)y = 0. (9.2.1)

Let a and b be analytic around the point x0 = 0. In such a case, we may hope to have a solution y in

terms of a power series, say

y =
∞∑

k=0

ckx
k. (9.2.2)

In the absence of any information, let us assume that (9.2.1) has a solution y represented by (9.2.2). We

substitute (9.2.2) in Equation (9.2.1) and try to find the values of ck’s. Let us take up an example for

illustration.

Example 9.2.1 Consider the differential equation

y′′ + y = 0 (9.2.3)

Here a(x) ≡ 0, b(x) ≡ 1, which are analytic around x0 = 0.

Solution: Let

y =

∞∑

n=0

cnx
n. (9.2.4)
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Then y′ =
∞∑

n=0
ncnx

n−1 and y′′ =
∞∑

n=0
n(n − 1)cnx

n−2. Substituting the expression for y, y′ and y′′ in

Equation (9.2.3), we get
∞∑

n=0

n(n− 1)cnx
n−2 +

∞∑

n=0

cnx
n = 0

or, equivalently

0 =

∞∑

n=0

(n+ 2)(n+ 1)cn+2x
n +

∞∑

n=0

cnx
n =

∞∑

n=0

{(n+ 1)(n+ 2)cn+2 + cn}xn.

Hence for all n = 0, 1, 2, . . . ,

(n+ 1)(n+ 2)cn+2 + cn = 0 or cn+2 = − cn
(n+ 1)(n+ 2)

.

Therefore, we have

c2 = − c0
2! , c3 = − c1

3! ,

c4 = (−1)2 c0
4! , c5 = (−1)2 c1

5! ,
...

...

c2n = (−1)n c0
(2n)! , c2n+1 = (−1)n c1

(2n+1)! .

Here, c0 and c1 are arbitrary. So,

y = c0

∞∑

n=0

(−1)nx2n

(2n)!
+ c1

∞∑

n=0

(−1)nx2n+1

(2n+ 1)!

or y = c0 cos(x) + c1 sin(x) where c0 and c1 can be chosen arbitrarily. For c0 = 1 and c1 = 0, we get

y = cos(x). That is, cos(x) is a solution of the Equation (9.2.3). Similarly, y = sin(x) is also a solution of

Equation (9.2.3).

Exercise 9.2.2 Assuming that the solutions y of the following differential equations admit power series

representation, find y in terms of a power series.

1. y′ = −y, (center at x0 = 0).

2. y′ = 1 + y2, (center at x0 = 0).

3. Find two linearly independent solutions of

(a) y′′ − y = 0, (center at x0 = 0).

(b) y′′ + 4y = 0, (center at x0 = 0).

9.3 Statement of Frobenius Theorem for Regular (Ordinary)

Point

Earlier, we saw a few properties of a power series and some uses also. Presently, we inquire the question,

namely, whether an equation of the form

y′′ + a(x)y′ + b(x)y = f(x), x ∈ I (9.3.1)

admits a solution y which has a power series representation around x ∈ I. In other words, we are

interested in looking into an existence of a power series solution of (9.3.1) under certain conditions on

a(x), b(x) and f(x). The following is one such result. We omit its proof.
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Theorem 9.3.1 Let a(x), b(x) and f(x) admit a power series representation around a point x = x0 ∈ I,

with non-zero radius of convergence r1, r2 and r3, respectively. Let R = min{r1, r2, r3}. Then the Equation

(9.3.1) has a solution y which has a power series representation around x0 with radius of convergence R.

Remark 9.3.2 We remind the readers that Theorem 9.3.1 is true for Equations (9.3.1), whenever the

coefficient of y′′ is 1.

Secondly, a point x0 is called an ordinary point for (9.3.1) if a(x), b(x) and f(x) admit power

series expansion (with non-zero radius of convergence) around x = x0. x0 is called a singular point

for (9.3.1) if x0 is not an ordinary point for (9.3.1).

The following are some examples for illustration of the utility of Theorem 9.3.1.

Exercise 9.3.3 1. Examine whether the given point x0 is an ordinary point or a singular point for the

following differential equations.

(a) (x− 1)y′′ + sinxy = 0, x0 = 0.

(b) y′′ + sin x
x−1 y = 0, x0 = 0.

(c) Find two linearly independent solutions of

(d) (1− x2)y′′ − 2xy′ + n(n+ 1)y = 0, x0 = 0, n is a real constant.

2. Show that the following equations admit power series solutions around a given x0. Also, find the power

series solutions if it exists.

(a) y′′ + y = 0, x0 = 0.

(b) xy′′ + y = 0, x0 = 0.

(c) y′′ + 9y = 0, x0 = 0.

9.4 Legendre Equations and Legendre Polynomials

9.4.1 Introduction

Legendre Equation plays a vital role in many problems of mathematical Physics and in the theory of

quadratures (as applied to Numerical Integration).

Definition 9.4.1 The equation

(1− x2)y′′ − 2xy′ + p(p+ 1)y = 0, −1 < x < 1 (9.4.1)

where p ∈ R, is called a Legendre Equation of order p.

Equation (9.4.1) was studied by Legendre and hence the name Legendre Equation.

Equation (9.4.1) may be rewritten as

y′′ − 2x

(1− x2)
y′ +

p(p+ 1)

(1− x2)
y = 0.

The functions
2x

1− x2
and

p(p+ 1)

1− x2
are analytic around x0 = 0 (since they have power series expressions

with center at x0 = 0 and with R = 1 as the radius of convergence). By Theorem 9.3.1, a solution y of

(9.4.1) admits a power series solution (with center at x0 = 0) with radius of convergence R = 1. Let us
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assume that y =
∞∑

k=0

akx
k is a solution of (9.4.1). We have to find the value of ak’s. Substituting the

expression for

y′ =

∞∑

k=0

kakx
k−1 and y′′ =

∞∑

k=0

k(k − 1)akx
k−2

in Equation (9.4.1), we get

∞∑

k=0

{(k + 1)(k + 2)ak+2 + ak(p− k)(p+ k + 1)}xk = 0.

Hence, for k = 0, 1, 2, . . .

ak+2 = − (p− k)(p+ k + 1)

(k + 1)(k + 2)
ak.

It now follows that

a2 = − p(p+1)
2! a0, a3 = − (p−1)(p+2)

3! a1,

a4 = − (p−2)(p+3)
3·4 a2 a5 = (−1)2 (p−1)(p−3)(p+2)(p+4)

5! a1

= (−1)2 p(p−2)(p+1)(p+3)
4! a0,

etc. In general,

a2m = (−1)m
p(p− 2) · · · (p− 2m+ 2)(p+ 1)(p+ 3) · · · (p+ 2m− 1)

(2m)!
a0

and

a2m+1 = (−1)m
(p− 1)(p− 3) · · · (p− 2m+ 1)(p+ 2)(p+ 4) · · · (p+ 2m)

(2m+ 1)!
a1.

It turns out that both a0 and a1 are arbitrary. So, by choosing a0 = 1, a1 = 0 and a0 = 0, a1 = 1 in the

above expressions, we have the following two solutions of the Legendre Equation (9.4.1), namely,

y1 = 1− p(p+ 1)

2!
x2 + · · ·+ (−1)m

(p− 2m+ 2) · · · (p+ 2m− 1)

(2m)!
x2m + · · · (9.4.2)

and

y2 = x− (p− 1)(p+ 2)

3!
x3 + · · ·+ (−1)m

(p− 2m+ 1) · · · (p+ 2m)

(2m+ 1)!
x2m+1 + · · · . (9.4.3)

Remark 9.4.2 y1 and y2 are two linearly independent solutions of the Legendre Equation (9.4.1). It

now follows that the general solution of (9.4.1) is

y = c1y1 + c2y2 (9.4.4)

where c1 and c2 are arbitrary real numbers.

9.4.2 Legendre Polynomials

In many problems, the real number p, appearing in the Legendre Equation (9.4.1), is a non-negative

integer. Suppose p = n is a non-negative integer. Recall

ak+2 = − (n− k)(n+ k + 1)

(k + 1)(k + 2)
ak, k = 0, 1, 2, . . . . (9.4.5)

Therefore, when k = n, we get

an+2 = an+4 = · · · = an+2m = · · · = 0 for all positive integer m.

Case 1: Let n be a positive even integer. Then y1 in Equation (9.4.2) is a polynomial of degree n. In fact,

y1 is an even polynomial in the sense that the terms of y1 are even powers of x and hence y1(−x) = y1(x).
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Case 2: Now, let n be a positive odd integer. Then y2(x) in Equation (9.4.3) is a polynomial of degree

n. In this case, y2 is an odd polynomial in the sense that the terms of y2 are odd powers of x and hence

y2(−x) = −y2(x).
In either case, we have a polynomial solution for Equation (9.4.1).

Definition 9.4.3 A polynomial solution Pn(x) of (9.4.1) is called a Legendre Polynomial whenever

Pn(1) = 1.

Fix a positive integer n and consider Pn(x) = a0 + a1x + · · · + anx
n. Then it can be checked that

Pn(1) = 1 if we choose

an =
(2n)!

2n(n!)2
=

1 · 3 · 5 · · · (2n− 1)

n!
.

Using the recurrence relation, we have

an−2 = − (n− 1)n

2(2n− 1)
an = − (2n− 2)!

2n(n− 1)!(n− 2)!

by the choice of an. In general, if n− 2m ≥ 0, then

an−2m = (−1)m
(2n− 2m)!

2nm!(n−m)!(n− 2m)!
.

Hence,
M∑

m=0

(−1)m
(2n− 2m)!

2nm!(n−m)!(n− 2m)!
xn−2m, (9.4.6)

where M =
n

2
when n is even and M =

n− 1

2
when n is odd.

Proposition 9.4.4 Let p = n be a non-negative even integer. Then any polynomial solution y of (9.4.1)

which has only even powers of x is a multiple of Pn(x).

Similarly, if p = n is a non-negative odd integer, then any polynomial solution y of (9.4.1) which has only

odd powers of x is a multiple of Pn(x).

Proof. Suppose that n is a non-negative even integer. Let y be a polynomial solution of (9.4.1). By

(9.4.4)

y = c1y1 + c2y2,

where y1 is a polynomial of degree n (with even powers of x) and y2 is a power series solution with odd

powers only. Since y is a polynomial, we have c2 = 0 or y = c1y1 with c1 6= 0.

Similarly, Pn(x) = c′1y1 with c′1 6= 0. which implies that y is a multiple of Pn(x). A similar proof holds

when n is an odd positive integer. �

We have an alternate way of evaluating Pn(x). They are used later for the orthogonality properties

of the Legendre polynomials, Pn(x)’s.

Theorem 9.4.5 (Rodriguės Formula) The Legendre polynomials Pn(x) for n = 1, 2, . . . , are given by

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (9.4.7)

Proof. Let V (x) = (x2 − 1)n. Then d
dxV (x) = 2nx(x2 − 1)n−1 or

(x2 − 1)
d

dx
V (x) = 2nx(x2 − 1)n = 2nxV (x).
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Now differentiating (n+ 1) times (by the use of the Leibniz rule for differentiation), we get

(x2 − 1)
dn+2

dxn+2
V (x) + 2(n+ 1)x

dn+1

dxn+1
V (x) +

2n(n+ 1)

1 · 2
dn

dxn
V (x)

− 2nx
dn+1

dxn+1
V (x) − 2n(n+ 1)

dn

dxn
V (x) = 0.

By denoting, U(x) = dn

dxnV (x), we have

(x2 − 1)U ′′ + U ′{2(n+ 1)x− 2nx}+ U{n(n+ 1)− 2n(n+ 1)} = 0

or (1− x2)U ′′ − 2xU ′ + n(n+ 1)U = 0.

This tells us that U(x) is a solution of the Legendre Equation (9.4.1). So, by Proposition 9.4.4, we have

Pn(x) = αU(x) = α
dn

dxn
(x2 − 1)n for some α ∈ R.

Also, let us note that

dn

dxn
(x2 − 1)n =

dn

dxn
{(x− 1)(x+ 1)}n

= n!(x+ 1)n + terms containing a factor of (x− 1).

Therefore,
dn

dxn
(x2 − 1)n

∣
∣
∣
∣
x=1

= 2nn! or, equivalently

1

2nn!

dn

dxn
(x2 − 1)n

∣
∣
∣
∣
x=1

= 1

and thus

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.

�

Example 9.4.6 1. When n = 0, P0(x) = 1.

2. When n = 1, P1(x) =
1

2

d

dx
(x2 − 1) = x.

3. When n = 2, P2(x) =
1

222!

d2

dx2
(x2 − 1)2 =

1

8
{12x2 − 4} =

3

2
x2 − 1

2
.

One may observe that the Rodriguės formula is very useful in the computation of Pn(x) for “small” values

of n.

Theorem 9.4.7 Let Pn(x) denote, as usual, the Legendre Polynomial of degree n. Then

∫ 1

−1

Pn(x)Pm(x) dx = 0 if m 6= n. (9.4.8)

Proof. We know that the polynomials Pn(x) and Pm(x) satisfy

(
(1− x2)P ′

n(x)
)′
+ n(n+ 1)Pn(x) = 0 and (9.4.9)

(
(1− x2)P ′

m(x)
)′
+m(m+ 1)Pm(x) = 0. (9.4.10)

Multiplying Equation (9.4.9) by Pm(x) and Equation (9.4.10) by Pn(x) and subtracting, we get

(
n(n+ 1)−m(m+ 1)

)
Pn(x)Pm(x) =

(
(1− x2)P ′

m(x)
)′
Pn(x)−

(
(1− x2)P ′

n(x)
)′
Pm(x).
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Therefore,

(
n(n+ 1) − m(m+ 1)

)
∫ 1

−1

Pn(x)Pm(x)dx

=

∫ 1

−1

(
(
(1− x2)P ′

m(x)
)′
Pn(x) −

(
(1− x2)P ′

n(x)
)′
Pm(x)

)

dx

= −
∫ 1

−1

(1 − x2)P ′
m(x)P ′

n(x)dx + (1− x2)P ′
m(x)Pn(x)

∣
∣
∣
∣

x=1

x=−1

+

∫ 1

−1

(1 − x2)P ′
n(x)P

′
m(x)dx + (1− x2)P ′

n(x)Pm(x)

∣
∣
∣
∣

x=1

x=−1

= 0.

Since n 6= m, n(n+ 1) 6= m(m+ 1) and therefore, we have

∫ 1

−1

Pn(x)Pm(x) dx = 0 if m 6= n.

�

Theorem 9.4.8 For n = 0, 1, 2, . . .
∫ 1

−1

P 2
n(x) dx =

2

2n+ 1
. (9.4.11)

Proof. Let us write V (x) = (x2 − 1)n. By the Rodrigue’s formula, we have

∫ 1

−1

P 2
n(x) dx =

∫ 1

−1

(
1

n!2n

)2
dn

dxn
V (x)

dn

dxn
V (x)dx.

Let us call I =

1∫

−1

dn

dxn
V (x)

dn

dxn
V (x)dx. Note that for 0 ≤ m < n,

dm

dxm
V (−1) =

dm

dxm
V (1) = 0. (9.4.12)

Therefore, integrating I by parts and using (9.4.12) at each step, we get

I =

∫ 1

−1

d2n

dx2n
V (x) · (−1)nV (x)dx = (2n)!

∫ 1

−1

(1− x2)ndx = (2n)! 2

∫ 1

0

(1− x2)ndx.

Now substitute x = cos θ and use the value of the integral

π

2∫

0

sin2n θ dθ, to get the required result. �

We now state an important expansion theorem. The proof is beyond the scope of this book.

Theorem 9.4.9 Let f(x) be a real valued continuous function defined in [−1, 1]. Then

f(x) =

∞∑

n=0

anPn(x), x ∈ [−1, 1]

where an =
2n+ 1

2

1∫

−1

f(x)Pn(x)dx.

Legendre polynomials can also be generated by a suitable function. To do that, we state the following

result without proof.
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Theorem 9.4.10 Let Pn(x) be the Legendre polynomial of degree n. Then

1√
1− 2xt+ t2

=

∞∑

n=0

Pn(x)t
n, t 6= 1. (9.4.13)

The function h(t) =
1√

1− 2xt+ t2
admits a power series expansion in t (for small t) and the

coefficient of tn in Pn(x). The function h(t) is called the generating function for the Legendre

polynomials.

Exercise 9.4.11 1. By using the Rodrigue’s formula, find P0(x), P1(x) and P2(x).

2. Use the generating function (9.4.13)

(a) to find P0(x), P1(x) and P2(x).

(b) to show that Pn(x) is an odd function whenever n is odd and is an even function whenevern is

even.

Using the generating function (9.4.13), we can establish the following relations:

(n+ 1)Pn+1(x) = (2n+ 1) x Pn(x)− n Pn−1(x) (9.4.14)

nPn(x) = xP ′
n(x)− P ′

n−1(x) (9.4.15)

P ′
n+1(x) = xP ′

n(x) + (n+ 1)Pn(x). (9.4.16)

The relations (9.4.14), (9.4.15) and (9.4.16) are called recurrence relations for the Legendre polyno-

mials, Pn(x). The relation (9.4.14) is also known as Bonnet’s recurrence relation. We will now give the

proof of (9.4.14) using (9.4.13). The readers are required to proof the other two recurrence relations.

Differentiating the generating function (9.4.13) with respect to t (keeping the variable x fixed), we

get

−1

2
(1− 2xt+ t2)−

3
2 (−2x+ 2t) =

∞∑

n=0

nPn(x)t
n−1.

Or equivalently,

(x − t)(1− 2xt+ t2)−
1
2 = (1− 2xt+ t2)

∞∑

n=0

nPn(x)t
n−1.

We now substitute
∞∑

n=0
Pn(x)t

n in the left hand side for (1− 2xt+ t2)−
1
2 , to get

(x− t)

∞∑

n=0

Pn(x)t
n = (1− 2xt+ t2)

∞∑

n=0

nPn(x)t
n−1.

The two sides and power series in t and therefore, comparing the coefficient of tn, we get

xPn(x)− Pn−1(x) = (n+ 1)Pn(x) + (n− 1)Pn−1(x)− 2n x Pn(x).

This is clearly same as (9.4.14).

To prove (9.4.15), one needs to differentiate the generating function with respect to x (keeping t

fixed) and doing a similar simplification. Now, use the relations (9.4.14) and (9.4.15) to get the relation

(9.4.16). These relations will be helpful in solving the problems given below.

Exercise 9.4.12 1. Find a polynomial solution y(x) of (1−x2)y′′− 2xy′+20y = 0 such that y(1) = 10.

2. Prove the following:
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(a)
1∫

−1

Pm(x)dx = 0 for all positive integers m ≥ 1.

(b)
1∫

−1

x2n+1P2m(x)dx = 0 whenever m and n are positive integers with m 6= n.

(c)
1∫

−1

xmPn(x)dx = 0 whenever m and n are positive integers with m < n.

3. Show that P ′
n(1) =

n(n+ 1)

2
and P ′

n(−1) = (−1)n−1n(n+ 1)

2
.

4. Establish the following recurrence relations.

(a) (n+ 1)Pn(x) = P ′
n+1(x) − xP ′

n(x).

(b) (1− x2)P ′
n(x) = n

[
Pn−1(x)− xPn(x)

]
.
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Laplace Transform

189





Chapter 10

Laplace Transform

10.1 Introduction

In many problems, a function f(t), t ∈ [a, b] is transformed to another function F (s) through a relation

of the type:

F (s) =

∫ b

a

K(t, s)f(t)dt

where K(t, s) is a known function. Here, F (s) is called integral transform of f(t). Thus, an integral

transform sends a given function f(t) into another function F (s). This transformation of f(t) into F (s)

provides a method to tackle a problem more readily. In some cases, it affords solutions to otherwise

difficult problems. In view of this, the integral transforms find numerous applications in engineering

problems. Laplace transform is a particular case of integral transform (where f(t) is defined on [0,∞)

and K(s, t) = e−st). As we will see in the following, application of Laplace transform reduces a linear

differential equation with constant coefficients to an algebraic equation, which can be solved by algebraic

methods. Thus, it provides a powerful tool to solve differential equations.

It is important to note here that there is some sort of analogy with what we had learnt during the

study of logarithms in school. That is, to multiply two numbers, we first calculate their logarithms, add

them and then use the table of antilogarithm to get back the original product. In a similar way, we first

transform the problem that was posed as a function of f(t) to a problem in F (s), make some calculations

and then use the table of inverse Laplace transform to get the solution of the actual problem.

In this chapter, we shall see same properties of Laplace transform and its applications in solving

differential equations.

10.2 Definitions and Examples

Definition 10.2.1 (Piece-wise Continuous Function) 1. A function f(t) is said to be a piece-wise con-

tinuous function on a closed interval [a, b] ⊂ R, if there exists finite number of points a = t0 < t1 <

t2 < · · · < tN = b such that f(t) is continuous in each of the intervals (ti−1, ti) for 1 ≤ i ≤ N and

has finite limits as t approaches the end points, see the Figure 10.1.

2. A function f(t) is said to be a piece-wise continuous function for t ≥ 0, if f(t) is a piece-wise continuous

function on every closed interval [a, b] ⊂ [0,∞). For example, see Figure 10.1.

Definition 10.2.2 (Laplace Transform) Let f : [0,∞) −→ R and s ∈ R. Then F (s), for s ∈ R is called

191
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Figure 10.1: Piecewise Continuous Function

the Laplace transform of f(t), and is defined by

L(f(t)) = F (s) =

∫ ∞

0

f(t)e−stdt

whenever the integral exists.

(Recall that
∞∫

0

g(t)dt exists if lim
b−→∞

b∫

0

g(t)d(t) exists and we define
∞∫

0

g(t)dt = lim
b−→∞

b∫

0

g(t)d(t).)

Remark 10.2.3 1. Let f(t) be an exponentially bounded function, i.e.,

|f(t)| ≤Meαt for all t > 0 and for some real numbers α and M with M > 0.

Then the Laplace transform of f exists.

2. Suppose F (s) exists for some function f . Then by definition, lim
b−→∞

∫ b

0 f(t)e−stdt exists. Now, one

can use the theory of improper integrals to conclude that

lim
s−→∞

F (s) = 0.

Hence, a function F (s) satisfying

lim
s−→∞

F (s) does not exist or lim
s−→∞

F (s) 6= 0,

cannot be a Laplace transform of a function f .

Definition 10.2.4 (Inverse Laplace Transform) Let L(f(t)) = F (s). That is, F (s) is the Laplace trans-

form of the function f(t). Then f(t) is called the inverse Laplace transform of F (s). In that case, we write

f(t) = L−1(F (s)).

10.2.1 Examples

Example 10.2.5 1. Find F (s) = L(f(t)), where f(t) = 1, t ≥ 0.

Solution: F (s) =

∫ ∞

0

e−stdt = lim
b−→∞

e−st

−s

∣
∣
∣
∣

b

0

=
1

s
− lim

b−→∞

e−sb

s
.

Note that if s > 0, then

lim
b−→∞

e−sb

s
= 0.

Thus,

F (s) =
1

s
, for s > 0.
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In the remaining part of this chapter, whenever the improper integral is calculated, we will not explicitly

write the limiting process. However, the students are advised to provide the details.

2. Find the Laplace transform F (s) of f(t), where f(t) = t, t ≥ 0.

Solution: Integration by parts gives

F (s) =

∫ ∞

0

te−stdt =
−te−st

s

∣
∣
∣
∣

∞

0

+

∫ ∞

0

e−st

s
dt

=
1

s2
for s > 0.

3. Find the Laplace transform of f(t) = tn, n a positive integer.

Solution: Substituting st = τ, we get

F (s) =

∫ ∞

0

e−sttndt

=
1

sn+1

∫ ∞

0

e−ττn dτ

=
n!

sn+1
for s > 0.

4. Find the Laplace transform of f(t) = eat, t ≥ 0.

Solution: We have

L(eat) =

∫ ∞

0

eate−stdt =

∫ ∞

0

e−(s−a)tdt

=
1

s− a
for s > a.

5. Compute the Laplace transform of cos(at), t ≥ 0.

Solution:

L(cos(at)) =

∫ ∞

0

cos(at)e−stdt

= cos(at)
e−st

−s

∣
∣
∣
∣

∞

0

−
∫ ∞

0

−a sin(at) · e
−st

−s dt

=
1

s
−
(
a sin(at)

s

e−st

−s

∣
∣
∣
∣

∞

0

−
∫ ∞

0

a2
cos(at)

s

e−st

−s dt
)

Note that the limits exist only when s > 0. Hence,

a2 + s2

s2

∫ ∞

0

cos(at)e−stdt =
1

s
. Thus L(cos(at)) = s

a2 + s2
; s > 0.

6. Similarly, one can show that

L(sin(at)) = a

s2 + a2
, s > 0.

7. Find the Laplace transform of f(t) =
1√
t
, t > 0.

Solution: Note that f(t) is not a bounded function near t = 0 (why!). We will still show that the

Laplace transform of f(t) exists.

L( 1√
t
) =

∫ ∞

0

1√
t
e−stdt =

∫ ∞

0

√
s√
τ
e−τ dτ

s
( substitute τ = st)

=
1√
s

∫ ∞

0

τ−
1
2 e−τdτ =

1√
s

∫ ∞

0

τ
1
2
−1e−τdτ.
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Recall that for calculating the integral

∫ ∞

0

τ
1
2
−1e−τdτ, one needs to consider the double integral

∫ ∞

0

∫ ∞

0

e−(x2+y2)dxdy =

(∫ ∞

0

e−x2

dx

)2

=

(
1

2

∫ ∞

0

τ
1
2
−1e−τdτ

)2

.

It turns out that ∫ ∞

0

τ
1
2
−1e−τdτ =

√
π.

Thus, L( 1√
t
) =

√
π√
s
for s > 0.

We now put the above discussed examples in tabular form as they constantly appear in applications

of Laplace transform to differential equations.

f(t) L(f(t)) f(t) L(f(t))

1
1

s
, s > 0 t

1

s2
, s > 0

tn
n!

sn+1
, s > 0 eat

1

s− a
, s > a

sin(at)
a

s2 + a2
, s > 0 cos(at)

s

s2 + a2
, s > 0

sinh(at)
a

s2 − a2
, s > a cosh(at)

s

s2 − a2
, s > a

Table 10.1: Laplace transform of some Elementary Functions

10.3 Properties of Laplace Transform

Lemma 10.3.1 (Linearity of Laplace Transform) 1. Let a, b ∈ R. Then

L
(
af(t) + bg(t)

)
=

∫ ∞

0

(
af(t) + bg(t)

)
e−stdt

= aL(f(t)) + bL(g(t)).

2. If F (s) = L(f(t)), and G(s) = L(g(t)), then

L−1
(
aF (s) + bG(s)

)
= af(t) + bg(t).

The above lemma is immediate from the definition of Laplace transform and the linearity of the

definite integral.

Example 10.3.2 1. Find the Laplace transform of cosh(at).

Solution: cosh(at) =
eat + e−at

2
. Thus

L(cosh(at)) = 1

2

(
1

s− a
+

1

s+ a

)

=
s

s2 − a2
, s > |a|.

2. Similarly,

L(sinh(at)) = 1

2

(
1

s− a
− 1

s+ a

)

=
a

s2 − a2
, s > |a|.
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a 2a

1 1

a 2a

1

a

Figure 10.2: f(t)

3. Find the inverse Laplace transform of
1

s(s+ 1)
.

Solution:

L−1
( 1

s(s+ 1)

)
= L−1

(1

s
− 1

s+ 1

)

= L−1
(1

s

)
− L−1

( 1

s+ 1

)
= 1− e−t.

Thus, the inverse Laplace transform of
1

s(s+ 1)
is f(t) = 1− e−t.

Theorem 10.3.3 (Scaling by a) Let f(t) be a piecewise continuous function with Laplace transform F (s).

Then for a > 0, L(f(at)) = 1

a
F (

s

a
).

Proof. By definition and the substitution z = at, we get

L(f(at)) =

∫ ∞

0

e−stf(at)dt =
1

a

∫ ∞

0

e−s z
a f(z)dz

=
1

a

∫ ∞

0

e−
s
a
zf(z)dz =

1

a
F (

s

a
).

�

Exercise 10.3.4 1. Find the Laplace transform of

t2 + at+ b, cos(wt+ θ), cos2 t, sinh2 t;

where a, b, w and θ are arbitrary constants.

2. Find the Laplace transform of the function f(·) given by the graphs in Figure 10.2.

3. If L(f(t)) = 1

s2 + 1
+

1

2s+ 1
, find f(t).

The next theorem relates the Laplace transform of the function f ′(t) with that of f(t).

Theorem 10.3.5 (Laplace Transform of Differentiable Functions) Let f(t), for t > 0, be a differentiable

function with the derivative, f ′(t), being continuous. Suppose that there exist constants M and T such that

|f(t)| ≤Meαt for all t ≥ T. If L(f(t)) = F (s) then

L (f ′(t)) = sF (s)− f(0) for s > α. (10.3.1)
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Proof. Note that the condition |f(t)| ≤Meαt for all t ≥ T implies that

lim
b−→∞

f(b)e−sb = 0 for s > α.

So, by definition,

L
(
f ′(t)

)
=

∫ ∞

0

e−stf ′(t)dt = lim
b−→∞

∫ b

0

e−stf ′(t)dt

= lim
b−→∞

f(t)e−st

∣
∣
∣
∣

b

0

− lim
b−→∞

∫ b

0

f(t)(−s)e−stdt

= −f(0) + sF (s).

�

We can extend the above result for nth derivative of a function f(t), if f ′(t), . . . , f (n−1)(t), f (n)(t)

exist and f (n)(t) is continuous for t ≥ 0. In this case, a repeated use of Theorem 10.3.5, gives the

following corollary.

Corollary 10.3.6 Let f(t) be a function with L(f(t)) = F (s). If f ′(t), . . . , f (n−1)(t), f (n)(t) exist and

f (n)(t) is continuous for t ≥ 0, then

L
(
f (n)(t)

)
= snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0). (10.3.2)

In particular, for n = 2, we have

L
(
f ′′(t)

)
= s2F (s)− sf(0)− f ′(0). (10.3.3)

Corollary 10.3.7 Let f ′(t) be a piecewise continuous function for t ≥ 0. Also, let f(0) = 0. Then

L(f ′(t)) = sF (s) or equivalently L−1(sF (s)) = f ′(t).

Example 10.3.8 1. Find the inverse Laplace transform of
s

s2 + 1
.

Solution: We know that L−1(
1

s2 + 1
) = sin t. Then sin(0) = 0 and therefore, L−1(

s

s2 + 1
) = cos t.

2. Find the Laplace transform of f(t) = cos2(t).

Solution: Note that f(0) = 1 and f ′(t) = −2 cos t sin t = − sin(2t). Also,

L(− sin(2t)) =
−2

s2 + 4
.

Now, using Theorem 10.3.5, we get

L(f(t)) = 1

s

(

− 2

s2 + 4
+ 1

)

=
s2 + 2

s(s2 + 4)
.

Lemma 10.3.9 (Laplace Transform of tf(t)) Let f(t) be a piecewise continuous function with L(f(t)) =
F (s). If the function F (s) is differentiable, then

L(tf(t)) = − d

ds
F (s).

Equivalently, L−1(− d

ds
F (s)) = tf(t).
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Proof. By definition, F (s) =

∫ ∞

0

e−stf(t)dt. The result is obtained by differentiating both sides with

respect to s. �

Suppose we know the Laplace transform of a f(t) and we wish to find the Laplace transform of the

function g(t) =
f(t)

t
. Suppose that G(s) = L(g(t)) exists. Then writing f(t) = tg(t) gives

F (s) = L(f(t)) = L(tg(t)) = − d

ds
G(s).

Thus, G(s) = −
s∫

a

F (p)dp for some real number a. As lim
s−→∞

G(s) = 0, we get G(s) =
∞∫

s

F (p)dp.

Hence,we have the following corollary.

Corollary 10.3.10 Let L(f(t)) = F (s) and g(t) =
f(t)

t
. Then

L(g(t)) = G(s) =

∞∫

s

F (p)dp.

Example 10.3.11 1. Find L(t sin(at)).
Solution: We know L(sin(at)) = a

s2 + a2
. Hence L(t sin(at)) = 2as

(s2 + a2)2
.

2. Find the function f(t) such that F (s) =
4

(s− 1)3
.

Solution: We know L(et) = 1

s− 1
and

4

(s− 1)3
= 2

d

ds

(

− 1

(s− 1)2

)

= 2
d2

ds2

(
1

s− 1

)

.

By lemma 10.3.9, we know that L(tf(t)) = − d
dsF (s). Suppose d

dsF (s) = G(s). Then g(t) =

L−1G(s) = L−1 d
dsF (s) = −tf(t). Therefore,

L−1

(
d2

ds2
F (s)

)

= L−1

(
d

ds
G(s)

)

= −tg(t) = t2f(t).

Thus we get f(t) = 2t2et.

Lemma 10.3.12 (Laplace Transform of an Integral) If F (s) = L(f(t)) then

L
[∫ t

0

f(τ)dτ

]

=
F (s)

s
.

Equivalently, L−1

(
F (s)

s

)

=
∫ t

0
f(τ)dτ.

Proof. By definition,

L
(
∫ t

0

f(τ) dτ
)
=

∫ ∞

0

e−st

(∫ t

0

f(τ) dτ

)

dt =

∫ ∞

0

∫ t

0

e−stf(τ) dτdt.

We don’t go into the details of the proof of the change in the order of integration. We assume that the

order of the integrations can be changed and therefore

∫ ∞

0

∫ t

0

e−stf(τ) dτdt =

∫ ∞

0

∫ ∞

τ

e−stf(τ) dt dτ.
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Thus,

L
(
∫ t

0

f(τ) dτ
)

=

∫ ∞

0

∫ t

0

e−stf(τ) dτdt

=

∫ ∞

0

∫ ∞

τ

e−stf(τ) dt dτ =

∫ ∞

0

∫ ∞

τ

e−s(t−τ)−sτf(τ) dt dτ

=

∫ ∞

0

e−sτf(τ)dτ

(∫ ∞

τ

e−s(t−τ)dt

)

=

∫ ∞

0

e−sτf(τ)dτ

(∫ ∞

0

e−szdz

)

= F (s)
1

s
.

�

Example 10.3.13 1. Find L(
∫ t

0
sin(az)dz).

Solution: We know L(sin(at)) = a

s2 + a2
. Hence

L(
∫ t

0

sin(az)dz) =
1

s
· a

(s2 + a2)
=

a

s(s2 + a2)
.

2. Find L
(∫ t

0

τ2dτ

)

.

Solution: By Lemma 10.3.12

L
(∫ t

0

τ2dτ

)

=
L
(
t2
)

s
=

1

s
· 2!
s3

=
2

s4
.

3. Find the function f(t) such that F (s) =
4

s(s− 1)
.

Solution: We know L(et) = 1

s− 1
. So,

L−1

(
4

s(s− 1)

)

= 4L−1

(
1

s

1

s− 1

)

= 4

∫ t

0

eτdτ = 4(et − 1).

Lemma 10.3.14 (s-Shifting) Let L(f(t)) = F (s). Then L(eatf(t)) = F (s− a) for s > a.

Proof.

L(eatf(t)) =

∫ ∞

0

eatf(t)e−stdt =

∫ ∞

0

f(t)e−(s−a)tdt

= F (s− a) s > a.

�

Example 10.3.15 1. Find L(eat sin(bt)).
Solution: We know L(sin(bt)) = b

s2 + b2
. Hence L(eat sin(bt)) = b

(s− a)2 + b2
.

2. Find L−1
(

s−5
(s−5)2+36

)

.

Solution: By s-Shifting, if L(f(t)) = F (s) then L(eatf(t)) = F (s− a). Here, a = 5 and

L−1

(
s

s2 + 36

)

= L−1

(
s

s2 + 62

)

= cos(6t).

Hence, f(t) = e5t cos(6t).
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10.3.1 Inverse Transforms of Rational Functions

Let F (s) be a rational function of s. We give a few examples to explain the methods for calculating the

inverse Laplace transform of F (s).

Example 10.3.16 1. Denominator of F has Distinct Real Roots:

If F (s) =
(s+ 1)(s+ 3)

s(s+ 2)(s+ 8)
find f(t).

Solution: F (s) =
3

16s
+

1

12(s+ 2)
+

35

48(s+ 8)
. Thus,

f(t) =
3

16
+

1

12
e−2t +

35

48
e−8t.

2. Denominator of F has Distinct Complex Roots:

If F (s) =
4s+ 3

s2 + 2s+ 5
find f(t).

Solution: F (s) = 4
s+ 1

(s+ 1)2 + 22
− 1

2
· 2

(s+ 1)2 + 22
. Thus,

f(t) = 4e−t cos(2t)− 1

2
e−t sin(2t).

3. Denominator of F has Repeated Real Roots:

If F (s) =
3s+ 4

(s+ 1)(s2 + 4s+ 4)
find f(t).

Solution: Here,

F (s) =
3s+ 4

(s+ 1)(s2 + 4s+ 4)
=

3s+ 4

(s+ 1)(s+ 2)2
=

a

s+ 1
+

b

s+ 2
+

c

(s+ 2)2
.

Solving for a, b and c, we get F (s) = 1
s+1 − 1

s+2 + 2
(s+2)2 = 1

s+1 − 1
s+2 + 2 d

ds

(

− 1
(s+2)

)

. Thus,

f(t) = e−t − e−2t + 2te−2t.

10.3.2 Transform of Unit Step Function

Definition 10.3.17 (Unit Step Function) The Unit-Step function is defined by

Ua(t) =

{

0 if 0 ≤ t < a

1 if t ≥ a
.

Example 10.3.18 L
(
Ua(t)

)
=

∞∫

a

e−stdt =
e−sa

s
, s > 0.

Lemma 10.3.19 (t-Shifting) Let L(f(t)) = F (s). Define g(t) by

g(t) =

{

0 if 0 ≤ t < a

f(t− a) if t ≥ a
.

Then g(t) = Ua(t)f(t− a) and

L
(
g(t)

)
= e−asF (s).
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a

f(t)

c

d d+a

c

g(t)

Figure 10.3: Graphs of f(t) and Ua(t)f(t− a)

Proof. Let 0 ≤ t < a. Then Ua(t) = 0 and so, Ua(t)f(t− a) = 0 = g(t).

If t ≥ a, then Ua(t) = 1 and Ua(t)f(t− a) = f(t− a) = g(t). Since the functions g(t) and Ua(t)f(t− a)

take the same value for all t ≥ 0, we have g(t) = Ua(t)f(t− a). Thus,

L(g(t)) =

∞∫

0

e−stg(t)dt =

∞∫

a

e−stf(t− a)dt

=

∞∫

0

e−s(t+a)f(t)dt = e−as

∞∫

0

e−stf(t)dt

= e−asF (s).

�

Example 10.3.20 Find L−1
(

e−5s

s2−4s−5

)

.

Solution: Let G(s) = e−5s

s2−4s−5 = e−5sF (s), with F (s) = 1
s2−4s−5 . Since s

2 − 4s− 5 = (s− 2)2 − 32

L−1(F (s)) = L−1

(
1

3
· 3

(s− 2)2 − 32

)

=
1

3
sinh(3t)e2t.

Hence, by Lemma 10.3.19

L−1(G(s)) =
1

3
U5(t) sinh

(
3(t− 5)

)
e2(t−5).

Example 10.3.21 Find L(f(t)), where f(t) =
{

0 t < 2π

t cos t t > 2π.

Solution: Note that

f(t) =

{

0 t < 2π

(t− 2π) cos(t− 2π) + 2π cos(t− 2π) t > 2π.

Thus, L(f(t)) = e−2πs

(
s2 − 1

(s2 + 1)2
+ 2π

s

s2 + 1

)

Note: To be filled by a graph

10.4 Some Useful Results

10.4.1 Limiting Theorems

The following two theorems give us the behaviour of the function f(t) when t −→ 0+ and when t −→ ∞.
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Theorem 10.4.1 (First Limit Theorem) Suppose L(f(t)) exists. Then

lim
t−→0+

f(t) = lim
s−→∞

sF (s).

Proof. We know sF (s)− f(0) = L (f ′(t)) . Therefore

lim
s−→∞

sF (s) = f(0) + lim
s−→∞

∫ ∞

0

e−stf ′(t)dt

= f(0) +

∫ ∞

0

lim
s−→∞

e−stf ′(t)dt = f(0).

as lim
s−→∞

e−st = 0. �

Example 10.4.2 1. For t ≥ 0, let Y (s) = L(y(t)) = a(1 + s2)−1/2. Determine a such that y(0) = 1.

Solution: Theorem 10.4.1 implies

1 = lim
s−→∞

sY (s) = lim
s−→∞

as

(1 + s2)1/2
= lim

s−→∞

a

( 1
s2 + 1)1/2

. Thus, a = 1.

2. If F (s) =
(s+ 1)(s+ 3)

s(s+ 2)(s+ 8)
find f(0+).

Solution: Theorem 10.4.1 implies

f(0+) = lim
s−→∞

sF (s) = lim
s−→∞

s · (s+ 1)(s+ 3)

s(s+ 2)(s+ 8)
= 1.

On similar lines, one has the following theorem. But this theorem is valid only when f(t) is bounded

as t approaches infinity.

Theorem 10.4.3 (Second Limit Theorem) Suppose L(f(t)) exists. Then

lim
t−→∞

f(t) = lim
s−→0

sF (s)

provided that sF (s) converges to a finite limit as s tends to 0.

Proof.

lim
s−→0

sF (s) = f(0) + lim
s−→0

∫ ∞

0

e−stf ′(t)dt

= f(0) + lim
s−→0

lim
t−→∞

∫ t

0

e−sτf ′(τ)dτ

= f(0) + lim
t−→∞

∫ t

0

lim
s−→0

e−sτf ′(τ)dτ = lim
t−→∞

f(t).

�

Example 10.4.4 If F (s) =
2(s+ 3)

s(s+ 2)(s+ 8)
find lim

t−→∞
f(t).

Solution: From Theorem 10.4.3, we have

lim
t−→∞

f(t) = lim
s−→0

sF (s) = lim
s−→0

s · 2(s+ 3)

s(s+ 2)(s+ 8)
=

6

16
=

3

8
.

We now generalise the lemma on Laplace transform of an integral as convolution theorem.

Definition 10.4.5 (Convolution of Functions) Let f(t) and g(t) be two smooth functions. The convolu-

tion, f ⋆ g, is a function defined by

(f ⋆ g)(t) =

∫ t

0

f(τ)g(t − τ)dτ.
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Check that

1. (f ⋆ g)(t) = g ⋆ f(t).

2. If f(t) = cos(t) then (f ⋆ f)(t) =
t cos(t) + sin(t)

2
.

Theorem 10.4.6 (Convolution Theorem) If F (s) = L(f(t)) and G(s) = L(g(t)) then

L
[∫ t

0

f(τ)g(t− τ)dτ

]

= F (s) ·G(s).

Remark 10.4.7 Let g(t) = 1 for all t ≥ 0. Then we know that L(g(t)) = G(s) =
1

s
. Thus, the

Convolution Theorem 10.4.6 reduces to the Integral Lemma 10.3.12.

10.5 Application to Differential Equations

Consider the following example.

Example 10.5.1 Solve the following Initial Value Problem:

af ′′(t) + bf ′(t) + cf(t) = g(t) with f(0) = f0, f
′(0) = f1.

Solution: Let L(g(t)) = G(s). Then

G(s) = a(s2F (s)− sf(0)− f ′(0)) + b(sF (s)− f(0)) + cF (s)

and the initial conditions imply

G(s) = (as2 + bs+ c)F (s)− (as+ b)f0 − af1.

Hence,

F (s) =
G(s)

as2 + bs+ c
︸ ︷︷ ︸

non−homogeneous part

+
(as+ b)f0
as2 + bs+ c

+
af1

as2 + bs+ c
︸ ︷︷ ︸

initial conditions

. (10.5.1)

Now, if we know that G(s) is a rational function of s then we can compute f(t) from F (s) by using the

method of partial fractions (see Subsection 10.3.1 ).

Example 10.5.2 1. Solve the IVP

y′′ − 4y′ − 5y = f(t) =

{

t if 0 ≤ t < 5

t+ 5 if t ≥ 5
.

with y(0) = 1 and y′(0) = 4.

Solution: Note that f(t) = t+ U5(t). Thus,

L(f(t)) = 1

s2
+
e−5s

s
.

Taking Laplace transform of the above equation, we get

(
s2Y (s)− sy(0)− y′(0)

)
− 4 (sY (s)− y(0))− 5Y (s) = L(f(t)) = 1

s2
+
e−5s

s
.
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Which gives

Y (s) =
s

(s+ 1)(s− 5)
+

e−5s

s(s+ 1)(s− 5)
+

1

s2(s+ 1)(s− 5)

=
1

6

[
5

s− 5
+

1

s+ 1

]

+
e−5s

30

[

−6

s
+

5

s+ 1
+

1

s− 5

]

+
1

150

[

−30

s2
+

24

s
− 25

s+ 1
+

1

s− 5

]

.

Hence,

y(t) =
5e5t

6
+
e−t

6
+ U5(t)

[

−1

5
+
e−(t−5)

6
+
e5(t−5)

30

]

+
1

150

[
−30t+ 24− 25e−t + e5t

]
.

Remark 10.5.3 Even though f(t) is a discontinuous function at t = 5, the solution y(t) and y′(t)

are continuous functions of t, as y′′ exists. In general, the following is always true:

Let y(t) be a solution of ay′′+by′+cy = f(t). Then both y(t) and y′(t) are continuous functions of time.

Example 10.5.4 1. Consider the IVP ty′′(t) + y′(t) + ty(t) = 0, with y(0) = 1 and y′(0) = 0. Find

L(y(t)).
Solution: Applying Laplace transform, we have

− d

ds

[
s2Y (s)− sy(0)− y′(0)

]
+ (sY (s)− y(0))− d

ds
Y (s) = 0.

Using initial conditions, the above equation reduces to

d

ds

[
(s2 + 1)Y (s)− s

]
− sY (s) + 1 = 0.

This equation after simplification can be rewritten as

Y ′(s)

Y (s)
= − s

s2 + 1
.

Therefore, Y (s) = a(1 + s2)−
1
2 . From Example 10.4.2.1, we see that a = 1 and hence

Y (s) = (1 + s2)−
1
2 .

2. Show that y(t) =

∫ t

0

f(τ)g(t− τ)dτ is a solution of

y′′(t) + ay′(t) + by(t) = f(t), with y(0) = y′(0) = 0;

where L[g(t)] = 1

s2 + as+ b
.

Solution: Here, Y (s) =
F (s)

s2 + as+ b
= F (s) · 1

s2 + as+ b
. Hence,

y(t) = (f ⋆ g)(t) =

∫ t

0

f(τ)g(t− τ)dτ.

3. Show that y(t) =
1

a

∫ t

0

f(τ) sin(a(t− τ))dτ is a solution of

y′′(t) + a2y(t) = f(t), with y(0) = y′(0) = 0.
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Solution: Here, Y (s) =
F (s)

s2 + a2
=

1

a

(

F (s) · a

s2 + a2

)

. Hence,

y(t) =
1

a
f(t) ⋆ sin(at) =

1

a

∫ t

0

f(τ) sin(a(t− τ))dτ.

4. Solve the following IVP.

y′(t) =

∫ t

0

y(τ)dτ + t− 4 sin t, with y(0) = 1.

Solution: Taking Laplace transform of both sides and using Theorem 10.3.5, we get

sY (s)− 1 =
Y (s)

s
+

1

s2
− 4

1

s2 + 1
.

Solving for Y (s), we get

Y (s) =
s2 − 1

s(s2 + 1)
=

1

s
− 2

1

s2 + 1
.

So,

y(t) = 1− 2

∫ t

0

sin(τ)dτ = 1 + 2(cos t− 1) = 2 cos t− 1.

10.6 Transform of the Unit-Impulse Function

Consider the following example.

Example 10.6.1 Find the Laplace transform, Dh(s), of

δh(t) =







0 t < 0
1
h 0 ≤ t < h

0 t > h.

Solution: Note that δh(t) =
1

h

(
U0(t)− Uh(t)

)
. By linearity of the Laplace transform, we get

Dh(s) =
1

h

(1− e−hs

s

)
.

Remark 10.6.2 1. Observe that in Example 10.6.1, if we allow h to approach 0, we obtain a new

function, say δ(t). That is, let

δ(t) = lim
h−→0

δh(t).

This new function is zero everywhere except at the origin. At origin, this function tends to infinity.

In other words, the graph of the function appears as a line of infinite height at the origin. This

new function, δ(t), is called the unit-impulse function (or Dirac’s delta function).

2. We can also write

δ(t) = lim
h−→0

δh(t) = lim
h−→0

1

h

(
U0(t)− Uh(t)

)
.

3. In the strict mathematical sense lim
h−→0

δh(t) does not exist. Hence, mathematically speaking, δ(t)

does not represent a function.

4. However, note that
∫ ∞

0

δh(t)dt = 1, for all h.
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5. Also, observe that L(δh(t)) =
1− e−hs

hs
. Now, if we take the limit of both sides, as h approaches

zero (apply L’Hospital’s rule), we get

L(δ(t)) = lim
h−→0

1− e−hs

hs
= lim

h−→0

se−hs

s
= 1.
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Chapter 11

Newton’s Interpolation Formulae

11.1 Introduction

In many practical situations, for a function y = f(x), which either may not be explicitly specified or

may be difficult to handle, we often have a tabulated data (xi, yi), where yi = f(xi), and xi < xi+1

for i = 0, 1, 2, . . . , N. In such cases, it may be required to represent or replace the given function by a

simpler function, which coincides with the values of f at the N + 1 tabular points xi. This process is

known as Interpolation. Interpolation is also used to estimate the value of the function at the non

tabular points. Here, we shall consider only those functions which are sufficiently smooth, i.e., they are

differentiable sufficient number of times. Many of the interpolation methods, where the tabular points

are equally spaced, use difference operators. Hence, in the following we introduce various difference

operators and study their properties before looking at the interpolation methods.

We shall assume here that the tabular points x0, x1, x2, . . . , xN are equally spaced, i.e., xk −
xk−1 = h for each k = 1, 2, . . . , N. The real number h is called the step length. This gives us

xk = x0 + kh. Further, yk = f(xk) gives the value of the function y = f(x) at the kth tabular point.

The points y1, y2, . . . , yN are known as nodes or nodal values.

11.2 Difference Operator

11.2.1 Forward Difference Operator

Definition 11.2.1 (First Forward Difference Operator) We define the forward difference opera-

tor, denoted by ∆, as

∆f(x) = f(x+ h)− f(x).

The expression f(x + h) − f(x) gives the first forward difference of f(x) and the operator ∆ is

called the first forward difference operator. Given the step size h, this formula uses the values

at x and x + h, the point at the next step. As it is moving in the forward direction, it is called the

forward difference operator.

1 k−1 k k+10 n

Forward

Backward

x x x x x x

209
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Definition 11.2.2 (Second Forward Difference Operator) The second forward difference operator, ∆2, is

defined as

∆2f(x) = ∆
(
∆f(x)

)
= ∆f(x+ h)−∆f(x).

We note that

∆2f(x) = ∆f(x+ h)−∆f(x)

=
(
f(x+ 2h)− f(x+ h)

)
−
(
f(x+ h)− f(x)

)

= f(x+ 2h)− 2f(x+ h) + f(x).

In particular, for x = xk, we get,

∆yk = yk+1 − yk

and

∆2yk = ∆yk+1 −∆yk = yk+2 − 2yk+1 + yk.

Definition 11.2.3 (rth Forward Difference Operator) The rth forward difference operator, ∆r, is defined

as

∆rf(x) = ∆r−1f(x+ h)−∆r−1f(x), r = 1, 2, . . . ,

with ∆0f(x) = f(x).

Exercise 11.2.4 Show that ∆3yk = ∆2(∆yk) = ∆(∆2yk). In general, show that for any positive integers r

and m with r > m,

∆ryk = ∆r−m(∆myk) = ∆m(∆r−myk).

Example 11.2.5 For the tabulated values of y = f(x) find ∆y3 and ∆3y2

i 0 1 2 3 4 5

xi 0 0.1 0.2 0.3 0.4 0.5

yi 0.05 0.11 0.26 0.35 0.49 0.67

.

Solution: Here,

∆y3 = y4 − y3 = 0.49− 0.35 = 0.14, and

∆3y2 = ∆(∆2y2) = ∆(y4 − 2y3 + y2)

= (y5 − y4)− 2(y4 − y3) + (y3 − y2)

= y5 − 3y4 + 3y3 − y2

= 0.67− 3× 0.49 + 3× 0.35− 0.26 = −0.01.

Remark 11.2.6 Using mathematical induction, it can be shown that

∆ryk =
r∑

j=0

(−1)r−j

(
r

j

)

yk+j .

Thus the rth forward difference at yk uses the values at yk, yk+1, . . . , yk+r.

Example 11.2.7 If f(x) = x2 + ax+ b, where a and b are real constants, calculate ∆rf(x).
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Solution: We first calculate ∆f(x) as follows:

∆f(x) = f(x+ h)− f(x) =
[
(x + h)2 + a(x+ h) + b

]
−
[
x2 + ax+ b

]

= 2xh+ h2 + ah.

Now,

∆2f(x) = ∆f(x+ h)−∆f(x) = [2(x+ h)h+ h2 + ah]− [2xh+ h2 + ah] = 2h2,

and ∆3f(x) = ∆2f(x)−∆2f(x) = 2h2 − 2h2 = 0.

Thus, ∆rf(x) = 0 for all r ≥ 3.

Remark 11.2.8 In general, if f(x) = xn+a1x
n−1+a2x

n−2+ · · ·+an−1x+an is a polynomial of degree

n, then it can be shown that

∆nf(x) = n!hn and ∆n+rf(x) = 0 for r = 1, 2, . . . .

The reader is advised to prove the above statement.

Remark 11.2.9 1. For a set of tabular values, the horizontal forward difference table is written as:

x0 y0 ∆y0 = y1 − y0 ∆2y0 = ∆y1 −∆y0 · · · ∆ny0 = ∆n−1y1 −∆n−1y0

x1 y1 ∆y1 = y2 − y1 ∆2y1 = ∆y2 −∆y1 · · ·
x2 y2 ∆y2 = y3 − y2 ∆2y2 = ∆y3 −∆y2
...

xn−1 yn−1 ∆yn−1 = yn − yn−1

xn yn

2. In many books, a diagonal form of the difference table is also used. This is written as:

x0 y0

∆y0

x1 y1 ∆2y0

∆y1 ∆3y0

x2 y2 ∆2y1
... ∆yn−1

xn−2 yn−2 ∆2yn−3

∆yn−2 ∆3yn−3

xn−1 yn−1 ∆2yn−2

∆yn−1

xn yn

However, in the following, we shall mostly adhere to horizontal form only.

11.2.2 Backward Difference Operator

Definition 11.2.10 (First Backward Difference Operator) The first backward difference oper-

ator, denoted by ∇, is defined as

∇f(x) = f(x)− f(x− h).

Given the step size h, note that this formula uses the values at x and x − h, the point at the previous

step. As it moves in the backward direction, it is called the backward difference operator.
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Definition 11.2.11 (rth Backward Difference Operator) The rth backward difference operator, ∇r, is

defined as

∇rf(x) = ∇r−1f(x)−∇r−1f(x− h), r = 1, 2, . . . ,

with ∇0f(x) = f(x).

In particular, for x = xk, we get

∇yk = yk − yk−1 and ∇2yk = yk − 2yk−1 + yk−2.

Note that ∇2yk = ∆2yk−2.

Example 11.2.12 Using the tabulated values in Example 11.2.5, find ∇y4 and ∇3y3.

Solution: We have ∇y4 = y4 − y3 = 0.49− 0.35 = 0.14, and

∇3y3 = ∇2y3 −∇2y2 = (y3 − 2y2 + y1)− (y2 − 2y1 + y0)

= y3 − 3y2 + 3y1 − y0

= 0.35− 3× 0.26 + 3× 0.11− 0.05 = −0.15.

Example 11.2.13 If f(x) = x2 + ax+ b, where a and b are real constants, calculate ∇rf(x).

Solution: We first calculate ∇f(x) as follows:

∇f(x) = f(x)− f(x− h) =
[
x2 + ax+ b

]
−
[
(x− h)2 + a(x− h) + b

]

= 2xh− h2 + ah.

Now,

∇2f(x) = ∇f(x)−∆f(x− h) = [2xh− h2 + ah]− [2(x− h)h− h2 + ah] = 2h2,

and ∇3f(x) = ∇2f(x)−∇2f(x) = 2h2 − 2h2 = 0.

Thus, ∇rf(x) = 0 for all r ≥ 3.

Remark 11.2.14 For a set of tabular values, backward difference table in the horizontal form is written

as:

x0 y0

x1 y1 ∇y1 = y1 − y0

x2 y2 ∇y2 = y2 − y1 ∇2y2 = ∇y2 −∇y1
...

xn−2 yn−2 · · · · · ·
xn−1 yn−1 ∇yn−1 = yn−1 − yn−2 · · · · · ·
xn yn ∇yn = yn − yn−1 ∇2yn = ∇yn −∇yn−1 · · · ∇nyn = ∇n−1yn −∇n−1yn−1

Example 11.2.15 For the following set of tabular values (xi, yi), write the forward and backward difference

tables.

xi 9 10 11 12 13 14

yi 5.0 5.4 6.0 6.8 7.5 8.7

Solution: The forward difference table is written as
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x y ∆y ∆2y ∆3y ∆4y ∆5y

9 5 0.4 = 5.4 - 5 0.2 = 0.6 - 0.4 0= 0.2-0.2 -.3 = -0.3 - 0.0 0.6 = 0.3 - (-0.3)

10 5.4 0.6 0.2 -0.3 0.3

11 6.0 0.8 -0.1 0.0

12 6.8 0.7 -0.1

13 7.5 0.6

14 8.1

In the similar manner, the backward difference table is written as follows:

x y ∇y ∇2y ∇3y ∇4y ∇5y

9 5

10 5.4 0.4

11 6 0.6 0.2

12 6.8 0.8 0.2 0.0

13 7.5 0.7 -0.1 - 0.3 -0.3

14 8.1 0.6 -0.1 0.0 0.3 0.6

Observe from the above two tables that ∆3y1 = ∇3y4, ∆
2y3 = ∇2y5 , ∆4y1 = ∇4y5 etc.

Exercise 11.2.16 1. Show that ∆3y4 = ∇3y7.

2. Prove that ∆(∇yk) = ∆2yk+1 = ∇2yk−1.

3. Obtain ∇kyk in terms of y0, y1, y2, . . . , yk. Hence show that ∇kyk = ∆ky0.

Remark 11.2.17 In general it can be shown that ∆kf(x) = ∇kf(x+ kh) or ∆kym = ∇kyk+m

Remark 11.2.18 In view of the remarks (11.2.8) and (11.2.17) it is obvious that, if y = f(x) is a

polynomial function of degree n, then ∇nf(x) is constant and ∇n+rf(x) = 0 for r > 0.

11.2.3 Central Difference Operator

Definition 11.2.19 (Central Difference Operator) The first central difference operator, de-

noted by δ, is defined by

δf(x) = f(x+
h

2
)− f(x− h

2
)

and the rth central difference operator is defined as

δrf(x) = δr−1f(x+
h

2
)− δr−1f(x− h

2
)

with δ0f(x) = f(x).

Thus, δ2f(x) = f(x+ h)− 2f(x) + f(x− h).

In particular, for x = xk, define yk+ 1
2
= f(xk + h

2 ), and yk− 1
2
= f(xk − h

2 ), then

δyk = yk+ 1
2
− yk− 1

2
and δ2yk = yk+1 − 2yk + yk−1.

Thus, δ2 uses the table of (xk, yk). It is easy to see that only the even central differences use the tabular

point values (xk, yk).
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11.2.4 Shift Operator

Definition 11.2.20 (Shift Operator) A shift operator, denoted by E, is the operator which shifts the

value at the next point with step h, i.e.,

Ef(x) = f(x+ h).

Thus,

Eyi = yi+1, E2yi = yi+2, and Ekyi = yi+k.

11.2.5 Averaging Operator

Definition 11.2.21 (Averaging Operator) The averaging operator, denoted by µ, gives the average

value between two central points, i.e.,

µf(x) =
1

2

[
f(x+

h

2
) + f(x− h

2
)
]
.

Thus µ yi =
1
2 (yi+ 1

2
+ yi− 1

2
) and

µ2 yi =
1

2

[

µ yi+ 1
2
+ µ yi− 1

2

]

=
1

4
[yi+1 + 2yi + yi−1] .

11.3 Relations between Difference operators

1. We note that

Ef(x) = f(x+ h) = [f(x+ h)− f(x)] + f(x) = ∆f(x) + f(x) = (∆ + 1)f(x).

Thus,

E ≡ 1 + ∆ or ∆ ≡ E − 1.

2. Further, ∇(E(f(x)) = ∇(f(x + h)) = f(x+ h)− f(x). Thus,

(1−∇)Ef(x) = E(f(x)) −∇(E(f(x)) = f(x+ h)− [f(x+ h)− f(x)] = f(x).

Thus E ≡ 1 + ∆, gives us

(1−∇)(1 + ∆)f(x) = f(x) for all x.

So we write,

(1 + ∆)−1 = 1−∇ or ∇ = 1− (1 + ∆)−1, and

(1 −∇)−1 = 1 +∆ = E.

Similarly,

∆ = (1−∇)−1 − 1.

3. Let us denote by E
1
2 f(x) = f(x+ h

2 ). Then, we see that

δf(x) = f(x+
h

2
)− f(x− h

2
) = E

1
2 f(x)− E− 1

2 f(x).

Thus,

δ = E
1
2 − E− 1

2 .

Recall,

δ2f(x) = f(x+ h)− 2f(x) + f(x− h) = [f(x+ h) + 2f(x) + f(x− h)]− 4f(x) = 4(µ2 − 1)f(x).
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So, we have,

µ2 ≡ δ2

4 + 1 or µ ≡
√

1 + δ2

4 .

That is, the action of

√

1 +
δ2

4
is same as that of µ.

4. We further note that,

∆f(x) = f(x+ h)− f(x) =
1

2

[
f(x+ h)− 2f(x) + f(x− h)

]
+

1

2

[
f(x+ h)− f(x− h)

]

=
1

2
δ2(f(x)) +

1

2

[
f(x+ h)− f(x− h)

]

and

δµf(x) = δ

[
1

2

{

f(x+
h

2
) + f(x− h

2
)

}]

=
1

2

[
{f(x+ h)− f(x)} + {f(x)− f(x− h)}

]

=
1

2
[f(x+ h)− f(x− h)] .

Thus,

∆f(x) =

[
1

2
δ2 + δµ

]

f(x),

i.e.,

∆ ≡ 1

2
δ2 + δµ ≡ 1

2
δ2 + δ

√

1 +
δ2

4
.

In view of the above discussion, we have the following table showing the relations between various

difference operators:

E ∆ ∇ δ

E E ∆+ 1 (1−∇)−1 1
2δ

2 + δ
√

1 + δ2

4 + 1

∆ E − 1 ∆ (1 −∇)−1 − 1 1
2δ

2 + δ
√

1 + 1
4δ

2

∇ 1− E−1 1− (1 +∇)−1 ∇ − 1
2δ

2 + δ
√

1 + 1
4δ

2

δ E1/2 − E−1/2 ∆(1 +∆)−1/2 ∇(1−∇)−1/2 δ

Exercise 11.3.1 1. Verify the validity of the above table.

2. Obtain the relations between the averaging operator and other difference operators.

3. Find ∆2y2, ∇2y2, δ
2y2 and µ2y2 for the following tabular values:

i 0 1 2 3 4

xi 93.0 96.5 100.0 103.5 107.0

yi 11.3 12.5 14.0 15.2 16.0

11.4 Newton’s Interpolation Formulae

As stated earlier, interpolation is the process of approximating a given function, whose values are known

at N+1 tabular points, by a suitable polynomial, PN (x), of degree N which takes the values yi at x = xi

for i = 0, 1, . . . , N. Note that if the given data has errors, it will also be reflected in the polynomial so

obtained.

In the following, we shall use forward and backward differences to obtain polynomial function ap-

proximating y = f(x), when the tabular points xi’s are equally spaced. Let

f(x) ≈ PN (x),
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where the polynomial PN (x) is given in the following form:

PN (x) = a0 + a1(x− x0) + a2(x − x0)(x − x1) + · · ·+ ak(x − x0)(x − x1) · · · (x− xk−1)

+aN(x − x0)(x − x1) · · · (x− xN−1). (11.4.1)

for some constants a0, a1, ...aN , to be determined using the fact that PN (xi) = yi for i = 0, 1, . . . , N.

So, for i = 0, substitute x = x0 in (11.4.1) to get PN (x0) = y0. This gives us a0 = y0. Next,

PN (x1) = y1 ⇒ y1 = a0 + (x1 − x0)a1.

So, a1 = y1−y0

h =
∆y0
h
. For i = 2, y2 = a0 + (x2 − x0)a1 + (x2 − x1)(x2 − x0)a2, or equivalently

2h2a2 = y2 − y0 − 2h(
∆y0
h

) = y2 − 2y1 + y0 = ∆2y0.

Thus, a2 =
∆2y0
2h2

. Now, using mathematical induction, we get

ak =
∆ky0
k!hk

for k = 0, 1, 2, . . . , N.

Thus,

PN (x) = y0 +
∆y0
h

(x− x0) +
∆2y0
2!h2

(x− x0)(x− x1) + · · ·+ ∆ky0
k!hk

(x− x0) · · · (x− xk−1)

+
∆Ny0
N !hN

(x − x0)...(x − xN−1).

As this uses the forward differences, it is called Newton’s Forward difference formula for inter-

polation, or simply, forward interpolation formula.

Exercise 11.4.1 Show that

a3 =
∆3y0
3!h3

and a4 =
∆4y0
4!h2

and in general,

ak =
∆ky0
k!hk

, for k = 0, 1, 2, . . . , N.

For the sake of numerical calculations, we give below a convenient form of the forward interpolation

formula.

Let u =
x− x0
h

, then

x− x1 = hu+ x0 − (x0 + h) = h(u− 1), x− x2 = h(u− 2), . . . , x− xk = h(u − k), etc..

With this transformation the above forward interpolation formula is simplified to the following form:

PN (u) = y0 +
∆y0
h

(hu) +
∆2y0
2!h2

{(hu)(h(u− 1))}+ · · ·+ ∆ky0h
k

k!hk
[
u(u− 1) · · · (u − k + 1)

]

+ · · ·+ ∆Ny0
N !hN

[

(hu)
(
h(u− 1)

)
· · ·
(
h(u−N + 1)

)
]

.

= y0 +∆y0(u) +
∆2y0
2!

(u(u− 1)) + · · ·+ ∆ky0
k!

[

u(u− 1) · · · (u− k + 1)

]

+ · · ·+ ∆Ny0
N !

[

u(u− 1)...(u−N + 1)

]

. (11.4.2)

If N=1, we have a linear interpolation given by

f(u) ≈ y0 +∆y0(u). (11.4.3)
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For N = 2, we get a quadratic interpolating polynomial:

f(u) ≈ y0 +∆y0(u) +
∆2y0
2!

[u(u− 1)] (11.4.4)

and so on.

It may be pointed out here that if f(x) is a polynomial function of degree N then PN (x) coincides

with f(x) on the given interval. Otherwise, this gives only an approximation to the true values of f(x).

If we are given additional point xN+1 also, then the error, denoted by RN (x) = |PN (x) − f(x)|, is
estimated by

RN (x) ≃
∣
∣
∣
∣

∆N+1y0
hN+1(N + 1)!

(x− x0) · · · (x− xN )

∣
∣
∣
∣
.

Similarly, if we assume, PN (x) is of the form

PN (x) = b0 + b1(x− xN ) + b1(x − xN )(x− xN−1) + · · ·+ bN (x− xN )(x − xN−1) · · · (x− x1),

then using the fact that PN (xi) = yi, we have

b0 = yN

b1 =
1

h
(yN − yN−1) =

1

h
∇yN

b2 =
yN − 2yN−1 + yN−2

2h2
=

1

2h2
(∇2yN )

...

bk =
1

k!hk
∇kyN .

Thus, using backward differences and the transformation x = xN + hu, we obtain the Newton’s

backward interpolation formula as follows:

PN (u) = yN + u∇yN +
u(u+ 1)

2!
∇2yN + · · ·+ u(u+ 1) · · · (u+N − 1)

N !
∇NyN . (11.4.5)

Exercise 11.4.2 Derive the Newton’s backward interpolation formula (11.4.5) for N = 3.

Remark 11.4.3 If the interpolating point lies closer to the beginning of the interval then one uses the

Newton’s forward formula and if it lies towards the end of the interval then Newton’s backward formula

is used.

Remark 11.4.4 For a given set of n tabular points, in general, all the n points need not be used for

interpolating polynomial. In fact N is so chosen that Nth forward/backward difference almost remains

constant. Thus N is less than or equal to n.

Example 11.4.5 1. Obtain the Newton’s forward interpolating polynomial, P5(x) for the following tab-

ular data and interpolate the value of the function at x = 0.0045.

x 0 0.001 0.002 0.003 0.004 0.005

y 1.121 1.123 1.1255 1.127 1.128 1.1285
Solution: For this data, we have the Forward difference difference table

xi yi ∆yi ∆2y3 ∆3yi ∆4yi ∆5yi

0 1.121 0.002 0.0005 -0.0015 0.002 -.0025

.001 1.123 0.0025 -0.0010 0.0005 -0.0005

.002 1.1255 0.0015 -0.0005 0.0

.003 1.127 0.001 -0.0005

.004 1.128 0.0005

.005 1.1285
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Thus, for x = x0 + hu, where x0 = 0, h = 0.001 and u =
x− x0
h

, we get

P5(x) = 1.121 + u× .002 +
u(u− 1)

2
(.0005) +

u(u− 1)(u− 2)

3!
× (−.0015)

+
u(u− 1)(u− 2)(u− 3)

4!
(.002) +

u(u− 1)(u− 2)(u− 3)(u − 4)

5!
× (−.0025).

Thus,

P5(0.0045) = P5(0 + 0.001× 4.5)

= 1.121 + 0.002× 4.5 +
0.0005

2
× 4.5× 3.5− 0.0015

6
× 4.5× 3.5× 2.5

+
0.002

24
× 4.5× 3.5× 2.5× 1.5− 0.0025

120
× 4.5× 3.5× 2.5× 1.5× 0.5

= 1.12840045.

2. Using the following table for tanx, approximate its value at 0.71. Also, find an error estimate (Note

tan(0.71) = 0.85953).

xi 0.70 72 0.74 0.76 0.78

tanxi 0.84229 0.87707 0.91309 0.95045 0.98926

Solution: As the point x = 0.71 lies towards the initial tabular values, we shall use Newton’s Forward

formula. The forward difference table is:

xi yi ∆yi ∆2yi ∆3yi ∆4yi

0.70 0.84229 0.03478 0.00124 0.0001 0.00001

0.72 0.87707 0.03602 0.00134 0.00011

0.74 0.91309 0.03736 0.00145

0.76 0.95045 0.03881

0.78 0.98926

In the above table, we note that ∆3y is almost constant, so we shall attempt 3rd degree polynomial

interpolation.

Note that x0 = 0.70, h = 0.02 gives u =
0.71− 0.70

0.02
= 0.5. Thus, using forward interpolating

polynomial of degree 3, we get

P3(u) = 0.84229 + 0.03478u+
0.00124

2!
u(u− 1) +

0.0001

3!
u(u− 1)(u− 2).

Thus, tan(0.71) ≈ 0.84229 + 0.03478(0.5)+
0.00124

2!
× 0.5× (−0.5)

+
0.0001

3!
× 0.5× (−0.5)× (−1.5)

= 0.859535.

An error estimate for the approximate value is

∆4y0
4!

u(u− 1)(u− 2)(u− 3)

∣
∣
∣
∣
u=0.5

= 0.00000039.

Note that exact value of tan(0.71) (upto 5 decimal place) is 0.85953. and the approximate value,

obtained using the Newton’s interpolating polynomial is very close to this value. This is also reflected

by the error estimate given above.
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3. Apply 3rd degree interpolation polynomial for the set of values given in Example 11.2.15, to estimate

the value of f(10.3) by taking

(i) x0 = 9.0, (ii) x0 = 10.0.

Also, find approximate value of f(13.5).

Solution: Note that x = 10.3 is closer to the values lying in the beginning of tabular values, while

x = 13.5 is towards the end of tabular values. Therefore, we shall use forward difference formula for

x = 10.3 and the backward difference formula for x = 13.5. Recall that the interpolating polynomial

of degree 3 is given by

f(x0 + hu) = y0 +∆y0u+
∆2y0
2!

u(u− 1) +
∆3y0
3!

u(u− 1)(u− 2).

Therefore,

(a) for x0 = 9.0, h = 1.0 and x = 10.3, we have u =
10.3− 9.0

1
= 1.3. This gives,

f(10.3) ≈ 5 + .4× 1.3 +
.2

2!
(1.3)× .3 +

.0

3!
(1.3)× .3× (−0.7)

= 5.559.

(b) for x0 = 10.0, h = 1.0 and x = 10.3, we have u =
10.3− 10.0

1
= .3. This gives,

f(10.3) ≈ 5.4 + .6× .3 +
.2

2!
(.3)× (−0.7) +

−0.3

3!
(.3)× (−0.7)× (−1.7)

= 5.54115.

Note: as x = 10.3 is closer to x = 10.0, we may expect estimate calculated using x0 = 10.0 to

be a better approximation.

(c) for x0 = 13.5, we use the backward interpolating polynomial, which gives,

f(xN + hu) ≈ y0 +∇yNu+
∇2yN
2!

u(u+ 1) +
∆3yN
3!

u(u+ 1)(u+ 2).

Therefore, taking xN = 14, h = 1.0 and x = 13.5, we have u =
13.5− 14

1
= −0.5. This gives,

f(13.5) ≈ 8.1 + .6× (−0.5) +
−0.1

2!
(−0.5)× 0.5 +

0.0

3!
(−0.5)× 0.5× (1.5)

= 7.8125.

Exercise 11.4.6 1. Following data is available for a function y = f(x)

x 0 0.2 0.4 0.6 0.8 1.0

y 1.0 0.808 0.664 0.616 0.712 1.0

Compute the value of the function at x = 0.3 and x = 1.1

2. The speed of a train, running between two station is measured at different distances from the starting

station. If x is the distance in km. from the starting station, then v(x), the speed (in km/hr) of the

train at the distance x is given by the following table:

x 0 50 100 150 200 250

v(x) 0 60 80 110 90 0

Find the approximate speed of the train at the mid point between the two stations.
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3. Following table gives the values of the function S(x) =
x∫

0

sin(π2 t
2)dt at the different values of the

tabular points x,

x 0 0.04 0.08 0.12 0.16 0.20

S(x) 0 0.00003 0.00026 0.00090 0.00214 0.00419

Obtain a fifth degree interpolating polynomial for S(x). Compute S(0.02) and also find an error estimate

for it.

4. Following data gives the temperatures (in oC) between 8.00 am to 8.00 pm. on May 10, 2005 in

Kanpur:

Time 8 am 12 noon 4 pm 8pm

Temperature 30 37 43 38

Obtain Newton’s backward interpolating polynomial of degree 3 to compute the temperature in Kanpur

on that day at 5.00 pm.



Chapter 12

Lagrange’s Interpolation Formula

12.1 Introduction

In the previous chapter, we derived the interpolation formula when the values of the function are given

at equidistant tabular points x0, x1, . . . , xN . However, it is not always possible to obtain values of the

function, y = f(x) at equidistant interval points, xi. In view of this, it is desirable to derive an in-

terpolating formula, which is applicable even for unequally distant points. Lagrange’s Formula is one

such interpolating formula. Unlike the previous interpolating formulas, it does not use the notion of

differences, however we shall introduce the concept of divided differences before coming to it.

12.2 Divided Differences

Definition 12.2.1 (First Divided Difference) The ratio

f(xi)− f(xj)

xi − xj

for any two points xi and xj is called the first divided difference of f(x) relative to xi and xj . It is

denoted by δ[xi, xj ].

Let us assume that the function y = f(x) is linear. Then δ[xi, xj ] is constant for any two tabular

points xi and xj , i.e., it is independent of xi and xj . Hence,

δ[xi, xj ] =
f(xi)− f(xj)

xi − xj
= δ[xj , xi].

Thus, for a linear function f(x), if we take the points x, x0 and x1 then, δ[x0, x] = δ[x0, x1], i.e.,

f(x)− f(x0)

x− x0
= δ[x0, x1].

Thus, f(x) = f(x0) + (x− x0)δ[x0, x1].

So, if f(x) is approximated with a linear polynomial, then the value of the function at any point x

can be calculated by using f(x) ≈ P1(x) = f(x0) + (x− x0)δ[x0, x1], where δ[x0, x1] is the first divided

difference of f relative to x0 and x1.

Definition 12.2.2 (Second Divided Difference) The ratio

δ[xi, xj , xk] =
δ[xj , xk]− δ[xi, xj ]

xk − xi

is defined as second divided difference of f(x) relative to xi, xj and xk.
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If f(x) is a second degree polynomial then δ[x0, x] is a linear function of x. Hence,

δ[xi, xj , xk] =
δ[xj , xk]− δ[xi, xj ]

xk − xi
is constant.

In view of the above, for a polynomial function of degree 2, we have δ[x, x0, x1] = δ[x0, x1, x2]. Thus,

δ[x, x0]− δ[x0, x1]

x− x1
= δ[x0, x1, x2].

This gives,

δ[x, x0] = δ[x0, x1] + (x− x1)δ[x0, x1, x2].

From this we obtain,

f(x) = f(x0) + (x− x0)δ[x0, x1] + (x− x0)(x− x1)δ[x0, x1, x2].

So, whenever f(x) is approximated with a second degree polynomial, the value of f(x) at any point

x can be computed using the above polynomial, which uses the values at three points x0, x1 and x2.

Example 12.2.3 Using the following tabular values for a function y = f(x), obtain its second degree poly-

nomial approximation.

i 0 1 2

xi 0.1 0.16 0.2

f(xi) 1.12 1.24 1.40

Also, find the approximate value of the function at x = 0.13.

Solution: We shall first calculate the desired divided differences.

δ[x0, x1] = (1.24− 1.12)/(0.16− 0.1) = 2,

δ[x1, x2] = (1.40− 1.24)/(0.2− 0.16) = 4, and

δ[x0, x1, x2] =
δ[x1, x2]− δ[x0, x1]

x2 − x0
= (4− 2)/(0.2− 0.1) = 20.

Thus,

f(x) ≈ P2(x) = 1.12 + 2(x− 0.1) + 20(x− 0.1)(x− 0.16).

Therefore

f(0.13) ≈ 1.12 + 2(0.13− 0.1) + 20(0.13− 0.1)(0.13− 0.16) = 1.162.

Exercise 12.2.4 1. Using the following table, which gives values of log(x) corresponding to certain values

of x, find approximate value of log(323.5) with the help of a second degree polynomial.

x 322.8 324.2 325

log(x) 2.50893 2.51081 2.5118

2. Show that

δ[x0, x1, x2] =
f(x0)

(x0 − x1)(x0 − x2)
+

f(x1)

(x1 − x0)(x1 − x2)
+

f(x2)

(x2 − x0)(x2 − x1)
.

So, δ[x0, x1, x2] = δ[x0, x2, x1] = δ[x1, x0, x2] = δ[x1, x2, x0] = δ[x2, x0, x1] = δ[x2, x1, x0]. That is,

the second divided difference remains unchanged regardless of how its arguments are interchanged.

3. Show that for equidistant points x0, x1 and x2, δ[x0, x1, x2] =
∆2y0
2h2

=
∇2y2
2h2

, where yk = f(xk),

and h = x1 − x0 = x2 − x1.
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4. Show that for a linear function, the second divided difference with respect to any three points, xi, xj

and xk, is always zero.

Now, we define the kth divided difference.

Definition 12.2.5 (kth Divided Difference) The kth divided difference of f(x) relative to the tab-

ular points x0, x1, . . . , xk, is defined recursively as

δ[x0, x1, . . . , xk] =
δ[x1, x2, . . . , xk]− δ[x0, x1, . . . , xk−1]

xk − x0
.

It can be shown by mathematical induction that for equidistant points,

δ[x0, x1, . . . , xk] =
∆ky0
k!hk

=
∇kyk
k!hk

(12.2.1)

where, y0 = f(x0), and h = x1 − x0 = x2 − x1 = · · · = xk − xk−1.

In general,

δ[xi, xi+1, . . . , xi+n] =
∆nyi
n!hn

,

where yi = f(xi) and h is the length of the interval for i = 0, 1, 2, . . . .

Remark 12.2.6 In view of the remark (11.2.18) and (12.2.1), it is easily seen that for a polynomial

function of degree n, the nth divided difference is constant and the (n+ 1)th divided difference is zero.

Example 12.2.7 Show that f(x) can be written as

f(x) = f(x0) + δ[x0, x1](x− x0) + δ[x, x0, x1](x− x0)(x− x1).

Solution:By definition, we have

δ[x, x0, x1] =
δ[x, x0]− δ[x0, x1]

(x− x1)
,

so, δ[x, x0] = δ[x0, x1] + (x− x0)δ[x, x0, x1]. Now since,

δ[x, x0] =
f(x) − f(x0)

(x − x0)
,

we get the desired result.

Exercise 12.2.8 Show that f(x) can be written in the following form:

f(x) = P2(x) +R3(x),

where, P2(x) = f(x0) + δ[x0, x1](x − x0) + δ[x0, x1, x2](x− x0)(x − x1)

and R3(x) = δ[x, x0, x1, x2](x− x0)(x− x1)(x− x2).

Further show that P2(xi) = f(xi) for i = 0, 1.

Remark 12.2.9 In general it can be shown that f(x) = Pn(x) +Rn+1(x), where,

Pn(x) = f(x0) + δ[x0, x1](x− x0) + δ[x0, x1, x2](x − x0)(x − x1) + · · ·
+δ[x0, x1, x2, . . . , xn](x− x0)(x− x1)(x− x2) · · · (x− xn−1),

and Rn+1(x) = (x − x0)(x − x1)(x− x2) · · · (x− xn)δ[x, x0, x1, x2, . . . , xn].

Here, Rn+1(x) is called the remainder term.

It may be observed here that the expression Pn(x) is a polynomial of degree ′n′ and Pn(xi) = f(xi)

for i = 0, 1, · · · , (n− 1).

Further, if f(x) is a polynomial of degree n, then in view of the Remark 12.2.6, the remainder term,

Rn+1(x) = 0, as it is a multiple of the (n+ 1)th divided difference, which is 0.
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12.3 Lagrange’s Interpolation formula

In this section, we shall obtain an interpolating polynomial when the given data has unequal tabular

points. However, before going to that, we see below an important result.

Theorem 12.3.1 The kth divided difference δ[x0, x1, . . . , xk] can be written as:

δ[x0, x1, . . . , xk] =
f(x0)

(x0 − x1)(x0 − x2) · · · (x0 − xk)
+

f(x1)

(x1 − x0)(x1 − x2) · · · (x1 − xk)

+ · · ·+ f(xk)

(xk − x0)(xk − x1) · · · (xk − xk−1)

=
f(x0)

k
∏

j=1

(x0 − xj)

+ · · ·+ f(xl)
k
∏

j=0, j 6=l

(xl − xj)

+ · · ·+ f(xk)
k
∏

j=0, j 6=k

(xk − xj)

Proof. We will prove the result by induction on k. The result is trivially true for k = 0. For k = 1,

δ[x0, x1] =
f(x1)− f(x0)

x1 − x0
=

f(x0)

x0 − x1
+

f(x1)

x1 − x0
.

Let us assume that the result is true for k = n, i.e.,

δ[x0, x1, . . . , xn] =
f(x0)

(x0 − x1)(x0 − x2) · · · (x0 − xn)
+

f(x1)

(x1 − x0)(x1 − x2) · · · (x1 − xn)

+ · · ·+ f(xn)

(xn − x0)(xn − x1) · · · (xn − xn−1)
.

Consider k = n+ 1, then the (n+ 1)th divided difference is

δ[x0, x1, . . . , xn+1] =
δ[x1, x2, . . . , xn+1]− δ[x0, x1, . . . , xn]

xn+1 − x0

=
1

xn+1 − x0

[

f(x1)

(x1 − x2) · · · (x1 − xn+1)
+

f(x2)

(x2 − x1)(x2 − x3) · · · (x2 − xn+1)
+

· · ·+ f(xn+1)

(xn+1 − x1) · · · (xn+1 − xn)

]

− 1

xn+1 − x0

[

f(x0)

(x0 − x1) · · · (x0 − xn)
+

f(x1)

(x1 − x0)(x1 − x2) · · · (x1 − xn)
+ · · ·+ f(xn)

(xn − x0) · · · (xn − xn−1)

]

which on rearranging the terms gives the desired result. Therefore, by mathematical induction, the

proof of the theorem is complete. �

Remark 12.3.2 In view of the theorem 12.3.1 the kth divided difference of a function f(x), remains

unchanged regardless of how its arguments are interchanged, i.e., it is independent of the order of its

arguments.

Now, if a function is approximated by a polynomial of degree n, then , its (n+1)th divided difference

relative to x, x0, x1, . . . , xn will be zero,(Remark 12.2.6) i.e.,

δ[x, x0, x1, . . . , xn] = 0

Using this result, Theorem 12.3.1 gives

f(x)

(x− x0)(x− x1) · · · (x− xn)
+

f(x0)

(x0 − x)(x0 − x1) · · · (x0 − xn)
+

f(x1)

(x1 − x)(x1 − x2) · · · (x1 − xn)
+ · · ·+ f(xn)

(xn − x)(xn − x0) · · · (xn − xn−1)
= 0,
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or,

f(x)

(x− x0)(x− x1) · · · (x− xn)
= −

[

f(x0)

(x0 − x)(x0 − x1) · · · (x0 − xn)
+

f(x1)

(x1 − x)(x1 − x0)(x1 − x2) · · · (x1 − xn)

+ · · ·+ f(xn)

(xn − x)(xn − x0) · · · (xn − xn−1)

]

,

which gives ,

f(x) =
(x− x1)(x− x2) · · · (x− xn)

(x0 − x1) · · · (x0 − xn)
f(x0) +

(x− x0)(x− x2) · · · (x− xn)

(x1 − x0)(x1 − x2) · · · (x1 − xn)
f(x1)

+ · · ·+ (x− x0)(x− x1) · · · (x− xn−1)

(xn − x0)(xn − x1) · · · (xn − xn−1)
f(xn)

=
n
∑

i=0





n
∏

j=0, j 6=i

x− xj

xi − xj



 f(xi) =
n
∑

i=0

n
∏

j=0

(x− xj)

(x− xi)
n
∏

j=0, j 6=i

(xi − xj)
f(xi)

=
n
∏

j=0

(x− xj)
n
∑

i=0

f(xi)

(x− xi)
n
∏

j=0, j 6=i

(xi − xj)
.

Note that the expression on the right is a polynomial of degree n and takes the value f(xi) at x = xi

for i = 0, 1, · · · , (n− 1).

This polynomial approximation is called Lagrange’s Interpolation Formula.

Remark 12.3.3 In view of the Remark (12.2.9), we can observe that Pn(x) is another form of Lagrange’s

Interpolation polynomial formula as obtained above. Also the remainder term Rn+1 gives an estimate

of error between the true value and the interpolated value of the function.

Remark 12.3.4 We have seen earlier that the divided differences are independent of the order of its

arguments. As the Lagrange’s formula has been derived using the divided differences, it is not necessary

here to have the tabular points in the increasing order. Thus one can use Lagrange’s formula even

when the points x0, x1, · · · , xk, · · · , xn are in any order, which was not possible in the case of Newton’s

Difference formulae.

Remark 12.3.5 One can also use the Lagrange’s Interpolating Formula to compute the value of x for

a given value of y = f(x). This is done by interchanging the roles of x and y, i.e. while using the table

of values, we take tabular points as yk and nodal points are taken as xk.

Example 12.3.6 Using the following data, find by Lagrange’s formula, the value of f(x) at x = 10 :

i 0 1 2 3 4

xi 9.3 9.6 10.2 10.4 10.8

yi = f(xi) 11.40 12.80 14.70 17.00 19.80

Also find the value of x where f(x) = 16.00.

Solution: To compute f(10), we first calculate the following products:

4∏

j=0

(x− xj) =
4∏

j=0

(10− xj)

= (10− 9.3)(10− 9.6)(10− 10.2)(10− 10.4)(10− 10.8) = −0.01792,
4∏

j=1

(x0 − xj) = 0.4455,

n∏

j=0, j 6=1

(x1 − xj) = −0.1728,

n∏

j=0, j 6=2

(x2 − xj) = 0.0648,

n∏

j=0, j 6=3

(x3 − xj) = −0.0704, and

n∏

j=0, j 6=4

(x4 − xj) = 0.4320.
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Thus,

f(10) ≈ −0.01792×
[

11.40

0.7× 0.4455
+

12.80

0.4× (−0.1728)
+

14.70

(−0.2)× 0.0648

+
17.00

(−0.4)× (−0.0704)
+

19.80

(−0.8)× 0.4320

]

= 13.197845.

Now to find the value of x such that f(x) = 16, we interchange the roles of x and y and calculate the

following products:

4∏

j=0

(y − yj) =

4∏

j=0

(16− yj)

= (16− 11.4)(16− 12.8)(16− 14.7)(16− 17.0)(16− 19.8) = 72.7168,
4∏

j=1

(y0 − yj) = 217.3248,

n∏

j=0, j 6=1

(y1 − yj) = −78.204,

n∏

j=0, j 6=2

(y2 − yj) = 73.5471,

n∏

j=0, j 6=3

(y3 − yj) = −151.4688, and

n∏

j=0, j 6=4

(y4 − yj) = 839.664.

Thus,the required value of x is obtained as:

x ≈ 217.3248×
[

9.3

4.6× 217.3248
+

9.6

3.2× (−78.204)
+

10.2

1.3× 73.5471

+
10.40

(−1.0)× (−151.4688)
+

10.80

(−3.8)× 839.664

]

≈ 10.39123.

Exercise 12.3.7 The following table gives the data for steam pressure P vs temperature T :

T 360 365 373 383 390

P = f(T ) 154.0 165.0 190.0 210.0 240.0

Compute the pressure at T = 375.

Exercise 12.3.8 Compute from following table the value of y for x = 6.20 :

x 5.60 5.90 6.50 6.90 7.20

y 2.30 1.80 1.35 1.95 2.00

Also find the value of x where y = 1.00

12.4 Gauss’s and Stirling’s Formulas

In case of equidistant tabular points a convenient form for interpolating polynomial can be derived from

Lagrange’s interpolating polynomial. The process involves renaming or re-designating the tabular points.

We illustrate it by deriving the interpolating formula for 6 tabular points. This can be generalized for

more number of points. Let the given tabular points be x0, x1 = x0 + h, x2 = x0 − h, x3 = x0 +2h, x4 =

x0 − 2h, x5 = x0 + 3h. These six points in the given order are not equidistant. We re-designate them

for the sake of convenience as follows: x∗−2 = x4, x
∗
−1 = x2, x

∗
0 = x0, x

∗
1 = x1, x

∗
2 = x3, x

∗
3 = x5. These
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re-designated tabular points in their given order are equidistant. Now recall from remark (12.3.3) that

Lagrange’s interpolating polynomial can also be written as :

f(x) ≈ f(x0) + δ[x0, x1](x− x0) + δ[x0, x1, x2](x− x0)(x− x1)

+δ[x0, x1, x2, x3](x− x0)(x− x1)(x− x2)

+δ[x0, x1, x2, x3, x4](x− x0)(x − x1)(x − x2)(x − x3)

+δ[x0, x1, x2, x3, x4, x5](x− x0)(x− x1)(x− x2)(x − x3)(x − x4),

which on using the re-designated points give:

f(x) ≈ f(x∗0) + δ[x∗0, x
∗
1](x− x∗0) + δ[x∗0, x

∗
1, x

∗
−1](x− x∗0)(x − x∗1)

+δ[x∗0, x
∗
1, x

∗
−1, x

∗
2](x− x∗0)(x − x∗1)(x − x∗−1)

+δ[x∗0, x
∗
1, x

∗
−1, x

∗
2, x

∗
−2](x− x∗0)(x− x∗1)(x− x∗−1)(x− x∗2)

+δ[x∗0, x
∗
1, x

∗
−1, x

∗
2, x

∗
−2, x

∗
3](x− x∗0)(x − x∗1)(x − x∗−1)(x − x∗2)(x − x∗−2).

Now note that the points x∗−2, x
∗
−1, x

∗
0, x

∗
1, x

∗
2 and x∗3 are equidistant and the divided difference are

independent of the order of their arguments. Thus, we have

δ[x∗0, x
∗
1] =

∆y∗0
h

, δ[x∗0, x
∗
1, x

∗
−1] = δ[x∗−1, x

∗
0, x

∗
1] =

∆2y∗−1

2h2
,

δ[x∗0, x
∗
1, x

∗
−1, x

∗
2] = δ[x∗−1, x

∗
0, x

∗
1, x

∗
2] =

∆3y∗−1

3!h3
,

δ[x∗0, x
∗
1, x

∗
−1, x

∗
2, x

∗
−2] = δ[x∗−2, x

∗
−1, x

∗
0, x

∗
1, x

∗
2] =

∆4y∗−2

4!h4
,

δ[x∗0, x
∗
1, x

∗
−1, x

∗
2, x

∗
−2, x

∗
3] = δ[x∗−2, x

∗
−1, x

∗
0, x

∗
1, x

∗
2, x

∗
3] =

∆5y∗−2

5!h5
,

where y∗i = f(x∗i ) for i = −2,−1, 0, 1, 2. Now using the above relations and the transformation x =

x∗0 + hu, we get

f(x∗0 + hu) ≈ y∗0 +
∆y∗0
h

(hu) +
∆2y∗−1

2h2
(hu)(hu− h) +

∆3y∗−1

3!h3
(hu)(hu− h)(hu+ h)

+
∆4y∗−2

4!h4
(hu)(hu− h)(hu+ h)(hu− 2h)

+
∆5y∗−2

5!h5
(hu)(hu− h)(hu+ h)(hu− 2h)(hu+ 2h).

Thus we get the following form of interpolating polynomial

f(x∗0 + hu) ≈ y∗0 + u∆y∗0 + u(u− 1)
∆2y∗−1

2!
+ u(u2 − 1)

∆3y∗−1

3!

+u(u2 − 1)(u− 2)
∆4y∗−2

4!
+ u(u2 − 1)(u2 − 22)

∆5y∗−2

5!
. (12.4.1)

Similarly using the tabular points x0, x1 = x0−h, x2 = x0+h, x3 = x0−2h, x4 = x0+2h, x5 = x0−3h, and

the re-designating them, as x∗−3, x
∗
−2, x

∗
−1, x

∗
0, x

∗
1 and x∗2, we get another form of interpolating polynomial

as follows:

f(x∗0 + hu) ≈ y∗0 + u∆y∗−1 + u(u+ 1)
∆2y∗−1

2!
+ u(u2 − 1)

∆3y∗−2

3!

+u(u2 − 1)(u+ 2)
∆4y∗−2

4!
+ u(u2 − 1)(u2 − 22)

∆5y∗−3

5!
. (12.4.2)
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Now taking the average of the two interpoating polynomials (12.4.1) and (12.4.2) (called Gauss’s first

and second interpolating formulas, respectively), we obtain Sterling’s Formula of interpolation:

f(x∗0 + hu) ≈ y∗0 + u
∆y∗−1 +∆y∗0

2
+ u2

∆2y∗−1

2!
+
u(u2 − 1)

2

[
∆3y∗−2 +∆3y∗−1

3!

]

+u2(u2 − 1)
∆4y∗−2

4!
+
u(u2 − 1)(u2 − 22)

2

[
∆5y∗−3 +∆5y∗−2

5!

]

+ · · · . (12.4.3)

These are very helpful when, the point of interpolation lies near the middle of the interpolating interval.

In this case one usually writes the diagonal form of the difference table.

Example 12.4.1 Using the following data, find by Sterling’s formula, the value of f(x) = cot(πx) at x =

0.225 :

x 0.20 0.21 0.22 0.23 0.24

f(x) 1.37638 1.28919 1.20879 1.13427 1.06489

Here the point x = 0.225 lies near the central tabular point x = 0.22. Thus , we define x−2 = 0.20, x−1 =

0.21, x0 = 0.22, x1 = 0.23, x2 = 0.24, to get the difference table in diagonal form as:

x−2 = 0.20 y−2 = 1.37638

∆y−2 = −.08719

x−1 = .021 y−1 = 1.28919 ∆2
y−2 = .00679

∆y−1 = −.08040 ∆3
y−2 = −.00091

x0 = 0.22 y0 = 1.20879 ∆2
y−1 = .00588 ∆4

y−2 = .00017

∆y0 = −.07452 ∆3
y−1 = −.00074

x1 = 0.23 y1 = 1.13427 ∆2
y0 = .00514

∆y1 = −.06938

x2 = 0.24 y2 = 1.06489

(here, ∆y0 = y1 − y0 = 1.13427 − 1.20879 = −.07452;∆y−1 = 1.20879 − 1.28919 = −0.08040; and

∆2y−1 = ∆y0 −∆y−1 = .00588, etc.).

Using the Sterling’s formula with u =
0.225− 0.22

0.01
= 0.5, we get f(0.225) as follows:

f(0.225) = 1.20879 + 0.5
−.08040− .07452

2
+ (−0.5)2

.00588

2

+
−0.5(0.52 − 1)

2

(−.00091− .00074)

3!
0.52(0.52 − 1)

.00017

4!
= 1.1708457

Note that tabulated value of cot(πx) at x = 0.225 is 1.1708496.

Exercise 12.4.2 Compute from the following table the value of y for x = 0.05 :

x 0.00 0.02 0.04 0.06 0.08

y 0.00000 0.02256 0.04511 0.06762 0.09007



Chapter 13

Numerical Differentiation and

Integration

13.1 Introduction

Numerical differentiation/ integration is the process of computing the value of the derivative of a function,

whose analytical expression is not available, but is specified through a set of values at certain tabular

points x0, x1, · · · , xn In such cases, we first determine an interpolating polynomial approximating the

function (either on the whole interval or in sub-intervals) and then differentiate/integrate this polynomial

to approximately compute the value of the derivative at the given point.

13.2 Numerical Differentiation

In the case of differentiation, we first write the interpolating formula on the interval (x0, xn). and the

differentiate the polynomial term by term to get an approximated polynomial to the derivative of the

function. When the tabular points are equidistant, one uses either the Newton’s Forward/ Backward

Formula or Sterling’s Formula; otherwise Lagrange’s formula is used. Newton’s Forward/ Backward

formula is used depending upon the location of the point at which the derivative is to be computed. In

case the given point is near the mid point of the interval, Sterling’s formula can be used. We illustrate

the process by taking (i) Newton’s Forward formula, and (ii) Sterling’s formula.

Recall, that the Newton’s forward interpolating polynomial is given by

f(x) = f(x0 + hu) ≈ y0 +∆y0u+
∆2y0
2!

(u(u− 1)) + · · ·+ ∆ky0
k!

{u(u− 1) · · · (u− k + 1)}

+ · · ·+ ∆ny0
n!

{u(u− 1)...(u− n+ 1)}. (13.2.1)

Differentiating (13.2.1), we get the approximate value of the first derivative at x as

df

dx
=

1

h

df

du
≈ 1

h

[

∆y0 +
∆2y0
2!

(2u− 1) +
∆3y0
3!

(3u2 − 6u+ 2) + · · ·

+
∆ny0
n!

(

nun−1 − n(n− 1)2

2
un−2 + · · ·+ (−1)(n−1)(n− 1)!

)]

. (13.2.2)

where, u =
x− x0
h

.
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Thus, an approximation to the value of first derivative at x = x0 i.e. u = 0 is obtained as :

df

dx

∣
∣
∣
∣
x=x0

=
1

h

[

∆y0 −
∆2y0
2

+
∆3y0
3

− · · ·+ (−1)(n−1)∆
ny0
n

]

. (13.2.3)

Similarly, using Stirling’s formula:

f(x∗0 + hu) ≈ y∗0 + u
∆y∗−1 +∆y∗0

2
+ u2

∆2y∗−1

2!
+
u(u2 − 1)

2

∆3y∗−2 +∆3y∗−1

3!

+u2(u2 − 1)
∆4y∗−2

4!
+
u(u2 − 1)(u2 − 22)

2

∆5y∗−3 +∆5y∗−2

5!
+ · · · (13.2.4)

Therefore,

df

dx
=

1

h

df

du
≈ 1

h

[
∆y∗−1 +∆y∗0

2
+ u∆2y∗−1 +

(3u2 − 1)

2
× (∆3y∗−2 +∆3y∗−1)

3!

+2u(2u2 − 1)
∆4y∗−2

4!
+
(5u4 − 15u2 + 4)(∆5y∗−3 +∆5y∗−2)

2× 5!
+ · · ·

]

(13.2.5)

Thus, the derivative at x = x∗0 is obtained as:

df

dx

∣
∣
∣
∣
x=x∗

0

=
1

h

[
∆y∗−1 +∆y∗0

2
− (1)

2
× (∆3y∗−2 +∆3y∗−1)

3!
+

4× (∆5y∗−3 +∆5y∗−2)

2× 5!
+ · · ·

]

. (13.2.6)

Remark 13.2.1 Numerical differentiation using Stirling’s formula is found to be more accurate than

that with the Newton’s difference formulae. Also it is more convenient to use.

Now higher derivatives can be found by successively differentiating the interpolating polynomials. Thus

e.g. using (13.2.2), we get the second derivative at x = x0 as

d2f

dx2

∣
∣
∣
∣
x=x0

=
1

h2

[

∆2y0 −∆3y0 +
2× 11×∆4y0

4!
− · · ·

]

.

Example 13.2.2 Compute from following table the value of the derivative of y = f(x) at x = 1.7489 :

x 1.73 1.74 1.75 1.76 1.77

y 1.772844100 1.155204006 1.737739435 1.720448638 1.703329888

Solution: We note here that x0 = 1.75, h = 0.01, so u = (1.7489 − 1.75)/0.01 = −0.11, and ∆y0 =

−.0017290797,∆2y0 = .0000172047,∆3y0 = −.0000001712,
∆y−1 = −.0017464571,∆2y−1 = .0000173774,∆3y−1 = −.0000001727,
∆3y−2 = −.0000001749,∆4y−2 = −.0000000022
Thus, f ′(1.7489) is obtained as:

(i) Using Newton’s Forward difference formula,

f ′(1.4978) ≈ 1

0.01

[

−0.0017290797+ (2× −0.11− 1)× 0.0000172047

2

+ (3× (−0.11)2 − 6×−0.11 + 2)× −0.0000001712

3!

]

= −0.173965150143.

(ii) Using Stirling’s formula, we get:

f ′(1.4978) ≈ 1

.01

[
(−.0017464571)+ (−.0017290797)

2
+ (−0.11)× .0000173774

+
(3× (−0.11)2 − 1)

2

((−.0000001749)+ (−.0000001727))
3!

+ 2× (−0.11)× (2(−0.11)2 − 1)× (−.0000000022)
4!

]

= −0.17396520185
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It may be pointed out here that the above table is for f(x) = e−x, whose derivative has the value

-0.1739652000 at x = 1.7489.

Example 13.2.3 Using only the first term in the formula (13.2.6) show that

f ′(x∗0) ≈
y∗1 − y∗−1

2h
.

Hence compute from following table the value of the derivative of y = ex at x = 1.15 :

x 1.05 1.15 1.25

ex 2.8577 3.1582 3.4903

Solution: Truncating the formula (13.2.6)after the first term, we get:

f ′(x∗0) ≈ 1

h

[
∆y∗−1 +∆y∗0

2

]

=
(y∗0 − y∗−1) + (y∗1 − y∗0)

2h

=
y∗1 − y∗−1

2h
.

Now from the given table, taking x∗0 = 1.15, we have

f ′(1.15) ≈ 3.4903− 2.8577

2× 0.1
= 3.1630.

Note the error between the computed value and the true value is 3.1630− 3.1582 = 0.0048.

Exercise 13.2.4 Retaining only the first two terms in the formula (13.2.3), show that

f ′(x0) ≈
−3y0 + 4y1 − y2

2h
.

Hence compute the derivative of y = ex at x = 1.15 from the following table:

x 1.15 1.20 1.25

ex 3.1582 3.3201 3.4903

Also compare your result with the computed value in the example (13.2.3).

Exercise 13.2.5 Retaining only the first two terms in the formula (13.2.6), show that

f ′(x∗0) ≈
y∗−2 − 8y∗−1 + 8y∗1 − y∗2

12h
.

Hence compute from following table the value of the derivative of y = ex at x = 1.15 :

x 1.05 1.10 1.15 1.20 1.25

ex 2.8577 3.0042 3.1582 3.3201 3.4903

Exercise 13.2.6 Following table gives the values of y = f(x) at the tabular points x = 0 + 0.05 × k,

k = 0, 1, 2, 3, 4, 5.

x 0.00 0.05 0.10 0.15 0.20 0.25

y 0.00000 0.10017 0.20134 0.30452 0.41075 0.52110

Compute (i)the derivatives y′ and y′′ at x = 0.0 by using the formula (13.2.2). (ii)the second derivative y′′
at x = 0.1 by using the formula (13.2.6).
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Similarly, if we have tabular points which are not equidistant, one can use Lagrange’s interpolating

polynomial, which is differentiated to get an estimate of first derivative. We shall see the result for

four tabular points and then give the general formula. Let x0, x1, x2, x3 be the tabular points, then the

corresponding Lagrange’s formula gives us:

f(x) ≈ (x− x1)(x− x2)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)
f(x0) +

(x− x0)(x− x2)(x− x3)

(x1 − x0)(x1 − x2)(x1 − x3)
f(x1)

+
(x− x0)(x− x1)(x− x3)

(x2 − x0)(x2 − x1)(x2 − x3)
f(x2) +

(x− x0)(x− x1)(x− x2)

(x3 − x0)(x3 − x1)(x3 − x2)
f(x3)

Differentiation of the above interpolating polynomial gives:

df(x)

dx
≈ (x− x2)(x− x3) + (x− x1)(x− x2) + (x− x1)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)
f(x0)

+
(x− x2)(x− x3) + (x− x0)(x− x2) + (x− x0)(x− x3)

(x1 − x0)(x1 − x2)(x1 − x3)
f(x1)

+
(x− x1)(x− x2) + (x− x0)(x− x1) + (x− x0)(x− x3)

(x2 − x0)(x2 − x1)(x2 − x3)
f(x2)

+
(x− x1)(x− x2) + (x− x0)(x− x2) + (x− x0)(x− x1)

(x3 − x0)(x3 − x1)(x3 − x2)
f(x3)

=
(

3
∏

r=0

(x− xr)
)











3
∑

i=0

f(xi)

(x− xi)
3
∏

j=0, j 6=i

(xi − xj)





3
∑

k=0, k 6=i

1

(x− xk)















. (13.2.7)

In particular, the value of the derivative at x = x0 is given by

df

dx

∣

∣

∣

∣

x=x0

≈
[

1

(x0 − x1)
+

1

(x0 − x2)
+

1

(x0 − x3)

]

f(x0) +
(x0 − x2)(x0 − x3)

(x1 − x0)(x1 − x2)(x1 − x3)
f(x1)

+
(x0 − x1)(x0 − x3)

(x2 − x0)(x2 − x1)(x2 − x3)
f(x2) +

(x0 − x1)(x0 − x2)

(x3 − x0)(x3 − x1)(x3 − x2)
f(x3).

Now, generalizing Equation (13.2.7) for n+ 1 tabular points x0, x1, · · · , xn we get:

df

dx
=

n
∏

r=0

(x− xr)









n
∑

i=0

f(xi)

(x− xi)
n
∏

j=0, j 6=i

(xi − xj)





n
∑

k=0, k 6=i

1

(x− xk)













.

Example 13.2.7 Compute from following table the value of the derivative of y = f(x) at x = 0.6 :

x 0.4 0.6 0.7

y 3.3836494 4.2442376 4.7275054

Solution: The given tabular points are not equidistant, so we use Lagrange’s interpolating polynomial with

three points: x0 = 0.4, x1 = 0.6, x2 = 0.7 . Now differentiating this polynomial the derivative of the function

at x = x1 is obtained in the following form:

df

dx

∣

∣

∣

∣

x=x1

≈ (x1 − x2)

(x0 − x1)(x0 − x2)
f(x0) +

[

1

(x1 − x2)
+

1

(x1 − x0)

]

f(x1) +
(x1 − x0)

(x2 − x0)(x2 − x1)
f(x2).

Note: The reader is advised to derive the above expression.

Now, using the values from the table, we get:

df

dx

∣
∣
∣
∣
x=0.6

≈ (0.6− 0.7)

(0.4− 0.6)(0.4− 0.7)
× 3.3836494+

[
1

(0.6− 0.7)
+

1

(0.6− 0.4)

]

× 4.2442376

+
(0.6− 0.4)

(0.7− 0.4)(0.7− 0.6)
× 4.7225054

= −5.63941567− 21.221188+ 31.48336933 = 4.6227656.
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For the sake of comparison, it may be pointed out here that the above table is for the function f(x) = 2ex+x,

and the value of its derivative at x = 0.6 is 4.6442376.

Exercise 13.2.8 For the function, whose tabular values are given in the above example(13.2.8), compute the

value of its derivative at x = 0.5.

Remark 13.2.9 It may be remarked here that the numerical differentiation for higher derivatives does

not give very accurate results and so is not much preferred.

13.3 Numerical Integration

Numerical Integration is the process of computing the value of a definite integral,
b∫

a

f(x)dx, when

the values of the integrand function, y = f(x) are given at some tabular points. As in the case of

Numerical differentiation, here also the integrand is first replaced with an interpolating polynomial,

and then the integrating polynomial is integrated to compute the value of the definite integral. This

gives us ’quadrature formula’ for numerical integration. In the case of equidistant tabular points, either

the Newton’s formulae or Stirling’s formula are used. Otherwise, one uses Lagrange’s formula for the

interpolating polynomial. We shall consider below the case of equidistant points: x0, x1, · · · , xn.

13.3.1 A General Quadrature Formula

Let f(xk) = yk be the nodal value at the tabular point xk for k = 0, 1, · · · , xn, where x0 = a and

xn = x0 + nh = b. Now, a general quadrature formula is obtained by replacing the integrand by

Newton’s forward difference interpolating polynomial. Thus, we get,

b∫

a

f(x)dx =

b∫

a

[

y0 +
∆y0
h

(x− x0) +
∆2y0
2!h2

(x− x0)(x − x1) +
∆3y0
3!h3

(x − x0)(x − x1)(x − x2)

+
∆4y0
4!h4

(x− x0)(x− x1)(x− x2)(x− x3) + · · ·
]

dx

This on using the transformation x = x0 + hu gives:

b∫

a

f(x)dx = h

n∫

0

[

y0 + u∆y0 +
∆2y0
2!

u(u− 1) +
∆3y0
3!

u(u− 1)(u− 2)

+
∆4y0
4!

u(u− 1)(u− 2)(u− 3) + · · ·
]

du

which on term by term integration gives,

b∫

a

f(x)dx = h

[

ny0 +
n2

2
∆y0 +

∆2y0
2!

(
n3

3
− n2

2

)

+
∆3y0
3!

(
n4

4
− n3 + n2

)

+
∆4y0
4!

(
n5

5
− 3n4

2
+

11n3

3
− 3n2

)

+ · · ·
]

(13.3.1)

For n = 1, i.e., when linear interpolating polynomial is used then, we have

b∫

a

f(x)dx = h

[

y0 +
∆y0
2

]

=
h

2
[y0 + y1] . (13.3.2)
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Similarly, using interpolating polynomial of degree 2 (i.e. n = 2), we obtain,

b∫

a

f(x)dx = h

[

2y0 + 2∆y0 +

(
8

3
− 4

2

)
∆2y0
2

]

= 2h

[

y0 + (y1 − y0) +
1

3
× y2 − 2y1 + y0

2

]

=
h

3
[y0 + 4y1 + y2] . (13.3.3)

In the above we have replaced the integrand by an interpolating polynomial over the whole interval

[a, b] and then integrated it term by term. However, this process is not very useful. More useful

Numerical integral formulae are obtained by dividing the interval [a, b] in n sub-intervals [xk, xk+1],

where, xk = x0 + kh for k = 0, 1, · · · , n with x0 = a, xn = x0 + nh = b.

13.3.2 Trapezoidal Rule

Here, the integral is computed on each of the sub-intervals by using linear interpolating formula, i.e. for

n = 1 and then summing them up to obtain the desired integral.

Note that

b∫

a

f(x)dx =

x1∫

x0

f(x)dx +

x2∫

x1

f(x)dx + · · ·+
xk∫

xk+1

f(x)dx + · · ·+
xn−1∫

xn

f(x)dx

Now using the formula ( 13.3.2) for n = 1 on the interval [xk, xk+1], we get,

xk+1∫

xk

f(x)dx =
h

2
[yk + yk+1] .

Thus, we have,

b∫

a

f(x)dx =
h

2
[y0 + y1] +

h

2
[y1 + y2] + · · ·+ h

2
[yk + yk+1] + · · ·+ h

2
[yn−2 + yn−1] +

h

2
[yn−1 + yn]

i.e.

b∫

a

f(x)dx =
h

2
[y0 + 2y1 + 2y2 + · · ·+ 2yk + · · ·+ 2yn−1 + yn]

= h

[

y0 + yn
2

+
n−1∑

i=1

yi

]

. (13.3.4)

This is called Trapezoidal Rule. It is a simple quadrature formula, but is not very accurate.

Remark 13.3.1 An estimate for the error E1 in numerical integration using the Trapezoidal rule is

given by

E1 = −b− a

12
∆2y,

where ∆2y is the average value of the second forward differences.

Recall that in the case of linear function, the second forward differences is zero, hence, the Trapezoidal

rule gives exact value of the integral if the integrand is a linear function.
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Example 13.3.2 Using Trapezoidal rule compute the integral
1∫

0

ex
2

dx, where the table for the values of y =

ex
2

is given below:
x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y 1.00000 1.01005 1.04081 1.09417 1.17351 1.28402 1.43332 1.63231 1.89648 2.2479 2.71828

Solution: Here, h = 0.1, n = 10,

y0 + y10
2

=
1.0 + 2.71828

2
= 1.85914,

and
9∑

i=1

yi = 12.81257.

Thus,
1∫

0

ex
2

dx = 0.1× [1.85914 + 12.81257] = 1.467171

13.3.3 Simpson’s Rule

If we are given odd number of tabular points,i.e. n is even, then we can divide the given integral of

integration in even number of sub-intervals [x2k, x2k+2]. Note that for each of these sub-intervals, we have

the three tabular points x2k, x2k+1, x2k+2 and so the integrand is replaced with a quadratic interpolating

polynomial. Thus using the formula (13.3.3), we get,

x2k+2∫

x2k

f(x)dx =
h

3
[y2k + 4y2k+1 + y2k+2] .

In view of this, we have

b∫

a

f(x)dx =

x2∫

x0

f(x)dx +

x4∫

x2

f(x)dx+ · · ·+
x2k+2∫

x2k

f(x)dx+ · · ·+
xn∫

xn−2

f(x)dx

=
h

3
[(y0 + 4y1 + y2) + (y2 + 4y3 + y4) + · · ·+ (yn−2 + 4yn−1 + yn)]

=
h

3
[y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn−2 + 4yn−1 + yn] ,

which gives the second quadrature formula as follows:

b∫

a

f(x)dx =
h

3
[(y0 + yn) + 4× (y1 + y3 + · · ·+ y2k+1 + · · ·+ yn−1)

+ 2× (y2 + y4 + · · ·+ y2k + · · ·+ yn−2)]

=
h

3



(y0 + yn) + 4×





n−1∑

i=1, i−odd

yi



+ 2×





n−2∑

i=2, i−even

yi







 . (13.3.5)

This is known as Simpson’s rule.

Remark 13.3.3 An estimate for the error E2 in numerical integration using the Simpson’s rule is given

by

E2 = −b− a

180
∆4y, (13.3.6)

where ∆4y is the average value of the forth forward differences.
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Example 13.3.4 Using the table for the values of y = ex
2

as is given in Example 13.3.2, compute the integral
1∫

0

ex
2

dx, by Simpson’s rule. Also estimate the error in its calculation and compare it with the error using

Trapezoidal rule.

Solution: Here, h = 0.1, n = 10, thus we have odd number of nodal points. Further,

y0 + y10 = 1.0 + 2.71828 = 3.71828,

9∑

i=1, i−odd

yi = y1 + y3 + y5 + y7 + y9 = 7.26845,

and
8∑

i=2, i−even

yi = y2 + y4 + y6 + y8 = 5.54412.

Thus,
1∫

0

ex
2

dx =
0.1

3
× [3.71828 + 4× 7.268361+ 2× 5.54412] = 1.46267733

To find the error estimates, we consider the forward difference table, which is given below:

xi yi ∆yi ∆2yi ∆3yi ∆4yi

0.0 1.00000 0.01005 0.02071 0.00189 0.00149

0.1 1.01005 0.03076 0.02260 0.00338 0.00171

0.2 1.04081 0.05336 0.02598 0.00519 0.00243

0.3 1.09417 0.07934 0.03117 0.00762 0.00320

0.4 1.17351 0.11051 0.3879 0.01090 0.00459

0.5 1.28402 0.14930 0.04969 0.01549 0.00658

0.6 1.43332 0.19899 0.06518 0.02207 0.00964

0.7 1.63231 0.26417 0.08725 0.03171

0.8 1.89648 0.35142 0.11896

0.9 2.24790 0.47038

1.0 2.71828
Thus, error due to Trapezoidal rule is,

E1 = −1− 0

12
∆2y

= − 1

12
× 0.02071 + 0.02260+ 0.02598 + 0.03117+ 0.03879 + 0.04969 + 0.06518+ 0.08725 + 0.11896

9
= −0.004260463.

Similarly, error due to Simpson’s rule is,

E2 = −1− 0

180
∆4y

= − 1

180
× 0.00149 + 0.00171+ 0.00243 + 0.00328+ 0.00459 + 0.00658 + 0.00964

7

= −2.35873× 10−5.

It shows that the error in numerical integration is much less by using Simpson’s rule.

Example 13.3.5 Compute the integral
1∫

0.05

f(x)dx, where the table for the values of y = f(x) is given below:

x 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y 0.0785 0.1564 0.2334 0.3090 0.4540 0.5878 0.7071 0.8090 0.8910 0.9511 0.9877 1.0000

Solution: Note that here the points are not given to be equidistant, so as such we can not use any of

the above two formulae. However, we notice that the tabular points 0.05, 0.10, 0, 15 and 0.20 are equidistant
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and so are the tabular points 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. Now we can divide the interval in two

subinterval: [0.05, 0.2] and [0.2, 1.0]; thus,

1∫

0.05

f(x)dx =

0.2∫

0.05

f(x)dx +

1∫

0.2

f(x)dx

. The integrals then can be evaluated in each interval. We observe that the second set has odd number of

points. Thus, the first integral is evaluated by using Trapezoidal rule and the second one by Simpson’s rule

(of course, one could have used Trapezoidal rule in both the subintervals).

For the first integral h = 0.05 and for the second one h = 0.1. Thus,

0.2∫

0.05

f(x)dx = 0.05×
[
0.0785 + 0.3090

2
+ 0.1564 + 0.2334

]

= 0.0291775,

and

1.0∫

0.2

f(x)dx =
0.1

3
×
[

(0.3090 + 1.0000) + 4× (0.4540 + 0.7071 + 0.8910 + 0.9877)

+2× (0.5878 + 0.8090 + 0.9511)

]

= 0.6054667,

which gives,
1∫

0.05

f(x)dx = 0.0291775+ 0.6054667 = 0.6346442

It may be mentioned here that in the above integral, f(x) = sin(πx/2) and that the value of the integral

is 0.6346526. It will be interesting for the reader to compute the two integrals using Trapezoidal rule and

compare the values.

Exercise 13.3.6 1. Using Trapezoidal rule, compute the integral
b∫

a

f(x)dx, where the table for the values

of y = f(x) is given below. Also find an error estimate for the computed value.

(a)
x a=1 2 3 4 5 6 7 8 9 b=10

y 0.09531 0.18232 0.26236 0.33647 0.40546 0.47000 0.53063 0.58779 0.64185 0.69314

(b)
x a=1.50 1.55 1.60 1.65 1.70 1.75 b=1.80

y 0.40546 0.43825 0.47000 0.5077 0.53063 0.55962 0.58779

(c)
x a = 1.0 1.5 2.0 2.5 3.0 b = 3.5

y 1.1752 2.1293 3.6269 6.0502 10.0179 16.5426

2. Using Simpson’s rule, compute the integral
b∫

a

f(x)dx. Also get an error estimate of the computed

integral.

(a) Use the table given in Exercise 13.3.6.1b.

(b)
x a = 0.5 1.0 1.5 2.0 2.5 3.0 b = 3.5

y 0.493 0.946 1.325 1.605 1.778 1.849 1.833

3. Compute the integral
1.5∫

0

f(x)dx, where the table for the values of y = f(x) is given below:

x 0.0 0.5 0.7 0.9 1.1 1.2 1.3 1.4 1.5

y 0.00 0.39 0.77 1.27 1.90 2.26 2.65 3.07 3.53
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Chapter 14

Appendix

14.1 System of Linear Equations

Theorem 14.1.1 (Existence and Non-existence) Consider a linear system Ax = b, where A is a m × n

matrix, and x, b are vectors with orders n × 1, and m × 1, respectively. Suppose rank (A) = r and

rank([A b]) = ra. Then exactly one of the following statement holds:

1. if ra = r < n, the set of solutions of the linear system is an infinite set and has the form

{u0 + k1u1 + k2u2 + · · ·+ kn−run−r : ki ∈ R, 1 ≤ i ≤ n− r},

where u0,u1, . . . ,un−r are n× 1 vectors satisfying Au0 = b and Aui = 0 for 1 ≤ i ≤ n− r.

2. if ra = r = n, the solution set of the linear system has a unique n× 1 vector x0 satisfying Ax0 = 0.

3. If r < ra, the linear system has no solution.

Proof. Suppose [C d] is the row reduced echelon form of the augmented matrix [A b]. Then

by Theorem 2.3.4, the solution set of the linear system [C d] is same as the solution set of the linear

system [A b]. So, the proof consists of understanding the solution set of the linear system Cx = d.

1. Let r = ra < n.

Then [C d] has its first r rows as the non-zero rows. So, by Remark 2.4.5, the matrix C = [cij ]

has r leading columns. Let the leading columns be 1 ≤ i1 < i2 < · · · < ir ≤ n. Then we observe

the following:

(a) the entries clil for 1 ≤ l ≤ r are leading terms. That is, for 1 ≤ l ≤ r, all entries in the ithl
column of C is zero, except the entry clil . The entry clil = 1;

(b) corresponding is each leading column, we have r basic variables, xi1 , xi2 , . . . , xir ;

(c) the remaining n − r columns correspond to the n − r free variables (see Remark 2.4.5),

xj1 , xj2 , . . . , xjn−r
. So, the free variables correspond to the columns 1 ≤ j1 < j2 < · · · <

jn−r ≤ n.

For 1 ≤ l ≤ r, consider the lth row of [C d]. The entry clil = 1 and is the leading term. Also, the

first r rows of the augmented matrix [C d] give rise to the linear equations

xil +

n−r∑

k=1

cljkxjk = dl, for 1 ≤ l ≤ r.

239
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These equations can be rewritten as

xil = dl −
n−r∑

k=1

cljkxjk = dl, for 1 ≤ l ≤ r.

Let yt = (xi1 , . . . , xir , xj1 , . . . , xjn−r
). Then the set of solutions consists of

y =















xi1
...

xir
xj1
...

xjn−r















=


















d1 −
n−r∑

k=1

c1jkxjk

...

dr −
n−r∑

k=1

crjkxjk

xj1
...

xjn−r


















. (14.1.1)

As xjs for 1 ≤ s ≤ n− r are free variables, let us assign arbitrary constants ks ∈ R to xjs . That is,

for 1 ≤ s ≤ n− r, xjs = ks. Then the set of solutions is given by

y =


















d1 −
n−r∑

s=1
c1jsxjs

...

dr −
n−r∑

s=1
crjsxjs

xj1
...

xjn−r


















=


















d1 −
n−r∑

s=1
c1jsks

...

dr −
n−r∑

s=1
crjsks

k1
...

kn−r


















=




















d1
...

dr

0

0
...

0

0




















− k1




















c1j1
...

crj1
−1

0
...

0

0




















− k2




















c1j2
...

crj2
0

−1
...

0

0




















− · · · − kn−r




















c1jn−r

...

crjn−r

0

0
...

0

−1




















.

Let us write v0
t = (d1, d2, . . . , dr, 0, . . . , 0)

t. Also, for 1 ≤ i ≤ n− r, let vi be the vector associated

with ki in the above representation of the solution y. Observe the following:

(a) if we assign ks = 0, for 1 ≤ s ≤ n− r, we get

Cv0 = Cy = d. (14.1.2)

(b) if we assign k1 = 1 and ks = 0, for 2 ≤ s ≤ n− r, we get

d = Cy = C(v0 + v1). (14.1.3)

So, using (14.1.2), we get Cv1 = 0.

(c) in general, if we assign kt = 1 and ks = 0, for 1 ≤ s 6= t ≤ n− r, we get

d = Cy = C(v0 + vt). (14.1.4)

So, using (14.1.2), we get Cvt = 0.



14.1. SYSTEM OF LINEAR EQUATIONS 241

Note that a rearrangement of the entries of y will give us the solution vector xt = (x1, x2, . . . , xn)
t.

Suppose that for 0 ≤ i ≤ n− r, the vectors ui’s are obtained by applying the same rearrangement

to the entries of vi’s which when applied to y gave x. Therefore, we have Cu0 = d and for

1 ≤ i ≤ n− r, Cui = 0. Now, using equivalence of the linear system Ax = b and Cx = d gives

Au0 = b and for 1 ≤ i ≤ n− r, Aui = 0.

Thus, we have obtained the desired result for the case r = r1 < n.

2. r = ra = n, m ≥ n.

Here the first n rows of the row reduced echelon matrix [C d] are the non-zero rows. Also, the

number of columns in C equals n = rank (A) = rank (C). So, by Remark 2.4.5, all the columns

of C are leading columns and all the variables x1, x2, . . . , xn are basic variables. Thus, the row

reduced echelon form [C d] of [A b] is given by

[C d] =

[

In d̃

0 0

]

.

Therefore, the solution set of the linear system Cx = d is obtained using the equation Inx = d̃.

This gives us, a solution as x0 = d̃. Also, by Theorem 2.4.11, the row reduced form of a given

matrix is unique, the solution obtained above is the only solution. That is, the solution set consists

of a single vector d̃.

3. r < ra.

As C has n columns, the row reduced echelon matrix [C d] has n + 1 columns. The condition,

r < ra implies that ra = r + 1. We now observe the following:

(a) as rank(C) = r, the (r + 1)th row of C consists of only zeros.

(b) Whereas the condition ra = r + 1 implies that the (r + 1)th row of the matrix [C d] is

non-zero.

Thus, the (r + 1)th row of [C d] is of the form (0, . . . , 0, 1). Or in other words, dr+1 = 1.

Thus, for the equivalent linear system Cx = d, the (r + 1)th equation is

0 x1 + 0 x2 + · · ·+ 0 xn = 1.

This linear equation has no solution. Hence, in this case, the linear system Cx = d has no solution.

Therefore, by Theorem 2.3.4, the linear system Ax = b has no solution.

�

We now state a corollary whose proof is immediate from previous results.

Corollary 14.1.2 Consider the linear system Ax = b. Then the two statements given below cannot hold

together.

1. The system Ax = b has a unique solution for every b.

2. The system Ax = 0 has a non-trivial solution.
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14.2 Determinant

In this section, S denotes the set {1, 2, . . . , n}.

Definition 14.2.1 1. A function σ : S−→S is called a permutation on n elements if σ is both one to one

and onto.

2. The set of all functions σ : S−→S that are both one to one and onto will be denoted by Sn. That is,

Sn is the set of all permutations of the set {1, 2, . . . , n}.

Example 14.2.2 1. In general, we represent a permutation σ by σ =

(

1 2 · · · n

σ(1) σ(2) · · · σ(n)

)

.

This representation of a permutation is called a two row notation for σ.

2. For each positive integer n, Sn has a special permutation called the identity permutation, denoted Idn,

such that Idn(i) = i for 1 ≤ i ≤ n. That is, Idn =

(

1 2 · · · n

1 2 · · · n

)

.

3. Let n = 3. Then

S3 =

{

τ1 =

(

1 2 3

1 2 3

)

, τ2 =

(

1 2 3

1 3 2

)

, τ3 =

(

1 2 3

2 1 3

)

,

τ4 =

(

1 2 3

2 3 1

)

, τ5 =

(

1 2 3

3 1 2

)

, τ6 =

(

1 2 3

3 2 1

)}

(14.2.5)

Remark 14.2.3 1. Let σ ∈ Sn. Then σ is determined if σ(i) is known for i = 1, 2, . . . , n. As σ is

both one to one and onto, {σ(1), σ(2), . . . , σ(n)} = S. So, there are n choices for σ(1) (any element

of S), n − 1 choices for σ(2) (any element of S different from σ(1)), and so on. Hence, there are

n(n− 1)(n− 2) · · · 3 · 2 · 1 = n! possible permutations. Thus, the number of elements in Sn is n!.

That is, |Sn| = n!.

2. Suppose that σ, τ ∈ Sn. Then both σ and τ are one to one and onto. So, their composition map

σ ◦ τ , defined by (σ ◦ τ)(i) = σ
(
τ(i)

)
, is also both one to one and onto. Hence, σ ◦ τ is also a

permutation. That is, σ ◦ τ ∈ Sn.

3. Suppose σ ∈ Sn. Then σ is both one to one and onto. Hence, the function σ−1 : S−→S defined

by σ−1(m) = ℓ if and only if σ(ℓ) = m for 1 ≤ m ≤ n, is well defined and indeed σ−1 is also both

one to one and onto. Hence, for every element σ ∈ Sn, σ
−1 ∈ Sn and is the inverse of σ.

4. Observe that for any σ ∈ Sn, the compositions σ ◦ σ−1 = σ−1 ◦ σ = Idn.

Proposition 14.2.4 Consider the set of all permutations Sn. Then the following holds:

1. Fix an element τ ∈ Sn. Then the sets {σ ◦ τ : σ ∈ Sn} and {τ ◦ σ : σ ∈ Sn} have exactly n! elements.

Or equivalently,

Sn = {τ ◦ σ : σ ∈ Sn} = {σ ◦ τ : σ ∈ Sn}.

2. Sn = {σ−1 : σ ∈ Sn}.

Proof. For the first part, we need to show that given any element α ∈ Sn, there exists elements

β, γ ∈ Sn such that α = τ ◦ β = γ ◦ τ . It can easily be verified that β = τ−1 ◦ α and γ = α ◦ τ−1.

For the second part, note that for any σ ∈ Sn, (σ
−1)−1 = σ. Hence the result holds. �
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Definition 14.2.5 Let σ ∈ Sn. Then the number of inversions of σ, denoted n(σ), equals

|{(i, j) : i < j, σ(i) > σ(j) }|.

Note that, for any σ ∈ Sn, n(σ) also equals

n∑

i=1

|{σ(j) < σ(i), for j = i+ 1, i+ 2, . . . , n}|.

Definition 14.2.6 A permutation σ ∈ Sn is called a transposition if there exists two positive integers m, r ∈
{1, 2, . . . , n} such that σ(m) = r, σ(r) = m and σ(i) = i for 1 ≤ i 6= m, r ≤ n.

For the sake of convenience, a transposition σ for which σ(m) = r, σ(r) = m and σ(i) = i for

1 ≤ i 6= m, r ≤ n will be denoted simply by σ = (m r) or (r m). Also, note that for any transposition

σ ∈ Sn, σ
−1 = σ. That is, σ ◦ σ = Idn.

Example 14.2.7 1. The permutation τ =

(

1 2 3 4

3 2 1 4

)

is a transposition as τ(1) = 3, τ(3) =

1, τ(2) = 2 and τ(4) = 4. Here note that τ = (1 3) = (3 1). Also, check that

n(τ) = |{(1, 2), (1, 3), (2, 3)}| = 3.

2. Let τ =

(

1 2 3 4 5 6 7 8 9

4 2 3 5 1 9 8 7 6

)

. Then check that

n(τ) = 3 + 1 + 1 + 1 + 0 + 3 + 2 + 1 = 12.

3. Let ℓ,m and r be distinct element from {1, 2, . . . , n}. Suppose τ = (m r) and σ = (m ℓ). Then

(τ ◦ σ)(ℓ) = τ
(
σ(ℓ)

)
= τ(m) = r, (τ ◦ σ)(m) = τ

(
σ(m)

)
= τ(ℓ) = ℓ

(τ ◦ σ)(r) = τ
(
σ(r)

)
= τ(r) = m, and (τ ◦ σ)(i) = τ

(
σ(i)

)
= τ(i) = i if i 6= ℓ,m, r.

Therefore, τ ◦ σ = (m r) ◦ (m ℓ) =

(

1 2 · · · ℓ · · · m · · · r · · · n

1 2 · · · r · · · ℓ · · · m · · · n

)

= (r l) ◦ (r m).

Similarly check that σ ◦ τ =

(

1 2 · · · ℓ · · · m · · · r · · · n

1 2 · · · m · · · r · · · ℓ · · · n

)

.

With the above definitions, we state and prove two important results.

Theorem 14.2.8 For any σ ∈ Sn, σ can be written as composition (product) of transpositions.

Proof. We will prove the result by induction on n(σ), the number of inversions of σ. If n(σ) = 0, then

σ = Idn = (1 2) ◦ (1 2). So, let the result be true for all σ ∈ Sn with n(σ) ≤ k.

For the next step of the induction, suppose that τ ∈ Sn with n(τ) = k + 1. Choose the smallest

positive number, say ℓ, such that

τ(i) = i, for i = 1, 2, . . . , ℓ− 1 and τ(ℓ) 6= ℓ.

As τ is a permutation, there exists a positive number, saym, such that τ(ℓ) = m. Also, note that m > ℓ.

Define a transposition σ by σ = (ℓ m). Then note that

(σ ◦ τ)(i) = i, for i = 1, 2, . . . , ℓ.
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So, the definition of “number of inversions” and m > ℓ implies that

n(σ ◦ τ) =

n∑

i=1

|{(σ ◦ τ)(j) < (σ ◦ τ)(i), for j = i+ 1, i+ 2, . . . , n}|

=

ℓ∑

i=1

|{(σ ◦ τ)(j) < (σ ◦ τ)(i), for j = i+ 1, i+ 2, . . . , n}|

+

n∑

i=ℓ+1

|{(σ ◦ τ)(j) < (σ ◦ τ)(i), for j = i+ 1, i+ 2, . . . , n}|

=

n∑

i=ℓ+1

|{(σ ◦ τ)(j) < (σ ◦ τ)(i), for j = i+ 1, i+ 2, . . . , n}|

≤
n∑

i=ℓ+1

|{τ(j) < τ(i), for j = i+ 1, i+ 2, . . . , n}| as m > ℓ,

< (m− ℓ) +
n∑

i=ℓ+1

|{τ(j) < τ(i), for j = i+ 1, i+ 2, . . . , n}|

= n(τ).

Thus, n(σ ◦ τ) < k + 1. Hence, by the induction hypothesis, the permutation σ ◦ τ is a composition of

transpositions. That is, there exist transpositions, say αi, 1 ≤ i ≤ t such that

σ ◦ τ = α1 ◦ α2 ◦ · · · ◦ αt.

Hence, τ = σ ◦α1 ◦α2 ◦ · · · ◦αt as σ ◦σ = Idn for any transposition σ ∈ Sn. Therefore, by mathematical

induction, the proof of the theorem is complete. �

Before coming to our next important result, we state and prove the following lemma.

Lemma 14.2.9 Suppose there exist transpositions αi, 1 ≤ i ≤ t such that

Idn = α1 ◦ α2 ◦ · · · ◦ αt,

then t is even.

Proof. Observe that t 6= 1 as the identity permutation is not a transposition. Hence, t ≥ 2. If t = 2,

we are done. So, let us assume that t ≥ 3. We will prove the result by the method of mathematical

induction. The result clearly holds for t = 2. Let the result be true for all expressions in which the

number of transpositions t ≤ k. Now, let t = k + 1.

Suppose α1 = (m r). Note that the possible choices for the composition α1 ◦ α2 are

(m r) ◦ (m r) = Idn, (m r) ◦ (m ℓ) = (r ℓ) ◦ (r m), (m r) ◦ (r ℓ) = (ℓ r) ◦ (ℓ m) and (m r) ◦ (ℓ s) = (ℓ s) ◦ (m r),

where ℓ and s are distinct elements of {1, 2, . . . , n} and are different from m, r. In the first case, we

can remove α1 ◦ α2 and obtain Idn = α3 ◦ α4 ◦ · · · ◦ αt. In this expression for identity, the number of

transpositions is t− 2 = k− 1 < k. So, by mathematical induction, t− 2 is even and hence t is also even.

In the other three cases, we replace the original expression for α1 ◦ α2 by their counterparts on the

right to obtain another expression for identity in terms of t = k+1 transpositions. But note that in the

new expression for identity, the positive integer m doesn’t appear in the first transposition, but appears

in the second transposition. We can continue the above process with the second and third transpositions.

At this step, either the number of transpositions will reduce by 2 (giving us the result by mathematical

induction) or the positive number m will get shifted to the third transposition. The continuation of this

process will at some stage lead to an expression for identity in which the number of transpositions is
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t − 2 = k − 1 (which will give us the desired result by mathematical induction), or else we will have

an expression in which the positive number m will get shifted to the right most transposition. In the

later case, the positive integer m appears exactly once in the expression for identity and hence this

expression does not fix m whereas for the identity permutation Idn(m) = m. So the later case leads us

to a contradiction.

Hence, the process will surely lead to an expression in which the number of transpositions at some

stage is t− 2 = k − 1. Therefore, by mathematical induction, the proof of the lemma is complete.

�

Theorem 14.2.10 Let α ∈ Sn. Suppose there exist transpositions τ1, τ2, . . . , τk and σ1, σ2, . . . , σℓ such that

α = τ1 ◦ τ2 ◦ · · · ◦ τk = σ1 ◦ σ2 ◦ · · · ◦ σℓ

then either k and ℓ are both even or both odd.

Proof. Observe that the condition τ1 ◦ τ2 ◦ · · · ◦ τk = σ1 ◦ σ2 ◦ · · · ◦ σℓ and σ ◦ σ = Idn for any

transposition σ ∈ Sn, implies that

Idn = τ1 ◦ τ2 ◦ · · · ◦ τk ◦ σℓ ◦ σℓ−1 ◦ · · · ◦ σ1.

Hence by Lemma 14.2.9, k+ ℓ is even. Hence, either k and ℓ are both even or both odd. Thus the result

follows. �

Definition 14.2.11 A permutation σ ∈ Sn is called an even permutation if σ can be written as a composition

(product) of an even number of transpositions. A permutation σ ∈ Sn is called an odd permutation if σ can

be written as a composition (product) of an odd number of transpositions.

Remark 14.2.12 Observe that if σ and τ are both even or both odd permutations, then the permu-

tations σ ◦ τ and τ ◦ σ are both even. Whereas if one of them is odd and the other even then the

permutations σ ◦ τ and τ ◦ σ are both odd. We use this to define a function on Sn, called the sign of a

permutation, as follows:

Definition 14.2.13 Let sgn : Sn−→{1,−1} be a function defined by

sgn(σ) =

{

1 if σ is an even permutation

−1 if σ is an odd permutation
.

Example 14.2.14 1. The identity permutation, Idn is an even permutation whereas every transposition

is an odd permutation. Thus, sgn(Idn) = 1 and for any transposition σ ∈ Sn, sgn(σ) = −1.

2. Using Remark 14.2.12, sgn(σ ◦ τ) = sgn(σ) · sgn(τ) for any two permutations σ, τ ∈ Sn.

We are now ready to define determinant of a square matrix A.

Definition 14.2.15 Let A = [aij ] be an n× n matrix with entries from F. The determinant of A, denoted

det(A), is defined as

det(A) =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n) =
∑

σ∈Sn

sgn(σ)

n∏

i=1

aiσ(i).

Remark 14.2.16 1. Observe that det(A) is a scalar quantity. The expression for det(A) seems

complicated at the first glance. But this expression is very helpful in proving the results related

with “properties of determinant”.
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2. If A = [aij ] is a 3× 3 matrix, then using (14.2.5),

det(A) =
∑

σ∈Sn

sgn(σ)

3∏

i=1

aiσ(i)

= sgn(τ1)

3∏

i=1

aiτ1(i) + sgn(τ2)

3∏

i=1

aiτ2(i) + sgn(τ3)

3∏

i=1

aiτ3(i) +

sgn(τ4)

3∏

i=1

aiτ4(i) + sgn(τ5)

3∏

i=1

aiτ5(i) + sgn(τ6)

3∏

i=1

aiτ6(i)

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.

Observe that this expression for det(A) for a 3× 3 matrix A is same as that given in (2.8.1).

14.3 Properties of Determinant

Theorem 14.3.1 (Properties of Determinant) Let A = [aij ] be an n× n matrix. Then

1. if B is obtained from A by interchanging two rows, then

det(B) = − det(A).

2. if B is obtained from A by multiplying a row by c then

det(B) = c det(A).

3. if all the elements of one row is 0 then det(A) = 0.

4. if A is a square matrix having two rows equal then det(A) = 0.

5. Let B = [bij ] and C = [cij ] be two matrices which differ from the matrix A = [aij ] only in the mth

row for some m. If cmj = amj + bmj for 1 ≤ j ≤ n then det(C) = det(A) + det(B).

6. if B is obtained from A by replacing the ℓth row by itself plus k times the mth row, for ℓ 6= m then

det(B) = det(A).

7. if A is a triangular matrix then det(A) = a11a22 · · ·ann, the product of the diagonal elements.

8. If E is an elementary matrix of order n then det(EA) = det(E) det(A).

9. A is invertible if and only if det(A) 6= 0.

10. If B is an n× n matrix then det(AB) = det(A) det(B).

11. det(A) = det(At), where recall that At is the transpose of the matrix A.

Proof. Proof of Part 1. Suppose B = [bij ] is obtained from A = [aij ] by the interchange of the ℓth

and mth row. Then bℓj = amj , bmj = aℓj for 1 ≤ j ≤ n and bij = aij for 1 ≤ i 6= ℓ,m ≤ n, 1 ≤ j ≤ n.
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Let τ = (ℓ m) be a transposition. Then by Proposition 14.2.4, Sn = {σ ◦ τ : σ ∈ Sn}. Hence by the

definition of determinant and Example 14.2.14.2, we have

det(B) =
∑

σ∈Sn

sgn(σ)

n∏

i=1

biσ(i) =
∑

σ◦τ∈Sn

sgn(σ ◦ τ)
n∏

i=1

bi(σ◦τ)(i)

=
∑

σ◦τ∈Sn

sgn(τ) · sgn(σ) b1(σ◦τ)(1)b2(σ◦τ)(2) · · · bℓ(σ◦τ)(ℓ) · · · bm(σ◦τ)(m) · · · bn(σ◦τ)(n)

= sgn(τ)
∑

σ∈Sn

sgn(σ) b1σ(1) · b2σ(2) · · · bℓσ(m) · · · bmσ(ℓ) · · · bnσ(n)

= −
(
∑

σ∈Sn

sgn(σ) a1σ(1) · a2σ(2) · · · amσ(m) · · · aℓσ(ℓ) · · ·anσ(n)
)

as sgn(τ) = −1

= − det(A).

Proof of Part 2. Suppose that B = [bij ] is obtained by multiplying the mth row of A by c 6= 0. Then

bmj = c amj and bij = aij for 1 ≤ i 6= m ≤ n, 1 ≤ j ≤ n. Then

det(B) =
∑

σ∈Sn

sgn(σ)b1σ(1)b2σ(2) · · · bmσ(m) · · · bnσ(n)

=
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · camσ(m) · · · anσ(n)

= c
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · amσ(m) · · · anσ(n)

= c det(A).

Proof of Part 3. Note that det(A) =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n). So, each term in the expression

for determinant, contains one entry from each row. Hence, from the condition that A has a row consisting

of all zeros, the value of each term is 0. Thus, det(A) = 0.

Proof of Part 4. Suppose that the ℓth and mth row of A are equal. Let B be the matrix obtained

from A by interchanging the ℓth and mth rows. Then by the first part, det(B) = − det(A). But the

assumption implies that B = A. Hence, det(B) = det(A). So, we have det(B) = − det(A) = det(A).

Hence, det(A) = 0.

Proof of Part 5. By definition and the given assumption, we have

det(C) =
∑

σ∈Sn

sgn(σ)c1σ(1)c2σ(2) · · · cmσ(m) · · · cnσ(n)

=
∑

σ∈Sn

sgn(σ)c1σ(1)c2σ(2) · · · (bmσ(m) + amσ(m)) · · · cnσ(n)

=
∑

σ∈Sn

sgn(σ)b1σ(1)b2σ(2) · · · bmσ(m) · · · bnσ(n)

+
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · ·amσ(m) · · · anσ(n)

= det(B) + det(A).

Proof of Part 6. Suppose that B = [bij ] is obtained from A by replacing the ℓth row by itself plus k

times the mth row, for ℓ 6= m. Then bℓj = aℓj + k amj and bij = aij for 1 ≤ i 6= m ≤ n, 1 ≤ j ≤ n.



248 CHAPTER 14. APPENDIX

Then

det(B) =
∑

σ∈Sn

sgn(σ)b1σ(1)b2σ(2) · · · bℓσ(ℓ) · · · bmσ(m) · · · bnσ(n)

=
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · (aℓσ(ℓ) + kamσ(m)) · · · amσ(m) · · · anσ(n)

=
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · aℓσ(ℓ) · · · amσ(m) · · · anσ(n)

+k
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · amσ(m) · · · amσ(m) · · ·anσ(n)

=
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · aℓσ(ℓ) · · · amσ(m) · · · anσ(n) use Part 4

= det(A).

Proof of Part 7. First let us assume that A is an upper triangular matrix. Observe that if σ ∈ Sn

is different from the identity permutation then n(σ) ≥ 1. So, for every σ 6= Idn ∈ Sn, there exists a

positive integer m, 1 ≤ m ≤ n− 1 (depending on σ) such that m > σ(m). As A is an upper triangular

matrix, amσ(m) = 0 for each σ(6= Idn) ∈ Sn. Hence the result follows.

A similar reasoning holds true, in case A is a lower triangular matrix.

Proof of Part 8. Let In be the identity matrix of order n. Then using Part 7, det(In) = 1. Also,

recalling the notations for the elementary matrices given in Remark 2.4.14, we have det(Eij) = −1,

(using Part 1) det(Ei(c)) = c (using Part 2) and det(Eij(k) = 1 (using Part 6). Again using Parts 1, 2

and 6, we get det(EA) = det(E) det(A).

Proof of Part 9. Suppose A is invertible. Then by Theorem 2.7.7, A is a product of elementary

matrices. That is, there exist elementary matrices E1, E2, . . . , Ek such that A = E1E2 · · ·Ek. Now a

repeated application of Part 8 implies that det(A) = det(E1) det(E2) · · · det(Ek). But det(Ei) 6= 0 for

1 ≤ i ≤ k. Hence, det(A) 6= 0.

Now assume that det(A) 6= 0. We show that A is invertible. On the contrary, assume that A is

not invertible. Then by Theorem 2.7.7, the matrix A is not of full rank. That is there exists a positive

integer r < n such that rank(A) = r. So, there exist elementary matrices E1, E2, . . . , Ek such that

E1E2 · · ·EkA =

[

B

0

]

. Therefore, by Part 3 and a repeated application of Part 8,

det(E1) det(E2) · · · det(Ek) det(A) = det(E1E2 · · ·EkA) = det

([

B

0

])

= 0.

But det(Ei) 6= 0 for 1 ≤ i ≤ k. Hence, det(A) = 0. This contradicts our assumption that det(A) 6= 0.

Hence our assumption is false and therefore A is invertible.

Proof of Part 10. Suppose A is not invertible. Then by Part 9, det(A) = 0. Also, the product matrix

AB is also not invertible. So, again by Part 9, det(AB) = 0. Thus, det(AB) = det(A) det(B).

Now suppose that A is invertible. Then by Theorem 2.7.7, A is a product of elementary matrices.

That is, there exist elementary matrices E1, E2, . . . , Ek such that A = E1E2 · · ·Ek. Now a repeated

application of Part 8 implies that

det(AB) = det(E1E2 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B)

= det(E1E2 · · ·Ek) det(B) = det(A) det(B).
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Proof of Part 11. Let B = [bij ] = At. Then bij = aji for 1 ≤ i, j ≤ n. By Proposition 14.2.4, we know

that Sn = {σ−1 : σ ∈ Sn}. Also sgn(σ) = sgn(σ−1). Hence,

det(B) =
∑

σ∈Sn

sgn(σ)b1σ(1)b2σ(2) · · · bnσ(n)

=
∑

σ∈Sn

sgn(σ−1)bσ−1(1) 1 bσ−1(2) 2 · · · bσ−1(n) n

=
∑

σ∈Sn

sgn(σ−1)a1σ−1(1)b2σ−1(2) · · · bnσ−1(n)

= det(A).

�

Remark 14.3.2 1. The result that det(A) = det(At) implies that in the statements made in Theo-

rem 14.3.1, where ever the word “row” appears it can be replaced by “column”.

2. Let A = [aij ] be a matrix satisfying a11 = 1 and a1j = 0 for 2 ≤ j ≤ n. Let B be the submatrix

of A obtained by removing the first row and the first column. Then it can be easily shown that

det(A) = det(B). The reason being is as follows:

for every σ ∈ Sn with σ(1) = 1 is equivalent to saying that σ is a permutation of the elements

{2, 3, . . . , n}. That is, σ ∈ Sn−1. Hence,

det(A) =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n) =
∑

σ∈Sn,σ(1)=1

sgn(σ)a2σ(2) · · · anσ(n)

=
∑

σ∈Sn−1

sgn(σ)b1σ(1) · · · bnσ(n) = det(B).

We are now ready to relate this definition of determinant with the one given in Definition 2.8.2.

Theorem 14.3.3 Let A be an n× n matrix. Then det(A) =
n∑

j=1

(−1)1+ja1j det
(
A(1|j)

)
, where recall that

A(1|j) is the submatrix of A obtained by removing the 1st row and the jth column.

Proof. For 1 ≤ j ≤ n, define two matrices

Bj =









0 0 · · · a1j · · · 0

a21 a22 · · · a2j · · · a2n
...

...
. . .

...
...

an1 an2 · · · anj · · · ann









n×n

and Cj =









a1j 0 0 · · · 0

a2j a21 a22 · · · a2n
...

...
...

. . .
...

anj an1 an2 · · · ann









n×n

.

Then by Theorem 14.3.1.5,

det(A) =

n∑

j=1

det(Bj). (14.3.6)

We now compute det(Bj) for 1 ≤ j ≤ n. Note that the matrix Bj can be transformed into Cj by j − 1

interchanges of columns done in the following manner:

first interchange the 1st and 2nd column, then interchange the 2nd and 3rd column and so on (the last

process consists of interchanging the (j − 1)th column with the jth column. Then by Remark 14.3.2

and Parts 1 and 2 of Theorem 14.3.1, we have det(Bj) = a1j(−1)j−1 det(Cj). Therefore by (14.3.6),

det(A) =

n∑

j=1

(−1)j−1a1j det
(
A(1|j)

)
=

n∑

j=1

(−1)j+1a1j det
(
A(1|j)

)
.

�
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14.4 Dimension of M +N

Theorem 14.4.1 Let V (F) be a finite dimensional vector space and let M and N be two subspaces of V.

Then

dim(M) + dim(N) = dim(M +N) + dim(M ∩N). (14.4.7)

Proof. Since M ∩ N is a vector subspace of V, consider a basis B1 = {u1,u2, . . . ,uk} of M ∩ N.

As, M ∩ N is a subspace of the vector spaces M and N, we extend the basis B1 to form a basis

BM = {u1,u2, . . . ,uk,v1, . . . ,vr} of M and also a basis BN = {u1,u2, . . . ,uk,w1, . . . ,ws} of N.

We now proceed to prove that that the set B2 = {u1,u2, . . . ,uk,w1, . . . ,ws,v1,v2, . . . ,vr} is a basis

of M +N.

To do this, we show that

1. the set B2 is linearly independent subset of V, and

2. L(B2) =M +N.

The second part can be easily verified. To prove the first part, we consider the linear system of equations

α1u1 + · · ·+ αkuk + β1w1 + · · ·+ βsws + γ1v1 + · · ·+ γrvr = 0. (14.4.8)

This system can be rewritten as

α1u1 + · · ·+ αkuk + β1w1 + · · ·+ βsws = −(γ1v1 + · · ·+ γrvr).

The vector v = −(γ1v1 + · · · + γrvr) ∈ M, as v1, . . . ,vr ∈ BM . But we also have v = α1u1 + · · · +
αkuk + β1w1 + · · ·+ βsws ∈ N as the vectors u1,u2, . . . ,uk,w1, . . . ,ws ∈ BN . Hence, v ∈ M ∩N and

therefore, there exists scalars δ1, . . . , δk such that v = δ1u1 + δ2u2 + · · ·+ δkuk.

Substituting this representation of v in Equation (14.4.8), we get

(α1 − δ1)u1 + · · ·+ (αk − δk)uk + β1w1 + · · ·+ βsws = 0.

But then, the vectors u1,u2, . . . ,uk,w1, . . . ,ws are linearly independent as they form a basis. Therefore,

by the definition of linear independence, we get

αi − δi = 0, for 1 ≤ i ≤ k and βj = 0 for 1 ≤ j ≤ s.

Thus the linear system of Equations (14.4.8) reduces to

α1u1 + · · ·+ αkuk + γ1v1 + · · ·+ γrvr = 0.

The only solution for this linear system is

αi = 0, for 1 ≤ i ≤ k and γj = 0 for 1 ≤ j ≤ r.

Thus we see that the linear system of Equations (14.4.8) has no non-zero solution. And therefore,

the vectors are linearly independent.

Hence, the set B2 is a basis of M +N. We now count the vectors in the sets B1,B2,BM and BN to

get the required result. �
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14.5 Proof of Rank-Nullity Theorem

Theorem 14.5.1 Let T : V−→W be a linear transformation and {u1, u2, . . . , un} be a basis of V . Then

1. R(T ) = L(T (u1), T (u2), . . . , T (un)).

2. T is one-one ⇐⇒ N (T ) = {0} is the zero subspace of V ⇐⇒ {T (ui) : 1 ≤ i ≤ n} is a basis of

R(T ).

3. If V is finite dimensional vector space then dim(R(T )) ≤ dim(V ). The equality holds if and only if

N (T ) = {0}.

Proof. Part 1) can be easily proved. For 2), let T be one-one. Suppose u ∈ N (T ). This means that

T (u) = 0 = T (0). But then T is one-one implies that u = 0. If N (T ) = {0} then T (u) = T (v) ⇐⇒
T (u− v) = 0 implies that u = v. Hence, T is one-one.

The other parts can be similarly proved. Part 3) follows from the previous two parts. �

The proof of the next theorem is immediate from the fact that T (0) = 0 and the definition of linear

independence/dependence.

Theorem 14.5.2 Let T : V−→W be a linear transformation. If {T (u1), T (u2), . . . , T (un)} is linearly

independent in R(T ) then {u1, u2, . . . , un} ⊂ V is linearly independent.

Theorem 14.5.3 (Rank Nullity Theorem) Let T : V−→W be a linear transformation and V be a finite

dimensional vector space. Then

dim( Range(T )) + dim(N (T )) = dim(V ),

or ρ(T ) + ν(T ) = n.

Proof. Let dim(V ) = n and dim(N (T )) = r. Suppose {u1, u2, . . . , ur} is a basis of N (T ). Since

{u1, u2, . . . , ur} is a linearly independent set in V, we can extend it to form a basis of V. Now there exists

vectors {ur+1, ur+2, . . . , un} such that the set {u1, . . . , ur, ur+1, . . . , un} is a basis of V. Therefore,

Range (T ) = L(T (u1), T (u2), . . . , T (un))

= L(0, . . . ,0, T (ur+1), T (ur+2), . . . , T (un))

= L(T (ur+1), T (ur+2), . . . , T (un))

which is equivalent to showing that Range (T ) is the span of {T (ur+1), T (ur+2), . . . , T (un)}.
We now prove that the set {T (ur+1), T (ur+2), . . . , T (un)} is a linearly independent set. Suppose the

set is linearly dependent. Then, there exists scalars, αr+1, αr+2, . . . , αn, not all zero such that

αr+1T (ur+1) + αr+2T (ur+2) + · · ·+ αnT (un) = 0.

Or T (αr+1ur+1+αr+2ur+2+ · · ·+αnun) = 0 which in turn implies αr+1ur+1+αr+2ur+2+ · · ·+αnun ∈
N (T ) = L(u1, . . . , ur). So, there exists scalars αi, 1 ≤ i ≤ r such that

αr+1ur+1 + αr+2ur+2 + · · ·+ αnun = α1u1 + α2u2 + · · ·+ αrur.

That is,

α1u1 ++ · · ·+ αrur − αr+1ur+1 − · · · − αnun = 0.

Thus αi = 0 for 1 ≤ i ≤ n as {u1, u2, . . . , un} is a basis of V. In other words, we have shown that the set

{T (ur+1), T (ur+2), . . . , T (un)} is a basis of Range (T ). Now, the required result follows. �

we now state another important implication of the Rank-nullity theorem.
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Corollary 14.5.4 Let T : V−→V be a linear transformation on a finite dimensional vector space V. Then

T is one-one ⇐⇒ T is onto ⇐⇒ T has an inverse.

Proof. Let dim(V ) = n and let T be one-one. Then dim(N (T )) = 0. Hence, by the rank-nullity

Theorem 14.5.3 dim( Range (T )) = n = dim(V ). Also, Range(T ) is a subspace of V. Hence, Range(T ) =

V. That is, T is onto.

Suppose T is onto. Then Range(T ) = V. Hence, dim( Range (T )) = n. But then by the rank-nullity

Theorem 14.5.3, dim(N (T )) = 0. That is, T is one-one.

Now we can assume that T is one-one and onto. Hence, for every vector u in the range, there is a

unique vectors v in the domain such that T (v) = u. Therefore, for every u in the range, we define

T−1(u) = v.

That is, T has an inverse.

Let us now assume that T has an inverse. Then it is clear that T is one-one and onto. �

14.6 Condition for Exactness

Let D be a region in xy-plane and let M and N be real valued functions defined on D. Consider an

equation

M(x, y(x))dx +N(x, y(x))dy = 0, (x, y(x)) ∈ D. (14.6.9)

Definition 14.6.1 (Exact Equation) The Equation (14.6.9) is called Exact if there exists a real valued twice

continuously differentiable function f such that

∂f

∂x
=M and

∂f

∂y
= N.

Theorem 14.6.2 Let M and N be “smooth” in a region D. The equation (14.6.9) is exact if and only if

∂M

∂y
=
∂N

∂x
. (14.6.10)

Proof. Let Equation (14.6.9) be exact. Then there is a “smooth” function f (defined on D) such that

M = ∂f
∂x and N = ∂f

∂y . So,
∂M
∂y = ∂2f

∂y∂x = ∂2f
∂x∂y = ∂N

∂x and so Equation (14.6.10) holds.

Conversely, let Equation (14.6.10) hold. We now show that Equation (14.6.10) is exact. Define

G(x, y) on D by

G(x, y) =

∫

M(x, y)dx+ g(y)

where g is any arbitrary smooth function. Then ∂G
∂x =M(x, y) which shows that

∂

∂x
· ∂G
∂y

=
∂

∂y
· ∂G
∂x

=
∂M

∂y
=
∂N

∂x
.

So ∂
∂x (N − ∂G

∂y ) = 0 or N − ∂G
∂y is independent of x. Let φ(y) = N − ∂G

∂y or N = φ(y) + ∂G
∂y . Now

M(x, y) +N
dy

dx
=

∂G

∂x
+

[
∂G

∂y
+ φ(y)

]
dy

dx

=

[
∂G

∂x
+
∂G

∂y
· dy
dx

]

+
d

dy

(∫

φ(y)dy

)
dy

dx

=
d

dx
G(x, y(x)) +

d

dx

(∫

φ(y)dy

)

where y = y(x)

=
d

dx

(
f(x, y)

)
where f(x, y) = G(x, y) +

∫

φ(y)dy

�
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Hermitian, 17, 116
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Variation of Parameters, 164
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Orthogonal vectors, 89
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Picard’s Successive Approximations, 146

Picard’s Theorem

Existence and Uniqueness, 148
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Piece-wise Continuous Function, 191

Power Series, 175

Radius of Convergence, 176

Product of Matrices, 12

Projection Operator, 100

Properties of Determinant, 246

QR Decomposition, 97

Radius of Convergence, 176

Rank Nullity Theorem, 77, 251

Real Vector Space, 50

Row Equivalent Matrices, 23

Row rank of a Matrix, 31

Row Reduced Echelon Form, 28

Self-adjoint operator, 102

Separable Equations, 134

Sesquilinear Form, 121

Shift Operator, 214

Similar Matrices, 84

Spectral Theorem for Normal Matrices, 120

Subspace

Orthogonal complement, 102

Sum of Matrices, 11

Super Position Principle, 154
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Unitary Equivalence, 117

Vector

Coordinates, 66

Length, 88

Norm, 88

vector

angle, 89

Vector Space, 49

Cn: Complex n-tuple, 52

Rn: Real n-tuple, 51

Basis, 58

Complex, 50

Dimension, 61

Finite Dimensional, 59

Infinite Dimensional, 59

Real, 50

Subspace, 53

Vector Space:Dimension of M +N , 250

Vector Subspace, 53

Wronskian, 156

Zero Transformation, 70
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