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Formal Power Series
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Lecture 1

Introduction

In additive number theory we make reference to facts about addition in 1

contradistinction to multiplicative number theory, the foundations of which
were laid by Euclid at about 300 B.C. Whereas one of the principal concerns
of the latter theory is the deconposition of numbers into prime factors, addi-
tive number theory deals with the decomposition of numbers into summands.
It asks such questions as: in how many ways can a given naturalnumber be
ecpressed as the sum of other natural numbers? Of course the decompostion
into primary summands is trivial; it is therefore of interest to restrict in some
way the nature of the summands (such as odd numbers or even numbers or per-
fect squares) or the number of summands allowed. These are questions typical
of those which will arise in this course. We shall have occasion to study the
properties ofV-functions and their numerous applications to number theory,
in particular the theory of quadratic residues.

Formal Power Series

Additive number theory starts with Euler (1742). His tool was power series.
His starting point was the simple relationxm. xn

= xm+n by which multiplica-
tion of powers ofx is pictured in the addition of exponents. He therefore found
it expedient to use power series. Compare the situation in multiplicative num-
ber theory; to deal with the productn.m, one uses the equationnsms

= (nm)s,
thus paving the way for utilising Dirichlet series.

While dealing with power series in modern mathematics one asks ques- 2

tions about the domain of convergence. Euler was intelligent enough not to ask
this question. In the context of additive number theory power series are purely
formal; thus the series 0!+ 1! x + 2! x2

+ · · · is a perfectly good series in our

2



1. Lecture 3

theory. We have to introduce the algebra of formal power series in order to
vindicate what Euler did with great tact and insight.

A formal power series is an expressiona0 + a1x + a2x2
+ · · · . Where the

symbolx is an indeterminate symbol i.e., it is never assigned a numerical value.
Consequently, all questions of convergence are irrelevant.

Formal power series are manipulated in the same way as ordinary power
series. We build an algebra with these by defining addition and multiplication
in the following way. If

A =
∞∑

n=0

anxn, B =
∞∑

n=0

bnxn,

we defineA + B = C whereC =
∞∑

n=0
cnxn andAB = D whereD =

∞∑

n=0
dnxn,

with the stipulation that we perform these operations in such a way that these
equations are true moduloxN, whatever beN. (This reauirement stems from
the fact that we can assign a valuation in the set of power series by defining

the order ofA =
∞∑

n=0
anxn to bek whereak is the first non-zero coefficient).

Thereforecn anddn may be computed as for finite polynomials; then

cn = an + bn,

dn = a0bn + a1bn−1 + · · · + an−1b1 + anb0.

A = B means that the two series are equal term by term,A = 0 means that
all the coefficiants ofA are zero. It is easy to verify that the following relations3

hold:

A+ B = B+ a AB= BA

A+ (B+C) = (A+ B) +C A(BC) = (AB)C

A(B+C) = AB+ AC

We summarise these facts by saying that the formal power series form a
commutative ring. This will be the case when the coefficients are taken from
such a ring, eg. the integres, real numbers, complex numbers.

The ring of power series has the additional property that there are no divi-
sors of zero (in case the ring of coefficients is itself an integrity domain), ie. if
A, B = 0, eitherA = 0 or B = 0. We see this as follows: SupposeA = 0, B = 0.
Let ak be the first non-zero coefficient inA, andb j the first non-zero coefficient

in B. Let AB=
∞∑

n=0
dnxn; then

dk+ j =
(

a◦bk+ j + · · · + ak−1b j+1

)

+ akb j +
(

ak+1b j−1 + · · · + ak+ jb0

)

.



1. Lecture 4

In this expression the middle term is not zero while all the other terms are
zero. Thereforedk+ j , 0 and soA.B , 0, which is a contradiction.

From this property follows the cancellation law:
If A , ◦ andA.B = A.C, thenB = C. For, AB− AC = A(B− C). Since

A , 0, B−C = ◦ or B = C.
If the ring of coefficients has a unit element so has the ring of power series.
As an example of multiplication of formal power series, let, 4

A = 1− x and B = 1+ x+ x2
+ · · ·

A =
∞∑

n=0

anxn, where a0 = 1, a1 = −1, andan = 0 for n ≥ 2,

B =
∞∑

n=0

bnxn, where bn = 1, n = 0, 1, 2, 3, . . .

C =
∞∑

n=0

cnxn, where cn = a0bn + a1bn−1 + · · · + anb0;

then

c0 = a0b0 = 1, cn = bn − bn−1 = 1− 1 = 0, n = 1, 2, 3, . . . ;

so (1− x)(1+ x+ x2
+ · · · ) = 1.

We can very well give a meaning to infinite sums and products incertain
cases. Thus

A1 + A2 + · · · = B,

C1C2 · · · = D,

both equations understood in the sense modulexN, so that only a finite number
of A′sor (C − 1)′scan contribute as far asxN.

Let us apply our methods to prove the identity:

1+ x+ x2
+ x3
+ · · · = (1+ x)(1+ x2)(1+ x4)(1+ x8) · · ·

Let

C = (1+ x)(1+ x2)(1+ x4) . . .

(1− x)C = (1− x)(1+ x)(1+ x2)(1+ x4) . . .

= (1− x2)(1+ x2)(1+ x4) . . .

= (1− x4)(1+ x4) . . .
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Continuing in this way, all powers ofx on the right eventually disappear,
and we have (1−x)C = 1. However we have shown that (1−x)(1+x+x2

+· · · ) =
1, therefore (1− x)C = (1− x)(1+ x+ x2

+ · · · ), and by the law of cancellation,
C = 1+ x+ x2

+ · · · which we were to prove.
This identity easily lends itself to an interpretation which gives an example 5

of the application of Euler’s idea. Once again we stress the simple fact that
xn · xm

= xn+m. We have

1+ x+ x2
+ x3
+ · · · = (1+ x)(1+ x2)(1+ x4)(1+ x8) · · ·

This is an equality between two formal power series (one represented as a
product). The coefficients must then be identical. The coefficient of xn on the
right hand side is the number of ways in whichn can be written as the sum
of powers of 2. But the coefficient of xn on the left side is 1. We therefore
conclude: every natural number can be expressed in one and only one way as
the sum of powers of 2.

We have proved that

1+ x+ x2
+ x3
+ · · · = (1+ x)(1+ x2)(1+ x4) · · ·

If we replacex by x3 and repeat the whole story, modulox3N, the coeffi-
cients of these formal power series will still be equal:

1+ x3
+ x6
+ x9
+ · · · = (1+ x3)(1+ x2.3)(1+ x4.3) · · ·

Similarly

1+ x5
+ x2.5

+ x3.5
+ · · · = (1+ x5)(1+ x2.5)(1+ x4.5) · · ·

We continue indefinitely, replacingx by odd powers ofx. It is permissible
to multiply these infinitely many equations together, because any given power
of x comes from only a finite number of factors. On the left appears

∏

k odd

(1+ xk
+ x2k

+ x3k
+ · · · ).

On the right side will occur factors of the form (1+ xN). But N can be
written uniquely asxλ.m wherem is odd. That means for eachN, 1+ xN will
occur once and only once on the right side. We would like to rearrange the
factors to obtain (1+ x)(1+ x2)(1+ x3) · · ·

This may be done for the following reason. For anyN, that part of the 6

formal power series up toxN is a polymial derived from a finite number of
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factors. Rearranging the factors will not change the polynomial. But since this
is true for anyN, the entire series will be unchanged by the rearrangement of
factors. We have thus proved the identity

∏

k odd

(1+ xk
+ x2k

+ x3k
+ · · · ) =

∞∏

n=1

(1+ xn) (1)

This is an equality of two formal power series and could be written
∞∑

n=0
anxn

=

∞∑

n=0
bnxn. Let us find whatan andbn are. On the left we have

(1+ x1.1
+ x2.1

+ x3.1
+ · · · )(1+ x1.3

+ x2.3
+ x3.3

+ · · · )
× (1+ x1.5

+ x2.5
+ x3.5

+ · · · ) · · ·

xn will be obtainded as many times asn can be expressed as the sum of odd
numbers, allowing repetitions. On the right side of (1), we have (1+ x)(1 +
x2)(1+ x3) · · · xn will be obtained as many times asn can be expressed as the
sum of integers, no two of which are equal.

an andbn are the number of ways in whichn can be expressed respectively
in the two manners just stated. Butan = bn. Therefore we have proved the
following theorem of Euler:

Theorem 1. The number of representations of an integer n as the sum of dif-
ferent parts is the same as the number of representations of nas the sum of odd
parts, repetitions permitted.

We give now a different proof of the identity (1).

∞∏

n=1

(1+ xn)
∞∏

n=1

(1− xn) =
∞∏

n=1

(1− xn)(1+ xn) =
∞∏

n=1

(1− x2n).

Again this interchange of the order of the factors is permissible. For, up to 7

any given power ofx, the formal series is a polynomial which does not depend
on the order of the factors.

∞∏

n=1

(1+ xn)
∞∏

n=1

(1− xn) =
∞∏

n=1

(1− x2n),

∞∏

n=1

(1+ xn)
∞∏

n=1

(1− x2n−1)
∞∏

n=1

(1− x2n) =
∞∏

n=1

(1− x2n).
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Now
∞∏

n=1
(1−x2n) , 0, and by the law of cancellation, we may cancel it from

both sides of the equation obtaining,

∞∏

n=1

(1+ xn)
∞∏

n=1

(1− x2n−1) = 1.

Multiplying both sides by

∞∏

n=1

(

1+ x2n−1
+ x2(2n−1)

+ x3(2n−1)
+ · · ·

)

∞∏

n=1

(1+ xn)
∞∏

n=1

(

1+ x2n−1
)
∞∏

n=1

(

1+ x2n−1
+ x2(2n−1)

+ · · ·
)

=

∞∏

n=1

(

1+ x2n−1
+ x2(2n−1)

+ · · ·
)

.

For the same reason as before, we may rearrange the order of the factors on
the left.

∞∏

n=1

(1+ xn)
∞∏

n=1

(

1+ x2n−1
) (

1+ x2n−1
+ x2(2n−1)

+ · · ·
)

=

∞∏

n=1

(

1+ x2n−1
+ x2(2n−1)

+ · · ·
)

.

However,

∞∏

n=1

(

1+ x2n−1
) (

1+ x2n−1
+ x2(2n−1)

+ · · ·
)

= 1,

because we have shown that (1− x)(1+ x+ x2
+ · · · ) = 1, and this remains true

whenx is replaced byx2n−1. Therefore the above equation reduces to

∞∏

n=1

(1+ xn)
∞∏

n=1

5
(

1+ x2n−1
+ x2(2n−1)

+ · · ·
)

=

∏

n odd

(

1+ xn
+ x2n

+ x3n
+ · · ·

)

which is the identity (1).
Theorem 1 is easily verified for 10 as follows:10, 1+9, 2+8, 3+7, 4+6, 8

1+2+7, 1+3+6, 1+4+5, 2+3+5, 1+2+3+4 are the unrestricted partitions. Par-
titions into odd summands with repetitions are
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1+9, 3+7, 5+5, 1+1+1+7, 1+1+3+5, 1+3+3+3, 1+1+1+1+1+5,
1+1+1+1+3+3, 1+1+1+1+1+1+1+3, 1+1+1+1+1+1+1+1+1+1.

We have ten partitions in each category.
It will be useful to extend the theory of formal power series to allow us to

find the reciprocal of the seriesa0 + a1x + a2x2
+ · · · where we assume that

a0 , 0. (The coefficients are now assumed to form a field). If the series

b0 + b1x+ b2x2
+ · · · = 1

a0 + a1x+ a2x2 + · · · ,

we would have (a0 + a1x+ a2x2
+ · · · )(b0 + b1x+ b2x2

+ · · · ) = 1. This means
that a0b0 = 1 and sincea0 , 0, b0 = 1/a0. All other coefficients on the left
vanish:

a0b1 + a1b0 = 0,

a0b2 + a1b1 + a2b0 = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We may now findb1 from the first of these equations since all thea′s and
b0 are known. Thenb2 can be found from the next equation, sinceb1 will
then be known. Continuing in this, manner all theb′s can be computed by
successively solving linear equations since the new unknown of any equation
is always accompanied byaν , 0. The uniquely determined formal series
b0+ b1x+ b2x2

+ · · · is now called the reciprocal ofa0+ a1x+ a2x2
+ · · · (We 9

can not invert ifa0 = 0 since in that case we shall have to introduce negative
exponents and so shall be going out of our ring of power series). In view of this

definition it is meaningful to write
1

1− x
= 1+x+x2

+ · · · since we have shown

that (1− x)(1+ x+ x2
+ · · · ) = 1. Replacingx by xk,

1
1− xk

= 1+ xk
+ x2k

+ · · ·
Using this expression, identity (1) may be written

∞∏

n=1

(1+ xn)
∏

k odd

(

1+ xk
+ x2k

+ · · ·
)

=

∏

k odd

1
1− xk

.

For anyN,
∏

k odd
k≤N

1
1− xk

=
1

∏

k odd,k≤N
(1− xk)

Since this is true for anyN, we may interchange the order of factors in the
entire product and get

∞∏

n odd

1
(1− xk)

=
1

∏

k odd
(1− xk)
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Therefore, in its revised form identity (l) becomes:

∞∏

n=1

(1− xn) =
1

∏

n odd
(1− xn)

In order to determine in how many ways a numbern can be split intok
parts, Wuler introduced a parameterz into his formal power series. (The prob-
lem was proposed to Euler in St.Petersburgh: in how many wayscan 50 be
decomposed into the sum of 7 summands?). He considered such expression as
(1+ xz)(1+ x2

z) · · · This is a formal power series inx. The coefficients ofx are
now polynomials inz, and since these polynomials form a ring they porvide an
sdmissible set of coefficients. The product is not a formal power series inz 10

however. The coefficient ofz for example, is an infinite sum which we do not
allow.

(1+ xz)(1+ x2
z)(1+ x3

z) · · ·
= 1+ zx+ zx2

+ (z + z2)x3
+ (z + z2)x4

+ (z + 2z2)x5
+ · · ·

= 1+ z(x+ x2
+ x3
+ · · · ) + z2(x3

+ x4
+ 2x5

+ · · · ) + · · ·
= 1+ zA1(x) + z2A2(x) + z3A3(x) + · · · (2)

The expressionsA1(x),A2(x), · · · are themselves formal power series inx.
They begin with higher and higher powers ofx, for the lowest power ofx
occurring inAm(x) is x1+2+3+···+m

= xm(m+1)/2. This term arises by multiplying
(xz)(x2

z)(x3
z) · · · (xm

z). The advantage in the use of the parameterz is that any
power ofx multiplying zm is obtained by multiplyingm different powers ofx.
Thus each term inAm(x) is the product ofm powers ofx. The z′s therefore
record the number of parts we have used in building up a number.

Now we consider the finite productPN(z, x) ≡
N∏

n=1
(1+ zxn).

PN(z, x) is a polynomial inz: PN(z, x) = 1 + zA(N)
1 (x) + z2A(N)

2 (x) + · · · +
z
NA(N)

N (x), whereA(N)
N (x) = xN(N+1)/2. Replacingzby Zx, we have

N∏

n=1

(1+ zxn+1) = PN(zx, x)

= 1+ zxA(N)
1 (x) + z2x2A(N)

2 (x) + · · ·

So

(1+ zx)PN(zx, x) =
(

1+ zxN+1
)

PN(z, x),
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(1+ zx)
(

1+ zxA(N)
1 (x) + · · · + (zx)NA(N)

N (x)
)

=

(

1+ zxN+1
) (

1+ A(N)
1 (x) + z2A(N)

2 (x) + · · ·
)

We may now compare powers ofzon both sides since these are polynomi-11

als. Takingzk, k ≤ N, we have

xkA(N)
k (x) + xkA(N)

k−1(x) = A(N)
k (x) + xN+1A(N)

k−1(x);

A(N)
k (x)(1− xk) = a(N)

k−1(x)xk
(

1− xN+1−k
)

,

A(N)
k (x) =

xk

1− xk

(

1− xN+1−k
)

A(N)
k−1(x),

A(N)
k (x) ≡ xk

1− xk
A(N)

k−1(x) (mod xN).

From this recurrence relation we immediately have

A(N)
1 (x) ≡ x

1− x
(mod xN),

A(N)
2 (x) ≡ x · x2

(1− x)(1− x2)
(mod xN)

≡ x3

(1− x)(1− x2)
(mod xN)

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

A(N)
k ≡ xk(k+1)/2

(1− x)(1− x2) · · · (1− xk)
(mod xN)

Hence

∞∏

n=1

(1+ zxn) ≡ 1+
zx

1− x
+

z
2x3

(1− x)(1− x2)
+

z
3x6

(1− x)(1− x2)(1− x3)

+ · · · (mod xN)
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In the last lecture we proved the identity: 12

∞∏

n=1

(1+ zxk) =
∞∑

k=0

z
kAk(x), (1)

where

Ak(x) =
xk(k+1)/2

(1− x)(1− x2) · · · (1− xk)
(2)

We shall look upon the right side of (1) as a power series inx andnot as a
power-series inz, as otherwise the infinite product on the left side would have
no sense in our formalism. Let us inerpret (1) arithmetically. If we want to
decomposem into k summands, we have evidently to look forzk and then for
xm, and the coefficient ofzkxm on the right side of (1) gives us exactly what we
want. We have

1
(1− x)(1− x2) · · · (1− xk)

=

∞∑

n1=0

xn1

∞∑

n2=0

x2n2 · · ·
∞∑

nk=0

xknk

=

∞∑

m=0

p(k)
m xm,

say, with p(k)
0 = 1.

Thereforemoccurs only in the form

m= n1 + 2n2 + · · · + knk, n j ≥ 0,

andp(k)
m tells us how oftenm can be represented byk dfferent summands (with

possible repetitions). On the other hand the coefficient of xm on the left-side

11
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of (1) gives us the number of partitions ofm into summands not exceedingk.
Hence,

Theorem 2. m can be represented as the sum of k different parts as often as 13

m− k(k+ 1)
2

can be expressed as the sum of parts not exceeding k (repetition

being allowed).

(In the first the number of parts is fixed, in the second, the size of parts).
In a similar way, we can extablish the identity

1
∏∞

n=1(1− zxn)
=

∞∑

k=0

z
kBk(x), (3)

with B0 = 1, which again can be interpreted arithmetically as follows.
The left side is

∞∑

n1=0

(zx)n1

∞∑

n2=0

(zx2)n2

∞∑

n3=0

(zx3)n3 · · ·

and

Bk(x) =
xk

(1− x)(1− x2) · · · (1− xk)
(4)

The left-side of (3) givesm with the representation

m= n1 + 2n2 + 3n3 + · · ·

i.e., as a sum of parts with repetitions allowed. Exactly as above we have:

Theorem 3. m can be expressed as the sum of k parts (repetitions allowed)as
often as m− k as the sum of parts not exceeding k.

We shall now consider odd summands which will be of interest in connex-
ion withV-function later. As earlier we can establish the identity

∏

V odd

(1+ zxV) =
∞∑

k=0

z
kCk(x) (5)

with the provide thatC◦(x) = 1. The trick is the same. One studies temporatily14

a truncated affair
V∏

V=1
(1 + zxV), replacesz by zx2 and evaluatesCk(x) as in

Lecture 1. This would be perfectly legitimate. However one could proceed as
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Euler did - this is not quite our story. Multiplying both sides by 1+ zx2, we
have

∞∑

k=0

z
kCk(x) = (1+ zx2)

∞∑

k=0

z
kx2kCk(x).

Now compare powers ofzon both sides - and this was what required some
extra thought.Ck(x) begins withx1+3+···+(2k−1)

= xk2
; in fact they begin with

later and later powers ofx and so can be added up. We have

C0 = 1,

Ck(x) = x2kCk(x) + x2k−1Ck−1(x), k > 0,

or Ck(x) =
x2k−1

1− x2k
Ck−1(x)

from this recurrence relation we obtain

C1(x) =
x

1− x2
,

C2(x) =
x3

1− x4
C1(x) =

x4

(1− x2)(1− x4)
,

C3(x) =
x5

1− x6
C2(x) =

x9

(1− x2)(1− x4)(1− x6)
,

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Ck(x) =
xk2

(1− x2)(1− x4) · · · (1− x2k)
,

carrying on the same rigmarole.
Now note that all this can be retranslated into something.
Let us give the number theoretic interpretation. The coefficient of zkxm 15

gives the number of timesm can be expressed as the sum ofk different odd
summands. On the other hand, the coefficients in the expansion of 1

(1−x2)···(1−x2k)
give the decomposition into even summands, with repetitions. Hence,

Theorem 4. m is the sum of k different odd parts as often as m− k2 is the sum
of even parts not exceeding2k, or what is the same thing, asm−k2

2 is the sum
of parts not exceeding k. (since m and k are obviously of the same parity, it
follows thatm−k2

2 is an integer).

Finally we can prove that

1
∏

V odd(1− zxV)
=

∞∑

k=0

z
kDk(x) (6)
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Replacingz by zx2, we obtain

Dk(x) =
xk

(1− x2) · · · (1− x2k)
,

leading to the

Theorem 5. m is the sum of k odd parts as often as m− k is the sum of even
parts not exceeding2k, or m−k

2 is the sum of even parts not exceeding k. (m−k
2

again is integral).

Some other methods
Temporarily we give up power series and make use of graphs to study par-

titions. A partition ofN may be represented as an array of dots, the number of
dots in a row being equal to the magnitude of a summand. Let us arrange the
summands according to size.

For instance, let us consider a partition of 18 into 4 different parts 16

If we read the diagram by rows we get the partiton 18=7+5+4+2. On the
other hand reading by columns we have the pertition 18= 4+4+3+3+2+1+1.
In general it is clear that if we represent a partition ofn into k parts graphically,
then reading the graph vertically yields a partition ofn with the largest part
k, and conversely. This method demonstrates a one-to-one correspondence
between partitions ofn with k parts and partitions sees that the number of
partitions ofn with largest partk is equal to the number of partitions ofn − k
into parts not exceedingk.
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Draw a diagonal upward starting from the last but one dot in the column on
the extreme left. All the dots to the right of this diagonal constitute a partition of
12 into 4 parts. For each partition of 18 into 4 different parts there corresponds
thus a partition of 18− 4.3

2 = 12 into parts. This process works in general for a17

partition ofn with k different parts. If we throw away the dots on and to the left
of the diagonal (which is drawn from the last but one point from the bottom in
order to exsure that the number of different parts constinues to be exactlyk),
we are left with a partition ofn− (1+ 2+ 3+ · · · + (k− 1)) = n− k(k−1)

2 . This
partition has exactlyk parts because each row is longer by at least one dot than
the row below it, so an entire row is never discarded. Conversely, starting with
a partition ofn− k(k−1)

2 into k parts, we can build up a unique partition ofn into
k different parts. Add 1 to the next to the smallest part, 2 to the next longer, 3 to
the next and so on. This one-to-one correspondence proves that the number of
partitions ofn into k different parts equals the number of partitions ofn− k(k−1)

2
into k parts.

We can prove graphically that the number of partitons ofn into k odd sum-
mands is the same as the number of partitions ofn − k2 into even summands
not exceedingk. The last row of the

diagram contains at least one dot, the next higher at least three, the one
above at least five, and so on. Above and on the diagonal there are 1+ 3+ 5+
· · · + (2k − 1) = k2 dots. When these are removed, an even number of dots is
left in each row, althogether adding up ton− k2. This proves the result.

Theorem 1 can also be proved graphically, although the proofis not quite 18

as simple. The idea of the proof is examplified by consideringthe partitons of
35. We have

35= 10+ 8+ 7+ 5+ 4+ 1

= 5× 2+ 1× 8+ 7+ 5+ 1× 4+ 1

= 5(2+ 1)+ 7× 1+ 1(8+ 4+ 1)
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7+ 5+ 5+ 5+




1+ · · · + 1
︸      ︷︷      ︸

13 times





Thus to each unrestricted partition of 35 we can make correspond a parti-
tion into add summands with possible repetitions. Conversely

7× 1+ 5× 3+ 1× 13= 7× 1+ 5(1+ 2)+ 1(23
+ 22
+ 20)

= 7+ 5+ 10+ 8+ 4+ 1.

Now consider the following diagram

13 times

2 4 6 3

20

Each part is represented by a row of dots with the longest row at ehe top,
second longest next to the top, etc. The oddness of the parts allows uo to
place the rows symmetrically about a central vertical axis.Now connect the 19

dots in the following way. Connect the dots on this vertical axis with those on
the left half of the top row. Then connect the column to the right of this axis
to the other half of the top row. We continue in this way as indicated by the
diagram drawing right angles first on one side of the centre and then on the
other. We now interpret this diagram as a new partition of 35 each part being
represented by one of the lines indicated. In this way we obtain the partition
20+6+4+3+2 of 35 into different parts. It can be proved that this method works
in general. That is, to prove that given a partition ofn into odd parts, this
method transforms it into a unique partition ofn into distinct parts; conversely,
given a partation into distinct parts, the process can be reversed to find a unique
partition into odd parts. This establishes a one-to-one correspondence between
the two sorts of partitions. This proves our theorem.
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The series
∞∑

k=0
z
kAk(x) that we had last time is itself rather interesting; theAk(x) 20

have a queer shape:

Ak(x) =
xk(k−1)/2

(1− x)(1− x2) · · · (1− xk)

Such series are called Euler series. Such expressions in which the factors in
the denominator are increasing in this way have been used forwide generalisa-
tions of hypergeometric series. Euler indeed solved the problem of computing
the coefficients numerically. The coefficient of zkxm is obtained by expanding

1
(1−x)···(1−xk) as a power series. This is rather trivial if we are in the field of com-
plex numbers, since we can then have a decomposition into partial fractiions.
Euler did find a nice sort of recursion formula. There is therefore a good deal
to be said for a rather elementary treatment.

We shall, however, proceed to more important discussions the problem of
unrestricted partitions. Consider the infinite product (this is justifiable modulo
xN)

∞∏

m=1

1
1− xm

=

∞∏

m=1

∞∑

n=0

xmn

=

∞∑

n1=0

xn1

∞∑

n2=0

x2n2 ·
∞∑

nj=0

x3n3 · · ·

= 1+ x+ 2x2
+ · · ·

= 1+
∞∑

n=1

pnxn (1)

17
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What doespn signify? pn appeared in collecting the termxn. Following 21

Euler’s idea of addition of exponents, we have

n = n1 + 2n2 + 3n3 + 4n4 + · · ·n j ≥ 0, (2)

so thatpn is the number of solutions of afiniteDiophantine equation (since the
right side of (2) becomes void after a finite stage) or the number of ways in
whichn can be expressed in this way, or the number of unrestricted partitions.
Euler wrote this as

1
∏∞

m=1(1− xm)
=

∞∑

n=0

p(n)xn, (3)

with the provide thatp(0) = 1.
We want to find as much as possible aboutp(n). Let us calculatep(n).

Expanding the product,

∞∏

n=1

(1− xn) = (1− x)(1− x2)(1− x3) · · ·

= 1− x− x2
+ x5
+ x7 − x12 − x15

+ + − − · · ·

(Note Euler’s skill and patience; he calculated up toxn and found to this
surprise that the coefficients were always 0,±1, two positive terms followed by
two negative terms). We want to find the law of exponents, as every sensible
man would. Writing down the first few coeffieicnts and taking differences, we
have

0 1 2 5 7 12 15 22 26

1 1 3 2 5 3 7 4

the sequence of odd numbers interspersed with the sequence of natural num-
bers. Euler forecast by induction what the general power would be as follows. 22

7 2 0 1 5 12 22

−5 −2 1 4 7 10

3 3 3 3 3

Write down the coefficients by picking up 0, 1 and every other alternate
term, and continue the row towards the left by putting in the remaining coeffi-
cients. Now we find that the second differences have the constant value 3. But
an arithmetical progression of the second order can be expressed as a polyno-
mial of the second degree. The typical coefficient will therefore be given by an
expression of the form
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aλ2
+ bλ + c a(λ + 1)2 + b(λ + 1)+ c a(λ + 2)2 + b(λ + 2)+ c

a(2λ + 1)+ b a(2λ + 3)+ b

2 a (the constant second difference)
Hence 2a = 3 or a = 3/2. Takingλ = 0 we find thatc = 0 andb = − 1

2,
so that the general coefficient has the formλ(3λ−1)

2 . Observing that whenλ is
changed to−λ, λ(3λ−1)

2 becomesλ(3λ+1)
2 , the coefficient ofxλ(3λ−1)/2 is (−)λ, and

hence
∞∏

n=1

(1− xn) =
∞∏

λ=−∞
(−)λxλ(3λ−1)/2, (4)

which is Euler’s theorem.
This sequence of numbersλ(3λ−1)

2 played a particular role in the middle
ages. They are calledpentagonal numbersand Euler’s theorem is called the
pentagonal numbers theorem. We have the so-called triangular numbers:

1 3 6 10 15

2 3 4 5

1 1 1

where the second differences are all 1; the square-numbers 23

1 4 9 16 25

3 5 7 9

2 2 2

for which the second difference are always 2; and so on.

1

The triangular numbers can be represented by dots piled up inthe form of
equilateral triangles; the square numbers by successivelyexpanding squares.
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The pentagons however do not fit together like this. We start with one pen-
tagon; notice that the vertices lie perspectively along rays through the origin.
So take two sides as basic and magnify them and add successiveshelves. The
second differences now are always 3:

1 5 12 22

4 7 10

33

In general we can haver-gonal numbers where the last difference are all
r − 2.

We go back to equation (4): 24

∞∏

m=1

(1− xm) =
∞∑

λ=−∞
(−)λxλ(3λ−1)/2

It is quite interesting to go into the history of this. It appeared in Euler’s
Introductio in Analysin Infinitorum, Caput XVI, de Partitionumerorum, 1748
(the first book on the differential and integral calculus). It was actually discov-
ered earlier and was mentioned in a paper communicated to theSt. Petersburgh
Academy in 1741, and in letters to Nicholas Bernoulli (1742)and Goldbach
(1743). The proof that bothered him for nine years was first given in a letter
dated 9th june 1750 to Goldvach, and was printed in 1750.

The identity (4) is remarkable; it was the first time in history that an identity
belonging to theV-functions appeared (later invented and studied systemati-
cally by Jocobi). The interesting fact is that we have a power-series in which
the exponents are of the second degree in the subscripts. TheV-functions have
a representation as a series and slso as an infinite porduct.

The proof of identity (4) is quite exciting and elementary. By using dis-
tributivity we break up the product

(1− x)(1− x2)(1− x3)(1− x4) · · ·

in the following way:

(1− x)(1− x2)(1− x3)(1− x4) · · · = 1− x− (1− x)x2 − (1− x)(1− x2)x3−
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(1− x)(1− x2)(1− x3)(1− x4) − (1− x) · · · (1− x4)x5 − · · ·

which may be re-arranged, opening first parenthesis, as

1− x− x2

E

E

E

E

E

E

E

E

E

− (1− x2)x3

M

M

M

M

M

M

M

M

M

M

− (1− x2)(1− x3)x4

R

R

R

R

R

R

R

R

R

R

R

R

R

R

− (1− x2)(1− x3)(1− x4)x5

J

J

J

J

J

J

J

J

J

J

J

J

+x3 +(1− x2)x4
+(1− x2)(1− x3)x5

So 25

1− x− x2
+ x5
+ x7(1− x2) + x9(1− x2)(1− x3) + · · ·

= 1− x− x2
+ x5
+ 27

:

:

:

:

:

:

:

+(1− x3)x9

M

M

M

M

M

M

M

M

M

M

+(1− x3)(1− x4)x11

C

C

C

C

C

C

C

C

C

C

−x9 −(1− x3)x11

1− x− x2
+ x5
+ x7 − x12(1− x3)x15 − (1− x3)(1− x4)x18− · · ·

When this is continued, we get some free terms at the beginning followed
by a typical remainder

(1− xk)xm
+ (1− xk)(1− xk+1)xm+k

+ (1− xk)(1− xk+1)(1− xk+2)xm+2k,

which may be rearranged into

xm
+ (1− xk+1)xm+k

+ (1− xk+1)(1− xk+2)xm+2k − xm+k − (1− xk+1)xm+2k (*)

= xm − xm+2k+1 − (1− xk+1)xm+3k+2 − (1− xk+1)(1− xk+2)

xm+4k+3 − · · · (**)

We have two free terms with opposite signs at the beginning. In (*) the
difference between exponents in successive terms isk, while in (**) this in-
creases tok + 1; this difference is in both cases the exponent ofx in the first
factor. The remainder after the free terms begine with−, so that the sequence
of signs is+ − − + + − − · · · This process perpetuates itself and the question26

remains which powers actually appear. It is sufficient to mark down a scheme
for the exponents which completely characterises the expansion. The scheme
is illustrated by what follows.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 7 9 11 13 15 17 19 21 23 25 27 29 31

3 4 5 6 7 8 9 10 11 12 13 14
12 15 18 21 24 27 30 33 36 39 42 45

4 5 6 7 8 9 10 11 12 13
22 26 30 34 38 42 46 50 54 58

5 6 7 8 9 10 11 12
35 40 45 50 55 60 65 70

6 7 8 9 10 11
51 57 63 69 75 81

We write down the sequence of natural numbers in a row; the sequence less
the first two membere is repeated in a parallel row below leaving out the first
three placess at the beginning. Adding up we get

5 7 9 11 . . . . . . . . . ,

below which is placed the original sequence less the first three members, again
translating the whole to the right by two places. We again addup and repeat
the procedure. A typical stage in the procedure is exhibitedbelow.

m m+ k m+ 2k m+ 3k m+ 4k m+ 5k
k+ 1 k+ 2 k+ 3 k+ 4 k+ 5

m+ 2k+ 1 m+ 3k+ 2 m+ 4k+ 3 m+ 5k+ 4 m+ 6k+ 5

The free indices then appear successively as 27

2+ 3 = 5 3+ 4+ 5 = 12

3+ 4 = 7 4+ 5+ 6= 15,

and in general:

λ + (λ + 1)+ · · · + (2λ − 1) =
λ(3λ − 1)

2
,

(λ + 1)+ (λ + 2)+ · · · + 2λ =
λ(3λ + 1)

2
,

which are the only exponents appearing. We thus have

∞∏

n=1

(1− xn) =
∞∑

λ=−∞
(−)λxλ(3λ−1)/2
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In the last lecture we proved the surprising theorem on pentagonal numbers: 28

∞∏

m=1

(1− xm) =
∞∑

λ=−∞
(−)λxλ(3λ−1)/2 (1)

We do not need these identities for their own sake, but for their applications
to number theory. We have the same sort of power-series on both sides; let us
compare the coefficients ofxn. On the left siden appears as the sum of different
exponents. But in contradiction to previous situations, the coefficients appear
with both positive and negative signs, so that when we collect the terms there
may be cancellations. There are gaps in the powers that appear, but among
those which appear with non-zero coefficients, we have a pair of positive terms
followed by a pair of negative terms and vice versa. In most cases the coef-
ficients are zero; this is because of cancellations, so that roughly terms with
positive and negative signs are in equal number. A positive sign appears if we
multiply an even number of times. otherwise a negative sign.So an even num-
ber of different summands is as frequent generally as an odd number. Hence
the following theorem:

The number of decompositions ofn into an even number of different parts
is the same as the number of decompositions into an odd number, with the
exception that there is a surplus of one sort or the other ifn is a pentagonal
number of the formλ(3λ − 1)/2.

Before proceeding further let us examine a number of concrete instances.
Take 6 which is not a pentagonal number. The partitions are 6,1 + 5, 2+ 4, 29

1+2+3, so that there are two decompositions into an even number ofdifferent
parts, and two into an odd number. Next take 7, which is a pentagonal number,
7 = λ(3λ+1)

2 with λ = 2. We can actually foresee that the excess will be in the
even partitions. The partitions are 7, 1+6, 2+5, 3+4, 1+2+4. Take 8 which

23
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again is not pentagonal. We have three in each category: 8, 1+ 7, 2+ 6, 3+ 5,
1+ 2+ 5, 1+ 3+ 4.

This is a very extraordinary property of pentagonal numbers. One would
like to have a direct proof of this. A proof is due to Fabian Franklin (Comptes
Rendus, Paris. 1880), a pupil of the famous Sylvester. The proof is combi-
natorial. We want to establish a one-one correspondence between partitions
containing an even number of summands and those containing an odd number
- except for pentagonal numbers.

Consider a partition with the summands arranged in increasing order, each
summand being denoted by a horizontal row of dots. Mark specifically the first
row,

with r dots, and the last slope, withs dots i.e., points on or below a segn-
ment starting from the dot on the extreme right of the last rowand inclined at
45◦ (as in the diagram). We make out two cases.

1. s < r. Transfer the last slope to a position immediately above thefirst
row. The diagram is now as shown below:

The uppermost row is still shorter than the others. (becausein our case 30

s < r). By this procedure the number of rows is changed by 1. This
establishes the one-one correspondence between partitionof the ‘odd’
type and ‘even’ type.
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2. s≥ r. As before consider the first row and the last slope.

Take the uppermost row away and put it parallel to the last slope. This
diminishes the number of rows by 1, so that a partition is switched over
from the ‘even’ class to the ‘odd’ class or conversely.

Therefore there exists a one-one correspondence between the two classes.
So we have proved a theorem, which is a wrong one! because we have not
taken account of the exceptional case of pentagonal numbers. The fallacy lies
in having overlooked the fact that the last slope may extend right up to the
first row; the slope and the row may very well interfere. Let ustake one such
instance. Let agains< r.

If we place the last slope above the first row this works because the number 31

of points in the first row is also diminished by one, in fact by the disputed point
(notice again that no two rows are equal fors< r −1). So the interference is of
no account. Withs≥ r we may again have an interfering case. We again place
the top row
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behind the last slope, this time with a punishment. We have now shortened the
slope by 1. Fors− 1 ≥ r the method is still good. So the only cases of earnest
interference are:

(i) s< r but x ≥ r − 1. Thenr − 1 ≤ s≤ r and hences= r − 1

(ii) s≥ r but s− 1 < r. Thens≥ r > s− 1 and hences= r.

Here we have something which can no longer be overcome. Theseare the
cases of pentagonal numbers. In (ii) the total number of dotsis equal to

s+ (s+ 1)+ (s+ 2)+ · · · + (2s− 1)

=
s(3s− 1)

2

In (i) this number= (s+ 1)+ (s− 2)+ · · · + 2s

=
s(3s+ 1)

2

These decompositions do not have companions. In general every partition
into one parity of different summands has a companion of the other parity of
different summands; and in the case of pentagonal numbers there is just one in 32

excess in one of the classes.
We now come to the most important application of identity (1). Since

1
∏∞

m=1(1− xm)
=

∞∑

n=0

p(n)xn,

we have on combining this with (1),

1 =
∞∑

n=0

p(n)xn
∞∑

λ=−∞
(−)λxλ(3λ−1)/2 (2)
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This tells us the follwing story. All the coefficients on the right side of (2)
excepting the first must be zero. The typical exponent in the second factor on
the right side isλ(3λ − 1)/2 = ωλ, say. (The first fewω′λs are 0, 1, 2, 5, 7, 12,
15, . . .). Now look for xn. Since the coefficient in the first factor isp(n) and
that in the second always±1, we have, sincexn(n , 0) does not appear on the
left side

p(n) − p(n− 1)− p(n− 2)+ p(n− 5)+ p(n− 7)− − + + · · · = 0

or
∑

0≤ωλ≤n

p(n− ωλ)(−)λ = 0 (3)

This is a formula of recursion. Omitting the first index of summation (3)
gives

p(n) =
∑

0<ωλ≤n

(−)λ−1p(n− ωλ) (4)

Let us calculate the first fewp(n).

p(0) = 1

p(1) = p(1− 1) = p(0) = 1

p(2) = p(2− 1)+ p(2− 2) = 2

p(3) = p(3− 1)+ p(3− 2) = 3

p(4) = p(4− 1)+ p(4− 2) = 5

p(5) = p(5− 1)+ p(5− 2)− p(5− 5) = 7

(Watch! a pentagonal number - and a negative sign comes into action!). These 33

formulae get longer and longer, but not excessively so. Let us estimate how

long these will be. Sinceωλ ≤ n we have to look forλ satisfying
λ(3λ − 1)

2
≤

n, which gives

12λ(3λ − 1) ≤ 24n,

36λ2 − 12λ ≤ 24n,

(5λ − 1)2 = 24n+ 1,

|6λ − 1| =
√

24n+ 1,
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|λ − 1
6
| ≤ 1

6

√
24n+ 1.

Hence roughly there will be
1
3

√
24n =

2
3

√
6n summands on the left side

of (3). So their number increases with the square root ofn- the expressions do
not get too long after all (forn = 100, we have 17 terms).

These formulae have been used for preparing tables ofp(n) which have
been quite useful. For instance Ramanujan discovered some of the divisibility
properties ofp(n) by using them. In the famous paper of Hardy and Ramanu-34

jan (1917) there is a table ofp(n) for n ≤ 200. These were computed by
Macmahon, by using the above formulae and the values were checked with
those given by the Hardy-Ramanujan formula. The asymptoticvalues were
found to be very close to what Macmahon computed. Gupta has extended the
table forp(n) up to 600.

Before making another application of Euler’s pentagonal theorem, we pro-
ceed a bit further into the theory of formal power series. We add now one more
formal procedure, that of formal differentiation. Let

A = a◦ + a1x+ a2x2
+ · · ·

The derivativeA′ of A is by definition

A′ = a1 + 2a2x+ 3a3x2
+ · · ·

This is again a power series in our sense. This operation of differentiation
which produces one power series from another is a linear operation:

(A+ B)′ = A′ + B′,

whereB is a second power series. This is easy to verify; actually we need do
this only for polynomials as everything is true moduloxN. Again,

(c A)′ = c A′

as can be seen directly. Also

(A · B)′ = A′B+ A B′.

Let us look into this situation. Start with the simplest case, A = xm, B = xn.
Then

A′ = mxm−1, B′ = nxn−1
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and (AB)′ = (xm+n)′ = (m+ n)xm+n−1,

also A′B+ AB′ = mxm−1+n
+ nxm+n−1

= (m+ n)xm+n−1

So this is true also for polynomials by linearity, we can do itpiecemeal. 35

And as it is enough if we stop short atxN, it is true in general,
Let us add one more remark. Let us write down a special case where A

andB have reciprocals. ThenAB has a reciprocal too (since the units form a
group). In this case we have

(AB)′

AB
=

A′

A
+

B′

B
,

which is the rule for logarithmic differentiation. (It is identical with the proce-
dure in the calculus, as soon as we speak of functions). ForA, B andC,

(ABC)′ = A′(BC) + A(BC)′ = A′BC+ AB′C + ABC′

or
(ABC)′

ABC
=

A′

A
+

B′

B
+

C′

C
,

and so on; in general,
(∏K

n=1 Ak

)′

∏K
k=1 Ak

=

K∑

k=1

A′K
Ak

We can do this for infinite products also if the products are permissible.

Indeed
K∏

k=1
Ak is legitimate ifAℓ = 1+ aℓ(k)xℓ + · · · Consider moduloxN; break

at a finite spot and the factors 1 will come into action.
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Let us consider some applications of formal differentiation of power series. 36

Once again we start from the pentagonal numbers theorem:

∞∏

m=1

(1− xm) =
∞∑

λ=−∞
(−)λxλ(3λ−1)/2

=

∞∑

λ=−∞
(−)λxωλ , (1)

with ωλ =
λ(3λ − 1)

2
. Taking the logarithmic derivative - and this can be done

piecemeal-

∞∑

m=1

−mxm−1

1− xm
=

∞∑

λ=−∞
(−)λωλxωλ−1

∞∑

λ=−∞
(−)λxωλ

Multiplying both sides byx,

∞∑

m=1

−mxm

1− xm
=

∞∑

λ=−∞
(−)λωλxωλ

∞∑

λ=−∞
(−)λxωλ

(2)

The left side here is an interesting object called a Lambert series, with a
structure not quite well defined; but it plays some role in number theory. Let
us transform the Lambert series into a power series; it becomes

−
∞∑

m=1

m
∞∑

k=1

xkm
= −

∞∑∑

k1m=1

mxkm,

30
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and these are all permissible power series, because though there are infinitely
many of them, the inner ones begin with later and later terms.

Rearranging, this gives 37

−
∑

n=km

∞∑

m=1

mxn
= −

∞∑

n=1

xn
∑

m/n

m

= −
∞∑

n=1

σ(n)xn,

whereσ(n) denotes the sum of the divisors ofn, σ(n) =
∑

d|n
d.

(Let us studyσ(n) for a moment.

σ(1) = 1, σ(2) = 3, σ3 = 4, σ(5) = 6; indeedσ(p) = p+ 1

for a primep. Andσ(n) = n+ 1 implies thatn is prime.σ(n) is not too big;
there can be at mostn divisers ofn and so roughlyσ(n) = O(n2). In fact it is
known thatσ(n) = O(n1+epsilon), ∈> 0, that is, a little larger than the first power.
We shall however not be studyingσ(n) in detail).

Equation (2) can now be rewritten as

∞∑

n=1

σ(n)xn
∞∑

λ=−∞
(−)λxωλ =

∞∑

λ=−∞
(−)λ−1ωλxωλ

Let us look for the coefficient of xm on both sides. Remembering that the
first fewω′λsare 0, 1, 2, 5, 7, 12, 15· · · , the coefficient ofxm on the left side is

σ(m) − σ(m− 1)− σ(m− 2)+ σ(m− 6)+ σ(m− 7)− − + + · · ·

On the right side the coefficient is 0 most frequently, because the pentago-
nal numbers are rather rare, and equal to (−)λ−1ωλ exceptionally, whenm= ωλ.

σ(m) − σ(m− 1)− σ(m− 2)+ + − − · · · =





0 usually,

(−)λ−1ωλ for m= ωλ.

We now single outσ(m). 38

We may write

σ(m) =
∑

0<ωλ<m

(−)λ−1σ(m− ωλ) +





0 usually,

(−)λ−1ωλ for m= ωλ
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This is an additive recursion formula forσ(n). We can make it even more
striking. The inhomogeneous piece on the right side is a little annoying.σ(m−
m) can occur on the right side only form = ωλ; σ(0) does not make sense;
however,for our purposelet us define

σ(m−m) = m.

Thenσ(ωµ − ωµ) = ωµ, and the previous formula can now be written
uninterruptedly as

σ(m) =
∑

0<ωλ≤m

(−)λ−1σ(m− ωλ) (3)

We have proved earlier that

p(m) =
∑

0<ωλ≤m

(−)λ−1p(m− ωλ) (4)

which is a formula completely identical with (3). Herep(m− m) = p(0) = 1.
It is extraordinary thatσ(m) andp(m) should have the same recursion formula,
differing only in the definition of the term withn = 0. This fact was noted by
Euler. In factp(m) is increasing monotonically, while the growth ofσ(m) is
more erratic.

There are more relations betweenp(m) andσ(m). Let us start again with
the identity

∞∏

m=1

(1− xm)
∞∑

m=0

p(m)xm
= 1 (5)

We know that for a pair of power seriesA, B such thatAB = 1, on taking 39

logarithmic derivatives, we have
A′

A
+

B′

B
= 0 or

A′

A
= −B′

B
. So from (5),

∞∑

m=1

σ(m)xm
=

∞∑

n=0
np(n)xn

∞∑

n=0
p(n)xn

,

or
∞∑

m=1

σ(m)xm
∞∑

k=0

p(k)xk
=

∞∑

n=0

np(n)xn.

Comparing coefficients ofxn,

np(n) =
∑

m+k=n

σ(m)p(k),
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or more explicitly,

np(n) =
∞∑

m=1

σ(m)p(n−m) (6)

This is a bilinear relation betweenσ(n) and p(n). This can be proved di-
rectly also in the following way. Let us consider all the partitions of n; there
arep(n) such:

n = h1 + h2 + · · ·
n = k1 + k2 + · · ·
n = ℓ1 + ℓ2 + · · ·
. . . . . . . . .

Adding up, the left side givesnp(n). Let us now evaluate the sum of the
right sides. Consider a particular summandh and let us look for those partitions
in whichh figures. These arep(n−h) partitions in whichh occurs at least once,
p(n − 2h) in which h occurs at least twices; in general,p(n − rh) in which h
occurs at leastr times. Hence the number of those partitions which containh
exactly r times isp(n−nh)− p(n−n+ 1h). Thus the number of timesh occurs 40

in all partitions put together is
∑

nh≤n

n
{

p(n− nh) − (n− n+ 1h)
}

Hence the contribution from these to the right side will be

h
∑

nh≤n

n
{

p(n− nh) − (n− n+ 1h)
}

= h
∑

nh≤n

p(n− nh)

on applying partial summation. Now summing over all summandsh, the right
side becomces

∑

h

h
∑

nh≤n

p(n− nh) =
∑

n/m

m
n

∑

m≤n

p(n−m),

on puttingrh = m; and this is

∑

m≤n

p(n−m)
∑

n.m

m
n
=

n∑

m=1

p(n−m)σ(m).

Let us make one final remark.
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Again from the Euler formula,

∞∑

m=1

σ(m)xm
=

∞∑

λ=−∞
(−)λ−1ωλxωλ

∞∑

λ=−∞
(−)λxωλ

=

∞∑

λ=−∞
(−)λ−1ωλxωλ

∞∏

m=1
(1− xm)

=

∞∑

λ=−∞
(−)λ−1ωλxωλ

∞∑

m=0

p(m)xm

Comparing the coefficients ofxm on both sides, 41

σ(m) = p(m) − 1 · p(m− 1)− 2 · p(m− 2)+ 5 · p(m− 5)

+ 7 · p(m− 7)− + · · ·

=

∑

0≤ωλ≤m

(−)λ−1ωλp(m− ωλ)

This last formula enables us to find out the sum of the divisorsprovided
that we know the partitions. This is not just a curiosity; it provides a useful
check on tables of pertitions computed by other means.

We go back to power series leading up to some of Ramanujan’s theorems.
Jacobi introduced the products

∞∏

n=1

(1− x2n)(1+ zx2n−1)(1+ z−1x2n−1).

This is a power series inx; though these are infinitely many factors they
start with progressively higher powers. The coefficients this time are not poly-
nomials inz but from the fieldR(z), the field of rational functions ofz, which
is a perfectly good field. Let us multiply out and we shall havea very nice
surprise. The successive coeffieicnts are:

1
x : z + z−1 (note that this is unchanged whenz→ z−1)
x2 : (1+ 1) = 0
x3 : (z + z−1 − z − z−1) = 0
x4 : (−1− 1+ z2 + 1+ 1+ z−2) = z2 + z−2 (again unchanged whenz→ z−1)

. . . . . . . . . . . .
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We observe that non-zero coeffieicnts are associated only with square ex-42

ponents. We may threfore provisionally write

∞∏

n=1

(1− x2n)(1+ zx2n−1)(1+ z−1x2n−1) = 1+
∞∑

k=1

(zk + z−k)xk2

=

∞∑

k=−∞
z
kxk2

(7)

(with the terms corresponding to±k folder together). This is aV- series; only
quadratic exponents occur.

We shall now prove the identity (7). But we have got to be careful. Consider
the polynomial

ΦN(x, z) =
N∏

n=1

(1− x2n)(1+ zx2n−1)(1+ z−1x2n−1)

This consists of termsz j xk with −N ≤ j ≤ N, 0 ≤ k ≤ N(N + 1)+ 2N2
=

3N2
+ N. We can rearrange with respect to powers ofz. The coefficients are

now polynomials inx. zandz−1 occur symmetrically.

ΦN(x, z) = C◦(x) + (z + z−1)C1(x) + (z2 + z−2)C2(x) + · · · + (zN + z−N)CN(x).

Let us calculate theC′s. It is cumbersome to look forC◦, for so many
cancellations may occur. It is easier to calculateCN. Since the highest power
of zcan occur only from the terms with the highest power ofx, we have

CN(x) =
N∏

n=1

(1− x2n) × x1+3+···+(2N−1)

= xN2
N∏

n=1

(1− x2n)

Now try to get a recursion among theC′s. Replacingzby zx2, we get 43

ΦN(x, zx2) =
N∏

n=1

(1− x2n)(1+ zx2n+1)(1+ z−1x2n−3).

CompareΦN(x, zx2) andΦN(x, z); these are related by the equation

ΦN(x, zx2)(1+ zx)(1+ z−1x2N−1) = ΦN(x, z)(1+ zx2n+1)(1+ z−1x−1)
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The negative power in the last factor on the right is particularly disgusting;
to get rid of it we multiply both sides byxz, leading to

ΦN(x, zx2)(xz + x2N) = ΦN(x, z)(1+ zx2N+1),

or (1+ zx2N+1)(C◦(x) + (z + z−1)C1(x) + · · · + (zN + z−N)CN(x))

= (xz + x2n)(C◦(x) + (zx2
+ z
−1x−2)C1(x)+

+ (z2x4
+ z
−2x−4)C2(x) + · · · + (zNx2N

+ z
−Nx−2N)CN(x))

These are perfectly harmless polynomials inx; we may compare coeffi-
cients ofzk. Then

Ck(x) +Ck−1(x)x2N+1
= Ck(x)x2k+2N

+ x2k−1Ck−1(x),

or Ck(x)(1− x2N+2k) = Ck−1(x)x2k−1(1− x2N−2k+2)

(We proceed fromCk to Ck−1 sinceCN is already known).

Ck−1(x) =
x−2k+1(1− x2N+2k)

1− x2N−2k+2
Ck(x)

Since CN(x) = xN2 N∏

n=1
(1− x2n), we have in succession 44

CN−1(x) = xN2−2N+1 1− x4N

1− x2

N∏

n=1

(1− x2n)

= x(N−1)2
N∏

n=2

(1− x2n) · (1− x4N);

CN−2(x) = x(N−2)2
N∏

n=3

(1− x2n) · (1− x4N)(1− x4N−2)

. . . . . . . . . . . .

In general,

CN− j(x) = x(N− j)2
N∏

n= j+1

(1− x2n)
j−1∏

m=0

(1− x4N−2m)

or, with j = N − n,

Cn(x) = xn2
N∏

n=N−n+1

(1− x2n)
N−n−1∏

m=0

(1− x4N−2m) (8)
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Equation (8) leads to some congruence relations. The lowestterms ofCn(x)
have exponent

n2
+ 2(N − n+ 1) = 2N + (n2 − 2n+ 1)+ 1 ≥ 2N + 1

Hence
Cn(x) ≡ xk2

(mod x2N+1) (9)

From the original formula,

ΦN(x, z) =
N∏

n=1

(1− x2n)(1+ zx2n+1)(1+ z−1x2n−1)

≡ 1+ (z + z−1)x+ (z2 + z−2)x4
+ · · · (mod x2N+1)

≡
∞∑

k=−∞
z
kxk2

(mod x2N+1),

since the infinite series does not matter, the higher powers being absorbed in 45

the congruence. Hence

ΦN(x, z) ≡
∞∏

n=1

(1− x2n)(1+ zx2n−1)(1+ z−1x2n−1) (mod x2N+1)

The new termsx2N+2, . . ., are absorbed by modx2N+1. We have

∞∏

n=1

(1− x2n)(1+ zx2n−1)(1+ z−1x2n−1) ≡
∞∑

k=−∞
z
kxk2

(mod x2N+1)

Thus both expansions agree as far as we wish, and this is what we mean
by equality of formal power series. Hence we can replace the congruence by
equality, and Jacobi’s identity (7) is proved.

As an application of this identity, we shall now give a new proof of the
pentagonal numbers theorem. We replacex by y3, as we could consistently in
the whole story; only read moduloy6N+3. Then we have

∞∏

n=1

(1− y6n)(1+ zy6n−3)(1+ z−1y6n−3) =
∞∑

k=−∞
z
ky3k2

We now do something which needs some justification. Replacez by −y.
This is something completely strange, and would interfere seriously with our
reasoning. ForΦN(y3, z) we had congruences moduloy6N+3. If we replacedz
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by y3 nobody could forbid that. Sincez occurs in negative powers, the powers
of y might be lowered too by as much asN. We obtain polynomials iny alone
on both sides, but true moduloy5N+3, because we may have lowered powers of46

y. With this proviso it is justified to replacezby−y; so that ultimately we have

∞∏

n=1

(1− y6)(1− y6n−2)(1− y6n−4) =
∞∑

k=−∞
(−)ky3k2

+k (mod y5N+3)

We can carry over the old proof step by step. Since we now have only even
powers ofy, this leads to

∞∏

m=1

(1− y2m) =
∞∑

k=−∞
(−)kyk(3k+1)

These are actually power series iny2. Sety2
= x, then

∞∏

m=1

(1− xm) =
∞∑

k=−∞
(−)K xk(3k+1)/2

which is the pentagonal numbers theorem.
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In the last lecture we used the Jacobi formula: 47

∞∏

n=1

(1− x2n)(1+ zx2n−1)(1+ z−1x2n−1) =
∞∑

k=−∞
z
kxk2

(1)

to give a new proof of Euler’s pentagonal numbers theorem. Weproceed to
give another application. We observe again that the right side of (1) is a power
series inx; we cannot do anything about thez′s and no formal differentiation
can be carried out with respect toz. Let us make the substitutionz→ −zx. This
again interferes greatly with our variablex. Are we entitled to do this? Let us
look back into our proof of (1). We started with a curtailed affair

ΦN(x, z) =
∞∏

n=1

(1− x2n)(1+ zx2n−1)(1+ z−1x2n−1)

and this was a polynomial of the proper size and everything went through.
When we replacez by −zxand multiply out, the negative powers might accu-
mulate and we might be destroyingxN possibly; nevertheless the congruence
relations would be true this time moduloxN+1 instead ofx2N+1 as it was previ-
ously; but this is all we went. So the old proof can be reproduced step by step
and every thing matches moduloxN+1. (Let us add a side remark. In the proof
of (1) we had to replacez by zx2 - and this was the essential step in the proof.
We cannot do the same here as this would lead to congruences mod x only.
Before we had the congruences we had identities and there we could carry out
any substitution. Then we adopted a new point of view and introduced congru- 48

ences; and that step bars later the substitutionz→ zx2.
So let us make the substitutionz → −zx without further compuncton. This

39
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gives us
∞∏

n=1

(1− x2n)(1− zx2n)(1− z−1x2n−2) =
∞∑

k=−∞
(−)k
z
kxk2

+k

This is not nicely arranged. There appears an extraordinaryterm withoutx-
corresponding ton = 1 in the last factor on the left side; let us keep this apart.
Also on the right side the exponent ofx is k(k+1), so that every number occurs
twice; let us keep these two pieces together. We then have

(1− z)−1
∞∏

n=1

(1− x2n)(1− zx2n)(1− z−1x2n)

=

∞∑

k=0

(−)k
z
kxk(k+1)

+

∞∑

k=0

(−)−k−1
z
−k−1xk(k+1)

(where in the second half we have replacedk by−k− 1),

=

∞∑

k=0

(−)kxk(k+1)(zk − z−k−1)

=

∞∑

k=0

(−)kxk(k+1)
z
k(1− z−2k−1)

=

∞∑

k=0

(−)kxk(k+1)
z
k(1− z−1)(1+ z−1

+ z
−2
+ · · · + z−2k)

We now have an infinite series inx equal to another. Now recollect that
our coefficients are from the fieldR(z) which has no zero divisors. So we may
cancel 1− z−1 on both sides; this is a non-zero factor inR(z) and has nothing to 49

do with differentiation. This leads to
∞∏

n=1

(1− x2n)(1− zx2n)(1− z−1x2n) =
∞∑

k=0

(−)kxk(k+1)(zk + zk−1
+ · · · + z−k).

In the fieldR(z) we can replacezby 1. We can do what we like in the field
and that is the essence of the power series method. So puttingz= 1,

∞∏

n=1

(1− x2n)3
=

∞∑

k=0

(−)kxk(k+1)(2k+ 1).

This is a power series inx2; give it a new name,x2
= y. Then

∞∏

n=1

(1− yn)3
=

∞∑

k=0

(−)k(2k+ 1)yk(k+1)/2 (2)
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This is a very famous identity of Jacobi, originally proved by him by an
altogether different method using the theory of functions. Let us juxtaposeit
with the Euler pentagonal formula:

∞∏

n=1

(1− yn) =
∞∑

λ=−∞
(−)λxλ(3λ−1)/2 (2a)

Let us proceed to yet another application of the triple product formula; we
shall obtain some of Ramanujan’s formulas. Taking away the first part of the
triple product formula we have

∞∏

n=1

(1+ zx2n−1)(1+ z−1x2n−1) =
∞∑

k=−∞
z
kxk2 1

∞∏

n=1
(1− x2n)

(3)

The second part on the right side here is of interest, becauseit is the gener- 50

ating function of the partition. We had earlier the formula

∞∏

n=1

(1+ zx2n−1) =
∞∑

m=0

z
mCm(n),

Cm(x) =
xm2

(1− x2) · · · (1− x2m)

(4)

and these are permissible power series, beginning with later and later powers
of x, and so the right side of (4) makes sense, as a formal power series inx.

Substituting (4) in (3), we have

∞∑

r=0

z
nCr (x)

∞∑

s=0

z
−sCs(x) =

∞∑

k=−∞
z
kxk2 1

∞∏

n=1
(1− x2n)

(5)

We can comparezO on both sides for, for very highxN the left side will
contain only finitely many terms and all otheres will disappear below the hori-
zon; we can also add as many terms as we wish. So equating coefficients ofzO,
we have

∞∑

r=0

Cr (x)Cr (x) =
1

∞∏

n=1
(1− x2n)

,

or
∞∑

r=0

x2r2

(1− x2)2 · · · (1− x2n)2
=

1
∞∏

n=1
(1− x2n)
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We have even powers ofx consistently on both sides; so replacex2 by y,
and write down the first few terms explicitly:

1+
y

(1− y)2
+

y4

(1− y)2(1− y2)2
+

y9

(1− y)2(1− y2)2(1− y3)2
+ · · ·

=
1

∞∏

n=1
(1− yn)

(6)

This formula is found in the famous paper of Hardy and Ramanujan (1917) 51

and ascribed by them to Euler. It is very useful for rough appraisal of asymp-
totic formulas. Hardy and Ramanujan make the cryptic remarkthat it is “a
formula which lends itself to wide generalisations”. This remark was at first
not very obvious to me; but it can now be interpreted in the following way. Let
us look forzk in (5). Then

∑

r,s
r−s=k

Cr (x)Cs(x) =
xk2

∞∏

n=1
(1− x2n)

or, replacingr by s+ k, and writtingCs for Cs(x), the left side becomes

∞∑

s=0

CsCs+k = 1 · xk2

(1− x2) · · · (1− x2k)
+

x1+(k+1)2

(1− x2)2(1− x4) · · · (1− x2k+2)
+

+
x4+(k+2)2

(1− x2)2(1− x4)2(1− x6) · · · (1− x2k+4)
+ · · ·

Let us divide byxk2
. The general exponent on the right side isℓ2

+ (k+ ℓ)2, 52

so on division it becomes 2ℓ2
+ 2kℓ. Every exponent is even, which is a very

nice situation. Replacex2 by y, and we get the ‘wide generalisation’ of which
Hardy and Ramanujan spoke:

1
(1− y)(1− y2) · · · (1− yk)

+
yk+1

(1− y)2(1− y2) · · · (1− yk+1)

+
y2(k+2)

(1− y)2(1− y2)2(1− y3) · · · (1− yk+2)
+ · · ·

yl(k+l)

(1− u)2 · · · (1− yl)2(1− yl+1) · · · (1− yk+l)
+ · · · = 1

∞∏

n=1
(1− yn)

(7)
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k is an assigned number and it can be taken arbitrarily.
So such expansions are not unique.
Thus (6) and (7) give two different expansions for

1
∞∏

n=1
(1− yn)

.

We are now slowly coming to the close of our preoccupation with power
series; we shall give one more application due to Ramanujan (1917). In their
paper Hardy and Ramanujan gave a surprising asymptotic formula for p(n).
It contained an error term which was something unheard of before,O(n−1/4),
error termdecreasingasn increases. Sincep(n) is an integer it is enough to take
a few terms to get a suitable value. The values calculated on the basis of the 53

asymptotic formula were checked up with those given by Macmahon’s tables
and were found to be astonishingly close. Ramanujan looked at the tables and
with his peculiar insight discovered something which nobody else could have
noticed. He found that the numbersp(4), p(9), p(14), in generalp(5k+ 4) are
all divisible by 5;p(5), p(12), · · · p(7k+ 5) are all divisible by 7;p(11k+ 6) by
11. So he thought thiswas a general property.A divisibility property of p(n) is
itself surprising, becausep(n) is a function defined with reference to addition.
The first and second of these results are simpler than the third. Ramanujan in
fact suggested more. If we chose a special progression modulo 5λ, then all the
terms are divisible by 5λ. There are also special progressions modulo 72λ−1; so
for 11. Ramanujan made the general conjecture that ifδ = 5a7b11c and 24n ≡ 1
(mod δ), thenp(n) ≡ 0 (modδ). In this form the conjecture is wrong. These
things are deeply connected with the theory of modular forms; the cases 5 and
7 relate to modular forms with subgroups of genus 1, the case 11 with genus 2.

Let us take the case of 5. Takep(5k + 4). ConsiderΣp(n)xn; it is nicer
to multiply by x and look forx5k. We have to show that the coefficients of
x5k in xΣp(n)xn are congruent to zerp modulo 5. We wish to juggle around
with series a bit. TakeΣanxn; we want to studyx5k. Multiply by the series
1+ b1x5

+ b2x10
+ · · · where theb′s are integers. We get a new power series
∑

anxn · (1+ b1x5
+ b2x10

+ · · · ) =
∑

cnxn,

which is just as good. It is enough if we prove that for this series every fifth 54

coefficient≡ 0 (mod 5).
For,

∑

anxn
=

∑

cnxn

1+ b1x5 + b2x10 + · · ·
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=

∑

cnxn, (1+ d1x5
+ d2x10

+ · · · ), say.

Then if every fifth coefficient ofΣcnxn is divisible by 5, multiplication by
Σdnx5n will not disturb this. For a primep look at

(1+ x)p
= 1+

(

p
1

)

x+

(

p
2

)

x2
+

(

p
3

)

x3
+ · · · +

(

p
p

)

xp.

All except the first and last coefficients on the right side are divisible byp,
for in a typical term

(
p
q

)

=
p!

(p−q)!q! , the p inm the numerator can be cancelled
only by ap in the denominator. So

(1+ x)p ≡ 1+ xp (mod p).

This means that the difference of the two sides contains only coefficients
divisible byp. This

(1− x)5 ≡ 1+ x5 (mod 5)

We now go to Ramanujan’s proof thatp(5k+ 4) ≡ 0 (mod 5) We have 55

x
∑

p(n)xn
=

x
∏

(1− xn)

It is irrelevant here if we multiply both sides by a series containing only
x5, x10, x15, · · · . This will not ruin our plans as we have declared in advance.
So

x
∑

p(n)xn
∞∏

m=1

(1− x5m) =
x

∏

(1− xn)

∞∏

m=1

(1− x5m)

≡ x
∏

(1− xn)

∞∏

m=1

(1− xm)5 modulo 5

(∏

(1− x5m) −
∏

(1− xm)5has only coefficients divisible by 5
)

≡ x
∞∏

m=1

(1− xm)4 modulo 5

= x
∞∏

m=1

(1− xm)
∞∏

m=1

(1− xm)3.

For both products on the right side we have available wonderful expres-
sions. By (2) and (2a),

x
∏

(1− xm)
∏

(1− xm)3
= x

∞∑

λ=−∞
(−)λ(3λ−1)/2

∞∑

k=0

(−)k(2k+ 1)xk(k+1)/2
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The typical term on the right side is

∞∑

k=0

(−)λ+kx1+λ(3λ−1)/2
+ k(k+ 1)/2

The exponent= 1+ λ(3λ− 1)/2+ k(k+ 1)/2, and we want this to be of the
form 5m. Each such combination contributes tox5m. We want 56

1+
λ(3λ − 1)

2
+

k(k+ 1)
2

≡ 0 (mod 5)

Multiply by 8; that will not disturb it. So we want

8+ 12λ2 − 4λ + 4k2
+ 4k ≡ 0(5),

3+ 2λ2 − 4λ + 4k2
+ 4k ≡ 0(5),

2(λ − 1)2 + (2k+ 1)2 ≡ 0(5).

This is of the form:

2. a square+ another square≡ 0(5)

Now

A2 ≡ 0, 1, 4(5),

2B2 ≡ 0, 2, 3(5);

and soA2
+2B2 ≡ 0(5) means only the combinationA2 ≡ 0(5) and 2B2 ≡ 0(5);

each square must therefore separately be divisible by 5, or

2k+ 1 ≡ 0(5)

So tox5m has contributed only those combinations in which 2k+1 appeared;
and every one of these pieces carried with it a factor of 5. This porves the result.

The case 7k + 5 is even simpler. We multiply by a series inx7 leading to
(1− xm)6 which is to be broken up into two Jacobi factors (1− xm)3. These are
examples of very beautiful theorems proved in a purely formal way.

We shall deal in the next lecture with one more starting instance, the
Rogers-Ramanujan identities which one cannot refrain fromtalling about.
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We wish to say something about the celebrated Rogers-Ramanujan identities: 57

1+
x

1− x
+

x4

(1− x)(1− x2)
+

x9

(1− x)(1− x2)(1− x3)

+ · · · =
1

∏

n>0
n≡±1 (mod 5)

(1− xn)
; (1)

1+
x2

1− x
+

x2·3

(1− x)(1− x2)
+

x3·4

(1− x)(1− x2)(1− x3)

+ · · · =
1

∏

n>0
n≡±2 (mod 5)

(1− xn)
(2)

The right hand sides of (1) and (2), written down explicitly,are respectively

1
(1− x)(1− x4)(1− x6)(1− x9) . . .

1
(1− x2)(1− x3)(1− x7)(1− x8) . . .

One immediately observes that±1 are quadratic residues modulo 5, and
±2 quadratic non-residues modulo 5. These identities were first communicated
by Ramanujan in a letter written to Hardy from India in February 1913 be-
fore he embarked for England. No proofs were given at that time. It was a
remarkable fact, nevertleless, to have even written down such identities. It is 58

true that Euler himself did some experimental work with the pentagonal num-
bers formula. But one does not see the slightest reason why anybody should
have tried±1, ±2 modulo 5. Then in 1917 something happened. In an old

46
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volume of the Proceedings of the London Mathematical Society Ramanujan
found that Rogers (1894) had these identities along with extensions of hyper-
geometric functions and a wealth of other formulae. In 1916 the identities
were published in Macmahon’s Combinatory Analysis withoutproof, but with
a number-theoretic explanation. This was some progress. In1917 I.Schur gave
proofs, one of them combinatorial, on the lines of F.Franklin’s proofof Euler’s
theorem. Schue also emphasized the mathematical meaninf ofthe identities.

Let us look at the meaning of these identities. Let us write the right side of
(1) as a power-series, say,

1
(1− x)(1− x4)(1− x6)(1− x9) . . .

=

∞∑

n=0

q′(n)xn,

q′(n) is the number of terms collected from summands 1, 4, 6,. . . with rep-
etitions, or, what is the same thing, the number of times in which n can be
expressed as the sum of parts≡ ±1 (mod 5), with repetitions. Likewise, if we
write

1
∏

n≡±2(5)
(1− xn)

=

∞∑

n=0

q′′(n)xn,

then q′′(n) is the number of representations ofn as the sum of parts≡ ±2
(mod 5), with repetitions.

The expressions on the other side appear directly.
Take 59

xk2

(1− x)(1− x2) · · · (1− x4)

If we write

1
(1− x)(1− x2) · · · (1− xk)

= a0 + a1x+ a2x2
+ · · ·

then the coefficient an gives us the number of partitions ofn into parts not
exceedingk. Let us represent the partitions by dots in a diagram, each vertical
column denoting a summand. Then there are at mostk rows in the diagram.
Sincek2 is the sum of thek first odd numbers,

k2
= 1+ 3+ 5+ · · · + (2k− 1),

each partition ofn into summands not exveedingk can be enlarged into a par-
tition of n+ k2 into summands which differ by at least two, for we can adjoin
k2 dots on the left side, putting one in the lowest row, three in the next, five



7. Lecture 48

in the one above and so on finally 2k− 1 in the top most row. Conversely any
partition ofn into

parts with minimal difference 2 can be mutilated into a partition ofn− k2 into 60

summands not exceedingk. Hence there is a one one correspondence between
these two types. So the coefficients in the expansion of

xk2

(1− x)(1− x2) · · · (1− xk)
represent the number of times that a numberN can

be decomposed intok parts (the partitions are now read horizontally in the di-
agram) differing by two at least. When this is done for eachk and the results
added up, we get the following arithmetical interpretationof (1): The num-
ber of partitions ofn with minimal difference two is equal to the number of
partitions into summands congruent to±1 (mod 5) allowing repetitions.

A similar explanation is possible in the case of (2). On the left side we
can account for the exponents 2.3, 3.4,. . ., k(k + 1), . . . in the numerator by
means of triangular numbers. In the earlier diagram we adjoin on the left 2,
4, 6, . . ., 2k dots beginning with the lowerst row. The number thus added is
2+4+ · · · · · · · · ·+2k = k(k+1); this disposes ofxk(k+1)in the numerator. So read
horizontally, the diagram gives us a decomposition into parts which differ by

2 at least, but the summand 1 is no longer tolerated.
xk(k+1)

(1− x) · · · (1− xk)
gives

us therefore the enumeration ofxN by parts differeing by 2 at least, the part 1
being forbidden. We have in this way the following arithmetical interpretation
of (2): The number of partitions ofn into parts not less than 2 and with minimal
difference 2, is equal to the number of partitions ofn into parts congruent±2
(mod 5), repetitions allowed.

By a similar procedure we can construct partitions where 1 and 2 are for- 61

bidden, partitions differing by at least three, etc. In the case where the differ-
ence is 3, we use 1, 4, 7, . . ., so that the number of dots adjoined on the left is
1+ 4 + 7 + · · · to k terms= k(3k − 1)/2, so a pentagonal number, and this is
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no surprise. In fact
∑ xk(3k−1)/2

(1− x)(1− x2) · · · (1− xk)
would give us the number of

partitions into parts differing by at least 3. And for 4 the story is similar.
The unexpected element in all these cases is the associationof partitions

of a definite type with divisibility properties. The left-side in the identities
is trivial. The deeper part is the right side. It can be shown that there can
be no corresponding identities for moduli higher than 5. Allthese appear as
wide generalisations of the old Euler theorem in which the minimal difference
between the summands is, of course, 1. Euler’s theorem is therefore the nucleus
of all such results.

We give here a proof of the Roger-Ramanujan identities whichis in line
with the treatment we have been following, the motiod of formal power series.
It is a transcription of Roger’s proof in Hardy’s ‘Ramanujan’, pp.95-98. We
use the so-called Gaussian polynomials.

Let us introduce the Gaussian polynomials in a much neater notation than
usual. Consider for first the binomial coefficients:

(

n
m

)

=
n(n− 1)(n− 2) · · · (n− k+ 1)

1 · 2 · 3 · · · · k

(Observe that both in the numerator and in the denominator there arek fac- 62

tors, which are consecutive integers, and that the factors of equal rank in both
numerator and denominator always add up ton+1). The

(
n
k

)

are all integers, as
is obvious from the recursion formula

(

n+ 1
k

)

=

(

n
k

)

+

(

n
k− 1

)

(
n
n

)

= 1, of course, and by definition,
(
n
0

)

= 1 We also define
(
n
k

)

= 0 for k > n

or for k < 0. Observe also the eymmetry:
(
n
k

)

=

(
n

n−k

)

The Gaussian polynomials are something of a similar nature.We define the
Gaussian polynomial

[

n
k

]

=

[

n
k

]

x

by

[

n
k

]

=
(1− xn)(1− xn−1) · (1− xn−k+1)

(1− x)(1− x2) · · · (1− xk)

The sum of the indices ofx in corresponding factors in the numeratorr and

denominator isn + 1, as in
(
n
k

)

. That the

[

n
k

]

are polynomials inx is obvious
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from the recursion formula
[

n+ 1
k

]

=

[

n
k

]

+

[

n+ 1
k− 1

]

xk

where

[

n
n

]

= 1 and

[

n
0

]

= 1 by definition. The recursion formula is just the same

as that for
(
n
k

)

except for the factor in the second term on the right. Also define
[

0
0

]

= 1; also let

[

n
0

]

= 1 for k > n or k < 0. 63

[

1
0

]

=

[

0
0

]

+

[

0
−1

]

x◦ = 1,

[

1
1

]

=

[

1
0

]

;

[

2
1

]

=
1− x2

1− x
= 1+ x;

and so on. We also have the symmetry:
[

n
k

]

=

[

n
n− k

]

The binomial coefficients appear in the expansion

(1+ y)2
=

n∑

k=0

(

n
k

)

yk.

Likewise, the Gaussian polynomial

[

n
k

]

appear in expansion:

(1+ y)(1+ xy)(1+ x2y) · · · (1+ xn−1y) = 1+ yG1(x) + y2G2(x) + · · · + ynGn(x)

where Gk(x) = xk(k−1)/2

[

n
k

]

Notice that forx = 1,

[

n
k

]

=

(
n
k

)

. Changingy to yx we get the recursion

formula stated earlier.
We now go back to an identity we has porved sometime back:

∞∏

n=1

(1+ zx2n−1) = 1+ zC1(x) + z2C2(x) + · · · (1)
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where

Ck(x) =
xk2

(1− x2) · · · (1− x2k)

Now write 64

x2
= X, 1− X = X1 − X2

= X2, . . . , 1− Xk
= Xk;

(1− X)(1− X2) · · · (1− Xk) = X,X2 . . .Xk = Xk!

With this notation,

Ck(x) =
xk2

Xk!

From Jacobi’s triple porduct formula, we have

∞∏

n=1

(1+ zx2n−1)(1+ z−1x2n−1) =

∞∑

ℓ=−∞
z
l xl2

∞∏

n=1
(1− x2n)

(2)

By (1), the left side of (2) becomes

∞∑

r=0

z
rCr (x)

∞∑

s=0

z
−sCs(x) =

∞∑

n=0

Bn(z, x)
Xn!

,

whereX◦! is put equal to 1.Bn(z, x) is the term corresponding tor+s= n when
the left side is multiplied out in Cauchy fashion. Thus

Bn(z, x) = Xn!
∑

r+s=n

z
r−sCr (x)Cs(x)

= Xn!
n∑

r=0

z
n−2r xr2

+s2

Xr !Xn−r !
(r + s= n)

=

n∑

r=0

[

n
r

]

X

x(n−r)2
+r2
z
n−2r

Notice that the powers ofz occur with the same parity asn. Now (2) can 65

be re-written as

∞∑

n=0

Bn(z, x)
Xn!

=

∞∑

l=−∞
z
l xl2

∞∏

n=1
(1− x2n)
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Both sides are formal power series inx of the appropriate sort. TheBn(z, x)
are linear combinations of power series inx with powers ofz for coeffieicnts.
We can now compare powers ofz. We first take only even exponentsz2m; we
then have infinitely many equations of formal power series. We multiply the
equation arising fromz2m by (−)mxm(m−1) and add all these equations together;
(amd that is the trick, due to Rogers) we can do this because oflinearity. Then

∞∑

l=0

β2l(x)
X2l !

=

∞∑

m=0
(−)mxm(m−1)x(2m)2

∞∏

n=1
(1− x2n)

, (3)

where β2l(x) =
2l∑

r=0

[

2l
r

]

X

x(2l−r)2
+r2

(−)l−r x(l−r)(l−r−1)

Writting l − r = s,

β2l(x) =
l∑

s=−l

[

2l
l − s

]

x2l2+2s2
(−)sxs(s−1)

= x2l2
l∑

s=−l

[

2l
l + s

]

(−)sx3s2 − s

(because of the symmetry betweenl − s and l + s). Separating out the term
corresponding tos = 0 and folding together the terms corresponding tos and 66

−s,

β2l(x) = x2l2






[

2l
l

]

+

l∑

s=1

(−)s

[

2l
l + s

]

xs(3s−1)(1+ x2s)






= x2l2






l∑

s=1

(−)s

[

2l
l + s

]

xs(3s−1)
+

l∑

s=0

(−)s

[

2l
l + s

]

xs(3s+1)






= x2l2






l∑

s=0

(−)s+1

[

2l
l + s+ 1

]

x(s+1)(3s+2)
+

l∑

s=0

(−)s

[

2l
l + s

]

xs(3s+1)





(4)

Then

β2l(x) = x2l2
l∑

s=0

(−)s

[

2l
l + s

]

xs(3s+1)

(

1− 1− Xl−s

1− Xl+s+1
x4s+2

)

= x2l2
l∑

s=0

(−)s

[

2l
l + s

]

xs(3s+1) 1− X2s+1

1− Xl+s+1
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=
x2l2

1− X2l+1

l∑

s=0

(−)s

[

2l + 1
l + s+ 1

]

xs(3s+1)(1− x4s+2) (5)

Let us now computeβ2l+1(x). For this we compare the coefficients ofz2m+1,
multiply the resulting equations by (−)mxm(m−1) and add up. Then

∞∑

l=0

β2l+1(x)
X2l+1!

=

∞∑

m=0
(−)mxm(m−1)x(2m+1)2

∞∏

n=1
(1− x2n)

, (6)

where 67

β2l+1(x) =
2l+1∑

r=0

[

2l + 1
r

]

x(2l+1−r)2
+ r2(−)l−r x(l−r)(l−r−1)

Writting l − r = s, this gives

β2l+1(x) =
l∑

s=−l−1

[

2l + 1
l − s

]

x(l+1−s)2
+(l−s)2

(−)sxs(s−1)

=

l∑

s=−l−1

[

2l + 1
l − s

]

(−)sx3s2
+s+l2+(l+1)2

= x2l2+2l+1






l∑

s=0

(−)s

[

2l + 1
l + s+ 1

]

xs(3s+1)

+

l∑

s=0

(−)s+1

[

2l + 1
l + s+ 1

]

x(−s−1)(−3s−2)






= x2l2+2l+1
l∑

s=0

(−)s

[

2l + 1
l + s+ 1

]

xs(3s+1)(1− x4s+2) (7)

This expression forβ2l+1(x) is very neat; it is almost the same asβ2l(x) but
for trivial factors. Let us go back toβ2l+1(x) in its best shape.

β2l+1(x) = x2l2+2l+1

{[

2l + 1
l

]

+

l∑

s=1

([

2l + 1
l + s+ 1

]

(−)sxs(3s+1)
+

[

2l + 1
l + s

]

(−)sxs(3s−1)

)




= x2l2+2l+1






[

2l + 1
l

]

+

l∑

s=1

[

2l + 1
l + s

]

(−)sxs(3s−1)

(

1+
1− Xl−s+1

1− Xl+s+1
x2s

)



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Since 68

1+
1− Xl−s+1

1− Xl+s+1
x2s
=

1− Xl+s+1
+ Xs − Xl+1

1− Xl+s+1
=

(1− Xl+1)(1+ Xs)
1− Xl+s+1

,

β2l+1(x) = x2l2+2l+1 1− Xl+1

1− X2l+2





[

2l + 2
l + 1

]

+

l+1∑

s=1

[

2l + 2
l + s+ 1

]

(−)sxs(3s−1)(1+ x2s)






This fits with β2l+2. Now we can read off the recursion formulae. The
consequences are too very nice facts. The whole thing hingesupon the courage
to tackle these sums. We did not do these things ad hoc.

Let us compareβ2l+1 with β2l

β2l+1 = x2l+1(1− X2l+1)β2l ;

β2l+1 = x−2l−1 1− Xl+1

1− X2l+2
β2l+2;

so β2l+2 = x2l+1 1− X2l+2

1− Xl+1
β2l+1,

andβ◦ = 1. These things collapse beautifully into something which we could
not foresee before. Of course the older proof was shorter. This proof fits very
well into our scheme.
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Last time we obtained the two fundamental formulae forβ2l , β2l+1, from which 69

we deduced the recurrence relations:

β2m+1 = x2m+1(1− x2(2m+1))β2m,

β2m+2 = x2m+1 1− x2(2m+2)

1− x2(m+1)
β2m+1

(1)

β2m came fromB2m by a substitution which was not yet plausible. Let us cal-
culate the first fewβ′sexplicitly. By definition

B0 = 1 = β0

β1 = x(1− x2) β0 = x(1− x2)

β2 = x
1− x4

1− x2
β1 = x2(1− x4)

β3 = x3(1− x6) β2 = x5(1− x4)(1− x6)

β4 = x3 1− x8

1− x4
β3 = x8(1− x6)(1− x8);

and in general,

β2m = x2m2
(1− x2m+2)(1− x2m+4) · · · (1− x4m)

= Xm2 X2m!
Xm!

(with X = x2); (2)

and similarly,

β2m+1 = x2m2
+2m+1(1− x2m+2)(1− x2m+4) · · · (1− x4m+2)

= Xm2
+mx · X2m+1!

Xm!
(3)

55
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This is a very appealing result. We got theβ′s in the attempt of ours to 70

utilise the Jacobi formula. We actually had

∞∑

l=0
(−)l x5l2−l

∞∏

m=1
(1− x2m)

=

∞∑

m=0

β2m

X2m!
,

so that by (2)
∞∑

l=0
(−)lXl(5l−l)/2

∞∏

m=1
(1− xm)

=

∞∑

m=0

Xm2

Xm!
(4)

Similarly we had

∞∑

l=0
(−)l x5l2+3l+1

∞∏

m=1
(1− x2m)

=

∞∑

m=0

β2m+1

X2m+1!
,

so that by (3)
∞∑

l=0
(−)lXl(5l+3)/2

∞∏

m=1
(1− xm)

=

∞∑

m=0

Xm(m+1)

Xm!
(5)

Now the right side in the Rogers-Ramanujan formula is

1
∞∏

m=1
(1− x5m−1)(1− x5m−4)

=

∞∏

m=1
(1− x5m)(1− x5m−2)(1− x5m−3)

∞∏

m=1
(1− xm)

which becomes, on replacingx by x2, 71

∞∏

m=1
(1− x10m)(1− x10m−4)(1− x10m−6)

∞∏

m=1
(1− x2m)

The numerator is the same as the left side of Jacobi’s triple product formula:

∞∏

m=1

(1− x2m)(1− zx2m−1)(1− z−1x2m−1) =
∞∑

l=−∞
(−)l
z
l xl2 ,
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with x replaced byx5 andzby x. Hence

∞∏

l=−∞
(1− x10mm)(1− x10m−4)(1− x10m−6)

∞∏

m=1
(1− x2m)

=

∞∑

l=−∞
(−)lX5l2+l

∞∏

m=1
(1− x2m)

=

∞∑

l=−∞
(−)lX(5l2+l)/2

∞∏

m=1
(1− Xm)

now

∞∑

l=−∞
(−)l x5l2+l

∞∏

m=1
(1− x2m)

=

∞∑

k=−∞
(−)k
z
kxk2

∞∏

m=1
(1− x2m)

=

∞∑

n=0

Bn(z, x)
Xn!

=

∞∑

l=−∞
(−)l xl2+l x(2l)2

∞∏

m=1
(1− x2m)

,

on replacingz2l by (−)l xl(l+1), and this we can do because of linearity. Hence 72

∞∑

l=−∞
(−)lXl(5l−1)/2

∞∏

m=1
(1− Xm)

=
1

∞∏

m=1
(1− x5m−1)(1− x5m−4)

Similarly,

1
∞∏

m=1
(1− X5m−2)(1− X5m−3)

=

∞∏

m=1
(1− x10m)(1− x10m−2)(1− x10m−8)

∞∏

m=1
(1− Xm)

=

∞∑

l=−∞
(−)l x5l2+3l

∞∏

m=1
(1− Xm)

.

This time we have to replacez2k+1 by (−)kxk(k−1). Then

1
∞∏

m=1
(1− X5m−2)(1− X5m−3)

=

∞∑

l=−∞
(−)lXl(5l+3)/2

∞∏

m=1
(1− Xm)

These formulae are of extreme beauty. The present proof has at least to do
with things that we had already handled. The pleasant surprise is that these
things do come out. The other proofs by Watson, Ramanujan andother use 73
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completely unplausible combinations from the very start. Our proof is sub-
stantilly that by Rogers given in Hardy’s Ramanujan, pp.96-98, though one
may not recognize it as such. The proof there contains completely foreign
elements, trigonometric functions which are altogether irrelevant here.

We now give up formal power series and enter into an entirely different
chapetr - Analysis.



Part II

Analysis

59
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Theta-functions

A power series hereafter shall for us mean something entirely different from 74

what it did hitherto.x is a complex variable and
∞∑

n=0
anxn will have a value, its

sum, which is ascertained only only after we introduce convergence. Then

f (x) =
∞∑

n=0

anxn;

x and the series are coordinated and we have a function on the complex domain.
We take for granted the theory of analytic functions of a complex variable; we
shall be using Caushy’s theorem frequently, and in a moment we shall have
occasion to use Weierstrass’s double series theorem.

Let us go back to the Jacobi identity:

∞∏

n=1

(1− x2n)(1+ zx2n−1)(1+ z−1x2n−1) =
∞∑

k=−∞
z
kxk2

= 1+
∞∑

k=1

(zk + z−k)xk2
, (z , 0),

which is a power series inx. Two questions arise. First, what are the domains
of convergence of both sides? Second, what does equality between the two
sides mean? Formerly, equality meant agreement of the coefficients up to any 75

stage; what it means now we have got to explore. The left side is absolutely
convergent - and absolute convergence is enough for us - for|x| < 1; (for the
infinite product

∏

(1+an) is absolutely convergent if
∑ |an| < ∞; z is a complex

60
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variable which we treat as a parameter). For the right side weuse the Cauchy-
Hadamard criterion for the radius of convergence:

ρ =
1

lim n
√
|an|

=
1

lim k2√|z + z−k|

Suppose|z| > 1; then *****************, and

|zk + z−k| < 2|z|k,
and

k2√

|zk + z−k| < k2√
2 k
√

|z| → 1 ask→ ∞
∴ lim(

k2√

|zk + z−k|) ≤ 1.

It is indeed= 1, not< 1, because ultimately, ifk is large enough,|z|k > 1,
and so

1
2
|z|k < |zk + z−k|,

and we have the reverse inequality. By symmetry inz and 1/z, this holds also
for |z| < 1. The case|z| = 1 does not present any serious difficulty either. So
in all casesρ = 1. Thus both sides are convergent for|x| < 1, and indeed
uniformly in any closed circle|x| ≤ 1− δ < 1.

The next question is, why are the two sides equal in the sense of function 76

theory? This is not trivial. Here equality of values of coefficients up to any
definite stage is not sufficient as it was before; the unfinished coefficients before
multiplication may go up and cannot be controlled. Here, however, we ae in a
strong position. We have to prove that

N∏

n=1

(1− x2n)(1+ zx2n−1)(1+ z−1x2n−1)→ 1+
∞∑

k=1

(zk + z−k)xk2

with increasingN, when|x| < 1, and indeed uniformly so in|x| ≤ 1 − δ < 1.
On the left side we have a sequence of polynomials:

fN(x) =
N∏

n=1

(1− x2n)(1+ zx2n−1)(1+ z−1x2n−1) =
∞∑

m=0

a(N)
m xm, say.

(of course the coefficients are all zero beyond a certain finite stage). Now we
know that the left side is a partial product of a convergent infinite product; in
fact fN(x) tends uniformly to a series,f (x), say. Now what do we know about
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a sequence of analytic functions on the same domain converging uniformly
to a limit function? The question is answered by Weierstrass’s double series
theorem. We can assert thatf (x) is analytic in the same domain at least, and

further if f (x) =
∞∑

m=0
amxm, then

am = lim
N→∞

a(N)
m .

The coefficients of the limit function have got something to do with the77

original coefficients. Now

a(N)
m =

1
2πi

∫

|x|=1−δ

fN(x)
xm+1

dx

Let N → ∞; this is permissible by uniform convergence and thea(N)
m , s in

fact converge to

am =
1

2πi

∫

|x|=1−δ

f (x)
xm+1

dx.

(Weirestrass’ own proof of this theorem was what we have given here, in
some disguise; he takes the values at the roots of unity and takes a sort of mean
value).

Now what are the coefficients in 1+
∑

(zk + z−k)xk2
? Observe that the con-

vergence ofa(N)
m to am is a peculiar and simple one.a(N)

m indeed converges to a
knownam; as a matter of facta(N)

m = am for N sufficiently large. They reach a
limit and stay put. And this is exactly the meaning of our formal identity. So
the identity has been proved in the function-theoretic sense:

∞∏

n=1

(1− x2n)(1+ zx2n−1)(1+ z−1x2n−1) = 1+
∞∑

k=1

(zk + z−k)xk2
=

∞∑

k=−∞
z
kxk2

.

These things were done in full extension by Jacobi. Let us employ the ususl 78

symbols; in place ofx write q, |q| < 1, and putz = e2πiv. Notice that the right
side is a Laurent expansion inz in 0 < |z| < ∞ (v is unrestricted because we
hace used the exponential). We write in the traditional notation

∞∏

n=1

(1− q2n)(1+ q2n−1e2πiv)(1+ q2n−1e−2πiv)

=

∞∑

n=−∞
qn2

e2πinv
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= v3(v, q)

v3 (and in fact all the theta functions) are entire functions ofv. We have taken
|q| < 1; it is customary to writeq = eπiτ, so that|q| < 1 implies

|eπiτ| = eRπiτ,Rπiτ < 0

i.e., Riτ < 0 or I mτ > 0

τ is a point in the upper half-plane.τ andq are equivalent parameters. We also
write

V3(V , q) = V3(V /τ)

(An excellent accout of theV -functions can be found in Tannery and Molk:
Fonctiones Elliptiques, in 4 volumes; the second volume contains a very well
orginized collection of formulas).

One remark is immediate from the definition ofV3, viz.

V3(V + 1, q) = V3(V , q)

On the other hand, 79

V3(V + τ, q) =
∞∏

n=1

(1− q2n)(1− q2n−1e2πiV e2πiτ) × (1+ q2n−1e−2πiV e−2πiτ)

=

∞∑

n=−∞
qn2

e2πinV e2πinV ,

and sinceq = eπiτ,

∞∏

n=1

(1− q2n)(1+ q2n+1e2πiV )(1+ q2n−3e−2πiV ) =
∞∑

n=−∞
qn2
+2ne2πinV

or

1+ q−1e−2πiV

1+ qe2πiV

∞∏

n=1

(1− q2n)(1+ q2n−1e2πiV )(1+ q2n−1e−2πiV )

= q−1e−2πiV
∞∑

n=−∞
q(n+1)2e2πi(n+1)V

= q−1e−2πiV
V3(V , q)

= (qe2πiV )−1
V3(V , q)



9. Lecture 64

So we have the neat result:

V3(V + τ, q) = q−1e−2πiV
V3(V , q)

1 is a period ofV3 andτ resembles a period. It is quite clear that we cannot80

expect 2 peroids in the full sense, because it is imposible for an entire function
to have two periods. Indeed ifω1 andω2 are two periods off , then f (V +
ω1) = f (V ), f (V + ω2) = f (V ), and f (V + ω1 + ω2) = f (V ) and the whole
module generated byω1 andω2 form periods. Consider the fundamental region
which is the parallelogram with vertices at 0, ω1, ω2, ω1 + ω2. If the function
is entire it has no poles in the parallelogram and is bounded there (because
the parallelogram is bounded and closed), and therefopre inthe whole plane.
Hence by Liouville’s theorem the function reduces to a constant.

While dealing with trigonometric functions one is not always satisfied with
the cosine function alone. It is noce to have another function: cos(x− π/2) =
sinx. A shift by a half-period makes it concenient for us. Let us consider
analogouslyV3(V + 1

2 , q), V3(V + τ/2, q), andV3(V + 1
2 +

τ
2 , q). Thoughτ

is not strictly a period we can still speak of the funcdmentalregion, because
on shifting byτ we change only by a trivial factor. ReplaceV by V +

1
2 and

everything is fine as 1 is a period.

V3(V +
1
2
, q) =

∞∏

n=1

(1− q2n)(1− q2n−1e2πiV )(1− q2n−1e−2πiV )

=

∞∑

n=−∞
(−)nqn2

e2πinV

which is denotedV4(V , q)
Again 81

V3(V +
τ

2
, q) =

∞∏

n=1

(1− q2n)(1+ q2n−1e2πiV eπiτ)(1+ q2n−1e−2πiV e−πiτ)

=

∞∑

n=−∞
qn2

e2πinV eπinτ

i.e., (1+ e−2πiV )
∞∏

n=1

(1− q2n)(1+ q2ne2πiV )(1+ q2ne−2πiV )

=

∞∑

n=−∞
qn2
+ne2πinV
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= q−1/4e−πiV
∞∑

n=−∞
q(n+1/2)2e(2n+1)πiV

= q−1/4e−πiV
V2(V , q)

whereV2(V , q) =
∞∑

n=−∞
q(n+1/2)2e(2n+1)πiV , by definition. (Hereq−1/4 does not

contain an unknown 4th root of unity as factor, but is an abbreviation fore−πiτ/4,
so that it is well defined). So

V2(V , q) = 2q1/4 cosπV
∞∏

n=1

(1− q2n)(1+ q2ne2πτV )(1+ q2ne−2πiV )

Finally 82

V3(V +
1+ τ

2
, q) = q−1/4e−πi(V + 1

2 )
V2

(

V +
1
2
, q

)

= q−1/4 1
i
e−πiV

V2

(

V +
1
2
, q

)

= q1/4e−πiV
∞∑

n=−∞
(−)nq( 2n+1

2 )2

e(2n+1)πiV

=
2
i

cosπ

(

V +
1
2

)

e−πiV

∞∏

n=1

(1− q2n)
(

1− q2ne2πiV
)

×
(

1− q2ne−2πiV
)

Now define

V1(V , q) = V2

(

V +
1
2
, q

)

,

or

V1(V , q) = 2q1/4 sinπV
∞∏

n=1

(1− q2n)(1+ q2ne2πiV )(1− q2ne−2πiV )

= iq−1/4
∞∑

m=−∞
(−)nq( 2n+1

2 )2

e(2n+1)πiV

Collecting together we have the fourV -functions: 83

V1(V , q) = iq−1/4
∞∑

m=−∞
(−)nq( 2n+1

2 )2

e(2n+1)πiV
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=

∞∑

n=0

(−)nq( 2n+1
2 )2

sin(2n+ 1)πV

V2(V , q) = 2
∞∑

n=0

q( 2n+1
2 )2

cos(2n+ 1)πV

V3(V , q) = 1+ 2
∞∑

n=1

qn2
cos 2nπV

V4(V , q) = 1+ 2
∞∑

n=1

(−)nqn2
cos 2πnV

Observe that the sine function occurs only inV1. Also if q,V are rel these
reduce to trigonometric expansions.



Lecture 10

Let us recapitulate the formulae we has last time. 84

V1(V , q) =
1
i

∞∑

n=−∞
(−)nq( 2n+1

2 )2

e(2n+1)πiV

= 2
∞∑

n=∞
(−)nq( 2n+1

2 )2

sin(2n+ 1)πV

= 2q1/4 sinπV
∞∏

m=1

(

1− q2m
) (

1− q2me2πiV
) (

1− q2me−2πiV
)

(1)

V2(V , q) =
∞∑

n=−∞
q( 2n+1

2 )2

e(2n+1)πiV

= 2
∞∑

n=0

q( 2n+1
2 )2

cos(2n+ 1)πV

= 2q1/4 cosπV
∞∏

m=1

(

1− q2m
) (

1+ q2me2πiV
) (

1+ q2me−2πiV
)

(2)

V3(V , q) =
∞∑

n=−∞
qn2

e2πiV

= 1+ 2
∞∑

n=1

qn2
cos 2nπV

=

∞∏

m=1

(

1− q2m
) (

1+ q2m−1e2πiV
) (

1+ q2m−1e−2πiV
)

(3)

67
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V4(V , q) =
∞∑

n=−∞
(−)nqn2

e2nπiV

= 1+ 2
∞∑

n=1

(−)nqn2
cos 2nπV

=

∞∏

m=1

(1− q2m)(1− q2m−1e2πiV )(1− q2m−1e−2πiV ) (4)

We started withV3 and shifted the argumentV by ‘periods’, and we had, 85

writing q = eπiτ,
V3(V + 1, q) = V3(V , q)

V3(V + τ, q) = q−1e−2πiV
V3(V , q).

(5)

Then we took ‘half-periods’ and then something new happened, and we
gave names to the new functions:

V3

(

V +
1
2
, q

)

= V4(V , q)

V3

(

V +
τ

2
, q

)

= q−1/4e−2πiV
V2(V , q)

V3

(

V +
1+ τ

2
, q

)

= iq−1/4e−πiV
V1(V , q)

(6)

Let us study how these functions alter when the argumentV is changed by
1,τ, 1/2,τ/2, (1+τ)/2. V → V +1 is trivial; V → V +1/2 is also easy to see
by inspection. Let us takeV +τ. (We suppress the argumentq for convenience
of writing).

V1(V ) =
1
i
q1/4e2πiV

V3

(

V +
1+ τ

2

)

∴ V1(V + τ) =
1
i
q1/4eπi(V +τ)

V3

(

V + τ +
1+ τ

2

)

=
1
i
q1/4eπiV qq−1e−2πi(V +1+τ/2)

V3

(

V +
1+ τ

2

)

= e−2πiV e−πi(1+τ)
V1(V , q)

= −AV1(V , q),

whereA = q−1e−2πiV ; the other conspicuous factor which occurs in similar86

contexts is denotedB = q−1/4e−2πiV .
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The other transformations can be worked out in a similar way by first going
over toV3. We collect the results below in tabular form.

V + 1 V + τ V +
1
2 V +

3
2 V +

1+τ
2

V1 −V1 −AV1 V2 iBV4 BV3

V2 −V2 AV2 −V1 BV3 −iBV4

V3 V3 AV3 V4 BV2 BV1

V4 V4 −AV4 V3 iBV1 BV2

It may be noticed that each column in the table contains all the four func-
tions; so does each now.

The systematique of the notation for theV -functions is rather questionable.
Whittaker and Watson writeV instead ofπV , which has the unpleasant con-
sequence that the ‘periods’ are thenπ andπτ. Our notation is the same as in 87

Tannery and Molk. An attempt was made by Kronecker to systematise a little
the unsystematic notation. Charles Hermite introduced thefollowing notation:

Vµν(V , q) =
∞∑

n=−∞
(−)νnq

(
2r+µ

2

)2

e(2n+µ)πiV

=

∞∑

n=−∞
(−)νne

(
2n+µ

2

)2
πiτe(2n+µ)πiV

whereµ, ν = 0, 1 ∗ ∗ ∗ ∗∗. In this notation,

V00(V , q) = V3(V , q)

V01(V , q) = V4(V , q)

V10(V , q) = V2(V , q)

V11(V , q) = iV1(V , q).

This, however, has not found any followers.
While writing down derivatives, we always retain the convention that a

prime refers to differentiation with respect toV :

V
′
α (V , q) =

∂

∂ν
Vα(V , q) (α = 1, 2, 3, 4)
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Taking partial derivatives, we have

∂

∂τ
Vµν(V /τ) =

∞∑

n=−∞
(−)νnπi

(

2n+ µ
2

)

e
(

2n+µ
2

)2
πiτe(2n+µ)πiV ,

and
∂2

∂V 2
Vµν(V /τ) =

∞∑

n=−∞
(−)νne

(
2n+µ

2

)2
πiτπ2i2(2n+ µ)2e(2n+µ)πiV ,

Comparing these we see that they agree to some extent; in fact, 88

4πi
∂

∂τ
Vµν(V /τ) =

∂2

∂ν2
Vµν(V /τ) (7)

This is a partial differential equation of the second order, a parabolic equa-
tion with constant coefficients. It is fundamental to writeiτ = −t; (7) then be-
comes the differential equation for heat conduction.V -functions are thus very
useful tools in applied mathematics; they were used by Poisson and Fourier in
this connection.

Again,

∂

∂q
Vµν(V , q) =

∞∑

n=−∞
(−)ν

(

2n+ µ
2

)2

q
(

2n+µ
2

)2−1e(2n+µ)πiV ,

− 4π2q
∂

∂q
Vµν(V , q) =

∂2

∂ν2
Vµν(V , q), (8)

which is another form of (7). Here the uniformity of notationwas helpful; it
was not necessary to discuss the different functions separately.

We now pass on to another important topic. The zeros of the theta - func-
tions.

TheV -functions are more or less periodic. The exponential factor that is
picked up on passing from one parallelogram to another is non-zero and can
accumulate. It is evident from the definition that

V , (0, q) = 0.

On the other handV2, V3, V4 , 0. (when the argumentV is 0 we write 89

hereafter simplyV ). This is so because the infinite products are absolutely
convergent. (Let us recall that a product like 1· 1

2 ·
1
3 · · · is not properly conver-

gent in the product sense). Again from the definitions,

V2

(

1
2

)

= 0
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V3

(

1+ τ
2

)

= 0

V4

(
τ

2

)

= 0

So far we have one zero per parallelogram for each of the functions; and
there can be no other in a parallelogram, as can be seen from the infinite prod-
uct expansions. The zeros ofV1(V , q) are m1 + m2τ(m1,m2 integers), for
1 − e2πimτe2πiV

= 0 implies mτ + V1 = m1 or V = m1 − mτ. The zeros
of V1(V , q),V2(V , q),V3(V , q),V4(V , q) in the fundamental parallelogram are
nicely arranged in order at the points 0, 1

2 ,
1+τ

2 , τ2 respectively.

10

All the zeros are therefore given by the formulae: 90

V1(m1 +m2τ) = 0

V2

(

m1 +m2τ +
1
2

)

= 0

V3

(

m1 +m2τ +
1+ τ

2

)

= 0

V4

(

m1 +m2τ +
τ

2

)

= 0

It is of interest to studyVα(0, q) (usually writtenVα).

V1(0) = 0

V2(0) =
∞∑

n=−∞
q(2n+ 1

2)
2

= 2q1/4
∞∏

m=1

(1− q2m)(1+ q2m)2



10. Lecture 72

= V2

V3(0) =
∞∑

n=−∞
qn2

=

∞∏

m=1

(1− q2m)(1+ q2m−1)

V4(0) =
∞∑

n=−∞
(−)nqn2

=

∞∏

m=1

(1− q2m)(1− q2m−1)2

We cannot anything of interest inV1. Let us look at the others. 91

V
′

1 (0, q) = V
′

1 = 2π
∞∑

n=0

(−)n(2n+ 1)q( 2n+1
2 )2

= 2q1/4



π cosπV
∞∏

m=1

(· · · ) + sinπV





∞∏

m=1

(· · · )




′


V =0

= 2πq1/4
∞∏

m=1

(1− q2m)3

Immediately we see that this yields the interesting identity of Jacobi.

∞∏

m=1

(1− q2m)3
=

∞∑

n=0

(−)n(2n+ 1)qn2
+n,

or, replacingq2 by x,

∞∏

n=1

(1− xn)3
=

∞∑

n=0

(−)n(2n+ 1)xn(n+1)/2

We had proved this earlier by the method of formal power series. Here we
can differentiate with good conscience.

Now

πV2V3V4 = V
′

1





∞∏

m=1

(1+ q2m)(1+ q2m−1)(1− q2m−1)





2

= V
′

1





∞∏

m=1

(1+ q2m)(1− q4m−2)





2

,
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which becomes, on replacingq2 by x, 92

V
′

1





∞∏

m=1

(1+ xn)
(

1− x2n−1
)




2

However,
∞∏

m=1
(1+ xn)(1− x2n−1) = 1. We therefore have the very useful and

pleasant formula
V
′

1 = πV2V3V4



Lecture 11

We found thatVα(V , q) changes at most its sign whenV is replaced byV + 1, 93

while it picks up a trivial factorA whenV is replaced byV + τ. If we form
quotients,A will cancel out and we may therefore expect to get doubly-periodic
functions. Let us form some useful quotients:

f2(V ) =
V2(V , q)
V1(V , q)

f3(V ) =
V3(V , q)
V1(V , q)

f4(V ) =
V4(V , q)
V1(V , q)

For simplicity of location of poles it is convenient to takeV1 in the denom-
inator since it has a zero at the origin. From the table of theV -functions we
find that these functions are not quite doubly periodic:

f2(V + 1) = f2(V ) f3(V + 1) = − f3(V )

f2(V + τ) = − f2(V ) f3(V + τ) = − f3(V )

f4(V + 1) = − f4(V )

f4(V + τ) = f4(V )

So the functions are not doubly periodic; they do not return to themselves. 94

And we cannot expect that either. For suppose any of the functions f were
actually doubly periodic. We know that each has a pole of the first order per
parallelogram. Integrating round the parallelogram with vertices at± 1+τ

2 ,± 1−τ
2

(so that the origin which is the pole is enclosed), we have
∫

f (V )dV = 0

74
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10

i.e., the sum of the residues at the poles=0. This means that either the
pole is a double is a double pole with zero residue, or there are two simple
poles with residues equal in magnitude but opposite in sign.However neither
of these is the case. So there is no necessity for any further experimentation.

Let us therefore consider the squares

f 2
2 (V ), f 2

3 (V ), f 2
4 (V )

these are indeed doubly periodic functions. And they are even functions. So
the expansion in the neighbourhood of the pole will not contain the term of
power−1. Hence the pole must be a double pole with residue zero. So they
are closely related to the Weierstrassian functionP(V ), and must indeed be
of the formCP(V ) +C1.

So we have constructed doubly periodic functions. They are essentially 95

P(V ). ω1 andω2 of P(V ) are our 1 andτ. In order to get a better insight
we need the exact values of the functions. Let us consider their pole terms.
Expanding in the neighbourhood of the origin,

Vα(V , q)
V1(V , q)

=
Vα +

V ′′
α

2! V 2
+ · · ·

V ′
1

1! V +
V ′′′

1
3! V 3 + · · ·

=
Vα

νV ′1





1+ 1
2

V ′′
α

Vα
ν2
+ · · ·

1+
V ′′′

1
6V ′

1
ν2 + · · ·





=
Vα

νV ′1

(

1+
1
2

V ′′α
Vα

ν2
+ · · ·

) 

1−
(
V ′′′1

6V ′1
ν2
+ · · ·

)2

+ (· · · )3 − · · ·




=
Vα

νV ′1

(

1+ ν2

(

V ′′

2Vα

−
V ′′′1

6V ′1

)

+ · · ·
)

∴ f 2
α =

(

Vα(V , q)
V1(V , q)

)2
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=
V

2
α

V ′21

1
V 2

(

1+ V
2

(

V
′′
α

V1
−

V ′′′1

3V ′1

)

+ · · ·
)

Let us now specialiseα. We have a special interest inV3 because it is such a

nice function:V3 =
∞∑

n=−∞
qn2

. We have
V
′2

1

V 2
α

f 2
α (V ) =

1
V2
+ non-negative powers

of V .
If we take two such and take the difference, the difference will no longer 96

have a pole. Takingα = 2, 4, for instance,

V
′2

1

V 2
2

(

V2(V , q)
V1(V , q)

)2

−
V
′2

1

V 2
4

(

V4(V , q)
V1(V , q)

)2

=
V ′′2

V2
− V4

V ′′4

+positive powers ofV (*)

The left side is a doubly periodic function without a pole andso a constant

C; the right side is therefore just
V ′′2

V2
−

V ′′4

V4
. The vanishing of the other terms

on the other terms on the right side, of course, implies lots of identities.
So we have already computedC in one way:

C =
V
′′

2

V2
−

V
′′

4

V4

To evaluateC in other ways we may take in (*)V =
1
2

, V =
τ

2
or V =

(1+ τ)/2. From the table,

V1

(

1
2
, q

)

= V2 V1

(

1+ τ
2

, q

)

= q−1/4
V3

V2

(

1
2
, q

)

= −V1 = 0 V2

(

1+ τ
2

, q

)

= −iq−1/4
V4

V4

(

1
2
, q

)

= V3 V4

(

1+ τ
2

, q

)

= q−1/4
V2

So again from the left side of (*), 97

C =
V
′2

1

V 2
2

× 0−
V 2

1

V 2
4

V
2

3

V 2
2

= −
π2V 2

1 V 4
3

π2V 2
2 V 2

3 V 2
4

= −π2
V

4
3
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Also

C =
V
′2

1

V 2
2



−
V 2

4

V 2
3



 −
V
′2

1

V 2
4

V 2
2

V 2
3

= −
π2V

′2
1 V 4

4

π2V 2
2 V 2

3 V 2
4

−
π2V

′2
1 V 4

2

π2V 2
2 V 2

3 V 2
4

= −π2
V

4
4 − π2

V
4

2

From these we get an identity which is particularly striking:

V
4

3 = V
4

2 + V
4

4 (1)

We have also

π2
V

4
3 =

V
′′

4

V4
−

V
′′

2

V2
(2)

Now let us look at (1) and do a little computing. Explicitly (1) states:





∞∑

n=−∞
qn2





4

=



q
1/4

∞∑

n=−∞
qn(n+1)





4

+





∞∑

n=−∞
(−)nqn2





4

(3)

This is an identity of some interest.
Let us look forqN on both sides. The left side givesN in the formN = 98

n2
+ n2

2 + n2
3 + n2

4, that is, as the sum of four squares. So dies the second term
on the right. IfN is even, it is trivial that both sides are in agreement because
the first term on the right gives only odd powers ofq, and the coefficient ofqn

in the second term on the right is
∑

n2
1n2

2+n2
3+n2

4=N

(−)n1+n2+n3+n4

SinceN is even either allni ’s are odd, or two of them odd, or none. It is not
transperent. What happens whenN is odd.

Take the more interesting formula (2):

πV 4
3 =

V ′′4

V4
−

V ′′2

V2

By the differential equation,

V
′′
α =

[

∂2

∂V 2
Vα(V , q)

]

V =0
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=

[

−4π2q
∂

∂q
Vα(V , q)

]

V =0

∴ V
4

3 = 4q

(

1
V2

∂V2

∂q
− 1

V4

∂V4

∂q

)

= 4q
∂

∂q
log

V2

V4

Now 99

V2

V4
= 2q1/4

∞∏

n=1
(1− q2n)(1+ q2n)2

∞∏

n=1
(1− q2n)(1− q2n−1)

= 2q1/4

∞∏

n=1
(1− q2n)2(1+ q2n)2

∞∏

n=1
(1− q2n)2(1− q2n−1)2

= 2q1/4

∞∏

n=1
(1− q4n)2

∞∏

n=1
(1− qn)2

=
2q1/4

∏

4 ∤ n
(1− qn)2

Taking the logarithmic derivative,

V
4

3 = 4q






1
4q
− 2

∑

4 ∤ n

−nqn−1

1− qn






= 1+ 8
∑

4 ∤ n

nqn

1− qn

= 1+ 8
∑

4 ∤ n

n
∞∑

k=1

qnk

= 1+ 8
∑

4 ∤ m
m=1

qm
∑

n|m
n

= 1+ 8
∞∑

m=1

σ∗(m)qm
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with the previous thatσ∗(m) =
∑

d/m

, d
4 ∤ α

, that is the divisor sum with those 100

divisors omitted which are divisible by 4. This is an interesting identity:





∞∑

n=−∞
qn2





4

= 1+ 8
∞∑

m=1

σ∗(m)qm (4)

On the leftqm can be obtained only asqn2
1+n2

2+n2
3+n2

4, so that the coefficient
of qm on the right is the number of ways in which this representation for m is
possible;m is as often the sum of four squares as 8σ∗(m). Clearlyσ∗(m) , 0,
since among the admissible divisors, 1 is always present. Soσ∗(m) ≥ 1, or
every m does admit at least one such representation. We have thus proved
Lagrange’s theorem: Every integer is the sum of at most four squares.

If m is odd,σ∗(m) = σ(m); if m is even,

σ∗(m) =
∑

d|m, d odd

d+ 2
∑

d|m, d odd

d

= 3
∑

d|m, d odd

d

If we denote byr4(m) the number of representations ofmas the sum of four
squares, then

r4(m) = 8 times the sum of odd divisors ofm, modd;
24 times the sum of odd divisors ofm, meven.

We have not partitions this time, but representation as the sum of squares.
We agree to consider as distinct these representations in which the order of the
components has been changed. In partitions we abstracted from the order of 101

the summands; here we pay attention to order, and also to the sign (i.e., one
representationn2

1 + n2
2 + n2

3 + n2
4 is actually counted, order apart, as 16 different

representations (±n1)2
+(±n2)2

+(±n3)2
+(±n4)2, if n1, n2, n3, n4 are all different

from 0).
As an example, takem = 10. The different representations as the sum of

four squares are

(±1)2 + (±1)2 + (±2)2 + (±2)2,

(±1)2 + (±3)2 + (0)2 + (0)2,

along with their rearrangements, six in each. Thus altogether

r4(10)= 6× 16+ 6× 8 = 144
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8σ∗(10)= 3(1+ 2+ 5+ 10)= 8× 18= 144

Lagrange’s theorem was first enunciated by Fermat in the seventeenth cen-
tury. Many mathematicians tried to solve it without success; eventually Jacobi
found out the identity

r4(m) = 8σ∗(m)

Before that, the fact that every integer is the sum of four squares was con-
jectured by Fermat, Euler did not succeed in proving it. It was proved by La-
grange, and later Euler gave a mere elementary proof. Euler proved that if two
numbers are each the sum of four squares, then so is their product, by means
of the identity:

(x2
1 + x2

2 + x2
3 + x2

4)(y2
1 + y2

2 + y2
3 + y2

4)

= (x1y1 + x2y2 + x3y3 + x4y4)2
+ (x1y2 − x2y1 + x3y4 − x4y3)2

+

+ (x1y3 − x3y1 + x4y2 − x2y4)2
+ (x1y4 − x4y1 + x2y3 − x3y2)2.

We do not proceed to discuss in detail the representability of a number as 102

the sum of two sequences.
If we return not tof 2

α but to fα we are not helpless to deal with them.f4 is
not doubly periodic in the fundamental parallelogram, but is doubly periodic in
a parallelogram of twice this size with vertices at 0, 2, 2+ τ, τ. It has got a pole
at the vertex 0 and another at the vertex 1, with residues adding up to zero.

10 2

We may write down another identity:

V ′1
V4
· V4(V /τ)
V1(V /τ)

=
1
2






V ′1

(
V

2

/
τ
2

)

V1

(
V

2

/
τ
2

) −
V ′1

(
V +1

2

/
τ
2

)

V1

(
V +1

2

/
τ
2

)






This may be deduced by checking that the poles on both sides are the same,
Further they are odd functions and so the constant term in thedifference must

vanish. PutV =
1
2

on both sides.
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Then we get 103

πV 2
3 =

1
2






V
′

1

(
1
4

/
τ
2

)

V1

(
1
4

/
τ
2

) −
V
′

1

(
3
4

/
τ
2

)

V1

(
3
4

/
τ
2

)






By straightforward calculation, taking logarithmic derivatives, we obtain,

V
2

3 = 4
∞∑

m=1

qm(σ(1)
◦ (m) − σ(3)

◦ (m)),

where the notation employed is:

σk(m) =
∑

d|m
dk,

σ◦(m) =
∑

d|m
d◦ = number of divisors ofm;

σ
( j)
◦ (m) =

∑

d◦

d|m, d≡ j (mod 4)

comparing coefficients ofqm, and observing that on the leftm occurs only in
the formn2

1 + n2
2, we get the beautiful theorem:

m can be represented as the sum of two squares as often
as 4(σ(1)

◦ (m) − σ(3)
◦ (m)).

Notice thatσ(1)
◦ (m) − σ(3)

◦ (m) is always non negatives; henceσ(1)
◦ (m) ≥

σ
(3)
◦ (m) (i.e., the number of divisors of the form 4r + 1 is never less than the

number of divisors of the form 4r + 1), which is by no means a trivial fact.
In some cases we can actually find out what the differenceσ(1)

◦ (m)−σ(3)
◦ (m) 104

will be. Suppose thatm is a primep. Then the only divisors are 1 andp.
The divisor 1 goes intoσ(1)

◦ ; and p goes intoσ(3)
◦ if p ≡ 3 (mod 4). So the

difference is zero. However, ifp ≡ 1 (mod 4). p goes intoσ(1)
◦ . Hence the

number of representations of a primep ≡ 1 (mod 4) as the sum of two squares
is 4× 2 = 8. That the number of representations of a primep ≡ 1 (mod 4) as
the sum of two squares is 8 is a famous theorem of Fermat, proved for the first
time by Euler. It is usually proved by using the Gaussian complex numbers.

So far we have been looking uponV as the variable in theV - functions;
now we proceed to considerq as the variable and go to deeper things like the
Jacobi transformation.
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We now come to a rather important topic, the transformation of V -functions. 105

So far we have been looking uponVα(V /τ) as a function ofV only; hereafter
we shall be interfering with the ‘period’τ also. We want to study howVα(V /τ)
changes whenV is replaced byV + 1/τ. For this it is enough if we replaceV
by V τ = ω and see how the function behaves whenω is changed toω+1. This
would amount to turning the whole plane around in the positive sense about
the origin through argτ. We takeV1, because it is easier to handle, since the
zeros become the periods too. Consider

f (V ) = V1(V τ/τ)

Then

f (V + 1) = V1((V + 1)τ/τ)

= V1(V τ + τ/τ)

= −e−πiτe−2πiV τ
V1(V τ/τ)

= e−πiτe−2πiV τ f (V )

τ Similarly considerf (V − 1/τ) (We choose to take− 1
τ

rather than1
τ

since
we want the imaginary part of the parameter to be positive:

Im
1
τ
= Im

τ̄

ττ̄
< 0 and so Im−1

τ
> 0)

f (ν − 1
τ

) = V1((ν − 1
τ

)τ/τ)

= V1(V τ − 1/τ)

= −V1(V τ/τ)

82
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= − f (V )

So f is a sort ofV -function which picks up simple factors for the ‘periods’ 1106

and− 1
τ
. f (V ) has clearly zeros at 0 andτ′ = − 1

τ
, or generally atV = m1+m2τ

′;
m1,m2 integers, which is a point-lattice similar to the old one turned around.

Similarly let us define

g(V ) = V1(V /τ′) = V1

(

V / − 1
τ

)

g(V + 1) = V1(V + 1/τ′)

= −V1(V /τ′)

= −g(V )

g

(

V − 1
τ

)

= g(V + τ′)

= V1(V + τ′/τ′)

= −e−πiτ′e−2πiV
V1(V /τ′)

= −eπi/τe−2πiV g(V )

Let us form the quotient: 107

Φ(V ) =
f (V )
g(V )

φ(V + 1) =
f (V + 1)
g(V + 1)

= −e−πiτe−2πiV τφ(V )

Φ

(

V − 1
τ

)

=
f (V + τ′)
g(V + τ′)

=
f (V )

eπi/τe−2πiV g(V )

= e−πi/τe2πiV
Φ(V )

Φ takes on simple factors in both cases of this peculiar sort that we can
eliminate them both at one stroke. We write

e−πiτ(2V +1)
Φ(V ) = Φ(V + 1),

eπi(2V −1/τ)
Φ(V ) = Φ(V − 1/τ)
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Let us try the following trick. Let us supplementΦ(V ) by an outside func-
tion h(V ) so that the combined functionΦ(V ) is totally doubly periodic. Write

Ψ(V ) = Φ(V )eh(V )

We want to chooseh(V ) in such a manner that 108

Ψ(V + 1) = Ψ(V + τ′) = Ψ(V )

This implies two equations:

e−πiτ(2V +1)eh(V +1)−h(V )
= 1

eπi(2V −1τ)eh(V −1/τ)−h(V )
= 1;

or

h(V + 1)− h(V ) = πiτ(2V + 1)+ 2πim

h(V + τ′ − h(V ) = −πi(2V + τ′) + 2πim′.

We can solve both at one stroke. Since on the right side we havea linear
function ofV in both cases, a quadratic polynomial will do what we want.

(V + δ)2 − V
2
= 2V δ + δ2

= δ(2V + δ),

and takingh(V ) = πiτV 2,

h(V + 1)− h(V ) = πiτ(2V + 1)

h(V + τ′) − h(V ) = πiττ′(V + τ′) = −πi(2V + τ′),

so that both the equations are satisfied. Putting it in, we have

Ψ(V ) = eπiτV 2 V1(V τ/τ)

V1

(

V / − 1
τ

)

This has the property that 109

ψ(V + 1) = ψ(V + τ) = ψ(V )

So we have double periodicity. This function is also an entire function
because the numerator and denominator have the same simple zeros. So this is
a pole-free function and hence a constantC, C a constant with respect to the
variableV , but may be a function of the parameterτ,C = C(τ). We thus have
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I.

eπiτV 2
V1(V τ/τ) = C(τ)V1

(

V / − 1
τ

)

What we need now are the corresponding formulas for the otherfunctions.
ReplacingV by V +

1
2,

eπiτ(V + 1
2 )2

V1

((

V +
1
2

)

τ/τ

)

= C(τ)V1

(

V +
1
2

/

− 1
τ

)

,

or eπiτ(V 2
+V +1/4)ie−πiτ/4e−πiV τ

V4(V τ/τ) = C(τ)V2

(

V / − 1
τ

)

We notices here that two differentV -functions are related. This gives
II.

ieπiτV 2
V4(V τ/τ) = C(τ)V2

(

V / − 1
τ

)

.

Replacing in IV by V + τ′/2 = V − 1/(2τ), we get
III.

ieπiτV 2
V2(V τ/τ) = C(τ)V4

(

V / − 1
τ

)

Finally puttingV +
1
2 for V In, III,

IV.

ieπiτV 2
V3(V τ/τ) = C(τ)V3

(

V / − 1
τ

)

The way the functions change over in I-IV is quite plausible.For consider 110

the location of the zeros.
When we take the
parallelogram and
turn it around what
was originally a
zero forV4 becomes
one for V2 and vice
versa; and what
used to be in the
middle, the zero of
V3, Remains in the
middle. So the for-
mulae are plausible
in structure.

1 2

3
4

The most important thing now is, what isC(τ)? To evaluateC(τ) let us
differentiateI and putV = 0. We have
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V.

τV 1
1 (0/τ) = C(τ)V 1

1

(

0/ − 1
τ

)

From II, III, and IV, puttingV = 0,

iV4(0/τ) = C(τ)V2

(

0/ − 1
τ

)

iV2(0/τ) = C(τ)V4

(

0/ − 1
τ

)

iV3(0/τ) = C(τ)V3

(

0/ − 1
τ

)

Multiplying these together and recalling thatπV ′1 = V2V3V4, we obtain
VI.

−iV 1
1 (0/τ) = (C(τ))3

V
′

1

(

0/ − 1
τ

)

.

Dividing by VI, by V, 111

1
iτ
= C2(τ),

or C(τ) = ±
√

1
iτ

In II, III, IV, it is C(τ)
i that appears; so let us write this is

C(τ)
i
= ±1

i

√

1
iτ
= ±

√

i
τ

Now k(i/τ) > 0 · C(τ)
i is completely determined, analytically, in particular

by IV:
C(τ)

i
=

V3(0/τ)

V3(0/ − 1
τ
)
=

∑

eπiτn2

∑

eπiτ′n2

Both the numerator and denominator are analytic functions if Im τ > 0. So
C(τ)

i is analytic and therefore continuous.i/τ must lie in the right half-plane,

and thus
√

i
τ

in either of the sectors with central angleπ/2, but because of
continuity it cannot lie on the border lines. So it is in the interior of entirely
one sector. To decide which one it is enough if we make one choice.
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Takeτ = it, t > 0; then 112

C(it)
i
=

∑

e−πtn2

∑

e−(π/t)n2

Both numerator and denominator are positive. SoC(τ)
i lies in the right half.

So |arg
√

i
τ
| < π

4 and
√

i
τ

denotes the principal branch. The last equality gives:

∞∑

n=−∞
e−πin2/τ

=

√

τ

i

∞∑

n=−∞
eπin2τ

This is a very remarkable formula. It gives a functional relation: the trans-
formationτ→ −1/τ almost leaves the function unchanged; it changes only by
a simple algebraic function. This is one of the achievementsof Jacobi.

In the earlier equations we can now putC(τ) =
√

(i/τ). In particular envis-
ageV ′1 :

V
′

1 (0/τ) =





√

i
τ





3

V
′

1

(

0/ − 1
τ

)

or V
′

1

(

0/ − 1
τ

)

=

√

τ

i
· τ

i
V
′

1 (o/τ)

But

V
′

1 (0/τ) = 2πeπiτ/4
∞∏

m=1

(1− e2πimτ)3

∴ e−πiτ/4
∞∏

m=1

(1− e−2πim/τ)3
=

√

τ

i
· τ

i
eπiτ/4

∞∏

m=1

(1− e2πimτ)3
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Extracting cube roots on both sides, 113

e−πiτ/12
∞∏

m=1

(1− e−2πim/τ) = ǫ

√

τ

i
eπiτ/12

∞∏

m=1

(1− e2πimτ)

whereǫ3
= 1. Dedekind first introduced the function

η(τ) = eπiτ/12
∞∏

m=1

(1− e2πimτ)

Then

η

(

−1
τ

)

= ǫ

√

τ

i
η(τ)

This is challenging; we have to decide whichǫ to take:ǫ3
= 1. The quotient

η(− 1
τ
)
/√

τ
i η(τ) is an analytic (hence contains) function in the upper half-plane

and so must be situated in on of the three open sectors. Now make a special
choice; putτ = i. Thenη(i) = ǫ(+1)η(i), or ǫ = 1.

∴ η

(

−1
τ

)

=

√

τ

i
η(τ)

What we have done by considering the lattice of periods can bedone in 114

more sophisticated ways. One can have a whole general theoryof the transfor-

mations from 1,τ, to 1,
aτ + b
cτ + d

. The quotients appear first and can be carried

over. We start withV1 and come back to it; there may be difficulty, however in
deciding the sign.
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We arrived at the following result last time: 115

η

(

−1
τ

)

=

√

τ

i
η(τ).

We began by investigating a transformation ofV1(V , τ). Instead of looking
upon 1 andτ as generators of the period lattice, we looked uponτ and−1 as
generators (turning the plane around through argτ): 1, τ → τ,−1. We have
of course still the same parallelogram of periods. Since we should like to keep
the first period 1, we reduced everything byτ : τ,−1 → 1,− 1

τ
; so we had to

investigateV1(V τ/τ). V1(V τ/τ) andV1(V / − 1
τ
) have the same parallelogram

of periods.
We could do this a little more generally. Let us introduce linear combina-

tions:
ω1 = cτ + d, ω2 = aτ + b,

and go fromω1 to ω2 in the
positive sense. In order that we
must have these also as generat-
ing vectors for the same lattice,
we should havea, b, c, d inte-
gers with

∣
∣
∣
∣
∣
∣
∣
∣

a b

c d

∣
∣
∣
∣
∣
∣
∣
∣

= 1.

Moreover we want the first period to be always 1. (This is the difference
between our case and the Weierstrassian introduction of periods, where we
have complete homogeneity). So replacing by linearity, theperiods are 1 and
τ′ = aτ+b

cτ+d .

89
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Be sure that we want to go from 1 toτ′ through an angle less thanπ in the 116

positive sense. For this we wantτ′ to have a positive imaginary partsImτ̄′ > 0,
or

τ′ − τ̄′
i

> 0

i.e.,
1
i

(

aτ + b
cτ̄ + d

− aτ̄ + b
cτ̄ + d

)

> 0

i.e.,
1
i

adτ + bcτ̄ − adτ̄ − bcτ
|cτ + d|2 > 0

i.e.,
1
i

(ad− bc)(τ − τ̄)
|cτ + d|2 > 0

or sinceτ − τ̄ is purely imaginary,

ad− bc= ±1.

We could do the same thing in all our different steps. The most important
step, however, cannot be carried through, because we get lost at an important
point; and rightly so, it becomes cumber some because a number-theoretic
problem is involved there. Let us see what we have done. Compare

V1((cτ + d)V /τ) andV1

(

V

/aτ + b
cτ + d

)

We want periods 1,τ′; indeed all things obtainable fromω1 = cτ + d and
ω2 = aτ + b; or m1ω1 +m2ω2 must in their totality comprise all periods. For
the firstcτ + d is indeed a period, and for the secondaτ + b.

Now define 117

f (V ) = V1((cτ + d)V /τ)

f (V + 1) is essentiallyf (V ):

f (V + 1) = V1((cτ + d)V + cτ + d/τ)

= (−)c+de−c2πiτe−∗∗∗∗∗(cτ+d)V
V1((cτ + d)V /τ), from the table,

= (· · · · · · ) f (V )

f (V + τ′) = V1((cτ + d)ν + aτ + b/τ)

= (−)a+be−a2πiτe−2πia(cτ+d)ν
V1((cτ + d)V /τ)

= (· · · · · · ) f (V )

f (V ) has, leaving trivial factors aside, periods 1,τ′ *****. So too for the
second functionV1

(

V

/
aτ+b
cτ+d

)

.
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We can form quotients and proceed as we did earlier.
Let us consider for a moment theV ′s with double subscripts. This is a

digression, but teaches us a good deal about how to work withV -functions.
Recall that

Vµν(ν/τ) =
∑

n

(−)νneπiτ(n+ 1
2)

2

e2πiν(n+ 1
2)

V1(ν/τ) = Vn(ν/τ)

V2(ν/τ) = V10(ν/τ)

V3(ν/τ) = V00(ντ)

V4(ν/τ) = V01(ν/τ)

We take one liberty from now on. Takeµ, ν to be arbitrary integers, no 118

longer 0, 1. That will not do very much harm either. In fact,

Vµ,ν+2(ν/τ) = Vµ,ν(v/τ)

It is unfortunately not quite so easy for the other one:

Vµ+2,ν(v/τ) = (−)νVµ,ν(v/τ)

For

Vµ+2,ν(v/τ) =
∑

n

(−)νeπiτ(n+µ/2)2e2πiν(n+1+µ/2)

=

∑

n

(−)ν(−)v(n+1)eπiτ(n+1+µ/2)2e2πiv(n+1+µ/2)

= (−)v
Vµν(v/τ),

on shifting the summation index fromn to n + 1. The original table will be
considerably reduced now; only in place ofν + 1, ν + 1

2, ν + τ
2, ν + 1+τ

2 it
will be now necessary to have the combinationν + k

2 +
l
2τ. The expression

for Vµν

(

ν +
k
2
+

l
2
τ/τ

)

will include everything that we have done so far in one

single formula.

Vµν

(

ν +
k
2
+

l
2
τ/τ

)

=

∑

n

(−)νneπiτ(n+ µ

2 )2
e2πiν(n+ µ

2 )eπi(k+lτ)(n+ µ

2 )

= ikµ
∑

n

(−)(ν+k)n
eπiτ(n+µ/2+l/2)2e−πiτl2/4e2πiν(n+µ/2+l/2)e−πilν

= ikµe−πiτl2/4e−πilν
Vµ+l,ν+k(ν/τ) (*)



13. Lecture 92

119

This one formula has the whole table in it.
We now turn to our purpose, viz. To consider the quotient

V1((cτ + d)ν/τ)

V1

(

ν
/

aτ+b
cτ+d

)

We wish to discuss the behaviour a little more explicitly off (ν).

f (v) = V11((cτ + d)ν/τ)

f (v+ 1) = V11((cτ + d)ν + cτ + d/τ)

f (v+ τ′) = V11((cτ + d)ν + aτ + b/τ)

puttingk = 2c, l = 2d, µ = ν = 1 in (*), 120

f (ν + 1) = (−)de−πiτc2
e−2πic(cτ+d)ν

V1+2c,1+2d((cτ + d)ν/τ)

= (−)c+de−πiτc2
e−πic(cτ+d)ν f (v)

Similarly, puttingk = 2a, l = 2b, µ = ν = 1,

f (ν + τ′) = (−)a+be−πiτa2
e−2πia(cτ+d)ν f (v).

Also definingg(ν):

V1

(

v
/aτ + b
cτ + d

)

= g(v) = V11(ν/τ′),

we have
g(ν + 1) = V11(ν + 1/τ′) = −V11(ν/τ

′).

And puttingk = 0, l = 2,µ = 3, ν = 1 in (*),

g(ν + τ′) = e−πiτ′e−2πiν
V31(ν/τ

′)

= −e−πiτ′e−2πiνg(ν).

We form now in complete analogy with the old procedure

Φ(ν) =
f (ν)
g(ν)

Φ(ν + 1) = (−)c+d+1e−πiτc2
e−2πic(cτ+d)νΦ(ν),

Φ(ν + τ′) = (−)a+b+1e−πiτc2
e−2πia(cτ+d)νeπiτ′+2πiv

Φ(ν)
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Φ takes up exponential factors which containν linearly. As before ewe can 121

submerge this under a general form. Define

Ψ(ν) = Φ(ν)eh(ν),

whereh(ν) is to be so determined that

Ψ(ν + 1) = Ψ(ν + τ′) = Ψ(ν)

we therefore want

eh(ν+1)−h(ν)(−)c+d+1e−c2πiτ−2πic(cτ+d)ν
= 1,

eh(ν+τ′)−h(ν)(−)a+b+1e−a2πiτ+πiτ′+2πiνe−2πia(cτ+d)ν
= 1.

It will be convenient to observe thatc+ d+ cd+ 1 = (c+ 1)(d+ 1) is even,
for at least one ofc, d should be odd as otherwisec, d would not be co-prime
and we would not have ∣

∣
∣
∣
∣
∣
∣
∣

a b

c d

∣
∣
∣
∣
∣
∣
∣
∣

= 1

So (−)c+d+1
= (−)cd

= eπicd. h is given by the equations:

h(ν + 1)− h(ν) = 2πic(cτ + d)ν + πic(cτ + d),

h(ν + τ′) − h(ν) = 2πia(cτ+ d) + πia(aτ + b) − πiτ′

= 2πc(aτ+ b)ν + πicτ′(aτ + b).

We have to introduce a suitable functionh(ν). Since the difference equation
can be solved by means of a second degree polynomial, put

h(ν) = Aν2
+ B

for each separately and see whether it works for both. 122

h(ν + δ) − h(ν) = 2Aνδ + Aδ2
+ Bδ

= δ(2Aν + Aδ + B)

Puttingδ = 1, τ′, we find thatA = πic(cτ + d) works in both cases. Also
for δ = 1,

A+ B = πic(cτ + d),

A

(

aτ + b
cτ + d

)2

+ B

(

aτ + b
cτ + d

)

=
πic(aτ + b)2

cτ + d
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SoB = 0 fits both. Hence

h(ν) = Aν2,A = πi(cτ + d)c

∴ Ψ(ν) = eπic(cτ+d)ν2 f (ν)
g(ν)

And this is a doubly periodic entire function (because the numerator and
denominator have the same simple zeros) and therefore a constant. We thus
have the transformation formula

V11

(

ν
/aτ + b
cτ + d

)

= Ceπic(cτ+d)ν2
V11((cτ + d)ν/τ)

whereC may depend on the parametersτ, a, b, c, d:

C = C(τ; a, b, c, d)

More generally we can have a parallel formula for anyµ, ν. As before we 123

get an equation forC2. And there the thing stops. Formerly we were in a very
good position with the special matrix





a b

c d




=





0 −1

1 0




.

For generala, b, c, d we get into trouble.
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We were considering the behaviour ofV11(ν/τ) under the general modular 124

transformation:

V11

(

ν
/aτ + b
cτ + d

)

= C(τ)eπiC(cτ+d)ν2
V11((cτ + d)ν/τ), (1)

a, b, c, d integers with

∣
∣
∣
∣
∣
∣
∣
∣

a b

c d

∣
∣
∣
∣
∣
∣
∣
∣

= +1.

We want to determineC(τ) as far as possible. We shall do this up to a±
sign.ν is unimportant at the moment; even if we putν = 0, C(τ) survives. Put
ν = 1

2 ,
τ′

2 ,
1+τ′

2 in succession, ans use out auxiliary formula which contracted
the whole table into one thing:

Vµν

(

v+
k
2
+

lτ
2

/

τ

)

= ikµe−πiτl2/4e−πiν
Vµ+l,v+k(v/τ) (*)

Puttingν = 1
2 in (1), and writingτ′ =

aτ + b
cτ + d

,

V11

(

1
2

/

τ′
)

= C(τ)eπic(cτ+d)/4
V11

(

cτ + d
2

/

τ

)

(2)

This is the right moment to call for formula (*). From (*) withν = 0,
µ = ν = 1, k = 1, l = 0, we get

V11

(

1
2

/

τ′
)

= iV12(0/τ
′)

Also from (*) with ν = 0, µ = ν = 1, k = d, l = C, we get

V11

(

cτ + d
2

/

τ

)

= idC−πic2/4
V1+c,1+d(o/τ).

95
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Substituting these two formulas in the left and right sides of (2) respec- 125

tively, we get

iV12(0/τ
′) = C(τ)eπic(cτ+d)/4ide−πiτc2/4

V1+c,1+d(0/τ)

Now, recalling that

Vµ,ν+2(ν/τ) = Vµν(ν/τ)

Vµ+2,ν(ν/τ) = (−)νVµν(ν/τ),
(**)

the last formula becomes

iV10(0/τ
′) = C(τ)eπicd/4idV1+c,1+d(0, τ) (3)

Puttingν = τ′/2 in (1), we have

V11

(

τ′

2

/

τ′
)

= C(τ)eπic/4τ′(aτ+b)
V11

(

aτ + b
2

/

τ

)

.

Making use of (*) in succession on the left and right sides (with proper
choice of indices) as we did before, this gives

e−πiτ′/4
V12(0/τ′) = C(τ)eπicτ′(aτ+b)/4ibe−πia2τ/4

V1+a,1+b(0/τ),

and this, after slight simplification of the exponents on theright sides, gives in
view of (**),

−V01(0/τ
′) = C(τ)ibeπiab/4

V1+a,1+b(0/τ) (4)

Puttingν = (1+ τ′)/2 in (1), 126

V11

(

1+ τ′

2

/

τ′
)

= C(τ)eπic/4(1+τ′)(la+c)τ+b+d)
V11

(

(a+ c)τ + l + d
2

/

τ

)

Again using (*) and (**) as we did earlier, this gives

ie−πiτ′/4
V22(0/τ

′) = C(τ)eπic/4(1+τ′)((a+c)τ+l+d)i l+de−πi(0+c)2/4
V

(0/τ)
1+a+c,1+l+d

This of course can be embellished a little:

iV00(0/τ
′) = C(τ)eπi/4(1+τ′)(c(a+c)τ+cb+id+1)ib+de−πi/4e−πiτ(a+c)2/4

V
(0/τ)

1+a+c,1+b+d

= C(τ)eπi/4(a+c)((a+c)τ+b+d)i l+de−πi/4e−πiτ(a+c)2/4
V1+a+c,1+b+d

∴ iV00(0/τ
′) = C(τ)eπi/4(a+c)(b+d)ib+de−πi/4

V
(0/τ)

1+a+c,1+b+d (5)



14. Lecture 97

Now utilise the formula:

V
′

1 (0/τ) = πV2(0/τ)V3(0/τ)V4(0/τ)

Multiplying (3), (4) and (5),

V
′

11(0/τ
′) = (C(τ))3(−)b+deπi/4(ab+cd+(a+b)(b+d)−1)

× iπV1+c,1+d(0/τ)V1+a,1++b(0/τ)V1+a+c,1+b+d(0/τ)

Observe that the sum of the first subscripts on the right side= 3+2a+2c≡ 1 127

(mod 2). So either all three numbers 1+ a, 1+ c, 1+ a+ c are odd, or one of
them is odd and two even. Then first case is impossible since weshould then
have botha andc even and so

∣
∣
∣ a b

c d

∣
∣
∣ , 1. So two of them are even and one

odd. The even suffixes can be reduced to zero and the odd one to 1 by repeated
application of (**). Similarly for the second suffixes. So theV -factors on the
right will be V00, V01, V10. What we hate is the combination 1, 1 and this does
not occur. (If it did occur we should haveV11 which vanishes at the origin).
Although we can not identify theV -factors on the right, we are sure that we
get exactly the combinations that are desirable: 01, 10, 00.The dangerous
combination is just out.

Let us reduce the subscripts by stages to 0 or 1 as the case may be. When
we reduce the second subscript nothing happens, whereas when we reduce
index by steps of 2, each time a factor±1 is introduced, by virtue of (**). By
the time the subscript 1+ c is reduced to 0 or 1, a factor (−)[

1+c
2 ] (1 + d) will

have accumulated in the case ofV1+c,1+d. Similarly in the case ofV1+a,1+b and
V1+a+c,1+b+d. Altogether therefore we have a factor 128

(−)[
1+c
2 ](1+d)+[ 1+a

2 ](1+b)+[ 1+a+c
2 ](1+b+d),

and when this compensating factor is introduced we can writeV00, V ′11 andV10.
Hence our formula becomes

V
′

11(0/τ) = (C(τ))3(−)αeπi/4(ab+cd+(a+c)(b+d)−1)iπV00(0/τ)V01(0/τ)V10(0/τ) (6)

where

α = b+ d+

[

1+ c
2

]

(1+ d) +

[

1+ a
2

]

(1+ b) +

[

1+ a+ c
2

]

(1+ b+ d)

From (1), differentiating and puttingν = 0, we have

V
′

11(0/τ
′) = C(τ)(Cτ + d)V ′11(0/τ) (7)
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Dividing (6) by (7)

(C(τ))2
= (cτ + d)(−)αe−πi/4(ab+cd+(a+c)(b+d)−1)

=
cτ + d

i
(−)αe−πi/4(ab+cd+(a+c)(b+d)−3)

(we may assumec > 0, sincec = 0 impliesad = 1 or a, d = ±1, which give
just translations).

∴ C(τ) = ±
√

cτ + d
i

iαe−πi/8(ab+cd+(a+c)(b+d)1−3)

For the square root we take the principal branch. Since Im(cτ + d) > 0,

R
cτ + d

i
> 0, so that

cτ + d
i

is a point in the right half-plane. The sign is still

uncertain.
The factore−πi/8(··· ) looks like a 16th root of unity, but is really not so. Since129

ad+ bchas the same parity asad− bc= 1, the exponent is even, and therefore
what we really have is only an 8th root of unity.

What could we do now? We really do not know of any fruitful way.We
cannot copy what we did formerly. There we had a very special case: τ′ =
−1/τ, or the modular substitution involved was

( a b
c d

)

=
( 0 −1

1 0
)

. The± sign
depends only ona, b, c, d, not onτ, so that it is enough if we make a special
choice ofτ in the equation. Formerly we could takeτ = τ′ = i and it worked
so beautifully becauseτ is a study the fixed points of the transformationτ′ =
aτ + b
cτ + d

. The fixed pointsξ are given by

ξ =
aξ + b
cξ + d

,

or cξ2
+ (d− a)ξ − b = 0

i.e., ξ =
(a− d) ±

√

(a− d2) + 4bc

2c

=
(a− d) ±

√

(a+ d)2 − 4
2

sincead− bc= 1.
Hence we have several possibilities. If the square root is imaginary we have

twp points one in each of the upper and lower half-planes, andfor this |a+d| < 130

2, so that the square root becomes
√
−4 or

√
−3 according as|a+ d| = 0or 1.

This is theelliptic case. If |a+ d| = 2, we have one rational fixed point; this is
theparabolic case. And in the huge infinity of cases,|a+ d| > 2, we have two
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real fixed points -thehyperboliccase. Here the fixed are not accessible to us
because they are quadratic algebraic numbers on the real axis.

In the elliptic case with|a+ d| < 2 we could finish the thing without much
trouble. In the parabolic case we are already in a fix. Much more difficult is
the hyperbolic case.

If ξ1 and ξ2 are the fixed
points,τ and τ′ will lie on the
same circle throughξ1 and ξ2,
and repetitions of the transfor-
mation would give a sequence
of points on the same circle
which may converge to eitherξ1

or ξ2. So the ambiguity in the±
sign will remain.

It will be much more difficult when we pass fromV to η, because then we
shall have to determine a cube root.
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We were discussing the possibility of getting a root of unitydetermined for 131

the transformation ofV ′11

(

ν
/aτ + b
cτ + d

)

. There do exist methods for determining

this explicitly. Only we tried to carry out the analogue withthe special case
as far as possible, not with complete success. other methodsexist. The first of
these is due to Hermite, done nearly 100 years ago. He used what are called
Gaussian sums. There are difficulties there too and we want to avoid them.
Another method is that of Dedekind using Dedekind sums.

In the special case of the transformation fromτ to τ′ = − 1
τ

we were faced

with an elliptic substitution
(

a b
c d

)

. These are of two sorts:

1. a+ d = 0

2. a+ d = ±1

In both cases we can completely forget about the root of unityif we remember
the following fact. Our formula had the following shape:

V
′

11

(

0
/aτ + b
cτ + d

)

=

√

cτ + d
i
· cτ + d

i
ρ(a, b, c, d)V ′11(0/τ) (*)

whereρ is a root of unity which is completely free ofτ. we can then get things
straightened out. We have only to consider the fixed points ofthe transforma-
tion given by

ξ =
a− d±

√

(a+ d)2 − 4
2c

Putξ on both sides of the formula; sinceξ =
aξ + b
cξ + d

, both sides look alike 132

andV ′11 does not vanish for appropriateτ in the upper half-plane (we may take
c > 0), so thatρ is given directly by the formula.

100
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Case 1. a+ d = 0

ξ =
−2d±

√
−d

2c
=
−d+ i

c

(reject the negative sign since we want a point in the upper half-plane).

cξ + d
i
=

i
1
= i

∴ V
′

11(0/ξ) = ρ(a, b, c, d)V ′11(0/ξ)

Soρ(a, b, c, d) = 1 and remains 1 in the general formula when we go away
from ξ.

Case 2. a+ d = ±1

ξ =
±1− 2d+

√
−3

2c

∴ cξ + d =
±1+ i

√
3

2
= eπi/3 or e2πi/3

cξ + d
i
= eπi/3−πi/2 or e2πi/3−πi/2

= e±πi/6

√

cξ + d
i
= e∓πi/12

Puttingξ on both sides of (*), 133

1 = e∓πi/4ρ(a, b, c, d)

∴ ρ(a, b, c, d) = e±πi/4

whena+ d = ±1, (we may takec > 0; the casec = 0 is uninteresting and
if c < 0 we can make itc > 0).

There are unfortunately no more cases like these.
Parabolic case. The analysis here is a little longer but it is worth while working
it out. Nowa+ d = ±2, and there is only one fixed point

ξ =
a− d

2c
− −2d± 2

2c
=
−d± 1

c
= − δ

γ

where (γ, δ) = 1 and we may chooseγ > 0. The fixed point is now a rational
point on the real axis. We try to approach it. This is a little difficult because
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we do not know what the function will do thee. But by an auxiliary transfor-
mation we can throw this point into the point at infinity. Consider the auxiliary
transformation

T =
Aτ + B
γτ + δ

,

∣
∣
∣
∣
∣
∣
∣
∣

A B

γ δ

∣
∣
∣
∣
∣
∣
∣
∣

= 1

The denominator becomes zero forτ = ξ. Let

T′ =
Aτ′ + B
γτ′ + δ

(notice thatγ andδ have got something to do with the properties of two other134

numbersc, d). Now (*) gives

V
′

11(0/T) =





√

γτ + δ

i





3

ρ(A, B, γ, δ)V ′11(0/τ),

V
′

11(0/T
′) =





√

γτ′ + δ

i





3

ρ(A, B, γ, δ)V ′11(0/τ
′).

Dividing, we get

V ′11(0/T
′)

V ′11(0/T)
=





√

γτ′+δ
i

√

γτ+δ

i





3

V ′11(0/τ
′)

V ′11(0/τ)
(1)

The left side gives the behaviour at infinity. We cannot of course putτ = ξ.
Putτ = ξ + it, t > 0, and later maket→ 0. τ is a point in the upper half-plane.

τ − ξ = it,

τ′ − ξ = aτ + b
cτ + d

− aξ + b
cξ + d

=
τ − ξ

(cτ + d)(cξ + d)

=
it

1± ict

This is also in the upper half-plane.τ′ → ξ ast → 0
Let us calculateT andT′. For this consider

T′ − T =
Aτ′ + B
γτ′ + δ

− Aτ + B
γτ + δ
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=
τ′ − τ

(γτ′ + δ)(γτ + δ)

= ∓ c
γ2

135

This is quite nice; the difference is a real number.

T =
Aτ + B
γτ + δ

=
A(ξ + it) + B
γ(ξ + it) + δ

=
Ait + Aξ + B

γit
, sinceγξ + δ = 0,

=
A
γ
+

−Aδ
γ
+ B

γit

=
A
γ
+

Bγ − Aδ
γτt

=
A
γ
+

1
γ2t

, sinceBγ − Aδ = −1

→ i∞ (along the ordinatex = A
γ
) ast → 0

T′ =
A
γ
± c
γ2
+

i
r2t

→ i∞ ast→ 0

Now recall the infinite product formula 136

V
′

11(0/T) = 2πieπiT/4
∞∏

n=1

(1− e2πinT )3

Let T = A
γ
+

i
γ2t . Then

e2πinT
= e2πinA/γe−2πnt/γ2 → 0

∴ V
′

11(0/T) = 2πieπiT/4(a factor tending to 1)

We do not know what happens toeπiT/4. But we need only the quotient. So

V ′11(0/τ)

V ′11(0/τ)
∼ eπi(T′−T)/4

= e∓πic/4γ2
(2)
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Consider similarly the quotientV ′11(0/τ
′)/V ′11(0/τ). We have, sinceγξ+δ =

0,
γτ + δ

i
=
γ(ξ + it) + δ

i
= γt

or

√

γτ + δ

i
=
√
νt, where we take the positive square root

γτ′ + δ

i
=

γ
(

ξ + it
1±ict

)

+ δ

i
=

γt
1± ict

∴

√

γτ′ + δ

i
=
√

rt

√

1
1± ict

(both branches principal)

∼
√
γt ast → 0.

Hence the quotient

√

γτ′ + δ

i

/
√

γτ+δ

i behaves like 1. 137

And so we have what we were after:

V ′11(0/τ
′)

V ′11(0/τ)
→ e∓πic/4γ2

ast→ 0 (3)

cτ + d
i
=

c(ξ + it) + d
i

=

a−d
2 + cit + d

i

=
a+ d

2 + cit

i
= ±1+ cit

i
= ∓i + ct

→ ∓i ast→ 0.

What will the square root of this do?
√

cτ + d
i

=
√

ct∓ i, and this

does lie in the proper half plane
becausect > 0. For small t
it will be very near the imagi-
nary axis near∓i. So the square
root lies in the sector, in the
lower half plane if we choose√
−i = e−πi/4, and in the upper

half-plane if we choose
√
+i =

eπi/4 Hence

√

cτ + d
i
→ e∓πi/4

ast → 0.
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Using this fact as well as (2) and (3) in (*) we get 138

e∓πic/4γ2
= e∓3πi/4ρ(a, b, c, d)

∴ ρ(a, b, c, d) = e∓
πi
4

(c/γ2 − 3)

We observe that the common denominator (γ, δ) = 1 plays a role, however
a andb do not enter.

Hyperbolic case. The thing could also be partly considered in the hyperbolic
case. It will take us into deeper things like real quadratic fields and we do not
propose to do it.

Let us return to what we had achieved in the specific case. We had a formula
for η(τ):

η(τ′) =

√

cτ + d
i

ǫ(a, b, c, d)η(τ),

whereǫ(a, b, c, d) is a 24th root of unity. This shape we have in all circum-
stances. The difficulty is only to computeǫ. We shall not determine it in
general, and we can do away with it even for the purpose of partitions by using
a method developed recently by Selberg.

However in each specific case we can computeǫ.

η

(

−1
τ

)

=

√

τ

i
η(τ)

Now

η(τ) = eπiτ/12
∞∏

n=1

(1− e2πinτ),

η(τ + b) = eπib/12η(τ)

Out of these two facts we can get every other one, because the two substi- 139

tutions

S =





1 1

0 1




, T =





0 −1

1 0





form generators of the full modular group. This can be shown as follows. Take
c > 0.

aτ + b = q0(cτ + d) − a, τ − b1, c > |a1|,
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or
aτ + d
cτ + d

= q0 −
a1τ + b1

cτ + d
,

∣
∣
∣
∣
∣
∣
∣
∣

c d

a1 b1

∣
∣
∣
∣
∣
∣
∣
∣

= 1

(if a < 0 this step is unnecessary). Similarly

cτ + d
a1τ + b1

= q1 −
a2τ + b2

a1τ + b1

We thus get a continued fraction expansion. The partial quotients get simi-

lar and simpler every time and end with
τ + b
0+ 1

= τ+qk. so we can go back and

take linear combinations; all that we have to do is either to add an integer toτ
or take−1/τ.

As an example, let us consider

η

(

3τ + 4
2τ + 3

)

Let us break
3τ + 4
2τ + 3

into simpler substitutions,

τ3 =
3τ + 4
2τ + 3

= 1− 1
τ2
,

τ2 = −2+ τ1;

τ1 = −
1

τ + 1

η(τ1) = η

(

− 1
τ + 1

)

=

√

τ + 1
i

η(τ + 1)

=

√

τ + 1
i

eπi/12η(τ).

η(τ2) = η(τ1 − 2) = e−πi/6η(τ1)

=

√

τ + 1
i
· e−πi/12η(τ)

η

(

− 1
τ2

)

=

√

τ2

i
η(τ2)

=

√

τ + 1
i

√

τ2

i
e−πi/12η(τ)

The two square roots taken separately are each a principal branch, but taken 140
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together they may exceed one. We can write this as

η

(

− 1
τ2

)

=

√

τ + 1
i

√

−2− 1
τ+1

i
e−πi/12η(τ)

=

√

τ + 1
i

√

−2τ − 3
i(τ + 1)

e−πi/12η(τ)

=

√

−2τ − 3
−1

e−πi/12η(τ)

= ±
√

3+ 2τe−πi/12η(τ)

Here we are faced with a question: which square root are we to take? 141

We write
√

3+ 2τ = eπi/4
√

2τ+3
i

Let us look into each root singly. Forτ = it where do they go?

√

τ + 1
i
=

√

it + 1
i

→ ∞ with argument 0 ast→ ∞.
√

−2τ − 3
i(τ + 1)

=

√

−2it − 3
i(τ + 1)

→
√

2i ast → ∞,

or its argument = π/4

The product

√

τ + 1
i

√

−2τ − 3
i(τ + 1)

has here argumentπ/4, so that it continues

to be the principal branch. Of course in a less favourable case, if we had two
other arguments, together they would have run into something which was no
longer a principal branch. Finally,

η

(

3τ + 4
2τ + 3

)

= eπi/4

√

2τ + 3
i

η(τ)

and here there is no ambiguity. Actually in every specific case that occurs one
can compute step and make sure what happens.

There does exist a complete formula which determinesǫ(a, b, c, d) explic-
itly by means of Dedekind sumsS(h, k).
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Analytic theory of partitions
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Our aim will be now to get an explicit formula forp(n) and things connected 142

with it. Later we shall return to the functionη(τ) and the discussion of the sign
of the square root. That will again lead us into some aspects of the theory of
V -functions connected with quadratic residues.

Let us come to our topic. Euler had, as we know, the identity:

∞∑

n=0

p(n)xn
=

1
∞∏

m=1
(1− xm)

.

This is the starting point of the function-theoretic treatment ofp(n).

p(n) =
1

2πi

∫

c

f (x)
xn+1

dx,

where f (x) =
∞∏

m=1
(1 − xm)−1 andC is a suitable closed path contained in the

unit circle, in which the function is analytic, and enclosing the origin. Since
∑

p(n)xn is a power series beginning with 1, this means a little more.n may be
negative also; and whenn is negativef (x)x−n−1 is regular atx = 0. Therefore
we include negative exponents also in our discussion; we putp(−n) = 0,n > 0,
when is convenient. Hereafter we shall taken to be an integerR 0; we shall
choosen and keep it fixed throughout our discussion.

It is a little more comfortable to change the variable and putx = e2πiτ, 143

Im τ > 0, which is familiar to us.
dx= e2πiτ · 2πidτ and the whole thing boils down to

p(n) =
∫ α+1

α

f (e2πiτ)e−2πinτdτ

109
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It is enough to take the integral along a path from an arbitrary pointα to
the pointα + 1, because the integrand is periodic, with period 1. (This path
replaces the original pathC that we had in thex-plane before we changed the
variable). The method of Hardy and Ramanujan was to take a curve rather
close to the unit circle which is a natural boundary for the function (this will
come out in the course of the argument). They cut up the path ofintegration
into pieces called Farey arcs, and the trick was to replace the function by a
simpler approximating function on each specific Farey arc. We shall use not
exactly this method, but consider a special path fromα toα+1, which we shall
discuss.

We shall keep our formula in abeyance for a moment and give a short dis-
cussion of Farey series (‘series’ here is not to be understood in the sense of
infinite series, but as just an aggregate of numbers). Cauchydid make all the 144

observation attributed by Hardy and Wright to Farey; Farey made his remarks
in the Philosophical Magazine, 1816. He put only questions;Cauchy had all
the answers earlier.

We deal with the interval (0, 1). Choose all reduced fractions whose de-
nominators do not exceed 1, 2, 3, · · · in succession. Let us write down the first
few, with the fractions arranged in increasing order of magnitude.

0
1

1
1 order 1

0
1

1
2

1
1 order 2

0
1

1
3

1
2

2
3

1
1 order 3

0
1

1
4

1
3

1
2

2
3

3
4

1
1 order 4

0
1

1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

1
1 order 5

The interesting fact is that we can write down a new in the following way.

We repeat the old row and introduce some new fractions. If
h
k
<

h′

k′
are adjacent

fractions in a row, the new one introduced between these in the next row is
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h+ h′

k+ k′
, provided that the denominator is of the proper size. Following Hardy

and Littlewood we call
h+ h′

k+ k′
the ‘mediant’ between

h
k

and
h′

k′
. We have

h
k
<

h+ h′

k+ k′
<

h′

k′
, so that the order is automatically the natural order. We call

that row which has denominatork ≤ N, theFarey series of order N. We get
this by forming mediants from the preceding row. Farey made the following
observation. Take two adjacent fractions in a row; then the determinant formed
by their numerators and denominators is equal to−1. For instance, in the fifth

row
1
3

and
2
5

are adjacent and

∣
∣
∣
∣
∣
∣
∣
∣

1 2

3 5

∣
∣
∣
∣
∣
∣
∣
∣

= −1***********. If we now prove that

new fractions are always obtained by using mediants, then wecan be sure, by 145

induction, that this determinant is always−1. For, let
∣
∣
∣
∣
∣
∣
∣
∣

h h′

k k′

∣
∣
∣
∣
∣
∣
∣
∣

= −1; then

∣
∣
∣
∣
∣
∣
∣
∣

h h+ h′

k k+ k′

∣
∣
∣
∣
∣
∣
∣
∣

= −1 =

∣
∣
∣
∣
∣
∣
∣
∣

h+ h′ h′

k+ k′ k′

∣
∣
∣
∣
∣
∣
∣
∣

If indeed only mediants occur, Farey’s observation is justified. And this is
so. Observe that these fractions must all appear in their lowest terms; other-
wise, the common factor will show up and the determinant would not be−1.
Suppose that we want to find out where a particular fraction appears. Say, we

have in mind a specific fraction
H
K

. It should occur for the first time in the

Farey series of orderN = K and it should not be present on any series of order

< K. Now look atN = K − 1 where
H
K

is not present. If we put it in, it will

belong somewhere according to its size, i.e., we can find fractions
h1

k1
,
h2

k2
, with

k, k2 < N such that
h1

k1
<

H
K
<

h2

k2
. Assume that the determinant property and

the mediant property are true for orderN < K. (They are clearly true up to
order 5, as we verify by inspection, so that we can start induction). Now prove

them forN = K. Try to determineH andK by interpolation between
h1

k1
and

h2

k2
. Put

Hk1 − Kh1 = λ,
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−Hk2 + Kh2 = µ,

so thatλ andµ are integers> 0. Solving forH andK by Cramer’s rule, 146

H =

∣
∣
∣
∣
∣
∣
∣
∣

λ −h1

µ h2

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

h2 k2

h1 k1

∣
∣
∣
∣
∣
∣
∣
∣

, K =

∣
∣
∣
∣
∣
∣
∣
∣

λ −k1

µ k2

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

h2 k2

h1 k1

∣
∣
∣
∣
∣
∣
∣
∣

By induction hypothesis, the denominator= 1, and so

H = λh2 + µh1

K = λk2 + µk1

or
H
K
=
λh2 + µh1

λk2 + µk1
.

What do we know aboutK? K did not appear in a series of orderK − 1;
k1 andk2 are clearly less thanK. What we have found out so far is that any

fraction lying between
h1

k1
and

h2

k2
can be put in the form

λh2 + µh1

λk2 + µk1
. Of these

only one interests us - that one with lowest denominator. This comes after the
ones used so far. Look for the one with lowest denominator; this corresponds
to the smallest possibleλ, µ, i.e.,λ = µ = 1. Hence first among the many later

appearing ones is
H
K
=

h1 + h2

k1 + k2
, i.e., if in the next Farey series a new fraction

is called for, that is produced by a mediant. So what was true for K − 1 is true
for K; and the thing runs on.

One remark is interesting, which was used in the Hardy - Littlewood- Ra-

manujan discussion. In the Farey series of orderN, let
h1

k1
and

h2

k2
be adjacent

fractions.
h1

k1
<

h2

k2
· h1 + h2

k1 + k2
does not being these. It is of higher order. This

says thatk1+ k2 > N. For two adjacent fractions in the Farey series of orderN, 147

the sum of the denominators exceedsN. Bothk1 andk2 ≤ N, so

2N ≥ k1 + k2 > N.

k1 andk2 are equal only in the first row, otherwise it would ruin the deter-
minant rule. So

2N > k1 + k2 > N,N > 1.
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This was very often used in the Hardy - Ramanujan discussion.(The Farey
series is an interesting way to start number theory with. We can derive from it
Euclid’s lemma of decomposition of an integer into primes. This is a concrete
way of doing elementary number theory).

We now come to the special path of integration. For this we useFord
Circles (L.R. Ford, American Mathematical Monthly, 45 (1938), 568-601).
We describe a series of circles in the upper half-plane. To each proper fraction
h
k

we associate a circleChk with centreτhk =
h
k
+

i
2k2

and radius
1

2k2
, so the

circles all touch the real axis.

Take another Ford circleCh′k′ , with centre atτh′k′ . Calculate the distance
between the centres.

|τhk − τh′k′ |2 =
(

h
k
− h′

k′

)2

+

(

1
2k2
− 1

2k′2

)2

.

The sum of the radii= 1
2k2 +

1
2k′2 148

|τhk − τh′k′ |2 −
(

1
2k2
+

1
2k′2

)

=

(

h
k
− h′

k′

)2

− 1
k2h′2

=
(hk′ − h′k)2 − 1

k2k′2
≥ 0,

sinceh, k are coprime and so
∣
∣
∣

h k
h′ k′

∣
∣
∣ is an integer, 0. So two Ford circles never

intersect. And they touch if and only if
∣
∣
∣
∣
∣
∣
∣
∣

h k

h′ k′

∣
∣
∣
∣
∣
∣
∣
∣

= ±1,

i.e., if in a Farey series
h
k
,
h′

k′
have appeared as adjacent fractions.
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Now we come to the description of the path of integration fromα to α + 1.
For this consider the Ford circleChk.

In a certain Farey series of orderN we have adjacent fractions
h1

k1
<

h
k
<

h2

k2
. (We know exactly which are adjacent ones in a specific series). Draw also 149

the Ford circlesCh1k1 andCh2k2. These touchChk. Take the arcγhk of Chk from
one point of contact to the other in the clockwise sense (the arc chosen is the
one not touching the real axis). This we do for all Farey fractions of a given
order. We call the path belonging to Farey series of orderN PN. Let us describe
this in a few cases.

We fix α = i and pass toα + 1 = i + 1. TakeN = 1; we have two circles of

radii 2 each with centres at
i
2

and 1+
i
2

ρ1 will be the path consisting of arcs fromi to 1
2+

i
2 and1

2 +
i
2 to i+1. Later

because of the periodicity off (e2πiτ) we shall replace the second piece by the
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arc from− 1
2 +

i
2 to i. Next consider Farey series of order 2;

0
1

and
1
1

are no

longer adjacent. The path now comprises the arc ofC01 from i to the point of
contact withC12, the arc ofC12 from this point to the point of contact withC11 150

and the arc ofC11 from this point toi + 1. Similarly at the next stage we pass
from i onC01 to i+1 onC11 through the appropriate arcs on the circlesC13, C12,
C23 in order. So the old arcs are always retained but get extendedand new arcs
spring into being and the path gets longer and longer. At no stage does the path
intersect itself, but these are points of contact. The path is complicated and was
not invented in one sitting. The Farey dissection of Hardy and Ramanujan can
be pictured as composed of segments parallel to the imaginary axis. Here it is
more complicated.

We need a few things for our consideration. We want the point of contact
of Chk andCh′k′ . This is easily seen to be the point

τhk

1
2k′2

1
2k2 +

1
2k′2

+ τh′k′

1
2k2

1
2k2 +

1
2k′2

=

(

h
k
+

i
2k2

)

k2

k2 + k′2
+

(

h′

k′
+

i
2k′2

)

k′2

k2 + k′2

=
h
k
+

(

h′

k′
− h

k

)

k′2

k2 + k′2
+

i
k2 + k′2

and this, since 151

h
k
<

h′

k′
and

∣
∣
∣
∣
∣
∣
∣
∣

h′ h

k′ k

∣
∣
∣
∣
∣
∣
∣
∣

= 1, is =
h
k
+

k′

k(k2 + k′2)
+

i
k2 + k′2

=
h
k
+ ξ′hk
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whereζ′hk =
k′

k(k2 + k′2)
+

i
k2 + k′2

. We notice that the imaginary part 1/(k2
+k′2)

gets smaller and smaller ask + h′ lies betweenN and 2N. Each arc runs from
h
k + ζ

′
hk to

h
k
+ ζ′′hk. Such an arc is the arcνhk. No arc touches the real axis.

We continue our study of the integral. Choose a numberN, the order of the
Farey series, and cut the path of integrationPN into piecesγhk.

p(n) =
∫

PN

f (e2πiτ)e−2πinτdτ

=

∑

(h,k)=1
0≤h<k≤N

∫

γhk

f (e2πiτ)e−2πinτdτ

Now utilise the points of contact: put

τ =
h
k
+ ζ;

p(n) =
∑

(h,k)=1
0≤h<k≤N

ζ′′hk∫

ζ′hk

f (e2πi( h
k+ζ))e−2πin( h

k+S)dS

(γhk goes fromh
k + ζ

′
hk to h

k + ζ
′′
hk; these are all arcs of radii 1/2k2). We make 152

a further substitution: putζ =
iz
k2

, so that we turn round and have everything

in the right half-plane, instead of the upper half-plane. (All these are only
preparatory changes; there is no actual mathematical progress as yet). Then

p(n) = i
∑

(h,k)=1
0≤h<k≤N

e−2πinh/k

k2

z
′′
hk∫

z
′
hk

f (e2πi( h
k+

iz
k2 ))e2πnz/k2

dz

Now find outz′hk andz′′hk.

z
′
hk =

k2
+ ikk′

k2 + k′2

z
′′
hk =

k2 − ikk′′

k2 + k′′2

So what we have achieved so for is to cut the integral into pieces. 153
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The whole thing lies on the right
half-plane. The original point
of contact is 0 and everything

lies on the circle|z − 1
2
| = 1

2
.

This is a normalisation. We now
study the complicated function
on each arc separately. We shall
find that it is practically the
function η(τ) about which we
know a good deal:

η

(

aτ + b
cτ + d

)

= ǫ

√

cτ + d
i

η(τ),

0
ǫ be-

ing a complicated 24th root of unity.
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We continue our discussion ofp(n). Last time we obtained 154

p(n) =
∑

(h,k)=1
0≤h<k≤N

i
k2

e−2πinh/k

z
′′
hk∫

z
′
hk

f
(

e2πi( h
k+

z

k2 )
)

e2πinz/k2
dz

n is a fixed integer here,n R 0 andp(n) = 0 for n < 0; and this will be of some
use later, trivial as it sounds.N is the order of the Farey series. We have to deal
with a complicated integrand and we can foresee that there will be difficulties
as we approach the real axis. However,f is closely related toη:

f (e2πiτ) = eπiτ/12(η(τ))−1,

since f (x) =
1

∞∏

m=1
(1− xm)

,

η(τ) = eπiτ/12
∞∏

m=1

(1− e2πimτ).

For usτ =
h
k
+

iz
k2

.

We can now use the modular transformation. We want to make Imτ large so

that we obtain a big negative exponent. So we putτ′ =
aτ + b
cτ + d

, a, b, c, d being

chosen in such a way for smallτ, τ′ becomes large. This is accomplished by155

taking kτ − h in the denominator;kτ − h = 0 whenz = 0 and close to zero

whenz is close to the real axis. We can therefore putτ′ =
aτ + b
kτ − h

wherea, b

should be integers such that
∣
∣
∣

a b
k −h

∣
∣
∣ = 1. This gives−ah− bk = 1 or ah ≡ −1

118
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(mod k). Take a solution of this congruence, sayh′ i.e., chooseh′ in such a
way thath′h ≡ −1 (modk), which is feasible since (h, k) = 1. As soon ash′ is
found, we can findb. Thus the matrix of the transformation would be





a b

c d




=





h′ − hh′+1
k

k −h





So we have found a suitableτ′ for our purpose.

τ′ =

h′
(

h
k
+

iz
k2

)

− hh′ + 1
k

k

(

h
k
+

iz
k2

)

− h

=

h′
iz
k
− 1

iz

=
h′

k
+

i
z
.

If z is small this is big.
Now recall the transformation formula forη: if c > 0,

η

(

aτ + b
cτ + d

)

= ǫ

√

cτ + i
i

η(τ)

In our case 156

f (e2πiτ′ ) = eπiτ′/12(η(τ′))−1

= eπiτ′/12ǫ−1

(

cτ + d
i

)−1/2

(η(τ))−1

eπiτ′/12ǫ−1

(

cτ + d
i

)−1/2

eπiτ/12 f (e2πiτ)

And this is what we were after. Since

cτ + d = kτ − h = k

(

h
k
+

iz
k2

)

− h =
iz
k
,

this can be rewritten in the form:

f (e2πiτ) = f (e2πi
(

h
k+

iz
k2

)

)
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= ǫe

πi
12

(
h
k−

h′
k

)

e

πi
12





iz
k2 −

i
z





√

z

k
f





e
2πi





h′

k
+

i
z









and there is no doubt about the square root - it is the principal branch. We write

ωhk = ǫe

πi
12





h
k
−

h′

k





So something mathematical has happened after all this long preparation;
and we can make some use of our previous knowledge. We have

p(n) =
∑′

o≤h<k≤N

iωhk

k5/2
e−2πinh/k

z
′′
hk∫

z
′
hk

e
π
12

(
1
z
− z

k2

) √
z f

(

e2πi
(

h′
k +

i
z

))

e2πnz/k2
dz

where
∑′ denotes summation overh and k, (h, k) = 1. Now what is the 157

advantage we have got? Realise that

f (x) =
∞∑

n=0

p(n)xn
= 1+ x+ · · ·

So for smallx, f (x) is close to 1. It will be a good approximation for small
arguments at least to replacef (x) by 1. Let us write

Ψk(z) =
√
ze

π
2

(
1
z
− z

k2

)

Then

p(n) =
∑′

0≤h<k≤N

iωhk

k5/2
e−2πinh/k

z
′′
hk∫

z
′
hk

e2πnz/k2
Ψk(z)dz+

∑

o≤h<k≤N

iωhk

k5/2
e−2πinh/k

z
′′
hk∫

z
′
hk

Ψk(z)
{

f (e2πi
(

h′
k +

i
z

)

) − 1
}

e2πnz/k2
dz

where the second term compensates for the mistake committedon taking 158

f (x) = 1. The trick will be now to use the first term as the main term and
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to use an estimate for the small contribution from the secondterm. We have
now to appraise this. WritingIhk andI ∗hk for the two integrals, we have

p(n) =
∑′

o≤h<k≤N

iωhk

k5/2
e−2πinh/kIhk +

∑′

o≤h<k≤N

iωhk

k5/2
e−2πinh/kI ∗hk

Here we stop for a moment and consider onlyI ∗hk and see what great ad-
vantage we got from our special path.

0

This is the arc of the circle|z− 1
2 | =

1
2 from z′hk to z′′hk described clockwise.

Sincef (x)−1 =
∞∑

m=1
p(ν)xν, the integrand inI ∗hk is regular, and so for integration

we can just as well run across, along the chord fromz′hk to z′′hk. Let us see what
happens on the chord. We have
∣
∣
∣
∣

(

f (e2πih′/k−2πz) − 1
)

Ψk(z)e2πnz/k2
∣
∣
∣
∣ =

∣
∣
∣
∣

(

f (e2πih′/k−2π/z) − 1
) √
ze

π
12z−

πz

12k2 +
2πnz
k2

∣
∣
∣
∣

=
√
zeR

π
12z eRz

π

k2 (− 1
2+2n) ×

∣
∣
∣
∣
∣
∣
∣

∞∑

ν=1

p(ν)e(2πi h′
k −

2π
z

)ν

∣
∣
∣
∣
∣
∣
∣

≤ | √z|
∞∑

ν=1

p(ν)e−R
1
z
(2πν− π

12)e
π

k2 (− 1
12+2n)Rz

Let us determineRz andR
1
z

on the path of integrationo < Rz ≤ 1 on the 159

chord. AndR 1
z
> 1; for

R
1
z
= R

1
x+ iy

=
x

x2 + y2
,
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while the equation to the circle is (x− 1
2)2
+ y2
=

1
4 or x2

+ y2
= x; the interior

of the circle isx2
+ y2 < x, and soR 1

z
≤ 1, equality on the circle.

| √z| ≤ the longer of the distances ofz′hk, z
′′
hk from 0.

We have already computedz′hk andz′′hk: 160

z
′
hk =

k2

k2
1 + k2

+ i
kk1

k2
1 + k2

,

z
′′
hk =

k2

k2
2 + k2

+ i
kk2

k2
2 + k2

|z′hk|2 =
k4
+ k2k2

1

(k2
1 + k2)2

=
k2

k2 + k2
1

Now we wish to appraise this in a suitable way.

2(k2
1 + k2) = (k1 + k2)2

+ (k1 − k)2

≥ (k1 + k)2

≥ N2,

from our discussion of adjacent fractions. So

|z′hk|2 ≤
2k2

N2

or |z′hk| ≤
√

2 · k
N

;

also |z′′hk| ≤
√

2 · k
N

So the inequality becomes 161

∣
∣
∣
∣

(

f (e2πih′/k−2π/z) − 1
)

Ψk(z)e2πnz/k2
∣
∣
∣
∣ ≤

4√
2 · k1/2

N1/2

∞∑

ν=1

p(ν)e(2πν−π/12)eπ(− 1
2+2/n1)/k2

≤ Ce2π|n| k
1/2

N1/2

whereC is independent ofν, since the series
∞∑

ν=1
p(ν)e−(2πν−π/12) is convergent.

Since the length of the chord of integration< 2
√

2 · k/(N + 1)m, we have

∣
∣
∣I ∗hk

∣
∣
∣ < C1e2π|n| k

3/2

N3/2
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Then
∣
∣
∣
∣
∣
∣
∣

∑′

0≤h<k≤N

iωhk

k5/2
e−2πnh/kI ∗hk

∣
∣
∣
∣
∣
∣
∣

≤ C1e2π|n|
∑′

0≤h<k≤N

1
kN3/2

≤ C1e2π|n|
∑

0<k≤N

1
N3/2

,

Since the summation is overh < k with (h, k) = 1, so that there are only 162

ϕ(k) terms and this is≤ k. So the last expression is

C1e2π|n|N−1/2

Hence

p(n) =
∑

o≤h<k≤N

iωhk

k5/2
e−2πinh/kIhk + RN

where
|RN| < C1e2π|n|N−1/2
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The formula that we had last time looked like this: 163

p(n) =
∑′

o≤h<k≤N

iωhke
−2πinh/kk−5/2Ihk + RN,

and it turned out that
|RN| ≤ Ce2π|n|N−1/2

We had

Ihk =

z
′′
hk∫

z
′
hk

Ψ(z)e2πnz/k2
dz

and the path of the integration
was the arc fromz′hk to z′′hk in the
sense indicated. And now what
we do is this. We shall add the
missing piece and take the in-
tegral over the full circle, how
over excluding the origin. Now
the path is taken in the negative
sense, and we indicate this by
writing

0

∫

k(−)

Ψk(z)e2πnz/k2
dz.

This is an improper integral with both ends going to zero. That it exists is

clear, for what do we have to compensate for that? we have to subtract
z
′
hk∫

0

· · ·

124
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and
0∫

z
′′
hk

· · · , and we prove that these indeed contribute very little. Whatis after 164

all Ψk(z)?
Ψk(z) =

√
ze

π
12( 1

3−
z

k2 )

0 < Rz ≤ 1 andR1/z = 1 on the circle, so that

|Ψk(z)| ≤ |
√
zeπ/12|

and |e2πnz/k2| ≤ e2π|n|;

so that the integrand is bounded. Hence the limit exists. This is indeed very
astonishing, forΨ has an essential singularity at the origin; but on the circleit
does not do any harm. Near the origin there are value which areas big as we
want, but we can approach the origin in a suitable way. This isthe advantage
of this contour. The earlier treatment was very complicated.

We can now estimate the inte-
grals. Since|z′hk| ≤

√
2 · k/N, the

chord can be a little longer, in

fact
π

2
times the chord at most.

So
0

∣
∣
∣
∣
∣
∣
∣
∣
∣

z
′
hk∫

0

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤
√

2 · π
2

k
N

e2π|n|
(√
z · k
N

) 1
2

eπ/12

≤ Ce2π|n|k3/2N−3/2.

The same estimate holds good for
0∫

z
′′
hk

· · · . Hence introducing.

Page missing page No 165 165

Now everything is under our control.N appeared previously tacitly inz′hk, 166

becausez′hk depends on the Farey arc. NowN appears in only two places. So
p(n) is the limit of the sum which we write symbolically as

p(n) = i
∞∑

k=1

Ak(n)k−5/2
∫

K(−)

Ψk(z)e
2πnz/k2

dz
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(n R 0, integral, andp(n) = 0 for n < 0). So we have an exact infinite series
for p(n).

A thing of lesser significance is
to determine the sum of this se-
ries. So we have to speak about
the integral. Let us take one
more step. Let us get away from
the circle. Replacez by 1

w . We
do know what this will mean.w
will now run on a line parallel to
the imaginary axis, from 1− i∞
to 1+ i∞. So

0

p(n) = −
∞∑

k=1

Ak(n)k−5/2

1+i∞∫

1−i∞

ω−1/2e
π
12(ω−1/k2ω)e

2πn
k2ω · dω

ω2

=
1
i

∞∑

k=1

Ak(n)k−5/12

1+i∞∫

1−i∞

ω−5/2e
π
2+

π

12k2ω
(24n−1)dω

One more step is advisable to get a little closer to the customary notation. 167

We then get traditional integrals known in literature. Put
πω

12
= s,

p(n) =
1
i

(
π

12

)3/2 ∞∑

k=1

Ak(n)k−5/2

π
12+i∞
∫

π
12−i∞

s−5/2es+ π2

12k2s (24n− 1)ds

One could look up Watson’s ‘Bessel Functions’ and write downthis inte-
gral as a Bessel function. But since we need the series anywaywe prefer to
compute it directly. So we have to investigate an integral ofthe type

L(ν) =
1

2πi

c+i∞∫

c−i∞

s−ν−1es+ νs ds

It does not matter whatc > 0 is because it means only a shift to a parallel
line, and the integrand goes to zero for large imaginary partof s. For absolute
convergence it is enough to have a little more thans−1. So takeRν > 0; in our
caseν = 3/2.
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So let us study the integral

Lν(v) =
1

2πi

c+i∞∫

c−i∞

s−ν−1es+ v
s ds

leaving it to the future what to do withv. The integration is along a 168

line parallel to the imaginary
axis. We now bend the path
into a loop as in the figure
and push the contour out, so
that along the arcs we get
negligible contributions.

0

The contribution from the arc|s| = R is

O

(

1
Rν+1 · R

)

since |es+ νs | ≤ eceRν/R, for a fixedv; this is O(R−ν) → 0 asR → ∞, since
ν > 0. So the integral along the ordinate becomes a ‘loop integral’, starting
from −∞ along the lower bank of the real axis, looping around the origin and
proceeding along the upper bank towards−∞; the loop integral is written in a
fashion made popular by Watson as

1
2πi

(0+)∫

−∞

s−ν−1es+ ν
s ds

For better understanding we take a specific loop. On the lowerbank of the 169

negative real axis we proceed only up to−ǫ,

0

then go round a circle of radiusǫ in the positive sense and proceed thence
along the upper bank, the integrand now having acquired a newvalue-unlessν
is an integer. This we take as a standardised loop. We now prove thatLν(V ) is
actually differentiable and that the derivative can be obtained by differentiating
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under the integral sign. For this we take{Lν(V + h) − Lν(V )} /h and compare
it with what we could foresee to beL′ν(V ) and show that the difference goes to
zero ash→ 0.

Lν(V + h) − Lν(V )
h

− 1
2πi

(0+)∫

−∞

s−ν−2es+ ν
s ds

=
1

2πi

(0+)∫

−∞

s−ν−1es






e
v+h

s −e
ν
s

h
− e

ν
s

s





ds

=
1

2πi

(0+)∫

−∞

s−ν−1es+ ν
s






e
h
s − 1
h
− 1

s





ds

Now 170

e
h
s − 1
h
− 1

s
=

h
s +

h2

s2,s! + · · ·
h

− 1
s

= h

{

1
s2 · 2!

+
h

s3 · 3!
+ · · ·

}

On the path of integration,|s| ≥ ǫ > 0; so
∣
∣
∣
∣
∣
∣
∣

e
h
s−1

h
− 1

s

∣
∣
∣
∣
∣
∣
∣

≤ C|h|,

since we are having a quickly converging power series.

∴

∣
∣
∣
∣
∣
∣
∣
∣
∣

Lν(ν + h) − Lν(ν)
h

− 1
2πi

(0+)∫

−∞

s−v−2es+ v
s ds

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ C|h|






2

∞∫

ǫ

1
xv+1

e−xe
Rν
ǫ dx+ 2πǫ · 1

eν+1
e

Rν
ǫ






= 0(h)

So the limit lim
h→0

Lv(ν+h)−Lv(ν)
h exists andLν(ν) is differentiated uniformly in a

circle of any size. Since the differential integral is of the same shape we can
differentiate under the integral as often as we please.
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The formula forp(n) looked like this: 171

p(n) =
1
i

(
π

12

)3/2 ∞∑

k=1

Ak(n)k−5/2

(0+)∫

−∞

s−5/2es+ 1
s ( π

12k )2(24n−1)ds

We discussed the loop integral

Lv(ν) =
1

2πi

(0+)∫

−∞

s−v−1es+ v
s ds,Rν > 0.

We can differentiate under the integral sign and obtain

L′v(ν) =
1

2πi

(0+)∫

−∞

s−v−2es+ v
s ds= Lv+1(ν)

This integral is again of the same sort as before; so we can repeat differenti-
ation under the integral sign. Clearly thenLv(ν) is an entire function ofν ·Lv(ν)
has the expansion in a Taylor series:

Lv(ν) =
∞∑

r=0

L(r)
v (0)
r!

νr

L(r)
v (ν) can be foreseen and is clearly

1
2πi

(0+)∫

−∞

s−v−1−res+ v
s ds

129
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So 172

Lv(ν) =
∞∑

r=0

νr

r!
1

2πi

(0+)∫

−∞

s−v−1−resds

We now utilise a famous formula for theΓ-function - Hankel’s formula,
viz,

1
Γ(µ)

=
1

2πi

(0+)∫

−∞

s−µesds.

This is proved by means of the formulaΓ(s)Γ(1− s) =
π

sinπs
and the Euler

integral. Using the Hankel formula we getL explicitly:

Lv(ν) =
∞∑

r=0

νr

r!Γ(v+ r + 1)

What we have obtained is something which we could have guessed earlier.
Expandingev/s as a power series, we have

Lv(ν) =
1

2πi

(0+)∫

−∞

s−v−1es
∞∑

r=0

(v/s)r

r!
ds

=
1

2πi

(0+)∫

−∞

∞∑

r=0

vr

r!
ess−v−1−rds,

and what we have proved therefore is that we can interchange the integration
and summation. We have

L′v(ν) = Lv+1(ν).

Having this under control we can put it back into our formula and get a
final statement aboutp(n).

p(n) = 2π
(
π

12

)3/2 ∞∑

k=1

Ak(n)k−5/2L3/2

((
π

12k

)2
(24n− 1)

)

This is not yet the classical formula of Hardy and Ramanujan.One trick 173

one adopts is to replace the index. Remembering thatL′v(ν) = Lv+1(ν), we have

L3/2

((
π

12k

)2
(24n− 1)

)

= L′1/2

((
π

12k

)2
(24n− 1)

)
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=
6k2

π2

d
dn

L1/2

((
π

12k

)2
(24n− 1)

)

Let us write the formula for further preparation closer to the Hardy Ra-
manujan notation:

p(n) =
(
π

12

)1/2 ∞∑

k=1

Ak(n)k−1/2 d
dn

L1/2

((
π

12k

)2
(24n− 1)

)

Now it turns out that theL-functions for the subscript12 are elementary
functions. We introduce the classical Bessel function

Jv(z) =
∞∑

r=0

(−)r(z/2)2r+v

r!Γ(v+ r + 1)

and the hyperbolic Bessel function (or the ‘Bessel functionwith imaginary
argument’)

Iv(z) =
∞∑

r=0

(z/2)2r+v

r!Γ(v+ r + 1)

How do they belong together? We have 174

Lv

(

z
2

4

)

= Iv(z)
(
z

2

)−v

,

Lv

(

− z
2

4

)

= Jv(z)
(
z

2

)−v
,

connecting our function with the classical functions. In our case therefore we
could write in particular

L1/2

((
π

12k

)2
(24n− 1)

)

= I1/2

(
π

6k

√
24n− 1

) (
π

12k

√
24n− 1

)−1/2

This is always good, but we would come into trouble if we have 24n−1≤ 0.
It is better to make a case distinction; the above holds forn ≥ 1, and forn ≤ 0,
n = −m, we have

L1/2

((
π

12k

)2
(24n− 1)

)

= L1/2

(

−
(
π

12k

)2
(24m+ 1)

)

= J1/2

(
π

6k

√
24m+ 1

) (
π

12k

√
24m+ 1

)−1/2
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So we have: n ≥ 1.

p(n) =
(
π

12

)1/2 ∞∑

k=1

Ak(n)k−1/2 d
dn





I1/2

(
π
6k

√
24n− 1

)

(
π

12k

√
24n− 1

)1/2





n = −m≤ 0 175

p(n) = p(−m) = −
(
π

12

)1/2 ∞∑

k=1

Ak(−m)k−1/2 · d
dm





J1/2

(
π
6k

√
24m+ 1

)

(
π

12k

√
24m+ 1

)1/2





We are not yet quite satisfied. It is interesting to note that the last expression
is 1 forn = 0 and 0 forn < 0. We shall pursue this later.

We have now more or less standardised functions. We can even look up
tables and compute the Bessel function. HoweverI1/2 andJ1/2 are more ele-
mentary functions.

J1/2(z) =
∞∑

r=0

(−)r(z/2)2r+1/2

r!Γ(r + 3
2)

=

∞∑

r=0

(−)r (z/2)2r+ 1
2

r!
(

r + 1
2

) (

r − 1
2

)

· · · 1
2Γ

(
1
2

)

=

(

2
πz

)1/2 ∞∑

r=0

(−)r
z
2r+1

(2r + 1)!

=

(

2
πz

)1/2

sinz.

Similarly if we has abolished (−)r we should have 176

I 1
2
(z) =

(

2
πz

)1/2

sinhz

I1/2(z)

(z/2)1/2
= I1/2(z)

(

2
z

)1/2

=
2
√

2
=

sinhz
z

J1/2(z)

(z/2)1/2
=

2
√
π

sinz
z

We are now at the final step in the deduction of our formula:

n ≥ 1
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p(n) =
1
√

3

∞∑

k=1

Ak(n)k−1/2 d
dn





sinh π
6k

√
24n− 1

π
6k

√
24n− 1





or with
π

6k

√
24n− 1 =

π

k

√

2
3

(n− 1
24

) =
c
k

√

n− 1
24
,C = π

√

2
3
,

p(n) =
1

π
√

2

∞∑

k=1

Ak(n)k1/2 d
dn





sinh c
k

√

n− 1
24

√

n− 1
24





n = −m≤ 0

p(n) = p(−m) = − 1

π
√

2

∞∑

k=1

Ak(−m)k
1
2

d
dm





sin c
k

√

m+ 1
24

√

m+ 1
24





This is the final shape of our formula -a convergent series forp(n). 177

The formula can be used for independent computation ofp(n). The terms
become small. It is of interest to find what one gets if one breaks the series off,
say atk = N

p(n) =
π5/2

12
√

3

N∑

k=1

· · · + RN

Let us appraiseRN · |Ak(n)| ≤ k, because there are onlyϕ(k) roots of unity.
We want an estimate forL3/2. Forn ≥ 1,

L3/2

((
π

12k

)2
(24n− 1)

)

≤
∞∑

r=0

(
π2

6k2 n
)r

r!Γ
(

r + 5
2

)

≤
∞∑

r=0

(
π2

6(N+1)2 n
)r

r!Γ
(

1
2

)

· 1
2 ·

(

r + 3
2

)

(sincek > N in RN) =
1
√
π

∞∑

r=0

(
π2

6(N+1)2 n
)r · 22r+1

(2r + 1)!(r + 3
2)

≤ 2
√
π

∞∑

r=0

(
2π2

3(N+1)2 n
)r

(2r + 1)!



19. Lecture 134

≤ 2
3
· 2
√
π

∞∑

r=0

(
2π2

3(N+1)2 n
)r

(2r)!

<
4

3
√
π

e
π

N+1

√
3n
3

∴ |RN| ≤
π2

9
√

3
e

π
N+1

√
2n
3

∞∑

k=N+1

1
k3/2

≤ π2

9
√

3
e

π
N+1

√
2n
3

∞∫

N

dk

k3/2

∴ |RN| <
2π2

9
√

3
e

π
N+1

√
2n3 1

N1/2

This tells us what we have in mind. MakeN suitably large. Then one gets 178

something of interest. PutN = [α
√

n], α constant. Then

RN = O(n−
1
4 )

And this is what Hardy and Ramanujan did. Their work still looks different.
They did not have infinite series. They had replaced the hyperbolic sine by the
most important part of it, the exponential. The series converges in our case

since sinhx ∼ x asx→ 0, so that sinh
(

c
k

√

n− 1
24

)

behaves roughly likeck . On

differentiation we have1k2 so that along withk1/2 in the numerator we getk−3/2

and we have convergence. In the Hardy-Ramanujan paper they had

p(n) =
1

2π
√

2

[
√

n]∑

k=1

Ak(n)k1/2 d
dn





e
c
k

√
n− 1

24

√

n− 1
24





+O(n−
1
4 ) + R∗N

sinh was replaced by exp.; so they neglected 179

R∗ =
1

2π
√

2

[
√

n]∑

k=1

Ak(n)k1/2 d
dn





e−
c
k

√
n− 1

24

√

n− 1
24





|R∗| = O





[
√

n]∑

k=1

k3/2





e−
c
k

√
n− 1

24

n− 1
24

· c
k
+

e−
c
k

√
n− 1

24

(n− 1
24)








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The exponential is strongly negative ifk is small; so it is best fork = 1.
Hence

|R∗| = O





1
n





[
√

n]∑

k=1

k1/2
+

1
√

n

[
√

n]∑

k=1

k3/2









N∑

k=1

k1/2
= O(N3/2)

N∑

k=1

k3/2
= O(N5/2)

So

|R∗| = O

(

1
n

(

n3/4
+

1
√

n
n5/4

))

= O
(

n−
1
4

)

The constants in theO-term were not known at that time so that numerical180

computation was difficult. If the series was broken off at some other place the
terms might have increased. Hardy and Ramanujan with good instinct broke
off at the right place.

We shall next resume our function-theoretic discussion andcast a glance at
the generating function forp(n) about which we know a good deal more now.



Lecture 20

We found a closed expression forp(n); we shall now look back at the generat-181

ing function and get some interesting results.

f (x) =
1

∞∏

n=1
(1− xn)

=

∞∑

n=0

p(n)xn,

and we knowp(n). p(n) in its simplest form before reduction to the traditional
Bessel functions is given by

p(n) = 2π
(
π

12

)3/2 ∞∑

k=1

Ak(n)k−5/2L3/2

((
π

12k

)2
(24n− 1)

)

,

where L3/2

(

π2

6k2

(

n− 1
24

))

=

∞∑

r=0

π
6k2 (n− 1

24)r

r!Γ
(

5
2 + r

)

We wish first to give an appraisal ofL and show that the series forp(n)
converges absolutely. The series is

f (x) = 2π
(
π

12

)3/2 ∞∑

n=0

xn
∞∑

k=1

Ak(n)k−5/2L3/2

(

π2

6k2
(n− α)

)

,

where we write 1
24 = α for abbreviation - it will be useful for some other

purposes also to have a symbol there instead of a number.
We make only a crude estimate.

∣
∣
∣
∣
∣
∣
L3/2

(

π2

6k2
(n− α)

)∣
∣
∣
∣
∣
∣
≤
∞∑

r=0

(
π2

6 n
)r

r!Γ
(

5
2 + r

)

136
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=

∞∑

r=0

(
π2

6 n
)r

r!Γ
(

1
2

)

· 1
2 ·

3
2 · · ·

(
3
2 + r

)

22

√
π

∞∑

r=0

(
2π
3 πn

)r

(2r + 1)!(3+ 2r)

≤ 4
∞∑

r=0

(C
√

n)2r

(2r)!
,C = π

√

2
3
,

≤ 4
∞∑

ρ=0

(C
√

n)ρ

ρ!

= 4eC
√

n

So f (x) is majorised by 182

constantx
∞∑

n=1

|x|neC
√

n
∞∑

k=1

1
k3/2

and this is absolutely convergent for|x| < 1, indeed uniformly so for|x| ≤ 1−δ,
δ > 0, becauseeC

√
n
= 0(eδn), δ > 0, so that we need take|xeδ| < 1. We can

therefore interchange the order of summation:

f (x) = 2π
(
π

12

)3/2 ∞∑

k=1

k−5/2
∞∑

n=0

Ak(n)xnL3/2

(

π2

6k2
(n− α)

)

= 2π
(
π

12

)3/2 ∞∑

k=1

k−5/2
∑′

h mod k

ωhk

∞∑

n=0

(

xe−2πi h
k

)n
L3/2

(

π2

6k2
(n− α)

)

where the middle sum is a finite sum. This is all good for|x| < 1. Now call 183

Φk(z) =
∞∑

n=0

L3/2

(

π2

6k2
(n− α)

)

z
n

So in a condensed formf (x) appears as

f (x) = 2π
(
π

12

)3/2 ∞∑

k=1

k−5/2
∑′

h mod k

ωhkΦk

(

xe−2πi h
k

)

We have now a completely new form for our function. It is of great in-
terest to considerΦk(z) for its own sake; it is a power series (|z| < 1) and the
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coefficients ofzn are functions ofn− α.

L3/2(ν) =
∞∑

r=0

νr

r!Γ
(

5
2 + r

)

This is an entire function ofν, for the convergence is rapid enough in the
whole plane. Looking into the Hadamard theory of entire functions, we could

see that the order of this function is
1
2

. This is indeed plausible, for the de-

nominator is roughly (2r)! and
∑ νr

(2r)! =
∑ (

√
ν)2r

(2r)! ∼ e
√
ν; or the function grows

like e
√
ν, and this is characteristic of the growth of an entire function or order

1
2. The coefficients ofzn are themselves entire functions in the subscriptn.

We now quote a theorem of Wigert to the following effect. Suppose that we

have a power seriesΦ(z) =
∞∑

n=0
g(n)zn whereg(ν) is in entire function of order 184

less than 1; then we can say something aboutΦ(z) which has been defined so
far for |z| < 1. This function can be continued analytically beyond the circle of
convergence, andΦ(z) has onlyz = 1 as a singularity; it will be an essential
singularity in general, but a pole ifg(ν) is a rational function. We can extract
the proof of Wigert’s theorem from our subsequent arguments; so we do not
give a separate proof here.

Φk(z) is a double series :

Φk(z) =
∞∑

n=0

z
n
∞∑

r=0

(
π2

6k2 (n− d)
)r

r!Γ
(

5
4 + r

) , |z| < 1

This is absolutely convergent; so we can interchange summations and write

Φk(z) =
∞∑

r=0

(

π

k
√

6

)2r

r!Γ
(

5
2 + r

)

∞∑

n=0

(n− α)r
z
n

=

∞∑

r=0

(

π

k
√

6

)2r

r!Γ
(

5
2 + r

)ϕr (z)

whereϕr (z) is the power series
∞∑

n=0
(n−α)r

z
n. Actually it turns out to be a rational

function.Φk(z) can be extended over the whole plane.

ϕr (z) =
∞∑

n=0

z
n
=

1
1− z .
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Differentiatingϕr (z), 185

ϕ′r (z) =
∞∑

n=0

n(n− α)r
z
n−1,

zϕ′r (z) =
∞∑

n=0

n(n− α)r
z
n,

αϕr (z) =
∞∑

n=0

α(n− α)r
z
n;

so,

zϕ′r(z) − αϕr (z) =
∞∑

n=0

(n− α)r+1
z
n
= ϕr+1(z)

This says that we con deriveϕr+1(z) from ϕr (z) by rational processes and
differentiation. This will introduce no new pole; the old polez = 1 (pole
for ϕ◦(z)) will be enhanced. Soϕr (z) is rational. Let us express the function
a little more explicitly in terms of the new variableu = 1

z−1 or 1
u + 1 = z.

Introduce (−)r+1ϕr (z) = (−)r+1ϕr (1 + u) = ψr (u), say he last equation which
was a recursion formula now becomes

(−)r+2ψr+1(u) =

(

1
u
+ 1

)

(−)ru2ψ′r (u) − α(−)r+1ψr (u)

because ψ′r (u) = (−)r+1ϕ′r

(

1+
1
u

) (

− 1
u2

)

= (−)rϕ′r

(

1+
1
u

)

1
u2

∴ ψr+1(u) = u(u+ 1)ψ′r (u) + αψr (u)

This is a simplified version of our recursion formula. We havea mind to
expand about the singularityz= 1. Let us calculate theψ′s.

ψ0(u) = u

ψ1(u) = u(u+ 1)+ αu = (1+ α)u+ u2

ψ2(u) = u(u+ 1)(2u+ 1+ α) + α(1+ α)u+ αu2

= (1+ α)2u+ (2α + 3)u3
+ 2u3

ψr (u) is a polynomial of degreer+1 without the constant term. The coefficients 186

are a little complicated. If we make a few more trials we get byinduction the
following:
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Theorem.

ψr (u) =
r∑

j=0

∆
j(α + 1)ru j+1,

where∆ j is the jth difference.

By definition,

∆ f (x) = f (x+ 1)− f (x),

∆
2 f (x) = ∆∆ f (x) = ∆ f (x+ 1)− ∆ f (x)

= f (x+ 2)− 2 f (x+ 1)+ f (x)

The binomial coefficients appear, and

∆
k f (x) =

k∑

ℓ=0

(−)k−ℓ
(

k
ℓ

)

f (x+ ℓ)

How does the formula forψr fit? For induction one has to make sure that187

the start is good.

ψ0(u) = (α + 1)◦u = u

ψ1(u) = (α + 1)′u′ + ∆(α + 1)′u2
= (α + 1)u+ u2

ψ2(u) = (α + 1)2u′ + ∆(α + 1)2u2
+ ∆

2(α + 1)2u3

= (α + 1)2u+
(

(α + 2)2 − (α + 1)2
)

u2
+ 2u3

= (α + 1)2u+ (2α + 3)u2
+ 2u3

So the start is good. We assume the formula up tor.

ψr+1(u) =
r∑

j=0

{

(u2
+ u)( j + 1)∆ j(α + 1)ru j

+ α∆ j(α + 1)ru j+1
}

=

r+1∑

j=0

{

j∆ j−1(α + 1)ru j+1
+ ( j + 1+ α)∆ j(α + 1)ru j+1

}

(A Seemingly negative difference need not bother us because it is accom-
panied by the termj = 0).

=

r+1∑

j=0

u j+1
(

j∆ j−1(α + 1)r + ( j + 1+ α)∆ j(α + 1)r
)
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To show that the last factor is∆ j(α + 1)r+1, we need a side remark. Intro- 188

duce a theorem corresponding to Leibnitz’s theorem on the differentiation of a
product. We have

∆ f (x)g(x) = f (x+ 1)g(x+ 1)− f (x)g(x)

= f (x+ 1)∆g(x) + f (x+ 1)g(x) − f (x)g(x)

= f (x+ 1)∆g(x) + ∆ f (x) · g(x)

The general rule is

∆
k f (x)g(x) =

k∑

ℓ=0

(

k
ℓ

)

∆
k−ℓ f (x+ ℓ)∆ℓg(x)

This is true fork = 1. We prove it by induction,

∆
k+1 f (x)g(x) = ∆(∆k f (x)g(x),

and since∆ is a linear process, this is equal to

k∑

ℓ=0

(

k
ℓ

)
{

∆
k−ℓ f (x+ ℓ + 1)∆ℓ+1g(x) + ∆k+1−ℓ f (x+ ℓ)∆ℓg(x)

}

,

which becomes, on rearranging summands,

k+1∑

ℓ=0

∆
k+1−ℓ f (x+ ℓ)∆ℓg(x)

{(

k
ℓ

)

+

(

k
ℓ − 1

)}

,

and the last factor is
(
k+1
ℓ

)

,
((

k
−1

)

=

(
k

k+1

)

= 0
)

This proves the rule.
Applying this to (α + 1)r , 189

(α + 1)r+1
= (α + 1)(α + 1)r ; write f = α + 1, g = (α + 1)r ,

and observe thatf being linear permits only 0th and 1st differences;

∆
k(α + 1)r =

(

k
k− 1

)

∆
k−1(α + 1)r +

(

k
k

)

(α + k+ 1)∆k(α + 1)r

= k∆k−1(α + 1)r + (α + k+ 1)∆k(α + 1)r

∴ ψr (u) =
r∑

j=0

∆
j(α + 1)ru j+1
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We can now rewrite theϕ′s:

ϕr (z) = (−)r+1ϕr (n)

= (−)r+1
r∑

j=0

∆
j(α + 1)r

1
(z − 1) j+1

ϕr has now been defined in the whole plane.
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We have rewritten the generating functionf (x) as a sum consisting of certain 190

functions which we calledΦk(x):

f (x) = 2π
(
π

12

) 3
2
∞∑

k=1

k−5/2
∑′

h mod k

ωhkΦk

(

xe−2πi h
k

)

where Φk(z) =
∞∑

n=0

L3/2

(

π2

6k2
(n− α)

)

z
n,

with α = 1
24. Φk(z) could also be written as

Φk(z) =
∞∑

r=0

(

π

k
√

6

)2r

r!Γ
(

5
2 + r

)ϕr (z
′′)

whereϕr (z) is a rational function as we found out. We gotϕ explicitly by means
of a certainψ:

ϕr (z) = (−)r+1
r∑

j=0

∆
j
α(α + 1)r

1
(z − 1) j+1

What we need for questions of convergence is an estimate ofϕr ; this is not
difficult.

∆ f (x) = f (x+ 1)− f (x) = f ′(ξ1), x < ξ1 < x+ 1,

by the mean-value theorem; and because∆ is a finite linear process we can in-
terchange it with the operation of applying the mean value theorem and obtain 191

∆
2 f (x) = ∆(∆ f (x)) = ∆ f ′(ξ1) = f ′(ξ1 + 1)− f ′(ξ1)

= f ′′(ξ2), x < ξ1 < ξ2 < ξ1 + 1 < x+ 2;

143
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∆
3 f (x) = ∆(∆2 f (x)) = ∆2 f ′(ξ), x < ξ < x+ 1,

= f ′′′(ξ3), x < ξ < ξ3 < ξ + 2 < x+ 3;

and in general
∆

k f (x) = f k(ξ), x < ξ < x+ k.

This was to be expected. Take|1 − z| ≥ δ, 0 < δ < 1 so thatz is not too

close to 1.
1
δ
> 1 and 0< α < 1

|ϕr (z| ≤
r∑

j=0

r(r − 1) · · · (r − j + 1)(1+ α + j)r− j · 1
δ j+1

<

r∑

j=0

(α + 1+ r)r

δ j+1

< (r + 1)
(α + 1+ r)r

δr+1

<
(α + 1+ r)r+1

δr+1

Originally we know that the formula forf (x) was good for|x| < 1. From
this point on we give a new meaning toϕr (z) for all z , 1.

This is a new step. We prove that the series forΦk(z) is convergent not 192

merely for|z| < 1 but also elsewhere. The sum inΦk(z) is majorised by

1
δ

∞∑

r=0

(
π2

6

)r

r!Γ
(

5
2 + r

) · (α + 1+ r)r+1

δr

This is convergent, for thought the numerator increases with r, we have by
Stirling’s formula

r r

r!
∼ r r

√
2πr r+ 1

2 e−r
=

er

√
2πr

So as far as convergence is concerned it is no worse than

1
δ

∞∑

r=1

(
eπ2

6δ

)r

Γ

(
5
2 + r

) (α + 1+ r)

(

1+
α + 1

r

)r

which is≤ Cδ, the power series still being rapidly converging because ofthe
factorial in the denominator andeπ

2

6δ is fixed and
(

1+ α+1
r

)r
is bounded. So we

have absolute convergence and indeed uniformly so for|1− z| ≥ δ.



21. Lecture 145

We have now a uniformly convergent series outside the pointz = 1, and
Φk(z) is explained at every point exceptz= 1 which is an essential singularity.

Φk(z) is entire in
1

1− z . From this moment if we put it back into our argument

we havef (x) in the whole plane ifxe−2πih/k keep away from 1. And we are sure 193

of that; either|x| ≤ 1− δ or |x| ≥ 1+ δ. Originally x was only inside the unit
circle; now it can be outside also. In both casesf (x) is majorised by

∞∑

k=1

k−
5
2 , k ·Cδ = Cδ

∞∑

k=1

k−3/2,

which is absolutely convergent.
Therefore we have now a very peculiar situation. In this notation ofΦk we

have obtained a function which representstwoanalytic functions separated by a
natural boundary which is full of singularities and cannot be crossed. They are
not analytic continuations. The outer function is something new; it is analytic
because the series is uniformly convergent in each compact subset.

Consider the circle. We state something more explicit whichexplains the
behaviour at each point near the boundary. Since every convergence is absolute
there are no difficulties and convergence prevails even if we take each piece
separately.

f (x) = −2π
(
π

12

)3/2 ∞∑

k=1

k−
5
2

∑′

h mod k

ωhk

∞∑

r=0

(

− π2

6k

)r

r!Γ
(

5
2 + r

)

∞∑

j=0

∆
j
α(α + 1)r · 1

(xe−2πih/k − 1) j+1

We can now rearrange at leisure. 194

f (x) = −2π
(
π

12

)3/2 ∞∑

k=1

k−
5
2

∑′

h mod k

ωhk

∞∑

j=0

e−2πi h
k ( j+1)

(x− e2πih/k) j+1

∞∑

r= j

∆
j
α(α + 1)r

(

− π2

6k2

)r

r!Γ
(

5
2 + r

)

However, if we replaced
∑∞

r= j by
∑∞

r=0 it would not to any harm because the
summation is applied to a polynomial of degreer and the order of the difference
is one more than the power. We can therefore write, taking∆ outside,
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f (x) = −2π
(
π

12

)3/2 ∞∑

k=1

k−
5
2

∑′

h mod k

ωhk

∞∑

j=0

e2πi h
k ( j + 1)

(x− e2πih/k) j+1
∆

j
α

∞∑

r=0

(α + 1)r

(

− π2

6k2

)r

r!Γ
(

5
2 + r

)

= −2π
(
π

12

)−5/2 ∞∑

k=1

k
5
2

∑′

h mod k

ωhk

∞∑

ℓ=1

e2πi h
k ℓ

(x− e2πih/k)ℓ
∆
ℓ−1
α L3/2

(

− π
2

6k2
(α + 1)

)

It is quite clear what has happened.x appears only in the denominator,
a root of unity is subtracted and the difference raised to a power 1. Choose195

specifich, x, 1; then we have a term
B

(x− e2πih/k)ℓ
. We have a conglomerate of

terms which look like this, a conglomerate of singularitiesat each root of unity.
So we have a partial fraction decomposition not exactly of the Mittag-Leffler
type. Here of course the singularities are not poles, and they are everywhere

dense on the unit circle. Each series
∞∑

ℓ=1
represents one specific pointe2πih/k.

Let us return to our previous statement.f (x) is regular and analytic outside

the unit circle. What form has it there? Inside it is
∞∏

m=1
(1−xm). We shall expand

f (x) about the point at infinity. We want theϕ′sexplicitly.

ϕ0(z) =
1

1− z
ϕr+1(z) = zϕ′r (z) − αϕr (z)

ϕ0(z) =
z
−1

z−1 − 1
= − z

−1

1− z−1
= −

∞∑

m=1

z
−m

ϕ1(z) =
∞∑

m=1

mz−m
+ α

∞∑

m=1

z
−m
=

∞∑

m=1

(m+ α)z−m

The following thing will clearly prevail

ϕr (z) = (−)r+1
∞∑

m=1

(m+ α)r
z
−m

This speaks for itself.

ϕr+1(z) = (−)r
∞∑

m=1

m(m+ α)z−m
+ (−)rα

∞∑

m=1

(m+ α)r
z
−m
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So the general formula is justified by induction. 196

Φk(z) = −
∞∑

r=0

(

− π2

6k2

)r

r!Γ
(

5
2 + r

)

∞∑

m=1

(m+ α)r
z
−m

for all |z| > 1. Exchanging summations,

Φk(z) = −
∞∑

m=1

z
−m

∞∑

r=0

(
π2

6k2 (−m− α)
)r

r!Γ
(

5
2 + r

)

= −
∞∑

m=1

z
−mL3/2

(

π2

6k2
(−m− α)

)

Put this back intof (x); we get for|x| > 1,

f (x) = −2π
(
π

12

)3/2 ∞∑

k=1

k−
5
2

∑′

h mod k

ωhk

∞∑

m=1

(

x−1e2πi h
k

)m
L3/2

(

π2

6k2
(−m− α)

)

,

and since Ak(n) =
∑′

h mod k

ωhke
−2πih/k,

f (x) = −2π
(
π

12

)3/2 ∞∑

k=1

k−5/2
∞∑

m=1

Ak(−m)x−mL3/2

(

π2

6k2
(−m− α)

)

Again interchanging summations, 197

f (x) = −2π
(
π

12

)3/2 ∞∑

m=1

x−m
∞∑

k=1

Ak(−m)k−5/2L3/2

(

π2

6k2
(−m− α)

)

The inner sum we recognize immediately; it is exactly what wehad for
p(n); so

f (x) = −2π
(
π

12

)3/2 ∞∑

m=1

p(−m)x−m

And here is a surprise which could not be foreseen! By its verymeaning
p(−m) = 0. So

f (x) ≡ 0

outside the unit circle. This was first conjectured by myselfand proved by
H.Petersson by a completely different method. Such expressions occur in the
theory of modular forms. Petersson got the outside functionfirst and then the
inner one, contrary to what we did.
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The function is represented by a series inside the circle, and it is zero out-
side, with the circle being a natural boundary. There exist simpler examples of
this type of behaviour. Consider the partial sums:

1+
x

1− x
=

1
1− x

1+
x

1− x
+

x2

(1− x)(1− x2)
=

1
1− x

+
x2

(1− x)(1− x2)
=

1
(1− x)(1− x2)

1+
x

1− x
+

x2

(1− x)(1− x2)
+

x3

(1− x)(1− x2)(1− x3)
+ · · · to n+ 1 terms

=
1

(1− x)(1− x2) · · · (1− xn)

For |x| < 1, the partial sum converges to
1

∞∏

m=1
(1− xm)

. For |x| > 1 also 198

it has a limit; the powers ofx far outpace 1 and so the denominator tends to
infinity and the limit is zero. The Euler series here is something just like our
complicated function. Actually the two are the same. For suppose we take the

partial sum
1

(1− x)(1− x2) · · · (1− xn)
and break it into partial fractions. We

get the roots of unity in the denominator, so that we have a decomposition

∑ Bh,k,l,n
(

x− e2πi h
k

)ℓ

k ≤ n andℓ not too high. For a highern we get a finer expression into partial
fractions. Let us face one of these, keepingh, k, ℓ fixed:

Bh,k,l,n
(

x− e2πi h
k

)ℓ

Let n→ ∞. Then I have the opinion that

Bh,k,l,n→ −2π
(
π

12

)3/2
ωhkk

− 5
2 e2πi h

k ℓ∆
ℓ−1
α L3k

(

− π
2

6k2
(α + 1)

)

The B′s all appear from algebraic relations and so are algebraic numbers
- in sufficiently high cyclotomic fields. And this is equal to something which
looked highly transcendental! though we cannot vouch for this. The verifi-
cation is difficult even in simple cases - and no finite number of experiments
would prove the result.
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B0,1,1,n

x− 1
is itself very complicated. Let us evaluate the principal formula for 199

f (x) and pick out the terms corresponding toh = 0, k = l, ℓ = 1.

L3/2 is just the sine function and terns out to be− 6
25
− 12

√
3

75π
. Since 1

1−x =

− 1
x−1, −1 is the first approximation toB0,1,1,n. If we take the partial fraction

decomposition for

1
(1− x)(1− x2)

,
1

(1− x)(1− x2)
=

··
(x− 1)2

+
··

(x− 1)
+

··
(1+ x)

,

the numerator of the second term would give the second approximation. If in-
deed these successive approximations converge toB0,1,1,n we could get a whole
new approach to the theory of partitions. We could start withthe Euler series
and go to the partition function.

We are now more prepared to go into the structure ofωhk. We shall study
next time the arithmetical sumAk(n) and the discovery of A.Selberg. We shall
then go back again to theη-function.
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We shall speak about the important sumAk(n) which appeared in the formula 200

for p(n), defined as
Ak(n) =

∑′

h mod k

ωhke
−2πinh/k.

we need the explanation of theωhk; they appeared as factors in a transfor-
mation formula in the following way:

f
(

e2πi h+iz
k

)

= ωhk
√
ze

π
12k

(
1
z
−z

)

f
(

e2πi h′+i/z
k

)

,

hh′ + 1 ≡ 0 (modk)

Here, as we know,

f (x) =
1

∏∞
m=1(1− xm)

and as η(τ) = eπiτ/12
∞∏

m=1

(1− e2πimτ),

f (e2πiτ) = eπiτ/12(η(τ))−1

We know howη(τ) because.ωhk is something belonging to the behaviour
of the modular formη(τ). What isωhk explicitly? We had a formula

η

(

aτ + b
cτ + d

)

= ǫ

√

cτ + d
i

η(τ), c > 0,

and 201

epsilonnis just the question. Our procedure will be to studyǫ andη and then
go back tof whereωhk appeared. The trick in the discussion will be that we

150
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shall not use the product formula forη(τ), but the infinite series from the pen-
tagonal numbers theorem. This was carried out at my suggestion by W.Fischer
(Pacific Journal of Mathematics; vol. 1). However we shall not copy him. We
shall make it shorter and dismiss for our purpose all the longand complicated
discussions of Gaussian sums

G(h, k) =
k∑

v=1

e2πiν2h/k

which are of great interest arithmetically, having to do with law of reciprocity
to which we shall return later.

We are able to infer that a formula of the sort quoted forη should exist from
the discussion ofV ′1 (0/τ). We had the formula (see hechire 14)

V1

(

0
/aτ + b
cτ + d

)

= · · ·

where the right side contains a doubtful root of unity, whichwe could discuss in
some special cases, and by iteration in all cases. We shall use as further basis of
our argument that such a formula has been established with the proviso|ǫ| = 1.
We then make a statement aboutǫ and use it directly.

After all this long talk let us go to work. We hadτ′ = (h′ + i/z/k), τ =
(h + iz)/k. The question is how isτ′ produced fromτ? It was obtained by 202

means of the substitution




a b

c d




=





h′ − hh′+1
k

k −h





We can therefore get what we are after if we specify the formula by these
particular values.

η

(

h′ + iz
k

)

= ǫ
√
zη

(

h+ iz
k

)

with the principal value for
√

z. We wish to determineǫ defined by this. We
shall expand both sides and compare the results. For expansion we do not use
the infinite product but the pentagonal numbers formula.

η(τ) = eπiτ/12
∞∑

λ=−∞
(−)λe2πiτλ(3λ−1)/2

=

∞∑

λ=−∞
(−)λe

πiτ
12 (1+36λ2−12λ)
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=

∞∑

λ=−∞
(−)λe3πiτ(λ−1/6)2

Most determinations ofη(τ) make use of the infinite product formula; the
infinite series is simpler here

η

(

h+ iz
k

)

=

∞∑

λ=−∞
(−)λe3πi h+iz

k (λ−1/6)2

In order to get the root of unity a little more clearly exhibited, we replaceλ 203

mod 2k.
λ = 2kq+ j, j = 0, 1, . . . , 2k− 1 andq runs from−∞ to∞. So

η

(

h+ iz
k

)

=

∞∑

q=−∞

2k−1∑

j=0

(−) je3πi h
k (2kq+ j− 1

6 )2
e−3π zk (2kq+ j− 1

6 )2

The product term in the exponent= 4kq( j − 1
6).3πi h

k
= 2πihq(6 j − 1)
= an integral multiple of 2πi

(This is the reason why we used mod 2k).

η

(

h+ iz
k

)

=

2k−1∑

j=0

(−) je3πi h
k ( j− 1

6 )2
∞∑

q=−∞
e−12πzk(q+ j−1/6

2k )2
.

We did this purposely in order to make it comparable to what wedid in the
theory ofV -functions. ForRt > 0, we have

∞∑

q=−∞
e−πt(q+α)2

=
1
√

t

∞∑

m=−∞
e−

π
t m2

e2πimα

This is a consequence of aV -formula we had:

eπiτν2
V3(ντ/τ) =

√

1
τ
V3

(

ν/ − 1
τ

)

If we write this explicitly, 204

V3(ν/τ) =
∞∑

n=−∞
eπiτn2

e2πinν,
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and putiτ = −t,

e−πtν2
∞∑

n=−∞
e−πtn2

e−2πntν
=

1
√

t

∞∑

n=−∞
e−πn2/te2πinν,

or
∞∑

n=−∞
e−πt(ν+n)2

=
1
√

t

∞∑

n=−∞
e−

π
t n2

e2πinν,

which is the formula quoted. We now apply this deep theorem and get some-

thing completely new. Puttingt = 12zkandα =
j − 1/6

k
,

η

(

h+ iz
k

)

=

2k−1∑

j=0

(−) je2πi h
k ( j− 1

6)
2 1
√

12kz

∞∑

m=−∞
e−

πm2

12zk e
πim
k ( j− 1

6)

We rewrite this, emphasizing the variable and exchanging the orders of
summation. Then

η

(

h+ iz
k

)

=
1

2
√

3kz

∞∑

m=−∞
e−

πm2

12kz

2k−1∑

j=0

e
πi

(

j+ 2h
k ( j− 1

6)
2
+

m
12k (6 j−1)

)

205

Let us use an abbreviation.

η

(

h+ iz
k

)

=
1
√

2kz

∞∑

m=−∞
e−

πm2

12kzT(m),

where T(m) =
1
2

2K−1∑

j=0

eπi( j+ 2h
k ( j− 1

6 )2
+

m
12k (6 j−1)).

η

(

h+ iz
k

)

=
1
√

3kz





T(0) +

∞∑

m=1

e−
πm2

12kz (T(m) + T(−m))






This is a function in1
z
. Also

η

(

h+ iz
k

)

=
ǫ−1

√
z

∞∑

λ=−∞
(−)λe−

π
12kz (6λ−1)2e

πih′
12k (6λ−1)2

Nowη
(

h+iz
k

)

has been obtained in two different ways. We have in both cases

a power series ine−π/(12zk)
= x, both for |x| < 1. But an analytic function has

only one power series; so they are identical. This teaches ussomething. The
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second teaches us that by no means do all sequences appear in the exponent. 206

Only m2
= (6λ−1)2 can occur. There is no constant term in the second expres-

sion. Som has the form|6λ − 1| = 6λ ± 1, λ > 0. Make the comparison; the
coefficients are identical. They are almost always zero. In particularT(0) = 0.
T(m) for mother than±1 (mod 6) also vanish. So we have the following iden-
tification.

1
√

3k
(T(6λ − 1)+ T(−6λ + 1)) = ǫ−1(−)λe

πih′
12k (6λ − 1)2

Realise that we have acknowledged here that a transformation formula ex-
ists. The root of unityǫ is independent ofλ. This we can assume butW.
Ruscher does not. Take in particularλ = 0. Then we have form= ±1,

1
√

3k
(T(−) + T(1)) = ǫ−1e

πih′
12k

This is proved by Fischer by using Gaussian sums. Therefore

ǫ−1
=

e−
πih′
12k

√
3k






2k−1∑

j=0

eπi( j+ 3h
k ( j− i

6 )2)− 6 j−1
6k +

2k−1∑

j=0

eπi
(

j+ 3h
k ( j− 1

6 )2
+

6 j−1
6k

)






Now j matters only mod 2k. We can beautify things slightly:

ǫ−1
=

e−
πih′
12k +

πih
12k

2
√

3k






e
πi
6k

∑

j mod 2k

e
πi
k (3h j2+ j(k−h−1))

+ e−
πi
6k

∑

j mod 2k

e
πi
k (3h j2+ j(k−h−1))






The sum appears complicated but will collapse nicely; however compli-
cated it should be a root of unity. InAk(n) the sums are summed overh and for
that purpose we shall not need to compute the sums explicitly.
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Last time we obtained the formula 207

ǫ−1
=

1

2
√

3k
e
πi(h−h′)

12k e−
πi
6k

∑

j mod 2k

e
πi
k

(

3h j2j (k−h+1)
)

+
1

2
√

3k
e
πi(h−h′)

12k e
πi
6k

∑

j mod 2k

e
πi
k (3h j2+ j(k−h−1))

ωh,k was defined by means of the equation

f
(

e2πi h+iz
k

)

= ωhk
√
ze

π
12k

(
1
z
−z

)

f
(

e2πi h′+i/z
k

)

ωhk came from theǫ in the transformation formula

η

(

aτ + b
cτ + d

)

= ǫ

√

cτ + d
i

η(τ)

In particular,

η

(

h′ + 1/z
k

)

= ǫ
√
zη

(

h+ iz
k

)

,

f
(

e2πiτ
)

= eπiτ/12(η(τ))−1

Substituting in the previous formula,

e
πi
12

h+ iz
k

{

η

(

h+ iz
k

)}−1

= ωhk
√
ze

π
12k( 1

3−z)e
πi
12

h′+iz
k

{

η

(

h′ + i/z
k

)}−1

i.e., η

(

h′ + i/z
k

)

= ωhk
√
ze

πi
12k (h′−h)η

(

h+ iz
k

)

155



23. Lecture 156

∴ ǫ = ωhke
πi

12k (h′−h)

or ωhk = ǫe
− π

12k (h′−h)

208

In the first formula we have obtained an expression forǫ−1. However, we
could make a detour and actǫ directly instead ofǫ−1. Even otherwise this could
be fixed up, for after all it is a root of unity. We haveǫǭ = 1 or ǫ = ǭ−1. So
consistently changing the sign in the exponents, we have

ωhk = ǭ
−1e

πi
12k (h−h′)

=
1

2
√

3k
e
πi
6k

∑

j mod 2k

e−
πi
k (3h j2+ j(k−h+1))

+
1

2
√

3k
e−

πi
6k

∑

j mod 2k

e−
πi
k (3h j2+ j(k−h−1))

We now have theωhk that we need. But theωhk are only of passing interest;
we put them back intoAk(n);

Ak(n) =
∑′

h mod k

ωhke
−2πinh/k

This formula has one unpleasant feature, viz. (h, k) = 1. But this would not
do any harm. We can use a lemma from an unpublished paper by Whiteman
which status that if (h, k) = d > 1, then

∑

j mod 2k

e−
πi
k (3h j2+ j(k−h±1))

= 0

For proving Whiteman status puth = dh∗, k = dk∗ and j = 2k∗l + r, 209

0 ≤ 1 ≤ d− 1, 0≤ r ≤ 2k∗ − 1. Then

∑

j mod 2k

e−
πi
k (3h j2+ j(k−h±1))

=

d−1∑

ℓ=0

2k∗−1∑

r=0

e−
πi

dk∗ (3dh∗(2k∗1+r)2
+(2k∗ℓ+r)(dk∗−dh∗±1)))

=

2k∗−1∑

r=0

e−
πi
k (3hr2

+r(k−h±1))
d−1∑

ℓ=0

e∓2πiℓ/d,

and the inner sum= 0 because it is a full sum of roots of unity andd , 1.
This simplifies the matter considerably. We can now write

Ak(n) =
1

2
√

3k
e
πi
6k

∑

h mod k

∑

j mod 2k

e−
πi
k (3h j2+ j(k−h+1))e−2πin h

k
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+
1

2
√

3k
e−

πi
6k

∑

h mod k

∑

j mod 2k

e−
πi
k (3h j2+ j(k−h−1))e−2πin h

k

Rearranging, this gives 210

Ak(n) =
1

2
√

3k
e
πi
6k

∑

j mod 2k

e−
πi
k (k+1) j

∑

h mod k

e−
2πi
k (n+ j(3 j−1)

k )h

+
1

2
√

3k
e−

πi
6k

∑

j mod 2k

e−
πi
k (k−1) j

∑

h mod k

e−
2πi
k (n+ j(3 j−1)

2 )h

The inner sum is equal to the sum of thekth roots of unity, which is 0 ork,
k if all the summands are separately one, i.e., if

n+
j(3 j − 1)

2
≡ 0 (modk)

Hence

Ak(n) =
1
2

√

k
3

e
πi
6k

∑

j mod 2k
j(3 j−1)

2 ≡−n (mod k)

(−) je−
πi j
k +

1
2

√

k
3

e−
πi
6k

∑

j mod 2k
j(3 j−1)

2 ≡−n (mod k)

(−) je
πi j
k

In the summation here we first take allj′s modulo 2k (this is the first sieving
out), and then retain only thosej which satisfy the second condition modulok
(this is the second sieving out). Combining the terms,

Ak(n) =
1
2

√

k
3

∑

j mod 2k
j(3 j−1)

2 ≡−n (mod k)

(−) j
{

e−
πi
6k (6 j−1)

+ e
πi
6k (6 j−1)

}

=

√

k
3

∑

j mod 2k
j(3 j−1)

2 ≡−n (mod k)

(−) j cos
π(6 j − 1)

6k

211

This formula is due to A.Selberg. It is remarkable how simpleit is. We shall
change it a little, so that it could be easily computed. We shall show that the
Ak(n) have a certain multiplicative property, so that they can bebroken up into
prime parts which can be computed separately. Let us rewritethe summation
condition in the following way.

12j(3 j − 1) ≡ −24n (mod 24k)
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i.e., 36j2 − 12j + 1 ≡ 1− 24n (mod 24k)

i.e., (6j − 1)2 ≡ ν (mod 24k)

where we have writtenν = 1− 24n. In the formula

Ak(n) =
1
2

√

k
3

∑

j mod 2k
j(3 j−1)

2 ≡−n (mod k)

(−) j
{

e−
πi
6k (6 j−1)

+ e
πi
6k (6 j−1)

}

replacej by 2k − j in the popint term (wherej runs through a full system of
residues, so does 2k− j). Further, observe that we have now 212

(12k− 6 j − 1)2 ≡ (mod 24k)

i.e., (6j + 1)2 ≡ (mod 24k)

Then

Ak(n) =
1
2

√

k
3






∑

(−) j

j mod 2k
(6 j−1)2≡ν (mod 24k)

e−
πi
6k (6 j+1)

+

∑

(−) j

j mod 2k
(6 j−1)2≡ν (mod 24k)

e
πi
6k (6 j−1)






In both terms the range of summation isj mod 2k and there is the further
condition which restrictsj. So

Ak(n) =
1
2

√

k
3

∑

j mod 2k
(6 j±1)2≡ν (mod 24k)

(−) je−
πi
6k (6 j±1)

Write 6j ± 1 = ℓ. 6j ± 1 thus modulo 24k. j = ℓ+1
6 , so it is the integer

nearest toℓ6 since (ℓ, 6) = 1. So write j =

{

ℓ

6

}

where{x} denotes the integer

nearest tox. Then

Ak(n) =
1
2

√

k
3

∑

ℓ mod 2k
(ℓ,6)=1,ℓ2≡ν (mod 24k)

(−){ ℓ6}eπiℓ
6k

And one final touch. The ranges forℓ in the two conditions are modulo 12k 213

and modulo 24k. Make these ranges the same. Then

Ak(n) =
1
4

√

k
3

∑

ℓ mod 24k
ℓ2≡ν (mod 24k)

(−){ ℓ6}eπiℓ
6k
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We prefer the formula in this form which is much handler. We shall utilise
this to get the multiplicative property ofAk(n).
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We derived Selberg’s formula, and it looked in our transformation like this: 214

Ak(n) =
1
4

√

k
3

∑

l2≡γ (mod 24k)

(−){ ℓ6}eπiℓ
6k ,

whereν = 1− 24n, or ν ≡ 1 (mod 24). We write thisBk(ν); this is defined for
ν ≡ 1 (mod 24), and we had tacitly (ℓ, 6) = 1. We make an important remark
about the symbol (−){ ℓ6}. This repeats itself forℓmodulo12. The values are

ℓ = 1 3 7 11

(−){ ℓ6} = 1 −1 −1 1

But (−){ ℓ6} can be expressed in terms of the Legendre symbol:

(−){ ℓ6} =
(

ℓ

3

) (

−1
ℓ

)

when (ℓ, 6) = 1. We can test this, noticing that
(
−1
ℓ

)

= (−1)
ℓ−1
2 . Since 1, 7

are quadratic residues and 5, 11 quadratic non-residues modulo 3, we have for
ℓ = 1, 5, 7, 11, (−){

ℓ
6 } = 1,−1,−1, 1 respectively; this agrees with the previous

list. It is sometimes simpler to write (−){
ℓ
6 } in this way, though it is an after-

thought. It shows the periodicity.
Let us repeat the formula: 215

Bk(ν) =
1
4

√

k
3

∑

ℓ2≡ν (mod 24k)

(

ℓ

3

) (

−1
ℓ

)

e
πiℓ
6k

This depends upon howk behaves with respect to 24. It has to be done
separately for 2, 3, 4, 6. For this introduced = (24, k3). We have

160
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d = 1 if (k, 24)= 1,

3 if 3 | 4, k odd,

8 if k is even and 3∤ k

24 if 6 | k.

Let us introduce the complementary divisore, de= 24. Soe = 24, 8, 3 or
1. (d, e) = 1. Also (c, k) = 1.

All this is a preparation for our purpose. The congruenceℓ2 ≡ ν (mod 24k)
can be re-written separately as two congruences:ℓ2 ≡ ν (mod dk), ℓ2 ≡ ν

(mod e).
The latter is always fulfilled if (ℓ, 6) = 1. Now break the condition into two

subcases. Letr be a solution of the congruence

(er)2 ≡ ν (mod dk);

then we can writeℓ = er+dk j, wherej runs moduloeand moreover (j, e) = 1.
To different pairs modulodk ande respectively belong differentℓ modulo 24k.
Bk(ν) can then be written as

Bk(ν) =
1
4

√

k
3

∑

(er)2≡ν (mod dk)

∑

j mod e
( j,e)=1

(

er+ dk j
3

) (

−1
er + dk j

)

e
πi
6k (er+dk j)

Separating the summations, this gives 216

Bk(ν) =
1
4

√

k
3

∑

(er)2≡ν (mod dk)

e
πiℓk
6k Sk(r),

where

Sk(r) =
∑′

j mod e

(

er+ dh j
3

) (

−1
er+ dk j

)

e
πid j
6k

We compute this now in the four different cases implied in the possibilities
d = 1, 3, 8, 24.

Case 1. d = 1, e= 24

Sk(r) =
∑′

j mod 24

(

k j
3

) (

−1
k j

)

e
πi j
6

=

(

k
3

) (

−1
k

)
∑′

j mod 24

( j
3

)

(−)
j−1
2 e

πi j
6
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There are eight summands, but effectively only four, because they can be
folded together.

Sk(r) = 2

(

k
3

) (

−1
k

)
∑′

j mod 12

( j
3

)

(−)
π−1
2 eπi j

= 2

(

h
3

) (

−1
k

)
{

e
πi
6 − e

5πi
6 − e

7πi
6 + e

11πi
6

}

(We replaced the nice symbol (−){
ℓ
6 } by the Legendre symbol because we

did not know a factorisation law for the former. So we make useof one special
character that we know).

Sk(r) = 4

(

k
3

) (

−1
k

) (

cos
π

6
− cos

5π
6

)

= 4

(

k
3

) (

−1
k

) √
3

and since
(

k
3

) (
3
k

)

= (−)
k−1
2 ·1 =

(
−1
k

)

, this gives gives 217

Sk(r) = 4
√

3

(

3
k

)

Case 2. d = 3, e= 8.

Sk(r) =
∑′

j mod 8

(

8r
3

) (

−1
3k j

)

e
πi j
2

=

(−r
3

) (−1
3k

)
∑′

j mod 8

(

−1
j

)

e
πi j
2

= 2
( r
3

) (−1
k

)
∑′

j mod 4

(

−1
j

)

e
πi j
2

= 2
( r
3

) (−1
k

)

(i + i)

= 4i
( r
3

) (−1
k

)

.

Case 3. d = 8, e= 3.

Sk(r) =
∑′

j mod 3

(

8k j
3

) (

−1
3r

)

e
4πi j

3
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=

(

k
3

) (

−1
r

)
∑′

j mod 3

( j
3

)

e
4πi
3

=

(

k
3

) (

−1
r

)
(

e
4πi
3 − e

8πi
3

)

= −2i

(

k
3

) (

−1
r

)

sin
2π
3

=
1
i

√
3

(

k
3

) (

−1
r

)

218

Case 4. d = 24, e= 1.

Sk(r) =

(

k
3

) (

−1
r

)

=

(

3
r

)

Now utilise these; we get a handier definition for Ak(n).

Case 1.

Bk(ν) =

(

3
k

)
√

k ∑

(24r)2≡ν (mod k)

e
4πir

k

Case 2.

Bk(ν) = i

√

k
3

(

−1
k

)
∑

(8k)2≡ν (mod 3k)

( r
3

)

e
4πir
3k

The i should not bother us becauser and−r are solutions together, so they
combine to give a real number.

Bk(ν) = −
√

k
3

(

−1
k

)
∑

(8r)2≡v (mod 3k)

( r
3

)

sin
4πr
3k

Case 3.

Bk(ν) =
1
4i

√
k

(

k
3

)
∑

(3k)2≡ν (mod 8k)

(

−1
r

)

e
πir
3k

=
1
4

√
k

(

k
3

)
∑

(3r)2≡ν (mod 8k)

(

−1
r

)

sin
πr
2k

219
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Case 4.

Bk(ν) =
1
4

√

k
3

∑

r2≡ν (mod 24k)

(

3
r

)

e
πir
6k

This is the same as the old definition.
This makes it possible to computeAk(n). We breakk into prime factors and

because of the multiplicative property which we shall prove, have to face only
the task of computing for prime powers.
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We wish to utilise the formula forBk(ν) that we had: 220

Ak(n) = Bk(ν) =
1
4

√

k
3

∑

ℓ2≡ν (mod 24k)

(

ℓ

3

) (

−1
ℓ

)

e
πiℓ
6k ,

with ν = 1 − 24n (and so≡ 1 modulo 24). Some cases were considerably
simpler. Writingd = (24, k3), de= 24, we have four cases:d = 1, 3, 8, 24.

d = 1

Bk(ν) =

(

3
k

) √
k

∑

(24r)2≡ν (mod k)

e4πir /k

d = 3

Bk(ν) = 2i

(

−1
k

) √

k
3

∑

(8r)2≡ν (mod 3k)

( r
3

)

e4πir /3k

d = 8

Bk(ν) =
1
4i

(

k
3

) √
k

∑

(8r)2≡ν (mod 8k)

(

−1
r

)

eπir /2k

d = 24
There is nothing new; we get the old formula back.
We wish first to anticipate what we shall use later and getAn(n) for prime

powers which will be the ultimate elements. Again we have to discuss several
cases.

First takek = pλ, p a prime exceeding 3. Then, by case 1 above (since221

(24, k3) = 1),

Bk(ν) =

(

3
p

)λ

pλ/2
∑

(24r)2≡ν (mod pλ)

e4πir /pλ

165
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Look into the condition of summation. It is quite clear that this implies
(24r)2 ≡ ν (mod p) i.e.,ν is a quadratic residue modulop. Hence

Bpλ(ν) = 0 if

(

v
p

)

= −1. (1)

On the other hand, ifx2 ≡ ν (mod p) is solvable, thenx2 ≡ ν (mod pλ)
is also solvable (we take for granted the structure of the cyclic residue group).
x2 ≡ ν (mod pλ) has two solutions, and now we want onlyx = 24r (mod pλ).
Let r be a solution,−r is the other solution: (24r)2 ≡ (mod pλ). Then

Bk(ν) =

(

3
p

)λ

pλ/2
{

e4πir /pλ
+ e−4πir /pλ

}

= 2

(

3
p

)λ

pλ/2 cos
4πr
pλ

(2)

This is roughly of the order of
√

pλ

Next, suppose thatp/ν. This is a special case ofpλ/ν. Then (24r)2 ≡ 0
(mod pλ), and the solutions are

r = p[ λ+1
2 ] · j,

j = 0, 1, 2, . . . , pλ−[
λ+1

2 ] − 1.

whenλ = 1,
[
λ+1

2

]

= λ and we have only one summand. Hence 222

Bk(ν) =

(

3
p

)

p1/2 (3)

Now letλ > 1. Then

Bk(ν) =

(

3
p

)λ

p
λ
2

pλ−[ λ+1
2 ]

∑

j=1

e4πi j/p[ λ+1
2 ]

This again involves two cases,λ even andλ odd. If λ is even,λ = 2µ and
the sum becomes

pµ∑

j=1

e4πi j/pµ

and this is 0, being a full sum of roots of unity. Hence in this case

Bk(ν) = 0 (4)
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Now letλ be odd:λ = 2µ + 1.

r = pµ+1 · j, j = 0, 1, . . . , pµ − 1.

Then the sum becomes
pµ∑

j=1

e4πi j/pµ

which is again zero; hence
Bk(ν) = 0 (5)

Now suppose thatpµ | ν, µ < λ andpλ ∤ ν. r2 ≡ ν (mod pλ)ν = pµν, p+ ν, 223

or ν1 ≡ pµν (mod pλ) ν = pµν1, p ∤ ν1; or ν2 ≡ pµν1 (mod pλ). If is odd,
µ < λ, thenpµ | ν; and again

Bk(ν) = 0 (6)

There remain the case in whichµ is even,µ = 2ρ. Then r2 ≡ p2ρν,

(mod pλ). Writing r = pρ j, p2ℓ j2 ≡ p2ρν1 (mod pλ), or j2 ≡ ν1 (mod pλ−2ρ)
If

(
ν1
p

)

= −1, then again
Bk(ν) = 0 (7)

However
(
ν1
p

)

= 1 implies j2 ≡ ν1 (mod pλ−2ρ) has two solutions,j and
− j. Then

r ≡ pρ
(

j + ℓpλ−2ρ
)

(mod pλ)

or τ r ≡ pρ j + ℓpλ−ρ (mod pλ)

where ℓ = 0, 1, . . . , pρ − 1.

Then the sum becomes

pρ−1∑

ℓ=0

e
4πi
pλ (±pρ j + ℓpλ−ρ) = e

± 4πi
pλ−ρ j

pρ−1∑

ℓ=0

e
4πi
pρ ℓ

= 0

Again
Bk(ν) = 0 (8)

We now take up the casep = 3. This corresponds top = 3. If k = pλ = 3λ, 224

B3λ(ν) = i(−)λ3
λ−1

2

∑

(8r)2≡ (mod 3λ+1)

( r
3

)

e4πir /3λ+1
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ν ≡ 1 (mod 24) orν ≡ 1 (mod 3). So
(
ν
3

)

= 1. There are two solutions,r and

−r for the congruence (8r)2 ≡ ν (mod 3λ+1). Since
(
−r
3

)

= −
(

r
3

)

,

B3λ(ν) = i(−)λ
( r
3

)

3
λ−1

2

(

e
4πir
3λ+1 − e−

4πir
3λ+1

)

= 2(−)λ+1
( r
3

)

3
λ−1

2 sin
4πr
3λ+1

(9)

Finally, we takep = 2; thend is 8. Letk = 2λ. Then

B2λ(ν) =
1
4i

(−)λ2λ/2
∑

(3r)2≡ν (mod 2λ+3)

(

−1
r

)

e4πir /2λ+1

ν ≡ 1 (mod 8) implies that (3r2) ≡ ν (mod 8) has four solutions, and these
solutions are inherited by the higher powers of the modulus.The solutions are
r ≡ 1, 3, 5, 7 (mod 8). In general the congruencex2 ≡ ν (mod 2µ), µ ≥ 3 has
four solutions

±r + h2µ−1, h = 0, 1

Then 225

B2λ(ν) =
1
4i

(−)λ2λ/2
{

e4πir /2λ+1 − e−4πir /2λ+1
+ e4πir /2λ+1 − e−4πir /2λ+1}

(

−1
r

)

and since
(
−1
r

)

= (−)
r−1
2 ,

B2λ(ν) = (−)λeλ/2
(

−1
r

)

sin
4πr
2λ+!

(10)

We have thus computed the fundamental cases explicitly.
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We had the formula forBk(ν): 226

Bk(ν) =
1
4

√

k
3

∑

ℓ2≡ν (mod 24k)

(

ℓ

3

) (

−1
3

)

eπiℓ/6k,

with ν ≡ 1 (mod 24). Writingd = (24, k3), we had the following cases:

1) d = 1

Bk(ν) =

(

3
k

) √
k

∑

(24π)2≡ν (mod k)

e4πir /k

2) d = 3

Bk(ν) = i

(

−1
k

) √

k
3

∑

(24r)2≡ν (mod 3k)

(

−1
r

)

eπir /2k

3) d = 8

Bk(ν) =
1
4i

(

k
3

) √
k

∑

(3r)2≡ν (mod 8k)

(

−1
r

)

eπir /2k

4) d = 24. We do not get anything new.

Assumek = k1k2, (k1, k2) = 1. We desire to writeBk(ν1). Bk2(ν2) = Bk(ν),
with a suitableν to be found out fromν1 andν2. It cannot be foreseen. It is a
multiplication of a peculiar sort. Two cases arise.

(i) At least one ofk1, k2 is prime to 24 and therefore to 6, say (k1, 6) = 1. 227

(ii) None is prime to 6. But since (k1, k2) = 1, 2/k1, 3/k1. Under the circum-
stances prevailing these are the two mutually exclusive cases.

169
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Case 1. Utilise d = 1.

Bk1(ν1) · Bk2(ν2) =

(

3
k1

)
√

k1 ·
1
4

√

k2

3

∑

(24r)2≡ν1 (mod k1)

e4πir /k1

·
∑

ℓ2≡ν2 (mod 24k2)

(

ℓ

3

) (

−1
ℓ

)

eπiℓ/6k2

=
1
4

(

3
k1

) √

k1k2

3

∑∑

(24r)2≡ν1 (mod k1)
ℓ2≡ν2 (mod 24k2)

e
πi

6k1k2
(24k2r+k1l)

(

l
3

) (

−1
l

)

k1 and24k2 are coprime moduli. If r runs modulo k1 andℓ runs modulo24k2,
24k2r + k1ℓ would then run modulo24k1k2.

Write
24k2r + k, ℓ ≡ t (mod 24k1k2)

Then

t2 = (24k2 + k1ℓ)2 ≡ (24k2r)2 (mod k1)

≡ k2
2ν1 (mod k1), since (24r)2 ≡ ν1 (mod k1)

Similarly

t2 ≡ (k1ℓ)
2 (mod 24k2)

≡ k2
1ν2 (mod 24k2), sinceℓ2 ≡ ν2 (mod 24k2).

So in order to get both conditions of summation, we need only choose 228

t2 ≡ ν (mod 24k1k2); and this can be done by the Chinese remainder theorem.
So

Bk1(ν1)Bk2(ν2) =
1
4

(

3
k
,

) √

k
3

∑

t2≡ (mod 24k,k2)

(

ℓ

3

) (

−1
ℓ

)

eπit/6k

This already looks very much like the first formula though notquite. What
we have in mind is to compare it with

Bk(ν) =
1
4

√

k
3

∑

t2≡ν (mod 24k)

( t
3

) (−1
t

)

eπit/6k

So find out
( t
3

) (−1
t

)

=

(

24k2r + k1ℓ

3

) (

−1
24k2r + k1ℓ

)
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=

(

k1ℓ

3

) (

−1
k1ℓ

)

=

(

k1

3

) (

−1
k1

) (

ℓ

3

) (

−1
ℓ

)

=

(

3
k1

) (

ℓ

3

) (

−1
ℓ

)

,

by the reciprocity law. So the formulas agree:Bk1(ν1)Bk2(ν2) = Bk(ν); and we
have settled the affair in this case by

Theorem 1. If k2
2ν1 ≡ ν (mod k1) and k21ν2 ≡ ν (mod 24k2), (k, 6) = 1, then 229

Bk1(ν1)Bk2(ν2) = Bk1k2(ν)

Case 2. This corresponds to d= d1 = 8 and d= d2 = 3.

Bk1(ν1) · Bk2(ν2) =
1
4

(

k1

3

)
√

k1

(

−1
k2

) √

k2

3
∑

(3r)2≡ν1 (mod 8k1)

(

−1
r

)

eπir /2k1

∑

(8r)2≡ν2 (mod 3k2)

eπis/3k2.

=
1
4

(

k1

3

) (

−1
k2

) √

k1k2

3
∑∑

(3r)2≡ν1 (mod 8k1)
(8r)2≡ν2 (mod 3k2)

(

−1
3

) ( s
3

)

e
πi

6k1k2
(3k2r+8k1s)

Since (k1, k2) = 1, (8k1, 3k2) = 1 and so 3k2r + 8k1s= t runs through a full
system of residues modulo 24k1k2. So

Bk1(ν1)Bk2(ν2) =
1
4

(

k1

3

) (

−1
k2

) √

k
3

∑

t2≡ν (mod 24k1k2)

(

−1
r

) ( s
3

)

eπit/(6k1k2)

As before 230

t2 = (3k2r + 8k1s)2 ≡ (3k2r)2 ≡ (3k2r)2 ≡ k2
2ν1 (mod 8k1)

t2 = (8k1s)2 ≡ k2
1ν2 (mod 3k2)

Now determineν such thatν ≡ k2
2ν1 (mod 8k1) andν ≡ k2

1ν2 (mod 3k2),
again by the Chinese remainder theorem. Sot2 ≡ (mod 24k1k2). Now

( t
3

) (−1
t

)

=

(

8k1s
3

) (

−1
3k1r

)
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=

(

k1

3

) (

−1
k2

) ( s
3

) (−1
r

)

(since 8 and−1 are quadratic non-residues modulo 3). So

Bk1(ν1)Bk2(ν2) =
1
4

√

k
3

∑

t2≡ν (mod 24k)

( t
3

) (−1
t

)

eπit/6k

= Bk(ν)

whereν is given. Hence

Theorem 2. If k2
2ν1 ≡ ν (mod 8k1) and k21ν2 ≡ ν (mod 3k2), then

Bk1(ν1)Bk2(ν2) = Bk1k2(ν)

Let us give an example of what this is good for. CalculateA10(26). Since
we can reduce modulo 10,A10(26)= A10(6).

ν = 1− 24n = −143.

A10(26)= A10(6) = B10(−143)= B10(−23)

= B5(ν1)B2(ν2)

whereν1, ν2 are determined by the conditions 231

4ν1 ≡ −23 (mod 5) or− ν1 ≡ −3 (mod 5)

and 25ν2 ≡ −23 (mod 48) orν2 ≡ 1 (mod 48)

SoA10(26)= B5(3)B2(1), and these are explicitly known. Since
(

3
5

)

= −1,
B5(3) = 0. It is actually not necessary now to calculateB2(1).

B2(1) = (−)λ
(

−1
r

)

2λ/2 sin
πr

2λ+1

where (3r)2 ≡ ν (mod 2λ+3), (3r)2 ≡ 1 (mod 16),

or 3r ≡ 1 (mod 16),r ≡ 11 (mod 16). (there being four solutions). Then

B2(1) = (−)(−)
√

2 sin
11π
4
= 1×

√
2 · 1
√

2
= 1

A10(26)= 0.

One more thing can be established now. We have the inequalities:

|B2λ(ν)| ≤ 2λ/2,
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|B3λ(ν)| ≤ 3
λ
2 2
√

3,

|Bpλ(ν)| ≤ 2p
λ
2 , p > 3.

By the multiplicative property, 232

|Bk(ν)| = |Ak(ν)| ≤
√

k(2
√

3)λ(k)

where λ(k) =
∑

p|k
1.

This is a rough appraisal, butλ(k) is in any case a small number. So

|Bk(ν) < C
√

k · kǫ , ǫ > 0,C = Cǫ .

We see that althoughAn(n) hasϕ(k) summands and in general all that one
knows is thatϕ(k) ≤ k − 1, because of strong mutual cancellations among the
roots of unity, the order is brought down to that ofk

1
2+ǫ . This reminds us of

other arithmetical sums like the Gaussian sums and the Kloosterman sums.
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We now give a proof of the transformation formula forη(τ). η(τ) we first in- 233

troduced by Dedekind in his commentary on a fragment on modular functions
by Riemann; it is natural in the theory of elliptic functions.

η(τ) = e
πiτ
12

∞∏

m=1

(1− e2πimτ)

We want to replaceτ by τ′ =
aτ + b
cτ + d

. Actually in the whole literature there

is no full account except in a paper by W.Fischer (Pacific Journal of Mathe-
matics, Vol. 1). We know what happens in the special cases− 1

τ
andτ + 1. We

get the explicit form in which the root of unity appears in thetransformation
formula if we put together some things from the theory of modular functions.
There some discussion in Tannery-Molk; they writeh(τ) instead ofη(τ). (η(τ))3

is up to a factorV 1
1 (o/τ). It turns out for quite other reasons that (η(τ))8 can

be discussed too; it has to do with the modular invariantJ(τ). Dedekind did
something more than what is needed here. He studied logη(τ). For Imτ > 0,
η(τ) is a function in the interior of the unit circle (if we setx = e2πiτ) free from
zeros and poles. So the logarithm has no branch points and is fully defined
without ambiguity.

logη(τ) =
πiτ
12
+

∞∑

m−1

log(1− e2πimτ)

(For purely imaginaryτ, the logarithms on the right side are real).
The multiplicative root of unity now appear as something additive. This 234

is what Dedékind investigated. Recently (Mathematika, vol.1, 1954) Siegel

published a proof for the particular case−1
τ

, using logarithms. Actually Siegel

174
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proves much more than the functional equation forη(τ). He proves that

logη(−τ−1) = logη(τ) +
1
2

log
τ

i

We shall extend his proof to the more general case. The interesting case
where a root of unity appears explicitly has not been dealt with by Siegel.

We write the general modular transformation in the form

τ =
h+ iz

k
, τ′ =

h′ + i/z
k

, hh′ ≡ −1 (modk)

We wish to prove that

logη

(

h′ + i/z
k

)

= logη

(

h+ iz
k

)

+
1
2

logz + πiC(h, k) (*)

whereC(h, k) is a real constant.
From the definition ofη(τ),

logη

(

h+ iz
k

)

=
π(h+ iz)

12k
−
∞∑

m=1

∞∑

r=1

1
r

e2πimr(h+iz)/k

=
πih
12k
− πz

12k
−
∞∑

m=1

∞∑

r=1

1
r

e2πimrh/ke−2πmrz/k

e2πimrh/k is periodic with periodk; we emphasize this and write 235

m= qk+ µ; µ = 1, . . . , k; q = 0, 1, 2, . . . .

Then

logη

(

h+ iz
k

)

=
πih
12k
− πz

12k
−
∞∑

q=0

k∑

ν=1

∞∑

r=1

1
r

e2πiµ rh
k e−2π(1k+µ) rz

k ,

and taking the summation overq inside, this becomes

πih
12k
− πz

12k
−
∞∑

µ=1

∞∑

r=1

1
r

e2πiµ rh
k e−2πµ rz

k

∞∑

q=0

e−2πqrz

=
πih
12k
− πz

12k
−

k∑

µ=1

∞∑

r=1

1
r

e2πiµ rh
k

e−2πµrz/k

1− e−2πrz
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Substituting in (*), with similar expansion forη
(

h′+i/z
k

)

, we have

πih
12k
− π

12kz
−

k∑

ν=1

∞∑

r=1

1
r

e2πiνr h′
k

e−
2πνr
kz

1− e−2πr/z

=
1
2

logz + πiC(h, k) +
πih
12k
− πz

12k
−

k∑

µ=1

∞∑

r=1

1
r

e2πiµ rh
k

e−2πµ rz
k

1− e−2πrz

Rearranging this, we get 236

k∑

ν=1

∞∑

r=1

1
r

e2πiνr h′
k .

e−2πνr/kz

1− e−2πr/z
−

k∑

µ=1

∞∑

r=1

1
r

e2πiµrh/k e−2πµrz/k

1− e−2πr/z

+
π

12k

(

1
z
− z

)

+
πi

12k
(h− h′) + πiC(h, k) = −1

2
logz.

We now follow Siegel’s idea to get the whole thing as a sum of residues of
a certain function. Clearly there isr in it. Being integersr can be produced

by something like
1

1− e2πix
which has poles with residue− 1

2πi at every integral

valuedx. So let us study a function like

1
x

1
1− e2πix

e2πiµxh/k e−2πµxz/k

1− e−2πxz

We may have to sum this fromµ = 1 to µ = k. This should somehow be
the form of the function that we wish to integrate. We do not want it in the
whole plane. In fact, we can either take a wider and wider pathof integration,
or multiply the function by a factor and magnify it; we preferto do the latter. 237

We shall putxN for x, keep the path fixed and takeN = n + 1
2, n integer,

to avoid integral points, and then maken → ∞. The term corresponding to
µ = k should be treated separately, as otherwise the factore−2πxz would stop
convergence. Alsoµh andµ should appear symmetrically for reasons which
we shall see. So introduceµ∗ ≡ µh (mod k), µ = 1, 2, . . . , k − 1, and choose
1 ≤ µ∗ ≤ k − 1. It turns out, taking all this together, that the followingthing
will do. Write

Fn(x) = − 1
4ix

cothπNxcot
πNx
z
+

k−1∑

µ=1

1
x
· e2πµNx/k

1− e2πNx
· e−2πiµNx/kz

1− e−2πiNx/z

The first term is a consequence of the term forµ = k:

1
x
× e2πNxi

1− e2πixN
× e−2πxNz

1− e−2πxNz



27. Lecture 177

The poles will not change if we write this as

1
x

(

e2πNxi

1− e2πiNx
+

1
2

) (

e−2πxNz

1− e−2πxNz
+

1
2

)

=
1
x

1+ e2πiNx

2(1− e2πiNx)
· 1+ e−2πxNz

2(1− e−2πxNz)

=
1

4xi
cotπxN · cothπxNz.

We integrateFn(x) along a certain parallelogramP, a little different from 238

Siegel’s.P has vertices at±z, ±i (sinceJmτ > 0,Rez > 0). Then

1
2πi

∫

p
Fn(x)dx=

∑

(Residues).

We then letn→ ∞.
The poles ofFn(x) are indicated by the denominators and the cotangent

factors. These are

x = 0, x = − rz
N
, x =

ir
N
, r integer.

x = 0 is a triple pole for the first summand.

− 1
4ix

cothπNxcot
πNx
z
= − 1

4ix
· 1
πNx

z

πNx
{

1+
(πNx)2

3
+ ·

}

×
{

1− (πNx/z)2

3
+ · · ·

}
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Residue for this term atx = 0 239

=
iz

4π2N2
· 1

3

(

π2N2 − π
2N2

z

)

=
i

12

(

z − 1
z

)

.

which had been foreshadowed already.
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We had 240

Fn(x) = − 1
4ix

cothπNxcot
πNx
z
+

k−1∑

µ=1

1
x
· e2πµNx/k

1− e2πNx
× e−2πiµ∗Nx/kz

1− e−2πiNx/z
,

N = n+ 1
2 , n integer> 0, µ∗ ≡ hµ (mod k) and 1≤ µ∗ ≤ k − 1. At the triple

pole x = 0 the residue from the first summand= − 1
12i

(

z − 1
z

)

- Let us find the
residues from the more interesting pieces of the sum. The general term on the
right has in the neighbourhood ofx = 0 the expansion

1
x

{

1+
2πµNx

k
+

(2πµN2/k)2

2!
+ · · ·

}

× −1
2πNx

{

1+
2πNx

2
+

(2πNx)2

6
+ · · ·

}−1

×
{

1− 2πiµ∗Nx
kz

− (2πµ∗Nx/kz)2

2
+ · · ·

}

× 1
2πiNx/z

{

1− 2πiNx
2z

− (2πNx/z)2

6
+ · · ·

}−1

=
−z

4π2iN2x3





1+

2πµNx
k
+

1
2

(

2πµNx
k

)2

− · · ·





×
{

1−
(

2πNx
2
+

(2πNx)2

6
+ · · ·

)

+ (· · · )2
+ · · ·

}

×




1− 2πiµ∗Nx

kz
− 1

2

(

2πµ∗Nx
kz

)2

+ · · ·





179
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×
{

1+
2πiNz
z
+

(2πN2/z)2

2
+ · · ·

}

241

Fishing out the term in
1
x

, the residue atx = 0 from this summand becomes

iz

4π2N2






1
2

(

2πµN
k

)2

+
1
12

(2πN)2 − 1
2

(

2πµ∗N
kz

)2

− 1
12

(

2πN
z

)2

− 2πµ
N
k
πN

−4π2µµ∗
N2i
k2z
+

2π2iµN2

kz
+

2π2iµ∗N2

kz
− π

2iN2

z
+

2π2µ∗N2

kz2

}

=
iz
4

{

2
µ2

k2
+

1
3
− 2µ

k

}

+
i

4z






−2µ∗
2

k2
− 1

3
+

2µ∗

k






+
i
4

{

−4iµµ∗

k2
+

2iµ
k
+

2iµ∗

k
− i

}

= iz

{

µ2

2k2
− µ

2k
+

1
12

}

+
1
iz






µ∗
2

2k2
− µ

∗

2k
+

1
12





+

(

µ

k
− 1

2

) (

µ∗

k
− 1

2

)

(*)

We have to sum this up fromµ = 1 to µ = k − 1. Let us prepare a few 242

things.
Let us remark that

k−1∑

µ=1

µ =
(k− 1)k

2
;

k−1∑

µ=1

µ2
=

(k− 1)k(2k− 1)
6

Also if µ runs through a full system of residues, so wouldµ∗ because
(h, k) = 1. Further 0< µ∗

k < 1, and µ∗

k and hµ
k differ only by an integer, so

that µ
∗

k =
hµ
k −

[
hµ
k

]

. Hence summing up the last expression (∗) from µ = 1 to
µ = k− 1, we have

ız

{

(k− 1)(2k− 1)
12k

− k− 1
4
+

k− 1
12

}

+
1
iz

{

(k− 1)(2k− 1)
12k

− k− 1
4
+

k− 1
12

}

+

k−1∑

µ=1

(

µ

k
− 1

2

) (

hµ
k
−

[

hµ
k

]

− 1
2

)

= (k− 1)

(

2k− 1
12k

− 1
6

) (

iz +
1
iz

)

+ s(h, k)
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wheres(h, k) stands for the arithmetical sum

k−1∑

µ=1

(

µ

k
− 1

2

) (

hµ
k
−

[

hµ
k

]

− 1
2

)

which appears here very simply as a sum of residues. The last expression
becomes

−k− 1
12k

(

iz +
1
iz

)

+ s(h, k)

So the total residue atx = 0 is 243

1
12

(

iz +
1
iz

)

− k− 1
12k

(

iz +
1
iz

)

+ s(h, k) =
1

12k

(

iz +
1
iz

)

+ s(h, k)

Next, we consider the simple poles ofFn(x) at the pointsx = ir
N (r , 0).

The coth factor is periodic and so the residue at any of these poles is the same
as that at the origin, which is1

π
. Hence the residue ofFn(x) at x = ir

N (r , 0)
becomes

N
4r
· 1
πN

cot
πir
z
+

k−1∑

µ=1

N
ir
−1

2πN
e2πiµ r

k
e2πµ∗r/kz

1− e2πr/z

(There is a very interesting juxtaposition of an arithmetical term and a func-
tion theoretic term in the last part; this gets reversed for the next set of poles)

=
1

4πir
coth

πr
z
− 1

2πi

k−1∑

µ=1

1
r

e2πi µr
k

e2πµ∗r/kz

1− e2πr/z

x remains between±i on the imaginary axis. So
∣
∣
∣

r
N

∣
∣
∣ < 1; so we need consider

only r = ±1,±2, . . . ,±n. Again,

coth y =
ey
+ e−y

ey − e−y
= 1+

2e−y

ey − e−y

= 1+
2e−2y

1− e−2y

coth y is an odd function so that1y coth y is even. Hence summing up over all 244

the poles corresponding tor = ±1, . . . ,±n, we get the sum of the residues

=
1

2πi

n∑

r=1

1
r

{

1+
2e−2πr/z

1− e−2πr/z

}

+
1

2πi

k−1∑

µ∗=1

n∑

r=1

1
r

e2πih′µ∗r/k e−2πµ∗r/kz

1− e−2πr/z
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− 1
2πi

k−1∑

µ∗=1

n∑

r=1

1
r

e2πih′(k−µ∗)r/k e2πµ∗r/kz

1− e2πr/z
,

where we have made use of the fact thathh′ ≡ −1 (modk), soh′µ∗ ≡ hh′µ ≡
−µ (mod k), or µ ≡ −h′µ∗ (mod k). In the last sum replaceµ∗ by k − µ∗; then
the previous sum is duplicated and we get

1
2πi

n∑

r=1

1
r






1+
2e−2πr/z

1− e−2πr/z
+

1
πi

k−1∑

µ∗=1

n∑

r=1

1
r

e2πih′µ∗r/k e−2πµ∗r/kz

1− e−2πr/z






=
1

2πi

n∑

r=1

1
r
+

1
πi

k∑

ν=1

n∑

r=1

1
r

e2πih′νr/k e−2πνn/kz

1− e−2πr/z

This accounts for all the poles on the imaginary axis (exceptthe origin 245

which has been considered separately before).
Finally we have polesx = rz

N (e, 0) on the other diagonal of the parallelo-
gram. The same calculation goes through verbatim and we get the sum of the
residues at these poles to be

i
2π

n∑

r=1

1
r
+

i
π

k∑

ν=1

n∑

r=1

1
r

e2πihνr/k e−2πνrz/k

1− e−2πrz
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We had 246

Fn(x) = − 1
4ix

cothπNxcot
πNx
z
+

k−1∑

µ=1

1
x

e2πµNx/k

1− e2πNx

e−2πiµ∗Nx/kz

1− e−2πNx/z

The residue atx = 0 is

1
12k

(

iz +
1
iz

)

+ s(h, k),

s(h, k), which will interest us for some time, being

k−1∑

µ=1

(

µ

k
− 1

2

) (

hµ
k
−

[

hµ
k

]

− 1
2

)

.

The residues at the pointsx = ir
N (r , 0) amount to

1
2πi

n∑

r=1

1
r
+

1
πi

k∑

ν=1

n∑

r=1

1
r

e2πih′ν r
k

e−2πνr/kz

1− e−2πr/z
;

and the residues at the pointsx = zrN (r , 0)

i
2π

n∑

r=1

1
r
+

i
π

k∑

µ=1

n∑

r=1

1
r

e2πihµ r
k

e−2πµrz/k

1− e−2πrz

When we add up, the sums
∑n

r=1
1
r , the disagreeable ones which would have247

gone to infinity, fortunately destroy each other; so the sum of the residues of
Fn(x) at all its poles becomes

183
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1
12ki

(

1
z
− z

)

+ s(h, k) +
1
πi

k∑

ν=1

n∑

r=1

1
r

e2πih′νr/k e−2πνr/kz

1− e−2πr/z

− 1
πi

k∑

µ=1

n∑

r=1

1
r

e2πihµr/k e−2πµrz/h

1− e−2πrz

We had prepared in advance what we were going to obtain.s(h, k) is what
we had calledC(h, k) + (h − h′)/12k. We have to prove that the sum of the
residues above, withC(h, k) = s(h, k) − h−h′

12k , is equal to− 1
2πi logz, asn→ ∞.

But there is one difference. The sums we have earlier were sums fromr = 1
to r = ∞; whereas here they are sums fromr = 1 to r = n. But this does not
matter as convergence is guaranteed since we have an exponential factor e−z

with Rez > 0. We have to see what becomes of our sum when we evaluate it
in another way. We have to consider lim

n→∞

∫

p
Fn(x)dx. So in effect we have to

prove that

lim
n→∞

1
2πi

∫

p
Fn(x)dx= − 1

2πi
logz.

248
Now this is a question of direct
computation. Let us look at the
path of integration.Fn(x) will
be seen to have simple limits on
the sides of the parallelogram.
We considerxFn(x) broken into
pieces. Take the first piece

1
4i

cothπNxcot
πNx
z

On the side fromx = i to x = z,

x = ρi +σz; ρ, σ ≤ 0, ρ+σ = 1.

Actually we take onlyρ, σ > 0; we shall exclude the pointsi andz them-
selves. Then this becomes

− 1
4i

eπN(ρi+σz)
+ e−πN(ρi+σz)

eπN(ρi+σz) − e−πN(ρi+σz)
× i × eπiN(ρi+σz)/z

+ e−πiN(ρi+σz)/z

eπiN(ρi+σz)/z − e−πiN(ρi+σz)/z

The size of the first factor is determined by the termseπNσz and e−Nπσz

in the numerator; the first term becomes big and the other goesto zero as
N → ∞(σ > 0 andRez > 0). So we divide by the first term. Similarly for the
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second factor. We therefore get

−1
4

1+ e−2πN(ρi+σz)

1− e−2πN(ρi+σz)
· e
−2πN

(
ρ

z
+
σ
i

)

+ 1

e−2πN
(
ρ

z
+
σ
i

)

− 1
249

As N → ∞ the exponential factors go to zero; so the whole expression
tends to1

4. It will further remain on its way bounded, because the numerators
in either factor are at most equal to 2, while the denominators remain away
from zero by a fixed amount, as we shall be showing in a moment - and for this
it is essential to haveN = n+ 1

2.
Since the functions concerned are even functions, what was good here

would also be good on the apposite side, fromx = −i to x = −z. So on
this side also the expression will tend to1

4. We cannot say uniformly; indeed
if σ = 0, here is no convergence in the first factor, and ifρ = 0 none in the
second factor, though there is boundedness: the thing wouldoscillate finitely.

Now take the other pieces ofxFn(x) on the same sides ofρ. We have to
consider

e2πµ N
k (ρi+σz)

1− e2πN(ρi+σz)
× e−2πiµ∗ N

kz (ρi+σz)

1− e−2πi N
z

(ρi+σz)

Remember, what is now important, that 0< µ < k, but neither 0 nork.
The denominator in the first factors goes more strongly to infinity asN → ∞
than the numerator becauseµk is a proper fraction; so too in the second factor
becauseµ > 1. So the whole function tends to zero. Hence on these two sides
xFn(x)→ 1

4.
Now consider the other two sides; it looks different here and has got to be250

inspected. On the side fromx = −i to x = z, x = −ρi +σz; σ, ρ > 0,σ+ ρ = 1,
and the first part ofxFn(x) is

− 1
4i

cothπNxcot
πNx
z
= −1

4
eπN(−ρi+σz)

+ −e−πN(−ρi+σz)

eπN(−ρi+−σz) − e−πN(−ρi+σ−z)

× eπiN
( −ρi
z
+σ

)

+ e−πiN
( −ρi
z
+−σ

)

eπiN
( −ρ
z

i+σ
)

− e−πiN
(

− ρi
z
+σ

)

= −1
4

1+ e−2πN(−ρi+σz)

1− e−2πN(−ρi+σz)
− × 1+ e−2πiN

(

− ρi
z
+σ

)

1− e−2πiN
(

− ρ−i
z
+σ

)

Let N → ∞. Assuming that the denominator is going to behave decently,
this goes to− 1

4. The other pieces go to zero for the same reason as before. And
all this is good for the opposite side too.
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We now have got to show that the convergence it nice and the denominators
do not make any fuse. This we can clarify in the following way.Consider the
denominator 1− e−2πN(ρi+σz).

Difficulties will arise if the exponent comes close to an even multiple of πi.
So we should see that it stays safely away from these points.

251

And actually it stays away from the danger spots by the same distance, for 251

the exponent is−2N(πiρ + πzσ) i.e., a point on the segment joining (2r + 1)πi
and (2r + 1)πz. Sinceez is periodic there is a minimal amount by which it
stays away from 1. The second denominator looks a little different. We have
π
z

instead ofπz. But we have only to turn the whole thing around. We see how

essential it was to takeN = n+ 1
2 = (2n+ 1)1

2 = on odd multiple of12.
So the convergence is nice, but not uniform. We can nevertheless say that

xFn(x)→ ± 1
4 boundedly on the sides ofρ except for the vertices where it does

not converge but oscillates finitely. But bounded convergence is enough for
interchanging integration and summation.Fn(x) → ± 1

4x and thex does not
ruin anything because it stays away from zero everywhere onρ. Hence

lim
n→∞

1
2πi

∫

p
Fn(x)dx

exists and we have

lim
n→∞

1
2πi

∫

p
Fn(x)dx=

1
2πi

∫

p
± 1

4x
dx

=
1

2πi






i∫

z

dx
4x
−

∫ −z

i

dx
4x
+

∫ −i

−z

dx
4x
−

∫
z

−i

dx
4x






=
1

8πi

{∫ i

z

dx
x
−

∫
z

−i

dx
x
+

∫ i

z

dx
x
−

∫
z

−i

dx
x

}
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=
1

4πi

{∫ i

z

dx
x
−

∫
z

i

dx
x

}

z is in the positive half-plane; we can take the principal branch of the logarithm, 252

so that we get on integration, since logi is completely determined,

1
4πi

{
π

2
− logz −

(

logz +
πi
2

)}

= − 1
2πi

logz

So we have proved the foreseen formula with the particular substitution
C(h, k) = s(h, k) − h−h′

12k :

logη

(

h′ + i/z
k

)

= logη

(

h+ iz
k

)

+
1
2

logz + πis(h, k) + πi
h′ − h
12k

,

which is the complete formula in all its details. The mysteriouss(h, k) enjoys 253

certain properties. It has the group properties of the modular group behind it
and so must participate in them.
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Last time we had the formula of transformation of logη in the following shape: 254

logη

(

h′ + i/z
k

)

= logη

(

h+ iz
k

)

+
1
2

logz+
πi

12k
(h′ − h) + πis(h, k),

wheres(h, k) is the Dedekind sum, which, by direct computation of residues,
was seen to be

k−1∑

µ=0

(

µ

k
− 1

2

) (

hµ
k
−

[

hµ
k

]

− 1
2

)

.

We use the abbreviation: for realx,

((x)) =






x− [x] − 1
2 , if x is not an integer,

0 , if x is an integer.

Then

s(h, k) =
k∑

µ=1

((
µ

k

)) ((hµ
k

))

.

Now ((x)) is an odd function; forx integer, trivially ((−x)) = −((x)), and
for x not an integer,

((−x)) = −x− [−x] − 1
2

= −x+ [x] + 1− 1
2
, since [−x] = −[x] − 1,

= −((x)).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

188
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((x)) is the familiar function whose graph is as indicated. 255

1

We now prove that
k∑

µ=1

((
µ

k

))

= 0

Because of periodicity we can write

k∑

µ=1

((
µ

k

))

=

∑

µ mod k

((
µ

k

))

=

∑

µ mod k

((
µ

k

))

= −
∑

µ mod k

((
µ

k

))

∴

k∑

µ=1

((
µ

k

))

= 0

We can also writes(h, k) in the form

s(h, k) =
k∑

µ=1

(

µ

k
− 1

2

) ((

hµ
k

))

=

k∑

mu=1

µ

k

((

hµ
k

))

− 1
2

k∑

µ=1

((

hµ
k

))

,

and sincehµ also runs through a full system of residues modk whenµ does 256

so, as (h, k) = 1, the second sum is zero, and we can therefore write

s(h, k) =
k∑

µ=1

µ

k

((

hµ
k

))
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Let us now rewrite this in a form in which the modular substitution comes
into play

τ′ =
h′ + i/z

k
, τ =

h+ iz
k

;

sokτ − h = iz, and

τ′ =
h′ − 1/(kτ − h)

k
=

h′kτ − hh′ − 1
k(kτ − h)

=
h′τ − (hh′ + 1)/k

kτ − h

( hh′+1
k is necessarily integral forhh′ ≡ −1 modk). So the modular substitution

is 



h′ −hh′+1
k

k −h




=





a b

c d




, c > 0.

The transformation formula for logη now reads

logη

(

aτ + b
cτ + d

)

= logη(τ) +
1
2

log
cτ + d

i
+

πi
12c

(a+ d) − πis(d, c),

sinces(−d, c) = − − s(d, c).
Let us take in particular 257





a b

c d




=





0 −1

1 0




;

then we obtain

logη

(

1
τ

)

= logη(τ) +
1
2

log
τ

i
,

the special case discussed by Siegel.
Let us now make two substitutions in succession:

τ′′ =
aτ′ + b
cτ′ + d

, τ′ = −1
τ
.

Then

τ′′ =
−a/τ + b
−c/τ + d

=
bτ − a
dτ − c

We supposec > 0, d > 0; (c, d) = 1. Then

logη(τ′′) = logη(τ′) +
1
2

log
cτ′ + d

i
+

πi
12c

(a+ d) − πis(d, c);
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logη(τ′′) = logη(τ) +
1
2

log
dτ − c

i
+

πi
12d

(b− c) − πis(−c, d).

Sub tracting, and observing that

logη(τ′) − logηn(τ) =
1
2

log
τ

i
,

we have 258

0 =
1
2

log
τ

i
+

1
2

log
cτ′ + d

i
− 1

2
log

dτ − c
i

+
πi
12

(

a+ d
c
− b− c

d

)

− πi(s(d, c) − s(c, d))

The sum of the logarithms on the right side is determinate only up to a
multiple of 2πi:

log
τ

1
+ log

cτ′ + d
i
− log

dτ − c
i
= log

τ

i
(−c/τ + d)/i
(dτ − c)/i

+ 2πik

= log

(

1
i

)

+ 2πik

= −πi
2
+ 2πik

Now each logarithm above has an imaginary part which is strictly less than
π
2 in absolute value; so

∣
∣
∣
∣
∣
∣
Im

{

log
τ

i
+ log

cτ′ + d
i
− log

dτ − c
i

}∣
∣
∣
∣
∣
∣
<

3π
2

So the only admissible value ofk is zero.
Hence we have 259

0 = −πi
4
+
πi
12

(

a+ d
c
− b− c

d
− πi(s(d, c) + s(c, d))

)

,

or sincead− bc= 1,

s(d, c) + s(c, d) = −1
4
+

1
12

(

d
c
+

c
d
+

1
cd

)

.

This is the reciprocity law for Dedekind sums. It is a purely arithmetical
formula for which I have given several proofs; here I reproduce the proof that
I gave originally, by lattice-point enumeration.
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We have to prove that

k−1∑

µ=1

µ

k

{

hµ
k
−

[

hµ
k

]

− 1
2

}

+

h−1∑

µ=1

ν

h

{

kν
h
−

[

hν
k

]

− 1
2

}

= −1
4
+

1
12

(

h
k
+

k
h
+

1
hk

)

,

or

h
k2

k−1∑

µ−1

µ2 − 1
2k

k−1∑

µ−1

µ +
k
h2

h−1∑

ν−1

ν2 − 1
2h

h−1∑

ν=1

ν − 1
k

k−1∑

µ=1

µ

[

hµ
k

]

− 1
h

h−1∑

ν=1

ν

[

kν
h

]

= −1
4
+

1
12

(

h
k
+

h
h
+

1
hk

)

;

or 260

h2(k− 1)(2k− 1)
6

− h
2

k(k− 1)
2

+
k2(h− 1)(2h− 1)

6
− k

2
h(h− 1)

2

−h
k−1∑

µ=1

µ

[

hµ
k

]

− k
h−1∑

ν=1

ν

[

kν
h

]

=
−3hk+ h2

+ k2
+ 1

12

i.e., 12h
k−1∑

µ=1

µ

[

hµ
k

]

+ 12k
h−1∑

ν=1

ν

[

kν
h

]

= h(k− 1)(2h(2k− 1)− 3k) + k(h− 1)(2k(2h− 1)− 3h) + 3hk− h2 − k2 − 1

= 8h2k2 − 9h2k− 9hk2
+ h2
+ k2
+ 9hk− 1

= (h− 1)(k− 1)(8hk− h− k− 1)

So the whole thing is equivalent to proving that

12h
k−1∑

µ=1

µ

[

hµ
k

]

+ 12k
h−1∑

ν=1

ν

[

kν
h

]

= (h− 1)(k− 1)(8hk− h− k− 1).

This reduces to something that looks familiar; indeed the square brackets
appear in lattice-point enumeration. Here (h, k) = 1, but in a paper with White-
man I have also discussed the case whereh, k are not coprime.

Enumerating by rows and columns parallel to theµ− andν− axes, the num- 261

ber of lattice-points in the integer a the rectangle
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with sides of lengthk, h along the axes ofµ andν respectively is seen to be
(h−1)(k−1). This can be enumerated in another way also. The number of lattice
points in the interior, with abscissaµ and lying below the diagonal through the

origin is the full integer inhµ
k . So we have

k−1∑

µ=1

[
hµ
k

]

lattice points below the

diagonal. Similarly there are
h−1∑

ν=1

[
kν
h

]

points above the diagonal. Since (h, k) = 1

there are no points on the diagonal. Hence

(h− 1)(k− 1) =
k−1∑

µ=1

[

hµ
k

]

+

h−1∑

ν=1

[

kν
h

]

In out case we have quadratic summands; but something which goes so
well here in the plane should go well in space also.
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We want to prove directly the reciprocity formula 262

s(h, k) + s(k, h) = −1
4
+

1
12

(

h
k
+

k
h
+

1
hk

)

with s(h, k) =
k∑

µ=1

µ

k

((

hµ
k

))

The reciprocity formula is equivalent to proving that

12h
k−1∑

µ=1

µ

[

hµ
k

]

+ 12k
h−1∑

ν=1

ν

[

kν
h

]

= (h− 1)(k− 1)(8hk− h− k− 1)

We made a little digression and spoke of similar sums which occur in
lattice-point summations:

k−1∑

µ=1

[

hµ
k

]

+

h−1∑

ν=1

[

hν
h

]

= (h− 1)(k− 1)

If we use a rectangle of sidesh2 ,
k
2 , (h, k odd) we obtain

k−1
2∑

µ=1

[

hµ
k

]

+

h−1
2∑

ν=1

[

hν
h

]

=
1
4

(h− 1)(k− 1).

This is made use of the theory of quadratic residues.
The summands in our case are ‘quadratic’ inµ andν.

194
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Consider the rectangular parallelopiped with three concurrent edges along 263

the axes ofµ, ν andρ, the lengths of these edges beingh, k, hkrespectively. Dis-
sect the parallelopiped into three pyramids having a commonapex at the origin
and having for bases the three rectangular faces which do notpass through the
origin, viz. ABCD, BCFEandCDGF. We now compute the number of lattice
points in each pyramid. Take for example the pyramidO(BEFC). Consider
a section parallel to the (ρ, ν)-plane at a distanceµ along theµ-axis. The lat-
tice points lie in such sheets. The edges of this section arehµ andµh

k . The
number of lattice points on this sheet (including possibly those on the edges) is

hµ
[
µh
k

]

. So for the whole pyramid the number=
k−1∑

µ=1
hµ

[
µh
k

]

. For the pyramid

O(ABCD), the one facing us, the number is
h−1∑

ν=1
kν

[
νk
h

]

Of course are some points on the common edge. Finally there isa pyramid 264

of exceptional sort which lies upside down. Consider a section at a height
h parallel to the (µ, ν) plane the numberr of lattice points on and inside this
pyramid is seen to be

hk−1∑

ρ=1

[
ρ

h

] [
ρ

k

]

.

So altogether we have

k−1∑

µ=1

hµ

[

µh
k

]

+

h−1∑

ν=1

kν

[

νk
k

]

+

hk−1∑

ρ=1

[
ρ

h

] [
ρ

k

]
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points, including some points which have been counted twiceover. But the
number of lattice pointsinside: the parallelopiped is equal to (h−1)(k−1)(hk−
1). Hence making a correction for the lattice points on the cleaving surfaces
through the edgesCF andCD which have been counted twice (the surface
alongBC has no points on it because (h, k) = 1), we have

k−1∑

µ=1

hµ

[

µh
k

]

+

h−1∑

ν=1

kν

[

νk
h

]

+

hk−1∑

ρ=1

[
ρ

k

] [
ρ

h

]

= (h− 1)(k− 1)(hk− 1)+ (h− 1)(k− 1)

= hk(h− 1)(k− 1)

Now write

S =
hk−1∑

ρ=1

[
ρ

h

] [
ρ

k

]

[
ρ

h

]

=
ρ

h
− 1

2
−

((
ρ

h

))

, if h ∤ ρ;
ρ

h
−

((
ρ

h

))

, if h ∤ ρ.

So 265

S =
hk−1∑

ρ=1

{

ρ

h
− 1

2
−

((
ρ

h

))} {

ρ

2
− 1

2
−

((
ρ

k

))}

With some correction. Indeedh | ρ, k | ρ do not happen together: Let
ρ = hσ, ρ = kτ. In the first case. i.e.,h | ρ, we have to correct the above by an
amount

k−1∑

σ=1

1
2

{

hσ
k
− 1

2
−

((

hσ
k

))}

,

and in the second case,k | ρ, by

h−1∑

τ=1

1
2

{

kτ
h
− 1

2
−

((

kτ
h

))}

So

S =
hk−1∑

ρ=1

{

ρ

h
− 1

2

} {

ρ

k
− 1

2

}

−
hk∑

ρ=1

((
ρ

h

)) (

ρ

k
− 1

2

)

−
hk∑

ρ=1

((
ρ

k

)) (

ρ

h
− 1

2

)

+

hk∑

ρ=1

((
ρ

h

)) ((
ρ

k

))

+
1
2

k−1∑

σ=1

{

hσ
k
− 1

2

}

+
1
2

h−1∑

τ=1

1
2

{

kτ
h
− 1

2

}
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Since
∑

µ mod k

((
µ

k

))

= 0, this becomes

S =
hk−1∑

ρ=1

{

ρ2

hk
− 1

2

(
ρ

h
+
ρ

k

)

+
1
4

}

− 1
4

hk∑

ρ=1

ρ

((
ρ

k

))

− 1
h

hk∑

ρ=1

ρ

((
ρ

k

))

+

hk∑

ρ=1

((
ρ

h

)) ((
ρ

k

))

+
1
2

(

h(k− 1)
2

− k− 1
2

)

+
1
2

(

k(h− 1)
2

− h− 1
2

)

we use the periodicity in the non-elementary pieces; so write 266

ρ = hr + s; r = 0, 1, . . . , k− 1; s= 1, . . . , h.
hk∑

ρ=1

ρ

((
ρ

h

))

=

k−1∑

r=0

h∑

s=1

(hr + s)

((

hr + s
h

))

=

k−1∑

r=0

h∑

s=1

hr
(( s

h

))

+

k−1∑

r=0

h∑

s=1

s
(( s

h

))

= k
h∑

s=1

s
(( s

h

))

(since the first sum is zero, as we see by summing oversfirst)

= k
h−1∑

s=1

s

(

s
h
− 1

2

)

= k

{

(h− 1)(2h− 1)
6

− 1
4

h(h− 1)

}

=
k(h− 1)(h− 2)

12

Similarly 267
hk∑

ρ=1

ρ

((
ρ

k

))

=
h(k− 1)(k− 2)

12

next, consider
ik∑

ρ=1

((
ρ

h

)) ((
ρ

k

))

Write ρ = hα + kβ; whenα, β run through complete systems of residues
moduloh, k respectively,hα + kβ runs through a complete system modulohk,
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by the Chinese remainder theorem. Then

hk∑

ρ=1

((
ρ

h

)) ((
ρ

k

))

=

∑

α mod k

∑

β mod h

((

hα + kβ
h

)) ((

hα + kβ
k

))

=

∑

α mod k

∑

β mod h

((

kβ
h

)) ((

hα
k

))

=

∑

α mod k

((

hα
k

))
∑

β mod h

((

kβ
h

))

= 0

since each sum is separately zero. Hence

S =
1
6

(hk− 1)(2hk− 1)− 1
4

(hk− 1)(k+ h) +
1
4

(hk− 1)

− 1
12

(h− 1)(h− 2)− 1
12

(k− 1)(k− 2)+
1
2

(k− 1)(h− 1)

=
1
12

(hk− 1)(4hk− 3h− 3k+ 1)− 1
12

(h− 1)(h− 2)

− 1
12

(k− 1)(k− 2)+
1
2

(k− 1)(h− 1)

=
1
12

(h− 1)(k− 1)(4hk+ h+ k+ 1)

Thus 268

h
k−1∑

µ=1

µ

[

hµ
k

]

+ k
h−1∑

ν=1

ν

[

kν
h

]

+
1
12

(h− 1)(k− 1)(4hk+ h+ k+ 1)

= (h− 1)(k− 1)hk

∴ 12h
k−1∑

µ=1

µ

[

hµ
k

]

+ 12k
h−1∑

ν=1

ν

[

kµ
h

]

= (h− 1)(k− 1)(8hk− h− k− 1)

We make some elementary remarks about quadratic residues. The reci-
procity formula gives, on multiplication by 12h2k.

12h2ks(h, k) + 12h2ks(k, h) == −3h2k+ h3
+ k2h

Look at the denominator ofs(h, k). At worst it can have for factors 2 and 269
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k2. So 2k2s(h, k) is integral. 2h2s(k, h) is also integral.

12h2ks(h, k) ≡ h3
+ k2
+ h (mod 3k)

≡ h(h2
+ 1) (modk),

and sinceh2 cannot help to make an integer of the left side,

12hks(h, k) ≡ h2
+ 1 (modk).

Sp 12ks(h, k) is an integer. The highest possible denominator fors(h, k) is
(2k2, 12k) = 2k(k, 6). So the denominator which at first glance could conceiv-
ably be as big as 2k2 is actually at most only 2k(k, 6). This is achieved, for
instance, ins(1, 3) = 1/18, where 6(6, 3)= 18. In facts(1, 3) can be computed
from the reciprocity formula:

s(1, 3)+ s(3, 1) = −1
4
+

1
12

(

1
3
+

3
1
+

1
3

)

s(3, 1) = 0

since an integer is involved and sos(1, 3) = 1
18. In general,

s(1, k) = −1
4
+

1
12

(

1
k
+

k
1
+

1
k

)

=
(k− 1)(k− 2)

12k

s(2, k) is also easily obtained.k is odd; so we have

s(2, k) + s(1, 2) = −1
4
+

1
12

(

2
k
+

k
2
+

1
2k

)

and ass(1, 2) = 0 (by direct computation), we get 270

s(2, k) =
(k− 1)(k− 5)

24k

Let us calculates(5, 27).

s(5, 27)+ s(27, 5) = −1
4
+

12
+ 52
+ 272

12× 5× 27

s(2, 5)+ s(5, 2) = −1
4
+

12
+ 22
+ 52

12× 2× 5
s(5, 2) = 0 = s(1, 2), and on sub traction,

s(5, 27)= 35/(6× 27); and we know that

the denominator could be at most 2.27(27, 6)= 6× 27.
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We shall study a few more properties of Dedekind sums. We had the reciprocity 271

law

s(h, k) + s(k, h) = −1
4
+

1
12

(

h
k
+

k
h
+

1
hk

)

.

From this we deduced as a consequence

12hk s(h, k) ≡ h2
+ 1 (modk) (*)

Now when do the Dedekind sums vanish? Let us writes(h, k) in the more
flexible form:

s(h, k) =
∑

µ mod k

((
µ

k

)) ((

µh
k

))

Let hh∗ ≡ 1 (modk). Since (h∗, k) = 1, h∗µ runs through a full residue
system modulok, and so

s(h, k) =
∑

µ mod k

((

µh∗

k

)) ((

µhh∗

k

))

=

∑

µ mod k

((
µ

k

)) ((

µh∗

k

))

= s(h∗, k)

This is of some significance. We came tos from the substitution
(

a b
c d

)

and
sincead ≡ 1 (modc), s(d, c) = s(a, c). hh′ ≡ −1 (modk), and

s(h, k) =
∑

µ mod k

((
µ

k

)) ((

µh
k

))

200
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=

∑

µ mod k

((

h′µ
k

)) ((

µhh′

k

))

=

∑

µ mod k

((

−µ
k

)) ((h′µ
k

))

= −s(h′, k)

Whenh = h′ i.e.,h2 ≡ − (mod k) (cg. 22 ≡ − (mod 5)) 272

s(h, k) = −s(h, k)

or s(h, k) = 0 i f h2 ≡ −1 (modk)

(in particular ifh2
+ 1 = k. I have a conjecture thats(h, k) ≥ 0 if h2 < k). In

fact we can say more. We have the

Theorem. 12 s(h, k) is en integer only for h2 ≡ −1( (modk)) and is then equal
to zero.

For assume that 12s(h, k) = integer; this implies, because of (*), that 0≡
h2
+ 1 (modk)
In such cases, therefore, we can make a direct statement about the value of

s(h, k) without going through the rigmarole of the Euclidean algorithm. Thus
s(2, 5) = 0, s(5, 26)= 0.

In a recent issue of the Duke Mathematical Journal (1954), I gave a gen-
eralisation of the reciprocity formula for Dedekind sums. It takes into account
three summands. The formula is very elegant and throws some light on the
reciprocity relation itself. We quote it without proof.

Theorem . If a, b, c are pairwise coprime and aa∗ ≡ 1 (modbc), bb∗ ≡ 1
(mod ca), cc∗ ≡ 1 (modab), then

T ≡ s(bc∗, a) + s(ca∗, b) + s(ab∗, c)

= −1
4
+

1
2

(

a
bc
+

b
ca
+

c
ab

)

273
The proof is by an algebraic method due to Rédel. The formulais very

gratifying as a generalisation of the reciprocity formula is which latter there is
some non-homogeneity. Putc = 1; thenc∗ = 1, ands(ab∗, c) = 0; so we get the
reciprocity formula. The right side above is1

12 abc− 3abc+ a2
+ b2
+ c2. Hence

T = 0 if and only if a2
+ b2

+ c2
= 3abc. This combination of three integers

plays some role the theory of quadratic forms; it is called a Markoff triple. It
has reappeared in literature in connection with the geometry of numbers. It has
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to do with the existence if certain quadratic forms with minimum values close
to zero for integers. 1, 1, 2 is a Markoff triple. If we keep two of them fixed, for
the third we get a quadratic equation of which one root we knowto be rational.
So the other root is rational too. For instance ifa, b = 1 are fixed, we have
c2 − 3c+ 2 = 0 or (c− 1)(c− 2) = 0; – the triples pre 1, 1, 1 and 1,1,2. If we
take the triplea, 1, 2, thena2

+ 5 = 6a or a = 1, 5; we have the triplesb, 1, 2;
1, 1, 2.T = 0 only if a, b, c being to a Markoff triple. For such a triple,

b2
+ c2 ≡ 0 (moda), c2

+ a2 ≡ 0 (modb), a2
+ b2 ≡ 0 (modc)

So b2 ≡ −c2 (mod a), or (c∗b)2 ≡ −1 (moda), etc.

Thens(bc∗, a) = 0, and each summand inT is zero.
Dedekind sums have something to do with Farey fractions. Letus suppose

that
∣
∣
∣

a b
c d

∣
∣
∣ = 1, c, d > 0.

s(c, d) + s(d, c) = −1
4
+

1
12

(

c
d
+

d
c
+

1
cd

)

cb≡ −1 (modd) andad ≡ 1 (modc)

so s(c, d) = −s(−b, d) ands(d, c) = s(a, c).

So s(a, c) − s(b, d) = −4+
1
12

(

c
d
+

d
c
+

1
cd

)

Now if h1
k1

, h2
k2

the adjacent Farey Fractions, then
∣
∣
∣

h1 h2
k1 k2

∣
∣
∣ = −1 274

so

s(h1, k1) − s(h2, k2) =
1
4
− 1

12

(

k1

k2
+

k2

k1
+

1
k1k2

)

Write the left side ass
(

h1
k1

)

− s
(

h2
k2

)

.

Supposeh2
k2

is fixed. Let us look at all possible adjacent fractionsh1
k1

. They

are obtainable by forming mediants; replaceh1
k1

successively byh1+λh2
k1+λk2

. Make

k1 larger and larger. Thenk2
k1

and 1
k1k2
→ 0. So k1

k2
→ ∞. Thuss

(
h1
k1

)

− s
(

h2
k2

)

goes unboundedly by−∞, and sos
(

h1
k1

)

→ −∞. Therefore only on the left side

of h2
k2

can we get a sequence of rational fractions for which the Dedekind sums
tend to−∞.

We now give another proof of the reciprocity law, by the method of finite
Fourier series,

((
µ

k

))

is a number- theoretic periodic function. It has a finite
Fourier expansion:

((
µ

k

))

=

k∑

j=1

c je
2πi j µk
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In fact this is always solvable forc1, c2, . . . , ck. For writing downµ = 275

1, 2, 3, . . . , k in succession, we have a system ofk linear equations whose de-
terminant is a Vandermonde determinant which is non-zero since the roots of
unity are different. We have

k∑

µ=1

((
µ

k

))

e−2πiµ ℓ
k =

k∑

j=1

c j

k∑

µ=1

e2πiµ ( j−ℓ)
k

= kcl ,

i.e., cl =
1
k

k∑

µ=1

((
µ

k

))

e−2πiµ ℓ
k

This was done by Eisenstein, We can also write

cl =
1
k

k−1∑

µ=1

(

µ

k
− 1

2

)

e−2πiµ l
k

=
1
k2

k−1∑

µ=1

µe−2πiµ l
k −






k−1
2k , if k | l;
1
2k , if k ∤ l.

So if k | l, then

cℓ =
1
k2

k(k− 1)
2

− k− 1
2k
= 0.

In particular
ck = 0.

If k ∤ l, then writing

S =
k−1∑

µ=1

µe−2πiµ ℓ
k ,

S e−2πi ℓk =

k−1∑

µ=1

µe−2πi µ+1
k ℓ

=

k∑

ν=2

(ν − 1)e−2πiν ℓk

= S − e−2πi l
k + k−

k∑

ν=1

e−2πiν l
k + e−2πi l

k
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So 276

S =
k

e−2πiℓ/k − 1

Hence, ifk ∤ l, then

cℓ =
−1

k(1− e2πiℓ/k)
+

1
2k

=
−2+ 1− e−2πiℓ/k

2k(1− e−2πiℓ/k)

= − 1
2k
· 1+ e−2πi ℓk

1− e−2πi ℓk

=
i

2k
cot

πℓ

k

So we have what is essentially Eisenstein’s formula:

((
µ

k

))

=
i

2k

k−1∑

j=1

cot
πℓ

k
e2πi j µk

This is an explicit formula for
((
µ

k

))

as a finite Fourier series. We utilise it
for Dedekind sums.

s(h, k) =
∑

µ mod k

((
µ

k

)) ((hµ
k

))

= − 1
4k2

∑

µ mod k

k−1∑

j=1

cot
π j
k

e2πi j µk ×
k−1∑

ℓ=1

cot
πℓ

k
e2πiℓh µ

k

= − 1
4k2

k−1∑

j=1

k−1∑

ℓ=1

cot
π j
k

cot
πl
k

∑

µ mod k

e2πi µk ( j+hℓ)

= − 1
4k

k−1∑

ℓ=1

cot
πℓ

k
cot
−πhℓ

k
,

since in the summation with respect toµ only those terms remain for which 277

j + hℓ ≡ (mod k). Then

s(h, k) =
1
4k

k−1∑

ℓ=1

cot
πℓ

k
cot

πhℓ
k
.
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The reciprocity formula can be tackled immediately by the powerful
method of residues. We have to construct the proper functionfor which these
become the residues. Take

f (z) = cotπz cot
πz

k
cot

πhz
k

and integrate over a rectangle with vertices±iΩ, ±i(k+ iΩ), indented ato andk.
The poles of the first factor all in the contour one 0, 1, . . . , k− 1, for the second
0; and for the third 0, k/h, 2k/h, . . . , (h− i)12/h. We have

cotω =
1
ω

(

1− ω
2

3
− · · ·

)

278

About the triple polez = 0,

f (z) =
1
πz
· k
πz
· 1
πhz

(

1− π
2
z
2

3
+ · · ·

) (

1− πz
2

3
+ · · ·

) (

1− π
2h2
z
2

3k2
+ · · ·

)

So the residue atz = 0 is

k2

π2h

(

−π
2

3
− π2

3k2
− π

2h2

3k2

)

= − k
3π

(

k
h
+

1
hk
+

h
k

)

So

∑

(Res)= − k
3π

(

k
h
+

h
k
+

1
hk

)

+
1
π

k−1∑

ℓ=1

cot
πℓ

k
cot

πhℓ
k



32. Lecture 206

+
k
πh

h−1∑

k=1

cot
πrh
h

cot
πh
h

=
k
3π

(

−
(

k
h
+

h
k
+

1
hk

)

+ 12s(h, k) + 12s(k, h)

)

And this is equal to 279
1

2πi

∫

R
f (z)dz

whereR is the rectangle. On the vertical lines the function the samevalue (by
periodicity) end so the integrals cancel out. Hence

1
2πi

∫

R
f (z)dz =

1
2πi






−iΩ+k∫

−iΩ

−
iΩ+k∫

iΩ






Now

cotω = i
eiω
+ e−iω

eiω − e−iω
, ω = x+ iy,

= i
eix−y

+ e−ix+y

eix−y − e−ix+y
;

x varies fromo to k andy = ±Ω, for this

→






−i, asy = Ω→ ∞

i, asy = −Ω→ −∞
uniformly

Therefore

lim
Ω→∞

1
2πi

∫

R
f (z)dz =

1
2πi

{

i3k− (−i)3k
}

=
2ki3

2πi
= − k

π

280

∴
k
3π

(

−
(

h
k
+

k
h
+

1
hk

)

+ 12s(h, k) + 12s(k, h)

)

= − k
π

or 12s(h, k) + 12s(k, h) = −3+

(

k
h
+

h
k
+

1
hk

)

,

which is the reciprocity formula.
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We wish to begin the study of the representation of a number asthe sum of 281

squares:
n = n2

1 + n2
2 + · · · + n2

r

We shall develop in this connection the Hardy-Littlewood circle method.
Historically it is an off shoot of the Hardly-Ramanujan method in partition-
theory, though we did not develop the latter in its original form in our treat-
ment. The circle method has been applied to very many cases, and the problem
of squares is a very instructive one for finding out the general thread. We
shall later replace the problem by that of the representation of n by a posi-
tive quadratic form. This would involve only the general Poisson summation
formula. In the case of representation as the sum of squares there is some
simplification, because the generating ing function is ther th power of a simple
V function. We shall deal with the asymptotic theory. Later wemay go into
Siegel’s theory of quadratic forms.

Let us write

Θ(x) =
∞∑

n=−∞
xn2
= 1+ 2

∞∑

n=1

xn2
,

|x| < 1. Forr at least equal to 4, we consider

Θ
r (x) =





∞∑

n=−∞
xn2





r

=

∞∑

nj=−∞
xn2

1+n2
2+·+n2

r

=

∞∑

n=0

Ar(n)xn,

on collecting the terms with exponentn, whereAr (n) is the number of timesn 282
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appears as the sum ofr square:

Ar(n) =
∑

n2
1+···+n2

r =n

1

It is clear thatni can be positive or negative. The more serious thing is
that we have to count the representations differently when the summands are
interchanged, in contradiction to the situation in the caseof partitions. The
problem of partition into squares would be a more complicated problem; the
generating function would be more complicated, and what is worse, all the
help one gets in partition theory from the theory of modular forms would break
down here.

An(n) is thenth coefficient of a power-series;

Ar (n) =
1

2πi

∫

C

Θ
r (x)

xn+1
dx

whereC is a suitable circle inside and close to the unit circle. The trick of
Hardy and Littlewood was to break the circle|x| = e−2πδN whereN is the order
of a certain Farey dissection, into Farey arcs and write

Ar(n) =
1

2πi

∑′

o≤h<k≤N

∫

ξhk

Θ
n(x)

xn+1
dx,

whereξhk are the arcs over which one integration piecemeal the prime denoting
that (h, k) = 1. Consider on each pieceξhk the neighbourhoodof a root of unity: 283

x = e2πi h
k−2πξ

Rez < 0, and setz = δN − iϕ, so chat we have a little freedom along both real
and imaginary axes.

x = e2πi h
k−2πδN+2πiϕ.

The choice of the little arcϕ is also classical.hk is a certain Farey fraction,
with adjacentsh1

k1
and h2

k2
, say. h1

k1
< h

k < h2
k2

. We limit ϕ on the seperate arcs.
Introduce the mediants:

h1

k1
<

h1 + h
k1 + k

<
h
k
<

h2 + h
k2 + k

<
h2

k2
,

So that the interval
(

h1+h
k1+k ,

h2+h
k2+2

)

gives the movement ofhk + ϕ. Soϕ runs
between

−V ′hk =
h1 + h
k1 + k

− h
k
≤ ϕ ≤ h2 + h

h2 + k
− h

k
= V

′′
hk
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−V ′hk = −
1

(k1 + k)k
; V ′′hk =

1
(k2 + k)k

;

and since 2N > k1+k
k2+k > N, we have necessarily

1
2Nk

≤ |Vhk| ≤
1

Nk

Now changing the variable of integration toϕ, we can write

Ar (n) =
∑′

0≤h<k≤N

e−2πi h
k n

V
′′

hk∫

−V ′
hk

Θ
r
(

e2πi h
k−2πz

)

e2πnzdϕ

284

The trick is to overcome the difficulty in the integral by replacing on each
arc the highly transcendental function by a simpler function. Here we stop for
a moment to see what we can do with the integrand.

Θ ·
(

e2πi h
k−2πz

)

=

∞∑

n=−∞
e(2πi h

k−2πz)n2

=

k−1∑

j=0

e2πi h
k j2

∑

n≡ j (mod k)

e−2πzn2

=

k−1∑

j=0

e2πi h
k j2

∞∑

q=−∞
e2πzk2(q+ j

k )2
,

where we have writtenn = kq+ j. We can now handle this from ourV -series
formula. We proved (Lecture 12) that

C(τ)
i

V3(V / − 1
τ

) = eπiτV 2V3(V τ/τ)

and
C(τ)

i
=

√

i
τ
, Imτ > 0.

Since 285

V3(V /τ) =
∞∑

n=−∞
eπin2τe2πinV ,

writing τ = it, Ret > 0, we have from the above,

1
√

t

∞∑

n=−∞
e−π

n2

t e2πinV
= e−πtV 2

∞∑

n=−∞
e−πn2te−2πV nt
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=

∞∑

n=−∞
e−πt(n+V )2

Replacingn by q, V by j
k andt by 2zk2, we have

Θ

(

e2πi h
k−2πz

)

=

k−1∑

j=0

e2πi h
k j2 i

√

2zk2

∞∑

q=−∞
e
− πq2

2zk2 e2πiq j
k

=
1

k
√

2z

∞∑

q=−∞
e−

πq2

2zk2 Tq(h, k)

where Tq(h, k) =
k−1∑

j=0

e2πi h j2+q j
k

This is already a good reduction.Tq(h, k) depends onq modulok, so it is
periodic. We shall approximate to it in general.

One special case, however, is of interest: forq = 0, 286

T0(h, k) =
k−1∑

j=0

e2πi h
k j2
= G(h, k),

whereG(h, k) are the so-called Gaussian sums which we shall study in detail.
They are sums of roots of unity raised to a square power,Θ is actually aV3,
and when we evaluateTq we get some otherV .

We now write

Θ

(

e2πi h
k−2πz

)

=
1

k
√

2z
{G(h, k) + H(h, k; z)}

where H(h, k; z) =
∞∑

q=−∞
q,0

Tq(h, k)e−
πq2

2k2z

We shall throwH into the error term. Let us appraiseTq(h, k), not explic-
itly: that will take us into Gaussian sums.

Tq(h, k) =
k−1∑

j=0

e2πi h j2+q j
k

|Tq(h, k)|2 =
k−1∑

j=0

k−1∑

ℓ=0

e
2πi
k (h j2+q j)e−2π i

k (hℓ2
+qℓ)
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=

∑

j mod k

∑

ℓ mod k

e2π i
k (h(ℓ j2−ℓ2)+q( j−ℓ))

=

∑

j mod k

∑

ℓ mod k

e2π i
k ( j−ℓ)(h( j+ℓ)+q) ,

which, an rearranging according to the differencej − ℓ, becomes 287

=

∑

a mod k

∑

j−ℓ≡a (mod k)

e2πi a
k (h( j+ℓ)+q)

=

∑

a mod k

∑

ℓ mod k

e2πi a
k (h(a+2ℓ)+q)

=

∑

a mod k

e2π i
k (ha2

+aq)
∑

ℓ mod k

e4πia h
k ℓ

The inner sum is a sum of the roots of unity. Two cases arises, according
ask | 2a or k ∤ 2a. k odd implies thata = 0 andk even implies thata = 0 or
k | 2. In casek | 2a, the sum is zero. We then have

|Tq(h, k)|2 = k, if k is odd;k

(

1+ e
2π i

k

(

h k2

4 +
k
2q

))

, if k is even

= k
(

1+ eπi( hk
2 +q)

)

, if k is even

= o or 2k if k is even

It is of interest to notice thatTq = 0 only if k is even andhk
2 + q is an odd

integer. In any case,
|Tq(h, k)| ≤

√
2k,

and this cannot be improved. We then have

|H(h, k; k; z)| ≤ 2
∞∑

q=1

√
2ke−

πq2

2k2 R
1
z (q = 0 is not involved here).

= 2
√

2ke−
π

2k2 R
1
z

∞∑

q=1

e−π
(q2−1)

2k2 R
1
z

= 2
√

2ke−
π

2k2 R
1
z

∞∑

m=0

e−
3πm
2k2 R

1
z

= 2
√

2ke−
π

2k2 R
1
z

1

1− e−
3π

2k2 R
1
z

Sincez = δN − iϕ, 288
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1
k2

R
1
z
= R

1
k2z
= R

1
k2(δN − iϕ)

=
δN

k2(δ2
N + ϕ

2)

∴
1
k2

R
1
z
≥ δN

k2δ2
N +

1
N2

, since|Vhk| ≤
1

kN
,

≥ δN

N2δ2
N +

1
N2

=
1

N2δN +
1

N2δN

We want to make this keep away from 0 as far as possible. This gives a
desirable choice ofδN. Make the denominator as small as possible. Sincex+ 1

x
is minimised whenx = 1, we have

1
k2

R
1
z
≥ 1

2
,

this minimum corresponding toN2δN = 1. So if we choose the radius of the
circle in terms of the Farey order, we shall have secured the best that we can:

|H(h, k; z)| ≤ 2
√

2ke−
π

2k2 R
1
z ×C

It would be unwise to appraise the remaining exponential now.
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We had discussed the sumΘ
(

e2πi h
k−2πz

)

and written it equal to 289

1

k
√

2z
{G(h, k) + H(h, k; z)}

where |H(h, k; z)| < C
√

ke−
π

2k2 R
1
z

If we apply this to the integral in whichΘr appears,

Θ

(

e2πi h
k−2πz

)r
=

1

kr (2z)
k
2

r∑

λ=0

(

r
λ

)

G(h, k)r−λH(h, k; z),

or, keeping the piece corresponding toλ = 0 apart,

Θ

(

e2πi h
k−2πz

)r
− 1

kr (2z)
r
2
G(h, k)r

=
1

kr (2z)
r
2

r∑

λ=1

(

r
λ

)

G(h, k)r−λH(h, k; z)λ

Let us appraise this. Since

∣
∣
∣
∣
∣
∣
Θ

(

e2πi h
k−2πz

)r
− 1

kr (2z)
r
2
G(h, k)r

∣
∣
∣
∣
∣
∣
< C

1

kr |z| r2

r∑

λ=1

(
√

k)r−λk
λ
2 e−

2π
2k2 R

1
z

< C · 1

(k|z|) r
2
e−

π
2 e−

π

2k2 R
1
z

Now 290

Ar (n) =
∑′

0≤h<k≤N
e−2πi h

k n

V ′′
hk∫

−V ′
hk

2πznΘ
(

e2πi h
k n−2πz

)

214
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where, of course,z = δN − iϕ. Hence
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Ar (n) − ∑′
0≤h<k≤N

e−2πi h
k n

V ′′
hk∫

−V ′
hk

e2πnz

kr (2z)
r
2
G(h, k)rdϕ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ C
∑′

0≤h<k≤N

V ′′
hk∫

−V ′
hk

e2πnRz
e−

2π
k2 R

1
z

kr/2|z|r/2dϕ

≤ C
∑′

0≤h<k≤N
e2πnδN

V ′′
hk∫

−V ′
hk

e
− π

2k2
δν

δ2N+ϕ
2

[

h2(δ2
N + ϕ

2)
] r

4
dϕ

= C
∑′

0≤h<k≤N
e2πnδNδ

− r
4

N

V ′′
hk∫

−V ′
hk





δN

k2(δ2
N + ϕ

2)





r
4

e
− π

2k2
δN

δ2N+ϕ
2 dϕ

Now 1
2kN ≤ Vhk ≤ 1

kN and V ′hk ≤ ϕ ≤ V ′′hk, while δN =
1

N2 . Putting 291

X = δN

k2(δ2
N+ϕ

2)
, the integrand becomesX

r
4 e−

π
2 X which remains bounded. (It was

for this purpose that in our estimate ofH(h, k; z) earlier we retained the factor
e−π/(2k2)·R 1

z ). Hence the last expression is less than or equal to

C
∑

o≤h<k≤N

e2π n
N2 N

r
2

V ′′
hk∫

−V ′
hk

dϕ = Ce2π n
N2 N

r
2 ,

since the whole Farey dissection exactly fills the interval (0, 1).
In the next stage of our argument we take the integral

V
′′

hk∫

V ′
hk

e2πnz

z
k
4

and write it as 



∞∫

−∞

−
∞∫

V ′′
hk

−
−V ′

hk∫

−∞





e2πnz

zr/2
dϕ

The infinite integrals are conditionally convergent ifr > 0 (because the
numerator is essentially trigonometric), and absolutely convergent forr > 2, 292
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so that we taker at least equal to 3. Then
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∞∫

V ′′
hk

e2πnz

zr/2
dϕ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ e2π n
N2

∞∫

V ′′
hk

dϕ

(δ2
N + ϕ

2)
r
2

≤ e2π n
N2

∞∫

1
2kN

dϕ

(δ2
N + ϕ

2)
r
4

(Here and in the estimate of the other integral
−V ′

hk∫

−∞
, we make use of the

fact that the interval fromV ′hk to V ′′hk is neither too long nor too short. This
argument arises also in Goldbach’s problem and Waring’s problem). The right
side is equal to

Nr−2e2π n
N2

∞∫

− 1
2kN

N2dϕ

(1+ N4ϕ2)
r
4
= e2π n

N2 Nr−2

∞∫

N
2k

dψ
(1+ ψ2)r/4

< e2π n
N2 Nr−2

∞∫

N
2k

dψ
ψr/2

This appears crude but is nevertheless good sinceϕ never comes near 0;
N/2k > 1

2, and the ratio ofψ2 to 1+ ψ2 is at least13 and so we lose no essential
order of magnitude. The last integral is equal to

Ce2π n
N2 Nr−2

( N
2k

)− r
2+1

, r ≥ 3,

= Ce2π n
N2 N

r
2−1k

r
2−1

A similar estimate holds for
−V ′

hk∫

−∞
also. So, 293

∣
∣
∣
∣
∣
∣
∣
∣

Ar (n) − ∑′
0≤h<k≤N

e−2πi h
k n

(

G(h, k)

k
√

2

)r ∞∫

−∞

e2πnz

zr/2
dϕ

∣
∣
∣
∣
∣
∣
∣
∣

< Ce2π n
N2 Nr/2

+C
∑′

0≤h<k≤N

1
kr/2

e2π n
N2 Nr/2−1kr/2−1
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< Ce2π n
N2 Nr/2

+Ce2π h
N2 Nr/2−1 ∑′

0≤k≤N

= Ce2π n
N2 Nr/2.

This, however, does not go to zero asN → ∞; we have no good luck here as
we had in partitions. So we make the best of it, and obtain an asymptotic result.
Let n also tend to infinity. We shall keepn/N2 bounded, without lotting; it go
to zero, as in the latter case the exponential factor would become 1. We have
to see to it thatn ≤ CN2 i.e., N is at least

√
n. Otherwise the error term would

increase fast. MakingN bigger would not help in the first factor and would 294

make the second worse. So the optical choice forN would beN = [
√

N]. The
error would now be

O
(

n
r
4

)

We next evaluate the integral

∞∫

−∞

e2πnz

zr/2
dϕ

This is the some as
∞∫

−∞

e2πn(δN−iϕ)

(δN − iϕ)r/2
dϕ = −

−∞∫

∞

e2πn(δN+iα)

(δN + iα)r/2
dϕ

=
1
i

δN+i∞∫

δN−i∞

e2πns

sr/2
ds

After a little embellishment this becomes a well-known integral. It is equal
to

(2πn)
i

r/2
2πnδN+i∞∫

2πnδN−i∞

eω

ωr/2
dω

which exists forr > 2, and is actually the Hankel loop integral, and hence equal
to

2π(2πn)r/2− 1
Γ(r/2)

Hence, forf ≥ 3. We hence the number of representations ofn as the sum 295

of r squares:

Ar (n) =
(2π)r/2

Γ(r/2)
· n

r
2−1

2r/2
· ∑′

0≤h<k≤N

G(h, k)r

kr
e−2ri h

k +O(nr/4).
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One final step. Let us improve this a little further. Write

∑

h mod k

G(h, k)r

kr
e−2πi h

k n
= V(r)

k (n) = Vk(n)

We have to sumVk(n) from k = 1 to k = N. However, we sum fromk = 1
to k = ∞, thereby incurring an error

∣
∣
∣
∣
∣
∣
∣

∞∑

k=N+1

Vk(n)

∣
∣
∣
∣
∣
∣
∣

≤
∞∑

k=N+1

k−
r
2+1,

and this converging absolutely forr ≥ 5 is

O
(

N−
r
2+2

)

= O
(

n−
r
4+1

)

This along with the factorn
r
2−1 would give exactlyO(nr/4). (We could have

saved this forr = 4 also if we had been a little more careful). Thus, forr ≥ 5,
we have 296

Ar (n) =
πr/2

Γ(r/2)
n

r
2−1Sr (n) +O(nr/4),

where Sr (n) =
∞∑

k=1

Vk(n)

Sr (n) is the singular series. We shall show thatSr (n) remains bounded at
least forr ≥ 5.
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After we reduced our problem to the singular series in which the Gaussian 297

sums appear conspicuously, we have to do something about them before we
proceed further. The Gaussian sums are defined as

G(h, k) =
∑

ℓ mod k

e2πi h
k ℓ

2
, (h, k) = 1

They obey a simple multiplication rule: ifk = k1k2, (k1, k2) = 1, then

G(h, k1k2) = G(hk1, k2) ·G(hk2, k1).

For, putℓ = rk1 + sk2; when r runs modulok2 and s modulok1, ℓ runs
through a full residue system modulok1k2. Hence

G(h, k1k2) =
∑

k mod k2

∑

s mod k1

e2πi h
k1k2

(k1r+k2s)2

=

∑

r mod k2

∑

s mod k1

e2πi h
k1k2

(k2
1r2
+k2

2s2)

=

∑

r mod k2

e2πi
hk1
k2

r2 ∑

s mod k1

e2πi
hk2
k1

s2

= G(hk1, k2)G(hk2, k1).

Ultimately, therefore, only prime powers have to be considered to denomi-
nators. We have to distinguish the casesp = 2 andp > 2, p prime.

1) Let p ≥ 3, k = pα with α > 1 298

G(h, pα) =
∑

l mod pr

e2πi h
pα ℓ

2

219
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write ℓ = mpα−1
+ r;

m= 0, 1, . . . , p− 1; r = 0, 1, . . . pα−1 − 1. Then this becomes

p−1∑

m=0

pα−1−1∑

r=0

e2πi h
pα (mpα−1

+r)2

=

p−1∑

m=0

pα−1−1
∑

r=0

e2πi h
pα (m2p2α−1

+2mrpα−1
+r2)

Sinceα ≥ 2, 2α − 2 ≥ α and so the first term in the exponent may be
omitted. This gives

pα−1−1∑

r=0

e2πi h
pα r2

p−1∑

m=0

e2πi h
p 2mr

The inner sum is a sum ofpth roots of unity; so it depends on whetherp
divides 2rh or not. But (h, p) = 1 andp ∤ 2. So we need consider only the
cases:p | r and p ∤ r. However in the latter case this sum is 0 while in the
former it is p. We therefore get, whenp | r, r = ps,

p
pα−1−1∑

r=0,p|r
e2πi h

pα r2

= p
pα−2−1∑

s=0

e2πi h
pα p2s

= p
pα−2−1∑

s=0

e
2πi h

pα−2 s

= pG(h, pα−2)

We have therefore reduced the never of the denominator by 2. We can 299

repeat the process and proceed as long as we end with either the 0th or the 1st

power. So we have two chances. In the former case, evidentlyG(h, 1) = 1. So
for α even,

G(h, pα) = pα/2

On the other hand, ifα is odd, we have

G(h, pα) = p
α−1

2 G(h, p).

These may be combined into the single formula

G(h, pα) = p[ α2 ]G
(

h, pα−2[ α2 ]
)

(1)

2) p = 2λ, λ ≥ 2. h is now odd. Write

ℓ = m2λ−1
+ r; m= 0, 1; r = 0, 1, . . . , 2λ−1 − 1
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G(h, 2λ) =
2λ−1−1∑

r=0

e2πi h
2λ

r2

+

2λ−1−1∑

r=0

e2πi h
2λ

(2λ−1
+r)2

sinceλ ≥ 2, 2λ − 2 ≥ λ, in the second sum it is only the exponentr2 that
contributes a non-zero term; and this is then the same the first. Altogether we 300

have then

2
2λ−1−1∑

r=0

eπi h
2λ−1

r2

(*)

This, however is not a Gaussian sum. The substitution forℓ does not work;
to be effective, then we take

ℓ = m2λ−2
+ r; m= 0, 1, 2, 3; r = 0, 1, . . . , 2λ−2 − 1.

Now takeλ ≥ 4 and start again all over.

G(h, 2λ) =
3∑

m=0

2λ−2−1∑

r=0

e2πi h
2λ

(m2λ−2
+r)2

=

3∑

m=0

2λ−2−1∑

r=0

e2πi h
2λ

(2λ−1mr+r2)
, (for λ ≥ 4 i.e., 2λ − 4 ≥ λ).

=

2λ−2−1∑

r=0

e2πi h
2λ

r2
3∑

m=0

eπihmr

=

2λ−2−1∑

r=0

e2πi h
2λ

r2
3∑

m=0

(−)mn

= 2
2λ−2−1∑

r=0

(−)re2πi h
2λ

r2

+ 2
2λ−2−1∑

r=0

e2πi h
2λ

r2

= 4
2λ−3−1∑

s=0

eπi h
2λ−3 s2

This is not Gaussian sum either. But is is of the form (*). We therefore 301

have, forλ ≥ 4, G(h, 2λ) = 2G(h, 2λ−2). If λ = 4, we need go down to only
22
= 4 and ifλ = 5 to 23

= 8. So we need separatelyG(h, 8) andG(h, 4); and
of courseG(h, 2). These cases escape us, while formerly onlyG(h, p) did. For
λ ≥ 4, we may write

G(h, 2λ) = 2[ λ2 ]−1G
(

h, 2λ−2[ λ2+2]
)

(2)
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This supplements formula (1).
We now consider the special cases,k = 2, 4, 8. Hereh is odd.

G(h, 2) = 1+ e2πi h
2 = 0

G(h, 4) = 1+ e2πi h
4 ·1 + e2πi h

4 ·4 + e2πi h
4 ·9

= 2+ 2eπi h
2

= 2
(

1+ ih
)

G(h, 8) = 1+ 1+ 2eπih
+ 4e2πi h

8

(since 12, 32, 52, 72 are all ≡ 1 modulo 8)

= 4eπi h
4 = 4

(

1+ i√
2

)2

Before we return toG(h, p), p > 2, we shall a digression an connect to the302

whole thing with the Legendre-Jacobi symbols

G(h, p) =
p−1∑

ℓ=0

e2πi h
p ℓ

2

= 1+ 2
∑

a

e2πi h
p a
,

the summation over all quadratic residues a modulop, since along withℓ, p− ℓ
is also a quadratic residue. We can write this in a compact form, so arranging
it that the non-residues get cancelled and the residues appear twice:

G(h, p) =
∑

r mod p

{

1+

(

r
p

)}

e2πi h
p r

=

∑

r mod p

(

r
p

)

e2πi h
p r

This would appear in a completely new aspect if we utilised the fact thathr
runs through a full system of residues modulop. Then

G(h, p) =
∑

k mod p

(

h
p

) (

hr
p

)

e2πi h
p r

=

(

h
p

)
∑

r mod p

(

r
p

)

e2πi r
p
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=

(

h
p

)

G(h, p).

This is very useful if we new go to the Jacobi symbol. For primep, the 303

Legendre symbol has the multiplicative property:
(

r1

p

) (

r2

p

)

=

(

r1r2

p

)

Jacobi has the following generalisation.
Define

(
r
pq

)

by
(

r
pq

)

=

(

r
p

) (

r
q

)

.

Si it is±1; if it is +1 it does not necessarily mean thatr is a quadratic residue
modulopq. The Jacobi symbol no longer discriminates between residues and
non residues. From the definition then

(

a
pαqβ · · ·

)

=

(

a
p

)α (

a
q

)β

· · · .

The Jacobi symbol has the properties of a character, as can beverified by
using the Chinese remainder theorem.

We can now write

G(h, pα) =

(

h
p

)α

G(1, pα)

under all circumstances. How does this come about? Separatethe cases:α
even,α odd.

G(g, pα) = G(1, pα), α even;

= p
α−1

2 G(h, p), α odd,

=

(

h
p

)

p
α−1

2 G(1, p) =

(

h
p

)

G(1, pα)

We can write both in one sweep as 304

G(h, pα) =

(

h
p

)α

G(1, pα)

=

(

h
pα

)

G(1, pα)
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Now use the multiplicative law. Ifp, q are odd primes, then

G(h, pαqβ) = G(hpα, qβ)G(hqβ, pα)

=

(

hpα

qβ

)

G(1, qβ)

(

hqβ

pα

)

G(1, pα)

Since the Jacobi symbol is separately multiplicative in numerator and de-
nominator, but not both, this is equal to

(

h
qβ

) (

pα

qβ

)

G(1, qβ)

(

h
pα

) (

qβ

pα

)

G(1, pα) =

(

h
qβ

) (

h
pα

)

G(pα, qβ)G(qβ, pα),

taking the second and third factors together, and also the last two. And this is
(

h
pαqβ

)

G(1, pαqβ)

according to the multiplication law.
Suppose that we have

G(h1k1) =

(

h
k1

)

G(1, k1); G(h, k2) =

(

h
k2

)

G(1, k2).

We go through the above worker; literally and get 305

G(h, k1k2) =

(

h
1, h2

)

G(1, k1, k2).

So we have proved in general that for oddk,

G(h, k) =

(

h
k

)

G(1, k)

We can now return toG(h, p).
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We were discussing Gaussian sums and it remained to evaluate 306

G(h, p) =

(

h
p

)

G(1, p)

We shall do a little more than that; we shall study them in a more flexible
form. Define

S(h, k) =
k−1∑

ℓ=0

eπi hg
k ℓ

2
,

h, k > 0 but not necessarily coprime. We cannot now take the summation over
ℓ modulok. For if k is odd, (ℓ + k)2

= ℓ2
+ 2ℓk + k2 andk2 may give rise to

an odd multiple ofπi in the exponent and hence introduce a change of sign,
We should therefore insist on this particular range of summation. S(h, k) are
connected with the Gaussian sums; indeed

G(h, k) = S(2h, k)

We shall now produceS(h, k) as a sum of residues. To get the integers
as poles we should clearly takee2πiz − 1 in the denominator; so we integrate
eπi h

k z
2/(e2πiz−1) over such a contour as has in its interior the desired polesz =

0, 1, 2, . . . , k− 1. Indeed

S(h, k) =
∫

C

eπi h
k z

2

e2πiz − 1
dz

225
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1 20

WhereC is the parallelogram with vertices at±(1 + i)Ω, ±(1 + i)Ω + k, 307

with the slant sides inclined at 45◦ (infact this may be anything less than 90◦)
to the real axis, and making a detour round 0 andk. When we pushΩ to∞, the
integrals along the horizontal sides will tend to zero. For instance on the upper
side,z = (1+ i)Ω + x, 0 ≤ x ≤ k, and the integrand is therefore

eπi h
k ((1+i)Ω+x)2

e2πi((1+i)Ω+x) − 1
=

eπi h
k (2iΩ2

+2(1+i)Ωx+x2)

e2πi(Ω+x)−2πΩ − 1

=
e−π

h
k (2Ω2

+2Ωx)+πi h
k (2Ωx+x2)

e−2πΩ+2πi(Ω+x) − 1

→ 0 uniformly asΩ→ ∞ sinceh
k > 0. Hence the integral can be written as 308

(1+i)∞+k∫

−(1+i)∞+k

−
(1+i)∞∫

−(1+i)∞

eπi h
k (z)2

e2πz − 1
dz

where, of course, we have to make a small detour round 0 andk. Replacingz
by z + k in the first integral, this becomes

(1+i)∞∫

−(1+i)∞

eπi h
k (z+k)2 − eπi h

k z
2

e2πiz − 1
dz =

(1+i)∞∫

−(1+i)∞

eπi h
k z

2
(

eπi h
k (2zk+k2) − 1

)

e2πiz − 1
dz

=

(1+i)∞∫

−(1+i)∞

eπ
h
k z

2(e2πihz+πihk−1)

e2πiz − 1
dz
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Let us assume from now on thathk is even. Then we can actually divide 309

out and the integral becomes

(1+i)∞∫

−(1+i)∞




eπi h

k z
2

h−1∑

λ=0

e2πiλz




dz

The denominator has now disappeared. There is a further advantage that
the integral can now be stretched along the whole line and thedetour can be
avoided. We then have

h−1∑

λ=0

e−πiλ2 h
k

(1+i)∞∫

−(1+i)∞

eπi h
k (z+ λk

h )2

dz

Write z + λk/h = ω; and shift the integral back to the line from−(1+ i)∞
to (1+ i)∞ - this we can do since the integrand tends to zero along a horizontal
segment. This gives

h−1∑

λ=0

e−πi h
k λ

2

(1+i)∞∫

−(1+i)∞

eπi h
kω

2
dω,

or writing t = ω
√

h
k ,

√

h
k > 0, 310

√

k
h

h−1∑

λ=0

e−πi h
k λ

2

(1+i)∞∫

−(1+i)∞

eπit2
dt = A

√

k
h

h−1∑

λ=0

e−πi k
hλ

2

whereA is the specific constant:

A =

(1+i)∞∫

−(1+i)∞

eπit2
dt

Hence

S(h, k) = A

√

k
h

S(−k, h).

In order to evaluateA, take a simple case:h = 1, k = 2

S(1, 2)= A
√

2S(−2, 1)

i.e., 1+ e
πi
2 = A

√
2,
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SoA = (1+ i)/
√

2, an eighth root or unity.
So our reciprocity formula becomes complete:

S(h, k) =
1+ i
√

2

√

k
h

S(−k, h).

Let us develop some corollaries.
1) h = 2, k arbitrary: 311

S(2, k) = G(1, k), so

G(1, k) = S(2, k) =
1+ i
√

2

√

k
2

S(−k, 2)

=
1+ i

2

√
k(1+ e−πi k

2 )

=
1+ i

2

√
k(1+ (−i)k)

We then have explicitly the value ofG(1, k)

G(1, k) =
(1+ i)(1+ (−i)k)

2

√
k.

We mention the four cases separately:

G(1, k) =






√
k if k ≡ 1 (mod 4)

0 if k ≡ 2 (mod 4)

i
√

k if k ≡ 3 (mod 4)

(1+ i)
√

k if k ≡ 0 (mod 4)

Hence the absolute value ofG(1, k) can be 0, k or
√

2k.
So fark was only positive. The casek odd deserves some special mention.

k− 1 is even and

G(1, k) =






√
k if k−1

2 is even

i
√

k if k−1
2 is odd.

(
k−1
2

)2 ≡ 0, 1 (mod 4) according ask−1
2 is even or odd; so we can write this 312

as
G(1, k) = i(

k−1
2 )2 √

k.
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This we have obtained by a purely function-theoretical argument. From our
arithmetical augment, we had, for oddk,

G(h, k) =

(

h
k

)

i(
k−1
2 )2 √

k

where
(

h
k

)

is the Jacobi symbol. We can get a little more out of it.

G(−1, k) =

(

−1
k

)

i(
k−1
2 )2 √

k.

Multiplying this and the equation forG(1, k) together,

G(1, k)G(−1, k) =

(

−1
k

)

(−)(
k−1
2 )2

k

=

(

−1
k

)

(−)
k−1
2 k

But the left side is onlyG(l, k)G(1, k), and this is always> 0. So
(

−1
k

)

(−)
k−1
2 k > 0,

and sincek > 0 by nature,
(

−1
k

)

= (−)
k−1
2

which is Euler’s criterion for the Jacobi symbol.
2) h = 2, k odd.

G(2, k) = S(4, k) =
1+ 1
√

2
b

√

k
4

S(−k, 4)

=
1+ i

2
√

2

√
k
{

1+ e−
πik
4 + e−πik

+ e−
πik
4

}

=
1+ i
√

2

1
i

√
2
√

ke−πi k
4

= e−
πi
4 (k−1)

√
k

= e−
πi
2

k−1
2

√
2

= i−
k−1
2

√
k
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On the other hand 313

G(2, k) =

(

2
k

)

i(
k−1
2 )2 √

k

Hence
(

2
k

)

= i−
k−1
2 −( k−1

2 )2

= i−
k−1
2 (1+ k−1

2 )

= i−
k2−1

4

= i−2 k2−1
8

= (−)
k2−1

8

3) (h, k) = 1; h, k both odd:

G(h, k) = S(2h, k) =
1+ i
√

2

√

k
2h

S(−k, 2h)

=
1+ i
√

2

√

k
2h

2h−1∑

λ=0

eπi k
2hλ

2

=
1+ i
√

2

√

k
2h

∑

λ mod 2h

e−πi k
2hλ

2

Here it is no longer necessary to insist on the special range of summation, 314

for changingλ by λ + 2h would introduce only an even multiple ofπi in the
exponent. Separating the odd and evenλ′s, this becomes

1+ i
√

2

√

k
2h






∑

ℓ mod h

e−πi k
2h (2ℓ)2

+

∑

ℓ mod h

e−πi k
2h (2ℓ+h)2






=
1+ i
√

2

√

k
2h

(

1+ e−πi hk
2

) ∑

ℓ mod h

e−2πi k
h ℓ

2

=
1+ i
√

2

(

1+ (−i)hk
)
√

k
2h

G(−k, h)

= i(
hk−1

2 )2

√

k
h

G(−k, h)

= i(
hk−1

2 )2

√

k
h

G(k, h)
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Then we have 315

(

h
k

)

i(
k−1
2 )2 √

k = i(
hk−1

2 )2

√

k
h

(

h
k

)

i−(
h−1

2 )2 √
h

i.e.,

(

h
k

) (

k
h

)

= i(
hk−1

2 )2−( h−1
2 )2−( k−1

2 )2

ib

where b =
1
4

(

h2k2 − h2 − k2
+ 1− 2(hk− h− k− 1)

)

=
1
4

(h− 1)(k− 1) {(h+ 1)(k+ 1)− 2}

=
1
2

[(h− 1)(k− 1)]

[

(h+ 1)(k+ 1)
2

− 1

]

So

ib = i2
(h−1)(k−1)

4 an odd number

= (−)
(h−1)(k−1)

4 (odd number)= (−)
(h−1)(k−1)

4

∴

(

h
k

) (

k
h

)

= (−)
(h−1)(k−1)

4 .

which is Jacobi’s law of reciprocity.
We shall use all this in the singular series. It may be worth while to do what 316

Gauss himself did and evaluateG(1, k) by an arithmetical method. To distin-
guish between the different primitive roots of unity is, however, algebraically
impossible; in the analytical method we can use the exponential function to
uniformise the roots of unity.
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We have finished to some extent Gaussian sums; we treated thenonly in view 317

of their occurrence in the singular series defined as

S(r)
(n) =

∞∑

k=1

V(r)
k (n)

with V(r)
k (n) = Vk(n) =

∑

h mod k
(h,k)=1

(

G(h, k)
k

)r

e−2πi h
k n,

which appeared as the principal term in the expression for the number of rep-
resentation ofn as the sum ofr squares:

Ar (n) =
πr/2

Γ

(
r
2

)n
r
2−1S(r)

(n) +O
(

nr/4
)

,

r ≥ 5. We did not bother to do this for lowerr, although we could forr = 4,
in which case we know an exact formula; but this is another question. We
consider first a fundamental property of the singular series, viz. its expression
as an infinite product.

Fundamental Lemma.

S(r)
(n) =

∏

p

{

1+ Vp(n) + Vp2(n) + Vp3(n) + · · ·
}

,

p prime.
We first prove the multiplicative property ofVk(n): for (k1, k2) = 1,

Vk1(n)Vk2(n) = Vk1k2(n)

232
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We had a similar situation in connection withAk(n) for the partition func- 318

tion; but there the multiplication was more complicated. Here we have

Vk1k2(n) =
1

(k1, k2)r

∑

h mod k1k2
(h,k1k2)=1

G(h, k1k2)re−2πi hn
k1k2 .

Writing h = k2h1 + k1h2 with the conditions (h1, k1) = 1 = (h2, k2), h,
running moduloh1 andh2 modulok2, this becomes

1
(k1k2)r

∑

h1

∑

h2

G(k2h1 + k1h2, k1k2)e−2πi h
k1k2

n

=
1

(k1k2)r

∑

h1

∑

h2

G ((k2h1 + k1h2)k1, k2)r

G((k2h1 + k1h2)k2k1)re−2πi(k2h1+k1h2) n
k1k2

on using the multiplicativity of the Gaussian sums; and suppressing multiples
of k1, k2, as we may, this gives

1
kr

1kr
2

∑

h1 mod k1

∑

h2 mod k2

G(h2k
2
1, k2)

rG(k2
2h1, k1)

re−2πi
h1
k1

n−2πi
h2
k2

n

Now 319

G(ha2, h) =
∑

ℓ mod k

e2πi h
k a2ℓ2

If (a, k) = 1, al also runs modulok whenℓ does, so that the right side is
∑

n mod k

e2πi h
k m2
= G(h, k)

In our case (k1, k2) = 1. So we have

1
kr

1

∑

h1 mod k1

G(h1, k1)re−2πi
h1
k1

n 1
kr

2

∑

h2 mod k2

G(h2, k2)re−2πi
h2
k2

n

= Vk1(n)Vk2(n)

We can then break each summand inS(r)
n into factors corresponding to

prime powers and multiply them again together, and the rearrangement does
not count because of absolute convergence; so

S(r)
(n) =

∏

p

{

1+ Vp(n) + Vp2(n) + Vp3(n) + · · ·
}
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=

∏

p

γp(n),

say; this is an absolutely convergent product. This simplifies matters consid- 320

erably. We have to investigateV only for thoseG′s is which prime powers
appear.

We first takep = 2. then

γ2(n) = 1+ V2(n) + V22(n) + · · ·

V2λ(n) =
1

2λr

∑

h mod 2λ
2∤h

G(h, 2λ)re−2πih n
2λ

(i) λ = 1 SinceG(h, 2) = 0 for oddh,

V2(n) = 0

(ii) λ even. Forλ ≥ 4,

G(h, 2λ) = 2
λ
2−12(1+ ih) = 2

λ
2 (1+ ih)

V2λ(n) =
1

2λr
2λr/2

∑

h mod 2λ
2∤h

(1+ ih)re−2πi h
2λ

n

=
1

2λr/2






∑

h≡1 (mod 4)
h mod 2λ

(1+ i)re−2πi h
2λ

n
+

∑

h≡− (mod 4)
h mod 2λ

(1− i)re−2πi h
2λ

n






=
2r/2

2λr/2






∑

h≡1 (mod 4)

eπi r
4 e−2πi h

2λ
n
+

∑

h≡−1 (mod 4)

e−πi r
4 e−2πi h

2λ
n






=
1

2
λ−1
2 r





eπi r

4−2πi r
2λ

∑

s mod 2λ−2

e−2πi s
2λ−2 n
+

+e−πi r
4+2πi r

2λ

∑

s mod 2λ−2

e−2πi s
2λ−2 n






= 0, if 2λ−2
+ n;

2λ−2

2
λ−1
2 r

cos
(

π
r
4
− 2π

ν

4

)

, if 2λ−2/n, n = 2λ−2.ν

i.e.,
1

2(λ−1)( r
4−1)

cos
π

4
(2ν − r)
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321

Hence, forλ even,λ ≥ 4,

V2λ(n) =






0, if 2λ−2
+ n;

cosπ4 (2ν−r)

2(λ−1)( r
2−1) , if 2λ−2.ν = n.

(*)

(iii) λ odd,λ ≥ 3.

G(h, 2λ) = 2G(h, 2λ−2) = 2
λ−3

2 G(h, 23)

= 2
λ−3

2 4eπih/4
= 2

λ+1
2 eπih/4

V2λ(n) =
1

2λr
2

λ+1
2

∑

h mod 2λ
2∤h

eπih r
4 e−2πi h

2λ
n
,

or, writing h = 8s+ t, t = 1, 3, 5, 7, 322

=
1

2
λ−1
2 r

∑

t

2λ−3
∑

s=1

eπitr /4e−2πi(8s+t) n
2λ

=
1

2
λ−1
2 r

∑

t

eπitr /4−2πitn/2λ
2λ−3
∑

s=1

e−2πisn/2λ−3

= 0, if 2λ−3 ∤ n.

If, however, 2λ−3|n, n = 2λ−3.ν, this is

2λ−3

2
λ−1

2 r

∑

t

eπit∤4(r−ν)
= o, if 4/(r − ν);

2λ−1

2
λ−1

2 r
eπi(r−ν)|4, if 4/(r − ν)

i.e.,
1

2(λ−1)( r
2−1)
· (−)

ν−r
4 .

Hence forλ odd,λ ≥ 3, 323

V2λ(n) =






0, if 2λ−3 ∤ n;

0, if 2λ−3. | n, n = 2λ−3ν, 4 ∤ (ν − r);

(−)
ν−r
4

2(λ−1)( r
2−1) , if 2λ−3 | n, 4 | (ν − r)

(**)
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Now, givenn, only a finite number of powers of 2 can divide it. So the
situation 2λ−3/n will occur sometime or the other, so thatγ2(n) is always a
finite sum.

|γ2(n) − 1| ≤
∞∑

λ=2

1

2(λ−1)( r
2−1)

=
1

2
r
2−1
· 1

1− 1/2 r
2 − 1

=
1

2r/2−1 − 1
;

and this is valid forr ≥ 3. so the singular series behaves much better than we
expected.
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It would be of interest to studyγ2(n) also forr = 3, 4. 324

γ2(n) = 1+ V2(n) + V22(n) + · · ·

First consider the caser = 3, 2/n. Then

V2(n) = 0.

ForV2λ(n), λ > 1, we have to make a distinction betweenλ even andλ odd.
λ even.

V2λ(n) =






0, if 2λ−2 ∤ n;

cosπ4 (2ν−r)

2(λ−1)( r
2−1) , if 2λ−2 ∤ n, n = 2λ−2.ν.

λ odd.

V2λ(n) =






0, if 2λ−3 ∤ n;

0, if 2λ−3 | n, n = 2λ−3ν, ν − r . 0 (mod 4)

(−)
ν−r
4

2(λ−1)( r
2−1) , if 2λ−3 | n, n = 2λ−3ν, ν − r ≡ 0 (mod 4)

So forr = 3,

γ2(n) = 1+ V4(n) + V8(n)

= 1+
cosπ4(2n− 3)

√
2

+
(−)

n−3
4

2
,

237
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where the last summand has to be replaced by 0 if (n− 3)/4 is not an integer. 325

Since 2n− 3 is odd, we have

| cos
π

4
(2n− 3)| = 1

√
2
,

and thus clearly,

|γ2(n)| ≤ 1+
1
2
+

1
2
= 2

Moreover,γ2(n) can vanish. This would require

(−)
n−3
4 = 1

and cos
π

4
(2n− 3) = − 1

√
2

simultaneously. But this is the case for

n ≡ 7 (mod 8),

as is easily seen. This corresponds to the fact that a numbern, n ≡ 7 (mod 8)
cannot be represented as the sum of three squares.

Next taker = 4. We distinguish between the cases 2∤ n and 2| n.

1. 2 ∤ n. Then from relations (*) and (**) proved in lecture 37, we have

γ2(n) = 1+ V4(n) + V8(n)

= 1+
cosπ4(2n− 4)

2
= 1− 1

2
cos

πn
2

= 1

2. 2 | n Let n = 2αn′, 2 | n′. Then (*) and (**) show thatV2λ(n) = 0 for 326

λ > α + 3. But actuallyV2λ(n) = 0 also forλ = α + 3. Indeed, forα odd,
λ = α+ 1 is the last even,λ = α+ 2 the last odd index for non-vanishing
V2λ(n). Forα even,λ = α+ 2 is the last even index:λ = α+ 3 is odd and
since 4∤ (n′ − 4), we have alsoV2λ(n) = 0 for λ = α + 3.

∴ γ2(2αn′) = 1+
α+2∑

λ=2

V2λ(n)

Now, in V2λ(n), for λ even,

cos
π

4
(2ν − r) = − cos

π

2
n′2α−λ+2
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= − cosπn′2α−λ+1

=






−1, for λ ≤ α,

1, for λ = α + 1,

0, for λ = α + 2.

Similarly in V2λ(n), for λ odd,

(−)
ν−4
4 = −(−)n1.2α−λ+1

=






−1, for λ ≤ α;

1, for λ = α + 1,

andV2λ(n) = 0 for λ = α + 2 since then 4∤ 2α−λ+1. The numerators of the 327

non-vanishingV2λ(n) are−1 upto the last one, which is 1. And thus

γ2(2αn′) = 1− 1
2
− 1

22
− · · · − 1

2α−1
+

1
2α

=
1

2α−1
+

1
2α
=

3
2α

Although hereγ2(2αn′) > 0, we see that forα sufficiently largeγ2(n) can
come arbitrarily close to 0.

We now considerγp(n) for p ≥ 3.

γp(n) = 1+ Vp(n) + Vp2(n) + · · · ,

where Vpλ (n) =
1

pλr

∑

h mod pλ

p∤h

G(h, pλ)re
−2πi h

pλ
n

Now

G(h, pλ) =

(

h
pλ

)

G(1, pλ)

=

(

h
p

)λ

i

(

pλ−1
2

)2

p
λ
2

∴ Vpλ(n) =
i
r
(

pλ−1
2

)2

pλr/2

∑

h mod pλ

p∤h

(

h
p

)

e
−2πi h

pλ
n
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We have to distinguish betweenλr odd; andλr even 328

1) λr even. If pλ ≡ 1 (mod 4), then

(−)
r
2

(
pλ−1

2

)2

= (−)
r
2

pλ−1
2

So

Vpλ (n) =
i
r
(

pλ−1
2

)2

pλr/2

∑

h mod pλ

p∤h

e
−2πi h

pλ
n

2) λr odd. In this case

Vpλ(n) =
i
r
(

pλ−1
2

)2

pλr/2

∑

h mod pλ

p∤h

(

h
p

)

e
−2πi h

pλ
n

The inner sum here is a special case of the so-called Ramanujan sums:

Ck(n) =
∑

h mod k
(h,k)=1

e2πi h
k n

There sums can be evaluated. Look at the simpler sums

Sk(n) =
∑

λ mod k

e2πi λk n

=






k, if k | n;

0, if k ∤ n.

Classify theλ′s in Sk(n) according to their common divisor withk. Then 329

Sk(n) =
∑

d|k

∑

λ mod k
(λ,k)=d

e2πi λk n

=

∑

d|k

∑

λ mod k

( λk , k
d )=1

e2πi λd ·
n

k/d

=

∑

d|k

∑

µ mod k
d

(µ, k
d )=1

e2πi µn
k/d
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=

∑

d|k
C k

d
(n)

=

∑

d|k
Cd(n).

Now by Möbious inversion formula,

Ck(n) =
∑

d|k
µ

(

k
d

)

Sd(n),

andSd(n) is completely known- it is either 0 ord; hence

Ck(n) =
∑

d|k,d|n
dµ

(

k
d

)

=

∑

d|(n,k)

dµ

(

k
d

)

.

So these are integers. 330

The Möbious function which appears here arises as a coefficient in a certain
Dirichlet series; in fact

1
ζ(s)
=

∞∑

n=1

µ(n)
ns

It is possible to build up a complete formal theory of Dirichlet series as we
had in the case of power series. Formal Dirichlet series forma ring without
null-divisors. The multiplication law is given by

∑ an

n2

∑ bn

n2
=

∑ cn

ns

where cn =

∑

k j=n

akb j

The relation

∑ µ(n)
ns

∑ 1
ns
= 1

then implies that 0=
∑

jk=n

µ( j) · 1 =
∑

d|n
µ(d), n > 1.
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For p ≥ 3 we had 331

γp(n) = 1+ Vp(n) + Vp2(n) + · · ·
where

Vpλ(n) =
1

pλr

∑

h mod pλ

(h,p)=1

G(h, pλ)re
−2π h

pλ
n

=
i

(

pλ−1
2

)2r

pλr/2






∑

h mod pλ

p∤h

e
−2πi h

pλ
n
, λr even;

∑

h mod pλ

p∤h

(
h
p

)

e
−2πi h

pλ
n
, λr odd.

Forλr odd we have to evaluate this directly. Ifλr is even it is simpler; it is
a special case of the Ramanujan sums:

Ck(n) =
∑

h mod k
(h,k)=1

e2πi h
k n

which could be evaluated by means of the Möbious inversion formula:

Ck(n) =
∑

d|(k,n)

dµ

(

k
d

)

So if k is a prime power,k = pλ, 332

∑

h mod pλ

p∤h

e
−2πi h

pλ
n
=

∑

d|(pλ,n)

dµ

(

pλ

d

)

242
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=






0, if α < λ − 1, n = pαn′, p ∤ n′;

−1× pλ−1
= − − pα. if α = λ − 1;

−1× pλ−1
+ pλ

= pλ(1− 1
p), if α ≥ λ.

For obtaining these values we observe that in the summation on the right
side we have to take into account only such divisorsd that pλ

α
is at mostp. This

leads in the first caseα < λ − 1 to a vacuous sum. In the second case the only
admissible divisor ispλ−1; in the last we have two divisorspλ−1 andpλ. Thus

Vpλ (n) = 0

for λ > α + 1; we get again a finite sum forγp(n)
We now takeλr odd. We want

∑

h mod pλ

p∤h

(

h
p

)

e
−2πi h

pλ
n

h modulop is periodic, and we emphasize this by writing

h = rp + s; s= 1, 2, . . . , p− 1; r = 1, . . . , pλ−1

333

So the above sum becomes
pλ−1∑

r=1

p−1∑

s=1

(

s
p

)

e
−2πi (rp+s)

pλ =

p−1∑

s=1

(

s
p

)

e
−2πi s

pλ

pλ−1∑

r=1

e
−2πi r

pλ−1
n

This is zero whenpλ−1 ∤ n (because the inner sum vanishes). Otherwise,
let n = pλ−1ν andp ∤ ν; then it is again zero because we have only a sum of
quadratic residue symbols (since the character is not the principal character).
If p | ν, the sum becomes

pλ−1G(ν, p) = pλ−1

(

ν

p

)

i
(

p−1
2

)2 √
p

So if n = pα · n′ wherep ∤ n′, then

Vpλ(n) =






0, if λ − 1 > α;

pα
(

n′

p

)

i
(

p−1
2

)2 √
p, if λ − 1 = α;

0, if 0 ≤ λ − 1 < α.
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So the only non vanishing term in the caseα + 1 odd isVpα+1(n).
Let us put things together now. Letr be even. Ifp ∤ n, then

γp = 1+ Vp = 1− i
(

p−1
2

)2
r

pr/2

= 1− (−)
r
2

p−1
2

pr/2

334

If p | n, n = pα · n′, then

γp = 1+ Vp + Vp2 + · · · + Vpα + Vpα+1

= 1+
ǫp

pr/2
(p− 1)+

ǫ2
p

p2r/2
p(p− 1)+ · · ·

+
ǫαp

pαr/2
pα−1(p− 1)−

ǫα+1
p

p(α+1)r/2
pα,

whereǫp = (−)r(p−1)/4 for r , 4

=

(

1−
ǫp

pr/2

)

+
ǫp

pr/2 − 1

(

1−
ǫp

pr/2

)

+
ǫ2

p

p2
(

r
2 − 1

)

(

1−
ǫp

pr/2

)

+ · · · +
ǫαp

pα(
r
2−1)

(

1−
ǫp

pr/2

)

=

(

1−
ǫp

pr/2

) 

1−
ǫα+1

p

p(α+1)( r
2−1)





(

1−
ǫp

pr/2−1

)−1

For r = 4, the thing becomes critical: Let us look at it more specifically. 335
r(p− 1)

4
is even now and soǫp = 1. Hence

γp =

(

1− 1
p2

) 1− 1
pα+1

1− 1
p

We go to the full singular series.

S4(n) =
∏

p

γp = γ2

∏

p≥3

γp

= γ2

∏

p≥3

(

1− 1
p2

)
∏

p≥3

1− 1
pα+1

1− 1
p
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The product is convergent since
∑ 1

p2 < ∞. So

|S4(n)| ≥ γ2

∏

p

(

1− 1
p2

)
∏

p|n

1− 1
p2

1− 1
p

≤ γ2

∏

p

(

1− 1
p2

)2 ∏

p|n

1

1− 1
p

∏(

1− 1
p

)

diverges to zero in the infinite product senses. SoS4(n) is not
bounded. S4(n) could become very small if we keep the odd factors fixed
and introduce more even factors.

S4(n) is unbounded in both senses; it can be as large as we please oras
small as zero.

For r ≥ 5 we are again on the safe side. In this case the first term comes
from Vpλ . We have

S5(n) ∼

(

1±
Vp

p5/2

)

or C2

∏
(

1+
1
p2

)

< S5(n) < C1

∏
(

1− 1
p2

)

336

For r = 7 the situation is similar. Forr = 6 the series again converges. So
for r ≥ 5.

0 < C1 < Sr (n) < C2

This is of importance in the application to our problem.
We had

Ar (n) =
πr/2

Γ(r/2)
n

r
2−1Sr (n) +O(nr/4)

If r ≥ 5, r
2 − 1 > r

4, and sinceSr(n) being bounded does not raise the order
in the term,

Ar (n) ∼
πr/2

Γ(r/2)
n

r
2−1Sr (n)

If, however, if r = 4, the sharpness of the analysis is lost. Both the first
factor and the error term areO(r) andSr (n) may contribute to a decrease in the
first term. If there are many odd factors forn, the main term is still good. But
if there are many powers of 2, it would be completely submerged.

For r = 4 the exact formula was given by Jacobi.
We shall consider also representation ofn in the forman2

1+bn2
2+cn2

3+dn2
4

in which connection the Kloosherman sums appear. We shall also cast a glance
at the meaning of the singular series in the sense of Siegel’ep-edic density.
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Let us look atSr (n) a little more explicitly. 337

Sr (n) = γ2(n)γ3(n)

r ≡ 0 (mod 4).

In this case we need not bother about the sign of the Gaussian sums; the
fourth power of the coefficient becomes 1.

γ2(n) = 1+ V2(n) + V22(n) + · · ·

which is a finite sum. If 2∤ n, thenγ2(n) = 1. If 2 | n, n = 2αn′, 2 ∤ n′, then

V2(n) = 0

V2λ(n) =






(−)r/4

2(λ−1)( r
2−1) . if λ < α + 1;

− (−)r/4

2(λ−1)( r
2−1) , if λ = α + 1;

0, if λ > α + 1

So

γ2(n) = 1+ (−)r/4






1

2
r
2−1
+

1

22( r
2−1)
+ · · · + 1

2(α−1)( r
2−1)
− 1

2α
(

r
2 − 1

)






= 1+ (−)
r
4

α∑

µ=1

(−)
n
2µ

2µ
(

r
2 − 1

) ,

246
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if 2α||n (2α is the highest power of 2 dividingn). If 2 ∤ n, γ2(n) = 1. 338

γp(n) =

(

1− 1
pr/2

) 

1−
1

pr/2−1
+ · · · 1

pα(
r
2−1)



 , p
α||n

Sr (n) = γ2(n)
∏

p≥3

(

1− 1
pr/2

)
∏

p|n,p odd



1−
1

pr/2−1
+ · · · + 1

pα(
r
2−1)





= γ2(n)P1 · P2(n),

whereP1 is a fixed factor and

P2(n) =
∏

p|n,p odd



1−
1

p
r
2−1
+ · · · + 1

pα(
r
2−1)





=

∑

d|n,d odd

1

d
r
2−1

.

P1 =

(

1− 1
2r/2

)−1 ∏

p≥2

(

1− 1
pr/2

)

=
2r/2

2r/2−1
× 1

ζ
(

r
2

) .

It is known (vide: Whittaker & Watson) that

ζ(2k) = (−)k−1 (2π)2kB2k

2(2k)!
, k ≥ 1,

whereB2k are the Bernoulli numbers. 339

(

B1 = −
1
2
, B3 = B5 = B7 = · · · = 0; B2k , 0; sgnB2k = (−)k−1

)

P1 =
2r/2

2r/2 − 1
×

2
(

r
2

)

!

(2π)r/2|Br/2|

So forr > 4, the principal term

Ar (n) ∼
πr/2

Γ

(
r
2

)n
r

2−1 Sn(n)

= Cr (n),



40. Lecture 248

say, where

Cr (n) =
πr/2

Γ(r/2)
2r/2

2r/2 − 1

2
(

r
2

)

!

(2π)r/2|Br/2|
n

r
2−1γ2(n)

∑

d|n,dodd

1

d
r
2−1

(a divisor sum! which is interesting, but not surprising, because the Jacobi 340

formula contains it).

Cr (n) =
r

2
r
2−1|Br/2|

n
r
2−1

∑

d|n,d odd

1

d
r
2−1

r ≡ 0 (mod 8)

n
r
2−1γ2(n)·

∑

d|n,d odd

1
dr/2−1

= n
r
2−1




1+

1

2
r
2−1
+ · · · + 1

2(α−1)( r
2−1)
− 1

2α(
r
2−1)

∑

d|n,d odd

1

d
r
2−1




.

= n
r
2−1

∑

δ|n

(−)
n
δ

δ
r
2−1

, if n is even;

n
r
2−1

∑

δ|n

1

δ
r
2−1

, if n is odd.

So for anyn,

n
r
2−1γ2(n)

∑

d|n,dodd

1

d
r
2−1
= n

r
2−1(−)n

∑

δ|n

(−)
n
δ

δ
r
2−1

= (−)n
∑

δ|n
(−)n/δ

(n
δ

) r
2−1

= (−)n
∑

t|n
(−)tt

r
2−1

So 341

Cr (n) = Qr (−)n
∑

t|n
(−)tt

r
2−1,
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here Qr =
r

2
r
2−1|B r

2
|

This is exactly what appears forr = 4 in the Jacobi formula.

r ≡ 4 (mod 8)

n
r
2−1γ2(n)

∑

d|n,dodd

1

d
r
2−1

= n
r
2−1

(

1− 1

2
r
2−1
− · · · − 1

2(α−1)( r
2−1)
+

1

2α(
r
2−1)

)
∑

d|n
, d odd

1

d
r
2−1

= n
r
2−1

∑

δ|n

(−)δ+
n
δ
+1

δ
r
2−1

=

∑

δ|n
(−)δ+

n
δ
+1

(n
δ

) r
2−1

=

∑

t|n
(−)

n
t +t+1t

r
2−1, if n is even;

∑

t|n
t

r
2−1, if n is odd;

or in either case 342

(−)n
∑

t|n
(−)t+ n

t +1t
r
2−1

So Cr (n) = (−)nQr

∑

t|n
(−)

n
t +t−1t

r
2−1

Ar (n) ∼ Qn(−)n
∑

t|n
(−)t+ r

4( n
t +1)t

r
2−1;

where Ar =
r

2
r
2−1|Br/2|

The Bernoulli numbers are all rational numbers and we can show that
2(2r/2 − 1)Br/2 is an odd integral i.e., 2(22k − 1)B2k(k integral) is an all inte- 343

ger. Supposeq is an odd prime; then, by Fermat’s theorem,

2q−1 ≡ 1( modq)

Let (q− 1) | 2k. Then

22k ≡ 1 (modq)
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22k − 1 ≡ 0 (modq)

We now appeal to the non-Steadt-Clausen theorem, which is a beautiful
theorem describing fully the denominators of the Bernoullinumbers:

B2k = G2k −
∑

(p−1)|2k

1
p

whereG2k is an integer.

∴ (22k − 1)B2k = (22k − 1)G2k − (22k − 1)
∑

(p−1)|2k

1
p

= integer+
1
2

integer

So 2(22k − 1)B2k is an odd integer.
Let us obtain some specimens of

Qr =
2r

(2(2r/2 − 1)|Br/2|)

A4 = 8, Q8 = 16, Q12 = 8, Q16 =
32
17
,

Q20 =
8
31
, Q24 =

16
691

, Q28 =
8

5461
, q32 =

64
929569

The conspicuous prime 691 appears in connection with the representation 344

as the sum 24 squares; it has to do withη24.
CanAr (n) be exactly equal to the asymptotic expression? (as forr = 4).

A4(n) = C4(n),A8(n) = C8(n). FromQ16 on wards,A16(n) , C16(n). This is
becauseQ16 has an odd prime factor in the denominator. Supposep divides
the denominator. Then the fraction produced byQ16 cannot be destroyed by
the other factor andCr (n) is not always an integer. Ifp | n. the numerator of
Cr (pα) is congruent to±1 mod p.



Lecture 41

It might be of interest to takeCr (n), the main term in the formula forAr (n) and 345

make some remarks about it.

Cr (n) = Qr

∑

d|n
(−)n+d+ r

4( n
d+1)d

r
2−1

Let us form the generating function

Hr (x) = 1+
∞∑

n=1

Cr (n)xn;

this will give a sort of partial fraction decomposition. In the case wherer ≡ 0
(mod 8), it is simpler:

Hr (x) = 1+ Qr

∞∑

n=1

xn
∑

d|n
(−)n+dd

r
2−1

= 1+ Qr

∞∑

n=1

(−x)n
∑

d|n
(−)dd

r
2−1

= 1+ Qr

∞∑

d=1

(−)dd
r
2−1

∞∑

q=1

(−x)qd

= 1+ Qn

∞∑

d=1

(−)dd
r
2−1 (−x)d

1− (−x)d

= 1+ Qr

∞∑

d=1

d
r
2−1 xd

1− (−x)d

= 1+ Qr

{

1.x
1+ x

+ 2
r
2−1 x2

1− x2
+ 3

r
2−1 x3

1+ x3
+ · · ·

}

251
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This is a Lambert Series. Replacingx by eπiτ, it becomes

1+ Qr

{

eπiτ

1+ eπiτ
+ 2

r
2−1 e2πiτ

1− e2πiτ
+ · · ·

}

The series above can be transformed into an Eisen stein series. If r is taken 346

to be 8, it is actually the 8th power of theV −function
Next, taker ≡ 4 (mod 8)

Gr (x) = 1+ Qr

∞∑

n=1

xn
∑

d|n
(−)n+d+ n

d+1d
r
2−1

= 1− Qr

∞∑

d=1

(−)dd
r
2−1

∑

d|n
(−x)n(−)n/d

= 1− Qr

∞∑

d=1

(−)dd
r
2−1

∞∑

q=1

(−x)qd(−)q

= 1+ Qr

∞∑

d=1

(−)dd
r
2−1 (−x)d

1+ (−x)d

= 1+ Qr

∞∑

d=1

d
r
2−1 xd

1− (−x)d

= 1+ Qr

{

1 · x
1− x

+ 2
r
2−1 x2

1+ x2
+ 3

r
2−1 x3

1− x3
+ · · ·

}

This is again a Lambert Series. This shows that aV −power has to do with
Lambert series which appears as an evaluation of certain Eisenstein series not
that they are identical.

We now go to something quite different. We had forr ≥ 5,

Ar (n) ∼
πr/2

Γ

(
r
2

)n
r
2−1Sr (n) (*)

This comes out as a nice formula. Now could we not make some sense out 347

of this formula? What is its inner meaning? We shall show thatthe first factor
(

πr/2/Γ(r/2)
)

n
r
2−1 gives the average value of the number of representations of

n as the sum ofr squares; the second factor also is an average, in thep-adic
measurement. We shall show that

∑

n≤x

Ar (n) ∼
πr/2

Γ(r/2)

∑

n≤x

n
r
2−1
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So for each individualn, Sr (n) gives the deviation ofAr (n) from
(

πr/2/Γ(r/2)
)

n
r
2−1; but on the average there is no deviation.

Let us first look at
∑

n≤x Ar(n).
∑

n≤x

ar (n) =
∑

n≤x

∑

1
m2

1+···m2
r =n

=

∑

1
m2

1+···+m2
r≤x

,

which is the number of lattice-points in ther-sphere with centre at the origin
and radius

√
x, and so is proportional asymptotically to a certain volume (be-

cause the point lattice has cells or volume 1 and to each points belongs a cell).
So this is roughly the volume of the sphere of radius

√
x which is

∫

· · ·
∫

x2
1+···+x2

n≤x

dx1 · · ·dxr

=
πr/2

Γ(r/2)
xr/2

348

The difference will not be zero but of the order of magnitude of the surface
of the sphere, i.e.,O

(

xr/2 − 1
)

Now consider the other side.

πr/2

Γ(r/2)

∑

n≤x

n
r
2−1 ∼

πr/2

Γ(r/2)

∫ x

0
V

r
2−1dV

=
πr/2xr/2

Γ

(
r
2 + 1

)

So the first factor on the right of (*) gives the average.Sr (n) has to be
adjusted.Sr (n) is also, surprisingly, an average. It was defined as

Sr (n) = γ2(n)γ3(n)γ5(n) · · ·γp(n) · · · ,

andγp(n) in turn was given by 349

γp(n) = 1+
∞∑

λ=1

Vpλ (n)

= 1+
∞∑

λ=1

1
pλr

∑

h mod pλ

p∤h

G(h, pλ)re
−2πi h

pλ
n 1

pλr

∑

h mod pλ

p∤h

G(h, pλ)re
−2πi h

pλ
n
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=
1

pλr

∑

h mod pλ

p∤h






∑

ℓ1 mod pλ

e
2πi h

pλ
ℓ1

∑

ℓ2 mod pλ

e
2πi h

pλ
ℓ2

∑

ℓr mod pλ

e
2πi h

pλ
ℓr2






e
−2πi h

pλ
n

=
1

pλr

∑

ℓ1,...,ℓ4 mod pλ

∑

h mod pλ

e
2πi h

pλ (ℓ2
1 + · · · + ℓ2

r − n)

=
1

pλr

∑

ℓ1,...,ℓr mod pλ





∑

s mod pλ

e
2πi s

pλ
(ℓ2

1+···+ℓ2
r −n) −

∑

t mod pλ−1

e
2πi t

pλ−1 (ℓ2
1+···+ℓ2

r −n)






=
1

pλr

∑

ℓ1,...ℓn mod pλ

∑

s mod pλ

e
2πi s

pλ
(ℓ2

1+···+ℓ2
r −n)

−
∑

ℓ1,...,ℓr mod pλ−1

∑

t mod pλ−1

e
2πi t

pλ−1 (ℓ2
1+···+ℓ2

2−n)

=Wpλ (n) −Wpλ−1(n), say,

∴ 1+ Vp(n) + Vp2(n) + · · · + Vpλ(n) =Wpλ (n)→ γp(n)

So forλ large enoughWpλ(n) = Vpλ (n): the partial sums get identical. The 350

value ofλ for which this occurs depends on the structure ofn, on how many
primes that specificn contains. Now

∑

e
2πi s

pλ
(ℓ2

1+···+ℓ2
r −n)
= 0 or pλ

∴ Wpλ(n) =
pλ

pλr

∑

ℓ1,...,ℓr mod pλ

ℓ2
1+···+ℓ2

r ≡n (mod pλ)

The sum on the right gives the number of times the congruence
ℓ2

1 + · · · + ℓ2
r ≡ n (mod pλ) can be solved,Npλ (n), say. Then

Wpλ (n) =
1

pλ(r−1)
Npλ (n)

We have therefore divided the number of solutions of the congruence by
pλ(r−1). Now how manyℓ1, . . . , ℓr mod pλ do we have? There arepλr possi-
bilities discardingn. n is one of the numbers modulopλ. So dividing bypr , the
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average number of possibilities ispλ(r−1). Hence
Npλ (n)

pλ(r−1)
is the average density

modulo pλ of the solution of the congruence. And since theWpλ (n) eventu-
ally becomesγp(n), each factorγp(n) acquires a density interpretation, viz. the
p-adic density of the lattice points modulopλ.
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The error term in the formula for the number of representations of n as the 351

sum of r squares,r ≥ 5, wasO(nr/4). For r = 4 this did not suffice. We
shall therefore study the problem by Kloosterman’s method and find out what
happens when we want to decomposen in the formn = n2

1 + n2
2 + n2

3 + n2
4.

We shall see that we can diminish the order in the error term bynearly 1
18.

When Kloosterman did this for the first time (Act a Mathematicas 1927) he
took a slightly more general problem, that of representingn in the formn =
an2

1 + b2
2 + cn2

3 + dn2
4, a, b, c, d integers. This works nicely; we get the singular

series and an error term which is smaller than before. The difficult not will be
about the arithmetical interpretation. The singular series will now be a difficult
phenomenon; we shall have multiplicativity, but the interpretation of the factors
γp becomes complicated. We shall content ourselves with the analytical power
of the discussion. The generating function which will have to be discussed is
quite clear:

F(x) = Θ(xa) Θ(xb) Θ(xc) Θ(xd)

where Θ(x) =
∞∑

n=−∞
xn2

And we will have

A4(n) =
1

2πi

∫

C

Θ(xa)Θ(xb)Θ(xc)Θ(xd)
xn+1

dx

and the analysis goes on as before with Farey series.
We are here representingn by a positive definite quadratic form which is a

diagonal form. Let us make the problem more general.
Let us representn by a positive definite form with integral coefficients. 352

256
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(We could very well unsedes also the ‘semi-integral’ case).Let S be a pos-
itive definite integral symmetric matrix andx a column vector with elements
x1, x2, . . . xr in r-space. x′ is the transposed row-vector.x′S x is a quadratic
form in r variables. The question is how often can we express an integer n by
integer vectors with respect to this quadratic form inr variables.

The generating function to be studied this time is

Fr (x) =
∑

n

xn′S n, |x| < 1,

the summation over all integral vectorsn. Convergence is easily assured by
positive definiteness. Indeed

x′S x≥ C(x2
1 + · · · + x2

r ),C > 0

For x′S xhas a minimumC > 0 on |x| = 1 by positive definiteness; the in-
equality follows from the homogeneity of the quadratic form. And

∑

xc(n2
1+···+n2

r )

is trivially a product of convergent series.
In a later paper (Hamburger Abhandlungen, 1927) Kloosterman, on the

advice of Hecke, took up a more general problem. This would require a lit-
tle more preparation on modular forms. The generating function will now be
a modular form of dimension− r

2 of a certain ‘stafe’; so we have to discuss
modular forms not only with respect to the full modular group, but also the
substitutions 



a b

c d




≡





1 0

0 1




(mod N),

(N will the ‘stafe’) which from a subgroup finite index in the modular group. 353

Kloosterman’s work goes through for all modular forms of this sort, but we
should want generalisations ofη(τ) andV (τ). To do this we need a good deal
of Heeke’s theory about Eisenstein series of higher stafe ofthe type:

∑

m1≡a (mod N)
m2≡b (mod N)

1
(m1 +m2τ)r

which is a modular form of dimension− r
2 and stafeN. These were investigated

by Hecke in a famous paper (Hamburger Abhandlungen 1927). Kloosterman
could carry out his theory for these also. We shall, however,compromise on
the quadratic form.

We had the generating function

Fr (x) =
∑

n

xn′S n, |x| < 1,
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= 1+
∞∑

n=1

Ar (n)xn.

Fr (x) is a modular form. This can be seen directly by the transformation
formulae. Let us start with Kloosterman’s method and see what happens. The
problem is to get

Ar (n) =
1

2πi

∫

C

Fn(x)
xn+1

dx

At a certain moment later on we shall need a greater knowledgeof Fr (x)
Let us carry out the Farey dissection:

x = e2πi h
k−2πz

= e2πi h
k−2π(δN−iϕ)

Ar (n) =
∑

0≤h<k≤N

e−2πi h
k n

V ′′
hk∫

−V ′
hk

Fr (e
2πi h

k−2πz)e2πnzdϕ

with (h, k) = 1, V ′hk =
1

k(k1+k) , V ′′hk =
1

k(k+k2) where in the Farey situation, 354
h1
k1
< h

k < h2
k2

. The refinement of Kloosterman consists in not merely making
the rough remark that

1
2kN

≤ V
′

hk,V
′′

hk ≤
1

k(N + 1)
,

but in a finer following up of the number theoretical determination of the adja-
cent fractions. We have

h1k− hk1 = −1, hk2 − h2k = −1;

i.e., hk1 ≡ 1 modk, hk2 ≡ −1 modk

h
k is given. What we are worried about is, how long is its environment.k1 and
k2 are given as solutions of certain congruences. We have the habit of calling
h′ a number such that

hh′ ≡ −1 (modk); so let us write

k1 ≡ −h′ (mod k), k2 ≡ h′ (mod k)

So we know in which residue class modulok k1 andk2 have to lie.k1 + k, 355

being the denominator of a mediant, had to excedN. N < k1 + k ≤ N + k, or
N − k < k1 ≤ N. Sok1 has a span of sizek. This along withk1 ≡ −h mod k
determinesk1 completely. Similarly, fork2, N − k < k2 ≤ N So there is no



42. Lecture 259

uncertainty at all aboutV ′hk, V
′′

hk; and we could single them out if we insisted
on that.

For example, lethk =
5
9, N = 12; what are the neighbours?h1

k1
< 5/9 < h2

k2
.

First determineh′. 5h′ ≡ −1 (mod 9) orh′ = 7. Then 12− 9 < k1 ≤ 12 and
k1 ≡ −7 (mod 9), sok1 = 11. Similarly 3 < k2 ≤ 12, k2 ≡ 7 (mod 9) so
k2 = 7. We need onlyk1 andk2; but for our own enjoyment let us calculateh1

andh2. ∣
∣
∣
∣
∣
∣
∣
∣

h, 5

11 9

∣
∣
∣
∣
∣
∣
∣
∣

= −1,

∣
∣
∣
∣
∣
∣
∣
∣

5 h2

9 7

∣
∣
∣
∣
∣
∣
∣
∣

= −1,

or h1 = 6,h2 = 4, so that we have611 <
5
9 <

4
7 as adjacent fractions in the Farey

series of order 12. We do not need to display the whole Farey series.
Now utilise this in the following way.

Ar (n) =
∑′

o≤h<k≤N

e2πi h
k n

1
k(k+k2)∫

− 1
k(k1+k)

Fr

(

e2πi h
k−2πz

)

e2πnzdϕ

Kloosterman does the following investigation. In any case we are sure thatk1,
k2 can at most becomeN. If we takek1 andk2 big we have a small interval of
integration. Since

k1 + k < k1 + 1+ k < · · · < N + k,

k2 + k < k2 + 1+ k < · · · < N + k,

1
k1 + k

>
1

N + k
,

1
k2 + k

>
1

N + k
,

so that the interval of integration should be at least as big as the interval 356

−1/k(k + N) to 1/k(k + N). This interval is always present whatever bek1

andk2. SoAr (n) is equal to the always present kernel

∑′

0≤h<k≤N

e2πi h
k n

1
k(k+N)∫

−1
k(k+N)

(· · · )dϕ,

with the possible additional terms

∑′

0≤h<k≤N

e−2πi h
k n

N−1∑

ℓ=k2

1
k(k+ℓ)∫

1
k(k+ℓ+1)

(· · · )dϕ
∑

0≤h<k≤N

e−2πi h
k n

N−1∑

ℓ=k1

1
k(k+ℓ+1)∫

−1
k(k+ℓ)

(· · · )dϕ
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There is no doubt about the integrals. The limits are all well-defined. This
will help us to appraise certain roots of unity closely-by the Kloosterman sums. 357

We shall now return to the integrand; that is aV -function and requires the
usualV treatment. Consider ther-fold V -series:

Θ(t) =
∑

n

e−πtn′S n,Ret > 0.

Modify this slightly by introducing a vectorα of real numbers;
α′ = (α1, . . . , αr ). Let

Θ(t;α1, . . . , αr ) =
∑

n

e−πt(n′+α′)S(n+α)

This is periodic inα j , of period 1, and so permits a Fourier expansion. The
convergence is so good that the function is analytic in eachα j and so we are
sure that it is equal to the sum

∑

m

C(m)e2πim′α

whereC(m) is the Fourier coefficient:

C(m) =
∫ 1

0
· · ·

∫ 1

0
Θ(t; β1, . . . , βr )e

−2πim′βdβ1, . . .dβr

=

∫ 1

0
· · ·

∫ 1

0

∑

n

e−πt(n′+β′)S(n+β)e−2πim′βdβ1, . . . , dβr

=

∫ 1

0
· · ·

∫ 1

0

∑

n

e−πt(n′+β′)S(n+β)e−2πim′(n+β)dβ1, . . . , dβr

which is an integral over the unit cubeW, and so on translation with respect to358

the vectorn, becomes

∑

n

∫

· · ·
∫

W+n

e−πt(V SV )e−2πim′V dV 1 · · ·dVr

(the exchange of integration and summation orders being trivial)

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
e−πtV ′DV e−2πim′V dV1 . . .dVr .
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Let us return to the generalised theta-formula: 359

Θ(t;α1, . . . αr ) =
∑

n

e−πt(n′+α)S(n+α)

=

∑

m

c(m)e2πim′α

where

c(m) =

∞∫

· · ·
∫

−∞

e−πtV ′SV e−2πim′V dV1 . . .dVr

To get this into shape, consider the quadratic complement

−π
t
(tV ′ + im′S−1)S(tV + iS−1m) = −πtV ′SV − πiV ′m− πim′V +

π

t
m′S−1m

Sincem′V = V ′m,

c(m) =

∞∫

· · ·
∫

−∞

e−
π
t m′S−1me−

π
t (tV ′

+im′S−1)S(tV +iS−1m)dV1...dVr

= e−
π
t m′S−1m

∞∫

· · ·
∫

−∞

e−π(
√

tV ′
+

i√
t
m′S−1)S(

√
tV + i√

t
S−1m)dV1 · · ·dVr

Put
√

tV = w andµ = 1√
t
m′S−1. Then 360

c(m) =
e−

π
t m′S−1m

(
√

t)r

∞∫

· · ·
∫

−∞

e−π(w′+iµ′)S(w+iµ)dw1 · · ·dwr

261
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Since every positive definite quadratic form may be turned into a sum of
squares, we can putS = A′A, so that the exponent in the integrand become
−π(w′A′ + iµA′)(Aw+ iAµ); and writingAw= z, we have

c(m) =
e−

π
t m′S−1m

(
√

t)r

∞∫

· · ·
∫

−∞

e−π(z′+iV ′)(z+iV ) dz1 . . .dzr
|A|

whereV = µA, and|A| = determinant ofA. Let D = |A|2 = |S|, z′ = (z1, . . . , zr).
Then

c(m) =
e−

π
t m′S−1m

D1/2tr/2

r∏

j=1

∫ ∞

−∞
e−π(z j+iV j )2

dz j

=
e−

π
t m′S−1m

D1/2tr/2

(∫ ∞

−∞
e−πz

2
dz

)r

=
e−

π
t m′S−1m

D1/2tr/2
,

the last factor being unity. So we have ultimately

Θ(t;α1, . . . , αr ) =
1

D1/2tr/2

∑

m

e−
π
t m′S−1me2πim′α

Let us now we back to our study ofAr (n). We had integrals with now limits 361

which were the special feature of the Kloosterman method.

Ar (n) =
∑′

0≤h<k≤N
e−2πi h

k n

1
k(k+N)∫

− 1
k(k+N)

Fr

(

e2πi h
k−2πz

)

e2πnzdz +
N−1∑

ℓ=0

· · · +
N−1∑

ℓ=0

· · ·

Now

Fr (x) =
∑

n

xn′S n
= 1+

∞∑

n=1

Ar (n)xn

Fr

(

e2πi h
k−2πz

)

=

∑

n

e(2πi h
k−2πz)n′S n

=

∑

n

e2πi h
k n′S ne−2πzn′S n
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n is of interest only modulok, so put

n = kq+ ℓ, ℓ = (ℓ1, . . . , ℓn), 0 ≤ ℓ j < k.

So dismissing multiples ofk,

Fr (e2πi h
k−2πz) =

∑

ℓ mod k

e2πi h
k ℓ
′Sℓ′

∑

q

e−2πzk2(q′+ ℓ′
k )S

(

q+
ℓ

k

)

,

and applying the transformation formula we derived earlier, with t = 2zk2 and
α = 1

kℓ, this becomes

1
√

Dkrer/2zr/2

∑

ℓ

e2πi h
k ℓ
′Sℓ

∑

m

e
− π

2zk2 m′S−1m
e2πim′

ℓ′
k

=
1

√
Dkr (2z)r/2

∑

m

e−
π

2zk2 m′S−1mTk(h,m),

on exchanging summations, where 362

Tk(h,m) =
∑

ℓ

e2 πi
k (hℓ′Sℓ+m′ℓ)

Tk(h, 0) will be the most important; the others we only estimate. Werequire
a little more number theory for this. We cannot tolerate the presence of a both
a quadratic form and a linear form in the exponent. There willbe a common
denominator inm′S−1m and that will have to be discussed.



Lecture 44

We had 363

Fr (e2πi h
k−2πz) =

1
kr (2z)r/2D1/2

∑

m

e−
π

2zk2 m′S−1mTk(h,m),

and Tk(h,m) =
∑

ℓ mod k

e
2πi
k (hℓ′Sℓ+m′ℓ)

The common denominator inm′S−1m will be at mostD, the determinant;
definek∗ andDk by

kD = k · (k,D) · Dk = k∗Dk, (Dk, k) = 1,

so thatDk is D stripped of all its common divisors withk. Suppose first thatk
is odd. Letρ be a solution of the congruence

4hDkρ ≡ 1 (modk∗)

Tk(h,m) =
∑

ℓ mod k

e2πi h
k (ℓ′Sℓ+4Dkρm′ℓ)

=

∑

ℓ mod k

e2πi h
k (ℓ′+2Dkρm′S−1)S(ℓ+2DkρS−1m)e−(4D2

kρ
2m′S−1m)2πi h

k .

= e−2πi h
k ·4D2

kρ
2m′S−1m

∑

ℓ mod k

e2πi h
k (ℓ′+2Dkρm′S−1)S(ℓ+2DkρS−1m)

= e−2π
Dkρ

k m′S−1m
Uk,

say, (using the definition ofρ), whereUk = Uk(h,m) is periodic inm with 364

period (k,D); it is enough if we take this period to beD itself. So

Fr (e2πi h
k−2πz) =

1
kr (2z)r/2D1/2

∑

s mod D

Uk(h, s)
∑

m≡s (mod D)

e
−
(

π

2zk2+2πi
Dkρ

k

)

m′S−1m

264
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This is a linear combination of finitely manyV -series of the form
∑

m≡s (mod D)

xm′S−1m

The power series goes in powers ofx
D because1

D remains silent inside. This
is for k odd.

Fork even, define.σ by

hDkσ ≡ 1 (mod 4k∗)

Tk(h,m) =
∑

ℓ mod k

e2πi h
4k (4ℓ′Sℓ+4Dkσm′ℓ)

= e−2πi h
4k D2

kσ
2m′S−1m

∑

ℓ mod k

e2πi h
4k (2ℓ′+Dkσm′S−1)S(2ℓ+DkσS−1m)

= e−2πi
Dk
4k σm′S−1m

Uk(h,m),

whereUk again has a certain periodicity; we can take the period to be 2D and 365

forget about the refinement. So

Fr

(

e2πi h
k−2πz

)

=
1

kr (2z)r/2D1/2

∑

s mod 2D

Uk(h, s)
∑

m≡s (mod 2D)

e
−
(

π

2zk2+
2πi
4k Dkσ

)

m′S−1m

which is again a linear combination of theta-series with coefficientsUk. Ob-
serve thatTk andUk differ only by a purely imaginary quantity:

|Tk(h,m)| = |Uk(h,m)|,

and form= 0, Tk(h, 0) = Uk(h, 0).
We shall use as essential only those theta-series which are congruent to

zero moduloD or 2D; and the rest will be thrown into the error term. Only
these corresponding too have a constant term. The general shape in both cases
is ∑

s mod 2D

Uk(h, s) =
∑

m≡s (mod 2D)

xm′S−1m
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We have to get a clear picture of that we are aiming at. We are discussing the 366

function under the integral sign. We get it as

Fr

(

e2πi h
k−2πz

)

=
1

kr (2z)r/2D1/2

∑

s mod 2D

Uk(h, s)

∑

m≡s (mod 2D)

e
−
(

π

2k2z
+2πi

Dkσ
4k

)

m′S−1m

wherek ·D = k∗Dk, (k,Dk) = 1. k is even; ifk is odd the formula looks finitely
many different values. This most important fact we formulate as a lemma.

Lemma 1. For k even,Uk(h, s) depends only on h modulo 2D.

This depends on a theorem on the behaviour of quadratic formsthe equiv-
alence of quadratic forms modulo a given number. This is a lemma of Siegel’s
(Annals of Mathematics, 1935, 527-606).

Let us recall that fork even

Tk(h,m) =
∑

ℓ mod k

e2π i
k (h ℓ′ S ℓ+m′ ℓ)

= e−2πi h
4k Dkσm′S−1m

Uk(h,m)

Lemma 2.
|Tk(h,m)| ≤ Ckr/2

We have

|Tk(h,m)|2 =
∑

ℓ mod k

e2πi h
k (ℓSℓ+σm′ℓ)

∑

λ mod k

e−2πi h
k (λ′ Sλ+σm′ ℓ)

266
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=

∑

ℓ,λ

e2πi h
k (ℓ′ S ℓ− λ′ Sλ+σm′(ℓ −λ)),

and since 367

ℓ′ S ℓ− λ′ S λ = (ℓ′ − λ′)S(ℓ+ λ) + λ′ S ℓ− ℓ′ Sλ
= (ℓ′ − λ′)S(ℓ+ λ) + ℓ′ S ℓ− ℓ′ Sλ
= (ℓ′ − λ′)S(ℓ+ λ),

this is equal to
∑

ℓ,λ

e2πi h
k (ℓ′ −λ′)(S(ℓ +λ)+σm)

=

∑

α mod k

∑

ℓ− λ≡α mod k

e2πi h
kα
′(S(ℓ+ λ)+σm)

=

∑

α mod k

∑

ℓ−λ≡ mod k

e2πi h
kα
′(S(2λ+α)+σm)

=

∑

α mod k

e2πi h
kα
′(Sα+σm)

∑

λ mod k

e2π h
k 2α′Sλ

If we write 2α′S = β′, the inner sum is 368

∑

λ1,...λr mod k

e2πi h
k (β1λ1+···+βrλr ) = k2, if k | β1, . . . , k | βr ;

0 otherwise

So|Tk(h,m)|2 = 0 if at least oneβ is not divisible byk; otherwise it is equal
to

kr
∑

α mod k

e2πi h
kα
′(Sα+σm)

Writing S = (sjk), the system of congruences

2α1s11 + 2α2s21 + · · · + 2αr sr1 ≡ 0 (modk)

· · · · ·
· · · · ·

2α1s1r + 2α2s2r + · · · + 2αr srr ≡ 0 (modk)

has at most 2r |S|r solutions, and thus

|Tk(h,m)|2 ≤ 2r |S|rkr ,
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i.e., |Tk(h,m)| ≤ 2r/2|S|r/2kr/2.

We shall now outline the main argument a little more skillfully, putting the 369

thing back on its track.Ar (n) is the sum of integrals over the finer-prepared
Farey arcs of Kloosterman:

Ar (n) =
1

2r/2D1/2

∑′
0≤h<k≤N

e−2πi h
k n

1
k(k+N)∫

− 1
k(k+N)

e2πnz

zr/2

∑

s mod 2D

Uk(h, s)Θs

(

e
− π

2k2z
+

2πi
4k Dkσ

)

dϕ +
1

2r/2D1/2

∑

h,k

e−2πi h
k n

N−1∑

ℓ=k2

1
k(k+ℓ)∫

1
k(k+ℓ+1)

+
1

2r/2D1/2

∑

h,k

e−2πi h
k n

N−1∑

ℓ=k1

− 1
k(k+ℓ+1)∫

− 1
k(k+ℓ)

· · · ,

where

Θs(x) =
∑

m≡s (mod 2D)

xm′S−1m;

= S0 + S2 + S1, say,

=




S00+

∑

m,0

S0m




+




S20 +

∑

m,0

S2m




+




S10 +

∑

m,0

S1m





in an obvious notation. Now treat the things separately. By inspection of
Uk(h,m) we find how it depends onh, it is only modulo 4k∗. We have to
reconcile Lemma 1 with this. This actual period therefore isneither 2D nor
4k∗ but the greatest common divisor

(2D, 4k∗) = 2(D, 2k∗) = 2

(

d,
kD
Dk

)

=
2
Dk

(DDk, 2kD) =
2D
Dk

(Dk, 2k)

=
2D
Dk

or
4D
Dk

So we have 370



45. Lecture 269

Corollary of Lemma 1. Uk(h,m) for k even depends onh only modulo2D
Dk
=

∧, say.

S00 =
1

2r/2D1/2

∑

0≤h<k≤N

e−2πi h
k nTk(h, o)

1
l(k+N)∫

− 1
k(k+N)

e2πnz

zr/2
dϕ

This goes into the principal term. We shall make it a little more explicit
later.

Som =
1

2r/2D1/2

∑′
0≤h<k≤N

e−2πi h
k n

Uk(h,m)e2πi
Dk
4k σm′S−1m

1
k(k+N)∫

− 1
k(k+N)

e−
π

2k2zm′S−1m

zr/2
dϕ

=
1

2r/2D1/2

N∑

k=1

Kk(n,m)

1
k(k+N)∫

− 1
k(k+N)

· · · ,

where 371

Kk(n,m) =
∑′

h mod k
e−2πi h

k Uk(h,m)e2π i
4k Dkσm′S−1m

=
1
a

∑

λ mod∧
Uk(λ,m)

∑

h≡λ (mod∧)
h mod 4k∗

e−
2πiahn.4+2πiV σ

4k∗ ,

where 4k∗ = ak, a ≤ 4D, andV =
k∗

k Dkm−1S−1m
We definedσ by

hDkσ ≡ 1 (mod 4k∗)

Let
DD̄k ≡ 1 (mod 4k∗), hH̄ ≡ 1 (mod 4k∗)

Then

Kk(n,m) =
1
a

∑

λ mod∧
Uk(λ,m)

∑

h≡λ (mod∧)
h mod k∗ ,(h,k∗)=1

e
−2πiahn+2πiV σ

4k∗ DkD̄k

=
1
a

∑

λ mod∧
Uk(λ,m)

∑′
h≡λ (mod∧)

h mod k∗

e
2πi
4k (−4anh+V D̄kh̄)

The inner sum here is a Kloosterman sum. It has essentially 4k∗ terms. A 372

trivial estimate of this would beO(k), and this is what we had tacitly assumed
in the older method. The advantage here is, however, that they can be appraised
letter. We shall not estimate them here but only quote the result as
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Lemma 3.

Kk(u, ν) =
∑

h≡λ (mod∧)
h mod k

e2π i
k (uh+νh̄),∧ | k, hh̄ ≡ 1 (modk)

= O
(

k1−α+ǫ (u, k)α
)

There has been a lot of discussion about the size of theα in this formula.
Kloosterman and Esternann proved thatα = 1

4 (Hamb, Ab. 1930), Salie’ that
α = 1/3 and A.Weil thatα = 1

2 (P.N.A.S’, 48) Weil’s was a very complicated
and deep method going into the zeta-functions of Artin type and the Riemann
hypothesis for these functions.

We thus save a good deal in the order of magnitude. The furtherS’s will be
nearly similar; the complete Kloosterman sums will be replaced by sums with
certain conditions.

|Som| ≤ C
N∑

k=1

k1−α+ǫ (n, k)α

kr/2
e−

π
4 (m′S−1m− 1

D )

1
k(k+N)∫

− 1
k(k+N)

e
−R

(

π

2k2z
· 1

D

)

|z|r/2 dϕ

SinceR
1
k2 z ≥ 1

k on the Farey arc, the integrand is majorised by

e
− π

2D
δN

k2|δ2N+ϕ
2 1
|k2(δ2

N + ϕ
2)|−r/4

= δ
−r/4
N





δN

k2(δ2
N + ϕ

2)





r/4

e
− π

2D
δN

k2(δ2N+ϕ2)

= O(nr/4)

|Som| ≤ Cnr/4

√
n∑

k=1

k1−α+ǫ (n, k)αe−
π
4 m′S−1m 1

k
√

n
,

since the path of integration has a length of the order 1/k
√

n. Now summing 373

over allm, 0,

∣
∣
∣
∣
∣
∣
∣
∣

∑

m,0

Som

∣
∣
∣
∣
∣
∣
∣
∣

≤ Cn
r
4−

1
2

√
n∑

k=1

k−α+ǫ (n, k)α

< Cn
r
4−

1
2

∑

d|n
dα

∑

dt≤
√

n

(dt)−α+ǫ

= Cn
r
4−

1
2

∑

d|n
dǫ

∑

t≤
√

n
d

t−α+ǫ
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< Cn
r
4−

1
2

∑

d|n
dǫ

( √
n

d

)1−α+ǫ

= Cn
r
4−

α
2+

ǫ
2

∑

d|n
dα−1,

and since the number of divisors ofn is O(nǫ/2). This is 374

= Cn
r
4−

α
2+

ǫ
2+

ǫ
2

= Cn
r
4−

α
2+ǫ

Improvingα has been the feature of many investigations.
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All the other sums that we have to estimate behave some what similarly. We 375

take as specimenS20.

S20 =
1

D1/22r/2

∑′
o≤h<k≤N

e−2πi h
k nTk(h, o) × 1

kr
×

N−1∑

ℓ=k2

1
k(k+ℓ)∫

1
k(k+ℓ+1)

e2πnz

zr/2
dϕ

=
1

D1/22r/2

N∑

k=1

1
kr

N−1∑

ℓ=N−k+1

1
k(k+ℓ)∫

1
k(k+ℓ+1)

e2πnz

zr/2

∑

h mod k
N−k<k2≤ℓ

e−2πi h
k nTk(h, o)dϕ

The original interval fork2 was bigger:N − k < k2 ≤ N. Now the full
interval is not permissible, i.e., we have admitted not all residues modulok, but
only a part of these, and theN may lie in two adjacent classes of residues.

Here we have a new type of sum of interest. We know how to discussTk; h
plays a role there. The sums we have now get are

∑

λ mod∧
Tk(λ, o)

∑′
h≡λ (mod∧)

N−k<k2≤ℓ

e−2πi h
k n

The inner sum is an incomplete Ramanujan sum, with restriction on k2 376

implying (see lecture 45) actually a restriction onh! The Kloosterman sums
are a little more general:

∑

hh̄≡1 (modk)

e2π i
k (uh+V h̄)

Our present sums are incomplete Kloosterman sums (withV = o andu =

272
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1), and the interesting fact is that they also permit the sameappraisal, viz.

O
(

kr/2k1−α+ǫ (k, n)α
)

From there on things go just as smoothly as before.

S2o = O





√
n∑

k=1

k−r/2k1−α+ǫ (k, n)α

1
k(N+1)∫

1
k(k+N)

dϕ

(δ2
N + ϕ

2)r/4





and here for convergence of the integral we wantr ≥ 3. This would give again
the old order. Similar estimates hold for the other pieces:

∑

m,o

S2m = O
(

nr/4 − α
2
+ ǫ

)

(The incomplete Kloosterman sums here are actually incomplete Ramanu-
jan sums and so we may got a slightly better estimate; but thisis of no conse-
quence as the other terms have a higher order). 377

We then have

Ar (n) = Soo +O
(

nr/4−α/2−ǫ
)

, α =
1
2
.

Let us look atSoo. It is classical, but not quite what we like it to be.

Soo =
1

D1/22r/2

∑′

o≤h<k≤N

e−2πi h
k n Tk(h, o)

kr

1
k(k+N)∫

1
k(k+N)

e2πnz

zr/2
dϕ +O

(

nr/4−α/2+ǫ
)

Replace the integral by an infinite integral:

1
D1/22r/2

√
n∑

k=1

Hk(n)
kr

∞∫

−∞

2πnz
zr/2

dϕ +O
(

nr/4−α/2+ǫ
)

,

with Hk(n) =
∑

h

e−2πi h
k nTk(h,o)

= O
(

kr/2k1−α+ǫ (k, n)α
)

,

thereby adding an error term of order

O





√
n∑

k=1

k−
r
2+1−α+ǫ (k, n)α

∞∫

1
kN

dϕ

(δ2
N + ϕ

2)r/4




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Now

∞∫

1
kN

dϕ

(δ2
N + ϕ

2)r/4
=

∞∫

1
kN

dϕ
(

1+
(
ϕ

δN

)2
)r/4

δ
1−r/2
N

= O





n
r
2−1

∞∫

N
k

dψ

(1+ ϕ2)r/4





with ψ = N2ϕ. ψ is never smaller than 1 asNk > 1. So we can drop 1 in the 378

denominator without committing any error in the order of magnitude. So this
gives

O



n
r
2−1

∫ ∞

N
k

dψ

ψr/2





and the integral converging forr ≥ 3, it is equal to

O



n
r
2−1

( √
n

k

)− r
2+1

 = O
(

n
r
4−

1
2 k

r
2−1

)

Hence our new error term is

O





√
n∑

k=1

k−α+ǫ (n, k)αn
r
4−

1
2




= O

(

nr/4−α/2+ǫ
)

which is what has already appeared.
We than have on writing 2πnz = ω,

Ar (n) =
1

D1/22r/2

√
n∑

k=1

Hk(n)
kr

1
i
(2πn)

r
2−1

c+i∞∫

c−i∞

eω

ωr/2
dω +O

(

nr/4−α/2+ǫ
)

,

and the integral being the Hankel integral for the gamma-function, 379

Ar (n) =
(2π)r/2nr/2 − 1

D1/22r/2

√
n∑

k=1

Hk(n)
kr

1
Γ(r/2)

+O
(

nr/4−α/2+ǫ
)

=
πr/2

Γ

(
r
2

)

D1/2
nr/2−1

∞∑

k=1

Hk(n)
kr
+O

(

nr/4−α/2+ǫ
)
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+O




n

r
2−1

∞∑

k=
√

n+1

k
r
2+1−α+ǫ (k, n)α

kr





This new error term is

O





n
r
2−1

∑

d|n
dα

∑

q>
√

n
d

(qd)1− r
2−α+ǫ





= O





n
r
2−1

∑

d|n
d1+ǫ−r/2

∑

q>
√

n
d

q−r/2





(This is because for the Ramanujan sum we have)

∑′

h mod k

e−2πi h
k n
=

∑

d|(k,n)

dµ

(

k
d

)

= O




(k,m)

∑

d|(k,n)

1




= O

(

(k, n)1+ǫ
)

;

and then we use the old appraisal (k1−α+ǫ (k, n)α with α = 1+ ǫ). So we have 380

O




n

r
2−1

∑

d|n
d1+ǫ−r/2

( √
n

d

)−r/2+1



= O




n

r
4−

1
2

∑

d|n
dǫ




= O

(

nr/4−1/2+2ǫ
)

This is of smaller order than the old error term. So we have ourfinal result:

Ar (n) =
πr/2

Γ(r/2)D1/2
nr/2−1

∞∑

k=1

Hk(n)
kr
+O

(

nr/4−α/2+ǫ
)

;

the singular series plus the error term.
What remains to be shown is that the singular series again enjoys the mul-

tiplicative property:
Hk1k2(n) = Hk1(n)Hk2(n)

We shall then have it as the product
∏

p

γp

where γp = 1+
Hk(n)

pr
+

Hp2(n)

p2r
+ · · ·

The arithmetical interpretation now becomes difficult, because all the prop- 381

erties that the quadratic form may have will have to show up. One or other of
the factorsγp may be zero in which case we have no representation.
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We should like to throw some light on the Kloosterman sums. Wetake for
granted the estimate

∑′
h mod k

hh̄≡1 (modk)

e2π i
k (uh+V h̄)

= O
(

k1−α+ǫ · (k, u)α
)

Kloosterman and Esterman (Hamburger Abhandlungen Vol.7) provedα = 1
4;

Salie’ (Math. Zeit., vol. 36) provedα = 1
3. Using the multiplicativity, in a

certain sense, of the sums, Salie’ could prove that ifk = pβ, p prime andβ ≥ 2,
thenα = 1

2 but he could not prove this in the other cases. The difficult case was
that of

∑′
h mod p

e2πi/p(uh+V h̄).

For this nothing better thanO
(

p2/3+ǫ(p, u)1/3
)

could be obtained; and it de-
fied all efforts until A.Weil provedα = 1/2 in all cases by using deep methods
(Proc. Nat. Acad. Sc.1948). Further application of the Kloosterman sums offer
no difficulty.

The (generalised) Kloosterman sums are symmetrical inu andV , for
∑′

h≡λ(∧)
h mod k

e
2πi
k (uh+V h̄)

=

∑′

h̄≡λ̄(∧)
h mod k

e
2πi
k (uh̄+V h)

since (λ,∧) = 1, h ≡ λ (mod∧) andhh̄ ≡ 1 (mod∧) imply h̄ ≡ λ̄ (mod∧) 382

andλλ̄ ≡ 1 (mod∧). The last we can write as

∑′
h mod k

g(h̄)e
2πi
k (uh+V h̄),

whereg(m) is the periodic function defined as

g(m) =






1 if m≡ λ̄ (mod∧)

0 otherwise.

g(m) has therefore the finite Fourier expansion

g(m) =
∧∑

j=1

C je
2πi j m

∧

The coefficientsc j can be calculated in the usual way:

cq =
1
∧e

−2πiqλ̄
∧ mq= 1, 2, . . . ,∧
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Substituting forCq, the sum becomes

∑

j mod∧
C j

∑′

h mod k
e2πi j h̄

∧ e2π i
k (uh+V h̄)

=
1
∧

∑

j mod∧
e−2πi j λ̄∧

∑

h mod k

e
2π i

k

(

uh+(V + jk
∧ )h̄

)

so that the generalised sum becomes a finite combination of undisturbed
Kloosterman sums and so has the estimateO

(

k1−α+ǫ (k, u)α
)

This works just as well in the other case when there is an inequality on h̄. 383
∑

h≡λ (mod∧),h mod k
a≤h̄≤b

e
2πi
k (uh+V h̄)

=

∑

h≡λ (mod∧)
h mod k

f (h̄)e
2πi
k (uh+V h̄)

where f (m) =






1, 0 < m≤ a,

0, a < m≤ k,

and f (m) is periodic modulok.
Then

f (m) =
k∑

j=1

c je
2πi j m

k

where

c j =
1
k

e−
2πi j

k − e−2πi j (a+1)/k

1− e−2πi j/k
, j , k,

ck =
a
k

|c j | ≤
2

ksinπ j/k

The sum becomes 384

k−1∑

j=1

c j
∑′

h mod k
h≡λ (mod∧)

e
2πi
k (uh+(V + j)h̄)

+ ck
∑′

h mod k
h≡λ (mod∧)

e
2πi
k (uh+V h̄)

= O
(

k1−α+ǫ (h, k)α
)






1+
1
k

k−1∑

j=1

1

| sin π j
k |






Since sinα ≥ 2
π
,

2

k−1
j∑

j=1

1

sin π j
k

≤ 2
π

2

∑ 1
π j
k
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= k
∑

j≤ k−1
2

1
j
= O(k logk)

so that again the sum becomes

O
(

k1−α+ǫ (k, u)α
)

Kloosterman first discussed his method for a diagonal quadratic form. Later
on he applied it to modular forms and for this he could derive on the investiga-
tions by Hecke comparing modular forms with Eisenstein series. In this case
the theory becomes simpler: we can subtract suitable Eisenstein series and the
principle term then becomes zero. Ther-fold theta-series that we had are in
fact modular forms.
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