REAL ANALYSIS I

K1-LEVEL QUESTIONS

UNIT I

1.	Set is a collection of well definedobjects.
	a. Distinct
	b. same
	c. Equal
	d. None
2.	The objects in a set are called its
	a. objects
	b. Elements
	c. both a and d are true
	d. None
3.	In the set $A = \{a,b,c,d\}$, which statement is true?
	a. e belongs to A
	b. c belongs to A
	c. a belongs to A
	d. both b and c are true
4.	As a set which has no element is called
	a. infinite set
	b. Empty set
	c. universal set
	d. None
5.	The Cartesian product of A and B is the set of allwhere a \in
	A and $b \in B$.
	a. triplet
	b. single element
	c. Ordered pairs
	d. None
6.	In a function definition, $y = f(x)$, y is called
	a. Image of x under f
	b. range
	c. domain
	d. None
7.	In a function f from A into B, the set A is calledof f.
	a. range

	b. element
	c. object
	d. Domain
8.	Composition of functions satisfylaw.
	a. Associative
	b. identity
	c. absorption
	d. None
9.	If $f(x) = f(y)$ implies $x = y$, then the function is called
	a. One to One
	b. Many to one
	c. onto
	d. None
10	.If there exists one to one correspondence between the sets A and B, there
	A and B are called
	a. Equivalent
	b. not equivalent
	c. neither a nor b
	d. either a or b
	Unit II
11	In sequence s_i (i=1,2,) is called
	a. i th term of the sequence.
	b. n th term of the sequence.
	c. j th term of the sequence.
	d. none
12	.Which one is the sequence of the subsequence {2,3,5,7,}.
	a. {1,2,3,}
	b. {0,1,2,3,}
	c. {2,3,5,7,11,}
	d. none
13	.{1,3,5,} is the subsequence of
	a. {1,2,3,}
	b. {0,1,2,3,}
	c. {2,3,5,7,11,}
	d. none
14	. Which one is the subsequence of $\{1,0,1,0,\ldots\}$?
	a. {1,1,1,1,}

b. {0,0,0,0,}
c. both a and b
d. neither a nor b
15. The sequence $\{S_n\}$ has the limit L, then
a. $ \mathbf{S_n} - \mathbf{L} < \mathbf{\varepsilon}$
b. $ S_n + L < \varepsilon$
c. $ S_n L < \varepsilon$
d. None
16.In $\{1, \frac{1}{2}, \frac{1}{3}, \dots\}$, then the limit of the sequence is
a. 0
b. 1
c. 2
d. None
17. If a sequence of nonnegative numbers, then its limit
a. $L \leq 0$
$b. L \geq 0$
c. L < 0
d. None
18. If the sequence of real numbers has the limit L, then we say that the
sequence is
a. Convergent
b. Divergent
c. Oscillatory
d. None
19.A sequence c an not converge to limit.
a. More than one
b. More than two
c. same
d. None
20. Which one is convergent sequence?
a. {+1, -1, +1, -1,}
b. {1,2,3,}
c. {1,1,1,1}
d. None
Unit III
21. The limit of the sum of two convergent sequence is
a. L + M

b. L – M
c. LM
d. L/M
22. If $\lim_{n\to\infty} n$ then $\lim_{n\to\infty} n$?
a. cL
b. L
c. both a and b
d. None
23. If $0 < x < 1$, then $n = \infty$ converges to
a. 1
b. 0
c 1
d. None
24. The limit of the difference of two convergent sequence is
a. $L + M$
b. L - M
c. LM
d. L/M
25. The limit of the product of two convergent sequence is
a. L + M
b. L – M
c. LM
d. L/M
26. The limit of the quotient of two convergent sequence is
a. L + M
b. $L-M$
c. LM
d. L/M
$27.\lim_{n\to\infty}\frac{n}{n} = ?$
a. 1
b. 2
c. 0
d. None
28. If two sequences are diverge to infinity then their sum $=$?
a. Converge to L
b. Diverge to infinity
c. both a and b

d. None
29. If two sequences are diverge to infinity then their product $=$?
a. Converge to L
b. Diverge to infinity
c. Oscillatory
d. None
30.If $n \stackrel{\infty}{n}$ diverges to infinity and $n \stackrel{\infty}{n}$ converges, then their sum is -
a. Diverge to infinity
b. Convergent
c. oscillatory
d. None
Unit IV
31 is an ordered pair $\langle n \stackrel{\infty}{n} , n \stackrel{\infty}{n} \rangle$.
a. The series
b. The sequence
$\mathrm{c.} \sum_{n}^{\infty}$ $_{n}$
d. both a and c
32. In series, $n \in n$, the number n is called
a. The j th term
b. The i th term
c. The n th term
d. None
33. The number is called the n th partial sum of the series.
a. _n
b.
c. _n
d. None
34. If n is odd, what is the n th partial sum of the series $1 - 1 + 1$ ⁿ
··· ?
a. 1
b 1
c. 0
d. None
35. If n is even, what is the n^{th} partial sum of the series $1-1+$
-1^n ···?
a. 1
b. 0

c1				
d. None				
36.If the sequence is converges to A then the corresponding series is				
a. Converges to B				
b.Diverges				
c. Converges to A				
d. either a or b				
37.If the sequence is diverges then the corresponding series is				
a. Diverges				
b. Converges				
c. either a or b				
d. neither a or b				
38. The series $\sum_n 1/i$ s				
a. Convergent				
b. Divergent				
c. Both a and b				
d. either a or b				
39. Which one is alternate series?				
a. $\sum_n -1^n_n$				
b. $\sum_n -1^n_n$				
c. Both a and b				
d. Either a or b				
40. If $\sum_{n} n $ converges the we say that $\sum_{n} n$				
a. Converges conditionally				
b. Converges absolutely				
c. Both a and b				
d. Either a or b				
Unit V				
41.In metric spaces, f be a real valued function whose domain includes all				
points in some open interval except possibly the point a				
itself.				
a. (a - h, a + h)				
b. $(a + h, a + h)$				
c. $(a - h, a - h)$				
d. None				
42. \lim_{\rightarrow} , then the number is called				

	a. Right hand limit of f at a					
	b. Left hand limit of f at a					
	c. both a and b					
	d. none					
43.	\lim_{\rightarrow} , then the number is called					
	a. Left hand limit of f at a					
	b. limit of f at a					
	c. Right hand limit of f at a					
	d. None					
44.	If both the left and right hand limit exists and equal to L, then it is called					
	a. Limit of f.					
	b. Limit of a					
	c. Limit of b					
	d. none					
45.	If \lim_{\rightarrow} and \lim_{\rightarrow} then \lim_{\rightarrow} ?					
	a. L					
	b. F					
	c. A					
	d. None					
46.	What is the condition for the real valued function f is nondecreasing on J?					
	a. $f(x) \ge f(y)$ whenever $x>y$; $x,y \in J$					
	b. $f(x) \le f(y)$ whenever $x < y$; $x,y \in J$					
	c. $f(x) \le f(y)$ whenever $x=y$; $x,y \in J$					
	$d.f(x) \ge f(y)$ whenever $x < y$; $x,y \in J$					
47.	What is the condition for the real valued function f is nonincreasing on J?					
	a. $f(x) \ge f(y)$ whenever $x < y$; $x,y \in J$					
	b. $f(x) \le f(y)$ whenever $x < y$; $x, y \in J$					
	c. $f(x) \le f(y)$ whenever $x=y$; $x,y \in J$					
	d. $f(x) \le f(y)$ whenever $x > y$; $x,y \in J$					
48.	What is the condition for the real valued function f is monotone on J?					
	a. $f(x) \le f(y)$ whenever $x < y$; $x,y \in J$ and $f(x) \ge f(y)$ whenever $x < y$; x,y					
	\in J					
	b. $f(x) \le f(y)$ whenever $x > y$; $x,y \in J$ and $f(x) \ge f(y)$ whenever $x > y$; $x,y \in J$					
	c. $f(x) \ge f(y)$ whenever $x < y$; $x,y \in J$ and $f(x) \le f(y)$ whenever $x < y$; $x,y \in J$					
	d. None					
49.	If the left hand limit exists then we say that f is on (a,b).					

a. Bounded above

- b. Bounded below
- c. Bounded
- d. None
- 50. If the right hand limit exists then we say that f is ----- on (a,b).
 - a. Bounded above

b. Bounded below

- c. Bounded
- d. None

K2-LEVEL QUESTIONS

UNIT I

1. A set A is said to be if A is equivalent to the set I of positive
integers.
Countable
2is the another name for the Countable set.
Denumerable
3. A set which is not countable is called
Uncountable
4. The set of all integers is
countable
5. The set of all is uncountable.
Real numbers
6. The Countable union of countable set is
Countable
7. The set of all is countable.
Rational numbers
8. The glb of (7,8) is
7
9. The lub of (7, 8) is
8
10. If A is any nonempty subset of R that is bounded above, then A has
a
LUB
Unit II
11. Write one example for divergent sequence?
{+1, -1, +1, -1,}
12. If the sequence of real numbers convergent to L, then it's any
subsequence is convergent to
${f L}$
13 of a convergent sequence of real numbers converge to
the same limit.
All subsequences

14.	4. If the limit of a sequence is infinity, then the sequence is		
	Divergent		
15.	In divergent sequence, the limit of the sequence approaches to		
I	nfinity or minus infinity		
16.	Write one example for a divergent sequence?		
	n n		
17.	Which subsequence of the sequence $\{1, -2, 3, -4, 5, -6, \ldots\}$ is		
Ċ	livergent to minus infinity?		
{	[-2,-4, -6,] and {1,3,5,}		
18.	The sequence neither diverge to minus infinity nor infinity then the		
S	sequence is called		
(Oscillates		
19.	If the sequence real numbers is convergent then it is		
I	Bounded		
20.	is a sequence which is either nonincreasing or		
r	nondecreasing or both.		
	Monotone sequence		
	Unit III		
21.	What is the sum of $\{0,1,0,2,0,3,\}$ and $\{1,0,2,0,3,0,\}$?		
{	[1,1,2,2,3,3,]		
22.	The sum of $\{1,0,1,0,1,0,\ldots\}$ and $\{0,1,0,1,0,1,\ldots\}$ is a		
-	- sequence.		
	Convergent		
23.	The limit superior of the sequence {1, -1, 1, -2, 1, -3, 1, -4,} is		
_	1		
24.	In a convergent sequence, limit superior of the sequence is equal to		
- - -	Limit of the sequence		
25.	In sequence Limit superior of the sequence is equal to		
I	Limit of the sequence.		
(Convergent		
26.	$\lim_{n\to\infty} \inf f^n - 1 = ?$		
-	-		

Converges absolutely

41.	What is the condition for the real valued function f is strictly		
increasing on J?			
f(x	$(x) < f(y)$ whenever $x < y ; x, y \in J$		
12	What is the condition for the med valued function fix strictly		

42. What is the condition for the real valued function f is strictly decreasing on J?

f(x) > f(y) whenever x < y; $x,y \in J$

43. In a metric space $\langle M, \rho \rangle$, ρ is called ----- on M.

Metric

44. From the given below, which one is a metric space?

a. $|\mathbf{x} - \mathbf{y}|$

b. x - y

45. If ρ is a metric for a set M then 2ρ is -----.

Metric

46. If ρ and σ are two metrics for a set M, then $\sigma + \rho$ is -----.

Metric

47. In a metric space, a convergent sequence of points of M, then the corresponding sequence is a ----- sequence.

Cauchy

48. A sequence of points in any metric space cannot converge to ------ distinct limits.

Two

49. In some metric spaces there are ----- sequences which are not convergent.

Cauchy

50. A sequence converges in <M, $\rho>$ if and only if it converges in <M, $\sigma>$ and the limits are same then the two metrics are-----

Equivalent

K3- LEVEL QUESTIONS

UNIT 1

- 1. If $f: A \rightarrow B$ and if $X \subset B$, $Y \subset B$, then $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$. In words, the inverse image of the
- 2. If $f: A \rightarrow B$ and if $X \subset B$, $Y \subset B$, then $f^{-1}(XUY) = f^{-1}(X) \cup f^{-1}(Y)$. In words, the inverse image of the union of two sets is the union of the inverse images.
- 3. If $A_1, A_2,...$ are countable sets, then * U_n^{∞} A_n is countable . In words, the countable union of countable sets is countable.
- 4. If $f:A \rightarrow B$, $g:B \rightarrow C$, $h:C \rightarrow D$, prove that $h \circ (g \circ f) = (h \circ g) \circ f$.
- 5. Let f(x)=2x ($-\infty < x < \infty$). Can you think of function g and h which satisfy the two equation

$$g \circ f = 2gh$$
, $h \circ f = h^2 - g^2$?

- 6. The set of all rational numbers in [0,1] is countable.
- 7. If B is an infinite subset of the countable set A, then B is countable.
- 8. The set of all rational numbers is countable.
- 9. Which of the following define a 1-1 function?

(a)
$$f(x) = e^x(-\infty < x < \infty)$$
,

(b)
$$f(x) = (-\infty < x < \infty)$$
,

(c)
$$f(x)=ax+b(-\infty < x < \infty), a,b \in R$$
.

10. If A is any nonempty subset of R that is bounded below, then A has a greatest lower bound in R.

UNIT 2

1. If Sn^{∞}_n is a sequence of non negative numbers and if $\lim_{n\to\infty} Sn = L$, then $L \ge 0$

- 2. If the sequence of real numbers Sn^{∞}_n is convergent to L, then Sn^{∞}_n cannot also converge to a limit distinct from L. That is, if $lim_{n\to\infty}$ Sn =L and $lim_{n\to\infty}$ Sn=M, then L=M.
- 3. If the sequence of real number Sn_n^{∞} is convergent to L, then any subsequence of Sn_n^{∞} is also convergent to L.
- 4. All subsequence of convergent sequence of real numbers converge to the same element.
- 5. If the sequence of real numbers Sn_n^{∞} is convergent, then Sn_n^{∞} is bounded.
- 6. A non decreasing sequence which is bounded above is convergent.
- 7. The sequence $1 \frac{n}{n} = \frac{n}{n}$ is convergent.
- 8. A non decreasing sequence which is not bounded above diverges to infinity.
- 9. A non increasing sequence which is bounded below is convergent. A non increasing sequence which is not bounded below diverges to minus infinity.
- 10. Prove $\lim_{n\to\infty} 2n/(n+3) = 2$.

UNIT-3

- 1. If $\{s_n \ _n^{\infty} \ \text{ and } \{t^n \ _n^{\infty} \ \text{ are sequences of real numbers, if } \lim_{n \to \infty} s_n = L, \text{ and if } \lim_{n \to \infty} s_n = M, \text{ then } \lim_{n \to \infty} s_n + t_n = L + M. \text{ In words, the limit of the sum (of two convergent sequences) is the sum of the limits.}$
- 2. If $\{s_{n} \mid n \text{ is a sequence of real numbers, if } c \in \mathbb{R}, \text{ and if } \lim_{n \to \infty} sn = L, \text{ then } \lim_{n \to \infty} sn = cL.$
- 3. (a) If 0 < x < 1, then $\{x^n \mid_n^{\infty} \text{ converges to 0. (b) If } 1 < x < \infty \text{ then } \{x \mid_n^{\infty} \text{ diverges to infinity.} \}$
- 4. If $\{s\ _n^\infty\ \text{ and } \{t\ _n^\infty\ \text{ are sequence of real numbers, if } \log_{n\to\infty}sn=L, \text{ and i$
- 5. If $\{s_n \ _n^{\infty} \ \text{ and } \{t_n \ _n^{\infty} \ \text{ are convergent sequence of real numbers, if } s_n \leq t_n \ (n \in I), \text{ and if } \lim_{n \to \infty} s_n = L, \lim_{n \to \infty} s_n = M, \text{ then } L \leq M.$

- 6. If $\{s_n \ _n^{\infty} \ | \ is a sequence of real numbers which converges to L, then <math>\{s_n \ _n^{\infty} \ | \ converges \ to \ L^2.$
- 7. If $\{s_{n} \mid n \text{ and } \{t_{n} \mid n \text{ are sequences of real numbers, if } \lim_{n \to \infty} s_{n} = L, \text{ and if } \lim_{n \to \infty} s_{n} = L,$
- 9. If $\{s_n \mid_n \text{ and } \{t_n \mid_n \text{ are sequences of real numbers, if } \lim_{n \to \infty} s_n = L, \text{ and if } \lim_{n \to \infty} s_n = M \text{ where } M \neq 0, \text{ } \lim_{n \to \infty} s_n / t_n) = L / M.$
- 10. Prove $\lim_{n\to \infty} \frac{n}{n} \frac{n}{n} = -1$.

UNIT-4

- 1. If \sum_{n} is a convergent series, then $\lim_{n\to\infty}$ n=0
- 2. If $\sum_n n$ is a series of non negative numbers with $s_n = a_1 + ... + a_n$ (n I) then (a) $\sum_n n$ converges if the sequence $\{s_n \mid n \text{ is bounded; (b) } \sum_n n$ diverges if $\{s_n \mid n \text{ is not bounded.} \}$
- 3. If $\sum_{n=n}^{\infty}$ converges to A and If $\sum_{n=n}^{\infty}$ converges to B, then $\sum_{n=n}^{\infty}+b_n$ converges to A+B. Also, if $c \in \mathbb{R}$, then $\sum_{n=n}^{\infty}$ converges to c A.
- 4. (a) If 0 < x < 1, then $\sum_n n$ converges to 1/(1-x). (b) If $x \ge 1$, then $\sum_n n$ diverges.
- 5. The series $\sum_{n} -\frac{1}{n}$ is divergent.
- 6. If $\sum_{n=n}^{\infty}$ is a convergent series of positive numbers, then there is a sequence $\{\epsilon_{n}\}_{n=n}^{\infty}$ of positive numbers which converges to zero but for which $\sum_{n=n}^{\infty}$ still diverges.
- 7. If $\{a_n \mid a \text{ is a sequence of positive numbers such that } \}$
 - (a) $a_1 \ge a_2 \ge \dots \ge a_{n+1} \ge \dots$
- (b) $\lim_{n\to \infty} n=0$, then the alternating series $\sum_n -1^n n$ is convergent.
- 8. If \sum_{n} onverges absolutely, then \sum_{n} converges.

- 9.(a) . If \sum_n onverges absolutely then both \sum_n and \sum_n converge. however, (b) . If \sum_n converges conditionally, then both \sum_n and \sum_n diverge.
- 10. Let \sum_{n} be a conditionally convergent series of real numbers. Then for any x R there is a rearrangement of \sum_{n} which converges to x.

UNIT-5

- 1. If \lim_{\to} =L and \lim_{\to} =M, then f(x)+g(x) has a limit as $x\to a$ and, in fact, \lim_{\to} +g(x)]=L+M.
- 2. If \lim_{\rightarrow} =L and \lim_{\rightarrow} =M, then
- (a) \lim_{\to} -g(x)]=L-M
- (b) $\lim_{\to} g(x) = L \cdot M$

And if $M \neq 0$,

- (c) \lim_{\to} /g(x)]=L/M.
- 3. Let f be a non decreasing function on the bounded open interval (a,b). If f is bounded above on (a,b), then \lim_{\to} exists. Also, if f is bounded below on (a,b) then \lim_{\to} exists.
- 4. Let f be a non increasing function on the bounded open interval (a,b). If f is bounded above on (a,b), then \lim_{\to} exists. Also, if f is bounded below on (a,b) then \lim_{\to} exists.
- 5. If f is a monotone function on the open interval (a,b), and if $c \in (a,b)$, then \lim_{\to} and \lim_{\to} both exists.
- 6. Let $\langle M, \rho \rangle$ be a metric space and let 'a' be a point in M. Let f and g be real-valued functions whose domains are subsets of M. If \dagger lim \rightarrow = L and lim \rightarrow =N, then

$$\lim_{\rightarrow} +g(x)]=L+N,$$

$$\lim_{\rightarrow} -g(x)]=L-N,$$

$$\lim_{\rightarrow} g(x)]=LN.$$

And, if $N \neq 0$

$$\lim_{\rightarrow}$$
 /g(x)]=L/N.

- 7. Let <M, $\rho>$ be a metric space. If $\{s_{n} \mid n \text{ is a convergent sequence of points of } M$. Then $\{s_{n} \mid n \text{ is a Cauchy.} \}$
- 8. Define metric spaces with example.
- 9. prove that d:R X R \rightarrow [0, ∞) BY

$$d(x,x)=0$$
 $x \in \mathbb{R}$,

$$d(x,y)=1, x,y \in R$$
; $x \neq is a metric spaces.$

10. Show that if ρ is a metric for a set M then so is 2ρ .

K4- LEVEL QUESTIONS

UNIT I

- 1. Find the glb and lub for the following sets.
 - (a)(7,8)
- (b). [1,2]
- (c). [1,3)
- (d). (-1,1]
- 2. If A is any nonempty subset of R that is bounded above, then A has a least upper bound in R.
- 3. If A,B are subset of S, then $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$
- 4. Prove, for any sets A, B, C, that $(A \cap B) \cap C = A \cap (B \cap C)$
- 5. Prove $(AUB)-(A\cap B)=(A-B)U(B-A)$

UNIT II

- 6. Prove that $\{\sqrt{n} \mid n \text{ diverges to infinity.} \}$
- 7. let $\{s_n \stackrel{\infty}{n} \text{ be the sequence defined by }$

$$S_1=1$$

$$S_2 = 2$$

$$S_{n+1}=s_n+s_{n-1}$$
 (n=3,4,5,...). Find s_8 .

- 8. Define convergent sequence with example.
- 9. Explain monotone sequence with example.
- 10. Explain the bounded sequence with example.

UNIT III

- 11.If $\{s_n \mid_n \text{ and } \{t_n \mid_n \text{ are sequences of real numbers that diverge to infinity, then so do their sum and product. That is, <math>\{s_n+t_n \mid_n \text{ and } \{s_nt_n \mid_n \text{ diverge to infinity.} \}$
- 12.If $\{s_{n}\}_n$ and $\{t_{n}\}_n$ are sequences of real numbers, If $\{s_{n}\}_n$ diverges to infinity, and if
- $\{t_{n} \mid is bounded, then \{s_n+t_{n} \mid diverges to infinity.\}$
 - 13.If $\{s_n \mid n \text{ diverges to infinity and if } \{t_n \mid n \text{ converges, then } \{s_n + t_n \mid n \text{ diverges to infinity.} \}$
 - 14.If $\{s_n \mid n \text{ is a convergent sequence of real numbers, then } \lim_{n \to \infty} s_n = \lim_{n \to \infty} s_n$

- 15.If $\{s_{n} \mid n \text{ is a convergent sequence of real numbers, then } \lim_{n \to \infty} s_n = \lim_{n \to \infty} s_n$.
- 16.If $\{s_{n}\}_{n}$ is a Cauchy sequence of real numbers, if only if $\{s_{n}\}_{n}$ is a convergent.

UNIT IV

- 17.If \sum_n of \sum_n converges absolutely to A, then any rearrangement \sum_n b_n of \sum_n also converges absolutely to A.
- 18.If the series \sum_n and \sum_n b_n converge absolutely to A and B, respectively, then AB =C where C = \sum_n and c_n= \sum_n kb_{n-k} (k=0,1,2,3,...)
- 19.If \sum_n is dominated by \sum_n b_n and \sum_n ? n?= ∞ , ?! e^n \sum_n ? b_n ?= ∞ .
- 20.If $\sum_n n$ is dominated by $\sum_n b_n$ where $\sum_n b_n$ converges absolutely, then $\sum_n n$ also converges absolutely. Symbolically, if $\sum_n n \ll \sum_n b_n$ and $\sum_n \mathbb{Z}b_n\mathbb{Z} \infty$, $\mathbb{Z}en$ and $\sum_n \mathbb{Z}en n = \infty$.
- 21.If $\lim \sup_{n \to \infty} \overline{\mathbb{Z}}_{n} = A$ then the series of real numbers $\sum_{n \to \infty} n$ (a) converges absolutely if A<1, (b) diverges if A>1

UNIT V

- 22. Show that if ρ and σ are both metric for a set M, then $\rho+\sigma$ is also a metric for M.
- 23.For $P < x_1, y_1 > \text{ and } Q < x_2, y_2 >, \text{ define}$

$$\sigma \ (P,Q) = ? x_1 - x_2 ? + ? y_1 - y_2 ? .$$

Show that σ is a metric for set of ordered pairs of real numbers.

Also, if

$$\Phi(P,Q) = \max(2x_1-x_2, 2y_1-y_2),$$

Show that T defines a metric for a same set.

- 24. Show that a sequence of points in any metric spaces cannot converge to two distinct limits.
- 25. Show that $\lim_{\to} \sqrt{3} = 2$.
- 26.Prove