REAL ANALYSIS II

MULTIPLE CHOICE QUESTIONS

UNIT 1:

1.	The function f is continuous at a \in M if $\lim f(x) =$
	x→a
	(a) f(b)
	(b) f(c)
	(c) f(a) *
	(d) $f(x)$
2.	The open ball of radius r about a is defined by
	(a) B[r,a]
	(b) B[a,r] *
	(c) B[-r,a]
	(d) B[-a,r]
	∞
3.	$\{Xn\}$ is a sequence in M_1 such that $\lim Xn = $
	$n=1$ $n \rightarrow \infty$
	(a) -a
	(b) o
	(c) 1
	(d) a *
4.	Every function from Rd is continuous on
	(a) Rd *
	(b) -Rd
	(c) R^2d
	(d) R^3d
5.	$<$ M, $\rho>$, both M and ϕ are
	(a) 1
	(b) Open sets *
	(c) 0
	(d) -1
6.	Every subset of Rd is
	(a) open
	(b) closed
	(c) Open *
	(d) finite
7.	Every open subset G of R ' can be written as
	(a) 5
	(b) 3
	(c) open & closed
	(d) $G = U In *$

8.	E is a closed subset of M if E =
	(a) E *
	(b) W
	(c) G
	(d) U
9. T	The set \overline{E} of all limit points of E is called the
	(a) open
	(b) Closure of E *
	(c) open
	(d) compact
10. T	The subset A of M is said to be dense in M if $\overline{A} = \underline{\hspace{1cm}}$
	(a) N
	(b) L
	(c) M *
	(d) U
UNIT	2:
1. Eve	ry bounded subset of R ² is
	(a) Bounded
	(b) Not bounded
	(c) Totally bounded *
	(d) None
2. Eve	ry subsequence of a convergence sequence is
	(a) Divergent
	(b) Continuous
	(c) convergent *
	(d) Both (a) and (b)
2 Clo	ss of functions are called
J. Cia	(a) contractions *
	(b) Distractions
	(c) Divergent
	(d) Convergent
	(u) Convergent
1 (V	
	k) is a Cauchy subsequence of

(a) ∞
∞
(b) $\{Xn\}$ *
n=1
(c) 0
(d) Xn
5. The Metric space $\langle M, \rho \rangle$ is both complete and totally bounded is said to be
(a) scalar
(b) complete
(c) compact *
(d) discrete
6. The space Rd with finite subset is
(a) discrete
(b) complete
(c) compact *
(d) scalar
7. If M is a compact metric space then M has a
(a) Heine Borel Property *
(b) vector
(c) scalar
(d) mean value theorem
8. If F1, F2,,Fn \in f 1 then F1 \cap F2 \cap \cap Fn \neq
(a) 1
(b) 0
(c) 2
$(d) \phi^*$
9. The real valued function f as continuous at the point a \mathbb{R} ' if given $\varepsilon > 0$ there exist $\delta > 0$ such
that (a) 0
(a) 0 (b) 1
(c) (x) (u) \cdot c
(d) \phi
10. If the real valued function f is continuous on the closed bounded interval [a,b], then f is
(a) Uniformly Continuous *
(b) continuous
(c) convergent
(d) divergent

UNIT 3:

. If χ is a characteristic function of rational numbers [0,1] then for any interval JC [0,1] then $n[\chi,J]=$
(a) 0 *
(b) ∞
(c) -∞
(d) 1
2. If f is bounded function on the closed bounded interval [a,b], we say that f is
(a) Riemann – integral *
(b) Continuous
(c) Bounded
(d) None
b -b
$\int f(x).dx = \int f(x).dx = \underline{\qquad}$
ā a
(a) 1 *
(u) 1
(b) 0 (c) ∞
(c) ∞ (d) -∞
<u>b</u>
$f(x).dx = \underline{\qquad}$
a
u a constant a constan
(a) lub $U(f,\sigma)$
(b) glb $U(f,\sigma)$ *
(c) lub $U(g,\sigma)$
(d) glb $U(g,\sigma)$
∞
$E_{m}=$
m=1
(a) E *
(b) M
(c) En
(d) 0

```
6. E*m U E**m=____
```

- (a) E
- (b) E*
- (c) ∩E*
- (d) UE**

7.
$$U[f,\tau] - L[f,\tau] <$$

- (a) d|J|
- (b) a|J|
- (c) b|J|
- (d) c|J|

- a
 - a (a) $\int f$
 - b
 - b
 - (b) ∫ f a

 - d
 - (c) ∫ f c
 - c
 - (d) ∫ f d

9.If
$$f \in R(a,b)$$
 $g \in R(a,b)$ and $(f+g) \in R(a,b)$ then $\int_a^b (f+g) = \underline{\qquad}$

- b b (a) $\int f + \int g$
 - b b
- (b) $\int g + \int f$
 - a
 - b
- (c) $\int f$
 - a b
- ∫g (d)

10. Show that $f(x) = 2x+1$ is integrating on [1,2] and $\int (2x+1) dx =$
(a) 0
(b) 2
(c) 4 *
(d) -4
UNIT 4:
1. g is continous function defined by g(x)=
$(a) < \cos x, \sin x > *$
$(b) < -\cos x$, $\sin x >$
$(c) < \cos x, -\sin x >$
(d) $\langle -\cos x, -\sin x \rangle$
2. f is uniformly continous on R1, if given $\varepsilon > 0$, there exists
(a) $\delta > 0^*$
(b) δ>1
(c) δ<1
(d) δ <0
3. Subset B of R ² consisting of graph of $y=\sin(1/x)$, o <x<math>\le 1 together with theinterval on</x<math>
y-axis from <0,-1> to<0,1>
(a) Open
(b) Closed*
(c) Continuous
(d) Both (a) and (b)
4. Subset of R ² is bounded, iff it is contained in some square whose edge haslength
(a) infinite
(b) finite*
(c) none
(d) both (a) and (c)

5. Subset of R ² is bounded ,iff it is contained in some	_ whose edge has finite length
(a) Square*	
(b) rectangle	
(c) triangle	
(d) none	
6. The interval is not a bounded subset of R'	
(a) $(0,\infty)^*$	
(b) $(\infty,0)$	
(c) (0,1)	
(d) $(1,\infty)$	
7. Bounded and totally bounded are not at all	
(a) non- equivalent	
(b) Equivalent*	
(c) finite	
(d) none	
8. Since $\rho(ej,ek)=\sqrt{2}$, if $j \nmid k$, the sequence $\rho 1,\rho 2,\dots$ has	no
(a) Cauchy's sequence	
(b) Cauchy subsequence*	
(c) Convergent sequence	
(d) Divergent sequence	
9. Metric space[0,1] isfor [0,1] is a closed subset o	of R'
(a) Compact	
(b) Connect	
(c) Complete*	
(d) None	
10. Metric space is denoted by	
(a) <m,p></m,p>	
$(b) < M, \rho > *$	
$(c) < m, \rho >$	
(d) <m,p></m,p>	

UNIT5:

1. If f has a derivative at c and it is denoted by
(a) f(c)
(b) f '(c) *
(c) $f(1)$
(d) $f'(0)$
2. Define Rolle's theorem.
3. Write down the statement of mean value theorem.
4. If f has a derivative at c then it is at c.
(a) Neither or nor continuous
(b) Bounded
(c) Continous *
(d) Both (a) and (b)
5. If f has derivative at c and g has derivative at $f(c)$ then g_0 f has a at c.
(a) Compact
(b) Complete
(c) Connectedness
(d) Derivative *
6. If E is any subset of a metric space M then
(a) ĒCE
(b) E C Ē *
(c) E J Ē
(b) ∃ C Ē (b)
7. The union of a infinite number of closed sets need not be a
(a) Closed set *
(b) Open set
(c) Both (a) and (b)
(d) Union

8. If A and ϕ are both open and closed in metric space < A, ρ > then A is said to be
(a) Complete
(b) Compact
(c) Connected *
(d) Closed
9. If a subset A of the metric space $\langle M, \rho \rangle$ is totally bounded then A is
(a) Unbounded
(b) Bounded *
(c) Continuous
(d) Closed
10. The space R' is complete but not
(a) Connect
(b) Continuous
(c) Compact*
(d) None

K2 QUESTIONS:

UNIT 1:

1. If a homeomorphism from M_1 onto M_2 exist , we say that M_1 and M_2 are Answer: Homeomorphism
2. Metric space M is totally bounded if it has sets.
Answer: finite number
3. If f is continuous at a, then $\omega[f;a] =$
Answer: 0
4. If f is not continuous at a, then $\omega[f;a] > \underline{\hspace{1cm}}$
Answer: 0
5. Let $A = [0,1]$, which of the following subsets of A are open subset of A.
Answer: (1/2,1)
$6. \bar{A}1 \cap A2 = \underline{\hspace{1cm}}, A1 \cap \bar{A}2 = \phi$
Answer: ϕ
7. x and f are both continuous then x° f is
Answer: Continuous *
8. A is not bounded we write diam A =
Answer: ∞ *
9. If T: M \rightarrow m is a contraction on M then ρ (t_x, t_y) \leq
Answer: $\alpha (\rho(x, y))$
10. If every Cauchy sequence of sequence if points in M converges to points in M is called a
Answer: Complete metric space
UNIT 2:
1. Function f is bounded if its range f(A) is a
Answer: Bounded subset
2. If f is a real valued function on a set A that f attains a maximum value of a€A if
Answer: $f(a) \ge f(x)$, $x \in A$
3. If f is a real valued function on a set A that f attains a minimum value of a€A if
Answer: $f(a) \le f(x)$, $x ∈ A$
4. A function is continuous if and only if it is uniformly continuous then it is said to be
Answer: Compact metric space
5. The subset E of R' is said to be
Answer: Measure zero

6. U En =
n=1
Answer: Measure zero
7. I 1 =[X_{\circ} ,X1], I 2 =[X1,X2]In=[Xn-1,Xn] are called
Answer: Component interval of σ
8. $U[f:\sigma] \ge $
Answer: $L(f,\sigma)$
9. $\int f(x).dx = $
a Answer: lub L(f,σ)
10. If χ is a characteristic function of relational numbers [0,1] then for any interval J C [0,1] then $M[\chi,J]=$
Answer: 1
UNIT 3:
1. If T^* is any refinement of T , it may be show that $L[f;T] \leq \underline{\hspace{1cm}}$
Answer: L [f; T*]
$2. \sum In $ converges to
n —
Answer: \mathbf{U} En $n=1$
3. $\int_{0}^{\infty} \lambda f = \underline{\qquad \qquad b}$
Answer: $\lambda \int$
a 4. The function f is defined by $f(x)=x^2+2x$, $0 < x < 4$, then $f(x)$ is =

Answer: 15

5. F1 and F2 are closed subsets of metric M, then F1UF2 is
Answer: Closed
6. The union of an infinite number of closed sets is
Answer: need not be a closed set
7. The set is open if and only if its complement is
Answer: Closed
8. If f is continuous at a iff
Answer: $\lim_{n\to\infty} X_n = a$
9. M is a metric space with property
(a) Heine borel
10.If $ x-a < \delta$, then the limit exceeds from
Answer: $-\infty < a < \infty$
UNIT 4:
 Metric space <m,p> the sets M and \$\phi\$ are both</m,p> Answer: Open and closed If A is not bounded, then we write diam A equal to Answer: \$\infty\$
∞ 3. ∩ Fn contains n=1
Answer: One point 4. The non-empty subsets A1,A2,An of M exits such that
Answer: diam Ak < 1

5. Which one is correct form of 'contradiction'
Answer: $\rho(tx,ty) \le \alpha(\rho(x,y))$
6. Choose the correct example for conuity of the inverse function
Answer: $f(x)=x$
7. g is continuous function defined by
Answer: $g(x) = \langle \cos x, \sin x \rangle$
8. Let g be the continous function defined by $g(x) = \langle \cos x, \sin x \rangle$, $0 \le x \le 2\pi$, then g^{-1}
is
Answer: Continuous
9. f is homomorphism of
Answer: m1 onto m2
10. The space Rd with ∞ subset cannot be
Answer: Compact
UNIT 5:
1. If A is a closed subset of a compact metric space <m, ρ=""> then A is also</m,>
Answer: Compact
2. If M is a compact metric space then M has a property.
Answer: Heine – Borel
3. If the metric space M has a Heine-Borel property then M is
Answer: Compact
4. If f has a derivative at c then it is at c.
Answer: Continous
5. If f has derivative at c and g has derivative at f(c) then g o f has a at c.
Answer: Derivative
6. If E is any subset of a metric space M then
Answer: E C Ē
7. The union of a infinite number of closed sets need not be a
Answer: Closed set
8. If A and φ are both open and closed in metric space < A, ρ> then A is said to be Answer: Connected
9. If a subset A of the metric space <m, ρ=""> is totally bounded then A is</m,>
Answer: Bounded
10. The space R' is complete but not
Answer: Compact

REAL ANALSIS II

K2 QUESTIONS:

Unit 1

- 1. If the real valued functions f and g are continuous at a \in R', then so are f+g, f-g and fg. If g(a) \neq 0, then f/g is also continuous at 'a'.
- 2. If f and g are real valued functions, if f is continuous at a, and if g continuous at f(a), then $g \circ f$ is continuous at 'a'.
- 3. The real valued function f is continuous at a ϵ R' iff given ϵ >0 there exist δ >0 such that $|f(x)-f(a)| < \epsilon$, $|x-a| < \delta$.
- 4. The real valued function f is continuous at a \in R' iff the inverse image under f of any open ball B[f(a), r] about f(a) contains a open ball B[a, δ] about a.
- 5. The real valued function f is continuous at a \in R', iff whenever Xn n is the sequence of real numbers convergent to 'a'. Then the sequence Xn n converges to f(a) ie) f is continuous at 'a' iff $\lim_{n\to\infty} Xn = a$ $\Rightarrow \lim_{n\to\infty} Xn = f(a)$
- 6. The function f is continuous at a \in M if any one of the following condition holds
 - (i) Given $\varepsilon > 0$ there exist $\delta > 0$ such that $\rho_2(f(x), f(a)) < \varepsilon$, $\rho_1(x, a) < \delta$
 - (ii) The inverse image under f of any open ball $B[f(a), \varepsilon]$ about f(a) contains an open ball $B[a, \delta]$ about 'a'.
 - (iii) Whenever Xn_n^{∞} is a sequence of points in M, converging to 'a'.

Then the sequence $Xn = \int_{0}^{\infty} x^{n} dx$ of points in M₂ converges to f(a).

- 7. Let $<M_1$, $\rho_1>$, $<M_2$, $\rho_2>$ be metric spaces and let $f:M_1 \rightarrow M_2$ and $g:M_2 \rightarrow M_3$. If f is continuous at A \in M₁ and g is continuous at f(a) \in M₂. Then g(f) is continuous at A.
- 8. If f and g are continuous function from a metric space M_1 into a metric space M_2 then so are f+ g, f. g and f g further more $g(x) \neq 0$, $x \in M_1$.
- 9. Let £ be a non-empty family of open subsets of a metric space M. Then U_G is also in open subset of M.
- 10. If G_1 and G_2 are open subsets of metric space M then $G_1 \cap G_2$ is also an open set.

Unit 2:

- 1. Let <M, $\rho>$ be a metric space and let 'A' be a proper subset of M then the subset G of A is an open subset of metric space <A, $\rho>$ iff there exists an open subset G_M of metric space <M, $\rho>$ such that $G_A = A \cap G_M$ (ie) A set is open in metric space <A, $\rho>$ iff it is intersection of a set with 'A' that is open in metric space <M, $\rho>$.
- 2. Let $\langle M, \rho \rangle$ be a metric space and Let A be a subset of M, then if 'a' has either one of the following properties it has the other.
 - i) Non empty subset A_1 and A_2 of M such that $A=A_1 \cup A_2$, $A' \cap A_2 = \varphi$, $A_1 \cap A_2' = \varphi$
 - ii) When <A, $\rho>$ metric space then there is no set except A and φ which is both open and closed in metric space <A ,e> .This we say that A is connected.

- 3. The subset of A of R_1 is connected iff whenever $a \in A$, $b \in A$ with a
b then $C \in A$ for any C, such that a<c
b that is whenever $a \in A$, $b \in A$, a
b, then (a, b)C A.
- 4. Let F be a continuous function from metric space M_1 . If M_2 is connected then the range of F into connected.
- 5. Let M be a metric space then M is connected iff every continuous characteristic function on M, is constant c (ie) M is connected iff the function identically 'zero' and the function identically '1' are the only characteristic functions on M that are continuous on M.
- 6. If A_1 and A_2 be connected subsets of a metric space M and if $A_1 \cap A_2 \neq \varphi$ then $A_1 \cup A_2$ is also connected.
- 7. If the subset A of the metric space <M , $\rho>$ is totally bounded then A is bounded.
- 8. The subset A of the metric space <M, $\rho>$ is totally bounded if and only if for every $\varepsilon>$ 0, AO a finite subset $\{x_1,...,x_n\}$ which is ε dense in A.
- 9. Let <M, $\rho>$ be a metric space , the subset A of M is totally bounded iff every sequence of points of A contains a Cauchy sub sequences.

Unit 3:

- 1. The metric space $\langle M, \rho \rangle$ is compact iff every sequence of points in M has a subsequence converging to a point in M
- 2. If A is a closed subset of the compact metric space <M, $\rho>$ then the metric space <A, $\rho>$ is also compact
- 3. Let A be a subset of a metric space <M, $\rho>$ is <A, $\rho>$ is compact, then A is also closed subset of <M, $\rho>$
- 4. If M is a compact metric space then M has a Heine Borel property
- 5. If the metric space M has a Heine Borel property then M is compact.
- 6. The metric space M is compact iff whenever f is a family of closed subset of M with the finite intersection property then n F $\dagger \phi$ F \in f₁
- 7. Let f be a continuous function from compact metric space M_1 , into the metric space M_2^1 , then the range of f Ie) $f(m_1)$ is also compact
- 8. Let f be a continuous function from the compact metric space $M_1 \rightarrow M_2$ then the range of $f(M_1)$ of f is a bounded subset of M_2
- 9. If the real valued function f is continuous on closed bounded interval in R' then f must be bounded
- 10. If the real valued function f is continuous on the compact metric space M then f attains a maximum value at some point of M also f attains a maximum value at some point of M.

Unit 4:

- 1. If each of the subset $E_1, E_2,...$ Of R' is of measure zero, then $\bigcup_{n=1}^{\infty} E_n$ is also of measure zero
- 2. If f be a bounded function on [a, b] then every upper sum for f is greater than or equal to every lower sum of f that is if σ and T are any two subdivisions of [a, b] then $u[f, \sigma] \ge L[f,T]$

- 3. Let f be a bounded function on the closed bounded interval [a, b] then $f \in R$ [a, b] if and only if f is continuous at almost every point in [a, b]
- 4. If ω [f; x]< a for each x in a closed bounded interval J then there is a subdivision $\tau(J)$ such that U[f, τ]-L[f, τ] < a |J|
- 5. If $f \in R[a, b]$ and a < c < b then $f \in R[a, c]$, $f \in R[c, b]$ and , = +
- 6. If $f \in R[a, b]$ and λ is any real numbers then $\lambda \in R[a, b]$ and $\lambda \in R[a, b]$
- 7. Every countable subset of R' as measure zero
- 8. If $f \in R(a, b)$ and λ is any real number then $\lambda \in R(a, b)$ and $\lambda \in R(a, b)$
- 9. State and prove chain rule.
- 10. STATE AND

Unit 5:

- 1. Mean value theorem or Lagrange's mean value theorem.
- 2. If f is a continuous real valued function on the interval J and if f'(x) >0 for all x in J except possibly the end point of J then F is strictly increasing on J
- 3. Let f and g be continuous functions on the closed bounded interval [a, b] with g(a) f(b)if both f and g has derivative at each point of (a, b) and f'(t) and g'(t) are not both equal to zero for any $c \in (a, b)$ then there exist a point $c \in (a, b)$ such that f'(c)/g'(c) = f(b)-f(a)/g(b)-g(a)
- 4. If f is a continuous on a closed bounded interval [a, b] and if F(x)= at, $a \le x \le b$ Then F(x)=f(x), $a \le x \le b$
- 5. If the real valued function f has the derivative at the point $c \in R$ ' then f is continuous at c.
- 6. If $f \in R$ [a, b] if f(x) = dt as \leq and if f is continuous at $x \in [a, b]$ then f'(x)=f(x)
- 7. Let f be a continuous real valued function on the closed bounded interval [a, b]. If the maximum value for f is attained at c where a < c < b and if f'(c) exists then f'(c) = 0
- 8. Let f be a continuous real valued function on the closed bounded interval [a, b]. If the minimum value of f is attained at c where a < c < b and if f'(c) exists then f'(c) = 0
- 9. If f'(x)=0, for every x in the closed bounded interval [a, b] then f is constant and closed interval [a, b] f(x)=c, $a \le b \le c$ for some $c \in R$
- 10. IF f'(x)=g'(x) for all x in the closed bounded interval [a, b] when f-g is constant i.e) f(x)=g(x)+c.

REAL ANALSIS II

K3 QUESTIONS:

UNIT 1:

- 1. Every open set G of R' can be written G=U In where $I_1,I_2,...$ are mutually disjoint open intervals.
- 2. Let $\langle M_1, \rho_1 \rangle$ and $\langle M_2, \rho_2 \rangle$ be a metric spaces and let $f: M_1 \to M_2$ then f is continuous on M if $f^{-1}(G)$ is open in M_1 whenever G is open in M_2 . That is f is continuous iff the inverse image of every open set is open.
- 3. Let E be a subset of metric space M, then the point $x \in M$ is a limit point of E iff every open ball B[x; r] about x contains at least one point of E.
- 4. If F_1 and F_2 are closed subsets of metric M, then F_1 U F_2 is also closed.
- 5. If £ is a family of closed subsets of a metric space M then intersection or $\cap F$ is a closed set.

UNIT 2:

- 1. If $\langle M, \rho \rangle$ is a complete metric space, A is closed subset of M then $\langle A, \rho \rangle$ is also complete.
- 2. Let <M, $\rho>$ be a complete metric space for $n \in I$. Let Fn be a closed bounded subset of M such that
 - (i) F1 O F2 O.....Fn O Fn+1 O.....
 - (ii) Diam Fn $\rightarrow 0$ as n $\rightarrow \infty$ then $\bigcap_{n=0}^{\infty}$ Fn contains presely one point.
- 3. Let $\langle M, \rho \rangle$ be a complete metric space if T is a contraction on M then , there is one and only one point x in one such that T x =x
- 4. The subset A of Rd is totally bounded iff it contains only a finite number of points
- 5. If F is a continuous real valued function on the closed bounded interval [a,b] then f takes on every value between f(a) and f(b)

UNIT 3:

- 1. If the real valued function f is continuous on the closed bounded interval [a, b] then f attains the maximum or minimum values at point [a, b]
- 2. If f is a one to one continuous function from the compact metric space m1 onto the metric space m2, then f⁻¹ is continuous on m2 and hence f is homomorphism of m1 onto m2
- 3. Let <M, $\rho_1>$ be a compact metric space if f is continuous function from M₁ into M₂ a metric space <M₂, $\rho_2>$ then f is uniformly continuous on m1
- 4. If the real valued function is continuous on the closed bounded interval [a, b] then f is uniformly continuous on [a, b]

5. Let <M₁, $\rho_1>$ be a metric space and let A be a dense subset of M₁. If f is a uniformly continuous from <A, $\rho_1>$ into a complete metric space <M₂, $\rho_2>$ then f can be extended to a uniformly continuous function f from M₁into M₂

UNIT 4:

- 1. If $f \in R(a, b)$ $g \in R(a, b)$ and $(f+g) \in R(a, b)$ then $\int +\int$
- 2. Properties of the Rie-mann integral
- 3. If $f \in R[a, b]$, $g \in R[a, b]$ and if $f(x) \le g(x)$ almost everywhere $(a \le x \le b)$ then $\int \le \int$
- 4. If $f \in R[a, b]$ then $|f| \in R[a, b]$ and $|\int |\leq \int |\cdot|$
- 5. Let f be a bounded function on the closed bounded interval [a, b] then $f \in R[a, b]$ if and only if for each $\varepsilon > 0$ there exist a subdivision $\sigma([a, b])$ such that $U(f, \sigma) < L(f, \sigma) + \varepsilon$

UNIT 5:

- 1. Second fundamental theorem of calculus
- 2. If f and g both have derivatives at $c \in R'$ then f+g, f-g,fg also have derivatives at $c \in R'$ and (f+g)'c=f'(c)+g'(c) and (f-g)'c=f'(c)-g'(c) and (fg)'c=f'(c).g(c)+f(c) g'(c) further more if g'(c) \neq 0, then f/g has a derivatives at c and $(f/g)'c=g(c)f'(c)-f(c)g'(c)/[g(c)]^2$
- 3. Suppose f has a derivative of c and g has a derivative at f(c), then $\phi = g^{\circ}f$ has a derivative at c and $\phi'(c) = g'(f(c))f'(c)$
- 4. Let φ be a real valued function on closed bounded interval [a, b] such that φ ' is continuous on [a, b]. Let $A = \varphi(a) B = \varphi(b)$ then if f is continuous on $\varphi[a, b]$ we have $\int dx = \int \varphi'(x) dx$
- 5. If f has a derivative at every point of [a, b] . Then f' takes an every value between f'(a) and f'(b)