NUMERICAL TECHNIQUES

K1 Level Questions

UNIT I

1	The Newton	Raphson	algorithm	for finding	the iterative	formula of	reciprocal	of N is
		1100011			*****	1011110100 01	1001010	01 1 10

- A. $x_{n+1}=x_n(2-Nx_n)$
- B. $x_{n+1}=x_n(2+Nx_n)$
- C. $x_{n+1}=x_n(4+Nx_n)$
- D. $x_{n+1}=x_n(4-Nx_n)$
- 2. The another name of bisection method

A. Bolzano's method

- B. Newton's method
- C. Method of falsi position
- D. Iteratation method
- 3. A better and closer approximation to the root can be found by using an iterative process called

A. Newton's Raphson method

- B. Bisection method
- C. Regula falsi method
- D. Iteration method
- 4. The linear equation is two solutions is

A. Two solution

- B. Three variables
- C. No variable
- D. One variable
- 5. The convergence of which of the following method is sensitive to starting value?
- A. Regula falsi method

B. Newton Raphson method

C. Gauss seidal method

\mathbf{r}	TA T	C .1
I).	None	of these

- 6. Newton-Raphson method is used to find the root of the equation $x^2 2 = 0$. If iterations are started from 1, then iterations will be
- A .Converge to -1
- B. Converge to $\sqrt{2}$
- C. Converge to $-\sqrt{2}$
- D. No Converge
- 7. Double (Repeated) root of 4x3-8x2-3x+9=0 by Newton-Raphson method is
 - A. 1.4
 - **B.1.5**
 - C.1.6
 - D.1.55
- 8. Newton Raphson method is applicable to the solution of
 - A. Both algebraic and transcental equation
 - B. Both algebraic and transcental equation and also used when the roots are complex.
 - C. Algebraic only
 - D. Transcendental equation only
- 9. Which one of the following functions is transcendental?

A.
$$a + be^x + csinx$$

B.
$$x^2 - 5x + 6$$

C.
$$x^2 + 4$$

D.
$$3x^2 + 7x$$

- 10.Order of convergence of Newton- Raphson method is _____
- A.1
- **B.2**
- C.3
- D.5

UNIT II

1	(1 +	Δ)(1	$-\nabla$)	=	
---	------	--------------	-------------	---	--

A. 2

B. 1

C. δ^2

D. Δ

2. Δ is called _____ operator.

A. Shift

B. Central difference

C. Forward difference

D. Backward difference

A. $log(1 - \Delta)$

B. $\log(1+\Delta)$

 $C. - \log(1 + \Delta)$

D. $-\log (1 + \nabla)$

4. The first difference of a constant is _____

A. 1

B. 3

C. 2

D. 0

5. If $\Delta f(x) = f(x+h) - f(x)$, then a constant k, Δk equals

A.1

B.0

C. f(k)-f(0)

D. f(x+k)-f(x)

6. Let h be the finite difference, then forward difference operator is defined by _____.

A. f(x) = f(x-h)

B. f(x) = f(x-h)-f(x)

C. f(x) = f(x+h)

D. f(x) = f(x+h)-f(x)

7. The value of $E\nabla = ----$

A. *E*

_	
K.	Λ

 $C.\nabla$

D.1

8. The displacement operator is also known as ______.

A. Shift operator

- B. Mean operator
- C. Central difference operator
- D. Difference operator
- 9. Say True or False: $1 + \Delta = (1 \nabla)^{-1}$

A. True

B. False

10. To find the derivative at the end of the table we use _____ formula.

A. Newton's forward interpolation formula

B. Newton's backward interpolation formula

- C. Lagrange's interpolation formula
- D. Inverse Lagrange's interpolation formula

UNIT III

1.
$$E =$$

A.
$$1-\nabla$$

B.
$$1 + \Delta$$

C.
$$(1-\nabla)^{-1}$$

D.
$$(1+\nabla)^{-1}$$

2.
$$(1 + \Delta)(1 - \nabla) =$$

A. 2

C.
$$\delta^2$$

D.
$$\Delta$$

3. The Symbol of Forward Operator is

- Α. Δ
- **B.** δ^2
- C. $1-\nabla$
- D. None

4.	If interpolation is required for the range $\frac{-1}{2} < u < \frac{1}{2}$ then we use
	Reccal's formula

A. Bessel's formula

- B. Gauss backward formula
- C. Gauss forward formula
- D. Stirling's formula
- 5. In Newton's forward interpolation formula u = _____

A.
$$\frac{x - x_0}{h}$$

B.
$$\frac{x + x_0}{h}$$

C.
$$\frac{x-x_n}{h}$$

D.
$$\frac{x + x_n}{h}$$

Answer: A

6. In Newton backward interpolation formula u = _____

$$x-x_0$$

$$\underline{x + x_0}$$

B.
$$h$$

$$\frac{x-x_n}{x}$$

C.
$$h$$

$$\frac{x + x_n}{h}$$

D.
$$h$$

Answer: C

7. Interpolation means

A. Adding new data points

- B. Only aligning old data points
- C. Only removing old data points
- D. None of the mentioned
- 8. Interpolation provides a mean for estimating functions
- A. At the beginning points
- B. At the ending points
- C. At the intermediate points
- D. None of the mentioned
- 9. Relation between Δ and E is _____

A.
$$E = 1 + \Delta$$

B.
$$E = 1 - \Delta$$

C.
$$E = 1 + \nabla$$

D. E = 1 - V Answer: A
UNIT IV
1. In Simpson's $3/8$ rule $y(x)$ is polynomial of degree
A.1
B.2
C.3
D.4
2. Runge-Kutta method is better than Taylor's method because
A. it does not require prior calculations of higher derivatives
B. it require at most first order derivatives
C. it require prior calculations of higher derivatives
D. all the above
 3.The highest order of polynomial integrand for which Simpson's 1/3 rule of integration is exact is A. first B. second C. third D. fourth
4. When does Simpson's rule give exact result
 A. if the entire curve y =f(x) is itself a hyperbola. B. if the entire curve y =f(x) is itself a parabola. C. if the entire curve y =f(x) is itself a ellipse. D. if the entire curve y =f(x) is itself a circle. 5. What is the order of error in trapezoidal formula? A. h B. h³ C. h² D. h⁴
6. Taylor series method will be very useful to give some for powerful numerical methods.
A. Initial valueB. Finial valueC. Initial starting value

D. Middle value

7. $y_{n+1} = y_n + h f(x_n, y_n)$ is the iterative formula for

- A. Euler's method
- B. Taylor's method
- C. Adam's method
- D. Milne's method
- 8. Which of the following method is called step by step method
 - A. Taylor's method
 - B. RK method
 - C. Milne's method
 - D. Newton's method
- 9. Simpsons one-third rule will give exact result, if the entire curve y = f(x) is itself a _____
- A. Ellipse
- B. Circle
- C. Parabola
- D. Hyperbola

$$\int_{a}^{b} y dx = \frac{h}{2} (A + 2B)$$
where A is

A. Sum of the even ordinates

- B. Sum of the odd ordinates
- C. Sum of the all ordinates
- D. All these above

UNIT V

$$\int_{a}^{b} y dx = \frac{h}{3} \left[y_1 + 4(y_2 + y_4 + \dots + y_{2n}) + 2(y_3 + y_5 + \dots + y_{2n-1}) + y_{2n+1} \right]$$

- 1. is
 - A. Trapezoidal rule
 - **B.** Simpson's $\frac{1}{3}$ rd rule
 - C. Romberg rule
 - D. Simpson's 3/8 th rule

- 2. Whenever Trapezoidal rule is applicable, Simpson rule can be applied.
 - A. True
 - B. False
- 3. $\frac{1}{h^2} [\nabla^2 y_n + \nabla^3 y_n + \frac{11}{12} \nabla^4 y_n + \dots] = \underline{\qquad}$
 - A. $\left(\frac{dy}{dx}\right)x = x_0$
 - $B. \left(\frac{d^2y}{dx^2}\right)x = x_0$
 - C. $\left(\frac{dy}{dx}\right)x = x_n$
 - $\mathbf{D.} \ \left(\frac{d^2y}{dx^2}\right)x = x_n$

ANSWER: D

- 4. By Trapezoidal rule $\int_{0}^{6} \frac{1}{1+x} dx$ by dividing the range into six equal parts is=
- A.1.9459
- B.1.9587
- C.1.9666

D.2.0214

- 5. In Euler's method, if h is small, the method is too slow and if h is large, it gives ------ value.
 - (a) Inaccurate
 - (b) Accurate
 - (c) Indefinable
 - (d) Zero
- 6. The improved Euler method is based on the average of-----
 - (a) Slopes
 - (b) Points
 - (c) Curve
 - (d) None of these
- 7. The modified Euler method is based on the average of-----
 - (a) Curve

- (b) Slopes
- (c) Points
- (d) All the above
- 8. Runge-kutta formulas involve the computation of f(x,y) at various points instead of calculation of-----order derivatives of f(x,y)
 - (a) Lower
 - (b) Higher
 - (c) Middle
 - (d) Neither (a) or (b)
- 9. Euler's modified formula is a particular case of -----order Runge-kutta method.
 - (a) Third
 - (b) First
 - (c) Fourth
 - (d) Second
- 10. The numerical solution of a first order differential equation will give a result is
 - (a) A set of tabulated values of x and y
 - (b) Value of x and y
 - (c) Zero
 - (d) Both (a) and (b)

Numerical Techniques

K2 Level Questions

Unit 1

1. Using Newton-Raphson method, find a root correct to three decimal places of the equation $\sin x = 1-x$.

Answer: **0.511**

2. Using Bisection method, negative root of x3 - 4x + 9 = 0 correct to three decimal places is

Answer: -2.706

3. Newton-Raphson method of solution of numerical equation is not preferred when

Answer: The graph of f(x) is nearly horizontal where it crosses the x-axis

4. Which of the following statements applies to the bisection method used for finding roots of functions?

Answer: Guaranteed to work for all continuous functions

5. Which of the following method gives the comparatively faster conversion?

Answer: Newton Raphson method

6. In bisection method while taking the initial value for the two points which of the following condition

Answer: Both must give the opposite sign

7. Newton Raphson method has which of the following convergence?

Answer: Linear convergences

8. x^2 -3cos x+ xe is which of the following equation?

Answer: Transcendental equation

9. If f(x) is continuous in the interval (a, b) and f(a) and f(b) are opposite signs, the equation is f(x) = 0will have positive root is

Answer: At least one real

10.A linear equation is one variable has

Answer: Only one solution

UNIT II

1. In Newton Raphson method, the error at any stage is proportional to

ANSWER: Square of the error.

2.If $f(x) = x^3 - 3x^2 + x + 1 = 0$ then a root lies between

ANSWER: 1.5 and 2

3. The another name of iteration method is

ANSWER: Method of successive approximation

4.
$$f(x) = e^{-x} - \sin^2 x$$
 is a

ANSWER: Transcendental equation

$$5.E - \Delta =$$

ANSWER: 1

6.
$$\Delta^n x^{(n)} =$$

ANSWER: n!

7.
$$\nabla y_n =$$

ANSWER: $y_n - y_{n-1}$

8.
$$e^{hD} =$$

ANSWER: $1 + \Delta$

ANSWER: $1 + \Delta$

$$_{10.} \Delta^n f(x) = \underline{\hspace{1cm}}$$

ANSWER: $a_0 n! h^n$

UNIT III

1.Backward substitution method is applied in

ANSWER: Gauss Elimination method

- 2. Every homogeneous system of linear equation is consistent and this solution is called ____ ANSWER: **Trivial solution**
- 3. The number 0.0009875 when rounded off to three significant digits ANSWER: 0.000988
- 4. If a polynomial of degree n has more than n zeros, then the polynomial is ANSWER: **Quadratic**

5. The process of finding the values inside the interval(X0, Xn) is called

ANSWER: Interpolation

6. Newton forward interpolation used for

ANSWER: Equal Intervals

7. Taylor series method will be very useful to give some _____ for powerful numerical methods.

ANSWER: Middle value

8. Polynomials are the most commonly used functions

ANSWER: Evaluate, differentiate and integrate

9.
$$\Delta - \nabla =$$
 ANSWER: $\Delta \nabla$

10.
$$\nabla y_n = \underline{\hspace{1cm}}$$

ANSWER:
$$y_n - y_{n-1}$$

UNIT IV

1.
$$\Delta(af(x) + b\phi(x)) =$$

ANSWER: $a\Delta f(x) - b\Delta \phi(x)$

2. The order of the error of Simpson 1/3 rule is higher than that of Trapezoidal rule.

ANSWER: True

3. Match the following:

A. Newton-Raphson

1. Integration

B. Runge-kutta

2. Root finding

C. Gauss-seidel

3. Ordinary Diferential Equations

D. Simpson's Rule

4. Solution of system of Linear Equations

ANSWER: 2341

4. Which of the following formulas is a particular case of Runge-Kutta formula of the second order?

ANSWER: Euler's modified

5. The order of error s the Simpson's rule for numerical integration with a step size h is

ANSWER: h4

6. In case of Newton Backward Interpolation Formula which equation is correct to find u?

ANSWER: $\mathbf{x} - \mathbf{x}\mathbf{n} = \mathbf{u}\mathbf{h}$

7.Simpson's 1/3rd rule is used only when _____

ANSWER: n is even

8. While evaluating the definite integral by Trapezoidal rule, the accuracy can be increased by taking ____

ANSWER: Large number of sub-intervals

9. In application of Simpson's 1/3rd rule, the interval h for closer approximation should be _____

ANSWER: Even

10. While applying Simpson's 3/8 rule the number of sub intervals should be _____

ANSWER: multiple of 3

UNIT V

1. The numerical solution of a first order differential equation will give a result is

ANSWER: Value of x and y

2. A series for y In terms of x, from which the values of y can be obtained by

ANSWER: Direct substitution

3. Euler algorithm formula is also be written as

ANSWER: Y(x+y)=y(x)+hf(x,y)

4. Euler's improved formula is

ANSWER: $Y_{x+1}=y_x+\frac{1}{1}h\{f(x_m,y_m)+f[x_m+h,y_m+hf(x_m,y_m)]\}$

5. Euler's modified formula is

ANSWER: $Y_{x+1}=y_x+h[f(x_m+\frac{1}{y_m+\frac{1}{y_m}},y_m+\frac{1}{y_m}]$

6. Third order Runge - Kutta method

ANSWER: $\Delta y = \frac{1}{(k_1 + 4k_2 + k_3)}$

7. Fourth order Runge - Kutta method

Answer: $\Delta y = \frac{1}{(k_1 + 2k_2 + 2k_3 + k_4)}$

8. By Trapezoidal rule $\int_{0}^{\infty} \frac{1}{1+x} dx$ by dividing the range into six equal parts is=

Answer: 2.0214

9.
$$\frac{1}{h^2} [\nabla^2 y_n + \nabla^3 y_n + \frac{11}{12} \nabla^4 y_n + \dots] = \underline{\qquad}$$

$$\left(\frac{d^2y}{dx^2}\right)x = x_n$$

$$\int_a^b ydx = \frac{h}{3} \left[y_1 + 4(y_2 + y_4 + \dots + y_{2n}) + 2(y_3 + y_5 + \dots + y_{2n-1}) + y_{2n+1} \right]$$
is

Answer: **Simpson's** $\frac{1}{3}$ **rd rule**

Numerical Techniques

K3 Level Questions

UNIT I

- 1. Find a real root of the equations $x^3+x^2-100=0$.
- 2. Find the negative roots of the equations $x^3-2x+5=0$.
- 3. Determine the root of xe^x-3=0 correct to 3 decimal places using the method of false position.
- 4. Solve x^3 -x-1=0 by using bisection method.
- 5. Solve $x^3-x^2-2=0$ by regular falsi method.
- 6. Find the root of xe^x-2=0 which lies between 0 and 1 to 4 decimal places by using falsi position method.
- 7. Find by Newton Raphson method the real root of 3x-cosx-1=0.
- 8. Find by Newton's method correct to 2 decimal places the negative root of the equation x^3 -21x+35=0.
- 9. 2x-3sinx-5=0 correct to 6 decimal places by Newton's method
- 10. cosx=3x-2 solve by using the method of Iteration.

UNIT II

1. In the table below, estimate the missing value

X	0	1	2	3	4
у	1	2	4	-	16

Explain why its differs from $2^3=8$.

2. The following data gives the melting point of an alloy of lead and zinc, where t is the temperature in deg-c and p is the percentage of lead in the alloy.

p	40	50	60	70	80	90
t	184	204	226	250	276	304

3. Using Newton's forward interpolation formula find the value of y when x=21 from the following tabulated values of the functions.

x 20 23 26 2	29
--------------	----

	у		0.3420		0.3907		0.4384	0.4	848	
4.	Using N	ewton's f	ormula, find	d the value	e of f(1.	5) from (2	the followin		4	
	f(x)		858.3	869.6		880.9	892.:		903.6	
5.	•	ewton's f		•	x=27 fro		ollowing dat		20	
	x y		10 35.4	15 32.2		2029.1	25 26.6		30 23.1	
6. Using the polynomial of the third degree complete the record given below of the exof a certain commodity during 5 years.							the export			
	Yea		1917	1918		1919	1920) <u> </u>	1921	
	Exp	ort	443	384		-	397	2	167	
7.	Find the x	missing v	value from t		ing data 6	8	1	0		
	Y	5.6	8.6		13.9	-	3	5.6		
8.	Find the 15.75	missing v	value in the -	-	22.75	43.3	2			
	9. Derive the Equation For Newton's forward interpolation10. Derive the Methodology of Newton Raphson method									
UNIT	TIII									
1. 2. 3.		e maxima x and d ² y	and minim				s of x and y	7		
	X	1.00	1.05	1.10	1.	15	1.20	1.25	1.30	
	y	1.0000	1.02470	1.0488	1.0	07238	1.09544	1.11803	1.14017	

4.	Find the fi	irst two deri 50	vatives of	f ∛x at x=50 52	from the ta	ble: 54	55	56
	∛x	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259
5.	Find the v x Sin x	alues of cos 1.70 0.9916		ng the values 1.74 0.9857	s given in th 1.78 0.9781	e table belov 1.82	1.	86 9584
6.		following d			4	7		9
	F(x)	4	26	58	1	12	166	922
7.	From the differential θ in degree	ntion	e table giv	ven below, fi	ind the value	es of sec 31°	using Numo	erical
	${ m Tan} heta$	0.6	8008	0.624	9	0.6494	0.67	45
Hint:	$d/d(\tan\theta)=$	$= \sec^2 \theta$						
8.		-	gives con	responding v	alues of pre	essure and sp	ecific volum	ne of a
	superheate v	ed stream.		4	6	8	1	0
	p	105		42.7	25.3	16.7	1	3
a) Find the	rate of cha	nge of pre	essure with r	espect to vo	lume when	v=2.	
9.		wing indicaton when t=1		ocity 'v' of a	body during	g a time 't' s	pecified. Fir	nd its
	t	1.0		1.1	1.2	1.3	1.	.4
	V	43.1		47.7	52.1	56.4	60	0.8
10	The nonul	ation of a co	ertain tow	n is shown i	n the follow	zing table		
10.	Years	1931		1941	1951	1961	19	971

Population in 40.62 60.80 79.95 103.56 132.65 thousand Find the rate of growth of the population in 1961. **UNIT IV** 1. Write the notes of Simpson's rule 2. Derive Romberg's method 3. Write the notes of trapezoidal rule. 4. Using the trapezoidal rule, evaluate dx from the following table: X 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Y 4.32 1.23 1.53 2.03 6.25 8.36 10.23 12.45 5. Use the trapezoidal rule to evaluate the integral of y(x) from 0 to $\overline{1}$ from the data below. X 0 $2\prod/12$ $3\prod/12$ $4 \prod / 12$ 6∏/12 $\prod /12$ 5∏/12 Y .00000 .70711 .86603 .25882 .50000 .96593 1.00000 6. Use the trapezoidal rule to evaluate $\frac{x}{y}$ dividing the interval into 5 equal parts 7. Using a Simpson's rule, evaluate $\int \sin 3x \, dx$ from the following data: X 0 $\prod /4$ $\prod /2$ $\prod /4$ П 0 .7071 0 1.000 .7071 sinx 8. The following table gives the values of f(x) at equal interval of x X 0 0.5 1.0 2.0 1.5

F(x)

Evaluate

0.399

0.352

x dx using Simpson's rule.

0.242

0.129

0.054

- 9. Find an approximate value of $\log_e 5$ by calculating to 4 decimal places by Simpson's rule the integral $\frac{x}{x}$ dividing the range into 10 equal parts.
- 10. Numerically integrate e^{-x} between $0 \le x \le 1$ in steps of 0.1 by each of the following (a) trapezoidal rule

UNIT V

- 1. Define Runge-kutta method.
- 2. Using euler's improved method, find the value of y when x=0.1 given that y(0)=1 and $y^1=x^2+y$
- 3. Using $dy/dx=x^2+y$, y(0)=1, determine y(0.02), y(0.04) and y(0.06) using euler's modified method.
- 4. Using euler's method and its modified form, obtain y(0.2), y(0.4), y(0.6) correct to three decimal places if y satisfies.

$$Dy/dx = y-x^2$$
, $y(0)=1$

- 5. Using modified method of Euler: solve dy/dx=1-y, y(0)=0 in the range $o \le x \le 0.3$ taking h=0.1
- 6. Derive the improved euler's method and the modified euler's method from the Runge-kutta method of second order.
- 7. Prove that the solution for the equation dy/dx=y, y(0)=1 yields $y_m=[1+h=1/2h^2]^2$, using second order Runge-kutta method.
- 8. Evaluate the solution at x=0.1, 0.2, 0.3 of the following problem by second order Runge-kutta method.

$$Y^1=1/2(1+x)y^2$$
, $y(0)=1$

9. Tabulated by Runge-kutta method the numerical solution of

$$dy/dx = 1 + y^2$$
 with y(0)=0

And the step size h=0.2 for x=0, 0.2, 0.4, 0.6, 0.8, 0.10.

10. Given $d^2y/dx^2-y^3=0$, y(0)=10, $y^1(0)=5$ evaluate y(0.1) using Runge-kutta method.

Numerical Techniques

K4 Level Questions

UNIT I

- 1. Find the roots of the equation $x^3-4x-9=0$ correct to three decimal places by using bisection method
- 2. Find the real roots of the equation $\rho \rho^3/3 + \rho^5/10 \rho^7/42 + \rho^9/216 ... = 0.4431135$
- 3. compute the real roots of xlog10x-1.2=0 correct five decimal places (regular falsi method).
- 4. Derive Bisection method.
- 5. Using Newton-Raphson method establish the formula $X_{n+1}=1\setminus 2(x_n+N\setminus X_n)$ to calculate the square root of N. Hence find the square root of 5 correct to 4 decimal places.

UNIT II

- 1. State and prove Newton's forward interpolation formula.
- 2. State and prove Newton's backward interpolation formula.
- 3. The following are data from the steam table

Temperature	140	150	160	170	180
$({}^{\circ}\!$					
Pressure	3.685	4.854	6.302	8.076	10.225
$(kgf cm^2)$					

Using Newton's formula find the pressure of the steam for a temperature of 142.

4. Estimate exp (1.85) from the following table

-		()		8				
	X	1.7	1.8	1.9	2.0	2.1	2.2	2.3
	Exp(x)	5.474	6.050	6.686	7.389	8.166	9.025	9.974

5. Given μ_0 =-4, μ_1 =-2, μ_4 =220, μ_5 =546, μ_6 =1148 find μ_2 and μ_3 .

UNIT III

- 1. State and prove Newton's forward difference formula.
- 2. State and prove Newton's backward difference formula.
- 3. From the following table of values of x and y, find dy/dx and d^2y/dx^2 for x=1.05

X	1.00	1.05	1.10	1.15	1.20	1.25	1.30
y	1.00000	1.02470	1.04881	1.07238	1.09544	1.11803	1.14017

4. The following table gives the results of an observation. θ is the observed temperatu degrees centigrade of a vessel of cooling water; t is the time in minutes from the beginning of observation:							
	T	1	3	5	7	9	
	θ	85.3	74.5	67.0	60.5	54.3	
Find approximately the rate of cooling when t=8 using Newton's backward formula.							
5. From the following table, find the value of x for which y is minimum and find this of y						l find this value	
	X	.60	.65		.70	.75	
	Y	.6221	.6155		.6188	.6170	
UNIT	IV						
1. Divi	iding the range	into 10 equal p	arts, find the ap	proximate	e value of $\int^{\Pi} \sin x$	<i>dx</i> by (a)	
Trapez	zoidal rule, (b)	Simpson's rule					
	Romberg's me	-	$e \intdx co$	rrect to 4	decimal places. He	ence deduce an	

4. Evaluate $\int -dx$ correct to three decimal places by trapezoidal rule with h=.5, .25, .125. Use Romberg's integration to get an accurate value for the definite integral. Hence find the value of

5. Apply Simpson's rule to evaluate \(\) — two decimal places, by dividing the range into 4

3. Solve the equation dy/dx=1-y with the initial condition x=0, y=0, using euler's algorithm and tabulated the solutions by euler's improved method and euler's modified method. Also compare

4. Apply the fourth order Runge-kutta method, to find an approximate value of y when x=0.2,

5. Solve the system of differential equations dy/dx=xz+1, dy/dx=-xy for x=0.3(0.3)0.9

3. Define Simpson's rule.

1. Derive improved Euler's method.

with the exact solution.

given that $y^1=x+y$, y(0)=1.

2. Derive second order Runge-kutta method.

log_e2.

equal parts.

UNIT V