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Formal Power Series



Lecturel

I ntroduction

In additive number theory we make reference to facts aboditiad in 1
contradistinction to multiplicative number theory, theufmations of which
were laid by Euclid at about 300 B.C. Whereas one of the galaioncerns
of the latter theory is the deconposition of numbers intongrifactors, addi-
tive number theory deals with the decomposition of numb®is summands.

It asks such questions as: in how many ways can a given natunaber be
ecpressed as the sum of other natural numbers? Of coursed¢bengostion
into primary summands is trivial; it is therefore of interés restrict in some
way the nature of the summands (such as odd humbers or eveébensior per-
fect squares) or the number of summands allowed. These astigpus typical
of those which will arise in this course. We shall have oama$d study the
properties ofV-functions and their numerous applications to number theor
in particular the theory of quadratic residues.

For mal Power Series

Additive number theory starts with Euler (1742). His tookyewer series.
His starting point was the simple relatiaff. X" = xX™" by which multiplica-
tion of powers ofk is pictured in the addition of exponents. He therefore found
it expedient to use power series. Compare the situation itipticative num-
ber theory; to deal with the produeim, one uses the equatiofim® = (nm)*,
thus paving the way for utilising Dirichlet series.

While dealing with power series in modern mathematics ots gsies- 2
tions about the domain of convergence. Euler was inteltigaough not to ask
this question. In the context of additive number theory posegies are purely
formal; thus the series Q! 1! x + 2! X% + - - - is a perfectly good series in our
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theory. We have to introduce the algebra of formal poweresein order to
vindicate what Euler did with great tact and insight.

A formal power series is an expressian+ a;x + ax> + ---. Where the
symbolxis anindeterminate symboli.e., itis never assigned a nicalemlue.
Consequently, all questions of convergence are irrelevant

Formal power series are manipulated in the same way as oydioaver
series. We build an algebra with these by defining additiahraaltiplication
in the following way. If

A:ianx”, B:ibnx“,
n=0 n=0

we defineA + B = C whereC = i cyX" andAB = D whereD = i dn X",

n=0 n=0
with the stipulation that we perform these operations irhsaigvay that these
equations are true modudd', whatever beN. (This reauirement stems from
the fact that we can assign a valuation in the set of poweeséy defining

the order ofA = DZO] a,x" to bek wherea is the first non-zero cdcient).

n=0
Thereforec, andd, may be computed as for finite polynomials; then

Ch = an + by,
dn = agbn + ai1bn-1 + - - - + an-1b1 + anbo.
A = B means that the two series are equal term by téym,0 means that

all the codficiants ofA are zero. Itis easy to verify that the following relations3
hold:

A+B=B+a AB=BA
A+(B+C)=(A+B)+C A(BC) = (AB)C
A(B+C)=AB+AC

We summarise these facts by saying that the formal powezsséirm a
commutative ring. This will be the case when the ficents are taken from
such aring, eg. the integres, real numbers, complex numbers

The ring of power series has the additional property thakthee no divi-
sors of zero (in case the ring of dtieients is itself an integrity domain), ie. if
A, B =0, eitherA = 0 or B = 0. We see this as follows: Suppo&e- 0,B = 0.
Let ax be the first non-zero cdigcient in A, andb; the first non-zero cdaicient

in B. LetAB= OZO] dnX"; then
n=0

Oksj = (aobk+j +oot ak—lbj+l) +ab; + (ak+lbj—1 ot ak+jb0).
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In this expression the middle term is not zero while all theeotterms are
zero. Thereforel., ; # 0 and soA.B # 0, which is a contradiction.

From this property follows the cancellation law:

If A+ oandAB = AC, thenB = C. For,AB- AC = A(B- C). Since
A#0,B-C=o00rB=C.

If the ring of codficients has a unit element so has the ring of power series.

As an example of multiplication of formal power series, let, 4

A=1-x and B=1+X+xX+---

A= Zanx”, whereag = 1,8 = -1, anda, = 0forn > 2,
B=) bX', whereb,=1n=0123,...

C= Z chX", where ¢, = agh, + aibn_1 + - - - + anbo;

then
Co=abp=1¢ch=b,-br1=1-1=0n=1,23,...;
so A-XA+x+X+---)=1

We can very well give a meaning to infinite sums and productsitain
cases. Thus

A1+A2+---= B,
C.C,---=D,
both equations understood in the sense mortyjso that only a finite number

of A’sor (C - 1)'scan contribute as far ad'.
Let us apply our methods to prove the identity:

1+ X+ X+ +- =1+ XA+ x)A+xH1+x8)---
Let

C=1+XA+x)A+xY...
1-XC=A-x)A+X)A+x)A+xY...
=(1-x)A+x)1+xY...
=(1-xH1+xY...
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Continuing in this way, all powers of on the right eventually disappear,
and we have (2xX)C = 1. However we have shown that{&)(1+X+X?+---) =
1, therefore (1 X)C = (1- X)(1+ x+ x> +---), and by the law of cancellation,
C=1+x+x+--- which we were to prove.

This identity easily lends itself to an interpretation whgves an example 5
of the application of Euler's idea. Once again we stress itmple fact that
X1 x™ = XM We have

1+ X+ X+ +- =1+ XA+ XA+ xH1+x8)---

This is an equality between two formal power series (oneasgnted as a
product). The coicients must then be identical. The @idgent of X" on the
right hand side is the number of ways in whiclcan be written as the sum
of powers of 2. But the cdBcient of X" on the left side is 1. We therefore
conclude: every natural number can be expressed in one dandrmaway as
the sum of powers of 2.

We have proved that

1+ X+ 4+ +- =1+ XA +x)A+xY---

If we replacex by x® and repeat the whole story, modwd", the codi-
cients of these formal power series will still be equal:

1+ +X8+3+- =L+ X)L+ X)L+ x4+ ..
Similarly
1+ X +x°+ 3%+ = (1+ X)L+ ¥ ([A + X+ - -

We continue indefinitely, replacingby odd powers ok. It is permissible
to multiply these infinitely many equations together, beesany given power
of x comes from only a finite number of factors. On the left appears

l_[(1+xk+x2k+x3k+---).

k odd

On the right side will occur factors of the form @ xV). But N can be
written uniquely as<!.mwheremis odd. That means for eadh 1+ xN will
occur once and only once on the right side. We would like toresme the
factors to obtain (% x)(1 + x2)(1+ X3) - - -

This may be done for the following reason. For adythat part of the 6
formal power series up ta" is a polymial derived from a finite number of
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factors. Rearranging the factors will not change the patyiah But since this
is true for anyN, the entire series will be unchanged by the rearrangement of
factors. We have thus proved the identity

l—[(l+xk+xzk+xsk+_..)=ﬁ(1+x”) 1)
n=1

k odd

This is an equality of two formal power series and could betwnii an X"
n=0

= i b,x". Let us find what, andb,, are. On the left we have
n=0

A+ x4+ 3t A+ B+ x4 x33 400

XA+ X+ 435 4.

x" will be obtainded as many times asan be expressed as the sum of odd
numbers, allowing repetitions. On the right side [df (1), vewdn (1+ x)(1 +
x?)(1 + x3) - - - x" will be obtained as many times asan be expressed as the
sum of integers, no two of which are equal.

a, andby, are the number of ways in whiehcan be expressed respectively
in the two manners just stated. Bat = b,. Therefore we have proved the
following theorem of Euler:

Theorem 1. The number of representations of an integer n as the sum-of dif
ferent parts is the same as the number of representationasfime sum of odd
parts, repetitions permitted.

We give now a dferent proof of the identity[{1).

ﬁ(l +X") ﬁ(l -x") = ﬁ(l - XML+ x") = ﬁ(l —x2.
n=1 n=1 n=1 n=1

Again this interchange of the order of the factors is peribissFor, upto 7
any given power ok, the formal series is a polynomial which does not depend
on the order of the factors.

ﬁ(l +x") ﬁ(l -x") = ﬁ(l - X,
n=1 n=1 n=1

ﬁ(l +xX") ﬁ(l - x1) ﬁ(l -x") = ﬁ(l —x2).
n=1 n=1 n=1 n=1
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Now 10'0[ (1-x2" # 0, and by the law of cancellation, we may cancel it from
n=1
both sides of the equation obtaining,

ﬁ(l +X") ﬁ(l x> =1

n=1 n=1
Multiplying both sides by
ﬁ (1 + L@ sl )

n=1
ﬁ (1+x") ﬁ (1 + x2”’1)
n=1 n=1

(1+ -1 | y2@n-1) )

— s

1]
=

n

= ﬁ(1+ X4 P L)
=1

>

For the same reason as before, we may rearrange the orderfatthrs on
the left.

ﬁ 1+ x" ﬁ (1 + in-l) (1 R GG Gl I )
n=1 n=1

:ﬁ(1+x2”‘1+x2(m‘1)+~--).

n=1

However,

ﬁ (145 (1451 4+ X2E D ) =
n=1

because we have shown that{(%)(1+ x+ x?> + - - -) = 1, and this remains true
whenx is replaced by?**. Therefore the above equation reduces to

ﬁ(1+x“)ﬁ5(1+x2“‘1+x2(2’“1)+---)= 1_[ (1+x”+x2”+x3”+---)
n=1 n=1

n odd

which is the identity({L).

Theorem[1 is easily verified for 10 as follows:10;9, 2+8, 3+7, 4+6, 8
1+2+7, 1+3+6, 1+4+5, 2+3+5, 1+2+3+4 are the unrestricted partitions. Par-
titions into odd summands with repetitions are
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1+9, 3+7, 5+5, 1+1+1+7, 1+1+3+5, 1+3+3+3, 1+1+1+1+1+5,
1+1+1+1+3+3, 1+1+1+1+1+1+1+3, 1+ 1+1+1+1+1+1+1+1+1.

We have ten partitions in each category.

It will be useful to extend the theory of formal power seriesatlow us to
find the reciprocal of the serieg + a;x + a;x? + --- where we assume that
ap # 0. (The codficients are now assumed to form a field). If the series

1
b0+b1X+b2X2+---= > s
Ao+ X+ axXs+---

we would havedp + a;x + axx? + - - - )(bp + by X + bax? + - - -) = 1. This means
thataghg = 1 and sinceag # 0, bg = 1/a5. All other codficients on the left
vanish:

aoby +agbp = 0,
aobz + a]_bl + a2b0 =0

We may now findb; from the first of these equations since all &is and
by are known. Therb, can be found from the next equation, sirtmewill
then be known. Continuing in this, manner all thes can be computed by
successively solving linear equations since the new unkrafvany equation
is always accompanied by, # 0. The uniquely determined formal series
bo + b1X+ box? + - -+ is now called the reciprocal @ + ayx +axx> +--- (We 9
can not invert ifag = 0 since in that case we shall have to introduce negative
exponents and so shall be going out of our ring of power Serilesiew of this

definition it is meaningful to writel—x = 1+ X+X?+--- since we have shown

that (1- X)(1+ x+ X2+ ---) = 1. Replacingk by XX, = 1+xKpxKg...

Using this expression, identitil(1) may be written -

00

l_[(1+xn)l_[(1+xk+x2"+-~-)=kl;ldﬁ.

n=1 k odd
For anyN,
1—[ 1 1
1-xk 1 - Xk
(o ot ™)

Since this is true for ani{, we may interchange the order of factors in the
entire product and get

ﬁ 1 _ 1
a0~ ma—o
k odd
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Therefore, in its revised form identity (I) becomes:

[le-0= g

n odd

In order to determine in how many ways a humberan be split intdk
parts, Wuler introduced a paramezténto his formal power series. (The prob-
lem was proposed to Euler in St.Petersburgh: in how many wags50 be
decomposed into the sum of 7 summands?). He considered goigssion as
(1+x3)(1+x%)--- This is a formal power series ik The codficients ofx are
now polynomials irg, and since these polynomials form a ring they porvide an
sdmissible set of cdgcients. The product is not a formal power serieszin 10
however. The cd@cient ofz for example, is an infinite sum which we do not
allow.

(1+x3)(1+ X%3)(1 + x33) - - -
=143X+3C+G+3)C+ G+ + B+ 280+ - - -
=143(x+ X+ + )+ 320+ X 2+ )
= 1+ 3A1(%) + 3°Ao(X) + 3°Ag(X) + - -- 2)
The expression8;(X), Ax(X), - - - are themselves formal power seriesin
They begin with higher and higher powers xf for the lowest power ok
occurring iNAy(x) is x1+2+3+-+m — ymm+1)2 This term arises by multiplying
(x3)(x%3)(x33) - - - (x™3). The advantage in the use of the parameisithat any
power ofx multiplying 3™ is obtained by multiplyingn different powers ok.

Thus each term if\n(X) is the product oim powers ofx. Thej3’s therefore
record the number of parts we have used in building up a number

Now we consider the finite produB (3, X) = ]’1 2+ 3x).

Pn(G3, X) is a polynomial inz Py(3,X) = 1 + gA(N)(x) + 32A(2N)(x) + -
NAN (%), whereAlM (x) = xNN+1/2_ Replacingz by Zx, we have

N

[ ]@+» =PuGxx)

n=1
= 14+ 3xAN (%) + 322AN (%) + - -
So

(L+ 3PN %) = (143X PuG, %),
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(L+3%) (1+3xAN () + -+ GYNAP (%))
= (14 x") (14 AP+ PAD (9 + )

We may now compare powers pbn both sides since these are polynomi41
als. Taking®, k < N, we have

XA + XA () = AN ) + AN (%);
AV (L~ X = M 00% (1 - x2),
A0 = £ (XA
k
AV = AN (modx)

From this recurrence relation we immediately have

N X
Ag_ )(X) = m (mOd XN),

2

AN (x) = T );)()1( ) (mod xV)
x3 N

= m (mod x™)

xk(k+1)/2

(N) —
A= A-XA-x3) - (1-xx) (mOdXN)
Hence
00 m o 3X 32)(3 33)@
l_[(1+ X =1+ T-x " (1-x(1-x) + (1-X)(1-x)(1- )

n=1
+--- (modxN)
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In the last lecture we proved the identity: 12
[Ja+=>" A, (1)
n=1 k=0
where
xi(k+1)/2
AX) = (2)

1-XA-x2)---(1-xK)
We shall look upon the right side difl(1) as a power seriesamdnotas a

power-series iz, as otherwise the infinite product on the left side would have

no sense in our formalism. Let us inerprgt (1) arithmetjcalf we want to

decomposen into k summands, we have evidently to look §$rand then for

x™, and the cofficient of3*x™ on the right side off]1) gives us exactly what we

want. We have

1 (o) 00 sl
= ) XMy XLy ki
— —X2)... (1= xK
(1-91-x)---(1-x9 ,;) g:lo g::o

= X,
m=0

say, with pld =1,

Thereforemoccurs only in the form
Mm=ng+2n+---+kn,n; >0,

and pﬂ? tells us how ofterm can be represented lydfferent summands (with
possible repetitions). On the other hand thefiicient of x™ on the left-side

11
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of (@) gives us the number of partitions wfinto summands not exceedikg
Hence,

Theorem 2. m can be represented as the sum of fedent parts as often as 13
kk+1)

can be expressed as the sum of parts not exceeding Kk (repetiti
being allowed).

(In the first the number of parts is fixed, in the second, the sfzparts).
In a similar way, we can extablish the identity

= 1(1—3X”) Z?)kBk(X) (3)

with By = 1, which again can be interpreted arithmetically as follows
The left side is

i(sx m i(:«sxz)”2 i(sﬁ)m e
n=0 Np=0 N3=0

and

XK

L-x)(1-x3)---(1-x)
The left-side of[[B) givesn with the representation

Bk(x) =

(4)

m=ny+2n,+3nN3+---
i.e., as a sum of parts with repetitions allowed. Exactlytas/a we have:

Theorem 3. m can be expressed as the sum of k parts (repetitions alloaged)
often as m- k as the sum of parts not exceeding k.

We shall now consider odd summands which will be of interesbinnex-
ion with V-function later. As earlier we can establish the identity

[]a+") = Z FCu(x) (5)

V odd
with the provide thaC (X) = 1. The trick is the same. One studies temporatily4
a truncated fhair H (1 + 3x"), replacesz by 3x? and evaluate€y(x) as in

Lecture 1. This Would be perfectly legitimate. However opald proceed as
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Euler did - this is not quite our story. Multiplying both s&lby 1+ 3x%, we
have

DIFC0) = (1 +9) ) 39T,
k=0 k=0

Now compare powers afon both sides - and this was what required some
extra thought.C,(x) begins withx3+-+@-1) = x: in fact they begin with
later and later powers ofand so can be added up. We have

Co=1
Cr(X) = X*Cy(x) + x> 1Ci_1(x), k > 0,
X2k 1
or Cu(x) = & 5 Ck-1(X)

from this recurrence relatlon we obtain
Ci(x) =

1 x2’
x4
Co(X) = Cl(X) A=)’
x5 X2
G = 1560 = T T a0
Ck(x) = X

1-x)(1-x4---(1-xx)’
carrying on the same rigmarole.

Now note that all this can be retranslated into something.

Let us give the number theoretic interpretation. Thefiddent of 3*x™ 15
gives the number of times can be expressed as the sunkadfifferent odd
summands. On the other hand, theffiogents in the expansion e{m
give the decomposition into even summands, with repestidtence,
Theorem 4. m is the sum of k gierent odd parts as often as+rk22 is the sum
of even parts not exceedir¥ff, or what is the same thing, é%i is the sum
of parts not exceeding k. (since m and k are obviously of theegaarity, it
follows that™* is an integer).

Finally we can prove that

[Iv odd(l -3xY) Z D9 ©)
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Replacing; by 3x%, we obtain

XK

Di(x) = (1-x2)--(1— x&)’

leading to the

Theorem 5. m is the sum of k odd parts as often as-rk is the sum of even
parts not exceedingk, or mT"‘ is the sum of even parts not exceedingflgk(
again is integral).

Some other methods

Temporarily we give up power series and make use of graphady par-
titions. A partition of A may be represented as an array of dots, the number of
dots in a row being equal to the magnitude of a summand. Letrasge the
summands according to size.

For instance, let us consider a partition of 18 into #ladient parts 16

If we read the diagram by rows we get the partiton-185+4+2. On the
other hand reading by columns we have the pertitioa 484+3+3+2+1+1.
In general it is clear that if we represent a partitiomdfto k parts graphically,
then reading the graph vertically yields a partitionnofvith the largest part
k, and conversely. This method demonstrates a one-to-omespandence
between partitions ofh with k parts and partitions sees that the number of
partitions ofn with largest park is equal to the number of partitions ot k
into parts not exceeding
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Draw a diagonal upward starting from the last but one dotéctlumn on
the extreme left. All the dots to the right of this diagonahstitute a partition of
12 into 4 parts. For each partition of 18 into 4fdrent parts there corresponds
thus a partition of 18 ‘LZ?‘ = 12 into parts. This process works in general for a7
partition ofn with k different parts. If we throw away the dots on and to the left
of the diagonal (which is drawn from the last but one poinbfritie bottom in
order to exsure that the number offdrent parts constinues to be exadtly
we are left with a partitionoh— (1+2+3+---+ (k-=1))=n- @ This
partition has exactli parts because each row is longer by at least one dot than
the row below it, so an entire row is never discarded. Comlgrstarting with
a partition ofn— @ into k parts, we can build up a unique partitionroito
k different parts. Add 1 to the next to the smallest part, 2 to theloeger, 3 to
the next and so on. This one-to-one correspondence praaeththnumber of
partitions ofn into k different parts equals the number of partitiona Qf@
into k parts.

We can prove graphically that the number of partitons mfto k odd sum-
mands is the same as the number of partitions efk? into even summands
not exceedinds. The last row of the

diagram contains at least one dot, the next higher at leas¢ thhe one
above at least five, and so on. Above and on the diagonal thefera3 + 5 +
.-+ + (2k - 1) = K? dots. When these are removed, an even number of dots is
left in each row, althogether adding uprte- k2. This proves the result.
Theorentdl can also be proved graphically, although the psoodt quite 18
as simple. The idea of the proof is examplified by considettiegpartitons of
35. We have

35=10+8+7+5+4+1
=5x2+1x8+7+5+1x4+1
=52+1)+7x1+1(8+4+1)
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7+5+5+5+[1+~-~+1]
—_———

13 times

Thus to each unrestricted partition of 35 we can make coorep parti-
tion into add summands with possible repetitions. Converse

7x1+5x3+1x13=7x1+5(1+2)+1(2+22+2%
=7+5+10+8+4+1

Now consider the following diagram

13 times

L

20

Each part is represented by a row of dots with the longest t@ha top,
second longest next to the top, etc. The oddness of the pamgsauo to
place the rows symmetrically about a central vertical aNsw connect the 19
dots in the following way. Connect the dots on this verticasavith those on
the left half of the top row. Then connect the column to thétrigf this axis
to the other half of the top row. We continue in this way asdatiéd by the
diagram drawing right angles first on one side of the centrethen on the
other. We now interpret this diagram as a new partition of &hepart being
represented by one of the lines indicated. In this way weiolke partition
20+6+4+3+2 of 35 into diferent parts. It can be proved that this method works
in general. That is, to prove that given a partitionrmointo odd parts, this
method transforms it into a unique partitionroiito distinct parts; conversely,
given a partation into distinct parts, the process can bersed to find a unique
partition into odd parts. This establishes a one-to-oneespondence between
the two sorts of partitions. This proves our theorem.
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The seriesy, 3*A¢(x) that we had last time is itself rather interesting; £€x) 20
k=0
have a queer shape:
xk(k-1)/2

el T p

Such series are called Euler series. Such expressionsd wia factors in
the denominator are increasing in this way have been useddergeneralisa-
tions of hypergeometric series. Euler indeed solved thblpn of computing
the codficients numerically. The cdiécient of 3x™ is obtained by expanding
m as a power series. This is rather trivial if we are in the fidldam-
plex numbers, since we can then have a decomposition int@ip@actiions.
Euler did find a nice sort of recursion formula. There is tfam®ea good deal
to be said for a rather elementary treatment.

We shall, however, proceed to more important discussioagtbblem of
unrestricted partitions. Consider the infinite producis(th justifiable modulo
xN)

00

Sem

18

= 1
[[i55-

m=1 m=1 n=0
o o o
:anl inz-ZX3n3---
m=0  n=0 n;=0

=1+ X+2¢+ -
o

=1+ puX’ (1)
n=1
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What doesp;, signify? p, appeared in collecting the terrl. Following 21
Euler’s idea of addition of exponents, we have

N=ng+2n+3n3+4n4+---n; >0, (2)

so thatpy, is the number of solutions offanite Diophantine equation (since the
right side of [2) becomes void after a finite stage) or the nema ways in
whichn can be expressed in this way, or the number of unrestrictaiipas.

Euler wrote this as
1 [e)
= = ), P(N)X', )
l—lmzl(l - Xm) nz:(:)

with the provide thap(0) = 1.
We want to find as much as possible abp(n). Let us calculatep(n).
Expanding the product,

ﬁ(l—x“): 1-X1-x)A-x)---
n=1
=1-Xx-X+xX+ X = x2 - — -

(Note Euler’s skill and patience; he calculated upctcand found to this
surprise that the cdéicients were always &1, two positive terms followed by
two negative terms). We want to find the law of exponents, asyesensible
man would. Writing down the first few céigeicnts and taking dierences, we
have

0 1 2 5 7 12 15 22 26
1 1 3 2 5 3 7 4

the sequence of odd numbers interspersed with the sequéneguoal num-
bers. Euler forecast by induction what the general powerdvoe as follows. 22

7 2 0 1 5 12 22
-5 -2 1 4 7 10
3 3 3 3 3

Write down the cofficients by picking up 0, 1 and every other alternate
term, and continue the row towards the left by putting in #maining cofi-
cients. Now we find that the secondfdrences have the constant value 3. But
an arithmetical progression of the second order can be ssgdeas a polyno-
mial of the second degree. The typical fiagent will therefore be given by an
expression of the form
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al’+bl+c al+1)2+bA+1)+c al+2P2+bA+2)+cC
a21+1)+b a21+3)+b

2 a (the constant secondiiirence)
Hence 2 = 3 ora = 3/2. Takingd = 0 we find thatc = 0 andb = —%,
so that the general cfigient has the formi@-Y. Observing that when is
changed to-1, %8 becomes!®*), the codficient of x'-1/2 s (), and

hence . .
1_[(1 _ Xn) — 1_[ (_)/IX/l(S/l—l)/Z’ (4)
n=1 A=—c0

which is Euler’s theorem.

This sequence of numbeﬂé:"é;l) played a particular role in the middle
ages. They are callggentagonal numberand Euler’'s theorem is called the
pentagonal numbers theorem. We have the so-called trianguibers:

1 3 6 10 15
2 3 4 5
1 1 1
where the second fierences are all 1; the square-numbers
1 4 9 16 25
3 5 7 9
2 2 2

for which the second tlierence are always 2; and so on.

le

The triangular numbers can be represented by dots piled theiform of
equilateral triangles; the square numbers by successixgignding squares.

23
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The pentagons however do not fit together like this. We stétt ane pen-
tagon; notice that the vertices lie perspectively along riflyough the origin.
So take two sides as basic and magnify them and add succeksives. The
second dierences now are always 3:

In general we can havegonal numbers where the lastldirence are all
r—2.

We go back to equatiofil(4): 24
(1 _ Xm) — (_)AXA(BA—J.)/Z
ml_[:l /1;00

It is quite interesting to go into the history of this. It ajgped in Euler’'s
Introductio in Analysin Infinitorum, Caput XVI, de Partittumerorum, 1748
(the first book on the dlierential and integral calculus). It was actually discov-
ered earlier and was mentioned in a paper communicated gt tietersburgh
Academy in 1741, and in letters to Nicholas Bernoulli (1748)Y Goldbach
(1743). The proof that bothered him for nine years was firgtmin a letter
dated 9th june 1750 to Goldvach, and was printed in 1750.

The identity [#) is remarkable; it was the first time in higtdrat an identity
belonging to theV-functions appeared (later invented and studied systemati
cally by Jocobi). The interesting fact is that we have a pesegies in which
the exponents are of the second degree in the subscriptsiitactions have
a representation as a series and slso as an infinite porduct.

The proof of identity [#) is quite exciting and elementaryy Bsing dis-
tributivity we break up the product

(1-%A-x)1- )2 -xY---
in the following way:

A-XA-x)A-)A-x) - =1-x-(1-x% - (1 -x(1-x)x-
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A-xA-x)A-3)A-XH-1-X---A-xH—---
which may be re-arranged, opening first parenthesis, as
1-x-x2 —(1-x)x —(1-x)1-x3)x* —(1-x)(1-x3)(1L-xHx®
+(1 - x)xt +(1-x)(1-x3)x°
So
1-X=X+X+X1-x)+xX1-x)1-x3) +---

=1-x=—x2+x+ 27 +(1 -0 +(1-x3)(1- x}xt!

1—x—x2+x5+x7—x12(1—x3)x15—(1—x3)(1—x4)x18—

When this is continued, we get some free terms at the begjrinllowed
by a typical remainder

(1 _ Xk)Xm + (1 _ Xk)(l _ Xk+l)XrTHk + (1 _ Xk)(l _ Xk+l)(1 _ Xk+2)Xm+2k,
which may be rearranged into

XM 4+ (1 _ Xk+l)Xm+k + (1 _ Xk+l)(1 _ Xk+2)Xm+2k _ Xm+k _ (1 _ Xk+l)Xm+2k (*)
= x"_ Xr‘rH2k+l _ (1 _ Xk+1)Xm+3k+2 _ (1 _ Xk+l)(1 _ Xk+2)

Xm+4k+3 . (**)

We have two free terms with opposite signs at the beginning! the
difference between exponents in successive terrksvidiile in ) this in-
creases t& + 1; this diference is in both cases the exponenkdf the first

factor. The remainder after the free terms begine witso that the sequence

25

of signs is+ — — + + — —- -+ This process perpetuates itself and the questiars

remains which powers actually appear. It isfigient to mark down a scheme

for the exponents which completely characterises the estipanThe scheme
is illustrated by what follows.
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012 34 5 6 7 8 9 10 11 12 13 14 15 16
23 4 5 6 7 8 9 10 11 12 13 14 15
5 7 9 11 13 15 17 19 21 23 25 27 29 31
3 4 5 6 7 8 9 10 11 12 13 14
12 15 18 21 24 27 30 33 36 39 42 45

4 5 6 7 8 9 10 11 12 13

22 26 30 34 38 42 46 50 54 58
5 6 7 8 9 10 11 12

35 40 45 50 55 60 65 70
6 7 8 9 10 11

51 57 63 69 75 81

We write down the sequence of natural numbers in a row; theesesg less
the first two membere is repeated in a parallel row below teneiut the first

three placess at the beginning. Adding up we get

below which is placed the original sequence less the firsethrtembers, again
translating the whole to the right by two places. We again @gglénd repeat
the procedure. A typical stage in the procedure is exhilitddw.

m m+ Kk m+ 2k m+ 3k m+ 4k m+ 5k
k+1 k+2 k+3 k+4 k+5
m+2k+1 m+3k+2 m+4k+3 m+5k+4 m+6k+5

The free indices then appear successively as

2+3=5 3+4+5=12
3+4=7 4+5+6=15
and in general:
/l+(/1+1)+~-~+(2/1—1)=@’
(/l+1)+(,1+2)+...+2/1=w’

which are the only exponents appearing. We thus have

= 1-x" = N 3\ A(31-1)/2
ﬂ( X = ) ()%

A=—00

27
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In the last lecture we proved the surprising theorem on gemal numbers: 28

ﬁ(l _ Xm) — i (_)/IX/l(S/l—l)/Z (1)
m=1

A=—00

We do not need these identities for their own sake, but for #pplications
to number theory. We have the same sort of power-series dnsies; let us
compare the cdicients ofx". On the left siden appears as the sum ofidirent
exponents. But in contradiction to previous situations, ¢héficients appear
with both positive and negative signs, so that when we collecterms there
may be cancellations. There are gaps in the powers that agpgaamong
those which appear with non-zero ¢beients, we have a pair of positive terms
followed by a pair of negative terms and vice versa. In mosesahe coef-
ficients are zero; this is because of cancellations, so thaghly terms with
positive and negative signs are in equal number. A positiye appears if we
multiply an even number of times. otherwise a negative sgman even num-
ber of diferent summands is as frequent generally as an odd numbeceHen
the following theorem:

The number of decompositions nfinto an even number of flerent parts
is the same as the number of decompositions into an odd numviibrthe
exception that there is a surplus of one sort or the othariéfa pentagonal
number of the form(31 — 1)/2.

Before proceeding further let us examine a number of coadnstances.
Take 6 which is not a pentagonal number. The partitions afe+65, 2+ 4, 29
1+2+3, so that there are two decompositions into an even numlukffefent
parts, and two into an odd number. Next take 7, which is a gemt number,
7= % with 2 = 2. We can actually foresee that the excess will be in the
even partitions. The partitions are 7+86, 2+ 5, 3+ 4, 1+ 2+ 4. Take 8 which

23
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again is not pentagonal. We have three in each category+ 8,2+ 6, 3+ 5,
1+2+5,1+3+4.

This is a very extraordinary property of pentagonal numbése would
like to have a direct proof of this. A proof is due to Fabianrikign (Comptes
Rendus, Paris. 1880), a pupil of the famous Sylvester. Thefps combi-
natorial. We want to establish a one-one correspondengebatpartitions
containing an even number of summands and those containingdanumber
- except for pentagonal numbers.

Consider a partition with the summands arranged in inangasider, each
summand being denoted by a horizontal row of dots. Mark §ipalty the first
row,

with r dots, and the last slope, withdots i.e., points on or below a segn-
ment starting from the dot on the extreme right of the last and inclined at
45° (as in the diagram). We make out two cases.

1. s < r. Transfer the last slope to a position immediately abovditee
row. The diagram is now as shown below:

The uppermost row is still shorter than the others. (becauear case 30
S < r). By this procedure the number of rows is changed by 1. This
establishes the one-one correspondence between padititve ‘odd’
type and ‘even’ type.
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2. s>r. As before consider the first row and the last slope.

1=
[ ] L] L]
[ ] L] L]
[ ] L] L]

Take the uppermost row away and put it parallel to the lagtesI@ his
diminishes the number of rows by 1, so that a partition iscvét over
from the ‘even’ class to the ‘odd’ class or conversely.

Therefore there exists a one-one correspondence betwedwdttlasses.
So we have proved a theorem, which is a wrong one! because weenioa
taken account of the exceptional case of pentagonal numbkesfallacy lies
in having overlooked the fact that the last slope may extégict wup to the
first row; the slope and the row may very well interfere. Letale one such
instance. Letagaia < r.

If we place the last slope above the first row this works bes#tusnumber 31
of points in the first row is also diminished by one, in fact bg tlisputed point
(notice again that no two rows are equal $ot r — 1). So the interference is of
no account. Withs > r we may again have an interfering case. We again place
the top row
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behind the last slope, this time with a punishment. We havesimrtened the
slope by 1. Fos— 1 > r the method is still good. So the only cases of earnest
interference are:

(i) s<rbutx>r—-1. Thenr—-1<s<randhences=r-1
(i) s>rbuts—-1<r.Thens>r>s-1andhences=r.

Here we have something which can no longer be overcome. Eresbe
cases of pentagonal numbers. In (ii) the total number of idatgqual to

S+(s+1)+(s+2)+---+(2s-1)

_ §3s-1)
==
In (i) this number= (s+ 1)+ (s—2)+--- + 2s
_ Y3s+1)
B 2

These decompositions do not have companions. In genengl pasition
into one parity of diferent summands has a companion of the other parity of
different summands; and in the case of pentagonal numbersdtjest one in 32
excess in one of the classes.

We now come to the most important application of idenfily Qipce

1 R n
o — 2P0

we have on combining this witll(1),

1= 3 px Y (D @)
n=0

A=—00
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This tells us the follwing story. All the cdicients on the right side of]2)
excepting the first must be zero. The typical exponent in ¢oversd factor on
the right side is1(31 - 1)/2 = w,, say. (The first fews,sare 0, 1, 2,5, 7, 12,
15,...). Now look for x". Since the coicient in the first factor igp(n) and
that in the second alwaysl, we have, sinca&"(n # 0) does not appear on the
left side

p(n) — p(n-1)-p(n-2)+ p(n-5)+ p(n-7)--++---=0

or

> pn-w)(-)'=0 (3)

O<w,<n

This is a formula of recursion. Omitting the first index of smation [3)
gives

p)= > (-)pin-w,) 4)

O<w,<n

Let us calculate the first feyp(n).

p(0)=1

p(1)=p(1-1)=p0)=1
p(2)=p2-1)+p2-2)=2
pP3)=p@B-1)+pB-2)=3
p4)=p(4-1)+p(4-2)=5
p(d)=p(5-1)+p(-2)-p(-5)=7

(Watch! a pentagonal number - and a negative sign comesdétitmg). These 33

formulae get longer and longer, but not excessively so. ketstimate how

i i e -1
long these will be. Since), < nwe have to look fon satlsfymg—d(&l2 ) <

n, which gives

122(31 - 1) < 24n,
361% - 121 < 24n,
(5A-1%=24n+1,
61— 1 = V24n+ 1,
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1 1
[ - 6| < 6 V24n + 1.

Hence roughly there will b% V24n = % v6n summands on the left side

of @). So their number increases with the square root tfie expressions do
not get too long after all (fon = 100, we have 17 terms).

These formulae have been used for preparing tablggrfwhich have
been quite useful. For instance Ramanujan discovered sbthe divisibility
properties ofp(n) by using them. In the famous paper of Hardy and Ramana4
jan (1917) there is a table gi(n) for n < 200. These were computed by
Macmahon, by using the above formulae and the values wereketievith
those given by the Hardy-Ramanujan formula. The asymptatices were
found to be very close to what Macmahon computed. Gupta haseed the
table forp(n) up to 600.

Before making another application of Euler’s pentagonabtkem, we pro-
ceed a bit further into the theory of formal power series. \d& @ow one more
formal procedure, that of formalfiierentiation. Let

A=a, +aiX+a’+ -
The derivativeA’ of A is by definition
A = ag + 2ax + 3azx% + - - -

This is again a power series in our sense. This operationfi@idntiation
which produces one power series from another is a lineaatiper

(A+B)Y =A+B,

whereB is a second power series. This is easy to verify; actually aedrdo
this only for polynomials as everything is true moduth Again,

(cA' =cA
as can be seen directly. Also
(A-BY =A'B+AB.

Let us look into this situation. Start with the simplest case x™, B = x".
Then

A = my¥rl B =nx"?!
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and @AB)’ = (X™"Y = (m+ n)x™"1,
also A'B+ AB = m¥™ 1 4 pxmn-l
= (m+ n)x™1

So this is true also for polynomials by linearity, we can dpigcemeal. 35
And as it is enough if we stop short &Y, it is true in general,

Let us add one more remark. Let us write down a special caseevwthe
and B have reciprocals. TheAB has a reciprocal too (since the units form a
group). In this case we have

(ABy A N B’
AB A B’
which is the rule for logarithmic dlierentiation. (It is identical with the proce-
dure in the calculus, as soon as we speak of functions)AFBrandC,

(ABC)’ = A'(BC) + A(BC) = ABC + ABC + ABC
(ABGY _A B T

ABC A B'C

or

and so on; in general,
(Mo A) & Ak

oA & A
We can do this for infinite products also if the products aremssible.

K

Indeed[] A is legitimate ifA; = 1 + ayx’ + - - Consider modulo; break
k=1

at a finite spot and the factors 1 will come into action.
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Let us consider some applications of formaffelientiation of power series. 36
Once again we start from the pentagonal numbers theorem:

(1 _ Xm) — (_)/IX/l(S/l—l)/Z
nl’l:!. /1;00

= e, (1)
A=—00
. A(B1-1) . . _ .
with w, = ————. Taking the logarithmic derivative - and this can be done
piecemeal-
S _\1 -1
= _m){ﬂ*l _ /1:2—00( ) w/lxw
w20 S (e
A=—00

Multiplying both sides by,

(o] _ /l )
= —mx" ,1:2:‘00( )a)/lxw
T_xn 3 )
= S (e
A=—00

The left side here is an interesting object called a Lambmies, with a
structure not quite well defined; but it plays some role in bentheory. Let
us transform the Lambert series into a power series; it besom

DIIEED ALY
=1 k=1 kim=1

30
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and these are all permissible power series, because thbeghdre infinitely
many of them, the inner ones begin with later and later terms.

Rearranging, this gives 37
ISR
n=kmm=1 n=1 m/n

= - i o(n)x",
n=1

whereo(n) denotes the sum of the divisorsmfo(n) = > d.
din
(Let us studyr-(n) for a moment.

oc(1)=21,0(2)=3,03=4,0(5)=6; indeedsr(p) = p+1

for a primep. And o(n) = n + 1 implies that is prime. o-(n) is not too big;
there can be at mostdivisers ofn and so roughlyr(n) = O(n?). In fact it is
known thatr(n) = O(n'*ePsion e 0, that is, a little larger than the first power.
We shall however not be studyign) in detail).

Equation[[2) can now be rewritten as

S 3 (= 3 (e

n=1 A=—00 A=—00

Let us look for the cofficient of x™ on both sides. Remembering that the
firstfeww’sare0, 1,2,5,7,12, 15 -, the codficient of x™ on the left side is

ocM-o(M-1)-oc(M-2)+o(M-6)+o(M-7)——++---

On the right side the cdicient is 0 most frequently, because the pentago-
nal numbers are rather rare, and equaHd(*w, exceptionally, whem = w,.

0 usually
m-o(mM-1)-oc(mM-2)++—-—---=
0-( ) 0-( ) 0-( ) {(—)A‘lw,l form=w,.
We now single outr(m). 38
We may write

am= > () om-w)+

O<w, <m

0 usually
()" 1w, form=w;
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This is an additive recursion formula fot(n). We can make it even more
striking. The inhomogeneous piece on the right side isla Bthnoying.o(m—
m) can occur on the right side only fon = w,; ¢(0) does not make sense;
howeverfor our purposedet us define

o(mM-m)=m

Theno(w, — w,) = w,, and the previous formula can now be written
uninterruptedly as

am= > (-)"om-w) (3)

O<w, <m

We have proved earlier that

pm = > () tp(m-w,) (4)

O<w,<m

which is a formula completely identical withl(3). Hepém - m) = p(0) = 1.
Itis extraordinary thad-(m) andp(m) should have the same recursion formula,
differing only in the definition of the term with = 0. This fact was noted by
Euler. In factp(m) is increasing monotonically, while the growth @fm) is
more erratic.

There are more relations betwepfm) ando-(m). Let us start again with
the identity

[ J@-xm>" pmxm=1 (5)
m=1 m=0
We know that for a pair of power serids B such thatAB = 1, on taking 39
. . L / / A B’
logarithmic derivatives, we hav%— + B 0 orK =5 So from [3),
o0 f} np(n)x"
S\t -
1 3 p)x"
n=0
or Z o-(m)xmz p(k) X = Z np(n)x".
m=1 k=0 n=0

Comparing cofficients ofx",

np) = . a(mp(K),

m+k=n
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or more explicitly,

00

np(n) = > o(m)p(n - m) (6)

m=1

This is a bilinear relation between(n) and p(n). This can be proved di-
rectly also in the following way. Let us consider all the jitaohs of n; there
arep(n) such:

n=h;+hy+---

n= k1-+ k2-+---
n= fl +-€2-+---

Adding up, the left side givesp(n). Let us now evaluate the sum of the
right sides. Consider a particular summérahd let us look for those partitions
in whichhfigures. These ang(n—h) partitions in whichh occurs at least once,
p(n — 2h) in which h occurs at least twices; in genergln — rh) in which h
occurs at leagt times. Hence the number of those partitions which corttain
exactly r times isp(n—nh) — p(n—n + 1h). Thus the number of timdsoccurs 40
in all partitions put together is

> n{p(n=nh) - (n—n+1h)}

nh<n

Hence the contribution from these to the right side will be

th{p(n—nh)—(n—mh)}th p(n - nh)

nh<n nh<n

on applying partial summation. Now summing over all sumnsdndhe right

side becomces
Y pn=n = = pn—m)
m<n

A nhen n/m
on puttingrh = m; and this is
m &
mZ p(n—m) Zm == mzl p(n — m)or(rm).

Let us make one final remark.



5. Lecture 34

Again from the Euler formula,

- S () e
Z O—(m)xm = /1:-020—
= T (e
A=—c0
2 () o
_ A=-o0
[1(1-xm)
m=1
= () o Y pmxT
A=—00 m=0
Comparing the cdécients ofx™ on both sides, 41

o(m =p(m-1-p(m-1)-2-p(m-2)+5- p(m->5)
+7-p(m-7)—+---

= > () twpm-w))
O<w, <m
This last formula enables us to find out the sum of the divipoosided
that we know the partitions. This is not just a curiosity; ibpides a useful
check on tables of pertitions computed by other means.
We go back to power series leading up to some of Ramanujastseims.
Jacobi introduced the products

1_[(1 _ in)(l + 3)(Zn—l)(l + 3—1X2n—1)‘
n=1
This is a power series iR, though these are infinitely many factors they
start with progressively higher powers. The ffaméents this time are not poly-
nomials inz but from the fieldR(2), the field of rational functions af, which
is a perfectly good field. Let us multiply out and we shall haveery nice
surprise. The successive ¢beicnts are:

1
X :3+37t (note that this is unchanged whegnrs 371)
x* :(1+1)=0

X 1G+3t-3-31)=0
x* 1 (-1-1+32+1+1+37?) =32+ 32 (again unchanged whegn- 371)



5. Lecture 35

We observe that non-zero d&ieicnts are associated only with square ex42
ponents. We may threfore provisionally write

00

[]@-8@+ @+ 55 =14 > (6 + 579%¢
n=1 k=1

= > (7)

(with the terms corresponding tek folder together). This is & - series; only
guadratic exponents occur.

We shall now prove the identitfzl(7). But we have gotto be edre@onsider
the polynomial

N

o) = [ [@ =)@+ 3L+ 575
n=1

This consists of termgx* with —N < j < N, 0 < k < N(N + 1) + 2N? =
3N? + N. We can rearrange with respect to powerg.oThe codficients are
now polynomials irx. zandz* occur symmetrically.

DN (X 3) = Co(¥) + (3 + 3 1)Ca(X) + (32 +379)Ca(X) + - + BN +37)Cn(X).

Let us calculate th€’s. It is cumbersome to look fo€,, for so many
cancellations may occur. It is easier to calcul@te Since the highest power
of zcan occur only from the terms with the highest powek,ofve have

N
Cn(X) = 1_[(1 _ in) « yL+3+-+(2N-1)

n=1
N
= xV ]_[(1 — X2
n=1
Now try to get a recursion among tl¥s. Replacingz by zX, we get 43

N
(DN(X, 5)(2) = H(l _ X2n)(1 + 5X2n+l)(1 + 3—1X2n73).

n=1
CompareDby(x, 3x%) anddy(x, 3); these are related by the equation

DN (X 3X0) (1 + 3%)(1+ 372N ) = D (% 3)(L + 3™ (L +571x7)
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The negative power in the last factor on the right is paréidyldisgusting;
to get rid of it we multiply both sides byz leading to

DN (X 330) (35 + X2N) = Dy (x, 3) (1 + 33N,
or 1+ 3ANC.)+ G+3HCI) + -+ GV +37MCn(X)
= (6 +XM)(Co(¥) + (3¢ + 37X 2)Cr()+
+ G+ 372XNC(X) + -+ GV + 37N N)Cn (X))

These are perfectly harmless polynomialxjrwe may compare cdk-
cients ofsk. Then

Ch(¥) + Ciea (000N = C(x)x22N 1 5210, (x),
or Ce()(1 = XY = C_y (X)X (L — xN-2+2)

(We proceed fronCy to Cy_1 sinceCy is already known).

—2k+1(1 _ X2N+2k)

Cha(x) = 1 _ x2N-2k+2 Ci(x)

Since Cn(X) = XN (1 x°"), we have in succession
n,

a1 XN n
Cra(x) = XV 2N g(l_xz)
N
=N @- - @ -x™y;
n=2

N
Cr-2(9) = XN [ (@ - ) - (1= )@ - X7
n=3

In general,

Cr-j(x) = N7 ﬂ(l x2“>1—[(1 XiN-2m)

n=j+1
or,with j = N —n,

N-n-1

Ca(¥) = X" ﬂ (1) ﬂ(l xh-2m) (8)

n=N-n+1
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Equation[[B) leads to some congruence relations. The ldemess ofC,(X)
have exponent

NRP+2(N-n+1)=2N+M*-2n+1)+1>2N+1
Hence .
Cn(X) = X (mod x2N*1) 9)

From the original formula,

N
On(X,3) = H(l -1+ (1 + 37
n=1
=1+ (5 + 3_1)X + (32 + 3_2)X4 4. (mod X2N+1)

= Z $+X¢ (mod XAV,

since the infinite series does not matter, the higher powarggkabsorbed in 45
the congruence. Hence

On(es) = [ @M@+ @+ 37H Y (mod XN

n=1

The new termsN*2, .., are absorbed by moxfN+1. We have

l_[(l _ X2n)(1 + 3)(Zn—l)(l + 3—1X2n—1) = Z 3ka2 (mOd X2N+l)
n=1

k=—00

Thus both expansions agree as far as we wish, and this is whatean
by equality of formal power series. Hence we can replace tingruence by
equality, and Jacobi’s identitfl(7) is proved.

As an application of this identity, we shall now give a newggrof the
pentagonal numbers theorem. We repladsy y, as we could consistently in
the whole story; only read moduj§N*3. Then we have

00

[Ja-y@+n @+ = > 3y*
n=1

k=—oc0

We now do something which needs some justification. Reptdne—y.
This is something completely strange, and would interferessly with our
reasoning. Foy(y?, 3) we had congruences modu®\+3. If we replacedz
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by y® nobody could forbid that. Sinceoccurs in negative powers, the powers
of y might be lowered too by as much Bls We obtain polynomials iy alone

on both sides, but true modwd\*3, because we may have lowered powers ofi6
y. With this proviso it is justified to replaceby —y; so that ultimately we have

[]a-y)a-y¥"Aa -y = > (¥ (mody™+)
n=1

k=—00

We can carry over the old proof step by step. Since we now halyesven
powers ofy, this leads to

1=y = ) ()ye
These are actually power seriesyfn Sety? = x, then
(1 _ Xm) — (_)ka(3k+l)/2
ml_[:l k;oc

which is the pentagonal numbers theorem.
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In the last lecture we used the Jacobi formula: 47
[J@—@M@+s @ +3hh) = > ¢ (1)
n=1 k=—c0

to give a new proof of Euler's pentagonal numbers theorem.pYieeed to
give another application. We observe again that the riglet of [1) is a power
series inx; we cannot do anything about tlzes and no formal dferentiation
can be carried out with respectzol et us make the substitutign— —3x. This
again interferes greatly with our variabte Are we entitled to do this? Let us
look back into our proof of{l1). We started with a curtaildtha

Dn(X,3) = 1_[(1 XM+ 3 Y+ 370
n=1

and this was a polynomial of the proper size and everythingtwerough.
When we replace by —zxand multiply out, the negative powers might accu-
mulate and we might be destroyinj possibly; nevertheless the congruence
relations would be true this time modwd*! instead ofx®N*! as it was previ-
ously; but this is all we went. So the old proof can be repredistep by step
and every thing matches moduty**. (Let us add a side remark. In the proof
of ) we had to replaceby z¥ - and this was the essential step in the proof.
We cannot do the same here as this would lead to congruenced x ordy.
Before we had the congruences we had identities and therewé carry out
any substitution. Then we adopted a new point of view an@éhtced congru- 48
ences; and that step bars later the substitutien3x°.

So let us make the substitutign—» —3x without further compuncton. This

39
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gives us
1_[(1 _ XZn)(l _ 3X2n)(1 _ 5—1X2n—2) — Z (_)kskxszrk
n=1 k=—00

This is not nicely arranged. There appears an extraordtearywithoutx-
corresponding to = 1 in the last factor on the left side; let us keep this apart.
Also on the right side the exponentxfs k(k+ 1), so that every number occurs
twice; let us keep these two pieces together. We then have

(-5 ﬁ(l =XM1 - 3L - 5715

3

Z( U ka(k+1)+Z( )Lk Lygkler1)

(Where in the second half we have replakdny -k — 1),

Z( )k k(k+l)(% —k l)

k=0

x

8

3

— ( k(k+l) k(l —2k—1)
k=0

8

Z( )k k(k+1)3k(1 l)(1+ 3—1 + 3—2 et 3—2k)
k=0
We now have an infinite series equal to another. Now recollect that
our codficients are from the fiel®(z) which has no zero divisors. So we may
cancel 1- z'! on both sides; this is a non-zero factoiR(z) and has nothing to 49
do with differentiation. This leads to

l_l(l _ XZn)(l _ 3XZn)(l _ 3—1X2n) — Z(_)kxk(k+l)(3k + 3k—:l. bt 3—k).
n=1 k=0

In the fieldR(2) we can replace by 1. We can do what we like in the field
and that is the essence of the power series method. So pattirlg

[ J@-m =) () *tDak+ 1),
n=1 k=0
This is a power series ix?; give it a new namex? = y. Then

H(l Y = Z( (2K + 1)y 2)

n=1
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This is a very famous identity of Jacobi, originally proveg tim by an
altogether dferent method using the theory of functions. Let us juxtapbse
with the Euler pentagonal formula:

[a-v)= Y cyxery: (2a)

n=1 A=—00

Let us proceed to yet another application of the triple povflormula; we
shall obtain some of Ramanujan’s formulas. Taking away tise ffiart of the
triple product formula we have

]_[(1+3x2“ YCRR SN SN S @)
EL -
=1

The second part on the right side here is of interest, bedtisdhe gener- 50
ating function of the partition. We had earlier the formula

[ Ja+eh =" ).
n=1 m=0

X
(1—x2) - (1— x2m)

and these are permissible power series, beginning with daie later powers
of x, and so the right side dfl(4) makes sense, as a formal powies sex.
Substituting[(¥) in[(B), we have

Z C(¥) Z 37°Cs(9) = Z X (5)

k=—co ]‘[ 1- x2“)

(4)

Cm(x) =

We can compare® on both sides for, for very higk™ the left side will
contain only finitely many terms and all otheres will disagpleelow the hori-
zon; we can also add as many terms as we wish. So equatifioczoss ofZ°,
we have

Z G = .
fa-x

1
[1(1- xen)
n=1

Z(l X2)2 (1- X2n)2_

or
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We have even powers of consistently on both sides; so replaceby vy,
and write down the first few terms explicitly:

y y* y°
et ayra v A yra ey T
e —— ©
fa-y)

This formula is found in the famous paper of Hardy and Ramam({917) 51
and ascribed by them to Euler. It is very useful for rough ajgad of asymp-
totic formulas. Hardy and Ramanujan make the cryptic rentlaak it is “a
formula which lends itself to wide generalisations”. Thésmark was at first
not very obvious to me; but it can now be interpreted in thiofoihg way. Let
us look for3* in @). Then

X<
3 CC(9 =
r,s l—l (1 _ XZI"I)
n=1

r—é:k
or, replacing by s+ k, and writtingCs for C¢(X), the left side becomes

N XK L (ke 12
CsCoik =1- 4 .
; sstk (1 - x2) . (1 _ X2k) (1 _ X2)2(1 _ X4) .. (1 _ X2k+2)

s (k+2)
+ (1 - x2)2(1 — x4)2(1 — X6) - - - (1 — x2k+4) T

Let us divide byx"z. The general exponent on the right sidé3s- (k+£)%, 52
so on division it becomest2 + 2k¢. Every exponent is even, which is a very
nice situation. Replace? by y, and we get the ‘wide generalisation’ of which
Hardy and Ramanujan spoke:

1 . yk+l
A-9A-y) Ay (A= y)2(A—y2) (1 -y
y20+2) o
T Ay (- YD)
YD 1

i b= (@)
T2 (- Y-y (L -y -y
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kis an assigned number and it can be taken arbitrarily.
So such expansions are not unique.
Thus [6) and[{]7) give two éierent expansions for

1
fll(l —y7)

We are now slowly coming to the close of our preoccupatiompibwer
series; we shall give one more application due to Ramanudjah7). In their
paper Hardy and Ramanujan gave a surprising asymptoticularfor p(n).

It contained an error term which was something unheard afree®(n~/4),
error termdecreasin@snincreases. Singg(n) is an integer it is enough to take
a few terms to get a suitable value. The values calculateti®ibasis of the 53
asymptotic formula were checked up with those given by Mdwm& tables
and were found to be astonishingly close. Ramanujan lookdgkdables and
with his peculiar insight discovered something which ngbel$e could have
noticed. He found that the numbeg§t), p(9), p(14), in generap(5k + 4) are
all divisible by 5;p(5), p(12), - - - p(7k + 5) are all divisible by 7p(11k + 6) by
11. So he thought thiswas a general propetglivisibility property of p(n) is
itself surprising, becaugg(n) is a function defined with reference to addition.
The first and second of these results are simpler than theé tRmmanujan in
fact suggested more. If we chose a special progression méduhen all the
terms are divisible by’5 There are also special progressions modélo'7so
for 11. Ramanujan made the general conjecture tidati527°11° and 24 = 1
(mods), thenp(n) = 0 (mody). In this form the conjecture is wrong. These
things are deeply connected with the theory of modular fothescases 5 and
7 relate to modular forms with subgroups of genus 1, the caseth genus 2.

Let us take the case of 5. Takgbk + 4). Considerzp(n)x"; it is nicer
to multiply by x and look forx®. We have to show that the cfieients of
x%¢ in xZp(n)x" are congruent to zerp modulo 5. We wish to juggle around
with series a bit. Tak&a,x"; we want to studyx®. Multiply by the series
1+ byx® + boxt0 + - - where the's are integers. We get a new power series

Zanx”-(1+b1x5+b2x1°+---)=chx”,

which is just as good. It is enough if we prove that for thideeevery fifth 54
codficient= 0 (mod 5).
For,

_ 2 CnX"
Zanx”_ 1+ byX8 + byx10 4 ...
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= Z caxX!, (L+dp + doxt0+ - -), say

Then if every fifth coéficient ofZc,x" is divisible by 5, multiplication by
2d,x°" will not disturb this. For a prime look at

(1+xP=1+ (Fl))x+ (g)xz + (2))@ I (E)Xp'

All except the first and Iast cigcients on the right side are divisible Ipy
for in a typical term(f) = L=, the p inm the numerator can be cancelled
only by apin the denomlnator So

@A+xXP=1+xP (modp).

This means that the fiierence of the two sides contains only fiagents
divisible by p. This
(1-%°=1+x> (mod 5)

We now go to Ramanujan’s proof thp([Sk +4)=0 (mod 5) We have 55
XZ p(n)x" = A= 1 )

It is irrelevant here if we multiply both sides by a series teaming only
x5, x10, x5 ... This will not ruin our plans as we have declared in advance.
So

x> p(n)x" ﬁ(l— xOm) = ﬁ ﬁ(l— xom)
m=1 m=1

X = m
= A= rT131(1— X™?® modulo 5
( l_[(l — X — 1_[(1 — xMPhas only cosiicients divisible by 5

= xl_[(l - x™*modulo 5
m=1

=X nlj(l —x™M nlj(l —X™3,

For both products on the right side we have available wondlexpres-

sions. By [2) and{2a),
X[ e xm? =x 3 (302 3 ek 1oy
A==co k=0
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The typical term on the right side is

Z (D)YMHRXEAGEDI2 4 (k4 1)/2
k=0

The exponent 1+ A(31-1)/2 + k(k + 1)/2, and we want this to be of the

form 5m. Each such combination contributes®. We want 56
AB1-1) kk+1
1+(2 )+(2+)zo (mod 5)

Multiply by 8; that will not disturb it. So we want

8+ 124% — 44 + 4K? + 4k = 0(5),
3+ 212 - 40 + 4K% + 4k = 0(5),
2(1 — 1) + (2k + 1)*> = 0(5).

This is of the form:
2. a square another square 0(5)
Now
A2 =0,1,4(5),
2B? = 0,2, 3(5);

and soA? + 2B? = 0(5) means only the combinatiét = 0(5) and B2 = 0(5);
each square must therefore separately be divisible by 5, or

2k + 1= 0(5)

So tox®™ has contributed only those combinations in whigh 2 appeared;
and every one of these pieces carried with it a factor of 5s fphives the result.

The case K+ 5 is even simpler. We multiply by a seriesh leading to
(1 - xM*® which is to be broken up into two Jacobi factors{%™3. These are
examples of very beautiful theorems proved in a purely foraey.

We shall deal in the next lecture with one more starting imsta the
Rogers-Ramanujan identities which one cannot refrain tiahmg about.
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We wish to say something about the celebrated Rogers-Rgameidentities: 57

1 X x4 X2
T T T T -1 -0)1-)
1
T (1—x“); .
n=+1 (mod 5)
XZ X2-3 X3~4
S BV T v ) S Ty e g
4. — i 1 (2)

n>0 (1-xm)
n=+2 (mod 5)

The right hand sides dfl(1) anld (2), written down expliciéise respectively

1
A-x1-xH(1-x5)(1-x9)...
1
A-x3)12-x3)1-x)12-x8)...

One immediately observes thafl are quadratic residues modulo 5, and
+2 quadratic non-residues modulo 5. These identities westscfimmunicated
by Ramanujan in a letter written to Hardy from India in Felsyu2913 be-
fore he embarked for England. No proofs were given at thag.timh was a
remarkable fact, nevertleless, to have even written dowh flentities. Itis 58
true that Euler himself did some experimental work with teatagonal num-
bers formula. But one does not see the slightest reason wyodg should
have tried+1, +2 modulo 5. Then in 1917 something happened. In an old

46
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volume of the Proceedings of the London Mathematical SpdRestmanujan
found that Rogers (1894) had these identities along withresibns of hyper-
geometric functions and a wealth of other formulae. In 1916 itdentities
were published in Macmahon’s Combinatory Analysis withpnttof, but with
a number-theoretic explanation. This was some progred®1i |.Schur gave
proofs, one of them combinatorial, on the lines of F.Frariklproofof Euler’s
theorem. Schue also emphasized the mathematical meartivd @fentities.

Let us look at the meaning of these identities. Let us writertpht side of
(@) as a power-series, say,

1 N 4 n
Ena— a4

g’(n) is the number of terms collected from summands 1, 4, 6with rep-
etitions, or, what is the same thing, the number of times iicivin can be
expressed as the sum of pazts1 (mod 5), with repetitions. Likewise, if we

write
1 [e) .
ma—x) Zn:oq (.

n=+2(5)

thenq”(n) is the number of representations mfas the sum of parts +2
(mod 5), with repetitions.
The expressions on the other side appear directly.
Take 59
XK
1-x@A-x2)---(1-x4

If we write

1

= 2 e
A-XA-x) - (1-xx) =ap +arX+ ax" +

then the cofficient a, gives us the number of partitions ofinto parts not
exceeding. Let us represent the partitions by dots in a diagram, eaxtfcak
column denoting a summand. Then there are at tkostvs in the diagram.
Sincek? is the sum of thé first odd numbers,

K=1+3+5+---+(2k-1),

each partition ofi into summands not exveedikgan be enlarged into a par-
tition of n + k? into summands which fier by at least two, for we can adjoin
k? dots on the left side, putting one in the lowest row, threehia next, five



7. Lecture 48

in the one above and so on finallik 2 1 in the top most row. Conversely any
partition ofninto

- [ ] (] [ ] [ ] L ] [ ] (]
[ ] [ ] [ ]
* k rows
[ ] [ ) L] [ ) L] [ ) [ )
[ ] [ ] [ ] [ ]
[ ] [ )

parts with minimal diference 2 can be mutilated into a partitiomof k? into 60
summands not exceedikgHence there is a one one correspondence between
these two types. So the dfieients in the expansion of

k2

T ?(2) T represent the number of times that a nunéexan
be decomposed infoparts (the partitions are now read horizontally in the di-
agram) difering by two at least. When this is done for e&cand the results
added up, we get the following arithmetical interpretatadr{dl): The num-
ber of partitions ofn with minimal difference two is equal to the number of
partitions into summands congruenttd (mod 5) allowing repetitions.

A similar explanation is possible in the case @f (2). On tHedale we
can account for the exponents 2.3, 3.4, k(k + 1), ... in the numerator by
means of triangular numbers. In the earlier diagram we adjaithe left 2,
4, 6,..., 2k dots beginning with the lowerst row. The number thus added is
2444 +2k = k(k+1); this disposes of<®*Din the numerator. So read

horizontally, the diagram gives us a decomposition intagpahich difer by
xK(k+1)

2 at least, but the summand 1 is no longer toleratee- ives
g (1 2

us therefore the enumeration dt by parts difereing by 2 at least, the part 1
being forbidden. We have in this way the following arithroatiinterpretation
of @): The number of partitions afinto parts not less than 2 and with minimal
difference 2, is equal to the number of partitionsafito parts congruent2
(mod 5), repetitions allowed.

By a similar procedure we can construct partitions wheredLZaare for- 61
bidden, partitions dfering by at least three, etc. In the case where tlferdi
ence is 3, we use, 4,7, .. ., so that the number of dots adjoined on the left is
1+4+7+--- tokterms= k(3k — 1)/2, so a pentagonal number, and this is
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K(3k-1)/2
(1-XA-x2)---(1-xK)
partitions into parts diering by at least 3. And for 4 the story is similar.

The unexpected element in all these cases is the assodiHtjmartitions
of a definite type with divisibility properties. The lefteg in the identities
is trivial. The deeper part is the right side. It can be shohat there can
be no corresponding identities for moduli higher than 5. thAllse appear as
wide generalisations of the old Euler theorem in which theimal difference
between the summandsis, of course, 1. Euler’s theoremrisftre the nucleus
of all such results.

We give here a proof of the Roger-Ramanujan identities wkgdh line
with the treatment we have been following, the motiod of fakpower series.
It is a transcription of Roger’s proof in Hardy’s ‘Ramantuijapp.95-98. We
use the so-called Gaussian polynomials.

Let us introduce the Gaussian polynomials in a much neatetion than
usual. Consider for first the binomial déieients:

(n): nn-1)n-2)---(n—-k+1)

no surprise. In fact, would give us the number of

(Observe that both in the numerator and in the denominatoethrek fac- 62
tors, which are consecutive integers, and that the factoegual rank in both
numerator and denominator always add up tol). The(E) are all integers, as
is obvious from the recursion formula

n+1 _(n N n
k | \k k-1
(2) = 1, of course, and by definitio(ug) =1 We also definéﬂ) =0fork>n

or fork < 0. Observe also the eymmeh()Z) = (nfk)

The Gaussian polynomials are something of a similar naiWeedefine the
Gaussian polynomial
nf _[n
k|~ [k
X

Nl (L= xX)(L- XY - (1- XY
[k} 1= (1=

by

The sum of the indices ofin corresponding factors in the numerat@nd
n

K| are polynomials irx is obvious

denominator i + 1, as in(E). That the
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from the recursion formula

n+1
k-1

n+1

K XK

Where[z =1and 8} = 1 by definition. The recursion formula is just the same
as that for({:) except for the factor in the second term on the right. Alsorgefi
8}:1; also Iet[g}zlfork> nork<O0. 63

(1] [0 0.,

o] = [o| *|-2|* =t

(1] [1].

11| (O]

2] 1-x _

1)~ Tox =1+

and so on. We also have the symmetry:

H=n"

The binomial cofficients appear in the expansion

=Y

k=0

Likewise, the Gaussian polynom{fﬂ appear in expansion:

L+ )L+ X)L+ XY) - (L+XTY) = 1+ YGi(X) + Y Go(X) + -+ +Y'Gn(X)
where G(x) = X</ [E}
Notice that forx = 1, E = (E) Changingy to yx we get the recursion

formula stated earlier.
We now go back to an identity we has porved sometime back:

ﬁ(l + 3X2n_1) =1+3Ci(X) + 32C2(x) NI (1)
n=1
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where
k2
X

1-x2)---(1-xX)

Ck(¥) =
Now write

X=X1-X=X-X2=Xp, ..., 1= XK= Xy;
(1-X)(2-X2) (=X =X Xo... X = X!

With this notation,

X<
Ck(¥) = X

From Jacobi’s triple porduct formula, we have

%": NG
ﬂ(1+ P14 = 2 2)
-1 I1(1- @)

n=1

By ), the left side ofl{R) becomes

Z 3G Z 375C(X) = Bn(s» X)’

whereX,! is put equal to 1B, (3, X) is the term corresponding ta- s = nwhen
the left side is multiplied out in Cauchy fashion. Thus

Bn(3.%) = Xal > 37 °C(XCs(¥)

r+s=n

2
= X,! 23” x XF (r+s=n)
Xr|xn|'

— Z[ } x(n- r)2+r2 n-2r

Notice that the powers af occur with the same parity as Now (@) can
be re-written as

S
o0 3 X
Bn(3, X) _ |=Z_:Do

] [
e
n=1

n=0

65
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Both sides are formal power seriesxkiof the appropriate sort. THg(3, X)
are linear combinations of power seriesxiwith powers ofz for codfieicnts.
We can now compare powers nf We first take only even exponenfs’; we
then have infinitely many equations of formal power serieg dltiply the
equation arising fron3?™ by (-)™x™™1 and add all these equations together;
(amd that is the trick, due to Rogers) we can do this becaulggeaifrity. Then

(_)mxm(m—l) X(2m)2

S ,3 I(X) m=0
Z )2(2|! had ’ (3)
1=0 1(1-x2)
n=1
where ,BZI(X) [ } X(2I—r)2+r2(_)I—rx(l—r)(l—r—l)

Writtingl —r = s,
|

ﬂZl(X — Z[ } 2|2+232(_)SXS(S—1)

s=-1
|

2
—e 3|2

s=—I

(because of the symmetry betwelen s andl + s). Separating out the term
corresponding t@ = 0 and folding together the terms corresponding emd 66

-5,

|
Ba(¥) =X {m IC)
s=1
2|2 {Z( ) |+S XS(S&l) Z( )
— X2|2 {Z(_)SJrl
s=0

Then

( )SX352

I+s

2l
l+s

XS(3S—1)(1 + XZS)}

Xs(3s+1)}
l+s

2
S(3s+1)
RE } (@)

X(s+l)(3s+2) + Z(_)s
s=0

l+s+1

|
ﬂZI (X) — XZI2 Z(_)S |:| il S:| X5(3S+l) (1 11 X)|(+3+l X4S+2)

2P Z( )

s(3s+1)1 XZS+1
S 1— X+s+l

I +
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2
X2I

|
= 1o L0

Let us now computg,,1(X). For this we compare the cieients of;2™1,
multiply the resulting equations by-J™x™™ 1 and add up. Then

20+1

l+s+1 X1 - X (5)

3 (_)mxm(wl) X(2m+1)2

iﬂznl(x) _ m=0 (6)
=0 X2I+1! 10—0[(1_ in)
n=1
where
21+1 | 1
Baea(X) = Z 2 ;L X1 | p2(Zyl=r g-r)-r-1)

r=0
Writting | — r = s, this gives

Ba1(X) = Z

s=-1-1

2

|
s=—I-1

|
— X2|2+2|+l (_)S
b

20+1

e X(I+1—s)2+(l—s)2(_)sxs(s—l)

2||_+51 (_)SX352+5+I2+(I+1)2

20+1

S(3s+1)
l+s+1 X

I
20+1
_\s+l (-s-1)(-3s-2)
+ Z( ) l+s+1 X }
=0
I
_ 2% Z(_)s 2l +1 xSBS( _ dsr2) 7
o l+s+1

This expression foB2.1(X) is very neat; it is almost the same&§(x) but
for trivial factors. Let us go back t8;,1(X) in its best shape.

20+1
Ba+1(X) = x2'2+2'+1{ |
I
21+1 sy S(3s+1) 21+1 sy S(3s-1)
+;(I+s+1(_)x * I+s(_)x
20+1 21+1

|
* 2,
s=1

| l+s 1 — Xl+s+l

2
— XZI +2I+1{

e L)

67
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Since
1-— Xl—s+l 2 1-— Xl+s+1 + XS — XI+1 (1 _ XI+1)(1 + XS)
1+ 1-— Xl+s+1x = 1-— Xl+s+1 = 1-— Xl+s+1 ’
) 1-— XI+1
Ba1(x) = X +2|+171 X2
1+1
21 +2 21 +2 sy S(3s-1) 25
{I+1 +;I+s+1(_)x (1+x7)

This fits with 85,2. Now we can read f® the recursion formulae. The
consequences are too very nice facts. The whole thing hingasthe courage
to tackle these sums. We did not do these things ad hoc.

Let us compargy .1 with B

Bais1 = X201 - X2 By,

IB _ X72|7l 1- X|+lﬂ .

21+1 = 71 — X2I+2 21+2,
1-— X2I+2

S{o] Bas2 = X2|+1W,32|+1,

andg, = 1. These things collapse beautifully into something whihaould
not foresee before. Of course the older proof was shortas roof fits very
well into our scheme.
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Last time we obtained the two fundamental formulaedprBa.1, from which 69
we deduced the recurrence relations:
,82m+1 — 2m+1(1 _ X2(2m+l)),32m,
1 x2em2) (1)
Bomiz = XM Bomi1

Bam came fromB,y, by a substitution which was not yet plausible. Let us cal-
culate the first feys’ s explicitly. By definition

Bo=1=50

Br=X1-%) Bo=x1-x)
1-x*

B2 = Xm p1= 2(1—X4)

Bz =x(1=x) B2=x(1-x)(1-X)

1-x8
,34=X31_X4 Bz = X1 - x0)(1-%);

and in general,
Bom = x2m2(1 — X2 (1 x2TA) (1 — XA
= Xﬁ);(z—j(with X = x%); )
and similarly,
Bome1 = X2m?+2m+1(1 — M) (] 5@ (1 — xAT2)

X !
= XmPmy ;mil (3)
m-

55
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This is a very appealing result. We got thes in the attempt of ours to 70
utilise the Jacobi formula. We actually had

NI
E‘o( yx _ o Bom

[1(L—em) e o
m=1

so that by[[R)

w—:i_! (4)

Similarly we had

S [\ 51243141
2 (=)x w0
= Bomr1

0
10_0[ (1 - x@m) m=0 Xamet!”
m=1

so that by[(B)
Igb(_)lxl(SHB)/Z - Xm(m+1) (5)
M@-xm s o
m=1
Now the right side in the Rogers-Ramanujan formula is
1 lo_c[ (1 _ X5m)(1 _ X5m—2)(1 _ X5m—3)
- m=1
1 (1 - ¥8m1)(1 - x8m-4) 111 xm)
m=1 m=1
which becomes, on replacingby X2, 71

ﬁ (1 — xA0m)(1 — x10M-4y(1 _ y10Mm-6)
m=1

—8

(1 - x2m)
1

3
T

The numerator is the same as the left side of Jacobi’s trijpléyct formula:

ﬁ(l =XM1 -3 (L -3 = i ()3,
m=1

|=—c0
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with x replaced by® andz by x. Hence

m (1 — xLOmm) (1 _ x10m-4)(] _ y1om-6) ¥ (=) X5 3 (=) XED/2
|=—c0 |=—00 |=—c0

—18

(1— xem) [a-xm  [[-xm
1 m=1 m=1

3
T

now

N T ()l (@)
B 2

Ha-xem [a-em &= X I (@-xm)
m=1 m=1 m=1

|:§w(_)IX5|2+I kim(_)kstkz

>

on replacing? by (-)'X(+1), and this we can do because of linearity. Hence 72

i (=) X612
1=—co

1

[TEA-Xm) 11— x6m1)(1— xsm4)
m=1 m=1

Similarly,
. nlill(l _ x10My(1 _ x10m-2)(1 _ yl0m-8)
nli[l(l _ X5m—2)(1 _ X5m—3) - nlill(l _ Xm)
S Iy 51243
Gk
11— Xm)
m=1

This time we have to replagé*! by (-)*x&1_ Then

o [ I1(51+3)/2
. P

@-Xsm2)@-xsm3)  [](L—Xm
m=1 m=1

These formulae are of extreme beauty. The present prooftteastto do
with things that we had already handled. The pleasant sérjisithat these
things do come out. The other proofs by Watson, Ramanujarotret use 73
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completely unplausible combinations from the very starur @roof is sub-
stantilly that by Rogers given in Hardy's Ramanujan, ppe86though one
may not recognize it as such. The proof there contains casipléoreign
elements, trigonometric functions which are altogethetévant here.

We now give up formal power series and enter into an entiréfgnt
chapetr - Analysis.



Part ||

Analysis
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Theta-functions

A power series hereafter shall for us mean something eptiferent from
what it did hitherto.x is a complex variable and, a,x" will have a value, its

n=0
sum, which is ascertained only only after we introduce caysece. Then

f(x) = i anX";
n=0

x and the series are coordinated and we have a function onti@eodomain.
We take for granted the theory of analytic functions of a claxpariable; we
shall be using Caushy’s theorem frequently, and in a momenshall have
occasion to use Weierstrass’s double series theorem.

Let us go back to the Jacobi identity:

5]

ﬁ(l_ in)(1+ 5)(2n71)(1Jr 5—1X2n—1) — Z 5kxk2

n=1 k=—o0

=1+ ) G+ 37, 0),
k=1

74

which is a power series iR. Two questions arise. First, what are the domains

of convergence of both sides? Second, what does equaliyebatthe two

sides mean? Formerly, equality meant agreement of théicieats up to any 75

stage; what it means now we have got to explore. The left siddsolutely
convergent - and absolute convergence is enough for us|x/fer1; (for the
infinite product[ J(1+a,) is absolutely convergent} |a,| < oo; zis a complex

60
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variable which we treat as a parameter). For the right sidaseehe Cauchy-
Hadamard criterion for the radius of convergence:

1
p=—="
lim V]an|

1
W k—f[ls + 5*k|
Supposes| > 1; then **#xksersisinins and

I3 +37 < 231,
2 2
and Vi +37% < V24l - 1 ask > o
S 2
im( Vi< +374) < 1.

It is indeed= 1, not< 1, because ultimately, K is large enough/* > 1,
and so

1 )
§|s|k <lF+37%,

and we have the reverse inequality. By symmetry amd 1/3, this holds also
for 3] < 1. The casds| = 1 does not present any seriouffidulty either. So
in all casesp = 1. Thus both sides are convergent feir < 1, and indeed
uniformlyin any closed circléx] <1 -6 < 1.

The next question is, why are the two sides equal in the serfsmction 76
theory? This is not trivial. Here equality of values of @o@ents up to any
definite stage is not giicient as it was before; the unfinished fogents before
multiplication may go up and cannot be controlled. Here, évev, we ae in a
strong position. We have to prove that

N

[ J@=M@+ @+ 575 - 1+ 3 6+ 571
n=1 k=1

with increasingN, when|x| < 1, and indeed uniformly soifx < 1-6 < 1.
On the left side we have a sequence of polynomials:

N )
) = [ =)@+ &L+ = ) af)x™,  say
n=1 m=0

(of course the cd#cients are all zero beyond a certain finite stage). Now we
know that the left side is a partial product of a convergefinite product; in
fact fn(X) tends uniformly to a serie$(x), say. Now what do we know about
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a sequence of analytic functions on the same domain comgergiiformly
to a limit function? The question is answered by Weiersisadsuble series
theorem. We can assert thi{x) is analytic in the same domain at least, and

further if f(x) = i anx™, then
m=0
a = lim alV.

The codficients of the limit function have got something to do with therz
original codficients. Now

1 fn(X)
N) = _— N
an i f T ax

X|=1-6

Let N — oo; this is permissible by uniform convergence and aﬁ& sin
fact converge to
1 f(X
de

T 21 Xl
X=1-6

Am

(Weirestrass’ own proof of this theorem was what we haverghwere, in
some disguise; he takes the values at the roots of unity &ed tasort of mean
value).

Now what are the cdicients in 1+ 3(3¥ + 37¥)x<? Observe that the con-
vergence oiafr'}') to an is a peculiar and simple onaﬁr’}') indeed converges to a
knownap,; as a matter of facmﬂ}') = an, for N sufficiently large. They reach a
limit and stay put. And this is exactly the meaning of our faindentity. So
the identity has been proved in the function-theoreticeens

[]A-@+ 3@+ =14+ Y +379% = 7§
n=1 k=1

k=—c0

These things were done in full extension by Jacobi. Let ud@yripe ususl 78
symbols; in place ok write g,|g| < 1, and putz = €. Notice that the right
side is a Laurent expansion min 0 < [3| < oo (Vv is unrestricted because we
hace used the exponential). We write in the traditional tiarta

ﬁ(l _ an)(l + an—leZKiV)(l + q2n—1e—27riv)
n=1

— i qn2 grinv

N=-—o00
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=Va(v, Q)
v3 (and in fact all the theta functions) are entire functions.ofVe have taken
lgl < 1; itis customary to write] = €7, so thatq| < 1 implies
|&""| = €77, it < 0
ie., Zir<0 or ISmr>0
T is a point in the upper half-plane.andq are equivalent parameters. We also

write
Y3(7,q) = Y3(7 /1)

(An excellent accout of th#’-functions can be found in Tannery and Molk:
Fonctiones Elliptiques, in 4 volumes; the second volumeaias a very well
orginized collection of formulas).

One remark is immediate from the definition’t, viz.

(7 +1,09) = 73(7,0)

On the other hand, 79

%(7/ +1, q) — ﬁ(l _ q2n)(1 _ q2nfle2ni“1/e27ri‘r) % (1 + anflefzni“I/efzniT)

n=1

— i qn2e2nin7/e27rin”i/’

N=—0oc0

and sincey = €77,

ﬁ(l _ q2n)(1 + q2n+le2ni“1/)(1 + q2n—3€—27ri“1/) — i qn2+2ne2nin‘1/

n=1 n=—o0

or

00

1+qle” 2 on-1, 2ni ¥ on-1~27i ¥
—— | |@-A+ )L+ g e )
1+ qex” g

_ q—le—znr// i q(n+1)2e27ri(n+l)"i/
N=—o00

=q e 57, 0)
= (g )57, 9)
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So we have the neat result:
(Y +1.0) = q e W47, q)

1 is a period of#3 andt resembles a period. It is quite clear that we cannai
expect 2 peroids in the full sense, because it is imposiblarientire function
to have two periods. Indeeddf; andw, are two periods off, then f(¥ +
w1) = TN, 1V + wy) = T(¥), andf (¥ + w1 + wy) = f(¥) and the whole
module generated hy; andw; form periods. Consider the fundamental region
which is the parallelogram with vertices at}, w2, w; + w-. If the function
is entire it has no poles in the parallelogram and is bountetet(because
the parallelogram is bounded and closed), and therefoptteeinvhole plane.
Hence by Liouville’s theorem the function reduces to a canist

While dealing with trigonometric functions one is not ahgasatisfied with
the cosine function alone. It is noce to have another functiosk — 7/2) =
sinx. A shift by a half-period makes it concenient for us. Let usgider
analogously’s(¥ + 1,q), 75(¥ + 7/2,9), and#3(¥ + 1 + 3,q). Thoughr
is not strictly a period we can still speak of the funcdmenggiion, because
on shifting byr we change only by a trivial factor. Replagéby 7 + 1 and
everything is fine as 1 is a period.

oo

1 ' '
15V +5.0) = H(l — (L - P (1 — 2 le )
n=1
= i (_)nqn2e27rin'1/
N=—o00
which is denoted4 (7, q)
Again o

7/3(4// + g’ q) — l_[(l _ q2n)(1 + q2n—1e2ni”i/eﬂi'r)(1 + an—le—Zni”i/e—nir)
n=1

— i qn2e2nin“1/e(rinr

N=—o00

i.e_, (1+ e—27ri“1/) ﬁ(l _ an)(l + aneZRi‘i/)(l + ane—Zni‘i/)

n=1

(o]
) )
— Z qn +ne2mn"i/
N=—o0
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_ q—1/4e—ni7/ Z q(n+1/2)2e(2n+l)ni"i/
N=—o00

=q e Y5(¥,q)

where#3(7,q) = i (22 g2+ ¥y definition. (Hereq /4 does not

N=—o00
contain an unknown 4th root of unity as factor, but is an abiaten fore /4,
so that it is well defined). So

750 6) = 2q" cost¥ | [(L- ™)L+ &™) (L+ o)
n=1

Finally
1 1 1
A + Z7m=q“€W””4%+5ﬂ
1 . 1
— q—1/4i_e—nl”i/4//2(7/ + E’q)
_ q1/4e—ni"i/ Z (_)nq(%)ze(zml)nwx
N=—oc0
= .—200571 (4// + })e”i"’/
i 2
1_[(1 _ q2n) (1 _ q2ne27ri7/) X (1 _ q2ne—27ri7/)
n=1
Now define

1
=1+ 5.0,

or

71070 = 2q" sina s [ [(L- )L+ o) (L - e )
n=1

. > 2n+1)2 .
= iq Y4 Z (_)nq( ) g+ iy
m=—oo

Collecting together we have the fouf-functions:

(Y,q) =iq 4 Z (_)nq(Z";l)ze(Zml)nW
m=—oco

82
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= Z:(—)”q(zn_zﬂ)2 sin(n+ L)ny
n=
1. q) =2 d(*F) cos(@ + 1ry

n=0

Y3V, Q) = 1+ZZ q" cos ¥

n=1

YV, Q) =1+2 Z:(—)”qnz cos iy’
n=1

Observe that the sine function occurs only/in Also if g, ¥ are rel these
reduce to trigonometric expansions.
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Let us recapitulate the formulae we has last time.

(Y, Q) = Tl > (gl geneanir

N=—o00

.y i(—)“q(z”—z“)z sin(n + V¥’

N=co

- 2qY4sinz ¥’ ﬁ (1 _ qu) (1 _ q2me2ni"i/) (1 _ q2me—27ri7/) (1)
m=1

YoV, ) = Z q(Z”T”)Ze(Zml)nin;/

N=—co

= 22 q(zn_?l)2 cos(h+ L)y
n=0

_ 2 cose s | | (1- ) (1+ e ) (1+ e ) (2)
m=1
5(7,0) = i e
N=—co

=1+ ZZ q" cos ¥
n=1

00

— 1_[ (1 _ qu) (1 n qszleznrt/) (1 n q2m—le—2ni“1/) A3)

m=1

67
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7= ) ()dmem

N=-—00

=1+2 f:(—)”qnz cos 2wy
n=1
— ﬁ(l _ qu)(l _ q2m—le2ni7/)(1 _ quTFle—Zni‘i/) (4)
m=1

We started with#3 and shifted the argumenit by ‘periods’, and we had, 85
writing g = €7,
Y3(V +1,0) =73(7.0)

KV +1,0) = q e 157, 9.

Then we took ‘half-periods’ and then something new happeaad we
gave names to the new functions:

(5)

1
7/3(7/_}_ E»q) = 7/4(4//7(:])

-
>
1+71

>

7/3(4/ + q) =q Ve (¥, 0q) (6)

%(”V + q) =iq e YA(Y,q)

Let us study how these functions alter when the argurnfeistchanged by
1,7,1/2,7/2,(A+71)/2. vV — ¥ + listrivial; v — ¥ +1/2is also easy to see
by inspection. Let us tak¥# + 7. (We suppress the argumenfior convenience
of writing).

) = %q”“ez"“%(% + 1”)

N +1) = i}ql/‘le?ri("’/”)“//g("ﬂ +T+ 1+T)

i 2
— e—2ni"i/e—7ri(l+'r) 7/1(4//’ q)

= _A%(/V7 q)’

_ .}ql/AG(ri“//qq—le—Zni(“l/+l+T/2)7/3 ("y + 1+ T)

whereA = g le2”; the other conspicuous factor which occurs in similass
contexts is denoteB = q~Y/4e 17,
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The other transformations can be worked out in a similar wafirbt going
over to73. We collect the results below in tabular form.

7 +1 V4T V+3 V+3 ¥+ I
7 -N -A7 72 iBY, B73
72 -2 A7, - B3 —-iB74
73 73 A7z Ya B72 B/
Ya Ya ~-A7, 73 iB71 B72

It may be noticed that each column in the table contains alfdlur func-
tions; so does each now.

The systematique of the notation for thefunctions is rather questionable.
Whittaker and Watson writ¢” instead ofr?’, which has the unpleasant con-
sequence that the ‘periods’ are thelandzzr. Our notation is the same as in 87
Tannery and Molk. An attempt was made by Kronecker to systisma little
the unsystematic notation. Charles Hermite introduceddt@wing notation:

i (_)vn q< 2r_2+/4 )2 e(2n+/1)ni Ve

N=—co

i (_)Vne(2ﬂ2+u )Znire(2n+p)7ri'1/

N=—co

V(Y. Q)

whereu, v = 0,1 * x =x. In this notation,

Yoo(7, ) = 73(7, Q)
You(7,0) = Ya(V, 0)
Y1o(7,9) = V2(V, 0)
7u(7,q) = i7(7, q).
This, however, has not found any followers.

While writing down derivatives, we always retain the cortvem that a
prime refers to dierentiation with respect t¢":

, 0
@) = 5V (@ = 1.2.3.4)
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Taking partial derivatives, we have

”y(/V/T) Z ( )vn (2n + /1) e(zn%)zni-re(Zner)ni‘i/’

N=—o00

62 S 2u 27r'T H 7T
and Wﬁﬂ%ﬂ=2«ﬂéﬂ'ﬁwmm%MW%

N=—oc0
Comparing these we see that they agree to some extent; jn fact 88
e, 92
4 Eﬂi/yv(ﬂ///‘r) 9y Pl yv(ﬂI//T) (7)

This is a partial dferential equation of the second order, a parabolic equa-
tion with constant cocients. It is fundamental to write = —t; () then be-
comes the dferential equation for heat conductiofi-functions are thus very
useful tools in applied mathematics; they were used by Boiaad Fourier in
this connection.

Again,

2n + 2 )2 N+u)ri
A0 - Z(M ‘ﬂdﬂl&ﬁf

n=—co 62
— 4r? q uV(q// CI) = 2 llV(/V CI) (8)

which is another form off{]7). Here the uniformity of notatiaas helpful; it
was not necessary to discuss thffatent functions separately.

We now pass on to another important topic. The zeros of tha theinc-
tions.

The ¥-functions are more or less periodic. The exponential faittat is
picked up on passing from one parallelogram to another iszepso and can
accumulate. Itis evident from the definition that

7,0,090=0

On the other hands, 73, 74 # 0. (when the argument is O we write 89
hereafter simply?’). This is so because the infinite products are absolutely
convergent. (Let us recall that a product I|ke—l 3+ Is not properly conver-
gent in the product sense). Again from the def|n|t|ons,

fy-
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7/3(1;7'):0
)0

So far we have one zero per parallelogram for each of the ifirtand
there can be no other in a parallelogram, as can be seen feomfihite prod-
uct expansions. The zeros of(7,q) are my + mpr(my, m, integers), for
1 - eme” = 0 impliesmr + %3 = mpor ¥ = my — mr. The zeros
of Y1(¥,q), Ya(¥,q), ¥3(¥, q), Ya(¥, q) in the fundamental parallelogram are
nicely arranged in order at the points3 %T 5 respectively.

T 1+7

1
0 1/ 1
All the zeros are therefore given by the formulae:

Y1+ mp7) =0

1
%(m1+mzr+ 5):0

1
%(m1+mzr+ ;T)zo

7/4(m1+mzr+%)=0

Itis of interest to study’, (0, q) (usually written?;).

#1(0)=0
1) = 3 oerd)

— 2ql/4 l_[(l _ qu)(l + qu)Z
m=1



10. Lecture 72
=7

750)= ) "
= ﬁ(l — ML+ g™
m=1
%(0)= > (-)d"

— 1_[(1 _ qu)(l _ quTFl)Z
m=1
We cannot anything of interest ifi. Let us look at the others. a1

7HO.q =77 = 2’TZ(—)"(Zn + 1))

n=0

= 29"*|x cosn ¥ ﬁ( )+ sinn“f/(ﬁ(- . )”
m=1 V=0

m=1

— 27qu/4 l_[(l _ q2m)3
m=1
Immediately we see that this yields the interesting idgmtitlacobi.
[Ja-am®=>)ren+1d,
m=1 n=0
or, replacingy® by x,

[ ]@-xm%= > ()"(@n + xnvr2
n=1 n=0

We had proved this earlier by the method of formal power setitere we
can diferentiate with good conscience.
Now

© 2
V3V =] (H(l +0PM(1 + g?™ (1 - qZ"Fl)]
m=1

) 2
=7 []_[(1 +0PM)(1- q“m‘z)) :
m=1
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which becomes, on replacimg by x, %)

oo 2
/Vl/ 1_[(1 + Xn) (1 _ X2n—l)
m=1
However, ﬁ (1L+x"(1-x>1) = 1. We therefore have the very useful and
m=1

pleasant formula
v = %13
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We found that?, (7, g) changes at most its sign whehis replaced by +1, 93
while it picks up a trivial factotA when ¥ is replaced by?” + 7. If we form
guotients Awill cancel out and we may therefore expect to get doublyepie
functions. Let us form some useful quotients:

_ (7.9
(V) = (7, Q)
_ (7.9
(1) = (7, Q)
_ (V.9
W=7

For simplicity of location of poles it is convenient to takgin the denom-
inator since it has a zero at the origin. From the table ofth&unctions we
find that these functions are not quite doubly periodic:

(7 + 1) = f(¥) f3(7 + 1) = —f3(7)
fo(V +7) = —Ffo( V) f3(V +7) = -1:(¥)
f4(4// + 1) = —f4(4//)
f4(V + 1) = f4(V)
So the functions are not doubly periodic; they do not retarthemselves. 94
And we cannot expect that either. For suppose any of the imf were
actually doubly periodic. We know that each has a pole of tts¢ dirder per

parallelogram. Integrating round the parallelogram withtices a&%, J_r%
(so that the origin which is the pole is enclosed), we have

ff(%)d% =0

74



11. Lecture 75

T 1+T

147/ !
2 -

i.e., the sum of the residues at the polds This means that either the
pole is a double is a double pole with zero residue, or thezeh@o simple
poles with residues equal in magnitude but opposite in ditpwever neither
of these is the case. So there is no necessity for any furdperienentation.

Let us therefore consider the squares

200). 1200, 12(¥)

these are indeed doubly periodic functions. And they ara éwections. So
the expansion in the neighbourhood of the pole will not ciontae term of
power—1. Hence the pole must be a double pole with residue zero. o th
are closely related to the Weierstrassian functigy’), and must indeed be
of the formCZ(¥") + C;.

So we have constructed doubly periodic functions. They aserially 95
P(V). w1 andw, of Z(¥) are our 1 and. In order to get a better insight
we need the exact values of the functions. Let us considér poée terms.
Expanding in the neighbourhood of the origin,

TV, Q) “V+%7/2
D~ Ty sy

_1¢

v 1+67/,v2+

”f/ 4// 4/////2 2 5
etz el oo
_ /V///

_v’V, 6,V/ R

5=(¢Z§i:3§)
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y2 1 yr Y
= e = (1492l _ 1
"//'21%2( * ("Vl 37/1')+ )

Let us now specialise. We have a special interest#3 because itis such a
2

. . ® 1 .
nice function:¥3 = %, q”z. We haveﬁ f2(7) = ?+ non-negative powers
n=—co a 2
of 7.
If we take two such and take thefiirence, the dierence will no longer 96
have a pole. Taking = 2, 4, for instance,

ﬁ(%(%q))z_ﬁ(%(%q))z B
v\ (.9 2\, q) Yo W

+ positive powers ot (*)

The left side is a doubly periodic function without a pole @ada constant

14 14

C; the right side is therefore jusa//tz— - ; . The vanishing of the other terms

2 4
on the other terms on the right side, of course, implies |bidemtities.
So we have already comput€dn one way:

/72// /74//
T h
To evaluateC in other ways we may take ibl(*y = % v = % ory =
(1 + 7)/2. From the table,
%(%,q)% %(1;T,q)=q”‘%
%(%,q)=—%=0 %(1;T,q)=—iq”4%
%(%,q)fﬂg %(1;T,q)=q”‘%
So again from the left side dfl(*), 97
7 R

_NZ%Z”/@Z%‘Z
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Also
R A I
- 2 42 Y2 2
2 3 4 3
_ 71.24//1’2%4 ~ 7.[24//1’27/24
ﬂ27/22zV32zV42 ﬂszZZ%Zz%lZ

_ 2.4 2.4
=Y, —n°Y,

From these we get an identity which is particularly striking

AR AR/ (1)
We have also o
2.4 _ "4 72

T 7/3 - 4//4 7/2 (2)

Now let us look atl{ll) and do a little computing. Explicith) @tates:

o 4 o 4 oo 4
| _ |44 nn+l) | ( _\n nz] 3
2] S [ o] e
This is an identity of some interest.
Let us look forgN on both sides. The left side givésin the formN = 98
n? + n3 + n3 + ng, that is, as the sum of four squares. So dies the second term
on the right. IfN is even, it is trivial that both sides are in agreement bezaus
the first term on the right gives only odd powersgpfind the cofficient of "
in the second term on the right is

E (_)n1+n2+n3+n4
22 "2 N2
nins+ng+n;=N

SinceN is even either alh;’s are odd, or two of them odd, or none. Itis not
transperent. What happens wheiis odd.
Take the more interesting formuld (2):

/y// /V//
a_’a 7
s = T,

By the diferential equation,

7 =] a0

[ 2 a
oV ¥'=0
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d
= |-4r’q—7, (7, ]
[ qaq ( q)y=0
(167/2 167/4)

V2 00 V4 dq

10?0 2
_4qaq|09”//4

75t =4q

Now

IT(1— 62)(1+ ¢2")?
E — 2q1/4 n=1

V4 -

8

(1 -1+

1/4 n=1

:2q

3

n (1 _ q2n)2(1 _ q2n—l)2

n=1

[1(1-g*)?

— 2q1/4n:1
[T(1-a)?
n=1

_ 2944

[1@1-0o)?
4+n

8

Taking the logarithmic derivative,

4_ 1 -ng"*
7/3 _4q{Z]_2§ 1-q"
n

=1+82 1n_d;n

44n

=1+82 nian

arn k=1

=1+82q”‘2n

44+ m nm
m=1

=1+ 82 o (mg™
m=1

78

99



11. Lecture 79

with the previous that-"(m) = Z d , that is the divisor sum with those 100

am 4+«

divisors omitted which are divisible by 4. This is an inteieg identity:

o 4 o
(Z q”z] =1+8) o (mq" (4)
n=-o0 m=1

On the leftq™ can be obtained only agi*™+%+%, so that the caicient
of g™ on the right is the number of ways in which this representefiio m is
possiblemis as often the sum of four squares as @n). Clearlyo*(m) # 0O,
since among the admissible divisors, 1 is always presenic*§n) > 1, or
everym does admit at least one such representation. We have thusdoro
Lagrange’s theoremEvery integer is the sum of at most four squares.

If mis odd,o*(m) = o(M); if mis even,

sm= > d+2 > d
dm, d odd dim, d odd
=3 > d
dm, d odd

If we denote byr4(m) the number of representationsofs the sum of four
squares, then

r4(m) = 8 times the sum of odd divisors of, modd;
24 times the sum of odd divisors of meven.

We have not partitions this time, but representation asuhe af squares.
We agree to consider as distinct these representationsiaglie order of the
components has been changed. In partitions we abstractedtfie order of 101
the summands; here we pay attention to order, and also taghdis., one
representation? + n3 + n3 + n3 is actually counted, order apart, as 16etient
representationsH#;)?+ (+ny)% +(£n3)?+(xn4)?, if Ny, N, N3, N4 are all diferent
from 0).

As an example, taken = 10. The diferent representations as the sum of
four squares are

(£1)? + (1% + (£2)% + (£2)?,
(1) + (£3)* + (0)* + (0%,

along with their rearrangements, six in each. Thus altageth

r4(10)=6x16+6x8=144
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807(10)=3(1+2+5+10)=8x18= 144

Lagrange’s theorem was first enunciated by Fermat in thenseseth cen-
tury. Many mathematicians tried to solve it without succesentually Jacobi
found out the identity

r4(m) = 80 (m)

Before that, the fact that every integer is the sum of foulasesiwas con-
jectured by Fermat, Euler did not succeed in proving it. Isyeoved by La-
grange, and later Euler gave a mere elementary proof. Erdgegd that if two
numbers are each the sum of four squares, then so is theigirdy means
of the identity:

(K + X5 + X5+ X5) (V% + Y5 + Y3 + Ya)
= (Xay1 + XoY2 + XaYa + Xaya)® + (X1Y2 — XaY1 + XaYa — Xays)>+
+ (X1y3 — XaY1 + Xay2 — XaYa)® + (XaYa — Xay1 + XaY3 — XaY2)’.
We do not proceed to discuss in detail the representabiliyrmimber as 102
the sum of two sequences.
If we return not tof2 but to f, we are not helpless to deal with therf.is
not doubly periodic in the fundamental parallelogram, butaubly periodic in

a parallelogram of twice this size with vertices a2@ + 7, 7. It has got a pole
at the vertex 0 and another at the vertex 1, with residuesgdd to zero.

T 147 2+ T
0 1 2

We may write down another identity:
{w(%/g) RAGSE
h(zh) h(=3)

This may be deduced by checking that the poles on both sideb@same,
Further they are odd functions and so the constant term idiffexence must

K ) 1

Y W(VT) 2

IN

vanish. Put/ = % on both sides.
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Then we get 103
2 ;{7/;(%/5) ) %’(%/5)}
2\nEs) 7))

By straightforward calculation, taking logarithmic dexfives, we obtain,

77 =4 q"(e(m) - ),
m=1

where the notation employed is:

a(m) = " d¥,
dm
oo(m) = Z d° = number of divisors of;
dm
cDm= > o
dim, d=j (mod 4)

comparing cofficients ofg™, and observing that on the laft occurs only in
the formn? + nz, we get the beautiful theorem:

m can be represented as the sum of two squares as often
as 4¢%(m) - o P(m).

Notice thate'"(m) — o®(m) is always non negatives; henoé”(m) >
a®(m) (i.e., the number of divisors of the fornt 4 1 is never less than the
number of divisors of the formr4+ 1), which is by no means a trivial fact.

In some cases we can actually find out what tlifedi'ancerﬁ,l)(m) —0-5,3)(m) 104
will be. Suppose tham is a primep. Then the only divisors are 1 am
The divisor 1 goes inte-Y; and p goes intoo® if p = 3 (mod 4). So the
difference is zero. However, if = 1 (mod 4). p goes intoc'Y). Hence the
number of representations of a pripe= 1 (mod 4) as the sum of two squares
is 4x 2 = 8. That the number of representations of a pripee 1 (mod 4) as
the sum of two squares is 8 is a famous theorem of Fermat, gfové¢he first
time by Euler. It is usually proved by using the Gaussian dempumbers.

So far we have been looking upon as the variable in the- functions;
now we proceed to considgras the variable and go to deeper things like the
Jacobi transformation.
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We now come to a rather important topic, the transformatiort functions. 105
So far we have been looking updi (¥ /) as a function of#” only; hereafter

we shall be interfering with the ‘period’also. We want to study how (¥ /1)
changes whert is replaced by/ + 1/r. For this it is enough if we replacé

by ¥t = w and see how the function behaves wheis changed ta + 1. This
would amount to turning the whole plane around in the pasitignse about

the origin through arg. We take?1, because it is easier to handle, since the
zeros become the periods too. Consider

f(7) = (V7/7)
Then
f(Y +1) ="+ 1)x/7)
=N+ 1/7)
— _e—niTe—Zni'V‘ra//l(/VT/T)
— e—ni‘re—Zni Vad f (7/)

7 Similarly considerf (¥ - 1/7) (We choose to take% rather than} since
we want the imaginary part of the parameter to be positive:

Im}=Im1_<0andso Im}>0)

T TT T
(v 2) = 440~ /)
= (-1
= KT

82
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=-f(#)

So f is a sort of ¥ -function which picks up simple factors for the ‘periods’ 1106

and—%. f(¥) hasclearly zeros at 0 antl= —%, orgenerally at/' = mp+mpt’;

my, M, integers, which is a point-lattice similar to the old onentedt around.
Similarly let us define

1
a0 =407 17) = (71 - 2]
oY +1)= (" +1/7)
=44/ /7
=-9(7)
1
4W—J=m7+ﬂ
T
= (Y +7I7)
— _e—ni‘r’e—27ri“// 4//1(4///7_/)
— _e(ri/re—Zni“//g(a//)

Let us form the quotient: 107
f(*)
(V)= —F—=
=97
_f(r+1)
o+ D=5+

— _e—ni‘re—27ri“//‘r¢(zy)
L)+
o["-3)= 501
_ f(7)
- eni/‘re—27ri7/g(”j/)
— —ni/TeZHi‘i/q)(y/)

@ takes on simple factors in both cases of this peculiar sett\re can
eliminate them both at one stroke. We write

e @ DY) = OV + 1),
@ ND(¥) = (¥ - 1/7)
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Let us try the following trick. Let us suppleme®{?") by an outside func-
tion h(7") so that the combined functieb(7") is totally doubly periodic. Write

P(7) = o(¥ )
We want to choosBk(7?") in such a manner that 108
Y +1) =P +7)=¥()

This implies two equations:
e—nir(2”1/+1)eh(7/+1)—h(”i/) =1
éri(Z“I/—l‘r)eh(”f/—l/T)—h(W) — 1’

or

h(7 + 1) - h(¥) = nit(2¥ + 1) + 2nim
h(¥ + 7 —h(?) = 72 + ') + 27im’.

We can solve both at one stroke. Since on the right side we &dinear
function of 7" in both cases, a quadratic polynomial will do what we want.

(V +6)2-¥2=2¥6+6%=6Q2V +6),
and takingh(?) = mit??,

h(¥ +1) - h(¥) = nit(2¥ + 1)
h(v + 1) =h(¥) = mitt’' (¥ +7') = -7 (2YV + '),

so that both the equations are satisfied. Putting it in, we hav

e(ri‘z”i/z %(/VT/T)

Y(¥) =
) %H(ri-1)

This has the property that 109

YV + 1) =y(V +71) =¢(¥)

So we have double periodicity. This function is also an enfimction
because the numerator and denominator have the same sienpge 30 this is
a pole-free function and hence a const@nt a constant with respect to the
variable?’, but may be a function of the paramete€ = C(r). We thus have
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ey (¥r/7) = C) N ("V /- %)

What we need now are the corresponding formulas for the étimetions.
Replacing? by ¥ + 1,

e””("/*%)z%(("/ + })7/7) = C(T)vfl(v/ + 1/ - }),
2 21 T
or e(ri‘r('1/2+'7/+1/4)iefni-r/4ef7ri'1/77/4(%7_/7_) — C(T)’Vz (7// _ })
T

We notices here that twoftierent? -functions are related. This gives
Il.

e V4V 1/7) = C(r) ¥4 ("V /- %)

Replacingin 1?7 by ¥ +1'/2="7 - 1/(27), we get
Il

e Y5(¥ 1)) = C) V4 (”f/ /- %)

Finally putting? + 3 for # In, lll,
V.

i 145V 7/7) = C(r) ¥4 ("V/ - %)

The way the functions change over in I-1V is quite plausilbler consider 110
the location of the zeros.
When we take the
parallelogram and
turn it around what T/
was originally a
zero for ¥4 becomes

one for ¥ and vice @ ‘®
versa; and what

used to be in the y )

middle, the zero of ~ ® ©)

Y3, Remains in the
middle. So the for-
mulae are plausible

in structure. ) )
The most important thing now is, what &(r)? To evaluateC(7) let us

differentiatd and put? = 0. We have
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V.
001 = Cley o - 2)

From 11, lll, and IV, putting?” = 0,
i%wm=0m%@w

i%wm=0m%@w

AR AR AR
~— T— S

i%wm=0m%@w

Multiplying these together and recalling that] = 727374, we obtain
VI.

-0/ = ey (o1 - 3)

Dividing by VI, by V, 111
1
— = CZ(T),
iT
[1
or C(r) = £4/—
it
In Il I, 1V, itis @ that appears; so let us write this is

C(r) _ 1\/T_ \/T
T T

Now k(i/r) > O- @ is completely determined, analytically, in particular
by IV:
C(r) _ 75(0/7) _ xe
i ¥5(0/-3) e
Both the numerator and denominator are analytic functibims + > 0. So
@ is analytic and therefore continuouigr must lie in the right half-plane,

and thus\/; in either of the sectors with central angt¢2, but because of

continuity it cannot lie on the border lines. So it is in théemor of entirely
one sector. To decide which one it is enough if we make onecehoi
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RS

Taker = it, t > 0; then 112

ciity se™
i Y e

Both numerator and denominator are positive.%blies in the right half.

Solarg \/;I < % and \/; denotes the principal branch. The last equality gives:

R F L e
|

N=-—o00 N=—o00

This is a very remarkable formula. It gives a functional tiel& the trans-
formationt — —1/7 almost leaves the function unchanged; it changes only by
a simple algebraic function. This is one of the achievemehiacobi.

In the earlier equations we can now |&(tr) = +/(i/7). In particular envis-

age’;.
—3
, i , 1
(0/7) = [\ﬁ) % (0/ - ;)

T T

1
or v (O/ - ;) = T%’(o/r)

But

7/1,(0/7') — zﬂ,e(ri‘r/4 ﬁ(l _ eZﬂimT)3

m=1

g mit/4 1 — g 2im/n)3 _ \/E T grit/4 1 — grimr)3
m]‘[:l( NERVERE m]‘[:l( )
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Extracting cube roots on both sides, 113

e—ni‘r/lZ (1 _ e—27rim/‘r) —_— \/ze(rir/lZ (1 _ eZﬂimT)

wheree® = 1. Dedekind first introduced the function

77(7_) — eﬂi‘r/12 ﬁ(l _ e27rim‘r)
m=1

n(—%) = 6\/?7(7)

This is challenging; we have to decide whicto take:e® = 1. The quotient

n(—%)/ \/ifn(r) is an analytic (hence contains) function in the upper pédfe
and so must be situated in on of the three open sectors. Now makecial
choice; putr = i. Thenn(i) = e(+1)n(i), ore = 1.

- oo

What we have done by considering the lattice of periods caddoe in 114
more sophisticated ways. One can have a whole general thétirg transfor-

Then

. ar+b . . :
mations from 1z, to 1, c;—+ The quotients appear first and can be carried

over. We start with¥; and come back to it; there may befitiulty, however in
deciding the sign.
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We arrived at the following result last time:

Y oo

We began by investigating a transformatior#@f?, r). Instead of looking
upon 1 andr as generators of the period lattice, we looked up@md-1 as
generators (turning the plane around through#drgl, r — 7,—1. We have
of course still the same parallelogram of periods. Sinceheaikl like to keep
the first period 1, we reduced everything by 7,-1 — 1, —%; so we had to
investigate1 (¥ t/7). YA(¥ t/7) and¥1 (¥ ] - %) have the same parallelogram
of periods.

We could do this a little more generally. Let us introduceéincombina-
tions:

wi=cr+d, wo=ar+hb,
and go fromw; to w, in the
positive sense. In order that we
must have these also as generat- wa
ing vectors for the same lattice,
we should have, b, c, d inte-
gers with

a b

c d
Moreover we want the first period to be always 1. (This is thiftedénce
between our case and the Weierstrassian introduction adgsrwhere we

have complete homogeneity). So replacing by linearity,pleods are 1 and
= a‘r+b_
cr+d

1. w1

89

115
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Be sure that we want to go from 1 t6through an angle less thatin the
positive sense. For this we waritto have a positive imaginary patisir’ > 0,
or

: >0
e lfar+b_ar+b
o i\ct+d cr+d
: 1adr + ber — adr — ber
i.e., - >0
[ lcT + d|?

. l(ad-bo(r-1)
e., ——— >0
e [ lcr +df2 g
or sincer — 7 is purely imaginary,

ad—bc=+1

We could do the same thing in all ourfidirent steps. The most important
step, however, cannot be carried through, because we geitlas important
point; and rightly so, it becomes cumber some because a nuimberetic
problem is involved there. Let us see what we have done. Campa

ar+b
cr+d

Yi((cr + d)¥ /1) and”//l(”///

We want periods 17’; indeed all things obtainable fromy = ¢r + d and
wy = ar + b; or mw; + Mw, must in their totality comprise all periods. For
the firstcr + d is indeed a period, and for the secaad+ b.

Now define

f(7) = 7((cr +d)7'/7)

f(¥ + 1) is essentiallyf (7):
f(¥ +1) = %((cr+ d)¥ +cr+d/7)
= (-)ctdg Critgreerd) Y oy (e + d)¥ /1), from the table

f(v +7)=7%(lcr+dyv+ar+b/7)

— (_)a+be—azzrire—2nia(cr+d)v7/l((CT + d)7//T)

f(¥) has, leaving trivial factors aside, periodsrl}**** So too for the
second functiorv; (7 [228).

cr+d

116

117
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We can form quotients and proceed as we did earlier.
Let us consider for a moment th&’s with double subscripts. This is a
digression, but teaches us a good deal about how to work ¥@thnctions.

Recall that
Vw(viT) = Z(—)V”eﬂif(n%)zezmv(m%)

N(v/t) = Ya(v/T)
P2(v/7) = Y10(v/7)
Y3(v/7) = Yoo(vT)
Ya(v/T) = Yo1(v/7)

We take one liberty from now on. Takev to be arbitrary integers, no 118
longer 0, 1. That will not do very much harm either. In fact,

%[,V+2(V/T) = %,V(V/T)
It is unfortunately not quite so easy for the other one:

/V;J+2,V(V/T) = (_)V%,V(V/T)

For
4//ﬂ+2 V(V/T) — Z(_)ve(rir(n+/1/2)2e2ﬂiv(n+l+/1/2)
n

— Z (_)V(_)V(n+l)d'ri‘r(n+l+y/2)2 e2niv(n+l+;4/2)
n

= (_)V%V(V/T)’

on shifting the summation index fromto n + 1. The original table will be
1 1+t

considerably reduced now; only in placewf 1, v + 3, v+ 5, v + - it

will be now necessary to have the combinatios 'g + IET. The expression

k |1 - _ .
for ¥, [v+ - + Er/r) will include everything that we have done so far in one

single formula.

kK | o
7/#‘, (V + E + ET/T) — zn:(_)vne(rlr(n+§)2e27r|v(n+§)eﬂl(k+|r)(n+§)

=i Kku Z (_)(v+k)n e(riT(n+/1/2+| /2) e—ni‘rlz/4e27riv(n+p/2+| /2)e—7ri| v
n

= ikﬂe_”iTIZ/Ae_”"V7/;z+l,v+k(y/7) (*)
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119
This one formula has the whole table in it.
We now turn to our purpose, viz. To consider the quotient

71((cT + d)v/7)
7 (v[25)

We wish to discuss the behaviour a little more explicitlyf¢f).

f(v) = 7((cr + d)v/7)
f(v+1)=71(lct+dyv+cr+d/7)
f(v+7)=71((lcr+dyv+ar+b/7)

puttingk = 2¢,I = 2d, u = v =11in (*), 120

f(v +1) = (-)de 7 e Ml Dy oo 1aa((cr + d)v/7)

— (_)Cere—ﬂi‘rC2 e—niC(C‘Hd)v f (V)
Similarly, puttingk = 2a,1 =2b,u =v =1,
f(V + T/) — (_)a+be—7ri1'a2 e—2nia(C‘r+d)v f (V)

Also definingg(v):

b
7 (v/ o d) = g(v) = Ya(v/7).

we have
glv+ 1) = (v + 1/7') = =va(v/7).

And puttingk = 0,1 =2,u =3,y =1in (¥,
giv+ ') = €T e Y5 (v/7)
— _e—nir’e—Znivg(v)‘
We form now in complete analogy with the old procedure

_fk
*0)= 309

q)(V + 1) — (_)c+d+le—7ri‘rc2e—27riC(C‘r+d)v<D(v)’

(I)(V + T/) — (_)a+b+1e—7rircze—27ria(cr+d)veﬂi'r’+27riv(l)(v)
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® takes up exponential factors which contaiimearly. As before ewe can 121
submerge this under a general form. Define

Y(v) = O(r)e®,
whereh(v) is to be so determined that
Yy+1)=Yry+1)=Y()
we therefore want
ghlr+1)-h(v) (_)c+d+le—c2ni-r—2nic((:r+d)v -1,
hlv+7)-h(v) (_)a+b+le—a27rir+ni-r’+27rive—27ria((:r+d)v -1
It will be convenient to observe that-d + cd+ 1 = (c+1)(d + 1) is even,

for at least one o€, d should be odd as otherwised would not be co-prime
and we would not have

a b
c d

So ()% = (-)¢d = ¢, his given by the equations:

=1

h(v + 1) — h(v) = 2ric(cr + d)v + nic(cr + d),
h(v + ') — h(v) = 2ria(cr + d) + mia(ar + b) — #it’
= 2xc(ar + b)v + nict’(ar + b).

We have to introduce a suitable functibfy). Since the dierence equation
can be solved by means of a second degree polynomial, put

h(v) = A?+ B
for each separately and see whether it works for both. 122

h(v + 6) — h(v) = 2Av6 + As? + BS
=6(2Av + A5 + B)
Puttings = 1, 7/, we find thatA = ric(cr + d) works in both cases. Also
foré =1,
A+ B = nic(cr + d),

2 : 2
A ar+b ' B ar+b :mc(aT+b)
cr+d cr+d cr+d
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SoB = 0 fits both. Hence
h(v) = Av2, A = ri(cr + d)c

— ic(m+d)v2w
o= )

And this is a doubly periodic entire function (because thmerator and
denominator have the same simple zeros) and therefore sgaobn¥Ve thus
have the transformation formula

ar+b : 2
T (v/ c:- + d) = CeC Iy (et + d)v/7)

whereC may depend on the parameteya, b, c, d:
C=C(r;a,b,c,d)

More generally we can have a parallel formula for any. As before we 123
get an equation foE2. And there the thing stops. Formerly we were in a very
good position with the special matrix

L)

For generah, b, ¢, d we get into trouble.
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We were considering the behaviour ®fi(v/r) under the general modular 124
transformation:

= (V/ e ) = CR)eCC D piy(cr + /). M)

a, b, ¢, dintegers wit a b = +1.
c d
We want to determin€(r) as far as possible. We shall do this up te a
sign. v is unimportant at the moment; even if we put 0, C(r) survives. Put
v = 1,2, 1 in succession, ans use out auxiliary formula which congct
the whole table into one thing:

k | . 2 )
Yy (v+ 5+ %/r) = Mg ey a(V/T) *)
. . .. . ar+b
Puttingv = 1 in (@), and writingr’ = T
1 ; cr+d
) = (cr+d)/4
%1(2 fx ) = C(r)ereler 7/11( . /r) @)

This is the right moment to call for formula (*). From (*) with = O,
u=v=1k=11=0,weget

%1(% /r') )

Also from (*)withv=0,u=v=1,k=d, | = C, we get

cr+d

7/11( /T) = 19C M S c1.0(0/).

95
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Substituting these two formulas in the left and right sidegP) respec- 125
tively, we get

i%z(O/T') — C(T)e(TiC(CT+d)/4ide_”iTCZ/A’VlJrc,ler (O/T)

Now, recalling that

Vuye2(V/T) = V0 (v/7) )
Vus2y(VIT) = (=) V0 (v/7),
the last formula becomes
i720(0/7") = C(r)€" Y4994, 1.4(0, 7) (3)

Puttingy = 7’/2 in (@), we have

T_/ /) _ ic/47' (ar+h) ar+b
%1(2/7)_C(T)eﬂ'° a 7/11( 7).

Making use of [[) in succession on the left and right sidesthi{vroper
choice of indices) as we did before, this gives

e—ﬂi‘r’/47/12(0/7_/) — C(T)e(ricr’(ar+b)/41be—niaz‘r/4zyl+a’l+b(0/7_)’
and this, after slight simplification of the exponents onriggat sides, gives in
view of ], _
~%01(0/7") = C()i"&* 41, 21.,6(0/7) 4)

Puttingy = (1+ 7')/2 in (@), 126

1+7

% 1( /T,) _ C(r)ee/ AT asc)rbd) 5, ( (a+or+l+d /T)
2

Again using[¥) and[(*¥) as we did earlier, this gives

ie—ﬂi‘r’/44//22(o/1_/) — C(T)e(ric/4(l+‘r’)((a+c)r+|+d)i|+de77ri(0+c)2/44// (0/7)

1+a+c,1+l+d

This of course can be embellished a little:

i%o(O/T/) — C(T)e(ri/4(1+T’)(c(a+c)r+cb+id+l)ib+de—lri/4e—ni‘r(a+c)2/47/1+a+c’f8{;r)d
— C(T)e(ri/4(a+C)((a+C)T+b+d) i |+de—ni /487"iT(a+c)2/47/1+a+c,l+b+d
1 Yo(0/7) = Clr)e ettty O, (5)
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Now utilise the formula:
77 (0/7) = n72(0/7)¥3(0/7) 74(0/7)
Multiplying @), @) and [5),

7/1/1(0/7_/) — (C(T))S(_)bere(ri/4(ab+cd+(a+b)(b+d)—l)
X A 14¢,14d(0/7) Y148.14+6(0/7) P14asc,140+d(0/7)

Observe that the sum of the first subscripts on the rightsi@le2a+2c=1 127
(mod 2). So either all three numbers-B, 1+ ¢, 1+ a+ c are odd, or one of
them is odd and two even. Then first case is impossible sincehaeld then
have botha andc even and s¢§ 3| # 1. So two of them are even and one
odd. The even diixes can be reduced to zero and the odd one to 1 by repeated
application of [¥1). Similarly for the second fiixes. So the/’-factors on the
right will be %60, %01, 10. What we hate is the combination 1, 1 and this does
not occur. (If it did occur we should hav&, which vanishes at the origin).
Although we can not identify the -factors on the right, we are sure that we
get exactly the combinations that are desirable: 01, 10, Tfe dangerous
combination is just out.

Let us reduce the subscripts by stages to 0 or 1 as the caseemslyhen
we reduce the second subscript nothing happens, whereas wdheeduce
index by steps of 2, each time a factet is introduced, by virtue of (**). By
the time the subscript 2 cis reducedto O or 1, a factopl[%](l + d) will
have accumulated in the casedf.c1+4. Similarly in the case 0#7.41.+, and
P+arci+bed. Altogether therefore we have a factor 128

(_)[%C](l+d)+[ La](1+b)+[ <] (1+b+d)’

and when this compensating factor is introduced we can wgge?; and#1o.
Hence our formula becomes

771(0/7) = (C(1))¥(—) g™/ 4@+ od+ @)Dz y60(0/7) #02(0/7) ¥10(0/7) (6)
where

1+c l+a+c

a=b+d+ T

(1+d)+ iza (1+b)+ (1+b+d)

From [), diferentiating and putting = 0, we have

711(0/7") = C(r)(Cr + d) 713(0/7) ()
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Dividing (@) by (@)
(C(T))2 — (CT + d)(_)(ye—7ri/4(ab+cd+(a+c)(b+d)—l)

_cr+d (=) e i/ AGabrcd @) (bre)-3)

(we may assume > 0, sincec = 0 impliesad = 1 ora,d = +1, which give
just translations).

C) = + [CT+ diae—ni/8(ab+cd+(a+c)(b+d)l—3)
B i

For the square root we take the principal branch. Sincedm(d) > 0,

%mrd >0, so thatCT.+d

uncertain.

The factore™/8(*) |ooks like a 16th root of unity, but is really not so. Since129
ad + bchas the same parity asl— bc = 1, the exponent is even, and therefore
what we really have is only an 8th root of unity.

What could we do now? We really do not know of any fruitful wage
cannot copy what we did formerly. There we had a very speeisécr’ =
~1/7, or the modular substitution involved wé35) = (94). The = sign
depends only om, b, ¢, d, not onr, so that it is enough if we make a special
choice ofr in the equation. Formerly we could take= 7’ = i and it worked

so beautifully becauseis a study the fixed points of the transformatign=

o 3 The fixed pointg are given by

is a point in the right half-plane. The sign is still

cT +
_at+b
g_c§+d’

or c?+(d-a¢-b=0

_(a-d)+ y(a-d?) +4bc
Bl 2c
_(a-d)+ JardZ-4
a 2

ie., &

sincead - bc= 1.

Hence we have several possibilities. If the square rootégimary we have
twp points one in each of the upper and lower half-planesfarthisja+d| < 130
2, so that the square root becomés4 or V-3 according aga + d| = Oor 1.
This is theelliptic case If |a+ d| = 2, we have one rational fixed point; this is
theparabolic case And in the huge infinity of caselg + d| > 2, we have two
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real fixed points -thdéayperboliccase. Here the fixed are not accessible to us
because they are quadratic algebraic numbers on the real axi

In the elliptic case witha + d| < 2 we could finish the thing without much
trouble. In the parabolic case we are already in a fix. Muchendifficult is
the hyperbolic case.

If &1 and ¢, are the fixed
points, T and 7’ will lie on the
same circle througlf; and &,
and repetitions of the transfor-
mation would give a sequence
of points on the same circle
which may converge to eithé&g
or &. So the ambiguity in the

sign will remain.
It will be much more dificult when we pass fromt” to n, because then we

shall have to determine a cube root.
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We were discussing the possibility of getting a root of urdgtermined for 131
. ar+b . -
the transformation o#7; (V/CTT) There do exist methods for determining
T

this explicitly. Only we tried to carry out the analogue witie special case
as far as possible, not with complete success. other methxists The first of
these is due to Hermite, done nearly 100 years ago. He usedandaalled
Gaussian sums. There ardhdiulties there too and we want to avoid them.
Another method is that of Dedekind using Dedekind sums.

In the special case of the transformation frono v = —% we were faced

with an elliptic substitutior( a 3) These are of two sorts:
1l.a+d=0

2.a+d==1

In both cases we can completely forget about the root of uihite remember
the following fact. Our formula had the following shape:

, [~jar+b cr+d cr+d , "

wherep is a root of unity which is completely free of we can then get things
straightened out. We have only to consider the fixed pointe@fransforma-
tion given by

a-dz+ +(a+dy?2-4

&= 2c

a+b
cE+d’
and”}, does not vanish for appropriatén the upper half-plane (we may take
¢ > 0), so thap is given directly by the formula.

Puté on both sides of the formula; sinége= both sides look alike 132
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Casel a+d=0
‘o —2d+ v=d -d+i

2c c
(reject the negative sign since we want a point in the uppé#riane).
ct+d i
i1

¥71(0/€) = p(a, b, c,d)¥7,(0/&)

Sop(a,b,c,d) = 1 and remains 1 in the general formula when we go away
fromé.

Case?2. a+d==+1

_+1-2d+ V-3
¢= 2c
c+d= _i1+2i\/§ = g3 or /3

&+ d_ Q137112 3 /3712
i

— €+7ri/6

¢ +d _ gFi/12
i

Puttingé on both sides of{*), 133
1=e"*p(a,b,c,d)

p(ab,c.d) = e/
whena + d = £1, (we may takes > 0; the case = 0 is uninteresting and
if ¢ < 0 we can make it > 0).
There are unfortunately no more cases like these.
Parabolic case. The analysis here is a little longer but it is worth while wiowk
it out. Nowa + d = +£2, and there is only one fixed point

£= a-d -2d+2 -d+1 ¢
2 2 ¢ vy

where §,5) = 1 and we may choose > 0. The fixed point is now a rational

point on the real axis. We try to approach it. This is a littl&idult because
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we do not know what the function will do thee. But by an auxitizransfor-
mation we can throw this point into the point at infinity. Cites the auxiliary

transformation
A 1
Yy 0

The denominator becomes zero fot &. Let
_ AT +B
YT +6

T- At + B’
YT +6

TI

(notice thaty ands have got something to do with the properties of two other34
numbers, d). Now (*) gives

3
0
THO/T) = [ = ] P(A. B.7.6)77,(0/7).

3
' +0
YH(O0/T') = [\/2] p(A.B.7.8)17,(0/7).

Dividing, we get

YT’ +6

3
70m) [N o)
740 "\ | 740

The left side gives the behaviour at infinity. We cannot ofrselputr = £.
Putr = £+1it, t > 0, and later make— 0. 7 is a point in the upper half-plane.

1)

T—&¢=1t,

, _ar+b at+b
Tt d c£+d
_ T-¢
~ (cr+d)(c£ +d)

it
T 1xict

This is also in the upper half-plang. — £ ast —» 0
Let us calculatd andT’. For this consider

_AT’+B Ar+B

T-T= -
vt/ + 6 YT+
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3 -7
~ (yr +0)(yT + )
C

= F—
),2
135

This is quite nice; the dlierence is a real number.

T_AT+B_A(§+it)+B
T oyt+6 y(E+it)+6
_Ait+A£+B
- yit

s
_A TATE

, sinceyé+6 =0,

yit
By - Ad
ytt

+

Y
A
Y
A 1
—+ —;, sinceBy —-As = -1
y vt
— ico (along the ordinate = £) ast — 0

A c [

T =5+
v oy2oordt
—ijcoast—0

Now recall the infinite product formula 136
7/1/1(0/1-) — Zﬂ_ieniT/A 1_[(1 _ e27rinT)3
n=1

Let T=

=I>

+ # Then
e27rinT — ez;rinA/ye—ernt/«y2 -0
7/,(0/T) = 27ie™"/*(a factor tending to 1)
We do not know what happensé8'/4. But we need only the quotient. So

140

eri(T'-T)/4
711(0/7)

— e¢nic/4y2 (2)
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104

Consider similarly the quotient,(0/7")/7{,(0/7). We have, sinceé+6 =

05

y‘r+6=y(§+i'[)+5=yt
i i

+0 .
or L = \t, where we take the positive square root

)/T'+6_7’(f+%ict)+5_ vt
i i T lxict

i [
[yt [ 1
Al i+ d = Vit T:ict (both branches principal)

~ qfytast — 0.

. "+ 0 .
Hence the quotient yTI—/ 1% hehaves like 1.

And so we have what we were after:
¥1,(0/7)
¥11(0/7)

cr+d  cE+it)+d  H+cit+d
i i i

a+d+cit  1+cit
= - = + -

i i
= Fi+ct

N e¢7‘ric/4y2 ast » 0

— Fiast - 0.
What will the square root of this do?

w/CT;Ld = vct=xi, and this
does lie in the proper half plane
becausect > 0. For smallt
it will be very near the imagi-
nary axis neawi. So the square
root lies in the sector, in the
lower half plane if we choose
V=i = e™/4 and in the upper
half-plane if we chooseV+i =

€4 Hence cr+d — gFri/4

ast — 0.

®3)
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Using this fact as well a§](2) and (3) @ (*) we get 138
e¢7ri0/4y2 — e¢3ni/4p(a’ b, c, d)

i
pla.b.c.d) = €7 (c/y’ - 3)

We observe that the common denominajgif = 1 plays a role, however
aandb do not enter.

Hyperbolic case. The thing could also be partly considered in the hyperbolic
case. It will take us into deeper things like real quadragéitl§ and we do not
propose to do it.
Letus return to what we had achieved in the specific case. Wa famula
for n(7):
cr+d
i

e(a. b, c.d)n(7),

wheree(a, b, ¢, d) is a 24th root of unity. This shape we have in all circum-
stances. The ficulty is only to computes. We shall not determine it in
general, and we can do away with it even for the purpose oitjpaig by using
a method developed recently by Selberg.

However in each specific case we can compute

- o

T](T) — e(rir/lZ ﬁ(l _ e2ninr)’
n=1

1(z + b) = €% (r)

(™) =

Now

Out of these two facts we can get every other one, because/th&ubsti- 139

tutions
S 11 ’ T- 0 -
0 1 1 0

form generators of the full modular group. This can be shosviobows. Take
c>0.

ar+b=qo(cr+d)—a,7—by,c>|ay,
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c d

ap by

a7-+d_ _a17+b1
c+d P va

or =1

(if a < O this step is unnecessary). Similarly

cr+d a27+b2
- :ql_
a17+b1 a17+b1

We thus get a continued fraction expansion. The partialigotst get simi-

. . 7+Db
lar and simpler every time and end wil 1= T+ (k. SO we can go back and

take linear combinations; all that we have to do is eitherd @n integer tar
or take-1/7.
As an example, let us consider

3r+4
M2r+3

3r+4 . . I
Letus breakﬁ into simpler substitutions,
T

_3T+4_1 1
BT 2r+3” Ty
722—2+T1;
_ 1
EE—
e =n(- 1) = e

= 4/ TJir—le’Ti/lzn(T).
n(t2) = n(r1 - 2) = €™/%(1y)

7+1 a2
i

2 B
= W \/?e”” (1)

The two square roots taken separately are each a princgratirbut taken 140

n(r)
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together they may exceed one. We can write this as

1 [r+1 [-2-2&
77(——) = T.+ — ol a2,
T2 | |
_ T+1 -2t-3 —7i/12
N \iE+D© ()
—21-3 _;
=\ ¢ (7

= + V3 + 2re7/ 12 (1)

Here we are faced with a question: which square root are waka®t 141
We write V3 + 27 = /4 | /23
Let us look into each root singly. Fer= it where do they go?

T+1 /it+1
i i

— co with argument 0 ag— .
-2r-3 -2it-3 -
= V2
\/i(7+1) \/i(T+1)_’ Hast = co,
or its argument =n/4

[t+1 [~2r-3 . .
The product % |(77+1) has here argumenf4, so that it continues
T

to be the principal branch. Of course in a less favourable,dasve had two
other arguments, together they would have run into somgtiirich was no
longer a principal branch. Finally,

3r+d\ a4 [2r+3
'7(27+3)‘eﬂ V1)

and here there is no ambiguity. Actually in every specifiedhsit occurs one
can compute step and make sure what happens.

There does exist a complete formula which determétasb, ¢, d) explic-
itly by means of Dedekind sun&(h, k).




Part |11

Analytic theory of partitions
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Our aim will be now to get an explicit formula fg(n) and things connected 142
with it. Later we shall return to the functioffr) and the discussion of the sign
of the square root. That will again lead us into some aspddtseaheory of
¥ -functions connected with quadratic residues.
Let us come to our topic. Euler had, as we know, the identity:

Spe= L
= 1 (1- xm)
m=1
This is the starting point of the function-theoretic treatrhof p(n).

P) = 5 [ e

wheref(x) = 10’01 (1 - xM~! andC is a suitable closed path contained in the
m=1

unit circle, in which the function is analytic, and enclagithe origin. Since
> p(n)x"is a power series beginning with 1, this means a little momay be
negative also; and whanis negativef (x)x ! is regular atx = 0. Therefore
we include negative exponents also in our discussion; we@ut) = 0,n > 0,
when is convenient. Hereafter we shall také be an integeg 0; we shall
choosen and keep it fixed throughout our discussion.

It is a little more comfortable to change the variable and yut €7, 143
Im 7 > 0, which is familiar to us.

dx = €¥7 . 27idt and the whole thing boils down to

p(n) = f " f(e"")e > dr

109
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S

a+1

[ =1

It is enough to take the integral along a path from an arljitpmint o to
the pointa + 1, because the integrand is periodic, with period 1. (Thtk pa
replaces the original path that we had in the--plane before we changed the
variable). The method of Hardy and Ramanujan was to take \&eaather
close to the unit circle which is a natural boundary for thection (this will
come out in the course of the argument). They cut up the paithtegration
into pieces called Farey arcs, and the trick was to replagedithction by a
simpler approximating function on each specific Farey are shall use not
exactly this method, but consider a special path froto« + 1, which we shall
discuss.

We shall keep our formula in abeyance for a moment and gives dis-
cussion of Farey series (‘series’ here is not to be undedsitothe sense of
infinite series, but as just an aggregate of numbers). Catichynake all the 144
observation attributed by Hardy and Wright to Farey; Fareglenhis remarks
in the Philosophical Magazine, 1816. He put only questi@ejchy had all
the answers earlier.

We deal with the interval (). Choose all reduced fractions whose de-
nominators do not exceed? 3, - - - in succession. Let us write down the first
few, with the fractions arranged in increasing order of niagle.

9 1 order 1

9 3 1 order 2

9 z z Z 1 order 3

S 33 b % b orders
N O O A T T

The interesting fact is that we can write down a new in theofeihg way.
/

: . h :
We repeat the old row and introduce some new fractions. 4f — are adjacent
fractions in a row, the new one introduced between theseeméxt row is
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7

ki " provided that the denominator is of the proper size. FaligviHardy

and Littlewood we calH the ‘mediant’ betweePE and% We haveE <
% < E, so that the order is automatically the natural order. We cal

that row which has denominat&r< N, the Farey series of order NWe get
this by forming mediants from the preceding row. Farey méaefollowing
observation. Take two adjacent fractions in a row; then #terminant formed
by their numerators and denominators is equal1o For instance, in the fifth

1 2 .

row 3 andg are adjacent an}& 2 = —]*xxkkkkekkk |f \wwe now prove that

3 5

new fractions are always obtained by using mediants, thecanee sure, by 145
induction, that this determinant is alway$. For, let

h H=—1;then

k K
h h+h'__1_ h+h N
k k+k k+k K

If indeed only mediants occur, Farey’s observation is fiesti And this is
so. Observe that these fractions must all appear in theiedbterms; other-
wise, the common factor will show up and the determinant @adt be—1.
Suppose that we want to find out where a particular fractigpeaps. Say, we

have in mind a specific fractios-. It should occur for the first time in the
Farey series of ordé¥ = K and it should not be present on any series of order

H . L
< K. Now look atN = K — 1 where— is not present. If we put it in, it will

K
. o .. hy hy
belong somewhere according to its size, i.e., we can fmduhm:k—l, k_z with
1 2

h H h .
k ko < N such that— < — < —2. Assume that the determinant property and

ki K ko
the mediant property are true for orddr< K. (They are clearly true up to

order 5, as we verify by inspection, so that we can start itidn: Now prove

them forN = K. Try to determineH andK by interpolation betweeli1 and
1

Hks — Khy = 4,
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—Hkg + th =u,
so thatt andu are integers- 0. Solving forH andK by Cramer’s rule, 146
A —h 1 -k
h k
H= K , K= .
hy ks hy ko
hy k hy kg

By induction hypothesis, the denominatef., and so

H= /1h2 + /Jh]_
K= /lkz +/J|(1
H Ah

or — = I +#hl.
K /lkg +/J|(1

What do we know abouK? K did not appear in a series of ord€r— 1;
ki andk, are clearly less thaK. What we have found out so far is that any

. . h h . Ah h
fraction lying betweeq(—l andk—2 can be putin the formﬁ. Of these
1 2 2 1

only one interests us - that one with lowest denominators Thimes after the
ones used so far. Look for the one with lowest denominat@s;abrresponds
to the smallest possiblg y, i.e.,A = u = 1. Hence first among the many later

. H h]_ + hg
appearing ones Iﬁ = kit k2
1

is called for, that is produced by a mediant. So what was wu& - 1 is true
for K; and the thing runs on.
One remark is interesting, which was used in the Hardy -eiittiod- Ra-

, i.e., if in the next Farey series a new fraction

h h
manujan discussion. In the Farey series of ofdglet k—l andk—2 be adjacent

1 2
. h]_ hg h]_ + hg
fractions. — <

k]_ k_2 . k]_ + k2
says thak; + ko > N. For two adjacent fractions in the Farey series of ofdler 147

the sum of the denominators exce@&tisBothk; andk, < N, so

does not being these. It is of higher order. This

2N > k; + ko > N.

ki andk; are equal only in the first row, otherwise it would ruin theetet
minant rule. So
2N > ki + ko > N,N > 1.
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This was very often used in the Hardy - Ramanujan discus§idre Farey
series is an interesting way to start number theory with. ¥ederive from it
Euclid’s lemma of decomposition of an integer into primehislis a concrete
way of doing elementary number theory).

We now come to the special path of integration. For this we fasd
Circles (L.R. Ford, American Mathematical Monthly, 45 (1938), 5681).
We describe a series of circles in the upper half-plane. Th peoper fraction

h . . . i .1
— we associate a circl€nx with centrern, = P + o and radluszv, so the
circles all touch the real axis.

Thk

Th'k’

n

I’

Bl

Take another Ford circl€y s, with centre atryy . Calculate the distance
between the centres.

[thk — Thie|? = D_E2+ i_iz
k= kel =k Tk k2~ 2k2)

.e 1 1
The sum of the radi 52+ 52 148
P O S 0 VO LI A R
k=Tl T 92 T oez) Tk T k) T kene
(hk —h'k)? -1
= e 20

sinceh, k are coprime and sld;‘ X | is an integer: 0. So two Ford circles never
intersect. And they touch if and only if

h k
h K

=41,

7

. ~hh . :
i.e., ifin a Farey senei, W have appeared as adjacent fractions.
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Now we come to the description of the path of integration foto « + 1.
For this consider the Ford circ@.

o / Yhk \
—

hs
k2

——o
>z f———eo

: . _ . h h
In a certain Farey series of orddrwe have adjacent fractlorlflr < P <
1

%. (We know exactly which are adjacent ones in a specific Sellaw also 149
thze Ford circleCy, , andCh,. These touciCrk. Take the argn of Cyk from
one point of contact to the other in the clockwise sense (tbel@asen is the
one not touching the real axis). This we do for all Farey foat of a given
order. We call the path belonging to Farey series of okEX,. Let us describe
this in a few cases.

We fixa =i and passta + 1 =i + 1. TakeN = 1; we have two circles of
. . [ [
radii 2 each with centres aét and 1+ >

=
==

p1 will be the path consisting of arcs frono 3+ 5 and3 +  toi+1. Later
because of the periodicity df(e*"') we shall replace the second piece by the
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; . . . 1
arc from—% + 3 toi. Next consider Farey series of order%;and— are no

longer adjacent. The path now comprises the ai€g@ffromi to the point of
contact withCs,, the arc ofC;, from this point to the point of contact wit;; 150
and the arc o€;; from this point toi + 1. Similarly at the next stage we pass
fromi onCp; toi+1 onCyq through the appropriate arcs on the cirdlgs, Ci»,
C,zin order. So the old arcs are always retained but get extesigdew arcs
spring into being and the path gets longer and longer. Atagestioes the path
intersect itself, but these are points of contact. The Eatbmplicated and was
not invented in one sitting. The Farey dissection of Hardy Ramanujan can
be pictured as composed of segments parallel to the imggixas. Here it is
more complicated.

We need a few things for our consideration. We want the pdiobatact
of Chk andCiy . This is easily seen to be the point

oz N z—ﬁz (h+ i) k2 +(h’+ i ) k2
T Th k' = - _ R
MLi L Lhak ko 2R)ike+k? Tk k2] e+ k2
h (h’ h) k2 i

"k Tk K kerKk2 T kK2

Thk
Th!k!
h L
k' k/
and this, since 151
E<Eandh/ h—1is— + K + !
k Kk K Kk ’ k(k2 + k2) k2 +Kk?

+ &y

~l>T XI=T
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k' i . . .
e+ kD) iz +| el We notice that the imaginary part(k?+k’?)

gets smaller and smaller &s- h lies betweerN and 2\. Each arc runs from

whereZ;, =

h . .
E + 1o P +¢{- Such an arc is the asgx. No arc touches the real axis.

We continue our study of the integral. Choose a nunihehe order of the
Farey series, and cut the path of integraffaninto piecesyn.

p(n) — f(eZRiT)e—ZnianT
|

Z f f (e27ri‘r)e—27rin‘rdT

(hK=1
0<h<k<N"

Now utilise the points of contact: put

T=E+§;

i
p(n) — Z f(e27ri(E+())e—27rin(E+S)dS
(h,k)=1 7
O<h<ksN %hk

(ynk goes fromE + 1o E + ¢} these are all arcs of radii/2k?). We make 152

_— iz _
a further substitution: put = PE so that we turn round and have everything

in the right half-plane, instead of the upper half-plane.ll (hese are only
preparatory changes; there is no actual mathematicalgsegs yet). Then

. 3k
—2rinh/k . :
. € h iy
P =i >, f f(em(kridh)yemi/ s
(hK=1 ;
O<h<k<N 3k
Now find outs;, ands,.

, ke +ikK

k=l k2

. k2 —ikk”

Shk = k2 + k//Z

So what we have achieved so for is to cut the integral intogsiec 153
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The whole thing lies on the right
half-plane. The original point
of contact is 0 and everything

. . 1
lies on the circle; — El = —.

This is a normalisation. We now
study the complicated function
on each arc separately. We shal
find that it is practically the
function n(r) about which we
know a good deal:

ar+b 3 CT+d()
Ner+d) "NV 7 M

ing a complicated 24th root of unity.

!
dnk

117
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"
dnk
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We continue our discussion gfn). Last time we obtained 154

. 3k
[ : i(hys .
p(n) = Z Ee’z’””h/k f f (ez”'(EJ’k_z))ez”'”S/kzds
(hk=1 ;
0<h<ks<N Shk
nis a fixed integer heren = 0 andp(n) = O for n < 0; and this will be of some
use later, trivial as it sound8l is the order of the Farey series. We have to deal
with a complicated integrand and we can foresee that thdreevdifficulties
as we approach the real axis. Howeveis closely related tg:

F(@™) = e 2y,

since f(x) = %

[1(1-xm)
m=1
77(7.) — e(ri‘r/lZ l_l(l _ e2nim-r).
m=1
h i
Forust = — + —Z
We can now use the modular transformation. We want to makeange so

that we obtain a big negative exponent. So werdut iT i 3 a, b, c,dbeing
T

chosen in such a way for smal] v becomes large. This is accomplished byiss

taking kr — h in the denominatorkr — h = 0 whenz = 0 and close to zero

ar+ ﬁ wherea, b

whenzis close to the real axis. We can therefore gut K
T —

should be integers such thgt % | = 1. This gives-ah— bk = 1 orah = -1

118
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(modk). Take a solution of this congruence, dayi.e., choosé’ in such a
way thath’h = -1 (modKk), which is feasible sinceh(k) = 1. As soon a$’ is
found, we can find. Thus the matrix of the transformation would be

a b|_|N — bl
c d k -h
So we have found a suitabtéfor our purpose.

(h i3\ hh+1
h —+p—

k k
a h i3
k(E-FE)—h
s
:hk 1
i3
i
=1ty

If zis small this is big.
Now recall the transformation formula fgr if ¢ > 0,

(aT+b):E CT+i77(T)

1 cr+d i

In our case 156
f(eZHiT’) — e(ri‘r’/lZ(n(T/))—l

1p (et +d\ Y2 _
— e(rl‘r /126 l( ) (77(7-)) 1
it /12,1 (CT + d)l/z eriT/12f (i)
[

And this is what we were after. Since

h i3 i3
CT+d=kT—h=k(E+E)—h=E,

this can be rewritten in the form:

f(e27rir) — f(e27rl<E+ll—;))
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h i
h_h)y —|3-—- 2nif —+-
_ 12 Fg12l¥ 3]\/% e [k s]

and there is no doubt about the square root - it is the prihbiach. We write

mifh b
12[k’k]

Wwhk = €€

So something mathematical has happened after all this lozpapation;
and we can make some use of our previous knowledge. We have

. 3hk
p(n) = Z/ Wﬂe—%i“h/kfellz(%*kiz)\/gf (ezm<h_k/+%))e2”n3/k2d3
K5/2
o<h<k<N /
Bhic
where Y denotes summation ovérandk, (h,k) = 1. Now what is the 157
advantage we have got? Realise that

00

f(x) = Z pMX" =1+ X+---
n=0
So for smallx, f(x) is close to 1. It will be a good approximation for small
arguments at least to repla€éx) by 1. Let us write

W(3) = vGetli )
Then

s
p) = > o2k f ()l +

O<h<k<N
3hk

3hk
Z ||:.5);12k —27r|nh/kf\},k(3){f(e2m<k §)) 1} e27-m3/k2d3
o<h<k<N /
Bhic
where the second term compensates for the mistake comnoittegdking 158
f(X) = 1. The trick will be now to use the first term as the main term and



17. Lecture 121

to use an estimate for the small contribution from the sedend. We have
now to appraise this. Writint,, andl}, for the two integrals, we have

r lwnk —2rinh/k r - lwhk —2inh/k| *
p(n) = Z 162 © I + Z K52 © I
o<h<k<N o<h<k<N

Here we stop for a moment and consider oljlyand see what great ad-
vantage we got from our special path.

!
dnk

I
~—]

"
dnk

This is the arc of the circlz— 3| = 3 from 3, to 37, described clockwise.
Sincef(x)-1= 3 p(v)x’, the integrand iy, is regular, and so for integration
m=1

we can just as well run across, along the chord fepynto 37,. Let us see what
happens on the chord. We have

'( f (eZnih’/k—ers) _ 1) \Pk(s)ebms/kz

= '(f(e2ﬂih’/k—2n/3) _ 1) \/geﬁ_%Jr%

00

> p(eii- By

v=1

(o) . . 7i
< [l Z p(v)e“%%(z’”’—l—z)ekz( L+2n%;
y=1

T n_1
ZVEGQEG‘%SFZ(_TJ“)X

Let us determinez; and%’% on the path of integratioo < #3 < 1 onthe 159
chord. And%’% > 1; for

1 X
X+iy  x2+y2’

3
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while the equation to the circle ix ¢ 3)% + y? = 1 or X* + y? = x; the interior
of the circle isx? + y* < x, and so% 3 < 1, equality on the circle.
[ V3| < the longer of the distances gf,, 31 from 0.

We have already computgf], ands;, . 160
, k2 . Kk
3hk = W + IW’
" k2 . kk
3hk = W + IW
L Kk e
|5hk| = =

(K +k)?  K+k
Now we wish to appraise this in a suitable way.
2(k% + K%) = (kg + K?)? + (kg — k)2
> (ky + k)
> N2,

from our discussion of adjacent fractions. So

2

72
|3hk| < m
or [30,] < V2. K,
3hkl = N
also 34 < V2-k
3hkl = N
So the inequality becomes 161

00

1/2
(1@t - )| V2. (G Y pree et ame
y=1

whereC is independent of, since the serie§ p(v)e@>—*/12) is convergent.
v=1

Since the length of the chord of integratiar2 V2 - k/(N + 1)m, we have

nl k%2
< Clez” N3/2

*
Ihk
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Then
7 Whk ok, « In| ’ 1
LZ 162 © I < Cr& Z KN3/2
<h<k<N O<h<k<N
1
nl
<G i
O<k<N

Since the summation is over< k with (h,k) = 1, so that there are only 162
¢(K) terms and this i k. So the last expression is

Ce# N2
Hence .
lWhk _o,
p(n) = Z We 2/ + Ry
o<h<k<N
where

IRul < C1eN"
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The formula that we had last time looked like this:
p(n) = Z' iwnke 2K + Ry,

o<h<k<N
and it turned out that
|Rn| < CeZINN-Y2
We had
3k
Ihk = f‘I’(S)ezma/kzds

r
3hk

and the path of the integration
was the arc fromy, to 3 in the
sense indicated. And now what —
we do is this. We shall add the Y

.. . . hk
missing piece and take the in- \

tegral over the full circle, how 0 l

o[

over excluding the origin. Now
the path is taken in the negative 3k

sense, and we indicate this by -
writing

f Py ()€™ d.

k)

This is an improper integral with both ends going to zero. tThexists is

clear, for what do we have to compensate for that? we havebknasmf e
0

124

163
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0
andf---, and we prove that these indeed contribute very little. Vhafter 164

3tk
all Wi(3)?
() = Vielti )
0< %3 <1and#1/3 = 1 on the circle, so that

kGl < | V37
and g2/ < g2l

so that the integrand is bounded. Hence the limit existss Ehindeed very
astonishing, fol has an essential singularity at the origin; but on the citcle
does not do any harm. Near the origin there are value whichsaleg as we
want, but we can approach the origin in a suitable way. Thikésadvantage
of this contour. The earlier treatment was very complicated

We can now estimate the inte-
grals. Sinces;,| < v2-k/N, the 3k
chord can be a little longer, in
T,
fact > times the chord at most.

So

’
3 1

[|s @ gteon(y e
0

< Ce#M3ZNT3/2,

0
The same estimate holds good ff)r- -. Hence introducing.

Bk

Page missing page No 165 165

Now everything is under our contrdN appeared previously tacitly ig},, 166
becaussg;, depends on the Farey arc. NdWwappears in only two places. So
p(n) is the limit of the sum which we write symbolically as

pn) =i > Ak 52 f B s
k=1

KG)
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(n 2 0, integral, and(n) = 0 for n < 0). So we have an exact infinite series
for p(n).

A thing of lesser significance is
to determine the sum of this se-
ries. So we have to speak about
the integral. Let us take one
more step. Let us get away from
the circle. Replacegby 2. We T
do know what this will meanw
will now run on a line parallel to
the imaginary axis, from % ico

1+ 1100

to 1+ ico. SO o
) 1+ico d
p(n) = — Z Ak(n)k—S/Z f w—l/zellz(w_l/kzw)ekzg_z ' _(;,
k=t 1-ico w
[o) 1+ico
= flek(n)k—S/ﬂ f w-52ebt T 241 g,
|
k=1 )
1-ico

One more step is advisable to get a little closer to the custgmotation. 167
We then get traditional integrals known in literature. % =5,

1%+ioc
3/2. X2 2
p(n) = 71(112) D A2 f 5751265 5 (24n - 1)ds
k=1 Y
110

One could look up Watson'’s ‘Bessel Functions’ and write dakis inte-
gral as a Bessel function. But since we need the series anyegyrefer to
compute it directly. So we have to investigate an integraheftype

C+ico

_ 1 —v—1 S+§
L(v) = o fs e>sds
C—loco
It does not matter what > 0 is because it means only a shift to a parallel
line, and the integrand goes to zero for large imaginary @iast For absolute
convergence it is enough to have a little more tan So takeZv > 0; in our
casey = 3/2.
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So let us study the integral
Ctioco

1 v
Lv — : —v—-1 s+§d
(v) o f s’ e S

C—ico

leaving it to the future what to do with The integration is along a 168

line parallel to the imaginary

axis. We now bend the path
into a loop as in the figure

and push the contour out, so
that along the arcs we get
negligible contributions.

The contribution from the argl = Ris

1
C)(wal_lq)
sincele’*s| < €€”?"/R, for a fixedy; this isO(R™) — 0 asR — oo, since
v > 0. So the integral along the ordinate becomes a ‘loop integtarting
from —co along the lower bank of the real axis, looping around theio@gd

proceeding along the upper bank towatrds; the loop integral is written in a
fashion made popular by Watson as

(0+)

—v—1.S+%
— s’ e sds
anf

For better understanding we take a specific loop. On the |baek of the 169
negative real axis we proceed only up-te

)

then go round a circle of radiusin the positive sense and proceed thence
along the upper bank, the integrand now having acquired avaéve-unless
is an integer. This we take as a standardised loop. We novephayl, (7") is
actually diterentiable and that the derivative can be obtained figrintiating
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under the integral sign. For this we tafde (¥ + h) — L,(¥)} /h and compare

it with what we could foresee to He (%) and show that the fierence goes to
zeroash — 0.

(0+)

L(+h-L(7) 1 25t
- — s’ ce* sds
h anf
0+) wh_gl ;
—v—1,S €s €s
= - —3d
27 S e{ h s}s
1 P -1 1
—v-1.s+2 | €5 —
= — s - —¢ds
anf { h s}
Now 170
h 2
es-1 1 stggt 1
h s h s
1

On the path of integrationg > € > 0; so

h_q
es 1
< Clhl,
S

h

since we are having a quickly converging power series.

(0+)
LV(V + h) - LV(V) 1 f —v—2,5+Y¥
h ) S €

—00

r1 1 @
<Clh {2f 7€ €T dx+ 2ne ;ei} = 0(h)

€

Sothe Iimithlingw exists and_, (v) is differentiated uniformly in a

circle of any size. Since theftierential integral is of the same shape we can
differentiate under the integral as often as we please.
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The formula forp(n) looked like this:
1/n 32 & @ 1 y2
) = 5(15) D A2 [ 53 en g
: k=1 7,
We discussed the loop integral
(0+)
Ly(v) = % fsfvfleg%ds(@v > 0.
We can diferentiate under the integral signh and obtain
1 (0+)
L) =5 f sV 2% ids = Ly (v)

This integral is again of the same sort as before; so we caateifferenti-
ation under the integral sign. Clearly thieg(v) is an entire function of - L (v)
has the expansion in a Taylor series:

© 1N
Lv(v) — Z Ly (O)vr

|
=0 r!

L\(,r )(v) can be foreseen and is clearly

(0+)
ﬁ S—v—l—r est ! ds

—00

129

171
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So 172
1
L) =) —=— f sV 1 eds
Z(; r! 2nxi

We now utilise a famous formula for tHe-function - Hankel's formula,
viz,
(0+)
1 1

T() 27

—00

s#esds

and the Euler

This is proved by means of the formdlégs)I'(1 - s) = S : <
T
integral. Using the Hankel formula we deexplicitly:

0 r

Lv() = ; POV +r + 1)

What we have obtained is something which we could have gdesséer.
Expandingg”/s as a power series, we have

(0+)

Ly(v) = > f sVl Z v/ .S)r
_ 1 N Vr So—V—1-r
_ﬁf;ﬁes ds

and what we have proved therefore is that we can interchdrggmtegration
and summation. We have

L,(v) = Ly (v).

Having this under control we can put it back into our formutel gyet a
final statement abouyd(n).

o) = 25(5) 3 Aok ( ) 2o )

This is not yet the classical formula of Hardy and Ramanufane trick 173
one adopts is to replace the index. Rememberinglt}(®} = Ly.1(v), we have

Lg,z(( 12() (24n - 1)) L'l/z((%()z(zm—l))
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g en)

Let us write the formula for further preparation closer te tHardy Ra-
manujan notation:

p(n) = (112)1/2 i Ak(n)|(l/2£]|_l/2 ((%()2 (24n - 1))
k=1

Now it turns out that the -functions for the subscrip% are elementary
functions. We introduce the classical Bessel function

() G2y
) = Z MOV +r + 1)

and the hyperbolic Bessel function (or the ‘Bessel functigth imaginary
argument’)

_ & (3/2)2r+v
1) = ; MOV +r + 1)

How do they belong together? We have 174
2 -v
(5] oy
2 -v
%) _ 3
L(-%) =50 (3) "

connecting our function with the classical functions. Im oase therefore we
could write in particular

Ll/z((m() (24n - 1)) 11/2( \/71)( \/71) 172

This is always good, but we would come into trouble if we hatie-21 < 0.
It is better to make a case distinction; the above holdsferl, and fom < 0,
n=-m, we have

Ll/z(( ) (24n - 1)) L1/2(—(%()2(24m+1))
/z(ﬁlk«/m)(ﬁ 24m+ 1)_1/2
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So we have: n>1.

1729 12 (% )
o gy
n=-m<0 175
. 12 (& V24m+1)
o) = piem =~ () Admic Wn[m z4m+1)“2]

We are not yet quite satisfied. Itis interesting to note thatast expression
is 1 forn = 0 and 0 fom < 0. We shall pursue this later.

We have now more or less standardised functions. We can ew&rup
tables and compute the Bessel function. Howelgs and J;,, are more ele-
mentary functions.

2)2r+1/2
) = Z(r’,f(/r i

RS ( )(3/2)2“2
L9070

_ (E) 0 ( )r 2r+1

“\m) L@

s
=(—] sins.
3

Similarly if we has abolished)" we should have 176

2 1/2
Id9=(—) sinh3
2 7-[3

l26) _ | (3)(2)1/2 _ 2 _sinhg
/22~ V2 3
J1/2(3) 2 sin3

G/2Y2 " \x 3
We are now at the final step in the deduction of our formula:

n>1
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sinhZ. v24n
p(n) = — ZAK( )kwdn[ Va1 ]

8k

T T c 1 2
ith —\V24n-1= — _ _ )= I = —_
or wit 6k k \/3(n 24) k \/n 24’C \/;

~ inh & _ 1
1 ZAk(n)kl/Zi smhk,/n >
25 dn

p(n) = —
V2 & -1
24
n=-m<0
1 & L d [singym+ 2
PN = P(-m) = ———= > Ad-m)ki | e
V2 i m+ 4
This is the final shape of our formula eonvergent series fqu(n). 177

The formula can be used for independent computatiop(iof. The terms
become small. It is of interest to find what one gets if one ks¢lae seriesfd,
say atk = N

Let us apprais®y - |A(n)| < k, because there are onjyk) roots of unity.
We want an estimate fdrts/;,. Forn > 1,

Lg/g(( )(24n 1))s

muf®
Ir(3)-3(r+3)
(6(N+1)2 ) . 92r+l
2r + )\(r + 3)
()

2r + 1)

_<
Il

o
=
;—J

(sinck > NinRy) = —
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giﬁ%ﬁ

(2r)!

This tells us what we have in mind. Makésuitably large. Then one gets 178
something of interest. P = [a y/n], « constant. Then

Ry = O(n"7)

And this is what Hardy and Ramanujan did. Their work stillkedlifferent.
They did not have infinite series. They had replaced the tgdersine by the
most important part of it, the exponential. The series cay@®in our case

since sinx ~ xasx — 0, so that sinl(uﬁ \Jn- 2%1) behaves roughly likg. On

differentiation we haves so that along wittk!/2 in the numerator we gét %2
and we have convergence. In the Hardy-Ramanujan paper étkey h

d e vn 1 1
P = ZNUW S|+ o) + Ry
V-2
sinh was replaced by exp.; so they neglected 179
[‘/ﬁ] _C n—2i4
P DG S
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The exponential is strongly negativekifis small; so it is best fok = 1.

Hence
1 [i’—‘] 1 A
IR =0| = kY2 4+ — k3/?
i Vn k=1
N
Z k1/2 — O(N3/2)
k=1
N
Z K32 = O(N5/2)
k=1
So

1 1
1= oL s —n5/4))
a (n( MY

= O(n’%)

The constants in th®-term were not known at that time so that numericatso
computation was dlicult. If the series was brokerffcat some other place the
terms might have increased. Hardy and Ramanujan with gcgiohat broke
off at the right place.

We shall next resume our function-theoretic discussioncastia glance at
the generating function fqu(n) about which we know a good deal more now.
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We found a closed expression fpfn); we shall now look back at the generat-181
ing function and get some interesting results.

0 rp——— )
Ma-»)
n=1

and we knowp(n). p(n) in its simplest form before reduction to the traditional
Bessel functions is given by

o) = 25(5) 3, Aok e[ ) - ).
a0 4y
where Ls/2 (6k22 ( 2—14)) = Z(; (Srl(!l"r(]TMr)

We wish first to give an appraisal &f and show that the series f@(n)
converges absolutely. The series is

(09 = 20(55)" 300 Y, Al L 50— ).

n=0 k=1

where we writezi4 = « for abbreviation - it will be useful for some other
purposes also to have a symbol there instead of a number.
We make only a crude estimate.

e

136

77_

Lg/g (6|(2 (n a/)) 5
E
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r=0 I 2
2 & (%”ﬂn)r
72( 2r + 1)I(3+ 2r)
o (C Vi 2
34;0 I
had 14
S4Z (Cn)
p=0 P!
= 4ecVn
So f(x) is majorised by 182

(o) (o) 1
constantx Z |x"eC VR Z a7z
n=1 k=1

and this is absolutely convergentfar < 1, indeed uniformly so fojx| < 1-6,
6 > 0, because® V" = 0(¢’"), § > 0, so that we need takre’| < 1. We can
therefore interchange the order of summation:

F(x) = 27r(112)3/2 i 512 i Ad)X"Ls2 (aﬁ_:z(n - a))
n=0

( ) st/z Z/ whki(xez”iE)nLg/z(sz(n a))
k=1

h modk n=0

where the middle sum is a finite sum. This is all good|#bk 1. Now call 183

D)= Lo 0= )
n=0

So in a condensed forf(x) appears as
f(x) = ( ) Z k=5/? Z (Uhkq)k k)
k=1 h modk

We have now a completely new form for our function. It is of arén-
terest to conside®y(3) for its own sake; it is a power seriefg| (< 1) and the
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codlicients of;" are functions ofi — «.

0 r

Laj2(v) = Z 7”1_(% N r)

r=0

This is an entire function of, for the convergence is rapid enough in the
whole plane. Looking into the Hadamard theory of entire fiors, we could

see that the order of this function% This is indeed plausible, for the de-

nominator is roughly (&)! and }; (ZV;), > ((Zr)l ~ eV”; or the function grows

like e¥*, and this is characteristic of the growth of an entire fusrcior order
%. The codficients of3" are themselves entire functions in the subsaript
We now quote a theorem of Wigert to the followiniext. Suppose that we

have a power seried(3) = Z g(n)3" whereg(v) is in entire function of order 184
n=0

less than 1; then we can say something aldag} which has been defined so
far for |3] < 1. This function can be continued analytically beyond theleiof
convergence, an®(3) has onlyz = 1 as a singularity; it will be an essential
singularity in general, but a pole @(v) is a rational function. We can extract
the proof of Wigert's theorem from our subsequent argumesatsve do not
give a separate proof here.

®y(3) is a double series :

0 0 . _dr
LOEDI ZM,Iskl

0 r=0 I F( )
This is absolutely convergent; so we can interchange suionsand write

2r
= (@) e
®k(3)=;ﬁ;(n—a)s
( i )2r
v ke
—Z;—r!r(gﬂ)sor(s)

wherey; (3) is the power serleg (n—a)"3". Actually it turns outto be a rational

function. ®y(3) can be extended over the whole plane.

or(3) = i =
n=0
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Differentiatingy; (3), 185

oo

¢G) =) nn—a)3"%,
n=0

00

3¢1(3) = D n(n—a)'3",
n=0

00

agi(3) = Y aln-a)'3";

n=0

SO,

361 () — g () = ) (=) 13" = ¢r1a3)
n=0

This says that we con derivg.1(3) from ¢, (3) by rational processes and
differentiation. This will introduce no new pole; the old pale= 1 (pole
for ¢.(3)) will be enhanced. S, (3) is rational. Let us express the function
a little more explicitly in terms of the new variable= = or § +1 = 3.

Introduce €)*1¢(3) = (=)@ (1 + u) = y;(u), say he last equation which
was a recursion formula now becomes

a0 = [+ 2) ) - -

, AT 1y 1
because Yl(u) = (=) 1y (1+ a)(—@) = ()¢ (1 + G) =
' Yraa(U) = u(u+ 1y (U) + ayr (U)

This is a simplified version of our recursion formula. We haveind to
expand about the singularify= 1. Let us calculate thg’s.

Yo(u) =u
Ya(u) = u(u+ 1)+ au= (1 +a)u+u?
Yo(U) = u(u+ 1)(2u+ 1+ @) + a(1 + a)u + al?
= (1+a)’u+ (2o + 3 + 2U°
Y (U) is a polynomial of degree+ 1 without the constant term. The deients 186

are a little complicated. If we make a few more trials we getriuction the
following:
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Theorem. .
Yr(u) = " Al + 1Y Ui,
j=0

whereAl is the " difference.
By definition,
Af(X) = f(x+1) - f(X),
AZf(X) = AAT(X) = Af(x+ 1) - Af(X)
= f(x+2)-2f(x+ 1)+ f(X)

The binomial cofficients appear, and

k
AF(x) = Z(—)H(;)f(x +0)
=0

How does the formula fog, fit? For induction one has to make sure that.s7
the start is good.

Yo(U) = (@+1)u=u

Ya(u) = (@ + 1)U + Al + 1Y U2 = (o + Du+ U

Yo(U) = (@ + 12U + A + 1202 + A%(a + 1)%0°
= (o + 1%u+ (@ +2)° - (@ + 1) ® + 2u°

= (@ + 1)%u+ (2o + 32 + 2U°

So the start is good. We assume the formula up to

r

Yra() = Y {2+ u)(j + DA + 1Yl + oAl (@ + 1)U

= O

]:
= > {ia e+ U+ (j + L+ @)A (@ + 1)Ul
j:

o

(A Seemingly negative élierence need not bother us because it is accom-
panied by the term = 0).

r+1
= > U (jA e+ 1) + () + 1+ @)Al (e + 1Y)
j=0
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To show that the last factor /(« + 1)+, we need a side remark. Intro- 188
duce a theorem corresponding to Leibnitz's theorem on tfierdntiation of a
product. We have

Af(X9(¥) = f(x+ 1)g(x+ 1) - F(X)g(x)
= f(x+ 1)Ag(X) + f(x+ 1)g(x) — f(X)g(X)
= f(x+ 1)Ag(X) + Af(X) - 9(X)
The general rule is

k

A*F(X)g(X) = Z (:)A“ f(x+ €)A‘g(x)

=0
This is true fork = 1. We prove it by induction,
AT (99 = AAF ()9(9),

and since\ is a linear process, this is equal to

Kk
D () € g + 41 a0,

=0

which becomes, on rearranging summands,

Z AR (x + ) A'g(x) {(';) + ({ '_‘ 1)} ,

and the last factor i§"), ((’fl) = (X,) = 0) This proves the rule.
Applying this to @ + 1), 189
(@+1)*" =(a+1)(@+1); wiite f =a+1,g= (e +1),

and observe that being linear permits only®and F! differences;

A¥(a + 1) = ( k )Ak-l(a +1) + (E)(a +k+ DAX(@ + 1Y

k—1
= kA" Ya + 1) + (@ + k+ D)AY(a + 1Y

wr() = ) Al + 1fu
j=0
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We can now rewrite the’s:
er(3) = () e ()

= () 2 Aa + 1) L
j=0

(3-1)+1

¢r has now been defined in the whole plane.



L ecture 21

We have rewritten the generating functib¢x) as a sum consisting of certain 190
functions which we calledy(x):

f(x):b(llz)%ik‘s/z S o (xe )

k=1 h modk

o0 2
where D (3) = Z L3 (&(n - a)) 3",
n=0

with @ = ;. ®x(3) could also be written as

2
> ()
O(3) = Z r!l“k(—%r)‘prg )

r=0

whereyy (3) is a rational function as we found out. We gogxplicitly by means
of a certainy:

_(_\r+l 3 ja, r
#(3) = () %Aa( U

What we need for questions of convergence is an estimagg tfis is not
difficult.
Af(X) = f(x+1)- f(X) = f' (&), x< & < x+1,

by the mean-value theorem; and becatsg a finite linear process we can in-
terchange it with the operation of applying the mean valeetem and obtain 191

APF(x) = AAT(X) = AT/ (&) = /(& + 1) - (&)
=) Xx<b<b<b+1<X+2;

143
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A3F(X) = A(A%F(X) = A%F/(&), x < & < X+ 1,
= f""(&), X< é<é3<E+2<X+3;
and in general
ARF(X) = ), x < £ < x+ k.
This was to be expected. Take- 3| > 6, 0 < § < 1 so thatzis not too
close to 1.% >landO<a<1

r
oGl < D rr =1 (= j+ DA+ a+j) -
j=0
r
(@+1+r1)
< Z o+l

j=0

5j+1

(@+1+r1)
<(r+1)T

(@+1+r)+t
5r+l

Originally we know that the formula fof(x) was good fox] < 1. From
this point on we give a new meaning¢e(3) for all 3 # 1.

This is a new step. We prove that the series®q(3) is convergent not 192
merely for|3| < 1 but also elsewhere. The sumdn(3) is majorised by

1w (”—é)r _(a/+1+r)”1

0 4 r!F(§+r) o'

This is convergent, for thought the numerator increasdsyive have by
Stirling’s formula
rr r €

N \2ar'tder  \oar

So as far as convergence is concerned it is no worse than
en?\f
LS (%)
5
0 l"(z + r)

which is < Cs, the power series still being rapidly converging becaustnef

factorial in the denominator ar%f is fixed and 1 + % ' is bounded. So we

have absolute convergence and indeed uniformly sfifer| > 6.

(a/+1+r)(1+a+1)r
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We have now a uniformly convergent series outside the poiatl, and
@(3) is explained at every point except 1 which is an essential singularity.

D (3) is entire inl—. From this moment if we put it back into our argument
-3

we havef (x) in the whole plane ike 2"k keep away from 1. And we are sure 193
of that; eitherix] < 1 -6 or |x > 1 + 4. Originally x was only inside the unit
circle; now it can be outside also. In both ca$€s) is majorised by

5]

i k% k-Cs= céz K32,

k=1 k=1

which is absolutely convergent.

Therefore we have now a very peculiar situation. In this tiateof Oy we
have obtained a function which represemts analytic functions separated by a
natural boundary which is full of singularities and cannetiossed. They are
not analytic continuations. The outer function is someghiew; it is analytic
because the series is uniformly convergentin each comphses

Consider the circle. We state something more explicit wigicplains the
behaviour at each point near the boundary. Since every ogenee is absolute
there are no diiculties and convergence prevails even if we take each piece
separately.

3/2 & ,
f(x) = —2r (112) Skt Whk

& r!l"(g n r) = (Xerzzrih/k - 1)j+1

We can now rearrange at leisure. 194

nz r
e 2ni k(J+l) sl ( &e )

Z (x — e +1 L Z A + 1)rm

However, if we replaced’?; by 3.7, it would not to any harm because the
summation is applied to a polynomial of degresnd the order of the fference
is one more than the power. We can therefore write, takiogtside,
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F(x) = —21 ( ) Zk" > one

k=1 h modk
0 eZm (J + 1) r ( nz )r
Z é(2’”“/")‘*lAJ Z( rIF( 1)

( )S/ZZK Z whkz( e2mh/k)g 21L3/2( 6kz(a+1))

k=1 h modk
It is quite clear what has happene#d.appears only in the denominator,
a root of unity is subtracted and theffdirence raised to a power 1. Choosel9s

specifich, x, 1; then we have a ter We have a conglomerate of

B
terms which look like this, a conglomerate of singulariéésach root of unity.
So we have a partial fraction decomposition not exactly efMhttag-LeTer

type. Here of course the singularities are not poles, angdhe everywhere
dense on the unit circle. Each ser@srepresents one specific powffin/k.

Let us return to our previous statemeh([x) is regular and analytic outside
the unit circle. What form has it there? Inside |tH;(1 x™). We shall expand
f(x) about the point at infinity. We want thgs epr|C|tIy

%o(3) = 1—_3
er+1(3) = 3¢ (3) — r (3)
-1

-1 e8]
_ 3 3 N m
vo3) = T =751 >3
m=1

¢1(3) = i m" + i 7= i(m +a) "
m=1 m=1 m=1

The following thing will clearly prevail

¢r(3) = ()" Y (m+a) 5
m=1
This speaks for itself.

¢r1(3) = () D MM+ )3 ™+ (<)@ Y (m+a) 3
m=1 m=1
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So the general formula is justified by induction. 196

Oi(3) = - i (_iz) i(m +a)3"

e r!l"(g + r) —
for all |3 > 1. Exchanging summations,

oo

Du(3) = Z mzo Gtz.(pm a)))

00

‘—mzs L3/2(6k2( m- a))

Put this back intdf (X); we get for|x| > 1,

f(x):—Zn(llZ)s/zikf% Z (Uhkz 1e2”' L3/2(6k2( m-— a))

k=1 h modk m=1

and since An) = Z whie 2z,
h modk
T\32 & 52 g . 2
f(x) = —2n(1—2) DK Y AG-mX Mgz 25 (-m - )
k=1 m=1
Again interchanging summations, 197

f(x)=-2n (112)3/2 i xm i A (-m)k>2Lg), (6k2( m-— a))
m=1 k=1

The inner sum we recognize immediately; it is exactly whathae for

p(n); so
3/2 X
19 = -2r(15) / > pl-mx™
m=1

And here is a surprise which could not be foreseen! By its weepning
p(-m) = 0. So
f(x)=0
outside the unit circle. This was first conjectured by myseilél proved by
H.Petersson by a completelyfidirent method. Such expressions occur in the
theory of modular forms. Petersson got the outside fundtishand then the
inner one, contrary to what we did.
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The function is represented by a series inside the circle:jtaa zero out-
side, with the circle being a natural boundary. There exigpker examples of
this type of behaviour. Consider the partial sums:

X 1
14— = —
* 1-x 1-x
X X2 1 X2 1
1+ + = + =
1-x (1-XA-x) 1-x (1A-X2-x) @@A-x(1-x2
1+ X + X + X +---ton+1terms
1-x (1-X02-%) (1A-x1-x)1-x3)
1
S (A-XA-x2)---(1-x)
. 1
For|x < 1, the partial sum converges tg—————. For|x| > 1 also 198
[T(1-xm)
1

m=
it has a limit; the powers ox far outpace 1 and so the denominator tends to
infinity and the limit is zero. The Euler series here is sormgthust like our
complicated function. Actually the two are the same. Fopsise we take the
1

partial sum and break it into partial fractions. We

A-x1-x2)---(1-x)
get the roots of unity in the denominator, so that we have ameosition

Z Bhkln

k < nand¢ not too high. For a highan we get a finer expression into partial
fractions. Let us face one of these, keeping, ¢ fixed:

Bhkin
(x— et
Letn — c. Then | have the opinion that
3/2 ) 2
Bh,k,l,n — =2 (112) a)hkkfgezmefAf;ngk (—&(a + 1))

The B’s all appear from algebraic relations and so are algebraiteus
- in sufficiently high cyclotomic fields. And this is equal to somethimhich
looked highly transcendental! though we cannot vouch fa. tiThe verifi-
cation is dificult even in simple cases - and no finite number of experiments
would prove the result.
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Bo,1.1n

» is itself very complicated. Let us evaluate the principahfala for 199
f(x) and pick out the terms correspondingte 0,k =1, £ = 1.
123

757
—é, -1 is the first approximation t8p11n. If we take the partial fraction
decomposition for

o . . 6 .
L3,z is just the sine function and terns out to49<5£—3 - . Since; =

1 1 . . .
1010 1-91-® x-17 -1 @+x

the numerator of the second term would give the second appation. If in-
deed these successive approximations converBgit@, we could get a whole
new approach to the theory of partitions. We could start withEuler series
and go to the partition function.

We are now more prepared to go into the structuregf We shall study
next time the arithmetical suiy(n) and the discovery of A.Selberg. We shall
then go back again to thefunction.
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We shall speak about the important séq{n) which appeared in the formula 200

for p(n), defined as
Ak(n) — Z whke—Zninh/k‘
h modk

we need the explanation of they; they appeared as factors in a transfor-
mation formula in the following way:

f(ez”'%) = whk\/geﬁ(%’s)f (ez’“%)’
hh +1=0 (modk)

Here, as we know,

1
f(x) = ——
¥ = @
and as () = grit/12 1_[(1 _ e27rimr)’
m=1

f(eZITiT) — eﬂi‘r/lZ(r](T))—l

We know howr(r) becausewny is something belonging to the behaviour
of the modular formy(r). What iswnk explicitly? We had a formula

ar+b cr+d
”(cT+d)‘EV —n().¢>0,

and 201
epsilonnis just the question. Our procedure will be to studgndn and then
go back tof wherewpnk appeared. The trick in the discussion will be that we

150
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shall not use the product formula fg¢r), but the infinite series from the pen-
tagonal numbers theorem. This was carried out at my suggesyi W.Fischer
(Pacific Journal of Mathematics; vol. 1). However we shatlcapy him. We
shall make it shorter and dismiss for our purpose all the Emjcomplicated
discussions of Gaussian sums

k
G(h,k) = > &k
v=1

which are of great interest arithmetically, having to dohwéw of reciprocity
to which we shall return later.

We are able to infer that a formula of the sort quoted;fehould exist from
the discussion of/(0/7). We had the formula (see hechire 14)

ar+b
)

where the right side contains a doubtful root of unity, whighcould discuss in
some special cases, and by iteration in all cases. We sleadlafsirther basis of
our argument that such a formula has been established weitbrtvisoe| = 1.
We then make a statement abewtnd use it directly.

After all this long talk let us go to work. We had = (h" +i/3/K), T =
(h + i3)/k. The question is how i$’ produced fromr? It was obtained by
means of the substitution

-
k -h

a b|_
c d
We can therefore get what we are after if we specify the foanyl these

particular values.
W +i3) h+i3
(5= w5

with the principal value fory/z. We wish to determine defined by this. We
shall expand both sides and compare the results. For expansi do not use
the infinite product but the pentagonal numbers formula.

T](T) — eﬂi‘r/lZ (_)/]eZHiT/l(&i—l)/Z
/1;00

(]
Z (_)/1 e% (1+3612-121)
A=—00

202
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— Z (_)/1 e37rir(/l—l/6)2
A=—00

Most determinations afi(r) make use of the infinite product formula; the

infinite series is simpler here

h+|3 ”h+|s
( ) Z()ASI (1-1/6)2

In order to get the root of unity a little more clearly exhédt we replaca
mod X.
A=2kq+j, j=0,1,...,2k-1 andg runs from-co t0 c0. S0

h+'3 i 2&11 3ri 0 (ke j— 1) 33 (ke j— 1)
( )J 7l g q+] e Ao O+)—-5

g=—c0 j=0

The product term in the exponeatdkq(j — %).3ni'—|2

= 2rrihq(6j — 1)

= an integral multiple of 2i
(This is the reason why we used moki 2

2k-1

(h+'3) Z( )ig 3ri B (j-1)? Z e 12mk(a+ 50

g=—00

We did this purposely in order to make it comparable to whatligen the
theory of ¥ -functions. ForZt > 0, we have

00

N —nt(q+a)2 el n12 ima
T 2 e
g=—0c0

n‘p

This is a consequence offa-formula we had:

2 1 1
€' W(vt/T) = \/;“//3 (v/ - ;)

If we write this explicitly,

4//3(‘//7_) — Z e(riTnzeZRinv’

N=—0c0

203

204
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and putit = —t,
—7rtv —7rtr‘l2 —27rntv - N —7rn2/te2nlnv
I"IZ(X} \/_ ;
or Z 7rt(v+n)2 Z ——n2e2ninv’

N=-c0 n——oc

which is the formula quoted. We now apply this deep theorechget some-

thing completely new. Putting= 12zkanda = J_T

n(hﬂ%) Z( Lyigzib(i-2)° N e Bre®(i-3)

\ 12(3 M=—o00

We rewrite this, emphasizing the variable and exchangiegattiers of
summation. Then

o0 2k—
"2 3k3 et =

;_\

205
Let us use an abbreviation.

h+i3 1 &
== § & BT,
() v ”

2K—
where T(m) - % Z ef”('+2“(176)2+7k(61*1)).
j=0

(h+|% {T(0)+Ze 1z<s(T(m)+T( m))}

This is a function in%. Also

n(h+ki3) Z( yle (611 g (G1-17

/l——oc

Nown (%) has been obtained in twoftkérent ways. We have in both cases

a power series ig™/1%K = x both for|x < 1. But an analytic function has
only one power series; so they are identical. This teachesmething. The
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second teaches us that by no means do all sequences appeaekpbnent. 206
Only n? = (64— 1)? can occur. There is no constant term in the second expres-
sion. Som has the forméd — 1| = 64 + 1, 2 > 0. Make the comparison; the
codficients are identical. They are almost always zero. In pgaid (0) = 0.
T(m) for mother thant1 (mod 6) also vanish. So we have the following iden-
tification.
1 xih’
—— (T(6A— 1)+ T(-61 + 1)) = e 1(-)'eT (61 — 1)?
V3k
Realise that we have acknowledged here that a transfonfatimula ex-
ists. The root of unitye is independent oft. This we can assume buy.
Ruscher does not. Take in particulee 0. Then we have fom = +1,
(T + (W) = el
V3k

This is proved by Fischer by using Gaussian sums. Therefore

o (%1 e X1 6i-1
L= > el R 4 N @i R0
V3k =0 j=0

Now j matters only mod R We can beautify things slightly:

T } » »
el € X ok 2@ P+j(k-h-1) | o & Z of (3n2+i(k-h-1))
2V3K j mod X j mod X

The sum appears complicated but will collapse nicely; h@veompli-
cated it should be a root of unity. B (n) the sums are summed oveand for
that purpose we shall not need to compute the sums explicitly
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Last time we obtained the formula 207
el= ie% e & Z ek (32 (k-h+1)
23k j mod X
+ ! el Z ek Bhi*+j(k-h-1))
2 @ j mod X

whk Was defined by means of the equation
f (e2ﬂ'¥) — wney3ex G (&ﬂ'%)
whk came from the in the transformation formula

ar+b\ cr+d
MNer+d]) ™ i

n(r)

In particular,

W+1/3\ h+i3
(5w ()

f (eZJTi‘r) — dTiT/lZ(T](T))_l

Substituting in the previous formula,

i TR v i) L
ef_lz h—;;l?) {r](h_;;ls)} :whk\/geﬁ(%_S)e% % {r](h _:_(I/?))}

. h +i/3 (b h+ i3
l.e., ]]( K /%) =(1)hk\/gem<(h h)rl(T%)

155
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€= a)hke%k(h"h)
or whi = ee” &N

208
In the first formula we have obtained an expressionefdr However, we
could make a detour and actlirectly instead o&~*. Even otherwise this could
be fixed up, for after all it is a root of unity. We have = 1 ore = €. So
consistently changing the sign in the exponents, we have

WhK = e letxh-) _ 1 ek g} @P+j(k-h+1))
2\/97( j mod X
1 i il 2
6k ~ % Bnj*+j(k-h-1))
+ e &k e k
2 \/3_k j mod X

We now have they, that we need. But they are only of passing interest;
we put them back intéy(n);

Ax(n) = Z whie vk

h modk

This formula has one unpleasant feature, Migk) = 1. But this would not
do any harm. We can use a lemma from an unpublished paper bigiém
which status that ift{, k) = d > 1, then

Z e B@h2+j(k-hs1) _ g
j mod X

For proving Whiteman status ptt = dh*, k = dk* andj = 2k*[ +r, 209
0<1<d-1,0<r<2k"-1.Then
d-12k'-
Z(3nj2+j(k-h+1)) _ Z 2L (3dhr (2k* 1+r)2+ (2K £+r)(dk —dhr+1)))
j mod X =0 r=0

2k*—
~ 2 (3hr2+r(k-hx1)) Z ¢27r|€/d

=0

and the inner sura 0 because it is a full sum of roots of unity adg: 1.
This simplifies the matter considerably. We can now write

Ad(n) = eeik Z Z e—”?‘(3hj2+j(k—h+l))e—2nin2

2V3 3k h modk j mod X
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+ 1 e—g—f( e—”?‘(shj2+j(k—h—1))e—2nin2
2 V3k h modk j mod X

Rearranging, this gives 210
_ 200, JBIED
An) = e Z (ke D)] Z o (v 8D
2\/_k j mod X h ‘modk
+ e & o B Z o % D
2\/3_k j mod X h ‘modk

The inner sum is equal to the sum of ti&roots of unity, which is 0 ok,
k if all the summands are separately one, i.e., if

3j-1
o A 12 ) -0 (modk)
Hence
i R R L ud
Adn) = = \/;ee Z (-)le ™ + 5 \/;e‘e‘k Z (-)le¥
j mod X j mod X
&gns—n (mod k) @E—n (mod k)

Inthe summation here we first take g6 modulo X (this is the first sieving
out), and then retain only thogevhich satisfy the second condition modkio
(this is the second sieving out). Combining the terms,

Ak(n) = 1‘ I_( Z (_)] {e_gTi((Gj_l) + eg_:((el_l)}
j mod X
G- n (modk)

V5 Y et

j mod X
161 1)7 -n (mod k)
211

This formulais due to A.Selberg. Itis remarkable how sinipile We shall
change it a little, so that it could be easily computed. Wdl stew that the
A«(n) have a certain multiplicative property, so that they cattwken up into
prime parts which can be computed separately. Let us retiiétsummation
condition in the following way.

12j(3j - 1)= -24n (mod 24k)
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ie., 362-12j+1=1-24n (mod 24)
ie., (6 —1)?=v (mod 24)
where we have written = 1 — 24n. In the formula
1 /k j [a-Z6j-1 i (6j-1
Ak(n) — _ Z (_)] {e 6k( ] )+ esk( ] )}
G- n (modk)

replacej by 2k — j in the popint term (wherg runs through a full system of

residues, so doek2 j). Further, observe that we have now 212
(1k-6j -1 = (mod 24)
i.e., (6j +1)*=  (mod 24)
Then
A(n) = 1 \/E Z (=) e &I 4 Z (=) e&E-D
2V3 _ _
j mod X j mod X
(6j-1P=v (mod 24) (6j-1P=y (mod 24&)

In both terms the range of summationjismod %k and there is the further
condition which restrict§. So

1 [k i i
n)=— — — ]e_@(elil)
Adn) 2\/; ‘ 2, )
j mod X
(6jx1P=v (mod 24)

Write 6j + 1 = £. 6j + 1 thus modulo 24. j = %1 so it is the integer

nearest t(% since ¢,6) = 1. So writej = {é} where{x} denotes the integer

nearest tx. Then

A(n) = % \/g Z (-)lsle®
¢ _mod X
(£.6)=1,>=v (mod 24)

And one final touch. The ranges fom the two conditions are modulo k2 213
and modulo 2&k. Make these ranges the same. Then

Am-35 Y e

¢ mod 24k
=y (mod 24)
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We prefer the formula in this form which is much handler. Walkttilise
this to get the multiplicative property @& (n).



L ecture 24

We derived Selberg’s formula, and it looked in our transfation like this: 214
AM=gya D e,
2=y (mod 24)

wherey = 1-24n, orv = 1 (mod 24). We write thi8y(v); this is defined for
v =1 (mod 24), and we had tacitly,(6) = 1. We make an important remark
about the symbol—(){%}. This repeats itself fofmoduldl2. The values are

(= 1 3 7 11
@l= 1 1 1 1
But (—){é} can be expressed in terms of the Legendre symbol:

when ¢,6) = 1. We can test this, noticing thér;l) = (—1)%1. Since 1, 7
are quadratic residues and 5, 11 quadratic non-residuesl®gdwe have for
¢=15711, (—)‘é’ =1,-1,-1,1 respectively; this agrees with the previous
list. It is sometimes simpler to Writeq‘%’ in this way, though it is an after-
thought. It shows the periodicity.

Let us repeat the formula: 215

1 [k CN(-1\ xe
so-3vs Y (3)(F)e
2=y (mod 24)

This depends upon howbehaves with respect to 24. It has to be done
separately for 2, 3, 4, 6. For this introdute- (24, k). We have
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d=1if (k,24)=1,
3if 3|4,kodd
8if kisevenand 3 k
24if 6]k

Let us introduce the complementary divisode = 24. Soe = 24,8,3 or
1.(d,e) =1. Also (¢, k) = 1.

All this is a preparation for our purpose. The congrueffce v (mod 24)
can be re-written separately as two congruenéds= v (moddk), 2 = v
(mode).

The latter is always fulfilled if{, 6) = 1. Now break the condition into two
subcases. Latbe a solution of the congruence

(en?=v (moddk);

then we can writé = er+dKkj, wherej runs modulce and moreoverj(e) = 1.
To different pairs moduldk ande respectively belong efierent? modulo 24.
Bk(v) can then be written as

_1 Jk er + dkj -1 o (er+dk )
B"(V)‘A,\/; 2, Z( 3 )(er+dkj)eﬁk

(er?=y (moddk) j mode
(i.e=1

Separating the summations, this gives 216

B(v) = %\/E > e,

(er)2=v  (mod dk)

where

_ + (er+dhj -1 id]
S = ), ( 3 )(er+dkj)eﬁk

j mode

We compute this now in the fourftierent cases implied in the possibilities
d=13,8 24.

Casel. d=1,e=24

S(r) = Z’ (%)(—_Jl)e%

j mod 24

(IF), 2 5o

j mod 24
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There are eight summands, bifeetively only four, because they can be
folded together.

S(r) = 2(2)(_71), mzw'lz(é)(_)%lem

= 2(2)(%1){5?i _e% _e% +elThi}

(We replaced the nice symboJrX%' by the Legendre symbol because we
did not know a factorisation law for the former. So we makeafsene special

character that we know).
-1 n 5n
Sk(r) = 4( )(T) (cosé - cosg)

)

and since('g) (E) =(-)F1l= (’Tl) this gives gives 217

k
3
k
3

S(r) = 4\@(2)

Case2. d=3,e=8.

Case3. d=8,e=3.
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218
Case4d. d=24,e=1.

so-(i2)-()

Now utilise these; we get a handier definition fqu(.

B((v) = (2)VE S e

(24r)2=v  (mod k)
-3

(5
(8k)2=y (mod X) 3

Thei should not bother us becausand-r are solutions together, so they
combine to give a real number.
( r )sin 4nr
3 3k

Case 1.

Case 2.

k(-1

Bi() = —+/3 (_T)
(8r)2=v  (mod X)

Case 3.

1 k =1\
wr=g Kz ¥ [T
(3k2=y (mod &)

Sl 3 (e
4 3
(3r)2=v (mod &)
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k 3\ ar
W
r2=y (mod 24)

Case4.
1
Bk(v) = -

This is the same as the old definition.

This makes it possible to compudg(n). We brealk into prime factors and
because of the multiplicative property which we shall prdware to face only
the task of computing for prime powers.
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We wish to utilise the formula foBy(v) that we had: 220

1 [k AV AT

with v = 1 — 24n (and so= 1 modulo 24). Some cases were considerably
simpler. Writingd = (24, k3), de = 24, we have four cased:= 1, 3, 8, 24.

d=1
Bk(v)=(§)\/§ T gk

k
(24r)2=v  (modk)

d=3
B.(v) = 2i __1) \/E ([)e4nir/3k
k( ) ( k 3 (8r)25vz(:mod X) 3
d=8
w355, % e
(8r)2=y (mod &)
d=24

There is nothing new; we get the old formula back.

We wish first to anticipate what we shall use later andAggh) for prime
powers which will be the ultimate elements. Again we haveisouss several
cases.

First takek = p*, p a prime exceeding 3. Then, by cd3e 1 above (since1
(24K = 1),

3\ .
Bk(v) = (_) pl/2 Z ghrir/pt
(24r)2=v  (mod pt)
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Look into the condition of summation. It is quite clear thhaistimplies
(24r)? = v (mod p) i.e.,v is a quadratic residue modupo Hence

Bpd(v) = 0 if (%) -1 @

On the other hand, i¥? = v (mod p) is solvable, then? = v (mod p?)
is also solvable (we take for granted the structure of théicyesidue group).
x? = v (mod p') has two solutions, and now we want oly= 24r (mod pt).
Letr be a solution;-r is the other solution: (23?> = (mod p*). Then

A
Bk(V) — (§) p/l/2 {e47rir/pl + e—47rir/p‘}
p

3\" 4t
=2|=| p"?cos—- 2

(5) ooty @
This is roughly of the order of/p*

Next, suppose that/v. This is a special case @f'/v. Then (24)? = 0
(mod pt), and the solutions are

r = p[%]l,

A+l

i=0,12.. . p%l -1

when = 1,[44!] = 1 and we have only one summand. Hence
) = () 2 ©)
p
Now letd > 1. Then
3 & A p/l_[/lTﬂ] i A+l
Bk(y) = (_) pz e4”'l/p[%]
p

j=1

This again involves two cases.even andl odd. If 2 is even,A = 2u and
the sum becomes o
Z ghrii/p
j=1

and this is 0, being a full sum of roots of unity. Hence in thase

Bx(v) =0 4)
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Now letA be odd:A = 2u + 1.

r=p“t.j,j=01...,p" -1
Then the sum becomes ,
i il /P
=1
which is again zero; hence
Bk(v) =0 (5)

Now suppose that | v, u < 2andp! fv. r?> = v (mod p')v = pv, p+v, 223
orvt = ptv (mod p') v = ptvy, p £ vi; orv? = plvy (mod pt). If is odd,
u < A, thenp* | v; and again
Bk(v) =0 (6)

There remain the case in whighis even,u = 2o. Thenr? = p%y,
(mod pt). Writingr = p°j, p%j? = p¥v1 (mod pt), or j2 = v; (mod p*=%)
If (%) = -1, then again
Bk(v) =0 (7)

However(v—pl) = 1 impliesj2 = v; (mod p*2) has two solutionsj and
—j. Then

r=p(j+p") (modp')
or 7 r=p’j+ep'™* (modpt)
where £=0,1,....,.p° -1

Then the sum becomes

p-l 4 4i'p0_l 4ri
S ebapr) v opt) = 50 Y e
(=0 (=0
=0
Again
Bk(v) =0 (8)
We now take up the cage= 3. This correspondstp= 3. Ifk=p' =3, 224

Bsl() =i(-)'3% >’ i)e4ﬂir/3**1
(8r)2= (mod 3+1)
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v=1 (mod 24) ov = 1 (mod 3). Sq}) = 1. There are two solutions,and

—r for the congruence (3 = v (mod 3%*1). Since(%) = (%)

Ba(v) =i(-)" (%)3‘71 (eéﬂ”l’l _ e*éi”l&)

r\, a1 . 4nar
- 2(—)“1(5)3 Fsin i 9)

Finally, we takep = 2; thend is 8. Letk = 21, Then

1 —1 H A+1

Bz/l(V) — _.(_)/12/1/2 (_) eA;rlr/Z

4i r
(3r)2=vy  (mod 2+3)
v = 1 (mod 8) implies that () = v (mod 8) has four solutions, and these
solutions are inherited by the higher powers of the modulbe solutions are
r =1,3,5,7 (mod 8). In general the congruence= v (mod 2), u > 3 has
four solutions

+r+h2th=0,1

Then 225

1 i j9A+ i DA+ i DA+ i + -1
BZ/((V) — E(_)AZ/]/Z {e4zr|r/2l r e—4n|r/2‘ 1 " e4zr|r/2l o e—47r|r/21 1} (T)

r-1

and sinc{ ) = (-)7,

By (v) = (—)'e'/? (_Tl) sin % (10)

We have thus computed the fundamental cases explicitly.
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We had the formula foBy(v):

1 [k C\(-1\
o1, 2, e
4 3 2=y (Zm;)d 24) 3 3

with v = 1 (mod 24). Writingd = (24, k), we had the following cases:

1)d=1
Bu(y) = (E) KoY e
(24rn)2=y  (mod k)
2)d=3
Bu(v) = |(_71) \/g (_—1)e7'"/2"
(24r)2=y  (mod XK)
3)d=8

B(v) = 1 (Ig() vk

__1 ir /2k
4 ( )e(r

3r)2=v (mod &)

4) d = 24. We do not get anything new.

Assumek = kiko, (ki, ko) = 1. We desire to writdy(v1). By, (v2) = Bk(v),
with a suitabley to be found out fromv, andv,. It cannot be foreseen. It is a

multiplication of a peculiar sort. Two cases arise.

(i) Atleast one ok, ks is prime to 24 and therefore to 6, sdy,(6) = 1.
(i) None is prime to 6. But sincek(, k;) = 1, 2/ky, 3/k;. Under the circum-

stances prevailing these are the two mutually exclusivesas
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Casel. Utilised= 1.

3 1 [k _
By, (v1) - By, (v2) = (k_l) \/E y 52 Z it /ky

(24r)2=v;  (modk;)

L
5251/2 (mod 24(2) 3 g

_ 1/3 kiko s (24K +kyl) I -1
- 4(k1) V 3 ZZ € 3/\ 1

(24r)%=v;  (modk;)
%=y, (mod 24;)

ki and 24k, are coprime moduli. If r runs modulg kand¢ runs moduld4k;,
24kor + kg€ would then run modul@4k;k».

Write
24kor + k€=t (mod 24ky)
Then
t2 = (24ky + k1)? = (24kor)?  (modky)
=kiv; (modkg), since (24)=v; (mod k)
Similarly

t? = (ki)>  (mod 24o)
=kiv, (mod 24;), sincet? =v, (mod 24,).

So in order to get both conditions of summation, we need ohlyose 228
t2 = v (mod 24 ky); and this can be done by the Chinese remainder theorem.

So
13 K O\ (=LY sitsex
Bkl(vl)Bkz(yz) - 4 (k’) \/; Z (3)( f )dT
2= (mod 24kp)

This already looks very much like the first formula though quite. What
we have in mind is to compare it with

Bu(v) = % \/E Z (%) (_Tl) rit/6k

2=y (mod 24)

(&)= (55 er )

So find out




(55
-(5)[=)E))
(&)

by the reciprocity law. So the formulas agrés; (v1)Bi,(v2) = Bk(v); and we
have settled theftair in this case by

Theorem 1. Ifk3v, = v (modki) and Kv, = v (mod 24,), (k,6) = 1, then 229
Bk1 (Vl) Bkz (VZ) = Bk1k2 (V)
Case2. This correspondsto e d; =8andd=d, = 3.

_ 1) _ _
( e /2Ky § e(rls/3k2.
r

(3r)2=vy  (mod &) 8r)2=v, (mod ;)

R

55 (e
3 /\3

3r)?=v;  (mod &)
(8r)?=v; (mod )

Since kg, ko) = 1, (8kq, 3k2) = 1 and so Bor + 8k; s = t runs through a full
system of residues modulo Rd,. So

C1(ke\(-1) [k 1\ S\ it/6kiko)
scamn = 5(3) ) . M(T)(é)eﬂ |

As before 230
t? = (3kor + 8k19)? = (3kar)? = (3kar)? = k3v1  (Mod &)
t? = (8ki9)? = Kiv,  (mod )

Now determinev such that' = k3v; (mod &) andv = kZv, (mod 3¢),
again by the Chinese remainder theoremt’Se (mod 24;k,). Now

(6= (%))
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_ (k) (22 (E) -1
B 3 k2 3 r
(since 8 and-1 are quadratic non-residues modulo 3). So
1 k (=1 itjex
S080=3\5 > (3)(7)e
2=y (mod 2&)
= Bk(v)
wherev is given. Hence

Theorem 2. Ifk3v1 = v (mod 84) and Kv, = v (mod 3c), then

Bk1 (Vl) Bkz (VZ) = Bk1k2 (V)

Let us give an example of what this is good for. Calcukstg(26). Since
we can reduce modulo 18y0(26) = A1o(6).

v=1-24n=-143
A10(26) = A10(6) = B1o(-143) = B1o(-23)
= Bs(v1)B2(v2)
wherevy, v, are determined by the conditions 231

4y, =-23 (mod 5)or—v;=-3 (mod 5)
and 25,=-23 (mod 48)ony, =1 (mod 48)

S0A10(26) = Bs(3)B2(1), and these are explicitly known. Sin@) =-1,
Bs(3) = 0. Itis actually not necessary now to calculBt£1).

Bat) = (') 2"2sin
where (3)?=v (mod 2*3),(3r)?=1 (mod 16)

or3r =1 (mod 16)r =11 (mod 16). (there being four solutions). Then
11n 1
Bo(1) = (-)(-) V2sin== =1x V2. — =1
2(1) = ()() : 7
A1p(26) = 0.
One more thing can be established now. We have the ine@saliti

|BZ/l (V)| S 2/1/27
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IBai(v)] < 322V3,
1By (v)| < 2p?, p > 3.

By the multiplicative property, 232

1B = |AGL)| < Vk(@2V3)'®

where A(K) = Z 1
plk

This is a rough appraisal, bufk) is in any case a small number. So
IBe(v) < CVk-k¢,e>0,C =C,.

We see that although,(n) hase(k) summands and in general all that one
knows is thatp(k) < k — 1, because of strong mutual cancellations among the
roots of unity, the order is brought down to thatlaf<. This reminds us of
other arithmetical sums like the Gaussian sums and the Kooaan sums.
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We now give a proof of the transformation formula fgt). n(r) we firstin- 233
troduced by Dedekind in his commentary on a fragment on nasduhctions
by Riemann; it is natural in the theory of elliptic functions

n(r) = e [ J(1-em)
m=1

ar+b . .
We want to replace by v’ = (;Tﬂ Actually in the whole literature there
T

is no full account except in a paper by W.Fischer (Pacific dauof Mathe-
matics, Vol. 1). We know what happens in the special caéeandr +1. We
get the explicit form in which the root of unity appears in thensformation
formula if we put together some things from the theory of madtunctions.
There some discussion in Tannery-Molk; they white) instead ofy(7). (17(7))3

is up to a factor/;'(o/7). It turns out for quite other reasons tha{x))® can
be discussed too; it has to do with the modular invari{mj. Dedekind did
something more than what is needed here. He studieg(tpgFor Imz > O,

n(r) is a function in the interior of the unit circle (if we set= €7) free from

zeros and poles. So the logarithm has no branch points andlysdefined
without ambiguity.

logn(r) = 22 + ) log(1- &™)
m-1

(For purely imaginary, the logarithms on the right side are real).
The multiplicative root of unity now appear as somethingitndel This 234
is what Dedékind investigated. Recently (Mathematikd,lyadl954) Siegel

. . 1 . .
published a proof for the particular case, using logarithms. Actually Siegel
T
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proves much more than the functional equatiorvfia). He proves that

logn(-7~*) = logn(z) + 5 Iog—

We shall extend his proof to the more general case. The btiegecase
where a root of unity appears explicitly has not been dedtt by Siegel.
We write the general modular transformation in the form

h+i3 h+i/3

T = K ,T = K ,hHE—l (mOdk)
We wish to prove that
Iogn(h +k|/3): Iogn(h+kl3)+ %IoggﬂriC(h,k) *)

whereC(h, k) is a real constant.
From the definition of(7),

logn (h;ls) 7r(h+l3) ZZ L carimrthsis)/k

m=1r=1
mh Z Z = g2rimrh/kg-2rmr3/k
m=1

eZimh/k is periodic with perio; we emphasize this and write

m=gk+u;u=1,...,kq=0,12,....

Then
h+i3\ #ih m < SR il 2t
o012 = T - T3 2 2 e

and taking the summation oveiinside, this becomes

mih il o2 2nqr
DSy tete ”kZe ‘

pu=1r=1
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Substituting in[(¥), with similar expansion fo;r( h”"“) we have
. k 00 eiziivr
i *
1z< 12<3 z:; z; 1-e20/s
h 3 kK 1 i rh e,ZK”L;
I h, k) + — - —eTHE ————
51093 +mC(h. k) + 75 — o ;;rez” ‘T e
Rearranging this, we get 236
kK oo
1 onive € /s iurhyk €700 g 2mni/k
Z Z ?ezn 1—e2n/; Z Z e 1—e2u/;
v=1 r=1 pu=1r=1
(1 i , . 1
+ H((g — 3) + H((h_ h)+7T|C(h,k) = —5 |093

We now follow Siegel’s idea to get the whole thing as a sum sithées of
a certain function. Clearly there fsin it. Being integerg can be produced

L 1 . . . :
by something I|kem which has poles with reS|due2% at every integral
valuedx. So let us study a function like

E 1 e2mpxh/k g 2/
x 1 — erix 1-e2%

We may have to sum this fropn = 1 tou = k. This should somehow be
the form of the function that we wish to integrate. We do nothtiain the
whole plane. In fact, we can either take a wider and wider pathtegration,
or multiply the function by a factor and magnify it; we preferdo the latter. 237
We shall putxN for x, keep the path fixed and talé = n + % n integer,
to avoid integral points, and then make— o. The term corresponding to
u = k should be treated separately, as otherwise the fact6f would stop
convergence. Alsg" andu should appear symmetrically for reasons which
we shall see. So introdugé = u" (modk), u = 1,2,...,k— 1, and choose
1<y < k-1, Itturns out, taking all this together, that the followitigng
will do. Write

1 aNX k-1 1 eZmNxk g 2riuNx/ks
n(X) = —m COthﬂNXCOtT + > ;( . 1- e27rNX . 1_ gZﬂiNX/S

The first term is a consequence of the ternyfer k:

1 e27rin e—anNs
X1 @N X T el
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The poles will not change if we write this as

1 N 1)\ e 1) 1 14N 14 g2
X (1— ez E)(l “gon E) T X2(1- ) 2(1- e2)

1
= — cotaxN - cothmxN3.
4xi

We integratel,(X) along a certain parallelogram a little different from 238
Siegel’s.P has vertices atz, +i (sinceJmr > 0, Re3 > 0). Then

%ﬁFdx)dx:Z(Residues)

We then leh — co.
The poles ofF,(X) are indicated by the denominators and the cotangent
factors. These are
r3 ir .
Xx=0, X=-—, X=—, r integer
N N g
x = 0 is a triple pole for the first summand.

1 coth NxcotﬂNX— 1 1 3
4ix d 3 4ix aNxaNx

{1+ (ﬂl\;’x)2+~}x{1—(ﬂN7;/3)2+--~}
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Residue for this term at= 0 239

i3 1( 5000 72N?
= . —_ N —
472N2 3 (” 3

-4

which had been foreshadowed already.




L ecture 28

We had
1 e27r;4NX/k e—27ri;4*NX/k3
X 1_eNx “1C g2riNX /3’

1 aNx S
Fn(X) = ~aix cothrN xcotT + Z

pu=1
N=n+ % ninteger> 0, u* = hu (modk) and 1< y* < k- 1. At the triple
pole x = 0 the residue from the first summaﬁd—% (3 - %) Let us find the

residues from the more interesting pieces of the sum. Thergéterm on the
right has in the neighbourhood &f= 0 the expansion

2

1 1+27r/1NX+(27ryN2/k) e

X k 2!

_ 2 -1
1 {1+27rNx+(27rNx) +}

" 2aNx 2 6

HA * 2
y 1_271Iy Nx  (2ru"Nx/k) e

k3 2

. 2 -1
y .1 1_271INX_(27TNX/3) e
2riNX/3 23 6

3 { 21N X g(szx)Z_ }

" I2INDS kT2l 7«k

X{l_(Zﬂ;\IX_}_(271.2')()2_{_...)_}_(...)24_...}

1% * 2
X{l_zﬂ'u_m_z(zﬂ@x) }

240
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2

H 2 2
{1+ 2mNZ+ (27N</3) +}
3
241

1 . .
Fishing out the term i, the residue at = 0 from this summand becomes

i3 [1({2mN)® 1 » 1(2m'N\? 1 (27N)? N
S + = (@aNy?- 2 —zN
47r2N2{2( K ) METIGAY E] 2\ 5 ) " THT
N2 2r%iuN? 27T2|/J N? o 2iIN?  2n
At —
TR T T g ks ;TR }

i3(2., 1 2u) i [-2¢" 1 2
=2l oy — -z
{ "3 "Bk 37k

4 | u? k
i digut 2 2iu*
" 4{ Tk Tk
2 *2 * *
o u u 1 1|u u 1 o N\ 1 ”
{2k2 2k+12}+' {Zkz 2k+12}+(k )\k—2) O
We have to sum this up from = 1 tou = k- 1. Let us prepare a few 242
things.
Let us remark that
k-1 k-1
(k-1)k 1)k 2 (k=1k(2k-1)
H= ;ﬂ = 6

pu=1
Also if u runs through a full system of residues, so wopldbecause
(h,K) = 1. Further 0< "— <1, and” and differ only by an integer, so

that”k = If [h?” Hence summing up the Iast expressighffomu = 1 to
u=k-1,we have

12k 4 12

1((k-1)(k-1) k-1 k-1) S/u 1\(hg [hu] 1
- 12}+;(E_§)(?_[?]_§)

({(k—l)(ﬂ(—l) k-1 k—l}

(Ao
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wheres(h, k) stands for the arithmetical sum
k 2 k | k]| 2
pu=1

which appears here very simply as a sum of residues. The Xpsession

becomes ‘

T (|3+ )+s(h k)

So the total residue at= 0 is 243

1&2(i5+i15)_k1—2<1( 1)+s(hk)_112<(|s+ )+s(hk)

Next, we consider the simple poles Bf(x) at the pointsx = iN'(r + 0).
The coth factor is periodic and so the residue at any of thels s the same
as that at the origin, which i#. Hence the residue d¥,(x) atx = {(r # 0)
becomes .

N 1 . ar ©N ezl
a N +Z i aneZH 1_eh

(There is a very interesting juxtaposition of an arithmegtterm and a func-
tion theoretic term in the last part; this gets reversedHemtext set of poles)

k-l
1 ro 1 . eIk
= 0 Cothﬂ— - Z e2” 3
Agir 3 2nmi =i 1-els
X remains betweegi on the imaginary axis. S|qq| < 1; so we need consider
onlyr =+1,+2,...,+n. Again,

thy — e +eV 2eY
cothy Yy — @y ey — ey
2%
=1 €
l1-e?%

coth y is an odd function so th%coth yis even. Hence summing up over all 244
the poles corresponding to= +1, ..., £n, we get the sum of the residues

k-1 ‘ e—2ﬂy*r/k3

1-e2h

n
D 1 ritvyiey
r

=1 ﬂ':l r=1
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k-1
_izzn: it ey ke B0 g2t/
2ri £ £ 1-—e¥/s’

where we have made use of the fact that= -1 (modk), soh'u* = hivu =
—u (modKk), oru = —h'y* (modKk). In the last sum replage’ by k — u*; then
the previous sum is duplicated and we get

141 2e2h 1 G e €2
— = i, = wrk =

2ri Z; r {1+ l-e2/ T Z Z i 1-e2/s
e—27rvn/k3

14l 181,
S PITREDIDIEL i T

This accounts for all the poles on the imaginary axis (extletorigin 245
which has been considered separately before).

Finally we have poles = (e # 0) on the other diagonal of the parallelo-
gram. The same calculation goes through verbatim and wéngestum of the
residues at these poles to be

k
K ek e 2rvr3/k

A . n
DRSS

r= v=1r



L ecture 29

We had 246

k-1 .
1 aNx 1 e271/1Nx/k e—Zmy Nx/k3
Fn(X) = —m cothnN XCOtT + > ;( 1 e2Nx 1 _ e2N%3

The residue axk =0 is

1 . 1
H((|3+ E)+ s(h, k),

s(h, k), which will interest us for some time, being
(e L[t _[he] 1
Z k 2/\k k 2)

The residues at the poinks= §;(r # 0) amount to

191 1831y, ek
D IR U Pl i
r=1 v=1r=1
and the residues at the points: X (r # 0)
. n k n
i 1 i 1 . e ik
N -+ 1 = g2rihug
2n Z r =« Z r 1-e2m

When we add up, the suniy_; %, the disagreeable ones which would have7
gone to infinity, fortunately destroy each other; so the sidihe residues of
Fn(x) at all its poles becomes

183
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i 1._3 +S(h k)+—ZZ e27r|hvr/k e 2mvr /K3
12i 3 v=1r=1 1- e—27ff/3
2nur3/h

k n
- 1ZZ SN
7 — e

We had prepared in advance what we were going to obsfink) is what
we had calledC(h, k) + (h — h’)/12k. We have to prove that the sum of the
residues above, witl(h, k) = s(h, k) — 12k , is equal to— -logz, asn — oo.
But there is one dierence. The sums we have earller were sums froml
tor = oo; whereas here they are sums frors 1 tor = n. But this does not
matter as convergence is guaranteed since we have an exjpbfasior e *
with Re3 > 0. We have to see what becomes of our sum when we evaluate it
in another way. We have to considne_)rmI@Fn(x)dx So in dfect we have to

prove that
lim ifF (x)dx——ilo
oo 21 Jy " = " 2q 9%

Now this is a question of direct
computation. Let us look at the
path of integration. F,(x) will
be seen to have simple limits on
the sides of the parallelogram.
We considexF,(x) broken into
pieces. Take the first piece

248

1. cothrrNxcotﬂx
4 3

On the side fronk =i to x = z
—3

X=pi+03;p,0<0,p+0=1

Actually we take onlyp, o > 0; we shall exclude the pointsandz them-
selves. Then this becomes

1 eﬂN(piJro's) + ean(piJro's) ) ezriN(piHrs)/s + efniN(piJro's)/s

T 4i @N@i+os) — g-nN(pi+os) X1 X iN@i+3)/3 — giN(pi+3)/3

The size of the first factor is determined by the tereff¥3 and e N3
in the numerator; the first term becomes big and the other gpesro as
N — oco(o- > 0 andRe3 > 0). So we divide by the first term. Similarly for the
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second factor. We therefore get

s

11+ e 2Neivr) g 2N(5+F) | g
4 1 — e 2rN(pi+o3) e,zﬂN<£+ﬁ__) _1

30

249

As N — oo the exponential factors go to zero; so the whole expression
tends to;ll. It will further remain on its way bounded, because the natwes
in either factor are at most equal to 2, while the denomirsatemain away
from zero by a fixed amount, as we shall be showing in a moment fa this
it is essential to havhl = n+ 3.

Since the functions concerned are even functions, what wasl gere
would also be good on the apposite side, fram= —i to x = -z So on
this side also the expression will tend%o We cannot say uniformly; indeed
if o = 0, here is no convergence in the first factor, and # 0 none in the
second factor, though there is boundedness: the thing vesuitlate finitely.

Now take the other pieces af,(x) on the same sides pf We have to
consider

e27r;4 % (oi+03) e—27l'ill* % (pi+03)
1 — e N(pi+a3) X 1- efhi%(piJro's)

Remember, what is now important, that-Ou < k, but neither O nok.
The denominator in the first factors goes more strongly tmityfiasN — oo
than the numerator becaukds a proper fraction; so too in the second factor
becausg: > 1. So the whole function tends to zero. Hence on these twa side
XFn(X) — .

Now consider the other two sides; it lookgfdrent here and has got to be 250
inspected. On the side from= —itox =2z X = —pi+03; 0,0 > 0,0+p =1,
and the first part okFn(X) is

1 N X 1 e?TN(—pi+(r3) + _e—7l'N(—pi+o—3)
-7 cothrNxcot— = T4 eN(pit-03) _ g aN(-pito—)

3

i

e(riN(%”iJro') + e—niN(TJr*D')
x e7riN(%:’i+a) _ e—niN(f%iHr)
11+ e—ZnN(fpiHrs) 1+ e’hiN(7%+a)

TAT- ey [ N

Let N — oo. Assuming that the denominator is going to behave decently,

this goes t&;{. The other pieces go to zero for the same reason as before. And

all this is good for the opposite side too.
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We now have got to show that the convergence it nice and thendi@ators
do not make any fuse. This we can clarify in the following w&pnsider the
denominator 1- g ZN@i+o3)

Difficulties will arise if the exponent comes close to an evenipialof ri.
So we should see that it stays safely away from these points.

Omiy 251

— T3

And actually it stays away from the danger spots by the sastarme, for 251
the exponent is-2N(rip + 7307) i.e., a point on the segment joiningr(2 1)xi
and (2 + 1)r3. Sinceé is periodic there is a minimal amount by which it
stays away from 1. The second denominator looks a litfieedint. We have
2 instead ofr3. But we have only to turn the whole thing around. We see how
essential it was to takd = n+ 3 = (2n+ 1); = on odd multiple of}.

So the convergence is nice, but not uniform. We can neverdheday that
XFn(X) — i% boundedly on the sides pfexcept for the vertices where it does
not converge but oscillates finitely. But bounded convecgdar enough for
interchanging integration and summatioRn(x) — J_r%( and thex does not
ruin anything because it stays away from zero everywheye ¢tence

o1
Amﬁj’;ﬁ(x)dx

exists and we have

.1 1 1
rlmgoﬁj’;Fn(x)dx_ —ij’;i&dx

1 fd_fd_fd_ " dx
~ 2ni x Ji 4x o J, 4x J 4x

Ele
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SENY O
A \J, xS x

zis in the positive half-plane; we can take the principal otaof the logarithm, 252
so that we get on integration, since idg completely determined,

i{E—Io —(Io +ﬂ—i)}——ilo
mi \2 1093|1083+ 5 Jy = m5 1008

So we have proved the foreseen formula with the particulbstiution
C(h,k) = s(h, k) - =it

Iogn(h al '/5) - Iogn(h+|5)+%Iogg+7ris(h,k)+7riu,

k k 12k

which is the complete formula in all its details. The mysiegs(h, k) enjoys 253
certain properties. It has the group properties of the mardyroup behind it
and so must participate in them.
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Last time we had the formula of transformation of tpig the following shape: 254

|ogn(h T('/s) - Iogn(h+k|5)+%logz+ %((h’— h) + zis(h, k),

wheres(h, k) is the Dedekind sum, which, by direct computation of resiju
was seen to be
S u 1 (h/J hul] 1
23l -[%-3)
We use the abbreviation: for resl

x— [X] - %, if xis not an integer,
=1 K2 0

0 ,if xis an integer.

0= 2 (W)(%)

u=1

Then

Now ((X)) is an odd function; fox integer, trivially (X)) = —((X)), and
for x not an integer,

((=x)) = —x=[-X] - %
=X+ [x]+1- % since Fx] = -[x] - 1,

= ~(().

skok sk ook sk ook sk ook sk sk sk ok sk sk sk ok sk ok sk ok sk ok sk

188
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((x)) is the familiar function whose graph is as indicated. 255
1 12 1
,% -1 _% O 1 %

Because of periodicity we can write

)3l
& KA\ k 2 =i k
and sincéu also runs through a full system of residues nkoghenu does 256
so, aslf, k) = 1, the second sum is zero, and we can therefore write

on-$1((%)

u=1
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Let us now rewrite this in a form in which the modular subsiitn comes
into play
h+i/3 h+i3.
= T = ,
k ° k

/

sokr — h=1i3, and

_h—-1/(ktr—h) hkr—hh-1
- k ~ k(kr —h)
_ Wz —(hh +1)/k

- kr—h

/

(%*l is necessarily integral far = -1 modKk). So the modular substitution

’ —hh+1
h k=2 b ,c>0.
k -h c d
The transformation formula for lagnow reads

ct+d i

ar+b 1 .
) = logn(r) + > log : + ﬁ:(a+ d) — nis(d, ¢),

cr+d

|09n(

sinces(—d, c) = — — §(d, c).
Let us take in particular 257

LC

1 1 T
Iogn(—) =logn(r) + > log -,
T i

then we obtain

the special case discussed by Siegel.
Let us now make two substitutions in succession:

, a’+b , 1
T = ———7, T =—.
cr +d T
Then
, _—a/t+b br-a

—c/t+d dr-c
We suppose > 0,d > 0; (c,d) = 1. Then

L ~ 1 c'+d i
logn(r”) = logn(r’) + 2Iog — * Toc

(a+d) — #is(d, ¢);
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" = Liog % =C L 0o ris—
Iogn(r)_logn(r)+2Iog i +12d(b ¢) — nis(—c, d).

Sub tracting, and observing that

, 1 T
logn(z’) — lognn(z) = > log T

we have
0=2l0gT+ 2iogtd Lipgdr-c
S22 97T T T2
ni fa+d b-c :
A (T _ T) — 7i(s(d, ©) - s(c. o)

The sum of the logarithms on the right side is determinaty apl to a
multiple of 2ri:

T cr’ +d dr—-c 7 (-¢c/T+d)/i .
Iogl+log i —log i =lo T @r=0)i + 2nik

= Iog(i}) + 2rik
=—%+%m

Now each logarithm above has an imaginary part which isttiess than

5 in absolute value; so

T cr’ +d dr-c 3r
Im<{log - +log——— — log — —
i i 2
So the only admissible value &fis zero.
Hence we have
ai m(a+d b-c .
0= —Z + 1_2(T - T —7T|(S(d,C) + S(C,d))),

or sincead—bc=1,
1 1/d c 1
S(d,c)+s(c,d)——z+l—2(6+a+c—d).

This is the reciprocity law for Dedekind sums. It is a purefifranetical
formula for which | have given several proofs; here | repralthe proof that
| gave originally, by lattice-point enumeration.

258

259
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We have to prove that

p=1 u=1
__ 1. 1fh k., 1
4 12\k h hk)’
or
h k-1 ) 1 k-1 K h-1 ) 1 h-1 1 k-1 |:h,u:| 1 h-1 |:kV]
Sy U —=>u+= >V —-=—>v—=>ul—|-z)> vl—
k2 prci 2k prci h2 VZ; 2h ; k pret k h ~ h
__1. 1(h h_ 1}
4 12\k h hk/’
or 260
P(k-1)(K-1) hkk-1) K(h-1@-1) Khh-1)
6 2 2 6 2 2
ST Ml
2|2 [F]
u=1 v=1
_ —3hk+h?+k2+1
- 12
ST 1oy
l.e., 12’1;#[? +12(;V|:F

= h(k — 1)(2h(2k — 1) — 3k) + k(h — 1)(2k(2h — 1) — 3h) + 3hk—h? - k? - 1
= 8h%k? — 9h’k — Ohk® + h? + k? + 9hk— 1
= (h-1)(k- 1)(8hk—h—-k-1)

So the whole thing is equivalent to proving that
k-1 hﬂ h-1
12h;y [? + 12(;1/

This reduces to something that looks familiar; indeed theasg brackets
appear in lattice-point enumeration. Helhek) = 1, but in a paper with White-
man | have also discussed the case wihekeare not coprime.

Enumerating by rows and columns parallel to theandv— axes, the num- 261
ber of lattice-points in the integer a the rectangle

kv
h

= (h- 1)(k— 1)(8hk—h— k- 1).
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k
L] L]
L] L] [ ]

[ 3

with sides of lengthk, h along the axes qgf andv respectively is seen to be
(h—1)(k—1). This can be enumerated in another way also. The numbettiof
points in the interior, with abscisgaand lying below the diagonal through the

k-1
origin is the full integer in. So we havey, |%| lattice points below the
pu=1

h-1

diagonal. Similarly there arg [%] points above the diagonal. Sindek) = 1
y=1

there are no points on the diagonal. Hence

S

v=1

k-1 h,Ll
(-1 |

pu=1

In out case we have quadratic summands; but something wioieb o
well here in the plane should go well in space also.
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We want to prove directly the reciprocity formula

S(h,k)+s(k,h)=_%+1i2(2+iﬁ<+h_lk)
with s(h,k):zk:/_;((h?#))

The reciprocity formula is equivalent to proving that

k-1 h h-1 ky
12h2;1 ?ﬂ +12(ZV[F
pu=1 v=1

We made a little digression and spoke of similar sums whiatupin

lattice-point summations:

k-1 h-1
hu hv|
;[? +; F]_(h—l)(k—l)

If we use a rectangle of sidds , (h, k odd) we obtain

=
2

i
pu=1 k

h1
2

= Z(h-1)k- 1)

T2 h

v=1

hv] 1

This is made use of the theory of quadratic residues.

The summands in our case are ‘quadratiq:iandy.

194

= (h— 1)(k— 1)(8hk—h—k—1)

262
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P
G F
/
hk i
d
D ¢
,
N ’ ’
7
% Sl
. L 2 1
R A .
N i '
. A :
’
A !
NP , h
0~ ez a
k AN ¢ E
s\
(\
.
A S
B

v

Consider the rectangular parallelopiped with three cameuredges along 263

the axes ofi, v andp, the lengths of these edges beimg, hkrespectively. Dis-

sect the parallelopiped into three pyramids having a comapex at the origin

and having for bases the three rectangular faces which doasstthrough the
origin, viz. ABCD, BCFEandCDGF. We now compute the number of lattice
points in each pyramid. Take for example the pyra@(@EFC). Consider

a section parallel to thep(v)-plane at a distance along theu-axis. The lat-

tice points lie in such sheets. The edges of this sectiom;armdpE. The
number of lattice points on this sheet (including possibtyse on the edges) is

hu[ 48] So for the whole pyramid the numberZ hy[ 2]. For the pyramid

O(ABCD), the one facing us, the numberE kv[V"]

Of course are some points on the common edge. Finally therpysamid 264
of exceptional sort which lies upside down. Consider a eactt a height
h parallel to the &, v) plane the numberr of lattice points on and inside this

= -
.

=
T
-

||
[

p
So altogether we have

k-1

Sl Sl Slelle

p=1
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points, including some points which have been counted twieg. But the
number of lattice pointmside the parallelopiped is equal tb€ 1)(k—1)(hk-

1). Hence making a correction for the lattice points on tleawing surfaces
through the edge€F and CD which have been counted twice (the surface
alongBC has no points on it becaude k) = 1), we have

k—lh ph h—lk vk hk-1 o1(p
2w+ 2[5+ SRR
=(h-1k-1)(hk-1)+(h-1)k-1)
=hk(h-1)(k-1)
Now write
hk-1 o1l p
5= 71l
£1-5-3-(8)- wneng-(@)-nen
So 265

s {533 (2)
h 2 h 2 2 k
p=1
With some correction. Indeeld | p, k | p do not happen together: Let
p = ho, p = kr. In the first case. i.eh | p, we have to correct the above by an

amount
gz he 1 ((ho
2k 2 \\k))f°

and in the second cadej p, by



31. Lecture 197

Since ¥ ((4))=0, this becomes

(5+2)+3}- %:klp((/ﬁ)) ) %:klp((g))

(B3 (52 -5+ 355

we use the periodicity in the non-elementary pieces; sewrit 266

+
Mz

p=hr+sr=01,...,k-1;s=1,...,h

>o((2)= 5 D9 )

p=1 =1

-

= o
P

M=

=

k—

or((5)+ 2, 2+((7)

h
=1 r=0 s=1

=

o
T

r=

X ()

(since the first sum is zero, as we see by summing sfiest)
h-1
s 1
kY s(5 - 3)
s=1

_((h-1@h-1) 1
_k{———?r————ZMh—D}

_k(h-1)(h-2)
- 12

Similarly 267

Sl(E) - "=

> ()

Write p = ha + kB; whena, 8 run through complete systems of residues
moduloh, k respectivelyha + kB runs through a complete system modhlg

next, consider
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by the Chinese remainder theorem. Then

I‘ﬁ«%»«%»: (e
= )
) 5 ()

=0

since each sum is separately zero. Hence
1 1 1
S= é(hk— 1)(2hk-1) - Z(hk_ L(k+h)+ Z(hk_ 1)
1 1 1
- 1—2(h -1h-2)- 1—2(k— Dk-2)+ E(k_ Dh-1)
1 1
= 1—2(hk— 1)(4hk—3h -3k + 1) - 1—2(h -1)(h-2)
1 1
- 1—2(k— Dk-2)+ E(k_ DHh-12)

= 1i2(h -1 (k-21)(4hk+h+k+1)

Thus 268
k-1 | Lo 1
h;ﬂ?mz [ ] (= Dk=Ddnk+h+k+ 1)

— (h—-1)(k- Dhk
[ h-1

12h2;1 h?# +12(Zv[%]
p=1 L 4 y=1

= (h— 1)k 1)(8hk—h—k—1)

We make some elementary remarks about quadratic residues.reti-
procity formula gives, on multiplication by h2k.

1202k, K) + 12h%ks(k, h) == —3h% + h® + k2h

Look at the denominator af(h, k). At worst it can have for factors 2 and 269
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k2. So &?s(h, k) is integral. 2%(k, h) is also integral.
12h%kgh,k) = h® + k> + h  (mod %)
=h(h®>+1) (modk),
and sincen? cannot help to make an integer of the left side,
12hkgh,K) = h?+1 (modk).

Sp 1X4gh,K) is an integer. The highest possible denominatoistbrk) is
(2k?,12K) = 2k(k, 6). So the denominator which at first glance could conceiv-
ably be as big ask is actually at most only &k, 6). This is achieved, for
instance, irs(1, 3) = 1/18, where 6(63) = 18. In facts(1, 3) can be computed
from the reciprocity formula:

1(1.3 1
3'1°3

s(1,3)+s(3,1)=—%+—

= )s(3,1)=0

since an integer is involved and s, 3) = 1—18. In general,

an-d- 315
_(k-1)k-2)
B 12k

s(2,K) is also easily obtainedkis odd; so we have

1 1(2 k 1
S(2,k)+5(1,2)— —Z + 1—2(E + E + E()
and ass(1, 2) = 0 (by direct computation), we get 270
_ (k-1)(k-5)
(2.0 = 5
Let us calculate(5, 27).

1 12+52+27

s(5,27)+ §(27,5) = ~2 + Tox5x27
1 12+224+52
A20)+A5.2)= ~3+ osoxs

8(5,2)=0=g(1,2), andon sub tractign
§(5,27)= 35/(6 x 27); and we know that

the denominator could be at mos22(27,6) = 6 x 27.
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We shall study a few more properties of Dedekind sums. Welrackciprocity
law

2 12\k Th TRk
From this we deduced as a consequence

s(h,k)+s(k,h)=—1 1 (D+|f 1),

12hk gh,K) = h?+1 (modk) *)

Now when do the Dedekind sums vanish? Let us wsftek) in the more

flexible form: “hk - ﬂ Z ((%)) ((#?h))

mod k

Lethh* = 1 (modk). Since (%, k) = 1, h*u runs through a full residue
system moduld, and so

=3 (%))
- 3 ()

= s(h*, k)

This is of some significance. We camesérom the substitutio 23) and
sincead =1 (modc), s(d,c) = s(a, c). hit = -1 (modk), and

o= 3 (%)

pu modk

200

271
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- % ()

= —s(.K)
Whenh = I i.e.,h? = — (modK) (cg. Z = — (mod 5)) 272
s(h, k) = —s(h,K)
or shk=0 if h?=-1 (modk)

(in particular ifn? + 1 = k. | have a conjecture thath,k) > 0 if h? < k). In
fact we can say more. We have the

Theorem. 12 (h, k) is en integer only for hi= —1( (modKk)) and is then equal
to zero.

For assume that Xgh, k) = integer; this implies, because & (*), that=0
h? + 1 (modKk)

In such cases, therefore, we can make a direct statemerttthboalue of
s(h, k) without going through the rigmarole of the Euclidean aitjon. Thus
5(2,5) =0, 5(5,26) = 0.

In a recent issue of the Duke Mathematical Journal (19543vE@ gen-
eralisation of the reciprocity formula for Dedekind sumgakes into account
three summands. The formula is very elegant and throws sighiedn the
reciprocity relation itself. We quote it without proof.

Theorem. If a, b, c are pairwise coprime and &a= 1 (modbc), bb* = 1
(modca), cc = 1 (modab), then

T = 9(bc’, a) + §(ca’, b) + s(ab’, ¢)
~ 4 2\bc ca ab
The proof is by an algebraic method due to Rédel. The forrnsuleery
gratifying as a generalisation of the reciprocity formwavhich latter there is
some non-homogeneity. Put 1; thenc* = 1, ands(ab®, ¢) = 0; so we getthe
reciprocity formula. The right side abovejsi— — 3abc+ a2 + b? + ¢2. Hence
T = 0if and only ifa® + b? + ¢ = 3abc This combination of three integers

plays some role the theory of quadratic forms; it is called et triple. It
has reappeared in literature in connection with the gegneémumbers. It has

273
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to do with the existence if certain quadratic forms with mmnim values close
to zero for integers. 1, 1, 2 is a Mardriple. If we keep two of them fixed, for
the third we get a quadratic equation of which one root we kimbe rational.
So the other root is rational too. For instance,ib = 1 are fixed, we have
c?-3c+2=0o0r(c-1)(c-2)=0;—thetriplespre 1,1, 1and 1,1,2. If we
take the triplea, 1, 2, thera? + 5 = 6aora = 1,5; we have the tripleb, 1, 2;
1,1,2.T =0onlyifa, b, cbeing to a Markff triple. For such a triple,

b>+c>=0 (moda),c?+a’=0 (modb),a®+b>=0 (modc)
So b= -c? (moda), or C'b)>=-1 (moda), etc

Thens(bc', a) = 0, and each summand inis zero.
Dedekind sums have something to do with Farey fractionsutestuppose
that|28|=1,c.d> 0.

1 1f(c d 1
S(C,d)+s(d,c)=—z+l—2(a+6+aj)
cb=-1 (modd)andad=1 (modc)

o) s(c, d) = —s(—b, d) ands(d, ¢) = S(a, ©).
So S(a»C)—S(b,d)=_4+1i2(§+g+£)
Now if &, {2 the adjacent Farey Fractions, tghy| = 1 s
SO
s(hy, ka) — s(hz. ko) = % _ %2(:% . I;_i . F1k2)

Write the left side as(%) - S(E—z)

Supposé}; is fixed. Let us look at all possible adjacent fracti(%hsThey
are obtainable by forming mediants; replggesuccessively byt4z. Make
ks larger and larger. Theff andjz — 0. So — co. Thuss() - s(i)
goes unboundedly byeo, and sos(%) — —oo. Therefore only on the left side

of E—; can we get a sequence of rational fractions for which the Kiadesums
tend to—co.

We now give another proof of the reciprocity law, by the metiod finite
Fourier series((’—;)) is a number- theoretic periodic function. It has a finite

Fourier expansion:
k
K\ = ik
()= Sye
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In fact this is always solvable fory, Cp, ..., ck. For writing downu = 275
1,2,3,...,kin succession, we have a systermkdinear equations whose de-
terminant is a Vandermonde determinant which is non-zercesihe roots of
unity are diferent. We have

k K K
K\ o-2nipt _ _ in 0
2 (e =2 e e
u=1 =1 p=1
= ka,
1< u i
ie., == ((—)) g 2rink
k; k

This was done by Eisenstein, We can also write

p=1 5% kel
Soifk]|l, then k-1)
1 -1 -1
‘e &k Y
In particular
c=0.

If k£ 1, then writing

S = #e—ZITipf—(
pu=1
k-1
Seif = #e—Zni’%lf
pu=1
k
= > (v - 1e >
y=2

k
_e Xk y k- Z g Zivi | g2y
v=1

I
(0]
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So 276

k
S= e2nl/k _ 1

Hence, itk 1 I, then

-1 1
k(L— etk 2k
—241- 9727ri€/k
2k(1 — e-2rit/Ky

1 1+ e
2k 1— e—27ri§

Cr =

[
|
(@}
=3
|

So we have what is essentially Eisenstein’s formula:
. k-1

(5)- 5 B

This is an explicit formula fo((ﬁ)) as a finite Fourier series. We utilise it
for Dedekind sums.

S(h»kn > ()

= T
cot—e”ik x Zcot—ez’”‘h%
k k
u modk j=1 =1
1 klkt

_ e
= g2 cot—cot— Z g2k (i+h0)

j=1 (= ;1 mod k
1 = Cotnf Cot—nhf
T4k k k ’

Y
=

since in the summation with respectimnly those terms remain for which 277
j+h¢= (modk). Then

k-1
1 nt  nht
S(h, k) = I( ; COt? COIT.
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The reciprocity formula can be tackled immediately by thevedul
method of residues. We have to construct the proper funéiowhich these
become the residues. Take

h
f(3) = cotm; cot7T—k3 cotﬁT3

and integrate over a rectangle with vertie#®, +i(k+iQ), indented ab andk.
The poles of the first factor all in the contour ond Q. ., k- 1, for the second
0; and for the third Ok/h, 2k/h, ..., (h—i)12/h. We have

cot ! 1 W
w=—1-=2 ...
w 3

278
About the triple polg = 0,

1 k 1 n232 732 n2h?32
f)= — . — . — (122 . (1)1
(3) 3 m3 nhs( 3 * )( 3 * )( 3k2 * )

iQ

—i) k—iQ

So the residue at= 0 is
k2 ( P nzhz)_ k (k 1 h)

"3 3 ;) 3\h hk' k

So
Z(Res) - If+h+i +}k_lc tﬂ—gcotﬂ—hg
- h k hk] = k k
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m’h
COt —_— Ot —_—

k k h 1
= § (— (E + E + m() + 125(h, k) + 125('(, h))
And this is equal to 279

1
— | fG)d
i fR (3)d3

whereR is the rectangle. On the vertical lines the function the saahee (by
periodicity) end so the integrals cancel out. Hence

-iQ+k iQ+
1 1
- f3)d3 = — -
i fR (3)d3 o f f
-iQ iQ
Now
o 4 glo .
cotw = |m w=X+1y,
_elx Y 4 e—|x+y
=1 eix—y _ e—ix+y’

x varies fromo to k andy = +Q, for this

—-i, asy=Q .
-4 7 y - uniformly

i, asy=-Q — —oo

Therefore
el - = 3 3
im 5 | fey K- ()]
_&__'f
2 o«
280
k h k 1
5(_(E+ﬁ+ﬁ<)+125(h’k)+125(k’h))
__k
B /4
k h 1
or 1$(h,k)+125(k,h)=—3+(h+E+m()

which is the reciprocity formula.
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We wish to begin the study of the representation of a numbéheasum of 281
squares:
N=n+n5+---+n?

We shall develop in this connection the Hardy-Littlewoortke method.
Historically it is an df shoot of the Hardly-Ramanujan method in partition-
theory, though we did not develop the latter in its origir@infi in our treat-
ment. The circle method has been applied to very many casésha problem
of squares is a very instructive one for finding out the gdntar@ad. We
shall later replace the problem by that of the represemtaifan by a posi-
tive quadratic form. This would involve only the general $3mn summation
formula. In the case of representation as the sum of squhaegs ts some
simplification, because the generating ing function isrthgower of a simple
¥ function. We shall deal with the asymptotic theory. Latermay go into
Siegel’s theory of quadratic forms.

Let us write . .
O(X) = Z X" = 1+2Zx”2,
n=1

N=-—0c0

X < 1. Forr at least equal to 4, we consider

o0 r (]
@f(x>=[z an) _ S bt
n=—oco nj=—co

00

= > AMX,
n=0

on collecting the terms with exponemtwhereA, (n) is the number of times 282

208
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appears as the sum osquare:

A= ), 1

2 2_
NZ+--+nZ=n

It is clear thatn; can be positive or negative. The more serious thing is
that we have to count the representatiorfBedéntly when the summands are
interchanged, in contradiction to the situation in the cafspartitions. The
problem of partition into squares would be a more complitge®blem; the
generating function would be more complicated, and whatasse;, all the
help one gets in partition theory from the theory of moduteinfs would break
down here.

An(n) is then™™ coeficient of a power-series;

1 0'(x)
A(n) = %fc i dx
whereC is a suitable circle inside and close to the unit circle. Tiek tof

Hardy and Littlewood was to break the cir¢i¢ = e 2~ whereN is the order
of a certain Farey dissection, into Farey arcs and write

A0 5T [ S8

o<h<k<N

whereéy are the arcs over which one integration piecemeal the prametihg
that (h, k) = 1. Consider on each pieégg the neighbourhood of a root of unity: 283

X = k-2

Ze3 < 0, and seg = 6y — ip, SO chat we have a little freedom along both real

and imaginary axes.
X = @2t —2ron+2rie

The choice of the little arg is also cIassicaIE is a certain Farey fraction,
with adjacent% ar_ld%, say. % < E < E—j We limit ¢ on the seperate arcs.
Introduce the mediants:

h]_ h1+h h h2+h h2

kK “ktK Kk otk k'

So that the interv Eifk‘ Ezjg) gives the movement of + ¢. Sog runs

between

h2+h
h2+k

, h1+h
k™ 1, + k

h 144

h< <
k=%=
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’ 1 . " _ 1 .
~hic= (ke + KK’ 7ok = (ko + KK’

and since Bl > [ > N, we have necessarily

1
= Nk
Now changing the variable of integrationgowe can write

1
Nk S < [ <

Tk
A= Y e [ o (et @ma,
0<h<ksN =

284
The trick is to overcome the fliculty in the integral by replacing on each

arc the highly transcendental function by a simpler functidere we stop for

a moment to see what we can do with the integrand.

o (@)= ) dentzn)

n=—co

_ Z e2m Z e—2n3n2
j=0 n=j (modk)

- ki Qi 2 Z rkiar
i=0 o=

where we have written = kg+ j. We can now handle this from otf-series
formula. We proved (Lectufe]l2) that

C(T) ey (7// _ ) erri‘r“l/z%("i/r/‘r)

and @z \/I,Imr>0.
T

Since 285

7/3(%/7') — Z d‘rinz‘reZTrirTf/’

writing t = it, Zet > 0, we have from the above,

(o9
- Z —ﬂ—e2mn“1/ —ﬂt‘i/z Z —7rn2t —2ﬂ7/nt

N=—o0c0
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Z nt(n+"i/ )2

N=—o00

Replacingn by q, ¥ by ﬁ andt by 2;k?, we have

. [e) ”2 .
o (e2h-2n) - Zezﬂ'h F & 5 ol
23K? =%

- k—vz_% Z e‘z%Tq(h, K)
0 g=—o0
kel
where To(h K) = Z e
j=0

This is already a good reductioiig(h, k) depends o modulok, so it is
periodic. We shall approximate to it in general.
One special case, however, is of interest:dfer 0,

k-1
To(h, k) = Z e’ = G(h, k),
j=0

286

whereG(h, k) are the so-called Gaussian sums which we shall study inl.deta

They are sums of roots of unity raised to a square po@es, actually a¥s,
and when we evaluafg, we get some othey’.
We now write

) 1

O (e&i2%) = —— (G(h,K) + H(h.k:

) g 0

where Hhkis)= ) Toh e+
o

We shall throwH into the error term. Let us apprai$g(h, k), not explic-
itly: that will take us into Gaussian sums.

- hj+qj
To(hk) = ) &

[Tq(h, K)I? = e (h?+a)) g-2rk (hP+q0)
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2t (N(CiP=)+a(j-0)

j modk ¢ modk
e2ni;(if€)(h(j+f)+q),

j modk ¢ modk
which, an rearranging according to théfdiencej — ¢, becomes

= Z Z i £ (h(j+0)+0)
a modk j-¢f=a (modk)

e2ni 2 (h(a+20)+0)
a modk ¢ modk

Z g2k (ha+aq) Z gimiag(

a modk ¢ modk

The inner sum is a sum of the roots of unity. Two cases arigesrding
ask | 2aork t 2a. k odd implies thata = 0 andk even implies that = 0 or
k| 2. Incasek | 2a, the sum is zero. We then have

i (K2, K
To( K2 = k, if kis odd;k(l + s *5“)), if k is even
= k(1+e(%49)),  ifkiseven
=oorZ if kKis even

It is of interest to notice thaly = 0 only if kis even and“z—k + gis an odd
integer. In any case,

[Tq(h, Kl < V2k,
and this cannot be improved. We then have

>0 b 2 1
IH(h,k; k; 3)| < ZZ V2ke 273 (q = 0 is not involved here)
=1

_rgpl = _”@@;
= 2V2ke 22° sZe a2z 3
g=1
_xopl - _3mgpl
= 2V2ke z2° sZe %23
m=0

_ovke @At 1

3 1
1-e 2%

Since3 = 6N — g,

287

288
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1 1 1 1 ON
@ - = kT = %kz A = 202 2
3 3 (On—ip)  K2(6] + ¢?)

1 1 6N . 1
—H->—————, since|t < —,
2 1
Kk 3 k25a + N2 kN

S 1

z N2 2N 1" N2 1
ot NN+ g

We want to make this keep away from O as far as possible. Thesd
desirable choice afy. Make the denominator as small as possible. S)'neé
is minimised wherx = 1, we have

e

k732

SN

57

this minimum corresponding th%sy = 1. So if we choose the radius of the
circle in terms of the Farey order, we shall have secureddisethat we can:

IH(h, k; 3)] < 2V2ke 3275 x C

It would be unwise to appraise the remaining exponential now



L ecture 34

We had discussed the sur(e?"k-2%) and written it equal to 289

1
——{G(h,K) + H(h, k;
I(\/Z_S{G(,)+ (h.k;3)}

where [H(h,k;3) < C Vke 7%

If we apply this to the integral in whic®" appears,

, 1
® (eh-2n) = ( )G h. k) H(h,k; 3),
( ) kf(23)5;)/1 (hH(h.k;3)
or, keeping the piece correspondingite: 0 apart,

r

ih r 1 1 r
Cal I ~G(h. k)" = , () h, K)"H(h, k; 3)"
o ) ey ¥ kr(w;ﬂe( ) H(h,k;3)

Let us appraise this. Since

r
'@(ez’ﬂﬁz”ﬁ)r— L Ghk|<c— Z(\/R)f**k%e—%@}
k(23)2 K312 4 3
<C- —re_%efﬁg’)%
(Ki3l)z
Now 290

A= 3 ez f 273n@ (€7EM2m)

O<h<k<N
Yk

214
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where, of course, = 6y — ig. Hence

Yk
n ’ —Zm xn f G h,k 'q
A - 0<hz<:k<N kr(z) (h,K)'dy
Y
Yk 221
e «
<C ! &3 d
- OSIEKSN f kr/2|%|r/2
Tk

A
e 22 62 +¢2

< C 2/ eZnnéN f - ng
O<h<k<N 2( 52 2) 4
3 [R6 + )]

”
i r

r 6N i __x _ON
=C Y &g f(—) e 2R dy

0<h<ksN k262, + ¢?)

~ “hk

< Yhe < g and ¥, < ¢ < %), while sy = . Putting 291

X = k2(62 =t the integrand becomeési e 2% which remains bounded. (It was
for this purpose that in our estimate ld{h, k; 3) earlier we retained the factor

1
Now m

e /@)%Y Hence the last expression is less than or equal to
Tk
C > &N fd<p=Ce2”ﬁ"fN%,
o<h<k<N b
~ “hk

since the whole Farey dissection exactly fills the inter@al}.
In the next stage of our argument we take the integral

g

hk 2
e
34

Pk
and write it as
©0 00 7 e27rn3
J-- [
"I/ —00

The infinite integrals are conditionally convergent if- 0 (because the
numerator is essentially trigonometric), and absolutelpvergent for > 2, 292
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so that we take at least equal to 3. Then

\[3r/2 f(62 _'_()02)2
hk
<% [ e
G+ +902)4

1

2kN
Tk
(Here and in the estimate of the other integrﬁl, we make use of the
fact that the interval fron¥;, to 7 is neither too long nor too short. This
argument arises also in Goldbach’s problem and Waring’slpro). The right
side is equal to

Nr—2e27r$ de‘p _ iz f
(1+N4p2)i 1+ ¢2)“/4
-2 X
<e2”N%N“2f dlsz
r
Y v
2k

This appears crude but is nevertheless good sinoever comes near 0;
N/2k > 5 1 and the ratio of® to 1+ y? is at Ieast3 and so we lose no essential

order of magmtude The last integral is equal to

N —L+1

CEN" Z(Zk) ENER!
— C& Nz 1ke1
M

A similar estimate holds for [ also. So,

—00

oz G(h,k))ff”eznna
|A,(n) Osg‘ksNe (kx/i E 3172 de

o 1
<C&WN/24C 3’ e 2z N2 /2L
O<h<k<N

293
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< CE VN2 L CFWNIZT 3y

0<k<N
= C&& N2

This, however, does not go to zeroMis—» oo; we have no good luck here as
we had in partitions. So we make the best of it, and obtain wmptotic result.
Let n also tend to infinity. We shall keeyN? bounded, without lotting; it go
to zero, as in the latter case the exponential factor woutdine 1. We have
to see to it thah < CN? i.e., N is at leasty/n. Otherwise the error term would
increase fast. Makingl bigger would not help in the first factor and would 294
make the second worse. So the optical choicéNfevould beN = [ VN]. The
error would now be

O(nﬁ)

We next evaluate the integral

00

¥
f 3172 de

—00

This is the some as

r @2n(on-ie) T @2an(on+ia)
7'r/2d"0 - 7'r/2d"0
(6n — i) (On + i)

—00

On—ico

After a little embellishment this becomes a well-known grtd. It is equal

to
27N6N +ico

(27n)"7? e
i w2
2nnén—ico
which exists for > 2, and is actually the Hankel loop integral, and hence equal
to

dw

2r(2n)"/% -1
r'(r/2)
Hence, forf > 3. We hence the number of representations a$ the sum 295
of r squares:

_ (271')”2 nE_l . ’ G(h, k)r e—ZTiE + O(nr/A).

Aln) = I'(r/2) . 22 ocpeken K
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One final step. Let us improve this a little further. Write
G(h,k)" .
(k; ) e 2ign _ Vlgr)(n) = Vi(n)
h modk

We have to sunVi(n) fromk = 1 tok = N. However, we sum frork = 1
to k = oo, thereby incurring an error

00

Z Vik(n)

k=N+1

00

—5+1
< 3w

k=N+1

and this converging absolutely for> 5 is
e} (N75+2) =0 (nfﬁJrl)

This along with the factonz 1 would give exactlyO(n"/4). (We could have
saved this for = 4 also if we had been a little more careful). Thus,far 5,
we have 296

r/2

r'(r/2)

A(n) = nz=1S;(n) + O(n'"’*),
where Si(n) = i Vk(n)
k=1

Si(n) is the singular series. We shall show ti$afn) remains bounded at
least forr > 5.
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After we reduced our problem to the singular series in whioh Gaussian 297
sums appear conspicuously, we have to do something abautlibéore we
proceed further. The Gaussian sums are defined as

Ghk= > e (hK=1

¢ modk

They obey a simple multiplication rule: k= kiks, (k1, ko) = 1, then
G(h, kikz) = G(hky, ko) - G(hko, ky).

For, put¢ = rky; + sk; whenr runs modulok; and s moduloks, € runs
through a full residue system moddgk,. Hence

G(h, klk2) = Z Z eZﬂ'i&(le_kzs)Z

k modk, s modk;
Z Z eZni & (Ker2+k3s?)
r modk, s modk;

i1k 2 i ko
Z eZm o " Z eZm klsz

r modky s modk;

= G(hky, k)G(hkp, k1).

Ultimately, therefore, only prime powers have to be consde¢o denomi-
nators. We have to distinguish the capes 2 andp > 2, p prime.
1) Letp>3,k=p*witha >1 298

Ghpy= . &

I mod pf

219
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write =mpt+r;
m=0,1,....,p-1;r =0,1,...p* ! - 1. Then this becomes

p-1p~t-1 ) p-1 pr-1-1 X
iW(mp!*1+r)2 _ iw(mzpz"’1+2mrp“1+r2)
¢ I

m=0 r=0 m=0 r=0

Sincea > 2, 2o — 2 > « and so the first term in the exponent may be
omitted. This gives
prt-1 = S
2i I r2 2 D 2mr
e e'r
The inner sum is a sum @i roots of unity; so it depends on whether
divides 2h or not. But f,p) = 1 andp + 2. So we need consider only the
cases:p | r andp 1 r. However in the latter case this sum is 0 while in the
former it isp. We therefore get, whep|r,r = ps

prio1 ) pr2-1 )
ih 2 ih n2g
3, o ap Y
r=0,plr s=0
pa—271 .
21— s
= p e pe—2
s=0
= pG(h, p*~?)

We have therefore reduced the never of the denominator by @.cali 299
repeat the process and proceed as long as we end with eieh@? tr the B
power. So we have two chances. In the former case, evidéfitlyl) = 1. So
for a even,

G(h, poz) — poz/2

On the other hand, i is odd, we have
G(h. p) = p'7 G(h. p).
These may be combined into the single formula
G(h, p*) = p#IG (h, p**2]) (1)
2)p=2% 2> 2. his now odd. Write

t=m2*1+r:m=0,1;r=0,1,...,2"1-1
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211 21-1_1
G(h,2") = Z i’ Z i (@ 14y

r=0 r=0

sinced > 2, 21 — 2 > 4, in the second sum it is only the exponeptthat
contributes a non-zero term; and this is then the same the/Ailtogether we

have then
2,1—1_1

2 ) &l *)
r=0

This, however is not a Gaussian sum. The substitutios flmes not work;
to be dfective, then we take

t=m2"2+1;m=0,1,23;r=0,1,...,2"% - 1.
Now taked > 4 and start again all over.

3 2+21
i h -2 2
G(h, 2/1) — Z Z e27(|;(m2 +r)
m=0 r=0
3 2/172_1 i h -1 2
DT @M (foraz die, 2-42 ).
m=0 r=0
e2ni27r e(rihmr
r=0 m=0
221

3
eZniz%r2 Z(_)mn
r=0 m=0
2_1 221
2 N (et 12 ) @i
=0 r=0
21-3_1

=4y &as

s=0

Il
2 M

This is not Gaussian sum either. But is is of the fofih (*). Weréiore
have, ford > 4, G(h,2') = 2G(h,2?). If 2 = 4, we need go down to only
22 =4 andifA = 5to 2 = 8. So we need separatgB(h, 8) andG(h, 4); and
of courseG(h, 2). These cases escape us, while formerly &ly, p) did. For
A > 4, we may write

G(h,2") = olsl-1G (h, 24—2[g+2]) o

300

301
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This supplements formul&l(1).
We now consider the special casks; 2, 4, 8. Hereh is odd.
G(h,2)=1+€""% =0
G(h,4) = 1+ e¥ial 4 g2rii4 4 g2rii9
=2+ 2¢2
=2(1+i")
G(h,8) = 1+ 1+ 2&" + 4¢2"is
(since £, 3%, 52,72 are all = 1 modulo 8)
= 463 = 4(1—+i)2
V2

Before we return t@(h, p), p > 2, we shall a digression an connect to theso2
whole thing with the Legendre-Jacobi symbols

-1
G(h,p) =y e3”

h
+ ZZ e”od
a

the summation over all quadratic residues a moghkince along witht, p—¢
is also a quadratic residue. We can write this in a compauot,fep arranging
it that the non-residues get cancelled and the residuesappee:

shp= 3 {1+(%)}e2m%r

r modp

L

r modp

el

~
o

I
=

This would appear in a completely new aspect if we utilisedftict thathr
runs through a full system of residues modpldrhen

ona- 3 ()

k modp

32,0

r modp
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= (%)G(h, p).

This is very useful if we new go to the Jacobi symbol. For pripp¢he 303
Legendre symbol has the multiplicative property:

B (5)

Jacobi has the following generalisation.

Define(-L;) by
(7= (5)la)

P

Siitis+1;ifitis +1 it does not necessarily mean thé a quadratic residue
modulo pg. The Jacobi symbol no longer discriminates between residnd
non residues. From the definition then

(=)=

The Jacobi symbol has the properties of a character, as ceerified by
using the Chinese remainder theorem.
We can now write

Gih, p) = (%) G(1, p)

under all circumstances. How does this come about? Sephmtasesu
even,x odd.

G(g, p*) = G(1, p"), a even;

= p“z G(h, p), a odd
_ (E)p”T‘l (L p) —(E)G(l o)
~\p Ap) T

We can write both in one sweep as 304

Gih, p") = (—) G(1, p)
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Now use the multiplicative law. Ip, q are odd primes, then
G(h, p*d’) = G(hp", of)G(hf, p*)

(hq'f Jea qﬂ)( )G(l )

Since the Jacobi symbol is separately multiplicative in etator and de-
nominator, but not both, this is equal to

(&) (& )ew ) (3)(L)owrm - (&)(z|ew e

taking the second and third factors together, and also thévie. And this is

o

according to the multiplication law.
Suppose that we have

G(hiks) = (h )G(l k1); G(h, kp) = (h )G(l ko).

We go through the above worker; literally and get 305

h

G(h, kaky) = (

1—hz) G(L, ky., ko).

So we have proved in general that for ddd
h
G(h,k) = (E) G(1,k)

We can now return t&(h, p).
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We were discussing Gaussian sums and it remained to evaluate 306

6(h.) = 5)6(.p)

We shall do a little more than that; we shall study them in aarftaxible
form. Define

k-1
sh.k) =y e,
=0

h, k > 0 but not necessarily coprime. We cannot now take the suromatier

£ modulok. For ifk is odd, ¢ + k)? = €2 + 2tk + k* andk? may give rise to

an odd multiple ofri in the exponent and hence introduce a change of sign,
We should therefore insist on this particular range of sutiona S(h, k) are
connected with the Gaussian sums; indeed

G(h,k) = S(2h, K)

We shall now produc&(h, k) as a sum of residues. To get the integers
as poles we should clearly tak&™ — 1 in the denominator; so we integrate
e #3?/@"-1) gver such a contour as has in its interior the desired pples
0,1,2,....k-1. Indeed

e’

S(h, k) = R mds

225
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(1+14)Q (1+)Q+k

-(1+49)Q —(1+)Q+k

WhereC is the parallelogram with vertices a(1 + i)Q, +(1 +i)Q + k, 307
with the slant sides inclined at 4%infact this may be anything less than°0
to the real axis, and making a detour round 0 and/hen we pusi to «, the
integrals along the horizontal sides will tend to zero. stance on the upper
side,3 = (1+1)Q + X, 0 < x < k, and the integrand is therefore

i B (A+)Q+x)? i B (2107 +2(1+)Qxx2)

(@ an) _ 1 | exi@-2m _ |
@ TR (20%420X) +7i f (20x+52)

e—27rQ+2ni(Q+X) -1
— 0 uniformly asQ — oo sinceE > 0. Hence the integral can be written as 308

(1+i)oo+k (1+i)oo

i LG
&1

—(L+i)oo+k  —(1+i)c0

where, of course, we have to make a small detour round kaReplacing
by 3 + kin the first integral, this becomes

(L+i)oo ezriE(3+k)2 ~ e?fieﬂz (L+i)oo e7riE32 (eﬂiE(ZskJrkz) B 1)
g1 BT f TR
—(1+i)eo —(1+i)oo

(L+i)o0 eﬂesz(ez,,immhk_l)
- f —en_1 B

—(L+i)eo
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Let us assume from now on thiak is even. Then we can actually divide 309
out and the integral becomes

st

=0

:rl:r

—(@+i)eo

The denominator has now disappeared. There is a furthentab@that
the integral can now be stretched along the whole line andi¢teur can be
avoided. We then have

(1+i)o0
et f e (4 d

7(l+i)oo

7
IR

~
Il

0

Write 3 + Ak/h = w; and shift the integral back to the line froafl + i)co
to (1+1)eo - this we can do since the integrand tends to zero along adriek
segment. This gives

h-1 (l+i)oo
i g4 eﬂiE‘“zdw,
=0 ~(L+i)oo
. _ h h
or writingt = a)\/t, \/; >0, 310
(l+|)oo ” het
—7r| h/iz it2 _ o —7Ti k/lz
3 >e -k Y e
—(l+|)oo 4=0
whereA is the specific constant:
(1+i)oo
A= f e dt
7(l+i)oo

Hence

smmzAJEammy

In order to evaluaté, take a simple casér= 1,k =2

S(1,2) = AV2S(-2,1)
ie., 1+e% = AV2,
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SoA = (1+i)/ V2, an eighth root or unity.
So our reciprocity formula becomes complete:

1+i [k
S(h,k) = ﬁ \/;S(—k, h).

Let us develop some corollaries.
1) h =2,k arbitrary: 311

S(2,K) = G(1,K), so

G(L,K) = S(2,K) = 1—}2' \/ES(—k, 2)

1+
T2
1+
T2

We then have explicitly the value &f(1, k)

VK(1 + &%)
V(L + (i)

stk = L)) g

We mention the four cases separately:

vk ifk=1 (mod 4)
G(LK) = 0 ifk=2 (mod 4)
i vk if k=3 (mod 4)
(1+i)Vk ifk=0 (mod4)

Hence the absolute value 6{1, k) can be Ok or V2k.
So fark was only positive. The caseodd deserves some special mention.
k-1 is even and

vk if Kliseven

ivk if Sisodd

G(1,K) =

('%1)2 = 0,1 (mod 4) according dg—l is even or odd; so we can write this 312
as

G(L K = i) vk
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This we have obtained by a purely function-theoretical ergat. From our
arithmetical augment, we had, for okd

G(h.K) = (E) i) vk
Where(E) is the Jacobi symbol. We can get a little more out of it.
-1 (ﬂ)z
G(-1.K) = | |iZ Vk.
Multiplying this and the equation faB(1, k) together,
-1

G(LK)G(-1,k) = (T) )k

o

But the left side is only5(l, K)G(1, k), and this is always 0. So

[F)or7k=o

@)

which is Euler’s criterion for the Jacobi symbol.
2)h =2,k odd.

and since& > 0 by nature,

G(2.K) = S(4,K) = %b\/ES(—k, 2)

1+i zi - i
= S kfireFremie)
1L 5 et

V2 i
= g Dk
_e PV

:i_k;Zl‘\/R
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On the other hand )
G(2.K) = (E) i) vk

Hence

3) (h,K) = 1; h,k both odd:

G(h.K) = S(2h.K) = — \/gS(—k, 2h)

V2
1 +i [ th:l 2
— dﬂ X
— ﬂ I e—7ri2—kh/l2

Here it is no longer necessary to insist on the special rahgeromation,

for changingt by A + 2h would introduce only an even multiple af in the
exponent. Separating the odd and exes) this becomes

1+| | k { Z gm0 | Z e—”'zh(2€+h)}

¢ modh

1+i k : hk kg2
- - b (1+ e—7rl7) e—anﬁf

1}' (1+ (=)™ \/7 G(-k. h)
i)’ \/76( k, h)
_ i) ﬁm

313

314
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Then we have 315

=

(HK%YVR=W¥Y (Ey(%fvﬁ
1)?

ie. (EME)=W%Y4%V4%
b

|
1
where b= Z(hzkz—hz—k2+1—2(hk—h—k—1))

_ %(h ~ k= 1){(h+ 1)K+ 1)—2)

(h+Hk+1) 1]

1
= Slh- k- 11| =5

So

. o (h-1)k-1)
i =i+ an odd number

= ()" (odd number): ()4

-0+

which is Jacobi’s law of reciprocity.

We shall use all this in the singular series. It may be wortiiexb do what 316
Gauss himself did and evaluaB1, k) by an arithmetical method. To distin-
guish between the fierent primitive roots of unity is, however, algebraically

impossible; in the analytical method we can use the exp@ldonction to
uniformise the roots of unity.
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We have finished to some extent Gaussian sums; we treatedrheim view 317
of their occurrence in the singular series defined as

0 _ Ny
Sy =D Vi)
k=1

. G(h,K)\  _,.n
with VIE’)(n) = Vk(n) = E (T) g2 38
h modk
(hK)=1

which appeared as the principal term in the expression fonttmber of rep-
resentation oh as the sum of squares:

n.r/2

_ 1 a1 r/4
A = r(L)m Sty + 0 (™).
2
r > 5. We did not bother to do this for lower although we could for = 4,
in which case we know an exact formula; but this is anothestioie. We

consider first a fundamental property of the singular seviis its expression
as an infinite product.

Fundamental Lemma.

s = ]_[ {1+ V() + Vi(n) + Via(n) + -+ .
p

p prime.
We first prove the multiplicative property &(n): for (ki, ko) = 1,

Vkl(n)vkz(n) = Vk1k2 (n)

232
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We had a similar situation in connection wifa(n) for the partition func- 318
tion; but there the multiplication was more complicatedrétee have
Vigie(n) = > G(hkky)'e R,
h  modkiky
(hkikp)=1
Writing h = kahy + kyhy with the conditions iy, ki) = 1 = (hy, ko), h,
running moduld; andh,; moduloks, this becomes

1
(ka, k)"

1 —2ri n
i G(kohy + kihy, kiko)e 7 ke
(ko) hgl hgz (kohy + kiho, kiko)
1
= — G ((k2h1 + klhz)kl7 kz)r
(kako)" %: %:

G((kohy + klhz)kzkl)’e’z’ﬂ(kzh“klhz)ﬁ

on using the multiplicativity of the Gaussian sums; and segging multiples
of kg, ko, as we may, this gives

1

iy - hy
K G(had, ko) G(kghy, ka)'e > " >5 "
k1k2 hy modk; h, modk;

Now s 319
Gha,h)y= > et
¢ modk
If (a, k) = 1, al also runs modul& when¢ does, so that the right side is

> @i =G(h K
n modk

In our caseky, kz) = 1. So we have

1 _ogifin 1 _oni2
P Z G(hy, ky)'e iy n@ Z G(hy, ko)'e Zrig, N
1h modkg h, modky

= Vi, (MVi, ()

We can then break each summandSi into factors corresponding to
prime powers and multiply them again together, and the aegement does
not count because of absolute convergence; so

st = ]_[ {1+ V() + Vie(n) + Va(n) + -}
p
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= 1_[ ¥p(n),
p

say; this is an absolutely convergent product. This singslifnatters consid- 320
erably. We have to investigai only for thoseG’s is which prime powers
appear.

We first takep = 2. then

v2(N) = 1+ Va(n) + Vo2 (N) + - - -
Vi (n) = % Z G(h, 24 e 2Nzt

2 h mod 2!
2th
(i) A = 1 SinceG(h, 2) = 0 for oddh,
Vz(n) =0

(i) 1 even. Fonl > 4,

G(h,2%) = 22712(1+ ") = 22(1 + ")

1 . .
Vo) = 5272 3T (Lt et

h mod 21
2th
1 A2 n AF 27 n
= o Z Q+i) e + Z Q-i)e
h=1 (mod 4) h=—(mod 4)
h mod 2! h mod 2!

r/2 ) . . .
S I
2 h=1 (mod 4) h=-1 (mod 4)

11 {érig—ZniZ% Z o2z,

=
f=13
2 s mod 2--2

e g Z ezniz%zn}
s mod 22
=0, if2% +n;
21-2 r
— cos(n— - 2n
27" 4

2

g) if 2472/n,n = 22y

ie., cos%(Zv— r

1
S@-DG-D)
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Hence, fort even,A > 4,

0, if 22 4+ n
V2,!(n) = (2 )
cosg (2v-r _
W, if 2/l 2.V =N.
(iii) Aodd, > 3.

G(h, 2Y) = 2G(h, 22) = 27 G(h, 23)
1_534eﬂih/4 “1 ef”h/4

Vau(n) = ﬁz‘i > e 2o
h modZ‘

or,writing h=8s+t,t=1,3,5,7,

2}73
1
27"
2! 3
e(ntr/4 2nitn/24 Z e —2risn/21-3
= Z
=0, if 2” Stn.

If, however, 2-3|n, n = 24-3.y, this is

21-3 . .
per Z gMU=) = o, if4/(r —v);
R

24-1
T1reff'<f-V>"‘, if4/(r —v)

1 v

ie. pETe=Th (-)7

Hence ford odd,A > 3,

0, if 243§ n;

Vai(n) =1 0, if 2473, | n,n=23y, 44 (v —r);

S 217041 (v-T)

235

*)

(**)

321

322

323
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Now, givenn, only a finite number of powers of 2 can divide it. So the
situation 2-3/n will occur sometime or the other, so thai(n) is always a
finite sum.

00

1
ly2(n) - 1] < Z DG D

A=2
1 1
T2l 1-1/20-1
— 1 .
Toor2-1_ 1’

and this is valid for > 3. so the singular series behaves much better than we
expected.
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It would be of interest to study»(n) also forr = 3,4. 324
v2(n) = 1+ Vo(n) + V(D) + - - -
First consider the cage= 3, 2/n. Then
Vo(n) = 0.

ForV,:(n), 1 > 1, we have to make a distinction betweteven andt odd.
Aeven

0, if 242y n;
Vai(n) = ‘o
7:05?15(;?, if 242 y n,n = 21°2,y,
Aodd
0, if 243 y n;
Vai(n) =1 o, if243 | nn=2"3,y—r£0 (mod 4)
. 23 nn=2"%.y-r=0 (mod 4)
So forr = 3,

y2(n) = 1+ Va(n) + Vg(n)
_ . cosf(2n-3) ()%
=1+ 4\/5 + 5
237

[l
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where the last summand has to be replaced by 04 8)/4 is not an integer. 325
Since 21— 3 is odd, we have

>

| cos:—:(Zn -3) =

&l

and thus clearly,

1 1
<1+ +4+==
|7’2(n)|_1+2+2 2

Moreover,y,(n) can vanish. This would require
()7 =1

g 1
and cos-(2n-3)= ——
7@2n-9=——

simultaneously. But this is the case for
n=7 (mod 8)

as is easily seen. This corresponds to the fact that a numbet 7 (mod 8)
cannot be represented as the sum of three squares.
Next taker = 4. We distinguish between the casesr2and 2| n.

1. 24 n. Then from relationd§*) and(3*) proved in lecture 37, we kav

v2(n) = 1+ Va(n) + Vg(Nn)
~ cosg(2n-4) . } mm
=1+ — 5 = 1 > cos >

=1

2. 2| nLetn=2°n, 2| . Then @) and[*1) show thav,:(n) = 0 for 326
A > a + 3. But actuallyV,:(n) = 0 also ford = @ + 3. Indeed, for odd,
A =a+1isthe last evem} = a + 2 the last odd index for non-vanishing
Voi(n). Fora even,d = a + 2 is the last even indext = @ + 3 is odd and
since 4t (N’ — 4), we have als®/,:(n) =0 ford = a + 3.

a+2

Y2(2) = 1+ > V(1)
=2
Now, in Vx:(n), for A even,

T T
cos=(2v —r) = — cos=n'2*"**?
2" 2
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= —cosan’2* 1
-1, fori<a,
=311, ford=a+1,
0, ford=a+2

Similarly in V,:(n), for 1 odd,
(_)T — _(_)nl'za—ﬂ-t-l

-1, ford<a;

1, fordi=a+1,

andV,i(n) = 0 for 1 = « + 2 since then 4 2°~**1. The numerators of the 327
non-vanishing/,:(n) are—1 upto the last one, which is 1. And thus

A\ 1 1 1 1
72(2 n) =1 2 22 Qa-1 + 2
_ 1 .1_3
- 2&—1 2 - 2

Although herey,(2°n’) > 0, we see that fosr sufficiently largey»(n) can
come arbitrarily close to 0.
We now considey,(n) for p > 3.

Yp(N) = 1+ Vp(n) + Ve (n) + -+,

1 _onih
where Vp(n) = — Z G(h, p)'e ™ "
h mod p*
pth
Now

6t =) o2 )
( A
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We have to distinguish between odd; andir even
1)areven If pt =1 (mod 4), then

r — 2 _
(_)?(pTl) :@)%%
So
i h
Vpx(n)zl — Z e—zzngn
p/] h mod p*
pth

2) Ar odd. In this case

The inner sum here is a special case of the so-called Ranmaswijas:

Cu(n) = Z gPriin
h modk
(h,k)=1

There sums can be evaluated. Look at the simpler sums

Sk(n) = Z e

A modk

k, ifk|n;

0, ifk4n.

Classify thet’sin Sy(n) according to their common divisor with Then

Sk(”)=z Z Gl
dk 2 modk
(1,k)=d

-3 Y b
dk 4 modk
L)

-3 % o

dk » mod ¥

(n8)=1

328

329
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=2, Cy(n)

dk

= Z Cq(n).

dk
Now by Mdbious inversion formula,
cm = (%) s
k\N) = M d daln),
dik
andSqy(n) is completely known- it is either O at; hence

cm = Y du(g)

dlikdin
k
- 2 (a)
di(n,k)

So these are integers. 330
The Modbious function which appears here arises as fiic@at in a certain

Dirichlet series; in fact
IR ()
{9 Z; ns

Itis possible to build up a complete formal theory of Dirieheries as we
had in the case of power series. Formal Dirichlet series fanimg without
null-divisors. The multiplication law is given by

b
DEDI LI
where Ch = Z akb;
kj=n

The relation

pn) 1
2wt
then implies that G > u(j)-1= ) u(d).n>1.
jk=n din
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Forp > 3we had
Yp(N) = 1+ Vp(n) + V(n) + - -

where
1 _ogh
VpA(n) = F Z G(h, pxl)re Zﬂmn
h mod p!
(h,p)=1
e 2ipi, Ar even;

2
i(%)r h mod p!
— pth
- Ar/2 72”.1
P e %" ar odd

—~
k=1l=3
SN—

h mod p'
pth

For Ar odd we have to evaluate this directly.Aif is even it is simpler; it is
a special case of the Ramanujan sums:

Cu(n) = Z erin
h modk
(hK=1

which could be evaluated by means of the Mobious inversioméila:
k

Ci(n) = Z dﬂ(a)

di(kn)
Soifkis a prime powerk = p,

> e 3 wlf)
di(p',n)

h mod p'
pth

242

331

332
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0, ifa<dl-1n=p*n,ptn;
-ixptt=—-pm ifa=a-1;

-1xptt+pt

=p'(l- ) if @ > A

For obtaining these values we observe that in the summatigheright

side we have to take into account only such divi:;blﬂmt%l is at mostp. This
leads in the first case < 1 — 1 to a vacuous sum. In the second case the only
admissible divisor ig'~1; in the last we have two divisogg'* andp!. Thus

Vpi(n) =0

for A > a + 1; we get again a finite sum fog(n)
We now takelr odd. We want
(h) —2ri i n
—le p
h mod p' P
pth

h modulop is periodic, and we emphasize this by writing

h=rp+ss=12...,p-1;r=1,...,p"¢

333
So the above sum becomes
-1 p-1 -1 -1
O (S| 2 KNS\ ais RO _onitn
2 e = 2 )T ) e
r=1 s=1 p s=1 p r=1

This is zero wherp™t f n (because the inner sum vanishes). Otherwise,
letn = p*~tv andp 1 v; then it is again zero because we have only a sum of
guadratic residue symbols (since the character is not theipal character).

If p|v, the sum becomes

o160 ) = pA—l(%))i(pTl)zvﬁ
Soifn= p*-n wherep { n’, then
0, if1-1>a;
Ve = ¢ pr (2)i5) yp, ifa-1=0;

0, fo<i-1<ea.
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So the only non vanishing term in the case 1 odd iSV 1 (n).
Let us put things together now. Lebe even. Ifp { n, then

If p|n,n=p*-n,then

Yp=1+Vp+Ve+- +Vyp +Vpy
€2

—1+W(p— 1)+ 2/2|0(|0— 1)+

(l

a+1

a 1 (et
(P-1)- p(a+l)r 2P

par/2

wheree, = (=) P D4 forr # 4
- )& (1%
B (1_ pf/2)+ P2 - 1(1 p”z)

& 15 & 1_ 5
i p2(5 - 1) A PG\ p2
2

Ep Eg+l Ep -1
- (1_ W)(l ple+1)(5- )] (1_ pr/21)

Forr = 4, the thing becomes critical: Let us look at it more spedifjca

-1).
rp-1) is even now and se, = 1. Hence

1
1\1-5
’)/p:(l__z_) p(;l
) 1-1

P
We go to the full singular series.

Sa(n) = H)’p =72 H)’p

p23

1- 5
:”H(l_é)ﬂ i1

p=3 p=3 p

335
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The productis convergentsin@aé < 00. S0

L

1-1
|54(n)|272]_[(1—é)]_[ —

1
p pin p

1\? 1
SV?H 1_E l_[l_l
p pin p

[1(1- 2) diverges to zero in the infinite product senses. S¢n) is not
bounded. S4(n) could become very small if we keep the odd factors fixed
and introduce more even factors.

S4(n) is unbounded in both senses; it can be as large as we please or
small as zero.

Forr > 5 we are again on the safe side. In this case the first term comes
from V.. We have

Vp
85(n) ~(1=+ W

or czr[(1+é)<ss(n)<c1]_[(1—é)
336

Forr = 7 the situation is similar. Far = 6 the series again converges. So
forr > 5.
0<Cy;<Si(n)<Cy

This is of importance in the application to our problem.

We had
r/2

Af(n) = r(r/z)
If r >5,5 - 1> %, and sinceS,(, being bounded does not raise the order
in the term,

nz-1S,(n) + O(n"’*)

r/2

A(n) ~ r/2)

If, however, ifr = 4, the sharpness of the analysis is lost. Both the first
factor and the error term af@(r) andS;(n) may contribute to a decrease in the
first term. If there are many odd factors f@rthe main term is still good. But
if there are many powers of 2, it would be completely submerge

Forr = 4 the exact formula was given by Jacobi.

We shall consider also representatiomari the formarg + b + cng + dr?
in which connection the Kloosherman sums appear. We slsallcast a glance
at the meaning of the singular series in the sense of Siegeddic density.

nz~1S,(n)
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Let us look atS;(n) a little more explicitly.

Sr(n) = y2(n)ys(n)

r=0 (mod 4)

337

In this case we need not bother about the sign of the Gaussiasg; ghe

fourth power of the cocient becomes 1.

72(n) =1+ Vz(n) + sz(n) 4o

which is a finite sum. If Z n, theny,(n) = 1. If 2| n,n = 2*n’, 2t ', then

Vo(n) = 0
O~ ifa<a+1;
203
Vou(N) = (Ol T .
2(N) -5 if1=a+1;
0, fA>a+1
So
1
n =1+ ()" yHot -
72() ( ) {2% 1 % 2(071)(571)
14 () o ()E
=2 (% N 1)

246

)
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if 2%|In (2* is the highest power of 2 dividing). If 2 t n, y,(n) = 1.

1 1 1 .

1 1 1
sr(n)=yz(n)ﬂ(1—w) [ (1_W+'”+m)

p>3 pin,p odd
= y2(N)P1 - P2(n),

whereP; is a fixed factor and

1 1
Pam) = [ ] (1—1—_1+---+—r)
pin,p odd p2

p"(i*l)
3 1
din,d odd dz—l
1\ 1
S
or/2 lp:! pri2
22 1

Itis known (vide: Whittaker & Watson) that

R = (27)*Bx
(@ = (e ke L
whereBy are the Bernoulli numbers.
1 . . k-1
B, = —E,B;;Z Bs=B;=--- =O,sz?ﬁo,sgn&k= (—)
or/2 2(%)!

P = X
1 2r/2 -1 (27r)r/2| Br/2|

So forr > 4, the principal term

22

A(n) ~ ——nZ1S(n)

L
2

= Cr(n)’

247

338

339



40. Lecture 248

say, where

A2 or)2 2(%)!

: 1
nz"1y,(n -
M/2)27 1@y 28" 4 )dr%dddal

Ci(n) =

(a divisor sum! which is interesting, but not surprisingcéese the Jacobi 340
formula contains it).

r 1 1
= r—n2
2§7l|Br/2| dz-1

Ci(n)

[NTR

din,d odd

r=0 (mod 8)

r 1
ro1
nz""y,(n)- Z g1

din,d odd

1fq, 1 R 1 1 1
25-1 2e-1)(3-1) Za(%*l) dz-1)

()8
— )
= n5’1z if nis even:

=
5in

n%*lz L ifnisodd

r 9
-1

din,d odd

— Y@

sin

= () et

tin
So 341

C(M=Q ) Y. (e

tn



40. Lecture 249

r

here =
= S,

This is exactly what appears for= 4 in the Jacobi formula.

r =4 (mod 8)

1
dndedd 4’
: 1 1 1 1
1
= 1o — ... d odd ——
ne ( o1 DD 20(5_1))%’ odd T
(g (_)6+5+1
= N2 i
_ Z(_)5+g+1(9)%—1
an 0
= Z(—)?+t+lt5’l, if nis even;
tn
> 2% if nis odd;
tn

or in either case

(_)n Z(_)H q +lt% -1

tin
> Ci(n) = ("Q Y ()i
tin
A(n) ~ Qu(-)" D () EE D,
tin
r
where A = m

The Bernoulli numbers are all rational numbers and we canvshat
2(2'/2 — 1)By 2 is an odd integral i.e., 22 — 1)Bx(k integral) is an all inte-
ger. Supposgq is an odd prime; then, by Fermat’s theorem,

241 = 1( modq)
Let(q—1)| 2k. Then
2%=1 (modq)

342
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2%_1=0 (modq)

We now appeal to the non-Steadt-Clausen theorem, which eaatiful
theorem describing fully the denominators of the Bernaullinbers:
1
Bok = Gok — -
(oD« P

whereGy is an integer.

(2% - DBy = (2% - NBa- (2> -1) Y =
(p-1)i2k
. 1.
= integer+ > integer
S0 2(2 - 1)By is an odd integer.
Let us obtain some specimens of
2r
%= e@-nBa)
32
Ar=8 Q=16 Q12=8 Q6= 1
8 16 8 64
Qo=37 Qu=gor =5zer %2 530560

The conspicuous prime 691 appears in connection with threseptation 344
as the sum 24 squares; it has to do wjth

CanA;(n) be exactly equal to the asymptotic expression? (as fer4).
Ay(n) = C4(n), Ag(n) = Cg(n). From Q5 on wards,Ajg(n) # Cie(n). This is
because;s has an odd prime factor in the denominator. Supposkvides
the denominator. Then the fraction produced@y cannot be destroyed by
the other factor an€, (n) is not always an integer. Ib | n. the numerator of
Ci(p?) is congruentta:tl mod p.
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It might be of interest to tak€, (n), the main term in the formula fo% (n) and
make some remarks about it.

C(n)=Q Z(_)md%(gﬂ)dgfl

din

Let us form the generating function
Hi(x) =1+ > Ci(n)x";
n=1

this will give a sort of partial fraction decomposition. Imetcase where= 0
(mod 8), itis simpler:

Hi() = 1+ Q Z " ()midet

n=1 din

=1+ Q Z( X" ) (=)=

din
=1+Q Z(—)dd%* Z(—x)qd

=1+ QnZ( )d __11( (X)X)d

—1+Qr2d%711 =x)°

1.X r_ X2 L_ X3
:1+Qr{1+x+221 +3271 +}

1-x2 1+x3

251
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This is a Lambert Series. Replacirdpy €77, it becomes
ezri‘r (g e27ri'r
“Qf{m”z 1_—ezm+'“}

The series above can be transformed into an Eisen steirs sénigs taken 346
to be 8, itis actually the 8th power of th¥é—function
Next, taker = 4 (mod 8)

G(X)=1+0Q Z Z( )n+d+ +1d——1

n=1 din

=1- QrZ( )d5 7t (—x)"(-)

din
=1- QrZ( )dd--lz(—xwd(—)q

- 1+QrZ( )"d"lli Sy

_1+Q“ZdL_11 ( x)0

1' r 2 r 3
=1+Qr{1 );+2r1 X +3zlx—+---}

1+ x2 1-x3

This is again a Lambert Series. This shows th#t-spower has to do with
Lambert series which appears as an evaluation of certagniiisin series not
that they are identical.

We now go to something quiteféérent. We had for > 5,

a2,
A(n) ~ ——n7S (n) *)
r(s)

This comes out as a nice formula. Now could we not make sonmsesart 347

of this formula? What is its inner meaning? We shall show thaffirst factor
( r/2/1"(r/2)) nz~1 gives the average value of the number of representations of
n as the sum of squares; the second factor also is an average, imp-aic
measurement. We shall show that

> UAM ~ F(r/Z)Z

n<x
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So for each individualn, S;(n) gives the deviation ofA,(n) from
(7"/2/T(r/2))n&~L; but on the average there is no deviation.
Let us first look afy; ., Ar(n).

Qam=), ), 1

n<x n<x m§+..m?:n
= L
M2+ +MP<X

which is the number of lattice-points in tmesphere with centre at the origin
and radiusyx, and so is proportional asymptotically to a certain volutme- (
cause the point lattice has cells or volume 1 and to eachgbéibngs a cell).
So this is roughly the volume of the sphere of radilswhich is

[ [onax

Xt XEX
B n.r/2 Xr/2
I(r/2)
348
The diference will not be zero but of the order of magnitude of théaser
of the sphere, i.eQ(x7/? -1
Now consider the other side.

7Z'r/2 r_1 7Z'r/2 fx r
nz—= ~ v ldy
mmé I072) Jo

22y 12

- F(%+1)

So the first factor on the right oEl(*) gives the averadg®.(n) has to be
adjustedS; (n) is also, surprisingly, an average. It was defined as

Si(n) = y2(n)ys(n)ys(n) - - yp(n) - - -,

andyp(n) in turn was given by 349
yp(n) =1+ Z Vp(n)

=1
Sy L G(h, plye " L G(h, p') e "
= Z o7 Z , P ot Z , p
=1 h mod p' h mod pt
pth pth
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Loy Iy ey e
r
p/] h modp! &4 mod pt ¢; mod pt

pth

ih g2 i h
27 o or 2ri Thn
t mod p’l

1 2ni b
=F Z e Vl(€%+"'+€r2—n)
l1,...04 modp! h mod p!
1
YT
£1,....,6c  mod pt
Z e27ri§(€§+»-»+€r2—n) _ Z ezni ﬁ((ﬁ.-wf—n)
s mod pt t modptt
1 27 3 (Gt )

CAE
l,..6n modp! s modp!
_ Z Z e%iﬁ(€§+~-~+[§—n)
(1,...,6c mod pt-1t mod pt-t
= Wpi(n) = Wyi_q(n), say,
1+ Vp(n) + V(n) + - - + V() = Wi (n) — yp(n)
So fora large enougW,(n) = Vi (n): the partial sums get identical. The 350

value ofA for which this occurs depends on the structurenobn how many
primes that specifia contains. Now

eZniﬁ(€§+~-~+[r2—n) —0or p,{
Wp/l (n) = W Z
{1,...,6r mod p'

C++?=n  (mod p')
The sum on the right gives the number of times the congruence
€2 +---+¢?=n (mod p') can be solved\:(n), say. Then

WpA (n) = NpA (n)

1
pir-1)

We have therefore divided the number of solutions of the ooeace by
p'™=D. Now how manyts, ..., ¢ mod p' do we have? There a@" possi-
bilities discarding. nis one of the numbers modupg. So dividing byp', the
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T 1 Np‘(n) . .
average number of possibilitiespd( 1. Hencem is the average density

modulo p* of the solution of the congruence. And since ihg:(n) eventu-

ally becomegp(n), each factot,(n) acquires a density interpretation, viz. the
p-adic density of the lattice points modupd.
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The error term in the formula for the number of representetiof n as the 351
sum ofr squaresy > 5, wasO(n/4). Forr = 4 this did not stiice. We
shall therefore study the problem by Kloosterman’s methatifand out what
happens when we want to decompaosia the formn = nZ + n3 + n3 + n3.
We shall see that we can diminish the order in the error termdarly %3.
When Kloosterman did this for the first time (Act a Mathematic1927) he
took a slightly more general problem, that of representing the formn =
arg + b3 + cng + dng, a, b, ¢, d integers. This works nicely; we get the singular
series and an error term which is smaller than before. Tfieult not will be
about the arithmetical interpretation. The singular sanél now be a dificult
phenomenon; we shall have multiplicativity, but the intetption of the factors
vp becomes complicated. We shall content ourselves with thlyteal power

of the discussion. The generating function which will hawdé discussed is
quite clear:

F(X) =008 o) ox€) o(d)
where O(x) = i X"

N=—0c0

And we will have

a b Xd
A = o L@(x LGN

and the analysis goes on as before with Farey series.

We are here representimgy a positive definite quadratic form which is a
diagonal form. Let us make the problem more general.

Let us representh by a positive definite form with integral cicients. 352

256
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(We could very well unsedes also the ‘semi-integral’ cadedt S be a pos-
itive definite integral symmetric matrix anda column vector with elements
X1, X2, ... % In r-space. X is the transposed row-vectoxr’'S xis a quadratic
form in r variables. The question is how often can we express an inteigge
integer vectors with respect to this quadratic formn irariables.

The generating function to be studied this time is

Fr) =) XS0ix <1,
n

the summation over all integral vectans Convergence is easily assured by
positive definiteness. Indeed

XS x> C(Xf+---+ X,Z),C >0

For x'S xhas a minimunC > 0 on|x| = 1 by positive definiteness; the in-
equality follows from the homogeneity of the quadratic formd 3 (i ++n?)
is trivially a product of convergent series.

In a later paper (Hamburger Abhandlungen, 1927) Kloostarmoa the
advice of Hecke, took up a more general problem. This woulglire a lit-
tle more preparation on modular forms. The generating fanatill now be
a modular form of dimensior 5 of a certain ‘stafe’; so we have to discuss
modular forms not only with respect to the full modular grobpt also the

substitutions
a b = 10 (mod N),
c d 0 1

(N will the ‘stafe’) which from a subgroup finite index in the mddr group. 353
Kloosterman’s work goes through for all modular forms oftkort, but we
should want generalisations gfr) and (r). To do this we need a good deal

of Heeke’s theory about Eisenstein series of higher stafleeofype:

1

my=a (mod N) (ml + sz)r

mp=b  (mod N)
which is a modular form of dimension; and staféN. These were investigated
by Hecke in a famous paper (Hamburger Abhandlungen 192 @odtérman
could carry out his theory for these also. We shall, howes@mpromise on
the quadratic form.
We had the generating function

Fr() =D XS0 < 1,
n
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=1+ i Ac(n)X".
n=1

F/(X) is a modular form. This can be seen directly by the transétion
formulae. Let us start with Kloosterman’s method and seet Whppens. The

problem is to get
()4
Ar( )_ j(; Xr:1+1

At a certain moment later on we shall need a greater knowletigg(x)
Let us carry out the Farey dissection:

X = @2 R—21 _ g2ni}~21(on-ig)

Tk
Ar(n) — Z —2n| xn f E (e2n|——27r3)e2nn3dtp
0<h<ksN 5
hk
with (h, k) =17 = k(k11+k), Yok = k(k+k) where in the Farey situation, 354

% < E k The refinement of Kloosterman consists in not merely making

the rough remark that

< Yo

1
2kN = Thk < K(N + 1)’

but in a finer following up of the number theoretical deteratian of the adja-
cent fractions. We have

hlk— hkl = —1, hkz — hzk = —]_;
ie., hki =1 modk hk, =-1 modk

1 is given. What we are worried about is, how long is its envinent.k; and
k. are given as solutions of certain congruences. We have thiedfacalling
h" a number such that

hi = -1 (modk); so letus write
ki=-h (modk),k,=h" (modk)

So we know in which residue class modilléy andk, have to lie.k; + k, 355
being the denominator of a mediant, had to exedN < k; + k < N + k, or
N — k < k; < N. Sok; has a span of size This along withk; = —h modk
determinesk; completely. Similarly, fokk,, N — k < ko < N So there is no
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uncertainty at all about,, 7}/, and we could single them out if we insisted
on that.

For example, IeE 2 N = 12; what are the nelghbouri‘—’l? <5/9< hz.
First determindy’. 5h' = —1 (mod 9) or’ = 7. Then 12- 9 < k; < 12 and
ki = -7 (mod 9), sok; = 11. Similarly 3< k, < 12,k, = 7 (mod 9) so
k. = 7. We need onl¥; andk;; but for our own enjoyment let us calculdte

andhs,.
h, 5 _ 1
11

orhy = 6,h, = 4, so that we havg: < 2 < 2 as adjacent fractions in the Farey
series of order 12. We do not need to display the whole Famigsse
Now utilise this in the following way.

@I

5 Mo __;
9 7

_1
K(icrkg)

A= Y et [ F (@) ema

o<h<k<N 1
e

Kloosterman does the following investigation. In any caseane sure that,
k. can at most becomid. If we takek; andk; big we have a small interval of
integration. Since

ki+k<ki+1+k<---<N+Kk
ko+k<ko+1+k<---<N+Kk

1 S 1 1 S 1
ki+k” N+kko+k  N+k’

so that the interval of integration should be at least as bigha interval 356
-1/k(k + N) to 1/k(k + N). This interval is always present whatever e
andk,. S0A;(n) is equal to the always present kernel

k(k+N)
f (---)de,
0<h<k<N
k(k+N)

with the possible additional terms

1 1
N-1 k(k+6) N-1 k(k+0+1)

f e Y, einy [ de

O<h<k<N =k,

! —Zm

k(k+(+1) Kk+0)
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There is no doubt about the integrals. The limits are all\defined. This
will help us to appraise certain roots of unity closely-bg #loosterman sums. 357
We shall now return to the integrand; that i“afunction and requires the
usual?” treatment. Consider thefold ¥ -series:

o) = > eS8 7t > 0.
n

Modify this slightly by introducing a vectora of real numbers;
a = (a1,...,q). Let

Ot ay,...,ar) = Z et +a)S(n+a)
n

This is periodic inxj, of period 1, and so permits a Fourier expansion. The
convergence is so good that the function is analytic in egcéind so we are
sure that it is equal to the sum

2, Clmeme
m
whereC(m) is the Fourier coicient:

1 1 -
C(m) =f0 fo Ot B, ... B e ™Edp,, ... dB:

1 1 .
_ f f Ze—zrt(n/+éf)sm+§)e—2mml_fdlgl,.“,dﬂr
0 0 G

1 1
_ f f Ze‘”‘(ﬂ’+§')S@+§)e‘2’”m’(ﬂ+@dﬂl,..-,dﬂr
0 0 5

which is an integral over the unit cubg, and so on translation with respect to3ss
the vectom, becomes

3 f f e ISV gy s
n W+n

(the exchange of integration and summation orders beinglHyi

[ [Cemrore e gy,



L ecture43

Let us return to the generalised theta-formula: 359
@(t ai,. a,r) _ Z 7rt(n +2)S(n+a)
- Z c(m)e e
m
where

c(m) = f e f e SV e Ly L d¥
To get this into shape, consider the quadratic complement
—%(tﬁ M S™YSEY +iS7im) = —at¥’'SY —xi¥’'m—zim ¥ + ’t—rmrs-lm

Sincem ¥ = ¥'m,

c(m) _ f f ——rTfS 1m Y +im' STHS(tY +iStmyd ¥4..d ¥
_ g imsm f f e TV S HSOVRL ST g e

Put vt/ = wandyu = %mS*l. Then 360

S'm
C(m — f f —rr(W’+I;1 )S(w+l;4)dw dVVr
(\[ )’

261



43. Lecture 262

Since every positive definite quadratic form may be turnéd &nsum of
squares, we can p&& = A’A, so that the exponent in the integrand become

(WA + ipA')(Aw + iAp); and writingAw = 3, we have

e irsTm @+ G- O
Cm —_ —7T3+ 3+ 3r
== f -Je T

where? = uA, and|A| = determinant of\. LetD = |A]? = ISI,3" = (s ---»3r)-
Then h

g fmstm I VY
— | | —T@j 17 .
C(m) - Dl/ztr/z f € ! ! dS]
j=1 Ve

~I1mSim [ oo r
g imsTm
= Dizr2 (f e_mzdS)
tr/ —eo
e tn'S™m
T T D2z 0

the last factor being unity. So we have ultimately

1 71 1
Ot ay,..., ) = DU 2 (S me2nim e
Let us now we back to our study 8§ (n). We had integrals with now limits 361
which were the special feature of the Kloosterman method.

1

Z
AN
7
AN

)
ih
—2rign

A= 3 e

O<h<k<N

(ez’““z’“) e Md3+ Y -+

¢

€ A]
- =
z

Z

Il

o
F
o

Now

Fr(x) = Z XISP =1 4 i A (n)x"
n n=1
F, (e27riE—2n3) _ Z e(27ri';—2n3)ﬂ/s_n

n

— Z e EQ’S_ne—ZmQ’S_n
n
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nis of interest only modulé, so put
n=kq+¢,¢=((1,....6n),0< ¢ <k

So dismissing multiples

F, (21820 = Z 2ritrse Z e—2n3k2(q’+%)s<q+%)’

¢ modk q

and applying the transformation formula we derived eanigth t = 23k* and
a = 1, this becomes

- Z IR S Im oy &
2wl SfZe e 'S "Me2rim’
\/Bkrer/zsr/z 7 =

_ 1 - LS m
= W Zm: e K Tk(h, m),

on exchanging summations, where 362

T(h,m) = Z 2R hesermo)
4

Tk(h, 0) will be the most important; the others we only estimate.rédgire
a little more number theory for this. We cannot tolerate trespnce of a both
a quadratic form and a linear form in the exponent. There lvéla common
denominator imvS~*m and that will have to be discussed.
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We had
§-20) = 1 -z msm
Fr(eZ” k 3) — W Z e 232 Tk(h,m),
‘ m
and Tk(h,m) = Z e (he'stnre)
¢ modk

The common denominator im’S~m will be at mostD, the determinant;
definek* andDy by
kD = k- (k, D) - Dx = k"D, (Dk, k) = 1,
so thatDy is D stripped of all its common divisors witk Suppose first that
is odd. Letp be a solution of the congruence
4hDy =1 (modk")
2ri (¢ SE+4Dy o £)

Thm= > €

¢ modk
e (¢’ +2Dypm' S™)S(¢+2DkpS ™ m) e—(4D§p2m S™tm)27i b

¢ modk
- e*ZHiEADﬁpmeS'lm Z ezniE@'+2kams-1)3@+2okps-1m)
¢ modk
_ o7 Pk yg-1
=e 2 k ms m%ka

say, (using the definition gb), whereZ4 = Z(h, m) is periodic inm with
period K, D); it is enough if we take this period to liitself. So

FEE ot 3 uhy Y el
mod D

201/2
KI(23)"7*DV2 ¢ m=s “(mod D)

264

363

364
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This is a linear combination of finitely mar¥/-series of the form

—1
'S ™'m

m=s (mod D)

The power series goes in powersg)becaus% remains silentinside. This
is for k odd.
Fork even, defineo by

hDyo=1 (mod &)

Tk(h m) — Z e27riﬁ(4£/8£+4DkU'm'f)
'y
¢ modk
_ e—ZHiﬁDEazm’S’lm Z e27riﬁ(2€’+Dku'm’S’1)S(2£+DkU'S’1m)

¢ modk

— e—Zﬂi % D—ms_lm%k(h, m),

where%4 again has a certain periodicity; we can take the period tolbar®d 365
forget about the refinement. So

ih_ony 1 (5% +% D |mwsm
Fr (e27r|k 3) — 7“(2%)'_/2'31/2 Z %k(h,§) Z e <Z‘k2 7k )

¢ s mod D mes (mod D)
which is again a linear combination of theta-series withfécoents%4. Ob-
serve thafly and% differ only by a purely imaginary quantity:

ITk(h, m)| = |%(h, m)|,

and form = 0, Tk(h, 0) = Z(h, 0).

We shall use as essential only those theta-series whichoagruent to
zero moduloD or 2D; and the rest will be thrown into the error term. Only
these corresponding tohave a constant term. The general shape in both cases

IS Z %k(h, §) _ Z Xﬂfsflr_n

s mod D m=s (mod D)
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We have to get a clear picture of that we are aiming at. We aaudsing the 366
function under the integral sign. We get it as

ih_2m3\ _ 1
F,(ezﬂkzn)_W > U

s mod D

B . D,
e—(ﬁ+2m4lka)

mes  (mod D)

mS™im

wherek - D = k*Dy, (k, Dy) = 1. kis even; ifk is odd the formula looks finitely
many diterent values. This most important fact we formulate as a lamm

Lemma 1. For k evenZ(h, s) depends only on h modulo 2D.

This depends on a theorem on the behaviour of quadratic fihrensquiv-
alence of quadratic forms modulo a given number. This is arlarof Siegel’s
(Annals of Mathematics, 1935, 527-606).

Let us recall that fok even

Te(h,m) = Z ke s o

¢ ‘modk
- g2 §DmS My, (h m)
Lemma 2.
[Ti(h, m)| < CK'2
We have
ThmP= ) eitsnomo 3 g2ifusirono

¢ modk A modk

266
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==

e27ri

(¢'SL-'SA+om(L- 1)
b

I~
I~

and since 367

CSE-VSA=(-)S(L+)+XSt-'SA
=(-X)S(t+D+L'SE-L'SA
=’ -2)S(¢+ ),

this is equal to

3 - S o
A

- > > ek m

e27ri D/ (S@2A+a)+om)
a modkf-1= modk

Z iR (Sa+om) Z RS A

a modk A modk

If we write 22'S = ', the inner sum is 368

bt hd) 12 K| B, K Brs
A1,..r modk

0 otherwise
So|Tk(h, m)? = 0 if at least ongs is not divisible byk; otherwise it is equal

to
K Z g2 fe (Sa+om)

a modk

Writing S = (si), the system of congruences

2(11811 + 2(12821 + -+ 2(1;5(1 =0 (mod k)

20151y + 2025 + -+ 204 =0 (modKk)
has at most2S|" solutions, and thus

[Tk(h, M) < 2"IS|'K",
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ie., ITi(h, m)| < 2'73S|"/2K /2,

We shall now outline the main argument a little more skilifuputting the

369

thing back on its track A (n) is the sum of integrals over the finer-prepared

Farey arcs of Kloosterman:

_1
K(k+N)

1 ’ _27in f "
n)=— —— e k
A 2r2D1/? Oshz<:ksN 372

1
kN

- 55+ B D 1
s mzo;maz/k(h,@@)s(e e )d<p+—2r/2Dl/2

1 1
Ne1 KD Nel Ke&D

) 1 )
%;emeEnZ f +2r/2Dl/2%(:eizmenZ f e

=k Y =k 1
k(k+0+1) T kk+0)

where
0= Y
m=s (mod D)
= So +S,+ Sy, say

= [soo ) SOm] + {Szo + ;s@] + [slo ) slm]

m#0 m#0

in an obvious notation. Now treat the things separately. mpéction of
%(h,m) we find how it depends oh, it is only modulo 4k*. We have to
reconcile Lemm&ll with this. This actual period thereforaeegher 2D nor
4k* but the greatest common divisor

(2D, 4k*) = 2(D, 2K°) = Z(d, 'E)—D)
k

2 2D
—(DDy, 2kD) = —(Dy, 2k
Dk( k, 2kD) Dk( k> 2K)

20 40
Dy D

So we have
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Corollary of Lemma 1. %(h, m) for k even depends omonly modulozD—'f =

A, say.
_ —27iin
Soo = >72D12 Z e 7 Ty(h, 0) f Wd‘P

0<h<k<N A
T kN

This goes into the principal term. We shall make it a littlermexplicit

later.
1

KKN) x
1 h N e 25m'SIm
IS — ’ e—ZﬂIEn%k h, m e27”ﬁffm’s m f — —d
o T 2r2D12 o ien (h. m) 3112 4
_k(k}fN)

_1
K(K+N)

N
1
= Sapz 2 Kin.m) f
k=1

_1
T RN

where
h i —
Kenm) = 3 e i (h, mersOoms
h modk
_1 Z (A, m) - el te
a/l mod A h=1 (mod A)
h mod &*

where &* = ak, a < 4D, and? = KDym1S'm

We definedr by
hDyo=1 (mod &)

Let
DDy =1 (mod &*),hH=1 (mod &)
Then
1 —2niahn+2ni ¥ o oy
Kanm==> > Z@am > e % DDk
A mod A h=1 (mod A)
h modk*,(hk")=1

— 1‘ Z %k(/l, m) Z/ e% (—4anh+“1/5kﬁ)
1 ‘mod A h=4 (mod A)
h modk*

371

The inner sum here is a Kloosterman sum. It has essentiillyedms. A
trivial estimate of this would b&(k), and this is what we had tacitly assumed
in the older method. The advantage here is, however, thattrebe appraised

letter. We shall not estimate them here but only quote thdtras
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Lemma 3.

Kuv)= > €™ Ajkhh=1 (modk)

h=1 (mod A)
h modk

=0 (kl—aJre(u’ k)a)

There has been a lot of discussion about the size oftimethis formula.
Kloosterman and Esternann proved that %1 (Hamb, Ab. 1930), Salie’ that
a = 1/3 and A.Weil thatwr = % (P.N.A.S’, 48) Weil's was a very complicated
and deep method going into the zeta-functions of Artin type the Riemann
hypothesis for these functions.

We thus save a good deal in the order of magnitude. The fuBtkewill be
nearly similar; the complete Kloosterman sums will be repthby sums with
certain conditions.

k(k+N) _ n ;
%2 D

N (n k) o 3(sm-3)
2 : 1-a+e mSim-1
|Som| <C £ k f |%|r/2 "0

R
Since%k—lzs > % on the Farey arc, the integrand is majorised by
SN

f/4 s ON
I 1 I
e 2 2162 +¢2 |k2(62 +902)| r/4 _ Klr/4 26N e 2D kz(éﬁwzj
k(o +¢%)

= O(n'%
i 1
|Soml < Cr/4 ) K+, kyee sms™m_—_
om ; k\/ﬁ

since the path of integration has a length of the ord&rn/h. Now summing 373
over allm= 0,

a2 Z k**¢(n, K)*
k=1
<Cni=2 Z (dty=+

din dt<n

Cni- Zde Z —

din t<
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l-a+e
<cnit Yo ()

din

_Cni i Y ar

din
and since the number of divisorsofs O(n/?). This is 374
—Cnigtets
= an%_%"'f

Improvinga has been the feature of many investigations.
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All the other sums that we have to estimate behave some whidady. We 375

take as specimefyo.

k(k+()

- 62”

— 1 ’ ~2ni D xn
S20= 5oz, X & TR O X ¢ xZ ~z

k(k+[ +1)

(k+
1 N 1 N-1 ez,r ot
~ D22 Z K f 72 Z e " "Ty(h, 0)de

h mod k
N—k<ko<t

1
k(k+{+1)

The original interval fork, was bigger:N — k < ko < N. Now the full

interval is not permissible, i.e., we have admitted notedidues modull, but

only a part of these, and thémay lie in two adjacent classes of residues.
Here we have a new type of sum of interest. We know how to disbys

plays a role there. The sums we have now get are

ih

Z Tk(/l,g) 2/ e—ZITIEn
h=1 (mod A
4 moda N—k(<k2g€ )

The inner sum is an incomplete Ramanujan sum, with resirictink, 376

implying (see lectur&45) actually a restriction bhThe Kloosterman sums
are a little more general:
e2nlk(uh+'1/ﬁ)
hh=1 (modk)

Our present sums are incomplete Kloosterman sums (With o andu =

272
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1), and the interesting fact is that they also permit the sappeaisal, viz.
e} (kr/Zkl—(He(k’ n)oz)
From there on things go just as smoothly as before.

" o
. - p
SZo =0 k r/2k1 a+6(k’ n)a f
0 kz:; J (5§| + ¢2)r/4
)
and here for convergence of the integral we want3. This would give again
the old order. Similar estimates hold for the other pieces:

ZSzr_n = O(nr/A— % +e)

m#0

(The incomplete Kloosterman sums here are actually incetafitamanu-
jan sums and so we may got a slightly better estimate; butglitno conse-
guence as the other terms have a higher order). 377
We then have
1
_ r/4—a/2-€ _ =
A(n) = Soo+ O(n ),a—z.
Let us look atSy,. It is classical, but not quite what we like it to be.

1
KkN)

1 ' it Tk(h, 0) e r/4-a/2+e
Soo = DL/221/2 Z e« K 72 de + O(n )
o<h<k<N 1
K(k+N)
Replace the integral by an infinite integral:
‘/ﬁ (]
1 Hk(n) 27Tn3 r/4—a/2+e
D212 kz_; K 372 dy + O(n )’
ih
with H(n) = y e mdho
2

-0 (kr/2k1—a+s(k’ n)oz) ,
thereby adding an error term of order

0] ﬁk_%+l_a+s(k n)oz ( dt,D
V) R

k=1 J
kN
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Now

de _ f de sLT12
(5% + D)7

r/4° N
3 (2+2))

L dy
_ r1
=0l [ o
I3

with ¢ = N%p. y is never smaller than 1 d% > 1. So we can drop 1 in the 378
denominator without committing any error in the order of miagde. So this

gives
g [T dy
5-1
O(n f W)

k
and the integral converging for> 3, it is equal to

-5+1
o[n%l(% ] _ ofni-tki)

Hence our new error term is

EIH% P

o

W
Z k—a+e(n, k)an%%] -0 (nf/4—a/2+e)
k=1

which is what has already appeared.
We than have on writing/2h3 = w,

1 EHm1 e
k + 1 & r/4—a/2+e
DV2272 £ K| (27m)= f pde+ O(n )

A(n) =

C—ico

and the integral being the Hankel integral for the gammaztion, 379

A(n) =

(2)112n7/2 — 1 f He(n) 1

r/4—a/2+e
D1/22r/2 k" r(r/Z) + O(n )

AP SHO) | e
o gy kol
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. © k%+l—a+e(k n)a
+0|nz1t Z - 7
r
k=+/n+1 K

This new error term is

0 n%—lzda E(qwl—%—a+e -0 n%—lzlere—r/Z Z\; q—r/2
5 9>

dn din
(This is because for the Ramanujan sum we have)

> o= 3 o)

h modk di(k,n)

km) > 1

di(k,n)

=0 = O((k,m)**);

and then we use the old appraige(*<(k, n)* with @ = 1 + €). So we have

\/ﬁ —r/2+1
O[ngl Z girer/2 (F) ] _ O[nﬁ% Z de] _ O(nr/471/2+2e)

dn din
This is of smaller order than the old error term. So we havdiaal result:

r/2-1 Hk(n) " O(nr/A—a/2+s) :

b3
A(n) = F(r/Z)Dl/Zn ok

the singular series plus the error term.
What remains to be shown is that the singular series agagtyettie mul-
tiplicative property:
Hiqk,(N) = Hi, (MHi,(n)

We shall then have it as the product

[ [

p

Hie(n H 2(n)
II;(r ) + per +

where yp=1+

380

The arithmetical interpretation now becomefidult, because all the prop- 381

erties that the quadratic form may have will have to show upe @r other of
the factorsy, may be zero in which case we have no representation.
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We should like to throw some light on the Kloosterman sums.take for
granted the estimate
2/ e2nik(u|‘H“1/h) — O(kl—aJre i (k, u)a)
_h modk
hh=1 (modk)
Kloosterman and Esterman (Hamburger Abhandlungen VotdYgula = %1;
Salie’ (Math. Zeit., vol. 36) proved = % Using the multiplicativity, in a
certain sense, of the sums, Salie’ could prove thiatifp?, p prime ang3 > 2,
thena = % but he could not prove this in the other cases. Tlfigadilt case was
that of _
2/ e2ni/p(uh+“//h).
h modp
For this nothing better thad (p2/>*<(p, u)l/?? could be obtained; and it de-
fied all dforts until A.Weil provedw = 1/2 in all cases by using deep methods
(Proc. Nat. Acad. Sc.1948). Further application of the isteoman sumstter
no difficulty.
The (generalised) Kloosterman sums are symmetricakind ¥, for

Z' 20 (yhevh) _ Z’ 2 (yht+ ¥'h)
ek = ek

h=a(A) h=a(n)
h modk h modk

since @, A) = 1,h = A (mod A) andhh = 1 (modA) imply h = 2 (modA) 382
andA4 = 1 (modA). The last we can write as
x| gt
h modk

whereg(m) is the periodic function defined as

1 ifm=a (moda

o(m) = (mod)
0 otherwise

g(m) has therefore the finite Fourier expansion
A .
gm) = >’ Cjei*
=1
The codlicientsc; can be calculated in the usual way:

1 -2dig1

= —€e A =12,...,A
Cq /\e mg=12,...,
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Substituting foiCq, the sum becomes

2nf (uhe (¥ + %)h
5,0, g et 5 et 5 sl

j modAa ] mod A h modk

so that the generalised sum becomes a finite combination distunbed
Kloosterman sums and so has the estlrﬁa(ttel ek, u)® )

This works just as well in the other case when there is an iakgwn h. 383
eT'(uh+7/h) — Z f(h)e ! i (uh+7h)
h=1 (modA),h modk h=1 (mod A)
a<h<b h modk
1, 0O<m<
where f(m) = &

0, a<mx<k,

and f(m) is periodic moduld.

Then )
f(m) = > cie?ik
=1
where
o 19*@ _ e Zij(arl)k )
Gk imemik 7K
a
Ck = E
Ci| < ——F
i ksinzj/k
The sum becomes 384
k . —_ . —
Z e U (7 +)h) Ce 3 e (uhe7'h)
— modk h modk
= h= /l (mod A) h=4 (mod A)
1 k-1
l-a+e =
= O(k-*<(h.k)°) + Z ”'I
Since siny > 2,
k=1
: 1 T 1
2) —5 <25 > o

I

N
2]
>

Iyl
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=k Z i O(klogk)
o=l

so that again the sum becomes
0] (kl—aJre(k’ U)Q)

Kloosterman first discussed his method for a diagonal quiadoam. Later
on he applied it to modular forms and for this he could deriwvéh® investiga-
tions by Hecke comparing modular forms with Eisensteineserin this case
the theory becomes simpler: we can subtract suitable Hesarseries and the
principle term then becomes zero. Théold theta-series that we had are in
fact modular forms.
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