PRACTICE TEST PAPER

Let $f: A \to B$ and $X \vdash A, Y \vdash A$ then which of the following is wrong?

A)
$$f(X \cup Y) = f(X) \cup f(Y)$$

B)
$$f(X \cap Y) = f(X) \cap f(Y)$$

C)
$$f'(X \cup Y) = f'(X) \cup f'(Y)$$

D)
$$f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$$

2. Which of the following statements is wrong?

- A) Countable union of countable sets is countable
- B) The set of all rational numbers is countable
- C) The set of all rational numbers in the interval [0, 1] is countable
- 山) The set QxQ is not countable

3 The statement "If A is any nonempty subset of set of real numbers that is bounded above, then A has a least upper bound" is well known as

- A) greatest lower bound axiom
- B) least upper bound axiom
- C) continuum axiom
- D) none of the above

4. The Cantor set K is

A) countably finite

B) countably infinite

C) not countable

D) none of the above

5. The l.u.b of the set $\left\{1, \frac{1}{2}, \frac{1}{3}, \dots \right\}$ is

A) 1

B) (

C) does not exist

D) none of the above

6. Every monotone decreasing sequence of real numbers is

- A) bounded above
- B) bounded below
- C) neither bounded above nor below
- D) bounded

7.	Let A be a bounded set, then which of the following is always true? A) both l.u.b and g.l.b belongs to A B) neither g.l.b nor l.u.b belongs to A C) either l.u.b or g.l.b belongs to A D) exactly one of (A), (B) and (C) holds			
8.	Let $s_n = (-1)^n$ ($n \in I$) then $\lim \sup_{n \to \infty} S_n =$ A) 0 B) 1 C) 1 D) does not exist			
9.	9. If $\{S_n\}_{n=1}^{\infty}$ is a sequence of real numbers that is not bounded above, then $\lim \sup_{n\to\infty} S_n = \underline{\hspace{1cm}}$			
	A) 0 B) 1 C) infinity D) minus infinity			
0.	The limit inferior of the sequence 1, 2, 3, 1, 2, 3, is A) 1 B) 2 C) 3 D) 0			
	1. Which of the following is true? A) $\{(-1)^n\}_{n=1}^\infty$ is $(C, 1)$ summable and $\{n\}_{n=1}^\infty$ is not $(C, 1)$ summable B) $\{(-1)^n\}_{n=1}^\infty$ is $(C, 1)$ not summable but $\{n\}_{n=1}^\infty(C, 1)$ summable C) neither $\{(-1)^n\}_{n=1}^\infty$ is $(C, 1)$ summable nor $\{n\}_{n=1}^\infty$ $(C, 1)$ summable D) both $\{(-1)^n\}_{n=1}^\infty$ and $\{n\}_{n=1}^\infty$ are $(C, 1)$ summable			
2. Let $\{a_n\}_{n=1}^{\infty}$ be a non decreasing sequence of positive terms then which of the following is not true?				
	A) $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges implies $\sum_{n=1}^{\infty} a_n$ converges			
	B) $\sum_{n=0}^{\infty} 2^n a_{2^n}$ diverges implies $\sum_{n=1}^{\infty} a_n$ diverges			
	C) $\sum_{n=0}^{\infty} 2^n a_{2^n}$ diverges need not imply $\sum_{n=1}^{\infty} a_n$ diverges			
	D) $\sum_{n=0}^{\infty} a_n$ converges implies $\lim_{n\to\infty} na_n = 0$			

- The series $1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\dots$ is
 - A) convergent

B) divergent

C) oscillatory

- D) none of (A), (B) or (C)
- 14. Let f(x) = x $(0 \le x \le 1)$. Let $\sigma = \left\{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1\right\}$ be a division of [0, 1] then
 - $U[f; \sigma] =$
 - A) $\frac{3}{8}$

B) $\frac{5}{8}$

C) 0

- D) $\frac{1}{2}$
- 15. The function $f(x) = \frac{\sin x}{x} (x \neq 0)$ and f(0) = 1 is
 - A) Not Riemann integrable in [0, 1]
 - B) Riemann integrable in [0, 1]
 - C) Not Riemann integrable in [1, 2]
 - D) Not Riemann integrable in any interval [a,b]
- 16. Let f(x) be defined in [0, 1] as follows
 - f(x) = 1 when x is rational and
 - f(x) = 0 when x is irrational

Then the upper integral of f over [0, 1] is

- A) 1
- B) 0
- C) $\frac{1}{2}$
- D) $\frac{1}{3}$

- 17. The improper integral $\int_{0}^{1} \frac{\sin x}{x^2}$ is
 - A) convergent
 - B) divergent
 - C) neither convergent not divergent
 - D) none of (A), (B) or (C)

18. Which one of the following statements is not true?

- A) Every convergent sequence is Cauchy
- B) Every Cauchy sequence is convergent
- C) A convergent sequence has a unique limit
- D) If a Cauchy sequence has a convergent subsequence, then the wisequence is convergent

19. In R' the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ is

- A) convergent but not Cauchy
- B) not convergent but Cauchy
- C) convergent Cauchy sequence
- D) neither convergent nor Cauchy

20. Which one of the following statements is not true?

- A) Every Cauchy sequence is bounded
- B) Every bounded sequence is Cauchy
- C) Every monotone non decreasing sequence which is bounded above convergent
- D) The discrete metric space R_d is complete

21. Which one of the following statements is not true?

- A) The metric space ℓ^2 is complete
- B) A metric space is compact if it is totally bounded and complete
- C) A metric space is compact iff it has Heine-Borel property
- D) A finite metric space need not be compact

22. The closure of $(0, 1) \subset \mathbb{R}^1$ is

- A) (0, 1]
- B) [0, 1)
- C) (0, 1)
- D) [0, 1]

23. Let $f: M_1 \to M_2$ be a continuous function, then which of the following is false

- A) f(A) is open whenever $A \subset M_1$ is open
- B) $f^{-1}(A)$ is open whenever $A \subset M_2$ is open
- C) $f^{-1}(A)$ is closed whenever $A \subset M_2$ is closed
- D) f(A) is connected whenever $A \subset M_1$ is connected

Which one of the following is false?

- A) closed subset of compact space is compact
- B) compact subset of a metric space is closed
- continuous image of compact metric space is compact
- D) the metric space R1 is compact

25. Which one of the following is false?

- A) A continuous function on a closed bounded interval in R' is bounded
- B) The set (0,1) < R1 is compact
- C) The metric space R2 is complete
- D) A continuous function on a compact metric space is always uniformly continuous
- 26. The function $f(x) = x^2$, $x \in \mathbb{R}^1$ is
 - A) uniformly continuous on R1
 - B) continuous but not uniformly continuous on R1
 - C) not continuous on R1
 - D) uniformly continuous but not continuous on R'
- 27 Let M be a metric space with the property "M has no non-empty proper subset which is both open and closed", then M is
 - A) compact

B) dense

C) connected

- D) not connected
- 28. The function $f(z) = |z|^2$ is
 - A) analytic at origin
 - B) differentiable at origin
 - C) not differentiable at origin
 - D) not continuous at origin
- 29. Let f(z) = u + iv be a complex valued function of complex variable z = x + iy, the

equations
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$
 are called

- A) Laplace equations
- B) Gauss' equations
- C) Cauchy Riemann equations
- D) None of the above

30. For a complex variable z, Taylor expansion for et is

A)
$$1+\frac{z}{1!}+\frac{z^2}{2!}+\dots$$

B)
$$1 - \frac{2^{1}}{1!} + \frac{2^{2}}{2!} + \dots$$

C)
$$\frac{z}{1!} + \frac{z^2}{2!} + \dots$$

D)
$$\frac{z}{1!} - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots$$

 $\sqrt{31}$. The set $\{z : |z-1| + |z-5| = 10\}$ represents

A) a circle

B) ellipse

C) hyperbola

D) parabola

32. The equation of a circle with center at a and radius r is

- A) z = a + r
- B) |z r| = |a|
- C) |z a| = r
- D) $(z a)^2 = r^2$

 $\sqrt{33}$. The equation |z-1|=|z-3| represents

- A) the line x y = 2
- B) the circle $x^2 + y^2 = 4$

C) the line x = 2

D) the line y = 2

34. The points represented by z_1 , z_2 , z_3 , z_4 lie on a circle if and only if their c ratio is

- A) purely imaginary
- B) real

C) zero

D) 1

25. Let arg $\left(\frac{z-z_1}{z-z_2}\right) = 4$, then z lies on a

A) circle

B) ellipse

C) hyperbola

D) parabola

36. The Taylor expansion of $\frac{1}{1-z}(|z|<1)$ is

A)
$$\frac{z}{1!} + \frac{z^2}{2!} + \dots$$

B)
$$1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots$$

C)
$$1 + z + z^2 + ...$$

D)
$$1 - z + z^2 - ...$$

 $\sqrt{37}$. Let $\omega = (\cos \theta + i \sin \theta)$ then $\omega^5 =$

A)
$$\cos^5 \theta + i \sin^5 \theta$$

B)
$$\cos \theta + i \sin \theta$$

C)
$$\cos 5\theta + i \sin 5\theta$$

D)
$$\cos^5 \theta - i \sin^5 \theta$$

38. Let $x + \frac{1}{x} = 2$, then $x^n + \frac{1}{x^n} =$

A) 2

B) n

C) 2n

D) 2ⁿ

789. The value of the integral $\int_{|z|=1}^{\infty} \frac{dz}{z}$ is

A) 2π

B) 2πi

C) 0

D) 1

The value of the integral $\int_{|z-1|=1}^{\infty} \frac{zdz}{(z-1)^2}$ is

- A) 2π
- B) 2πi
- C) 0
- D) 1

 \mathcal{M} . The function $f(z) = \overline{z}$ is

- A) analytic everywhere
- B) differentiable everywhere
- C) nowhere differentiable
- D) nowhere continuous

42. Let z_1 , z_2 be complex numbers then arg $(z_1z_2) =$

A) $arg(z_1) arg(z_2)$

- B) $arg(z_1) + arg(z_2)$
- C) $arg(z_1) arg(z_2)$
- D) $arg(z_1) / arg(z_2)$

43. A nonempty subset H of a group (G,) is a subgroup of G if and only if a,b H implies

A) $a+b\in H$

B) $(a \cdot b)^{-1} \in H$

C) $a \cdot b^{-1} \in H$

D) a · b∈H

44. Intersection of two subgroups of a group

A) is a subgroup

B) need not be a subgroup

C) is always empty

D) contains only one element

45. Let H be a subgroup of G. For a, $b \in G$, we say that a is congruent to b mod H

if

A) a divides b

B) b divides a

C) a · b ∈ H

D) $a \cdot b^{-1} \in H$

 46. Let H be a subgroup of a finite group A) O(G) divides O(H) C) O(H) = O(G) 	O.G. Then, B) O(H) divides O(G) D) O(H) ² divides O(G)		
47. Let G be a finite group and H be a su	ubgroup of G. Then index of H in G is eq		
A) number of elements in HB) number of distinct right (left) coC) number of distinct right (left) co			
D) number of elements in G H			
48. Let H and K be the two subgroups of and only if	of a group G. Then HK is a subgroup of		
A) $HK = H$	B) KH = K		
C) HK < KH	D) HK = KH		
An infinite cyclic group hasA) only one generatorC) three generators	B) two generators D) infinite generator		
50. If $f: G \to G'$ is a homomorphism then ker f is			
A) not a subgroupC) normal subgroup	B) abelian subgroup D) cyclic subgroup		
51. A homomorphism f: G → G' is oneA) ker f is nontrivialC) ker f = {e}	-one if and only if B) ker f = φ D) ker f = G		
52. A cycle of a permutation $f = \begin{pmatrix} 1 & 2 \\ 4 & 2 \end{pmatrix}$	$\begin{pmatrix} 3 & 4 & 5 & 6 \\ 3 & 5 & 1 & 6 \end{pmatrix}$ is		
A) (2 3 6) B) (1 4 5)	C) (1 2 3) D) (1 5 4)		
 A ring R with unity is called a division A) R is a group w.r.t. multiplication B) R is a group w.r.t. addition C) Non zero elements of R is a group D) Non zero elements of R is a group 	sion ring if on aroup w.r.t. multiplication		

- The set of all even integers under addition and multiplication forms a ring
 - A) with unity

- B) without unity
- C) with zero divisors
- D) with multiplicative inverse
- 55. A ring R is called simple if
 - A) R has nontrivial ideals
 - B) R has only trivial ideals
 - C) R has only one nontrivial ideals
 - D) None of these
- 56. Let R be a commutative ring with unity. An ideal M of R is called maximal ideal of R if and only if
 - A) R/M is a field
 - B) R_M is a division ring
 - C) R/M contains divisors of zero
 - D) R_{M} is a proper ideal
- 57. An ideal P of R is called a prime ideal of a b∈ P implies
 - A) $a \in P$ and $b \in P$

B) $a \in P$ or $b \in P$

C) a∉P and b∉P

- D) a and b are prime
- 59. Fourier transform of a function f(x), $F\{f(x)\} =$
 - A) $\frac{1}{\sqrt{2\pi}} \int_{0}^{\pi} e^{ipx} f(x) dx$

B) $\frac{1}{2\pi} \int e^{i\rho x} f(x) dx$

C) $\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} f(x) dx$

- D) $\sqrt{2\pi} \int_{0}^{\infty} e^{ipx} f(x) dx$
- 59. The infinite Fourier sine transform of f(x), $0 < x < \infty$ is defined by $F_s\{f(x)\} =$
 - A) $\sqrt{2\pi} \int_{0}^{\infty} f(x) \sin px \, dx$
- B) $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin px \, dx$
- C) $\frac{1}{\sqrt{2\pi}} \int_{0}^{\pi} f(x) \sin px \, dx$
- D) $\sqrt{\frac{\pi}{2}} \int_{0}^{\infty} f(x) \sin px \, dx$

If $\tilde{f}_{\epsilon}(p)$ is a Fourier cosine transform of f(x) then Fourier cosine transform of f(ax) is

A) $\frac{1}{a}\tilde{f}_c(ap)$

B) $a\tilde{f}_{c}(ap)$

C) $a\tilde{f}_c(\frac{p}{a})$

D) $\frac{1}{a}\tilde{f}_{c}\left(\frac{p}{a}\right)$

ైనే. If $\tilde{f}(p)$ is a complex Fourier transform of f(x) then complex Fourier transform of f(x - a) is

A) $e^{ipa}\tilde{f}(p)$

B) $e^{ipa} \tilde{f}(p-a)$

C) $e^{-ipa} \tilde{f}(p)$

D) $e^{-ipa} \tilde{f}(p-a)$

\$22. If $\tilde{f}_s(p)$ is Fourier sine transform of f(x) then Fourier sine transform of f(x) cos ax

- A) $\frac{1}{2} \left[\tilde{f}_s(p+a) \tilde{f}_s(p-a) \right]$
- B) $\frac{1}{2} \left[\tilde{f}_s(p+a) + \tilde{f}_s(p-a) \right]$
- C) $2\left[\tilde{f}_s(p+a)+\tilde{f}_s(p-a)\right]$
- D) None of these

63. If $\tilde{f}(p)$ is a complex Fourier transform of f(x) then complex Fourier transform of

f'(x) is

B) $p\tilde{f}(ip)$

A) $ip\tilde{f}(p)$

D) - ip Î(p)

 \sim 84. If F and G are integrable functions over $(-\infty,\infty)$ then convolution of F and G C) $-p\overline{f}(-ip)$

H(x) = F * G(x)

- C) $\int_{-\infty}^{\infty} F(x-u) G(x-u) du$
- B) $\int_{-\infty}^{\infty} F(u) G(x u) du$ D) $\int_{-\infty}^{\infty} F(x + u) G(u) du$

65. The kernel of the Hankel transform H, {f(x)} is

A) $\times J_n$ (px)

B) $J_{\mu}(px)$

C) $\frac{1}{x}J_n(px)$

D) xf(x)

168. If $\tilde{f}(p) = \int_{0}^{\infty} f(r) r J_n(pr) dr$ is the Hankel transform of the function f(r) then by inversion formula, f(r) =

A) $\int_{0}^{\infty} \overline{f}(p) p J_{n}(pr) dp$

B) $\int_{0}^{\infty} \tilde{f}(p) r J_{n}(pr) dp$

C) $\int_{0}^{\infty} \widetilde{f}(p) \operatorname{pr} J_{n}(\operatorname{pr}) dp$

D) $\int_{0}^{\infty} \tilde{f}(p) J_{n}(pr) dp$

 $\sqrt{67}$. The Hankel transform of $\frac{e^{-ax}}{x}$ taking $xJ_0(px)$ as the kernel, is

A) $(a^2 + p^2)^{\frac{1}{2}}$

B) $(a^2 - p^2)^{-\frac{1}{2}}$

C) $(a^2 - p^2)^{\frac{3}{2}}$

D) $(a^2 + p^2)^{\frac{3}{2}}$

68. The Hankel transform of $\frac{e^{x}}{x}$ taking x J₁(px) as the Kernel is

A) $\frac{[(1+p^2)^{\frac{1}{2}}-1]}{p}$

B) $\frac{[(1+p^2)^{\frac{1}{2}}-1]}{p}$

C) $\frac{[(1-p^2)^{-\frac{1}{2}}+1]}{p}$

D) $\frac{[(1-p^2)^{-1/2}-1]}{p}$

69. If $\tilde{f}(p) = \frac{e^{-ap}}{p}$, (n = 0) then H ${}^{1}{\{\tilde{f}(p)\}} =$

A) $(a^2 + x^2)^{-\frac{1}{2}}$

B) (a^2+x^2)

C) $(a^2 - x^2)^{-\frac{1}{2}}$

D) $(a^2 + x^2)^{\frac{1}{2}}$

70. If p is a root of the equation $J_n(pa) = 0$ then $H_n\left\{\frac{df}{dx}\right\} = 0$

A)
$$\frac{p}{2n}[(n-1)H_{n+1}\{f(x)\}-(n+1)H_{n+1}\{f(x)\}]$$

B)
$$\frac{2p}{n}[(n-1)H_{n+1}\{f(x)\}+(n+1)H_{n-1}\{f(x)\}]$$

C)
$$\frac{p}{2n}[(n-1)H_{n-1}\{f(x)\}-(n+1)H_{n+1}\{f(x)\}]$$

D)
$$\frac{2p}{n}[(n-1)H_{n+1}\{I(x)\}+(n+1)H_{n+1}\{f(x)\}]$$

71. Let $T:U\to V$ be linear transformation and dimU = dim V. If T is on to then

A)
$$R(T) = U$$

B)
$$R(T) = V$$

72. If T: $V_2 \rightarrow V_3$ is such that T(1, 0) = (1, 2, 3), T(0, 1) = (2, 3, 1) and S: $V_2 \rightarrow V_3$ is such that S(1, 0, 0) = (-1, 0, 1), S(0, 1, 0) = (0, 1, 2) and S(0, 0, 1) = (1, -1, 0)D) (-1, 2, 8) then (ST) (0, 1) is C) (2, -1, -5)

C)
$$(2, -1, -5)$$

73. Let $T:U\to V$ and $S:V\to W$ be two linear transformations then ST is one-one

A) S is one-one

B) T is one-one

C) ST is onto

D) $ST = \{0\}$

74. A linear map T is idempotent if and only if

A) $T^{-1} = 1$

B) T2 = 1

C) $T^2 = T$

D) T = T-1

75. If $T:U \rightarrow V$ is linear transformation then Rank T + Nullity T =

A) dim U

C) infinity

D) dim U+dimV

76. The set $\{(1, 2), (2, 4)\}$ is

- A) Linearly independent
- B) Linearly dependent

C) Basis of R2

D) None of these

- 77. |<U, V> | ≤
 - A) ||u|||v||

B) |u||v|

C) ||u|+||v||

- D) None of these
- 78. $\|u+v\|^2 + \|u-v\|^2$ is equal to
 - A) $\|u\|^2 + \|v\|^2$

B) $\|u\|^2 - \|v\|^2$

C) $2[\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2]$

- D) $2[\|u\|^2 \|v\|^2]$
- 79. An orthogonal set of non-zero vectors in an inner product space V is
 - A) Linearly dependent
- B) Orthogonal
- C) Linearly independent
- D) Zero space
- 80. The set {(1, 1), (2, 3) } is
 - A) Linearly dependent
- B) Basis
- C) Linearly independent
- D) None of these
- 81. The least number of negative roots of the equation $x^5 + 2x^4 3x^3 8 = 0$ is
 - A) 2

B) 3

C) 4

- D) 5
- 82. The equation of sphere centered at C(2, 3, -4) and radius 4 is

A)
$$x^2 + y^2 + z^2 - 4x - 6y + 8z - 13 = 0$$

B)
$$x^2 + y^2 + z^2 - 4x + 6y + 8z + 13 = 0$$

C)
$$x^2 + y^2 + z^2 - 4x - 6y + 8z + 13 = 0$$

D)
$$x^2 + y^2 + z^2 - 4x - 6y - 8z - 13 = 0$$

- 83. If one of the roots of an equation is $\alpha + i\beta$, then its one of the other roots is
 - A) $-\alpha + i\beta$

B) $-\alpha - i\beta$

C) $\alpha - i\beta$

D) β – iα

84. The second degree equation of sphere with center (u. v.-w) and radius -

$$\sqrt{u^2 + v^2} + w^2 - d is$$

A)
$$x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$$

B)
$$x^2 + y^2 + z^2 + 2ux + 2vy + 2wz - d = 0$$

C)
$$x^2 + y^2 + z^2 - 2ux - 2vy - 2wz + d = 0$$

D)
$$x^2 + y^2 + z^2 - 2ux - 2vy - 2wz - d = 0$$

85. An equation of the lowest degree with rational coefficients having $\sqrt{5}$ + $2\sqrt{6}$ as one of its roots, is

A)
$$x^4 + 10x^2 - 1 = 0$$

B)
$$x^4 - 10x^2 + 1 = 0$$

C)
$$x^4 - 10x^2 - 1 = 0$$

D)
$$x^4 + 10x^2 + 1 = 0$$

86. The expansion of cos x is

A)
$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\dots$$
 B) $x-\frac{x^3}{3!}+\frac{x^5}{5!}\dots$

B)
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} \dots$$

C)
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

D) none of these

87. Let f(D) y = 0 be the linear differential equation with constant coefficients. If the auxiliary equation of this equation has the roots 2 and 3 then its complete solution is given by

A)
$$y = Ae^{3x} + Be^{2x}$$

B)
$$y = Ae^{-3x} + Be^{-2x}$$

C)
$$y = Ae^{-3x} + Be^{2x}$$

D)
$$y = Ae^{3x} + Be^{-2x}$$

where A and B are constant.

88. $1 - x + x^2 - x^3 +$ (x \neq 1) is the expansion of

A)
$$\frac{1}{1+x}$$

A)
$$\frac{1}{1+x}$$
 B) $\frac{1}{-x}$

D) log x

89. Let f(D) y = 0 be the linear differential equation with constant coefficients. If the auxiliary equation of this equation has the roots $\pm i$ then its complete solution is given by

A)
$$y = e^x (A \cos x + 3 \sin x)$$

B)
$$y = e^{ix}(A\cos(x) + B\sin(x))$$

C)
$$y = A \cos(x) + B \sin(x)$$

D)
$$y = A \cos ix + B \sin ix$$

where A and B are constant

- go. The distance between two points $\left(4, \frac{4\pi}{6}\right)$ and $\left(2, \frac{\pi}{6}\right)$ is given by
 - A) $-2\sqrt{5}$

B) 20

C) √5

- D) $2\sqrt{5}$
- g1. The function f(x, y) with $A = f_{xx}(a, b)$, $B = f_{xy}(a, b)$ and $C = f_{yy}(a, b)$ has an extreme value at (a, b) if
 - A) $AC B^2 > 0$

B) $AC - B^2 < 0$

C) $AB - C^2 > 0$

- D) $AB C^2 < 0$
- 92. The Geometric series $\sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n$
 - A) is convergent

B) diverges to ...

C) diverges to -∞

- D) oscillates
- 93. The value of the $\lim_{x\to\infty} x \sin \frac{1}{x}$ is equal to
 - A) -1

B) 0

C) 1

D) none of these

- 94. The value of $\beta(1, 2)$
 - A) $\frac{1}{2}$

B) $\frac{1}{4}$

C) 2

- D) 3
- 95. Which one of the following is not an indeterminate form?
 - A) ∞ + ∞

B) ∞-∞

C) ∞/∞

- D) 1°
- 96. One of the solutions of the differential equation $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$ is e^{-x} if
 - A) 1 P Q = 0
 - B) 1 + P Q = 0
 - C) 1 + P + Q = 0
 - D) 1 P + Q = 0

97. The Laplace Transform of $\frac{\sin t}{t}$ is $\tan^{-1}\left(\frac{1}{s}\right)$ then Laplace transform of $\frac{\sin at}{t}$ is

A)
$$\tan^{-1}\left(\frac{a}{s}\right)$$

B)
$$\tan^{-1}\left(\frac{s}{a}\right)$$

(D)
$$\tan^{-1}\left(\frac{1}{as}\right)$$

98. Solution of the differential equation $yz \log zdx - zx \log zdy + xydz = 0$ is

A)
$$e^{x \log z} = cy$$

$$B) x + y + z = C$$

$$C$$
) $x \log z = cy$

99. The solution of partial differential equation $(D^2 - 7DD' + 12D'^2)z = 0$ is

A)
$$z = \phi_1(y - 3x) + \phi_2(y - 4x)$$

B)
$$z = \phi_1(y + 3x) + \phi_2(y - 4x)$$

C)
$$z = \phi_1(y - 3x) + \phi_2(y + 4x)$$

D)
$$z = \phi_1(y + 3x) + \phi_2(y + 4x)$$

100. The infinite series $\sum \frac{1}{n^{3/2}}$ is

A) convergent

B) divergent

C) oscillates

D) none of these