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Chapter 1

Logic and Methods of Proof

1.1 Logic

In this course you will be expected to read, understand and construct proofs. The purpose of these notes is
to teach you the language of Mathematics. Once you have understood the language of Mathematics, you
will be able to communicate your ideas in a clear, coherent and comprehensible manner.

1.1.1 Definition
A proposition (or statement) is a sentence that is either true or false (not both).

1.1.2 Examples

[1] South Africa was beaten by New Zealand in the 2003 cricket world cup.
[2] February 17, 2003 was on a Tuesday.

[B] 3+6=11.

[4] /2 is irrational.

1.1.3 Examples
(Examples of non-propositions).

[1] Jonty is handsome.
[2] What is the date?

[3] This statement is true.

There are two types of propositions: atomic and compound propositions.
e An atomic proposition is a proposition that cannot be divided into smaller propositions.

e A compound propositionis a proposition that has parts that are propositions. Compound propositions
are built by using connectives.

1.1.4 Examples
(Examples of atomic propositions).

[1] John’s leg is broken.
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[2] Our universe is infinite.
[3] 2is a prime number.
[4] There are infinitely many primes.

1.1.5 Examples
(Examples of compound propositions).

[1] Jim and Anne went to the movies.

2] 3<7.

[3] n? is odd whenever n is an odd integer.

[4] If a function is differentiable, then it is continuous.
[5] If /' > 0, then f is increasing.

[6] If f is increasing and f’ exists, then f’ > 0.

Let us look at some of the most commonly used connectives:

Name English name Symbol
Conjunction and A
Disjunction or \Y
Implication If ...then =
Biconditional if and only if <
Negation not -

One has to be careful when using everyday English words in Mathematics as they may not carry the
same meaning in Mathematics as they do in everyday non-mathematical usage. One such word is or. In
everyday parlance, the word or means that you have a choice of one thing or the other but not both -
exclusive disjunction. In Mathematics, on the other hand, the word or stands for an inclusive disjunction,
i.e., you have a choice of one thing or the other or both.

We shall use the capital letters P, Q, R, ... to denote atomic propositions.

1.1.6 Examples
(Using symbols to represent compound statements).

[1] If Lucille has credit for MAT 1E1 and MAT1E2, then she cannot get credit for MAT101.

Let P stand for the statement “Lucille has credit for MAT 1E1”, Q stand for the statement
“Lucille has credit for MAT 1E2”, and R stand for the statement “Lucille can get credit for
MAT 101.” Then the above statement can represented symbolically as (P A Q) = —R.

[2] If Lucille has credit for MAM100W or has credit for MAM105H and MAM106H, then she do
MAM200W.

Let P stand for the statement “Lucille has credit for MAM100W”, QO stand for the state-
ment “Lucille has credit for MAM105H”, R stand for the statement “Lucille has credit for
MAM106H”, and S stand for the statement “Lucille can do MAM200W.” Then the above
statement can represented symbolically as [P vV (Q A R)] = S.

[3] Either you pay your rent or | will kick you out of the apartment.
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[4]

[5]

Let P stand for the statement “You pay your rent”, and Q stand for the statement “I will kick
you out of the apartment.” Then the above statement can represented symbolically as Pv Q.

Joe will leave home and not come back again.

Let P stand for the statement “Joe will leave home”, and Q stand for the statement “Joe will
come back again.” Then the above statement can represented symbolically as P A —=Q.

The lights are on if and only if either John or Mary is at home.

Let P stand for the statement “The lights are on”, Q stand for the statement “John is at
home”, and S stand for the statement “Mary is at home.” Then the above statement can
represented symbolically as P < (Q Vv S).

A truth table is a convenient device to specify all of the possible truth values of a given atomic or
compound proposition. We use truth tables to determine the truth or falsity of a compound proposition
based on the truth or falsity of its constituent atomic propositions.

When we evaluate the truth or falsity of a statement, we assign to it one of the labels T for “true” and
F for “false”. We also use 1 for “true” and O for “false”.

Let us construct truth tables for the above connectives.

[1]

1.1.7

Conjunction: Let P and Q be two propositions. The proposition P A Q is called the conjunction of
P and Q. The proposition P A Q is true if and only if both atomic propositions P and Q are true.
In other words, if either or both atomic propositions P and Q are false, then the conjunction P A Q

is false.
P (0] PAQ

1
0
1
0

S oo =

1
1
0
0
Examples

Cape Town is in the Western Cape and +/3 is irrational.
V5 <3 and f(x) = |x| is differentiable at x = 0.

Harare is the capital of Botswana and f(x) = cos x is continuous on R.
—2 < —10 and 8 is an odd number.

» DD

Only P is true; all the others are false.

Disjunction: Let P and Q be two propositions. The proposition P Vv Q is called the disjunction of
P and Q. The proposition P Vv Q is true if and only if at least one of the atomic propositions P or Q
is true.

P (0] PvQ

1 1 1
1 0 1
0 1 1
0 0 0

It is clear from this truth table that the proposition P v Q will be false only when both P and Q are
false.
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1.1.8 Examples

a) 7 > 2 or x is an irrational number.
b
c

d

m > 2 or r is a rational number.
7w < 2 or xis an irrational number.

(@)
(b)
()
(d)

7w < 2 or xr is a rational number.

All these propositions, except (d), are true.

Implication: Let P and Q be two propositions. The proposition P = Q is referred to as a con-
ditional proposition. It simply means that P implies Q. In the statement P = Q, P is called the
hypothesis (or antecedent or condition) and Q is called the conclusion (or consequent).

There are various ways of stating that P implies Q:

e If P, then Q.

e Oif P.

e P is sufficient for Q.
e () is necessary for P.
P onlyif Q.

Q whenever P.

1 1 1
1 0 0
0 1 1
0 0 1

It is clear from this truth table that the proposition P = Q will be false only when P is true and Q
is false.

In order to have some appreciation of why the above truth table is reasonable, consider the following:
If you pass MAM200W exam, I will buy you a cell-phone.

Let P: You pass MAM200W exam.

Let Q: I will buy you a cell-phone.

At the end of MAM200W exam, there are various scenarios that may arise.
(a) You have passed MAM200W exam and then I buy you a cell-phone. You will be happy and feel

that I was telling the truth . Therefore P = Q is true.

(b) You have passed MAM200W exam but I refuse to buy you a cell-phone. You will feel cheated
and lied to. Therefore P = Q is false.

(c) You have failed MAM200W, but I still buy you a cell-phone. You are unlikely to question that,
are you? We did not cover this contingency in my conditional statement.

(d) You have failed MAM200W and, consequently I do not buy you a cell-phone. You will not feel
that I have been unfair to you and that I have not kept my promise.

1.1.9 Examples

(a) If # > 2, then & is an irrational number.
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(b) If # > 2, then & is a rational number.

(c) If m <2, then & is an irrational number.

(d) If # <2, then & is a rational number.
All these propositions, except (b), are true.

1.1.10 Definition
Let P and Q be propositions. The converse of the proposition P = Q is the proposition Q = P.

1.1.11 Examples
(Examples of converse statements).

(a) Ifitis cold, then the lake is frozen.
Converse: If the lake is frozen, then it is cold.

(b) Johny is happy if he is healthy.
Converse: If Johny happy, then he is healthy.

(c) Ifitrains, Zinzi does not take a walk.
Converse: If Zinzi does not take a walk, then it rains.

The truth table of a proposition and its converse:

P 10} P=0 Q=7r

O = -
S = O =
—_— = O =
—_— O = =

Note that the truth tables of P = Q and Q = P are not the same.

Consider the following conditional proposition and its converse:
Proposition: If 7 > 2, then +/3 is rational.
Converse: If /3 is rational, then 7w > 2.

In this example the conditional statement is false whereas its converse is true. Hence this conditional
proposition and its converse are not equivalent.

Consider the following conditional proposition and its converse:
Proposition: If m > 2, then /3 is irrational.
Converse: If /3 is irrational, then = > 2.

Here both that conditional proposition and its converse are true. If, in this example, we let P stand for
the proposition “ > 2 and Q for “+/3 is irrational”, then we have that both P = Q and Q = P
are true.

[4] Biconditional Proposition: Let P and Q be propositions. The proposition P < Q is referred to as
a biconditional proposition. It simply means that P = Q and Q = P. It is called a “biconditional
proposition” because it represents two conditional propositions.

There are various ways of stating the proposition P < Q:

e P if and only if Q (also written as P iff Q).
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P implies Q and Q implies P.
e P isnecessary and sufficient for Q.
e () is necessary and sufficient for P.

e P isequivalentto Q.

1 1 1
1 0 0
0 1 0
0 0 1

Note that the statement P < Q is true precisely in the cases where P and Q are both true or P and
Q are both false.

[5] Negation: Let P be a proposition. The proposition — P, meaning “not P”, is used to denote the
negation of P. If P is true, then — P is false and vice versa.

P —-P
1 0
0 1

Let us construct a few more truth tables.

1.1.12 Examples

[1] Let P and Q be propositions. Construct a truth table for the proposition (P A Q) = (P Vv Q).

Solution:

P 0 PAQ PvQ PAQ=PVQ

O O = =
S = O
SO O =
—_ = = =

[2] Let P, Q and R be propositions. Construct the truth table for the proposition —(P A Q) v R.

Solution:
P (0] R PAQ —(P AQ) -(PAQ)VR
1 1 1 1 0 1
1 1 0 1 0 0
1 0 1 0 1 1
0 1 1 0 1 1
1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 0 1 1
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1.2 Tautologies, Contradictions and Equivalences

Some compound propositions are always true while others are always false.

1.2.1 Definition
A compound propositionis a tautology if it is always true regardless of the truth values of its atomic propo-
sitions. If, on the other hand, a compound proposition is always false regardless of its atomic propositions,
we say that such a proposition is a contradiction.

1.2.2 Example
The statement P v — P is always true while the statement P A — P is always false.

P | =P | Pv=P | PA-P

1.2.3 Remark
In a truth table, if a proposition is a tautology, then every line in its column will have 1 as its entry;
if a proposition is a contradiction, every line in its column will have 0 as its entry.

1.2.4 Definition
Let P and Q be propositions. The contrapositive of the proposition P = Q is the proposition—~Q = —P.

1.2.5 Examples
(Examples of contrapositive statements).

[1] Ifit is cold, then the lake is frozen.

Contrapositive: If the lake is not frozen, then it is not cold.
[2] If Johny is healthy, then he is happy.

Contrapositive: If Johny not happy, then he is not healthy.
[3] Ifit rains, Zinzi does not take a walk.

Contrapositive: If Zinzi takes a walk, then it does not rain.

DO NOT CONFUSE THE CONTRAPOSITIVE AND THE CONVERSE. Here is the difference:

Converse: The hypothesis of a converse statement is the conclusion of the conditional statement and
the conclusion of the converse statement is the hypothesis of the conditional statement.

Contrapositive: The hypothesis of a contrapositive statement is the negation of conclusion of the
conditional statement and the conclusion of the contrapositive statement is the negation of hypothesis
of the conditional statement.

1.2.6 Examples

[1] If Bronwyne lives in Cape Town, then she lives of South Africa.

Converse: If Bronwyne lives in South Africa, then she lives in Cape Town.
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Contrapositive: If Bronwyne does not live in South Africa, then she does not live Cape Town.

[2] If it is morning, then the sun is in the east.

Converse: If the sun is in the east, then it is morning.

Contrapositive: If the sun is not in the east, then it is not morning.

Two propositions P and Q are said to be logically equivalent, writtenas P = Q,if P < ( is a tautology.

Logically equivalent statements have the same truth values.

When we write “P = Q”, we basically say that proposition P means the same as proposition Q.

Here is an important example: P = Q = —(Q = —P. That is, the conditional and its contrapositive say
the same thing.

P 0 P=0 —-P -0 -0 = -P (P=0)& (-0 = —-P)
1 1 1 0 0 1 1
1 0 0 0 1 0 1
0 1 1 1 0 1 1
0 0 1 1 1 1 1
1.2.9 Theorem
Let P, Q and R be propositions. Then
@ =(PAQ) = =PV =0
() ~(PV Q) = ~PA=0Q
© =(P= Q) = PA=Q
d P=Q=—-PVvQ
(© ~(-P) = P
) PV(QAR) = (PVO)A(PVR)
(& PAN(QVR) = (PAQ)V(PAR)
(h)y (PVQ)VR = PV(QVR
A (PAQ)AR = PA(QAR
Proof. (a) =(P A Q) = =P Vv —=(Q:
P (0] PAQ —(PAQ) —-P -Q -PVv-Q —~(PAQ) & (—PV—0)
1 1 1 0 0 0 0 1
1 0 0 1 0 1 1 1
0 1 0 1 1 0 1 1
0 0 0 1 1 1 1 1

©—(P=0Q) = Pr=Q
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P 0 P=0 ~(P=0) -0 PA=Q ~(P=0) < (Pr=0)

1 1 1 0 0 0 1
1 0 0 1 1 1 1
0 1 1 0 0 0 1
0 0 1 0 1 0 1

Try to convince yourself that all the other statements are valid.

Let us analyze the following argument: If girls are blonde, they are popular with boys. Ugly girls are
unpopular with boys. Intellectual girls are ugly. Therefore blonde girls are not intellectual.

Is this argument valid?

Solution: Let us use letters and connectives to represent the above statement.

P: Girls are blonde.
Q: Girls are popular with boys.
R: Girls are ugly.
S: Girls are intellectual.
We can represent the above argument as follows:
P= 0, R=—-0, S=R.
Since S = R and R = —(Q, we can conclude that S = —(Q.
Since P = Q, we have, by contrapositive, that =Q = —P. Hence, S = —P.

Again, by contrapositive, P = —.S, which says that “Blonde girls are not intellectual.” Therefore the
argument is valid.

1.3 Open Sentences and Quantifiers

In mathematics, one frequently comes across sentences that involve a variable. For example, x242x—3 = 0
is one such. The truth or falsity of this statement depends on the value you assign for the variable x. For
example, if x = 1, then this sentence is true, whereas if x = —1, this sentence is false.

Definition

An open sentence(also called a predicate) is a sentence that contains variables and whose truth or falsity
depends on the values assigned for the variables. We represent an open sentence by a capital letter followed
by the variable(s) in parenthesis, e.g., P(x), Q(x, y) etc.

Examples
(Open statements).

[1] x +4=-9

[2] x < y.

[3] She is the queen of jazz.
[4] It has four legs.

Definition

The collection of all allowable values for the variable in an open sentence is called the universe of dis-
course.
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Let P(x) be an open sentence containing a free variable x. We want to quantify the number of x for
which P(x) is true. In particular, we want to say that P(x) is true for at least one x or for all x in the

universe of discourse.

Universal Quantifier (V): To say that P(x) is true for all x in the universe of discourse, we write
(Vx) P(x). Think of the symbol V as an inverted A (representing all). V is called the universal quantifier.

all

for all
for every
for each

YV means

Existential Quantifier (3): To say that there is (at least one) x in the universe of discourse for which
P(x) is true, we write (3x) P(x). Think of the symbol 3 as the backwards capital E (representing exists). 3

is called the existential quantifier.

there is
3 means there exists
for some
Symbolic Statement Translation

(Vx)P(x)

(YX)(=P(x))

3x)P(x)
@x)(—P(x)
(Vx)(¥) P(x. 7)

@Ex)@y)P(x, »)

(YX)@y) P(x, »)

BEx)(Vy)P(x, p)

1.3.4 Remark

For all x, P(x) is true

For all x, P(x) is false
(There is no x for which P(x) is true)

There exists an x for which P(x) is true
There is an x for which P(x) is false
P(x, y) is true for all pairs (x, y)

There is a pair (x, y) for which P(x, y)
is true

For each x, there is a y for which P(x, y)
is true

There is an x for which P(x, y) is true
for every y

Quantifying an open sentence makes it a proposition.

1.3.5 Examples

Write the following statements using quantifiers.
(a) For each real number x > 0, x2 4+ x — 6 = 0.

Solution: (Yx > 0)(x? 4+ x — 6 = 0).

10
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(b) There is a real number x > 0 such that x? + x — 6 = 0.
Solution: (Ax > 0)(x2 + x — 6 = 0).

(c) The square of any real number is nonnegative.
Solution: (Yx € R)(x? > 0).

(d) For each integer x there is an integer y such that x + y = —1.
Solution: (Vx € Z)3y € Z)(x + y = —1).

(e) There is an integer x such that for each integer y, x + y = —1.
Solution: (Ax € Z)(Vy € Z)(x + y = —1).

Do examples (d) and (e) convey the same message?

The answer is NO. Statement (d) is true: given any integer x, there is an integer, namely, y = —1 — x, such
that x + y = —1. Statement (e) is false.

ORDER DOES MATTERS AFTER ALL!

1.3.6 Remark
In the statement (Vx)(3y) P(x, ), the choice of y is allowed to depend on x - the y that works for
one x need not work for another x. On the other hand, in the statement (3y)(Vx)P(x, y), the y
must work for all x, i.e., y is independent of x.

1.3.7 Examples
Translate the following into English.

() (Vx e R)3y € R)(x = 7).
Solution: Every real number is a perfect square.
(b) (Vx e R) Ay e R)(x + y = 0).

Solution: Every real number has an additive inverse.

Negation of Quantifiers

Symbolic Statement Translation

=[(Vx)P(x)] = 3@x)(—P(x)) There is an x for which P (x)
is false

=[3@x)P(x)] = (Vx)(—=P(x)) P (x) is false for every x

=[(Vx)@y)P(x, y)] = @x)(Vy)(—=P(x, y)) There is an x for which P(x, y)
is false for every y

=[@y)(Yx)P(x, y)] = (Vy)@x)(—=P(x, y)) For each y there is an x for which
P(x, y) is false

=[(Vx)(Vy)P(x, y)] = @x)3y)(—=P(x, »)) There is a pair (x, y) for which
P(x, y) is false

=[@Ex)3y)P(x, y)] = (VX)(Vy)(—=P(x, ) P(x, y) is false for every pair (x, )

11
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1.3.8 Remark
To negate a statement that involves the quantifiers vV and 3, change each V to 3, change each 3
to Vv, and negate the open sentence (predicate).

1.3.9 Examples

[1] All birds can fly.
Negation: There is (at least one) bird that cannot fly.

1.3.10 Exercise
Write the following statements using quantifiers.

(a) A function f has limit L at a point a, denoted by li_r>n f(x) = L, if and only if given any

€ > 0, there is a § > 0 such that for each x in the domain of f, we have that | f(x) — L| < ¢
whenever 0 < |x —a| < 4.

Ans. (;1331 f(x) = L) & (Ve > 0)(38 > 0)(Vx € dom(/)[0 < |x —a] <6 = | f(x) - L| < €.
(b) Write down the negation of (a).
Ans. (;1331 fx) # L) & (3e > 0)(¥8 > 0)@x € dom( /N[0 < |x—a| < H)A(f(x)—L| > €)].

(c) A function f is continuous at x = a if and only if given any € > 0, there is a § > 0 such that
for each x in the domain of f, we have that | f(x) — f(a)| < € whenever |x —a| < 4.

Ans. (f iscontinuousat x = a) & (Ve > 0)(38 > 0)(Vx € dom(f))[|lx —a| < § =
|/ (x) = f(@)] <e€]

(d) Write down the negation of (c).

(f is discontinuous at x = a) & (Fe > 0)(V§ > 0)(Ax € dom(f)[(|x —a| < 8) A (| f(x) —
S(@)] = ).

Overgeneralization and Counterexample

Overgeneralization occurs when a pattern searcher discovers a pattern among finitely many cases and
then claim that the pattern holds in general (when in fact it doesn’t).

To disprove a general (universally quantified) statement such as (Vx) P(x), we must exhibit one x for
which P(x) is false. That is, (3x)—P(x). This particular x is called a counterexample to the statement
that (Vx) P(x) is true.

1.3.11 Examples

[1] Statement: (Vx € R)(x < x2).

2
The above statement is false. x = 1 is a counterexample since 1 € R but (%) =1<1

[2] For all real numbers x and y, |x + y| = |x| + |y].

This is false. Counterexample: take x = 1and y = —1. Then 0 = [|0| = | -1+ 1] #
|—1]+ 1] =2.

12
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The statement (Vx)[P(x) = Q(x)] occurs frequently in Mathematics. Recall that

(YY) (P(x) = Q(x))] = @)[P(x) A =Q(x)].

Therefore, to show that the implication P(x) = Q(x) is false, all that you have to do is produce ONE x
for which P(x) is true but Q(x) is false.

Examples

[1] If a function f is continuous, then it is differentiable.
This statement is false since f(x) = |x| is continuous but not differentiable at x = 0.
[2] For all real numbers a, b, and ¢, if ac = bc, thena = b.

This statement is false. Takea = 1, b = 7, and ¢ = 0. Then 0 = ac = bc = 0, but
l=a#b=17.

[3] For all prime numbers p, 2p + 1 is prime.

While this statement is true for p = 2,3, 5, it is false for p = 7 since 2 x 7+ 1 = 15 which is
not prime. So p = 7 is a counterexample to the given statement.

1.4 Methods of Proof in Mathematics

In Mathematics we make assertions about systems, e.g. number system. The process of establishing the
truth of an assertion is called a proof. That is, a proof in Mathematics is a sequence of logically sound
arguments which establish the truth of a statement in question.
Theorem statements are normally in conditional form (P = Q) or biconditional form (P < Q).
Suppose that we wish to establish the truth of the assertion P = Q.

1.4.1 Direct Method

In this method of proof, we assume that P is true and proceed through a sequence of logical steps to arrive
at the conclusion that Q is also true.

Examples

(a) Show thatif m is an even integer and # is an odd integer, then n + m is an odd integer.

Solution: Assume that m is an even integer and m is an odd integer. Then m = 2k and
n = 2¢ + 1 for some integers k and £. Therefore

m+n=2k+20+1=2(k+€+1.

Since k + £ is an integer whenever k and £ are integers, we conclude that m + » is an odd
integer.

(b) Show that if » is an even integer, then n? is also an even integer.
Solution: Assume that » is an even integer. Then n = 2k for some integer k. Now,
n? = (2k)? = 4k? = 2(2k?).

Since 2k? is an integer, it follows that 2 is an even integer.

13
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1.4.2 Contrapositive Method

Associated with the implication P = Q is the logically equivalent statement =Q = — P, the contraposi-
tive of the conditional P = (. Therefore one way of proving the conditional P = Q is to give a direct
proof of its contrapositive =Q = —P. The first step in the proof is to write down the negation of the
conclusion. Then you show by a series of logical steps that this leads to the negation of the hypothesis of
the original conditional statement.

Examples

(a) Show that if n2 is an even integer, then n is an even integer.

Solution: We will show the contrapositive -if  is an odd integer, then n? is an odd integer. To
that end, assume that # is an odd integer. Then, n = 2¢ + 1 for some integer £. Now,

2= QU+ 1)? =402 +404+1=20Q0% +20) + 1.
Since 2¢% + 2{ is an integer, we conclude that #? is an odd integer.
(b) Show that if 3n is an odd integer, then n is an odd integer.

Solution: We will show the contrapositive - if n is an even integer, then 3n is an even integer.
To that end, assume that » is an even integer. Then n = 2k for some integer k. Therefore
3n = 3(2k) = 2(3k). It follows that 3x is an even integer.

1.4.3 Contradiction Method

Proof by contradiction, also called reductio ad absurdum, is one of the most powerful methods of proof in
Mathematics. It also tends to be harder to understand than the direct or contrapositive methods. Here is
how it works: assume that the P is true and Q is false, i.e. assume that the statement P A —(Q is true. Then
show, in a series of logical steps, that this leads to a contradiction, impossibility or absurdity e.g., R A = R.
This will then mean that the assumption that P A —Q must have been fallacious, and therefore its negation
—(P A —Q) must be true. Since =(P = Q) = P A —Q, it follows that (P = Q) = —~(P A —(Q), and
hence P = Q must be true.
Before giving some examples, let us define what it means for a number to be rational.

Definition
A real number 7 is said to be rational if there are integers m and n (n # 0) such that r = m/n. We denote
the set of all rational numbers by the letter Q. A real number that is not rational is said to be irrational.

Examples
(Proof by Contradiction).

(a) Show that +/2 is irrational. That is, there do not exist integers p and ¢ such that g =2

Solution: Proceeding by contradiction, assume that there are integers p and ¢ such that
L V2. By cancelling any common factors, we may suppose that p and ¢ have no common

factors. Then squaring both sides, we have that

2
p_2 =2 & p?=24%
q
Hence p? is even. By Example 1.4.2(a), we have that p is even. Hence we can express p
as p = 2k for some integer k. So,

2¢% = p? = (2k)? = 4k? and, consequently, g2 = 2k2.

14
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This means that ¢2 is even and so, again by Example 1.4.2(a), we have that ¢ is even.
Hence p and ¢ are both even, contradicting the assumption that p and ¢ have no factors

in common. Therefore +/2 is not of the form L for some integers p and ¢. That is, v/2 is
q
irrational.

(b) Show thatif 3n is an odd integer, then # is an odd integer.

Solution: We will use contradiction: Assume that 3z is an odd integer and » is an even
integer. Then 3n = 2k 4+ 1 and n = 2¢ for some integers k and £. Thus

2k + 1 =3n = 3(26) = 2(3¢).

This shows that 3# is both odd and even,which is absurd. Hence » is an odd integer.

15



Chapter 2

Sets and Functions

2.1 Introduction

The concept of a set permeates every aspect of Mathematics. Set theory underlies the language and concepts
of modern Mathematics. The term set refers to a well-defined collection of objects that share a certain
property or certain properties. The term “well-defined” here means that the set is described in such a way
that one can decide whether or not a given object belongs in the set. If A4 is a set, then the objects of the
collection A are called the elements or members of the set A. If x is an element of the set 4, we write
x € A. If x is NOT an element of the set 4, we write x & A.

As a convention, we use capital letters to denote the names of sets and lowercase letters for elements of
a set.

There are several ways of describing sets, but two are common:

[1] The Roster method:- listing the elements of a set, separated by commas and enclosed in braces; e.g.,
A=1{1,2,3,4,5, 6,7, 8}. There are two important facts to bear in mind: (1) the order in which
the elements are listed is irrelevant, (2) each element should be listed only once in the roster.

[2] The rule or description method:- we describe a set in terms of one or more properties that the objects
in the set must satisfy. We use set-builder notation to write such a set, e.g., 4 = {x | x satisfies some property or properties}.
The vertical bar “ | ” is read as “such that”. Other people use “: ” instead of the bar ““ | .

If a set A consists of a large (or infinite) number of elements, it is general practice to list a few of its
elements followed with ellipsis (. . .). This method requires recognition of the pattern in the list of elements
of A. This practice tends to introduce some ambiguity as the list may be continued in many different ways.
It is safer practice to define such a set by spelling out the pattern that determines membership of the set.

2.1.1 Examples

(a) ThesetE ={2, 4, 6, 8, ...} is best described as

E={neN : n=2k forsome k € N}.

(b) The set B = {1, 4, 9, 16, ...} is best described as
B={neN :n=Kk?* forsome k € N}.

Some sets come up often in Mathematics and they have special names assigned to them.

16
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No =10, 1, 2, 3,...} Natural numbers
N={1,2,3,...} Positive natural numbers
Z={..,-2,-1,0,1,2,...} Integers

Q={p/q : p,q€Z,qF#0} Rational numbers

Qt Positive rational numbers
R Real numbers

R* Positive real numbers

C={z=a+bi : a,beRandi? = —1} Complex numbers.

2.1.2 Definition
Let A and B be sets. We say that

(a) B is asubset of A (oris contained in A), denoted by B C A, if every element of B is an element of
A,ie., (Vx)(x € B= x € A).

(b) A=Bif(AC B)A(BC A),ie, (Vx)(x € A & x € B).

(c) If B is a subset of A and A # B, then B is a proper subset of A. In this case we write B & A. It is
clear that
B G AS[(Vx)(x € B=>xe A) A (B #A).

2.1.3 Example

Let
A = {=1,0, 1,2, 3, 4}
B = {1,2, 3}
C = {xeR: x>—6x>4+1lx—6=0}
D = {-1,0,1, 8}
E = {xeZ: -2<x<5}.
Then
3ed, -2 ¢ B, B C A, D¢ A,
B=C, A=E, {8} C D, {2,3} C B.

We say that a set is empty if it has no elements. For example,
{(xeR : x?+1=0}
is an empty set since the equation x> + 1 = 0 has no solution in R.

2.1.4 Proposition
(a) If B is an empty set, then B C A for any set A.

(b) All empty sets are equal, i.e., if B and C are empty sets, then B = C.

17
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Proof. (a) We must show that every element of B is an element of A4; i.e., (Vx)(x € B = x € A).
Using the contrapositive method, it suffices to show that (Vx)(x € A = x & B). This is vacuously true
since if x & A, then x & B (since B contains no elements!)

(b) From (a) we have that (B € C) A (C € B). Hence B = C. |

It follows from Proposition 2.1.4(b) that there is a unique empty set.

Axiom of the empty set: There is a set that contains no elements. This is called the empty set. It is
denoted by @ or { }.

Proposition
(a) Foranyset A, A C A.

(b) Let AC Band B C C,then A C C.

Russell’s Paradox

We have been very casual and informal in our definition of a set. One has to be careful though if one is
to avoid some unpleasant surprises. Russell’s Paradox is a salutary reminder that one has to exercise care
when defining sets.

Consider the set A = {1, 2, 3, 4}. Then, 3 € A4, A C A,but A & A. The set A does not contain itself
as an element.

Let us now consider the set S of all sets; i.e., S = {B : B isa set}. Notice that not only is S C S,
S € S, since S is a set.

There are therefore sets that contain themselves as elements (e.g., S), and there are sets that do not
contain themselves as elements (e.g. A).

Let R be the set of all those sets that do not contain themselves, i.e.,

R={X|(Xisaset) A (X € X)}.

The question is “Does R contain itself an element?”

Well, let’s assume R & R, i.e., R does not contain itself as an element. So by definition of R, R is a
member of R. So our assumption that R is not an element of R logically leads to the statement that R is a
member of R. This is a contradiction, so our assumption must be wrong.

Let’s assuming that R is an element of R, i.e., R € R. But R is the set that has only members that
do not contain themselves, so R cannot be a member of R. So our assumption that R is a member of R
logically leads to the statement that R is not a member of R. This is a contradiction, so our assumption
must be wrong.

In short, we have the situationthat R € R < R & R. O

The main point of Russell’s Paradox is that there are properties that do not define sets, i.e., all objects
with those properties cannot be collected into one set.

As Russell’s Paradox indicates, there are logical difficulties that arise in the foundations of Set Theory
if one is not careful. We can avoid such difficulties by assuming that each discussion in which a number of
sets are involved is taking place within a context of a fixed set. This set is called the universal set.

Some notation...

We use special notation to designate intervals of various kinds on the real line. Let a, b € R with
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a<b

[a,b] = {(xeR :a<x<b}
[a,b) = {xeR :a<x<b}
(a,b] = {xeR :a<x<b}
(a,b) = {xeR:a<x<b}
[a,00) = {xeR : x>a}
(a,00) = {xeR: x>a}

(—o00,b] = {xeR : x<b}

(—o0,b) = {xeR: x<b}

(—o00,00) = R.

2.2 Operations on Sets

2.2.1 Definition
Let A be a set. The power set of A, denoted by P(A), is the set whose elements are all subsets of A. That
is,

P(4) = {B : BC A}

2.2.2 Example
Let 4 = {x, y, z}. Then

P®) = {9}
Px)) = {0, {x}
PQx. y) = {0, {x}, v} {x. 0h
PA) = {0, {x}. Ay, iz} o x 2h s 2h e, s 2

&): Note that @ is not the same as {#}.

2.2.3 Definition
Let A and B be subsets of a universal set U .

(a) The union of A and B, denoted by A U B, is the set of all elements in U that are either in A or in B
(or in both sets). That is,

AUB={xeU : (xe€ A) VvV (x € B)}.

(b) The intersection of A and B, denoted by A N B, is the set of all elements in U that are in A and B.
That is,
ANB={xeU : (x€ A) A (x € B)}.

Sets A and B are said to be disjoint if A N B = @.

(c) The complement of A in (or relative to) B, denoted by B \ A or B — A and read “B minus A”, is
the set of all elements of B that are not in A, i.e.,

B—A={xeU : (xe B) A (x&A)}

(d) The complement of A, denoted by A’, is the set of all elements in U that are not in A, i.e.,

A ={xeU : x¢gA.
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(e) The symmetric difference of 4 and B denoted by A A B is the set
AAB=(B—A)U(4A—-B).

2.2.4 Example
LetU ={1, 2, 3,4,5,6,7,8, 9,10}, A ={2, 4, 6, 8 9, 10},and B = {3, 5, 7, 9}. Then

AUB=1{2 3 4,5,6,7 8,9, 10}
AN B ={9}.

B—A=1{3,5 7}

A—B=1{2, 4,6 8, 10}.
AAB=1{2,3 4,561 8, 10}.
A =1{1,3,5, 7}

2.2.5 Proposition
Let A, B, and C be subsets of a universal set U .

(a AU A = A (idempotent law for union)

(b) AN A = A (idempotent law for intersection)

(c) Au@=4

da Andg=40

e) AUU=U

#H ANnU =4

(g2 AU B = BU A (commutative law for union)

(h) AN B = BN A (commutative law for intersection)

i (AUB)UC = AU (BUC) (associative law for union)
G) ANB)NC = AnN(BNC) (associative law for intersection)
(k) ACAUBand BC AUB

) ANBCAandANBCBHB
(m) A"=A4

(m) AUA =U

(o) ANA =0

P 0=U

@ U =0

(r) (AU B) = A’ N B’ (De Morgan’s law)

(s) (AN B)Y = A" U B’ (De Morgan’s law)

(t) AC Bifandonlyif B C A’
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(uw A—-B=A4ANP~F
(v) AN(BUC)= (AN B)U (AN C) (intersection distributes over union)
(w) AU(BNC)=(4U B)N (AU C) (union distributes over intersection)
x) AAB=(AUB)—-(ANB).

Proof. Be sure that you can prove these properties.

(r) In order to show that (4 U B)' = A’ N B’, we must show that (A U B)) € A’ N B’and A’ N B’ C

(AU BY.
(AuBYcCcA NP A NB C(AUB)
Let x € (AU BY Letx e A’ NP
Then x ¢ AU B Then x € A’ and x € B’
=[x € AU B] S (xdA) A (x€B)
—[(x € A) v (x € B)] oo Tl(x € A) v (x € B)]
(x€A) A (x €B) . —[x € AU B]
(xe A)A (x € B) S, x€(AUBY
xeA nNnpB . ANB C(AUB)
(AuBYcCcA NP

Proof of (v): Here we use the fact that if P, Q, and R are propositions, then
PAQOVR)=(PAQ)V(PAR).

For each x,

xeAN(BUCQ)
< x€Aandxe BUC

& xe€Adand(x € Borxe()

& (xeAA[(xeB)vixel)

& [(xeAdAAxeB)|V[ixeAA(xel)

& xeAnNBorxeANnC

& xe(ANB)UMUNC).

21



231

2009 REAL ANALYSIS

2.3 Indexed families of sets

In Mathematics we often work with large collections of sets. Instead of naming each of those sets using the
twenty-six letters of the alphabet, we usually index the sets using some convenient indexing set.

Suppose that [ is a set and that to each i € I, there corresponds one and only one subset A; of a universal
set U. Then the collection {4; : i € I}is called an indexed family of sets (or an indexed collection of
sets). The set 7 is called an indexing set for the collection {A4; : i € I}. If I = {1, 2, 3, ..., n}, then
the indexed collection of sets {A4; : i € I}is called a finite sequence of sets. If I = N7, the set of positive
natural numbers, then the indexed collection {4; : i € N1} is called an infinite sequence of sets.

We can extend the definition of union and intersection discussed earlier to cover an indexed family of
sets.

Definition

Let {A; : i € I} be an indexed family of subsets of the universal set U .

(a) The union of the family {A; : i € I}, denoted by U Aj;, is the set of all those elements of U which
iel

belong to at least one of the A;. That is,

| J4: = xeU

iel

: x € A; forsomei € I}

{xeU : (Fi el)(x e A))}.

(b) The intersection of the family {A; : i € I}, denoted by m Aj;, is the set of all those elements of U
iel

which belong to all the A;. That is,

N4

iel

{xeU : x e A foreachi € I}

{xeU : (Viel)(x € A4;)}.

2.3.2 Proposition

Let {A; : i € I} be an indexed family of subsets of the universal set U and let B be a subset of U. Then

(a) Ay C UA,- foreachk € I.
iel

(b) ﬂA,- C Ay foreachk € 1.

iel

(©) Bm( 4| = JBn 4.
iel iel

(d) BU( 4| = (BUA4).
iel iel

(@ B—( 4 = (B - 4.
iel iel

0) B—( 4| =B - 4.
iel iel
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(2 (U Ai) = m A (de Morgan’s law).

iel iel
/
(h) (m A,-) = U Aj (de Morgan’s law).
iel iel
Proof. Be sure that you can prove these statements. We shall prove (c), (e), and (h).

Proof of (c): We should show that B N (U A,-) C U (B N A;) and U (BNA4;) € BN (U A,-).
iel iel iel iel
We shall do this in one fell swoop.

xeBﬂ(UA,-) = xeBanderA,-

iel iel
< xeBandx € A; forsomei € 1
& (Jiel)(x e B)A(x e A4))]
& xelJBna4).
iel

Proof of (e): We use the same technique as applied in (c).

xeB—(UA,-) & xeBandngUA,-

iel iel
& xeBand—-[erA,-]
iel
& x € Band —[(Fi € I)(x € 4;)]
& (xe B) A[(Viel)(x & A
& (Viel)(x e B)yAn(x &€ A)]

& (Viel)xeB—4))

& xe[)(B-4).

iel
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Proof of (h):

x € (ﬂA,-)l & x¢[\4

iel iel

& S[(Vi € I)(x € 4;)]
& (FHielx &A4)
& (Fiel)(x e A)

& xe U Aj.
iel
2.4 Functions

Definition

Let X and Y be sets. A function f from X to Y, denoted by f : X — Y, is a rule that assigns to each
x € X aunique element y € Y. We write y = f(x) to denote that f assigns the element x € X to the
elementy € Y.

Definition
Let X and Y be sets. A function f : X — Y is said to be

(i) injective (or one-to-one) if for for each y € Y there is at most one x € X such that f(x) = y.
Equivalently, f is injectiveif forall x;,x; € X, f(x1) = f(x2) impliesthat x; = x,. Symbolically,

(Vx1,x2 € X)[(f(x1) = f(x2)) = (x1 = x2)].
(ii) surjective (oronto) if for each y € Y thereis an x € X such that f(x) = y. Symbolically,we write
(Vy e Y)Ex € X)(f(x) = »).
(iii) bijective if f is both injective and surjective.

Definition
Let X, Y, and Z besets, f : X — Y andg : Y — Z be sets. The composition of f and g, denoted by
go f,isthe functiong o f : X — Z defined by (g o f)(x) = g(f(x)).

A diagrammatic view of the composition is

X f Y
AN
AN
\\
N g
gof
N
Z
Theorem

Let f:X — Y andg :Y — Z such that ran(f) € dom(g). Then

(a) If f and g are onto, then so is the composite function g o f;
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(b) If f and g are one-to-one, then so is the composite function g o f';
(c) If f and g are bijective, then so is the composite function g o f';
(d) If g o f is one-to-one, then so is f;
(e) If g o f isonto, then so is g;
(f) If g o [ is a bijection, then f is one-to-one and g is onto.

Proof.

(a) Let z € Z. Since g is onto, there isa y € Y such that g(y) = z. Since f is onto, there isan x € X
such that f(x) = y. Therefore (g o f)(x) = g(f(x)) = g(y) = z. Hence, g o f is onto.

(b) Let x; and x; be in X such that (g o f)(x1) = (g o f)(x2). Then

(go fHx1) = (go f)x2)

— g(/(x1) = g(f(x2)
— f(x1) = f(x2) since g is one-to-one
<~ X1 = X2 since f is one-to-one.

(c) This follows from (a) and (b).

(d) Let x; and x, be elements of X such that f(x;) = f(x2). Then (g o f)(x1) = g(f(x1)) =
g(f(x2)) = g(f(x2)). Since g o f is one-to-one, it follows that x; = x,. Thus, f is one-to-one.

(e) Let z € Z. We must produce a y € Y such that g(y) = z. Since g o f is onto, thereisan x € X
such that (g o f)(x) = g(f(x)) =z. Let y = f(x) (¢ Y). Then g(y) = z, which proves that g is
onto.

(f) This follows from (d) and (e). |

2.4.5 Theorem
Let f : X — Y be a bijection. Then f~' : Y — X is a bijection.

Proof. Exercise. |

2.4.6 Theorem
Let f: X — Y andg : Y — Z be bijections. Then

o)™ =/slog™h

Proof. Exercise. ]
Let X and Y besets, f : X — Y,and A C X. We denote by f(A) the image of 4 in Y. It is defined

by
S ={f(x)|x € 4}.
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If B C Y, we denote by f~!(B) the pre-image (or inverse image) of B in X. It is defined by

[71(B)={xeX| f(x) € B}.

2.4.7 Theorem
Let X andY besets, f : X — Y,and {A; : i € I} an indexed family of subsets of X. Then

@ f(@) =0;
®) f (U A,-) =Jr;
iel iel

© f (m Ai) <)/ (4);

iel iel
(d) If f is injective, then f (ﬂ A,-) =)/ o).
iel iel

<Exercise.

2.4.8 Theorem
Let X andY besets, f : X — Y,{B; : i € I} an indexed family of subsets of Y and D C Y. Then

@ [7'(0) =0;
b £ (U B,-> =J s B;
iel iel

© [ (ﬂ B,-> = /" (B;

iel iel
@ [MY\D)y=x\ f7'(D).

<Exercise.

2.4.9 Theorem
Let X andY besetsand f : X — Y. If A C X and B C Y, then

(@ A< [N (f(A);

(b) If f is injective, then A = = (f(A));
© f(f7'(B) < B;

(d) If f is surjective, then f (f~'(B)) = B;
@ f(An f71(B)) = f(4) N B.

<Exercise.
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2.5

Cardinality: the size of a set

2.5.1 Definition
Two sets A and B are said to have the same cardinality, denoted by |A| = |B|, if there is a one-to-one
function from A onto B. Sets that have the same cardinality are also said to be equipotent or equinumer-

ous.

2.5.2 Examples

[1]

[2]

[3]

Ny has the same cardinality as N.
Proof. Define f : Ng — Nby f(n) =n + 1 for each n € Np.

Claim: [ is one-to-one. Let n, m € Ny such that f(n) = f(m) Thenn+1=m + 1, and
consequently n = m.

Claim: fisonto. Letm e N. Thenm—-1eNoand f(mn—1)=m—-1+1=m.

LetE = {2n : n € N} — the set of even natural numbers. Then N and E have the same
cardinality.

Proof. Define f : N — E by f(n) = 2n foreach n € N.

Claim: f is one-to-one. Let n; and ny be elements of N such that f(n;) = f(n2). Then
2n; = 2n, and consequently n; = n».

Claim: f is onto. Let m € E. Then m = 2k for some k € N. Hence, f(k) =2k = m.
N and Z have the same cardinality.

Proof. Define f: N — Z by

n . .
- = if niseven
2
S(n) = .
" i nisodd.
2
In tabular form
n | v ] 2| 3] 45| 6] 7|
s Lo ot || 2| 2] 3]s

Itis clear that dom(f) = N and ran(f) C Z.

Claim: [ is one-to-one. Foreachn € N, f(n) < 0ifnis evenand f(n) > 0if n is odd. Let
my, my € N suchthat f(m;) = f(m»). We must show that m; = m,. If m; and m, are both
even, then

fm) = f(my) = -——=-"7

<~ mp = mj.
If m{ and m, are both odd, then

mp —1 my—1
S(my) = f(my) < 12 = 22 = my =ma.

Hence, f is one-to-one.
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Claim: f is onto. If m € Z and is negative, then —2m is in N and is even. Therefore
—2m)
feam = T
IfmeZandm > 0,then2m + 1 is in N and is odd. Therefore

Cm+1)—1
2 "

f@Qm+1) =

[4] N and Q have the same cardinality.

Proof. We start by listing nonnegative rational numbers in an infinite matrix as follows:

p

r/q 0 1 2 3 4 5 6

(1] 2 3 4 5] 6

1 - = |= - - |= - - |= —

1 1] 1 1 1 1 1
e S v S v

5 0 1 2 3 4 5 6

2 12| 2 2 2 2] 2
N S v a4 S

; 0 1 I 3 4 5 6

3 3] 3 3 3 3] 3
v S v S v S v

0 1 2 3 4 5 6

g | 4 - - - - - - >

4 4| 4 4 4 4|

N e S v S v S

s 5 [ 5

5 _ _ _ _ _ _ _

5 5| 5 5 5
v S v S v S v

. 0 1 2 3 4 5 6

6 6| 6 6 6 6 6
\ v S v S v S

. . 0 . .
Starting with 1 at the top left corner, we follow the arrows, putting a box around a rational

number that occurs for the first time. This assigns a unique natural number to each nonneg-
ative rational number. That is, this defines a function g from Ny to the set of nonnegative
rational numbers QT U {0} given by the following table:

n | 0|t | 2] 3| 4] 5] 6|

4

g(")‘TT T 1T

1

N —
Q| =

Define f : Ng — Q by

- g (g) if niseven

(2

) =
if nisodd.
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In tabular form

n |0 | v ] 2] 3] 45| 6|

o Lol Tl ]

Then f is a bijection between Ny and Q. Since N and Ny have the same cardinality, there is
a bijection i : N — Ny. Therefore f o & is a bijection from N onto Q.

[5] Rand (—%, Z) have the same cardinality.
Proof. Define /: R — (=%, %) by f(x) = arctan x.

Claim: f is one-to-one. Let x; and x, be elements of R such that f(x;) = f(x2) Then

arctanx; = arctan xj
= tan(arctanx;) = tan(arctan x;)
= X1 = X2

Claim: f is onto. Let y € (—%,%). Then, tany € R and, since y € (—%.%), we have that

arctan(tan y) = y. Let x = tany. Then f(x) = y.
[6

—_

The intervals (0, 1) and (—

<Define f: (0,1) — (-Z,
bijection from (0, 1) onto (—

SIE

. %) have the same cardinality.

SIE

)by f(x) =mx— 7. Itis easy to show that /' is a well-defined
. 5):

We immediately deduce from examples 5 and 6 that (0, 1) and R have the same cardinality.

SIE]

2.5.3 Definition
A set S is said to be

(a) finite if S = @ or if there is an n € N such that |S| = {1, 2, 3, ..., n}|.
(b) infinite if S is not finite.

(c) countably infinite if | S| = |N|.

(d) countable if S is finite or is countably infinite.

(e) uncountable if S is not countable.

The cardinality of N is called 8¢ (aleph nought).
We have shown that the sets E, Z and Q are countably infinite.

2.5.4 Theorem
There does not exist a surjection from a set X onto its power set P(X).

Proof. (By Contradiction). Suppose there were such a surjection f : X — P(X). Let 4 be the subset of
X defined by

A={xeX : x< f(x)}.
Then A € P(X). Since f is assumed to be surjective, there exists an ¢ € X such that f(a) = A. Either
a€ Aora & A. If a € A, then by definition of 4, a € f(a) = A, a contradiction. Therefore, a & A.

But now again by definition of A, it follows that @ € A4, a contradiction again. We conclude that there is no
function from X onto P(X). |
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Corollary
‘P(N) is uncountable.

Theorem
The set of real numbers in the interval (0, 1) is uncountable.

<(By contradiction). Assume that (0, 1) is countable. Let {x;, X3, X3, ...} be the enumeration of
elements of (0, 1); that is, there is a bijection /' : N — (0, 1) given by f(k) = x,. Each x, € (0,1) has a
decimal expansion of the form

x1 = O.ananaizaisas- .-
x2 = 0.az1axa23a24a35 -+
x3 = 0.a31a32a33a34a35 -
Xn = 0.anian2anzanaans---

where a;; € {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let b be the real number that has the decimal expansion:

b =0.b1b2b3b4bs -

where
2 ifam=1
b, =
1 if agn # 1.
Then, clearly, b € (0, 1) and b # xj for all k € N since b and xj differ at the k-place after the decimal
point. Hence, the function f : k > Xy is not surjective. |
Corollary

The set R of real numbers is uncountable.

<This follows immediately from examples 2.5.2 (5 and 6).
In order to establish the next set of important results, we shall need the following result called the Well
Ordering Principle or Least Natural Number Principle:

Theorem
Every nonempty subset A of natural numbers has a least member - a number ay € A such that ay < a for
alla € A.

The Least Natural Number Principle is equivalent to the Principle of Mathematical Induction. That
is, assuming one principle you can prove the other. Below we prove that the Principle of Mathematical
Induction implies the Least Natural Number Principle. We leave the proof of the converse of this statement
as an exercise.

Theorem
The Principle of Mathematical Induction implies the Least Natural Number Principle.

Proof. Let T be a subset of N with no least element. We prove that 7" is an empty set. Let
S={meN:{1,2,....n}NT = 0}.

Claim1: 1 € S. If 1 ¢ S, then {1} NT # @. Butthen 1 € T and 1 would be the least element of 7,
contradicting the fact that 7" has no least element. Hence 1 € S.
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Claim2: k € S = k+1 € S. Since k € S (by the assumption), it follows that {1,2,...,k}NT = @.
This says that no positive natural number less than or equal to k belongs to 7. We must show that & + 1
does not belong to 7 or equivalently, k + 1 € S. If k + 1 & S, then {1,2,....k,k+ 1} NT # 0.
Since {1,2,...,k} N T = @, it follows that k + 1 € T. But then k + 1 would be the least element of T,
contradicting the fact that 7" has no least element. Hence k + 1 € S.

By the Principle of Mathematical Induction, we have that S = N. This, of course, means that no natural
numbers belongsto 7', i.e., T = 0. |

We are now ready to establish some important results.

Theorem
A subset of a countable set is countable.

<Let A be a subset of a countable set B. If A4 is finite, then it is obviously countable. Assume that 4
is infinite. Then B is countably infinite. Let {b;, b5, b3, ...} be an enumeration of elements of B That is,
there is a bijection f : N — B given by f(k) = by.

Let M = {n € N | b, € A}. Then M is a nonempty subset of N. By the Least Natural Number
Principle, M has the least element 72;. Similarly, Ml — {m} has the least element 72,. In general, having

chosen my, mj, ..., mg, let myy be the least element of Ml — {m, m,, ..., my}. Define g : N - N
by g(n) = my. Since A is infinite, g is defined for each n € N.

Claim: g is injective. Indeed, if i < j, then m; # m; since m; & {mi, my, ..., m;}. Thus
g@) # &)

We have the diagram:

N5 NL B,

It now follows that f o g is injective. Since each element of A appears somewhere in the enumeration
of elements of B, we have that g(N) includes all the subscripts of elements of 4. Thus, f o g is a bijection
from N onto 4. Hence, A is countable. |

Here is another argument that R is uncountable: Assume that R is countable. Then, by Theorem 2.5.10,

every subset of R would be countable. In particular, the set or real numbers in the interval (0, 1) would be
countable. This contradicts Theorem 2.5.6. Hence, R is countable.

Corollary
An intersection of any collection of countable sets is countable.

<Let {A, | A € I} be a collection of sets such that A, is countable for each A € I. Choose and fix
a € 1. Then

m Ay C Aq.
rel

Since A, is countable, it follows from Theorem 2.5.10 that m Ay is countable. |
rel

Theorem
Let A be a nonempty set. The following statements are equivalent:

(a) A is countable;
(b) There is a surjection f : N — A.
(¢) There is an injection f : A — N.

<(a) = (b): Assume that A is countable. If A is finite, then there is nothing to prove. Assume that A4 is
infinite. Then A is countably infinite. Thus, there is a bijection f : N — A. Therefore, f is a surjection
from N onto A.

(b) = (c): Assume that there is a surjection f : N — A. Then the set

JT@:={neN|fin)=a}#0
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foreach a € A.
Define g : A — N by
g(a) = the least element of the set " (a)

for each a € A. By the Least Natural Number Principle, we have that g is well-defined. We show that g is
injective. Note first that since g(a) € f < (a), it follows that f(g(a)) = a.
Let a,b € A such that g(a) = g(b). Then

a=f(g@) = f(gb)) =b.

Thus, g is injective.

(c) = (a): Assume that there is an injection g : A — N. Then g is a bijection from A onto g(A) :=
{n € N| g(a) = n for some a € A}. Since N is countable and g(4) C N, it follows from Theorem 2.5.10
that g(A) is countable. Thus A is countable. |

Theorem
N x N is countable.

<Define f : Nx N — Nby
f(n,m)=2".3"

We show that /" is an injection. To that end, let (1, m) and (k, £) be elements of N x N such that

Sn.m) = f(k. 0).

Then
n.3m =2k 3t —  nk = 3tem,

Hence, n — k = 0 and £ — m = 0 and, consequently, n = k and m = {. That is, (n,m) = (k, ). This
shows that f is injective. By Theorem 2.5.12(c), we conclude that N x N is countable. |

Corollary
If A and B are countable sets, then A x B is also countable.

<Since 4 and B are countable, there are bijections f : N — 4 and g : N — B. Define 4 : Nx N —
A x B by
h(n,m) = (f(n), g(m)) forall (n,m) e NxN.

Clearly, & is well-defined.

Claim 1: /% is injective. Assume that /si(n,m) = h(k,{). Then, by definition of &, (f(n), g(m)) =
(f(k), g()). Therefore f(n) = f(k) and g(m) = g(£). Since f and g are injective, it followsthatn = k
and m = £ and, consequently, (n, m) = (k, {).

Claim 2: / is surjective. Let (¢,b) € A x B. Since f and g are surjective, there are natural numbers i
and j such that /(i) = a and g(j) = b. Hence, (i, j) € N x N and

h(i. j) = (). g())) = (a.b).

Thus, & is surjective. |
We give another proof that the set (Q of rational numbers is countable.

Corollary
The set Q of rational numbers is countable.

<Since Z and N are countable, we have, by Corollary 2.5.14, that Z x N is countable. So there is a surjection
f:N—ZxN.Define g : ZxN — Qby

P
glp.q)=~—.
q
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Clearly, g is surjective (by the definition of rational numbers). We have the following diagram:

NS zxN-5 Q.
Since the function g o f is a surjection from N onto Q, it follows from Theorem 2.5.12 that Q is countable.ll

2.5.16 Theorem
A countable union of countable sets is countable.

o0
<Let {4, | n € N} be a collection of sets such that 4, is countable for each n € N and let 4 = U Ap.

n=1
We show that 4 is countable. Since A, is countable for each n € N, there is a surjection f, : N — A, for
eachn € N. Define f : Nx N — 4 by

Sn,m) = fu(m).

We show that [ is surjective. Indeed, if a € A4, then a € A4, for some n € N. Since f;, is surjective, there
is an m € N such that f,(m) = a. Therefore (n,m) € N x Nand f(n,m) = f,(m) = a. Thus, f is
surjective. Since N x N is countable, there is a surjection g : N — N x N. We have the following diagram:

N-5NxN-L 4.
Thus, g o f is a surjection from N onto 4. By Theorem 2.5.12, A is countable. |

2.5.17 Exercise
[1] Show that the set of irrational numbers is uncountable.

2.5.1 The Cantor-Schroder-Bernstein Theorem

When we started the section on cardinality, we said that two sets 4 and B have the same cardinality if there
is a bijection (one-to-one and onto function) between them. It is usually easier to find an injection than a
bijection between two sets. The Cantor-Schroder-Bernstein Theorem asserts that if 4 and B are sets for
which we can find an injection from A into B and an injection from B into A, then there is a bijection
between 4 and B.

2.5.18 Lemma
Let A and B be sets such that B C A. If there is an injective function f : A — B, then there is a bijective
functiong : A — B.

Proof. If A = B, then the identity function i4 works. Assume that B ; A. We inductively define a
sequence (Cy) of sets as follows:
Co = A\B
G = Jf(G) = f(4\B)
C: = [f(C)=/[*(4\B)
C; = [f(C)=/*(4\B)

Co = f(Cu1) = f"(A\ B)

o0 o0
Let C = U Cp = U f™(A\ B), where £ is the identity map on 4. Note that 4 \ B = Co C C and

n=0 n=0
Co=|J "4\ B) S B.
n=1 n=1
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Claim1: If j, k € No and j # k, then C; N Cy = @; thatis, the sets Cy are pairwise disjoint. To prove
the claim, assume that j < k and that C; N Cy # 0. Letz € C; N Cy; thatis, z € f/(A\ B)N fk4\ B).
Then there are x and y in A \ B such that 7/ (x) = z = f*(y). Therefore

£ = 1oy = (o) = ()

Since f is injective, sois f/. Hence x = f*7/(y). But,since x € 4\ B and f*~/(y) € B, the equality
x = f*77(y) means that x = f*77(y) € (4\ B)N B = @. This is a contradiction. Hence, C;NC, =90.
Claim 2: f(C) C C. Indeed,

/(©) =7 (U cn) —Js@=JGucc
n=0

n=0 n=0

Define g : A — B by
f(x) iftxeC
gx) =
X if xe A\C.

Claim 3: g is injective. Let x,y € A such that g(x) = g(y). If x,y € C, then f(x) = f(»).
Since f is injective, it followsthat x = y. If x € C and y ¢ C, then x = g(x) = g(y) = y. That is,
x=y.lfxeCandye A\ C,thenx # yand f(x) € f(C) C C. Therefore g(x) = f(x) € C and
g(y) =y € A\ C. Hence g(x) # g(»)-

Claim 4: g is surjective. Let y € B. If y € C, then y € f"(A \ B) forsome n = {1, 2, ...}. Hence,
thereisanz € 4 \ B such that y = f"(z). Let x = f"!(z). Then x € f"~'(4\ B) C C. Hence, by
definition of g,

g =S =1 (/") =" =
If y € A\ C, then, by definition of g, g(¥) = ». |

Theorem
(Cantor-Schroder-Bernstein Theorem). Let A and B be sets. If there exist two injections f : A — B
and g : B — A, then there is a bijectionh : A — B.

Proof. Since f and g are injective functions, the composite function g o f is an injection from 4 into
g(B). Also, g(B) € A. By Lemma 2.5.18, there is a bijection k : 4 — g(B). Since g is an injection from
B into A, it is a bijection from B onto g(B). The inverse function g~! is a bijection from g(B) onto B.
We now have the diagram

k -1
A g(B) 5> B.
The composite function /1 := g~! o k is a bijection from 4 onto B. ]

Example
We use the Cantor-Schréder-Bernstein Theorem to show that the sets [—1, 1] and R™ have the
same cardinality. Let f/ : [-1,1] - R* and g : Rt — [~1,1] be given by f(x) = x + 3 and

glx) = 1 respectively. The function f is clearly injective and maps the interval [-1, 1] onto
X

the interval [2, 4]. This function is not onto - for example, for 5, which is in R™, there isno x € [-1, 1]
such that f(x) = 5.

The function g is also injective and maps R onto the interval (0, 1). This function is not onto -
for example, for 0, which is in [—1, 1], there is no x € R such that g(x) = 0.

By the Cantor-Schréder-Bernstein Theorem, there is a bijection between [—1, 1] and R. Hence,
these sets have the same cardinality.
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Chapter 3

Real Numbers and their Properties

3.1

Real Numbers as a Complete Ordered Field

FIELD AXIOMS

3.1.1 Definition
A field is a set F together with two binary operations + : F x F — T (called addition) and x : F x F —
(called multiplication) such that for all x, y, z € T,

Al.
A2.
A3.
A4
M1.
M2.
M3.
M4.

D1.

X+ty=y+x;

X+ +z=x+0+2);

There is an element 0 € IF, called the additive identity, such that x + 0 = x for each x € F;
Foreach x € F, there is an element —x € F, called the additive inverse of x, such that x+(—x) = 0;
XXy=ypXXx;

(xxpy)xz=xx(yxz);

There is an element 1 € F, called the multiplicative identity, such that x x 1 = x;

For each x € I\ {0}, there is an element x~! € T, called the multiplicative inverse of x, such that
xxx1=1;

XxxX(y+z)=xxy+xxz.

Note that a field is a triple (¢, +, X), where ¢ is a set, 4+ and x are binary operations satisfying the above
properties. We shall abuse notation by simply writing ¢ for a field. To simplify notation, we shall write xy

X
instead of x x y and — for x x y~ .
y

1

3.1.2 Exercise
[1] Let F be a field.

(a) Show that the additive and multiplicative identities are unique.
(b) Letx e Fand y € F\ {0}. Show that —x and y~! are unique.

ORDER AXIOMS

3.1.3 Definition
An ordered field is a field F on which an order relation < is defined such that
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(i) (trichotomy) for every x, y € ¢, exactly one of the following holds:

x <), X =), y <X,

(ii) (transitivity) forallx, yandz,x < yAy <z = x <z;
(iii) Forall x, y, andz ing,x <y = x 4z <y + z. Furthermore, if z > 0, then xz < yz.

The sets R and Q are examples of ordered fields (under the usual < relation).

3.1.4 Exercise
Show that Z; = {0, 1, 2, 3, 4, 5, 6} is a field and that Z, is not an ordered field under the usual
< relation.

COMPLETENESS AXIOM

3.1.5 Definition
Let B be a subset of an ordered field IF.

(a) Anelement u € ¢ is an upper bound for B ifx <u forall x € B.
(b) An element £ € ¢ is alower bound for B if { < x forall x € B.
(c) B is said to be bounded if it has both an upper and a lower bound.
(d) Anelement M € ¢ is the least upper bound for B if

(i) M is an upper bound for B and,
(ii) for all upper bounds « for B, we have M < «.

The least upper bound for B is also called the supremum for B and is usually abbreviated as lub(B)
orsup B.

(e) An element m € ¢ is the greatest lower bound for B if

(i) m is a lower bound for B and,

(ii) for all lower bounds 8 for B, we have B < m.

The greatest lower bound for B is also called the infimum for B and is usually abbreviated as glb(B)
orinf B.

3.1.6 Proposition
A nonempty subset S of an ordered field ¢ can have at most one least upper bound.

Proof. Assume that A and v are both least upper bounds for S. Then, by definition of the least upper bound,
A <v < A.Hence, A = v.

3.1.7 Definition
An ordered field ¢ is said to be complete if every nonempty subset S of ¢ which is bounded above has the
least upper bound.

3.1.8 Exercise
Show that in a complete field ¢, every nonempty subset S of ¢ which is bounded below has the
greatest lower bound.

3.1.9 Theorem
(Characterization of supremum) Let S be a nonempty subset of an ordered field ¢, and M € ¢. Then
M = sup S if and only if
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(i) M is an upper bound for S, and
(ii) for any € € ¢ withe > 0, there is an element s € S such that M — € < s

Proof. Assume that M is the supremum for S, i.e., M = sup S. Then, by definition, M is an upper bound
for S. If there is an €’ € ¢ with €’ > 0 for which M — ¢’ > s forall s € S, then M — €’ is an upper bound
for S which is smaller than A, a contradiction.

For the converse, assume that (i) and (ii) hold. Since S is bounded above, it has a supremum, A (say).
Since M is an upper bound for S, we must have that 4 < M. If A < M, then withe = M — A, there is

an element s in S such that
M—-—(M-—-A)<s<A, ie,A<A,

which is absurd. Therefore A = M ,i.e., M is the supremum of S. |

Definition
Let (¢, <) and (G, <) be ordered fields. An order isomorphism between ¢ and G is a bijection¢ : ¢ — G
such that forall x, y € ¢,

@) ¢(x + 1) =¢(x) +o(»);

(i) ¢(xy) = d(X)p(y);

(iii) if x < y, then ¢p(x) < ¢(p).
o A complete ordered field exists. We denote it by R and call it the field of real numbers.
¢ There is an order isomorphism between any two complete ordered field.

¢ It follows from the above two statements that there is essentially one complete ordered field, viz. R.
“Essentially” here means that there is an order isomorphism between any complete ordered field and
the field R of real numbers.

Theorem
Let A and B be nonempty subsets of R which are bounded above. Then the set

S={a+b:ac A be B}
is bounded above and sup S' = sup A + sup B.

Proof. Letc € S. Thenc = a + b forsomea € Aandb € B. Thus,¢c =a+ b < supA + sup B.
Therefore sup A + sup B is an upper bound for S. Since sup S is the least upper bound for S, we have that
sup S <sup A4 + sup B.

It now remains to show that sup 4 + sup B < sup S. To that end, let € > 0 be given. By Theorem 3.1.9,
there exist elements x¢ € 4 and y. € B such that

supA—% < Xe, and

supB—% < Ve

Thus, sup A +sup B—€ < x¢+ ye < sup S. Since this is true for any € > 0, we have that sup A + sup B <
sup S, whence sup A + sup B = sup S. ]

3.1.12 Exercise

[1] Let S C R be bounded above and let x € R. Show that if x < sup.S, then there exists an
s € S suchthat x <s.
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[2] Let S be a subset of R which is bounded below. Show that the set
L={eR:{ isalowerbound for S }

is bounded above and sup L = inf S.
3
[4] Let S € T C R, where S # @.

Show that if a set S of real numbers is bounded below, then inf S exists.

—_

(i) Show that if 7' is bounded above, then so is S and sup S < sup 7.
(i) Show that if 7' is bounded below, then sois S and inf 7 < inf S.

[5] For a subset S of R, let —S = {—s : s € S}. Show that if S is bounded below, then —S is
bounded above and sup(—S) = —inf S.

[6] Formulate and prove the characterization of infimum analogous to Theorem 3.1.9.
[7] Let 4 and B be non-empty bounded subsets of R.

(i) Show thattheset S ={a+b:a <€ A, b € B}isbounded below and inf S = inf A+inf B.

(i) Show that the set D = {a —b : a € A, b € B} is bounded above and supD =
sup 4 — inf B.

(iii) Show thatthe set D = {a—b :a € A, b € B} is bounded below and inf D = inf A—sup B.
(iv) Show that the set A U B is bounded above and sup(4 U B) = max{sup 4, sup B}.
[8] Let 4 and B be non-empty bounded subsets of R, the set of positive real numbers. Show

that the set P = {ab : a € A, b € B} is bounded and supP = supA4 -sup B, infP =
inf A4 - inf B.

3.1.1 The Archimedean Property of the Real Numbers
The following property of real numbers is one of the major consequences of the Completeness Axiom.

Theorem
(Archimedean Property). The set N of natural numbers is not bounded above.

Proof. Assume that N is bounded above. By the Completeness Axiom, sup N exists. Let m = supN.
Then, by Theorem 3.1.9, with € = 1, there is an element k € N such that m — 1 < k. This implies that
m < k + 1 < m, which is absurd. [ |

There are several equivalent formulations of the Archimedean Property. We shall mention just a few of
them as corollaries of Theorem 3.1.13.

Corollary
For every real number b there exists an integer m such thatm < b.

Proof. For every real number b there is a natural number n such that n > —b. Hence, m = —n < b. ]

Corollary
Given any real number x, there exists an integer k such thatx — 1 < k < x.

<Let x € R. By Corollary 3.1.14, there is an integer m such that m < x. By the Archimedean Property,
there is a natural number 7 such that x < n. Hence, m < x < n. Choose the largest integer k& from the
finite collection m,m + 1, ...,n such that k < x. Then k + 1 > x, and consequently, x — 1 <k <x. B

Corollary
If x and y are two positive real numbers, then there exists a natural number n such that nx > y.
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<Assume that nx < y foralln € N. Then n < 24 for all n € N. This means that N is bounded above

X
(by X), contradicting Theorem 3.1.13. ]
X
Corollary |
If € > 0 then there exists ann € N such that — < €.
n
Proof. Take x = € and y = 1 in Corollary 3.1.16. ]

Since R is a field in which order and completeness axioms and the Archimedean Property hold, R is
called a complete ordered Archimedean field.

The following theorem asserts that we can approximate any real number as closely as we wish by a
rational number. A similar statement also holds for irrational numbers.

Theorem
(Density of Rationals in Reals). If x and y are real numbers such that x < y, then there exists a rational
number r such that x < r < y. That is, between any two distinct real numbers there is a rational number.

1
Proof. By Corollary 3.1.17, there is a natural number # such that — < y — x. That is,
n

1
X<y—-—. 3.1
n

Also, by Corollary 3.1.15, there is an integer k& such that

1 k
ny—1<k<ny iey——<—<y. (3.2)
n-n
Combining (3.1) and (3.2), we have that
1
X<y——=<-—<y. n
n-n

Corollary

(Density of Irrationals in Reals). If x and y are real numbers such that x < y, then there exists an
irrational number z such that x < z < y. That is, between any two distinct real numbers there is an
irrational number.

Proof. By Theorem 3.1.18, there are rational numbers r; and r, such that

X <r<ry<}y.

Thenz = r; + rZJE” is an irrational number such that x < z < y. [ ]

Corollary
Let b be any real number and let S = {g € Q : ¢ < b }. Then b = sup S. That is, every real number is a
supremum of a set of rational numbers.

Proof. Of course, b is an upper bound for the set S. By the Completeness Axiom, S has a supremum,
¢ = sup S say. By definition of supremum, ¢ < b. If ¢ < b, then by Theorem 3.1.18, there exists an ¢ € Q
such that ¢ < ¢ < b. But then ¢ < b implies that ¢ € S, and ¢ < ¢ contradicts the fact that ¢ is the
supremum of S. Therefore ¢ = b. ]

It is now easy to see why the completeness axiom fails in Q. Indeed, if 1 is an irrational number and
S={q€Q :0=<gq<n},then S is bounded, with sup S = 1. However 1 does not belong to the set Q.
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3.2 Topology of the Real Numbers

In this section we briefly discuss some elementary topological properties of the set R of real numbers.
The Absolute Value Function
3.2.1 Definition
Let x € R. The absolute value of x is defined by

x ifx>0
x| =
—x ifx <0.

It is clear from the definition that the absolute value of any real number is always nonnegative.

3.2.2 Theorem
(Properties of the Absolute Value Function). Let x, y € R. Then,

[1] |x| > x and |x| > —x.

[2] |x]=]—x].

[3] [xyl = Ix][|yl.

[4] ‘f‘szory;éo.
yioo

[5] |x + y| < |x| + |y|. (Triangle Inequality.)

<Exercise.

If we think of the real numbers as points on the real line, then |x — y| is just the distance between the
real numbers x and y.

3.2.3 Exercise
Let x, y, z € R. Show that

(] Ix=yl+ly—zl=|x—zl
[2] Ix[+ [yl = |x =yl
[8] Ix[— Iyl = |x—yl
[4] |x| = max{—x, x}.

[5] [x —y| <eforalle > 0if and only if x = y if and only if [x — y| = 0.

Open Sets and Closed Sets

3.2.4 Definition
Leta e Rande > 0.

[1] An e—neighbourhood of a is the set

N(a,e) ={x eR:|x —al| <€}
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[2] A deleted ¢ —neighbourhood of a is the set
N*(@a,e)={xeR:0<|x—a| <e}.
It is clear that
N(a,e)=(a—€,a+¢€) and N*(a,e) = (a—e€,a) U (a,a+ €).

3.2.5 Definition
A subset U of R is said to be open if for each s € U there is an € > 0 such that (s —e,s +¢€) C U.

3.2.6 Examples
[1] For any a,b € R with a < b, the set (a,b) is open. Indeed, if s € (a¢,b), thena < s < b.
Take € = min{s —a,b — s}. We claim that (s —¢,s + €) C (a,b). To prove the claim, let
te(s—e,s+e€). Then,

s—e<t<s+e = s—(s—a)<s—e<t<s+e=<s+(b—y),
whence a < t < b, which proves the claim.
[2] The sets (—1,0) U (3,7) and (—o0,4) U (6,9) U (12, 20) are open.
[3] The sets R, @ are open.

[4] The set Q of rational numbers is not open in R. Indeed, if r € Q, then for any ¢ > 0 the
interval (r — ¢, 4 €) contains an irrational number. Thus, Q is not open.

[5] The set R\ Q of irrational numbers is not open. The reasoning is the same as in the previous
example.

3.2.7 Theorem
(1) A union of an arbitrary collection of open sets in R is an open set.

(2) An intersection of a finite collection of open sets in R is an open set.

<(1) Let {U; | i € I} be a collection of open sets in R. We want to show that the set U U; is open.
iel

Let x € U U;. Then x € Uy for some k € I. Since Uy is open, we can find an € > 0 such that
iel
(x —€,x 4+ €) C Ug. Since Uy C U U;, we have that (x —e,x +€) C U U;, which proves the desired

iel iel
result.

n n
(2)Let Uy, U,, ... U, be open sets in R. We want to show that the set m Uy isopen. Let x € m Uy.

k=1 k=1
Then x € Uy forallk =1, 2,... ,n. Since Uy is open foreach k = 1, 2,... ,n, we can find an ¢, > 0
such that (x — €, x + €x) C Uy foreach k = 1, 2,... ,n. Let € = min{e;, €, ...,€}. Then
n

(x—€,x+¢€) CUgforeachk =1, 2,... ,n, and consequently, (x —€,x +€) C m Uy . That is, the set
k=1

n
m Uy is open. |
k=1

-1 1
An arbitrary intersection of open sets need not be open. For example, if I = (?, E) ,then =, I = {0},

which is not open.

The following theorem completely characterises open subsets of R.
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Theorem
A subset of R is open if and only if it is a countable union of disjoint open intervals in R.

<Let G be an open subset of R and x € G. Denote by I the union of all open intervals in G that contain
x. Note that since G is open, there is an € > 0 such that (x — €, x 4+ €) C G. There is therefore at least one
open interval that contains x and is contained in G. Clearly I, € G. Let

ay = inf{a e R| (a,x] C G} and By = sup{hb € R|[x,b) C G}.

Claim 1: 7, = (ax, Bx).
I, C (0x,Bx) : Let y € Iy. Then there is an open interval (¢,b) C G with x € (a, b) such that
y € (a, b). Since (¢,b) C G and x € (a, b), it follows that (¢, x] C G and [x,b) C G. Thus, ax < a and
b < Bx. Therefore
ax <a<y<b<=<PByx

and consequently y € (o, Bx).

(ax, Bx) C I : Ttis clear that (ay, Byx) is an open interval and x € (ay, Bx). It remains to show that
(ax, Bx) C G. To thatend, let y € (ax, Bx). The either y < x or x < y. Without loss of generality, we
assume that y < x. By characterization of oy (as the infimum), given any € > 0, there is an a. € R such

that (¢e, x] C G and a¢ < oy + €. In particular, taking € = 5™, we have that

Y — Oy ax +y
< = )
e < Ox+ 2

Since o, < y, it follows that
Ox + ) <y+y:y§x‘
2 2

ae <

Therefore y € (ae,x] C G,andso y € G.

If x < y, then we can similarly show that y € G.

Claim 2: If x, y € G, theneither Iy = I, or [, N1, = @. Assume thatz € I, N [,. Thenz € I, and
z € I,. Therefore, I is an open interval in G which contains z, and so I, C I;. Since x € I, C I, I, is
an open interval in G which contains x. Hence I, C I. It now follows that I, = I,. Similarly, I, = I,
whence I, = I,,. This shows that {/, | x € G} is a collection of disjoint open intervals.

Claim 3: G = U I. Since I, C G for each x € G, it follows that U I, € G. On the other hand,

xelG xelG
if x € G, then, since G is open, there is an open interval (a, b) C G such that x € (a, b) Since (a, b) C I,

it follows that x € I, whence G C U I.

xelG
Claim 4: We can replace the intervals I/, by a countable collection of disjoint intervals. For each
x € G, ay < X < Bx. Since rationals are dense in reals, there are rational numbers r, and s, such that
Ay < Ty <X <8y < By foreach x € G. Thus,

X € (ry,8x) C (0x, Bx) = I, foreach x € G.

It now follows that

G C U(VXan)g UI =G.

xeG xeG

That is, G = U (rx, Sx). The intervals {(ry, sx) | x € G} are clearly disjoint.

x€G
Conversely, assume that G is a countable union of disjoint open intervals. Since an open interval is an

open set and an arbitrary union of open sets is open, it follows that G is also open. ]

Definition
Let S be a subset of R, and x € R. Then
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(a) x € S is called an interior point of S if there is an € > 0 such that (x — €, x + €) C S. The set of
all interior points of a set S is denoted by S° or int(S).

(b) x is called a boundary point of S if for every € > 0 the interval (x — €, x + €) contains points of S
as well as points of R \ S. The set of boundary points of S is denoted by 9.5 or bd(S).

(c) x € S is called an isolated point of S if there exists an € > 0 such that (x —e,x + €) N S = {x}.

It is clear from the definition that each point of an open set S is an interior point of S. Also, every
isolated point of a set S is a boundary point of S.

3.2.10 Examples
[MlLetS={xecR : 0<x<1}.ThenS?={xeR : 0<x <1}, 95 ={0,1}. S does not
have isolated points.

1
[2] Let S = { — :neN } Then each point of S is an isolated point of S. Therefore S C 9S.
n

11
3] LetS:{l,—,

—,...,0}.Then S =S.
2°3

[4] The set N of natural numbers consists of isolated points only. Therefore, every point of N is
a boundary point. Clearly, N° = @.
[5] Z° = @, and R° = R.

[6] Each set with only finitely many elements consists entirely of isolated points.

The following Theorem asserts that elements of a set S C R can be divided into two groups: those that
are interior to the set and those that are on the boundary of the set S.

3.2.11 Theorem
Let S C R. Then each point of S is either an interior point of S or is a boundary point of S.

<Let s € S. If 5 is not an interior point of S, then for each € > 0 the interval (s — €, s + €) contains a
pointin R\ S. Since (s —¢, s + €) already contains a point s of the set .S, we have that this interval contains
apointin S as well as a pointin R \ S. Hence s is a boundary point of S. ]

3.2.12 Definition
A subset S of R is said to be closed if its complement R \ S is open.

3.2.13 Examples
[1] The interval [a, b] is closed since its complement (—oo, a) U (b, c0) is open.

[2] The sets R and @ are closed.
[3] The set Q of rational numbers is not closed.
[4] The set R \ Q of irrational numbers is not closed.

[5] The set {1, 3, 4, 7} is closed since its complement (—oo, 1) U (1,3) U (3,4) U (4,7) U (7, 00)
is open.
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[6]

S| =

The set S = { :neN } U {0} is closed since its complement

°° 11
kL=Jl k+1 k

is open.

3.2.14 Definition
Let S be a subset of R.

(1) A point x € R is an accumulation point of S if for every € > 0 there exists an element s € S such

that0 < |x —s| < €;ie,[(x —e,x)U (x,x +¢€) | NS # @. In other words, x is an accumulation

point of S if every deleted e-neighbourhood N *(x, €) of x contains a point of S.

The set of all accumulation points of S is called the derived set of S and is denoted by S’.

(2) S is said to be dense in itself if S C S’.

(3) S is called perfect if S = S’.

(4) The closure of S istheset S = S U S".

3.2.15 Remarks

(1)
()

[1]

An accumulation point of a set S need not be an element of S.

A real number x is an accumulation point of a set S C R if for each ¢ > 0 the interval
(x — €, x + ¢€) contains infinitely many elements of S. Indeed, if x is an accumulation point
of S then, for any ¢ > 0, there exists an element s; € S with s; # x, such that 0 <
|x —s1] < €. Taking €; = |x — 51/, there exists an element s, € S with s, # x, such that
0 < |x —s2] < €1 < €. Taking €2 = |x — s3], there exists 53 € S with s3 # x such that
0 < |x — s3] < €2 < e. Continuing in this way we obtain a sequence (s,) with the property
that s, # x and |s, — x| < € for all n.

Elements of a set S C R can be divided into two groups: isolated points = those points that
can be separated from the rest of the set with an open interval, and accumulation points =
those points that cannot be separated from the rest of the set with an open interval.

3.2.16 Examples

[1]
[2]

[3]

[4]

[5]

letS={xeR :0<x<1}.ThenS ' ={xeR :0<x <1} ThereforeS =SUS' =5".

lfS={xeR :a<x<b} thenS =S. Therefore S = S.

1
If S = { —:neN } then S’ = {0}. Indeed, if ¢ > 0, then there is an m € N such that
n

0 < L < Therefore —e < L < ¢;ie., L € (—€,¢). Since L € S, it follows that for each

€>0,N*(0,e)NS #0. AlsoS =SUS = { L.y EN}U{O}. Note that 0 ¢ S.
Every real number is an accumulation point of the set Q of rational numbers; that is, Q' = R.

Indeed, if x € R and € > 0, then the interval (x — ¢, x + €) contains infinitely many rational
numbers. It now follows thatQ = QU Q@ = QUR = R.

If Z is the set of integers, then Z’ = @. Indeed, for any x € R we can find an € > 0 small
enough such that (x — €, x + €) contains no integer, except possibly when x is itself an
integer. It thus follows thatZ =ZUZ =7Z U @ = Z.
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[6] A finite set has no accumulation points. Indeed, if S = { sy, 52,..., sy }, and x € R, then
taking € = min{ |s; — x|, j =1,2,...,n }, we have that ¢ > 0 and

[x—e,x)U(x,x+€)]NS =40.
Thus S’ =@,andso S = S.

Another way of seeing that a finite set S has no accumulation points is simply that no ¢-
neighbourhood can contain infinitely many points of S since S is finite!

3.2.17 Theorem
Let S C R. Then S is closed if and only if S contains all its accumulation points.

<Suppose that S is closed and let x € S’. We want to show that x € S. If x ¢ S, then x € R\ S.
Since S is closed, R \ S is open. Therefore there exists an € > 0 such that (x — e, x +€¢) C R\ S. This
then implies that (x — €, x 4+ €) N .S = @. But this contradicts the fact that x € S’. Thus S’ C S.

To prove the converse, assume that S’ C S. We want to show that S is closed, or equivalently, that
R\ S is open. To thisend, let x € R\ S. Then x ¢ S’, and so there is an € > 0 such that

[(x—e,x)U(x,x+€)]NS =4.

Since x ¢ S, we have that (x —e,x+¢€)NS = @. Thus (x —¢,x +€) C R\ S, whence R\ S is open. B

3.2.18 Corollary _
Let S C R. Then S is closed if and only if S = S.

<Assume that S is closed. Then, by Theorem 3.2.17, S’ C S. Therefore S=SuUS'cSuUS=S.
ButS Cc SUS' =S.Thus S = S.

Conversely, assume that S = S. Then S’ C S U S’ = § = S. Thus S contains all its accumulation
points and, consequently, .S is closed. ]

It follows from Theorem 3.2.17 that the sets [a, b], Z, S = { 1, e, 0} are all closed, as is

11
’3’4

(SR

any finite set.

3.2.19 Theorem
If S C R is closed and bounded, then sup S and inf S belong to S

<Let s = sup.S. (sup S exists because S is bounded above.) Then, for any € > 0, there is an x_ € S
suchthats —e < x, <s <s+¢€.Ifx_ =s,thens € .S and we are done. If x_, < s,then0 < |[s —x_| < €.
That is, for every € > 0, thereis an x, € S such that 0 < |s — x_| < €. Thus s € S’. Since S is closed,
sesS.

A similar argument shows that inf S’ € S.. ]

3.2.20 Exercise 1
[1] Let S = {n +— nmeZ, m> 0}. Find S’.
m

[2] Let S and T be subsets of R.

(a) Show thatif S c T,then S’ c T'.

(b) Show thatif S c T,then S C T.

(c) Show that S is a closed subset of R.

(d) Show that if F is a closed subset of R and S C F, then S C F.
(e)

e) Show that S = ({F c R | F isclosed and S C F}. Deduce that S is the smallest
closed set containing S.
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(f) Show that S = .

(g) Showthat (SUT)Y = S’ UT’. Deducethat SUT = SUT.
(h) Showthat SNT cSNT.

() Isittruethat SN T =SNT?

)
[3] (a) Show that a union of a finite collection of closed sets in R is a closed set.
)

(b) Show that an intersection of an arbitrary collection of closed sets in R is a set.
[4] Let S be a subset of R.

(a) Show that S’ is closed.
(b) Show that if S is bounded, then so is S’.
(c) Show that if S is bounded, then so is S.

[5] Let S and T be subsets of R.

a) Show thatif S C T, then S° C T°.
b) Show that 7° is an open subset of R.

d) Show that if G is an open subsetof Rand G C T,then G C T°.

e) Show that 7° = (J{G Cc R | G isopenand G C T}. Deduce that T° is the largest
open set contained in T'.

Show that 7°° = T°.

Show that (SN T)° =S°nNT°.
Show that S°U T° C (S UT)°.
Isittruethat (SUT)® =S°UT°?

(a)
(b)
(c) Show that 7' is openifand only if T = T°.
(d)
(e)

(f
(9
(h
(i

= = = ==

3.3 Compactness

3.3.1 Definition
An open cover of a set S C R is a collection G = {G, | @ € A} of open sets such that

sc | G

a€A

IfG' C G and G’ is also an open cover for S, then G’ is called a subcover for S. If, in addition, G' has a
finite number of elements, then G' is called a finite subcover of S.

3.3.2 Examples
[1] Let S = [0,00) and, foreach n € N, let G, = (-1,n). Then G = {G, | n € N} is an open
cover for S.

[2] Let S =[0,1]and foreachn € N, let 4, = (—1,1+ 1). Then A = {4, | n € N} is an open
cover for S.

[3] LetS = (0,1) and & = {(1,2) | n € N}. Then U is an open cover for S. Indeed, let x € (0, 1).

Then, by the Archimedean Property, there is a natural number m such that 0 < % < Xx.

1
Therefore x € (1, 2), whence, (0,1) C U(;,Z).

neN
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Definition
A subset S of R is said to be compact if every open cover for S has a finite subcover.

Examples
[1] Afinite subset of R is compact. Indeed, let S = {x1, x2, ..., xp}andletG = {G, |« € A} be
an open cover for S. Then each x; belongs to some G, inG. Theset G’ ={G,, |1 <i <n}
is a finite subcover for S.

[2] The set R of real numbers is not compact since the open cover C = {(—n,n) | n € N} of R
does not have a finite subcover.

Theorem
Let S be a compact subset of R. If F is a closed subset of S, then F is compact.

<LetU = {U, | @ € A} be an open cover for F. Then G = U U { F¢} is an open cover for S. Since S
is compact, the cover G is reducible to a finite subcover. That is, there are indices ¢, 3, ..., @, such that

n
Scl| Uy, uFe

i=1

n
Since F C S and F N F¢ = @, it follows that F C U U,; . Hence F is compact. |

i=1

Theorem
Let a and b be real numbers such that —oo < a < b < oco. Then the interval [a, b] is compact.

<LetUd = {U; | i € I} be an open cover for the interval [a, b] and let
A ={x €la,b]| [a,x] has a finite subcover in U}.

Clearly A # @ since a € A. Also, A is bounded above as x < b for all x € A. By the Completeness
Axiom, sup 4 exists. Let ¢ = sup A. Thena < ¢ <b.

Claim 1: The element ¢ belongs to 4.

Proof of Claim 1: Since U{ is an open cover for the interval [a, b], there is an index iy such that ¢ € Uj,.
Then, since Uj, is open, there is an € > 0 such that (c — €, ¢ + €) € Uj;,. In particular, (¢ —€,c] € Uj,.
By characterization of the supremum, there is an element x. € A4 such that c — € < x¢ < c¢. Therefore
a < x¢ < ¢ and so the interval [a, ¢] = [a, x¢] U [xe, ¢] has a finite subcover in . [The interval [a, x¢] is
finitely covered in U/ since x. € A. The interval [x, c] is covered by the set U;,.] It now follows that ¢ € A.

Claim 2: ¢ = b.

Proof of Claim 2: If ¢ < b, then, since I is an open cover for [a, b], there is a U;, in I/ such that ¢ € U.
Since U is open, there is a § > 0 such that (c — 8, ¢ + §) < U;,. Choose § > §’ > 0 small enough such
that [c,c + 6] C Ui, and ¢ + 8 < b. Thenc + ¢’ € [a,b] and [a, ¢ + 8] = [a, c] U [c, ¢ + §'] has a finite
subcover in Y. [The interval [, c] is finitely covered in U since ¢ € A and the interval [c, ¢ + §'] is covered
by the open set Uj, € U.] This shows that ¢ + 6’ is in A. But this contradicts the fact that ¢ is the supremum
of A. Hence, ¢ = b.

By definition of the set 4, we conclude that [a, b] can be covered by finitely many elements of /. That
is, [a, b] is compact. |

Theorem
(Heine-Borel Theorem). A subset K of R is compact if and only if K is closed and bounded.

Assume that K is compact. We show that K is closed and bounded.
Closedness of K: It suffices to show that the complement, R \ K, of K is open. To that end, let
xo € R\ K and for each k € N, let

1 1 1
Uk={x€R||x—x0|>E}:(—oo,xo—E)U(xo+%,oo).
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o0
Then U Ur =R\ {x0} andUd = {Uy | k € N} is an open cover for K. Since K is compact, this cover of

k=1
n
K is reducible to a finite subcover. That is, there are indices ki, k2, ..., k, such that K C U Ug; - Let
j=1
kmax = max{kla kZa ey kn} Then

" 1 1 1
K C UUkj =(—oo,xo——)U(xo+k—,oo)={xeR||x—x0|>k—}.

max max max

Jj=1
Hence,

1 1
{xeR||x—x0|<k—}C{x€R||x—x0|§k—}CR\K,

max max

whence R\ K is open and so K is closed.
Boundedness of K: Let U = {(—k, k) | k € N}. Then U is an open cover for K. Indeed,

K CR=|J(-k.k).
keN

n
Since K is compact, there are natural numbers ky, k3, ..., k, such that K C U(—kj, kj). Letk,, =

j=1
max{ky, kaz, ..., kn}. Then

n
K | J ki) = (e k).
j=1

It now follows that K is bounded since it is contained in the bounded interval (k. k,..)-

Conversely, assume that K is a closed and bounded subset of R. Then there are real numbers ¢ and b
such that K C [a, b]. It now follows from Theorem 3.3.6 and Theorem 3.3.5 that K is compact. ]

We now apply the Heine-Borel Theorem to prove another important result: the Bolzano-Weierstrass
Theorem (for sets).

Theorem
(Bolzano-Weierstrass Theorem for sets). Every bounded infinite set of real numbers has at least one
accumulation point.

<Let S be a bounded infinite set of real numbers. Suppose that S has no accumulation points. That is,
the derived set of S, S’, is empty. Therefore S =SUS =S,andso S is closed. Thus S is a closed
and bounded subset of R. By the Heine-Borel Theorem (Theorem 3.3.7), S is compact. Since S has no
accumulation points, given any x € S, there is an € > 0 such that S N N(x,€) = {x}. Therefore, the

collection {N(x,€) | x € S, € > 0}is an open cover for S. Since S is compact, there exist X1, Xz, ..., Xp
n
in S and positive numbers €;, €3, ..., €, such that S C U N (xg, €x). But then
k=1

S=Sn|JNere) =S NN ) = | ) = {x1. xa0 .. xal.
k=1 k=1 k=1

That is, S = {x1, X2, ..., Xn}, a finite set. This is a contradiction since S has infinitely many points. H

Exercise
[1] We showed in Theorem 3.3.5 that a closed subset F of a compact set K is compact. Supply
another proof to this statement by using the Heine-Borel Theorem.
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[2] Show that the interval (0, 1) is not compact by

(a) showing that/ = {(%, 2) | n € N} is an open cover for (0, 1) with no finite subcover.
(b) using the Heine-Borel Theorem.

[3] Show that the interval [0, co) is not compact by

(a) showing that G = {(—1,n) | n € N} is an open cover for [0, co) with no finite subcover.
(b) using the Heine-Borel Theorem.

[4] Show that the set N is not compact by

(a) finding an open cover for N that has no finite subcover.
(b) using the Heine-Borel Theorem.

[5] Show that if F is closed and K compact, then F N K is compact by

(a) using the definition of compactness.
(b) applying the Heine-Borel Theorem.

[6] Show that an arbitrary intersection of compact subsets of R is compact.
[7] Show thatif A and B are compact subsets of R then so is 4 U B by

(a) using the definition of compactness.

(b) applying the Heine-Borel Theorem.
[8] Find an infinite collection {K,, | n € N} of compact sets in R such that U K, is not compact.
neN

This shows that an arbitrary union of compact sets is not compact.

[9] Show that a subset K of R is compact if and only of every infinite subset of K has an
accumulation point in K.
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Chapter 4

Sequences of Real Numbers

4.1 Introduction

In this chapter we study convergence of sequences of real numbers. We prove, among others, the Mono-
tone Convergence Theorem, the Bolzano-Weierstrass Theorem for sequences, and the Cauchy Criterion for
sequences of real numbers.

4.1.1 Definition
A sequence is a function whose domain is the set N of natural numbers. If f is such a sequence, let
f(n) = x,, denote the value of the function f atn € N. In this case, we denote the sequence [ by (x,);—,

(or simply by (xy)).

4.1.2 Examples
[1] m) is the sequence (1, 2, 2, ..)).
[2] ((=1)")isthe sequence (-1, 1, —1,...).

[3] (2") is the sequence (2, 4, 8, ...).

. .. . . Xn + X
Sequences are also frequently specified by giving a recursion formula. For example, if x, 1, = ————— 3 nil ,
where x; = 0 and x, = 1, then the terms of the sequence (x) are: (0, 1, %, %, 27—7, L)

4.1.3 Remarks
[1] The order of the terms of a sequence is an important part in the definition of a sequence.
For example, the sequence (1, 5, 7, ...) is not the same as the sequence (1, 7, 5, ...).

[2] There is a distinction between the terms of a sequence and the values of a sequence. A
sequence has infinitely many terms while its values may or may not be finite.

[3] Itis not necessary for the terms of a sequence to be different. For example, (1, 2, 2, 2,...)
is a perfectly good sequence.

4.1.4 Exercise
Write down the first five terms of each of the following sequences.

0) ("2;2") (ii) (COZ#) (i) (%) (iv) (sin%).

4.1.5 Definition
A sequence (x,) is said to be

[1] bounded above if there is a real number K such that x,, < K foralln € N;
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[2] bounded below if there is a real number k such thatk < x, foralln € N;
[3] bounded if it is bounded above and bounded below; otherwise it is unbounded.

It is easy to see that a sequence (x,),, is bounded if and only if there is a positive real number M such
that |x,| < M foralln € N.

4.1.6 Examples 1 1
[1] The sequence ( - ) is bounded since 0 < — < 1 foralln € N.
n n

1
[2] The sequence ( n+ —) is bounded below by 2 but is not bounded above.
n

[3] The sequence ((—1)"n) is not bounded above and it is not bounded below.

4.1.7 Definition
[1] A sequence (xj,) is said to converge to a real number ¢ if, given € > 0, there exists a natural number
N (which depends on €) such that

|, — €| <€ foralln > N.

Symbolically,
Ve > 0)@AN e N)[(Vn = N) = |x, —£| <€].

If (x,) converges to £, then we say that £ is the limit of the sequence (x,) as n increases without
bound, and we write

lim x, =L or x, — £ asn — oo.

n—0o0

[2] If the sequence (x,) does not converge to a real number, we say that it diverges.

[3] A sequence (x,) is said to diverge to co, denoted by x, — oo as n — oo, if for any positive real
number M , there is an N € N such that

X, > M foralln > N.

Similarly, (x,) diverges to —oo, denoted by x, — —o0 as n — oo, if for any negative real number
K, there is an N € N such that
X, < K foralln > N.

It is clear from the definition that convergence or divergence of a sequence is about the behaviour of
the ‘tail-end’ of a sequence. Therefore, altering a finite number of terms of a sequence does not affect its
convergence or divergence.

4.1.8 Examples
[1] Show that a sequence (x,) converges to zero if and only if the sequence (|x,|) converges
to zero.

Solution: Assume that the sequence (x,) converges to zero. Then, given ¢ > 0, there exists
a natural number N (which depends on ¢) such that

|, — 0| = |xn| <€ foralln > N.

Now, for all » > N, we have
[[Xn| = 0] = |xa| <e.

That is, the sequence (|x,|) converges to zero.
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For the converse, assume that the sequence (|x,|) converges to zero. That is, given € > 0,
there exists a natural number N (which depends on ¢) such that

[|Xn| =0 | = |xn| <€ forall n> N.

It now follows that the sequence (x;) converges to zero.

1
[2] Show that lim — = 0.

n—oo n

Solution: Let € > 0 be given. We must find an N € N such that

1
~—0
n

< e forall n> N.

By the Archimedean Property, there is an N € N such that 0 < % < €. Thus, ifn > N, then

we have that
1 ‘ 1 1
——0l==-<—<e.
n n N

1
Thatis, lim — = 0.

n—oo n
. 1
[3] Show that lim (1 — 2—n) =1.

Solution: Let € > 0 be given. We need to find an N € N such that

1
(=)=
2”
1 1

1 ! 1| = = and
on o (141

e =3 (1) =)+ ()= () =+ ()= () + ()=

we have that

< e forall n> N.

Noting that

1 1 1 1

— = < < —.
2 (1+D)" " n+1 n

Now, by the Archimedean Property, there is an N € N such that 0 < % < €. Therefore, for
alln > N we have

1
Thus, lim (1 — —) = 1.
n—o00 on

[4] Find lim

n—o0 2 —

Solution: By trying a few values of n, we conjecture that lim

n—oo p* —

conjecture. Let € > 0 be given. We need to find an N € N such that

= 0. Let us prove this

‘m—o‘ <eforalln > N.
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We first note that

ol =
n2 -2 |n2-=2|
If we take N > 2, then for all n > N, we have that
n n 1 1 1

= = < < )
[n2—=2] n?2-2 n—% n—17"N-1

If we can choose N so that N > 2 and ﬁ < €, then we are done. That is, we need to

1 1
choose N sothat N >2and N > 1+ —. Choose N > max (2, 1+ - ) Then, by working
€ €

backwards, we have that ;

‘——0‘ <e¢e forall n > N.
nz—2

[5] Show that the sequence ((—1)" ) diverges.

. . . 1
Solution: Assume that this sequence converges to some real number £. Then, with ¢ = >
there is an N € N such that

1
[(=D)" =2 < 3 forall n > N.
In particular,
1
— <=
=D <3
Therefore, foralln > N,

11
2= |=D)" = D" S D =L - (DT < ;=1

which is absurd.
[6] Show that the sequence (1 + (—1)" ) diverges.

Solution: Assume that this sequence converges to some real number £. Then, with ¢ = 1,
there exists a number N € N such that

[+ (-D")—£|<1foralln> N.
Now, if » > N is odd, then we have
[+ D" —£]=|¢ <1, whence —1 <{ <1,
and if » > N is even, we have that
[+ D" —L]|=|2—¢] <1, whence | <{ < 3.
But this is impossible.
[7] Show thatif x € R and |x| < 1, then nli>rgo x" =0.

Solution: If x = 0, then there is nothing to prove. Assume that x # 0. Since |x| < 1, we
1
have that m > 1. Thus, there is a positive real number a such that

1
— =1+4a.
|x]|
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Let € > 0 be given. We want to find an N € N such that

|x" —0| <€ forall n> N.

Now,
1 1
—=14a = X'N=|x"=——.
N X" = |x]| T+
Using the binomial theorem, we have that
n
— Da?
14+a)" = Z (Z)ak =1+4+na+ u+---+a” > na,
k=0
and consequently,
; 1 1
= < —.
14+a)" na

1 .
If we can find an N € N such that — < ¢ for all » > N, then we are done. Since ae > 0, we
na

1
have, by the Archimedean Property, that there is an N € N such that v < ae. Hence, for all

n > N, we have that
1 1 1

< — = < — <k,
- N na ~ Na

S |-

and so |x"| < e.

[8] Suppose that (x,) is a sequence such that x, > 0 for all » € N. Show that x, — oo as

1
n — oo ifand only if lim — = 0.

n—00 X,

Solution: By definition, x, — co as n — oo, if and only if for any € > 0 thereisan N € N
such that

1
xp > —foralln > N.
€

This is equivalent to the statement that

1 L . . . 1
— < eforallm > N, which, in turn, is equivalentto lim — = 0.

_xn n—0o0 _xn

4.1.9 Theorem
Let (sn) and (t,) be sequences of real numbers and let s € R. If for some positive real number k and some
N1 € N, we have
|sn — 8| < k|t,| forall n > N

and if lim t, = 0, then lim s, = s.
n—00 n—00
<Let € > 0 be given. Since #, - 0 asn — oo, there exists an N, € N such that
|ta| < % forall n > N,.
Let N = max{N;, N>}. Then forall » > N we have
€
lsn — 5| < klty| < E-k =e.

That is, lim s, = s. [ |
n—>00
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4.1.10 Example
Show that lim ¥/n = 1.
n—0o0

Solution: Since ¥/n > 1 for each n € N, there is a nonnegative real number a, such that

Yn =1+ ay.
Thus, by the binomial theorem, we have
n
n nn — Da> nn — 1)a?
n=~1+ay)" = Z(k)aﬁ=1+nan+%+---+a221+%.
k=0
Therefore,
— Da? 2 2
n—1x> u, whence a2 < =, ora, < \/j forall n > 2.
2 n n
Now, since
2
|W_l|:|an|:anf \/;
. 2 .
and lim \/j = 0, we have, by Theorem 4.1.9, that lim ¥/n = 1. O
n—»o00 n n—o00

The next theorem says that a convergent sequence has only one limit. It is therefore unambiguous to
talk of the limit of a convergent sequence.

4.1.11 Theorem
Let (s,) be a sequence of real numbers. If lim s, = £y and lim s, = £, then{; = {;.
n—00 n—00

<Let € > 0 be given. Then there exist natural numbers N; and N> such that

lsp — 1] < %foralln > Nip, and

lsp — 2] < %foralln > N,.

Let N = max{N;, N,}. Then forall » > N we have that
€
2

€
61— 2| = |(sn —€2) + (b1 —su)| S |sn — 2| + |sn — 1] < E+ =e.

Since € > 0 is arbitrary, we have that £; = £,. [ |

4.1.12 Proposition
A sequence (x,) converges to £ € R if and only if for each € > 0, the set{n | x, & ({ — €, £ + €)} is finite.

<Assume that the sequence (x,) converges to £. Then, given € > 0, there is a natural number N such
that, foralln > N,
|xp —4€| <€ <= {xp|n>N}C({—¢€Ll+¢).

It now followsthat {n e N|x, & ({ —€,£+¢€)} C {1, 2, ..., N — 1}, afinite set.
Conversely, let € > 0 be given and assume that the set {n € N | x, & (£ —€,{ + €)} is finite. Let
N=max{neN|x,d(l—€,L+e)}+1.Ifn>N,then

xnel—€el+e) < |x,—1¥| <e,

and so x, — £ asn — oo. [ |
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Theorem
Every convergent sequence of real numbers is bounded.

<Let (s,) be a sequence of real numbers which converges to s, say. Then, with € = 1, there exists an
N € N such that
|sy —s| <1 forall n> N.

By the triangle inequality, we have that
[sn| < lsn —s|+|s| <1+ |s|foralln > N.

Let M = max{|s1|, |s2],..., |sn|, |s| +1}. Then |s,| < M for all » € N. That is, the sequence (s,) is
bounded. ]

The converse of Theorem 4.1.13 is not necessarily true. That is, there are sequences which are bounded
but do not converge. One such example is the sequence ((—1)”). We shall however see later that every
bounded sequence which is monotone will always converge.

Exercise
[1] Show that if s, — s, then |s,| — |s|. Does the converse hold?
[2] Show that if (s,) and (z,) are sequences with nli>rgo sy = s and nli>rgo t, =t andif s, <, forall
neN, thens <1t.
[3] Let (s») and (z,) be sequences such that (s,) is bounded and lim tn = 0. Show that

lim sut, = 0.
n—>00

[4] Which of the following sequences are bounded?

o () o (5 @ (-5) @ asen

wmw (SR e ()

n on

Theorem
(Squeeze Theorem). Suppose that (s,), (t,) and (u,) are sequences such that s, < t, < u, for all
neN. If lim s, =¢ = lim uy, then lim t, = £.
n—o0o n—o00 n—o00
<Let € > 0 be given. Then there exist N; and N; in N such that

|sn —€| < € forall n> N; and

lup — €| < € forall n> N,.
That is,

{—e < s,<{+e€forall n>N; and
{—e < up<{+eforal n> N,.

Let N = max{N;, N}. Then forall n > N, we have
b—e<sp <ty <u,<A_l+e,

and consequently,
|ty — 4| < eforallm > N.

That is, lim ¢, = . |
n—>00
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4.1.16 Examples cos 1T
[1] Show that lim =0.
n—o0o n
Solution: Since
cos cos & 1 1
0< 22—‘ 2| <1-—. and lim — =0,

n n n h—>oo n

nmw

=0 O

it follows that lim
n—o0o n

[2] Show that for any x, with [x] <1, lim nx" = 0.
n—0o0

Solution: Without loss of generality, we assume that x # 0 and » > 1. Since |x| < 1, there
there is a positive real number a such that

1
— =1+4a.
|x|
Then
1 n “ (n ,_ nm—=1) ,
g =0 = 1 (1) 2
r=0
for some a > 0. Thus,
2
n —
= n(n —1)a?
2
= "< ——
CAE n —1a?
N -2 - n - 2
—_— nx —_—.
n—1Da? — ~ (n—1)a?
Since
I 2 0= &
ni{go (n — 1a? T ni{go (n— 1a?’

we have, by the Squeeze Theorem, that

lim nx" = 0.
n—>00

n

[3] Show that for any x € R, lim T o
n—oo n!
Solution: Let N be the first integer greater than |x|. Then, ifn > N,
x" B |x|n B |x|N—1|x|n—N+1 _ |x|N—1 |x|n—N+1
n'|  n (N=DINN+1)---n (N-=1! NN+1---n
|x|N—1 ) ) o
Let K = m Then K is a constant which is independent of n. Thus,
X" |x|n—N+1 |x|n—N+1 |x| n—N+1
— | = . < . = . - s
n! N(N +1)---n N-N-N---N (N)
whence

|x| n—N+1 xn |x| n—N+1
—K|— <—<K|— .
N n! N
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Since |;\CZ—| <landn—N + 1 — oo asn — oo, it follows that

and consequently,

4.1.17 Exercise n
[1] Show that lim — = 0.
n—oo 2N

1
[2] Show that lim — =0.

n—>oo n!

4.1.18 Theorem
Let S be a subset of R which is bounded above. Then there exists a sequence (s,) in S such that

lim s, =supS.
n—>00

<Let ¢ = sup S. By the characterisation of supremum (Theorem 3.1.9), for each n € N there exists

sp € S such that

1
c——<sp<c.
n

1
Since lim (c — —) = ¢ = lim ¢, we have, by the Squeeze Theorem, that

n—>00 n n—>00

lim s, =c =supS. ]
n—0o0

4.2 Algebra of Limits

The following lemma asserts that if the sequence (#,) converges to ¢ # 0, then the sequence (#,) is “bounded
away from zero”.

4.2.1 Lemma 1]
If the sequence (t,) converges to t # 0, then there is an N € N such that |t,| > 5 foralln > N.

t
<Sincet # 0, |t| > 0. Lete = |2—| Then there exists an N € N such that

|t, —t| <€ forall n> N.

Thus,
t t
ltal =1t =@ —t)| = |t| — |t — tn]| > |t] — |2—| = |2—| foralln > N.
4.2.2 Theorem

Let (s,) and (t,) be sequences of real numbers which converge to s and t respectively. Then
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() lim (sp +1y) = s + 1.
n—>00

(i) lim spty = st.
n—>00

(i) lim % = 2 ift, # 0 foralln € Nandt # 0.
n—oo f, t

<

(i) Let € > 0 be given. Then there exist Ny and N; in N such that
€
lspn — s8] < 3 foralln > N; and
€
lt, —t| < 3 forall n > N,.

Let N = max{N;, N}. Then for all n > N, we have

|(Sn + tn) — (s + 1)

|(sn — 8) + (tn — 1)]

< | | + |tw — 2| < < + ¢
Sp— S - -+ -=c.
— n n 2 2
Hence, lim (s, +t,) =5 + ¢.
n—>00
(i) Let € > 0 be given. Now,
|Snty — St| = |Sutn — Sty + Sty — st| = |(sy — )ty + (tn — 1)s]

< lsn = slltal + |tn —t]Is] .
Since (#,) is convergent, it is bounded. Therefore there is a positive real number K such that
|t.| < K forall n e N,

Thus,
Isntn — st| < |sp = 8||ta] + |tn — tl|s| < |sn —s|K + [ta —1t]|5] .

Let M = max{K, |s|}. Then
|Sntn — st| < M(|sn — s| + [tn — ).

Since s, — s and ¢, — t as n — oo, there exist N; and N, in N such that

lsp — s8] < forallm > Ny and

€
2(M + 1)

|t, — 1] forall n > N,.

€
2(M + 1)

Let N = max{N;, N2}. Then for all n > N, we have

€ €
t, —stl <M - th—t) <M +1 =
|Snn S|— (|Sn S|+|n |) ( + )(2(M+1)+2(M+1)) €

Hence, lim syt, = st.
n—>00
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1 1
(iii) It suffices to show that lim — = n ift, # O foralln € N and ¢ # 0. Once this has been shown we

n—oo f.

can then apply (ii). By Lemma 4.2.1, there is an N; € N such that

t
|ta| > |2—|f0ra11n > Ni.

Again, there exists an N> € N such that

{12
|ty —t| < % forall n > N,.

Let N = max{N;, N,}. Then for all n > N, we have

1 1

In t

I —1y
ity

_ |t_tn| 2|t_tn| <i-€|t|2—€
2112 l2]? 1?2 ‘

1 1
Hence, lim — = —. |
n—>00 tn t

4.2.3 Exercise
[1] Let (sn) and (z,) be sequences of real numbers. Prove or disprove the following statements.

(i) If (sn) converges and (z,) diverges, then the sequence (s, + t,) diverges.
(i) If both (s,,) and (z,) diverge, then the sequence (s, + ;) also diverges.
(iii) If both (s,) and (z,) diverge, then the sequence (st,) also diverges.

(iv) If both (s,) and (z,) diverge and ¢, # 0 for all n € N, then the sequence (;—") diverges.

n

(v) If both (s,) and (s,t,) converge, then the sequence (z,) converges.
(vi) If both (s,) and (s,t,) diverge, then the sequence (z,) diverges.

[2] (a) Show that if the sequence (s,) converges to s, then the sequence {s2} converges to s>.

(b) Use (a) and the fact that for all x, y € R, xy = —[(x + y)?> — (x — »)?] to give an alter-

1
, . 4
native proof of Theorem 4.2.2(ii).

4.2.1 Monotone Sequences

4.2.4 Definition
Let (s,) be a sequence of real numbers. We say that (s,) is

(a) increasing if foreachn € N, s, < sp41.

(b) strictly increasing iforeachn € N, s, < s,41.
(c) decreasing iforeachn € N, 5,41 < 5.

(d) strictly decreasing if oreachn € N, 5,41 < 5.
(e) monotone if (s,) is increasing or decreasing.

(f) strictly monotone if (s,) is strictly increasing or strictly decreasing.
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Remark

An increasing sequence (s,) is bounded below by s;; a decreasing sequence (t,) is bounded
above by ¢,. It therefore follows that an increasing sequence is bounded if and only if it is bounded
above. Similarly, a decreasing sequence is bounded if and only if it is bounded below.

Examples
[1] The sequence (1,1,2,3,5,...) is increasing.

[2] The sequence (3,1,0,0,-3,—7,...) is decreasing.
[3] The sequence (n?) is strictly increasing.
[4] The sequence (—n) is strictly decreasing.

The regular behaviour of monotone sequences makes it easier to determine its convergence or diver-
gence.

Theorem
(Monotone Convergence Theorem). A monotone sequence converges if and only if it is bounded.

<We have already proved in Theorem 4.1.13 that if a sequence converges then it is bounded.
To prove the converse, let (s,) be a bounded increasing sequence and let S = {s, | n € N}. Since S is
bounded above, it has a supremum, sup S = s, say. We claim that lim s, = 5. Let € > 0 be given. By the
n—0o0

characterisation of supremum (Theorem 3.1.9), there exists sy € S such that
S—€e<SN<s$,<s<s5—+¢€ forall n > N.

Thus, |s, — s| < eforalln > N.
The proof for the case when the sequence (s;) is decreasing is similar. ]

Examples na
[1] Show that (T) is a convergent sequence.

. Iy .
Solution: We show that the sequence %) is (1) monotone, and (2) bounded. Its
convergence will then follow from the Monotone Convergence Theorem (Theorem 4.2.7).

1
Monotonicity: Let s, = % Then

Sn+1 n+2 n+1 n+2 n n? +2n
_- = X =
Sn n+1 n n+1 n+1 (m+1)>2

n+2n+1  (n4+1)?*
n+D2 4+

Thus,
n+1 n+2
Sn = >

= spyq forallm e N.
n n+1 "t

1Y . .
Therefore, the sequence (i) is monotone decreasing.
n

+1

Another proof of monotonicity: Consider f(x) = ol for all x € [1, 00). Then,

Foy =26 D ;—i <0 forall x e[l,o0).

x2
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[2]

Thus, f is decreasing on [1, co). Therefore

n+1 n+2

f(mn)> fn+1) i.e, —— > —— forall neN.
n n—+1
Boundedness:
1 1
nt =14+ —>1forallneN.
n n
n+1Y\.
Thus, the sequence (—) is bounded below by 1. O
n

1 n
Show that ((l + —) ) is a convergent sequence.
n

Solution: We need an easy preliminary result:
r1>2""1 for r > 2.
This follows from the fact that
Pl=1-2.3.4.5..r>1.2.2.2.2...2=2""1for r > 2.

We establish the existence of the limit by showing that

1 n
(a) (1 + ;) < 3 for each n € N (boundedness),

1 n 1 n+1
(b) (1 + —) < (1 + ) for each n > 2 (monotonicity).
n n+1

Now, by the binomial theorem,

\" (M1 Gnn—Dn—=2)--(n—r+1) 1
(+3) = 2()r-X . p

r=0 r=0

s (- (- D) (-5 o

the first two terms correspond to » = 0 and r = 1, respectively. Then we obtain (a) from (*)

by noting that
1\" "1 1
(1+;) <2+Zr—!<2+zzr—_1
r=2 r=2

and so

2

A 10— 5er
(1+—) <2+2(721')<3.
n 1

We obtain (b) from (*) by noting that if we replace n by n + 1, each of the brackets in (*)
becomes bigger, so that each of the terms under the )" sign becomes bigger; and there is
also one more positive term in the series. That’s all we want! O

. 1" .
(The limit that the sequence ((l + ;) ) converges to is denoted by the letter e.)
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Theorem
(Nested Intervals Theorem). For each n € N, let I, = [ay, by], where —c0 < a, < b, < oo. If

o0
I+ C I, foreachn € N and lim (b, — a,) = 0, then m I,, consists of exactly one point.
n—>00

n=1

<Since I,+1 C I, we have that a, < ay+1 < by4+1 < b, for all n € N. Thus, (a,) is an increasing
sequence of real numbers. Let A be the set of all endpoints a,, i.e., A = {a, : n € N}.
Claim: a;, < by forall k, £ € N. Indeed, if k < £, then a; < ay < b;. On the other hand, if £ < k, then
ax < by < by.
It now follows that A is a nonempty set which is bounded above (by every b,). By the Completeness
Axiom, A has a supremum, ¢ = sup A (say). Clearly, a, < a < b, foralln € N. Hence a € I,
o0

for each n € N, and consequently, a € m I,. We showed in the Monotone Convergence Theorem

n=1
00

(Theorem 4.2.7) that lim a, = a. Assume thatb € (,—; I. Thena, < b < b, forall n € N, and
n—>00

00 <b—ay, <b,—a,foralln € N. Since lim 0 =0 = lim (b, — a,), we have, by the Squeeze
n—>00 n—>00

Theorem, that lim (b —a,) = 0, whence lim a, = b. Thus, a = b. |
n—o0o h—00

Remark

The Nested Intervals Theorem (Theorem 4.2.9) may fail for a decreasing sequence of open or half-

1
open intervals. For example, if I, = (O, R
n

n l] or I, = [n,00) for each n € N, then (72, 1, = 0.

4.2.2 Subsequences

Definition
Let (sn) be a sequence of real numbers and let (ny),cn be a sequence of natural numbers such that ny <
n, < ns < ---. Then the sequence (snk) is called a subsequence of (s,). That is, a subsequence (snk) of

the sequence (s,) is a strictly increasing function ¢ : k +— sy, .

Example
Let (s,) be the sequence (1,2, 1,34 ) Then (l, 1.4 ) and (1,2, 1. ) are subsequences

of (s5).

Theorem
Let (s,) be a sequence which converges to s. Then any subsequence of (s,) converges to s.

<Let (snk) be a subsequence of (s5,) and let € > 0 be given. Then there exists an N € N such that
|sn — s | < € foreachn > N.
Thus, when k > N we have that ny > k > N and so
|Sn, —s | <eforallk > N.
That is, kl;rrolo Spy = S. |

Now we state and prove the version of the Bolzano-Weierstrass Theorem that applies to sequences.
Compare this with Theorem 3.3.8 (Bolzano-Weierstrass Theorem for sets).
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Theorem
(Bolzano-Weierstrass Theorem for sequences). Every bounded infinite sequence (sy,) of real numbers
has a convergent subsequence.

<Since (s) is bounded, there exists M > 0 such that |s,| < M foralln € N,i.e., —M < s, < M for
all n € N. If (s,,) has a finite range S = {s, : n € N}, then there is (at least) one term of the sequence (s,)
which occurs infinitely many times in (s,). Call this term x, and let

Sy = Spy = Spy = 0 = X.

Therefore, there exists a strictly increasing sequence (7y); of natural numbers such that s, = x for all
k € N. Thus, {s,, } is a subsequence of (s,) which converges to x.

Now, suppose that S is infinite. Then either [ M, 0] or [0, M ] contains s, for infinitely many n € N.
Call such an interval Iy = [a1, by]. Note that |I1| = |by —a1| = M. Now, bisect 7;. One of the two
subintervals of I; contains s, for infinitely many n € N. Call that subinterval I, = [a3, b,]. Clearly,
Iy D I and || = |by —az| = % Bisect I;. One of the two subintervals of I, contains s, for infinitely
many n € N. Call that subinterval I3 = [a3, b3]. Clearly, Iy D I, D I3 and |I3| = |b3 — a3| = ZMZ
Continue in this manner to obtain a sequence of intervals I, I, I3, ... with [y D I D I3 D --- and

M
| In| = |bn — an| = =T —0as n — oo.

By the Nested Intervals Theorem (Theorem 4.2.9), we have that (-, I, consists of exactly one point,
£ say. We obtain a convergent subsequence as follows: choose s,, € I;. Next, choose s,, € [, with
ny > ni. Next, choose s, € I3 with n3 > n,. Continue in this manner. (Such a selection is possible since
I, contains infinitely many terms of the sequence (s,).) Then (snk) is a subsequence of (s,) with s,, € Ij
for all k € N. Since £ is also in I, we have that

M
|snk—€|<2k—_1 — O0ask — oo.

That is, lim s,, = £. |
k—o0

4.2.3 Cauchy Sequences

Definition
A sequence (s,) is called a Cauchy sequence if, given any € > 0, there exists an N € N such that

|y — Sm| < € foralln,m > N.
Symbolically,
Ve >0)AN e N)(Vn,m e N)[(n > N)A(m = N) = (|xn — xm| < €)].

Equivalently, (s,) is a Cauchy sequence if lim |s, — s, = 0.
n,m— 00

4.2.16 Examples

1
[1] Show that the sequence (sy,), where s, = i, is a Cauchy sequence.
n

Solution: For all n,m € N,

n—+1 m+1 mn—+m-—nm-—n
|Sn — Sm| = - =
n m nm

64

m—n‘ m+n

nm nm



2009 REAL ANALYSIS

Therefore, if m > n, then

m+n 2m 2
|Sn_sm|f < — =-.
nm nm n

1
Let € > 0 be given. Then there is an N € N such that N < % Thus, foralln > N, we have

n+1 m+ 1 2 2
Isn — Sm| = | — )| <-==<e
n m n~ N
Hence (s;,) is a Cauchy sequence. O
1 (_1)n+1 )
[2] Show that the sequence (s;), where s, = 1 — 2 +ot—F—.isa Cauchy sequence.
. n.
Solution: For n,m € N with m > n, we have that
1 (_1)n+1 1 (_1)m+1
(_1)n+2 (_1)n+3 (_1)m+1
TN T
< I
- m4+1)! (n+2) m!
1 1 1 1 1
S wtsmtotma s |ty t ot e

2 " 2 1
- [ty

. 1 . .
Since —— — 0asn — oo, given any ¢ > 0 thereis an N € N such that

on—1

1

= —0| <eforall n> N.
zn—l zn—l
Thus,
1 (_1)n+1 1 (_1)m+1 1
|Sn_sm|:‘(l—2—!+"'+T - 1—2—!+"'+ ol <2n_1<€
forallm > n > N. That s, (s,) is a Cauchy sequence. O

4.2.17 Theorem
Every convergent sequence (s,) is a Cauchy sequence.

<Assume that (s,) converges to s. Then, given any € > 0, there exists an N € N such that
|sn — 8| < % foralln > N.
Now, for all n, m > N, we have that
IS2 — Sm| = [(sn —8) + (s —Sm)| < |sn — 8| + |5 —5m| < % + % =e€.
That is, (s,) is a Cauchy sequence. |
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4.2.18 Theorem
Every Cauchy sequence (sy) is bounded.

<Let € = 1. Then there exists an N € N such that
|y — Sm| < 1 foralln,m > N.
Choose a k > N and observe that
ISu] = |Sn — Sk + sk | < |sn — Sk| + |sk| < 1+ |sg| foralln > N.

Let M = max{|s1|, |s2],-.-, |Sn], |sx] + 1 }. Then |s,| < M for all n € N, and therefore (s,) is
bounded. ]

4.2.19 Theorem
Every Cauchy sequence (sy,) of real numbers converges.

<By Theorem 4.2.18, (s,) is bounded, and therefore, by the Bolzano-Weierstrass Theorem (Theo-
rem 4.2.14), (s,) has a subsequence {s,, } which converges to some real number £. We claim that the
sequence (s,) converges to £. Let € > 0 be given. Then there exist natural numbers N; and N, such that

€
|sn — sm| < Eforall n,m > Np and

[$n, — €] < % forall k > N, .
Let N = max{N;, N,}. Then forall n > N, we have

€ €
s €1 = Lo = | + s ] < S+ 5 =

Therefore, lim s, = £. [ |
n—0o0
Combining Theorem 4.2.17 and Theorem 4.2.19, we get:

Cauchy’s Convergence Criterion for sequence: A sequence (s,) of real numbers converges if and only if
it is a Cauchy sequence.

[1] Use Cauchy’s Criterion to show that the sequence —

4.2.20 Examples n
( ) converges.

—1)”
Solution: We must show that the sequence (( n) ) is Cauchy. To that end, let ¢ > 0 and

(=n" -
Sy = . Then, forall n,m € N with m > n,
n
1) 1™ 1 1 1 1 2
|sn — ml—( roerm iyl yl2
m n m n n n

2
Now, there is an N € N such that v < €. Thus, for alln > N, we have

= 1)” _=D™

m

|Sn — Sm| = <-= < €.

2 2
n

=|

—1)”
Thus, (( n) ) is a Cauchy sequence. O
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1 1 | .
[2] Show that the sequence (sy,), where s, = 1 + 3 + 3 4+ pe diverges.

Solution: It suffices to show that (s,) is not a Cauchy sequence. Now, for n,m € N with
n > m, we have

| | = 1+1+1+ +1 l+l+l+ +1
Sn = Sl = 273 " 273 m
1 1 1 1 1 1
— - 4 | = — 4 44—
m+1 m+2 n m+1 m+2 n
1 1 1 n—m
> —4 —4 -4 — =
n o n n n
—_——
n—m terms

In particular, if we take n = 2m, we get

| | LI Pl d n-m_1
S, — = — — — ) - — — — > = —.
S Sm 273 " 273 m

Thus, (s,) is not Cauchy. O

4.2.21 Exercise
[1] Show that if a (x,) contains two subsequences that converge to different limits, then (x;)
diverges.

[2] Show that every subsequence of a bounded sequence is bounded.

[3] Show that if (x,) is a Cauchy sequence, then so is {|x,|}.

4.2.4 Limit Superior and Limit Inferior

Let (x,) be a bounded sequence of real numbers and for each n € N, let
E, ={xn, Xn+1, ...} ={xx | k = n}.
Then E, is a bounded subset of R. Set
sp = inf E, and S, = sup Ej,.
Clearly, E; C E; foralli, j € Nsuchthati < j.In particular, Ef; C Ey for each k € N. Therefore
Sk =< Sk+1 < Skg1 =< Sk.

These inequalities show that (s, ) is a monotone increasing sequence of real numbers and (.S,,) is a monotone
decreasing sequence of real numbers. Note further that, for each & € N,

S1 = Sk < Sk41 < Sk41 = Sk =81

Therefore, the increasing sequence (s,) is bounded above by S; and the decreasing sequence (S,) is
bounded below by s;. In fact, for each n € N, S, is a upper bound for the sequence (s,) and for each
n € N, s, is a lower bound for the sequence (S,). Therefore, by the Monotone Convergence Theorem
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(Theorem 4.2.7), the sequence (s,) converges to the supremum s = sups, and the sequence (S;) con-
n

verges to the infimum S = inf S,,. That is,
n

s = lim s, = lim inf x; = supsn and S = lim S, = lim supx; = 1nfS
n—o00 n—>00 k>n n—o00 n—00 -,

The number s is called the limit inferior of the sequence (x,) and the number S is called the limit superior
of the sequence (x,). We write

s = 11rn1nfx,, and S = limsup x,.
n—>00

We also use the notation lim x, for the limit inferior and lim x,, for the limit superior.
n—00 n—00

4.2.22 Definition
Let (x,) be a bounded sequence of real numbers. The limit inferior of the sequence (x,), denoted by
liminfx,, is defined by
n—0o0

liminfx,, = lim (inf xk) = sup (inf xk) .

n—o0o n—>00 \ k>n n>1 \k>n

Similarly, we define the limit superior of the sequence (x;,), denoted by lim sup x, as
n—0o0

limsup x, = hrn sup xg | = inf | supxg | .
n—00 0 \ k>n n21 \g>n

4.2.23 Examples
[1] Consider the sequence (x,), where, foreach n € N, x,, = (—1)". Then

inf x; = inf(—1)* = —1 and sup xx = sup(~1)* =
k>n k>n k>n k>n
Therefore
liminfx, = lim (inf xk) =—1 and
n—o00 n—o00 an
limsupx, = lim (sup xk) = 1.
n—00 n=>00 \ k>pn

[2] Consider the sequence (x,), where, foreachn € N, x, = (—1)" + % Then

liminfx, = lim (inf xk) =—1 and
n—o00 n—o00 an
limsupx, = lim (sup xk> = 1.

n—00 n—>00 k>n
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[3] Consider the sequence (x,), where, foreachn € N, x, = % Then

1 1 1
Ei = {1, =, =, -, ...
1 {727 33 47 }
1 1 1
E = NP A g e
2 37
1 1
E;s = {=, —, ...
s o= A
1 1
E, = {—-, ——, ...
" {n n+1 j

Therefore 1
sup x; = sup E, = — and inf x; = inf £, = 0.
k>n n k>n
It now follows that
. . . 1
limsupx, = lim |supxg] = lim (-] =0 and
n—>00 n—00 \ p~, n—>oo \ n
liminfx, = lim (inf xk) = lim (0) =0.
n—o00 n—>00 \ k>n n—o0o

4.2.24 Lemma

Let (x,) be a bounded sequence of real numbers, « = liminfx,, and 8 = limsup x,. Then there is a
n—>00

n—0o0
subsequence of (x,) which converges to « and a subsequence of (x,) which converges to f.

<Let Ex = {x, Xkt1, ...} ={xn | n >k}, sy = inf E and Sy = sup E. Then

limsupx, = B = lim S.
n—o0o k—o00

Since S is the supremum of the set Ey, given € > 0, there is an index n; > k such that
€ € €
Sk_5<xnkak<Sk+E — |Sk—xnk|<5.

Also, since klirn Sr = B, there is a natural number N such that, forall k > N,
—00

€

Sk —B| < =.

1Se— Bl <3

From (4.2) and (4.3), we have that forall ny, > k > N,
€ €

|xnk _:3| = |xnk _Sk| + |Sk_:3| < E + E = €.

Thus, (xnk) is a subsequence of (x,) which converges to .
The proof of the second part is similar.
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4.2.25 Theorem
Let (x,) be a bounded sequence of real numbers. Then

@) 11rn 1nfx,, < limsup x,.
n—>00

(ii) limsupx, = —hm 1nf(—x,,)
n—>00

(iii) The sequence (x,) converges if and only liminf x, = lim sup x,. In this case,
n—o0 n—00

lim x, = liminfx, = limsup x,.
n—o00 n—00 n—00

(i) Foreachn € N, 1nf X < sup xi. Therefore
k> k>n

liminfx,, = lim (inf xk) < lim (sup xk> = lim sup x,.

n—o0o n—00 \ k>n n—o00 \ po, n—>00

(ii) Foreachn € N, 1nf (—xk) = — sup X%. Therefore
k>n

liminf (—x,) = 11rn (inf (—xk)) = lim (— sup xk> = —lim sup x,,.
an n—o00

n—00 —00 k>n n—>00

(iii) Assume that the sequence (x,) converges to x. By Lemma 4.2.24, there are subsequences (x,, k) and

( Yn 4) of (x,) which converge to hm 1nf X, and lim sup x,, respectively. Since every subsequence of a
n—0o0
convergent sequence converges to the same limit as the sequence itself, it follows that

liminfx, = hrn Xp, =X = hrn ynl = lim sup x,.
n—0o0 —> 00 n—0o0

Conversely, assume that liminf x,, = lim sup x,. Then for each n € N,
n—oo n—»o00

sp = inf{xy, Xp+1, ...} < xXp < Sy = sup{xn, Xn+1, ...}

Since

lim s, = liminfx, = limsupx, = hm S,
n—o00 n—o00 n—00

it follows, by the Squeeze Theorem, that the sequence (x,) converges and hm Xp, = liminfx, =
n—0o0

lim sup xj,. ]
n—0o0

4.2.26 Exercise
[1] For each of the following, find the limit superior, limit inferior and the limit of the sequence.

=D”
n+1’
(b) (xn), where x, = (=1)" + (_1)n+2_

(c) (xn), where x,, =2(-1)" + %

(a) (xn), where x, =
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4.2.5 Sequential Characterization of Closed Sets

Theorem
Let K be a nonempty subset of R and x € R. Then

(a) x € K if and only if there is a sequence (x,) C K such that x, — x as n — o0.
(b) K is closed if and only if K contains the limit of every convergent sequence in K.
<

(a) Assume that x € K. Then either x € K or x € K. If x € K, then the constant sequence
(x, x, x, ...)in K converges to x. If x € K’, then, for each n € N, the interval (x — %,x + %)
contains a point x, € K distinct from x. It now follows that |x, — x| < % Clearly, (x,) C K and
Xp —> X as n — o0.

Conversely, assume that there is a sequence (x,) C K such that x, — x as n — oco. Then, either
x € K or every e-neighbourhood of x contains a point x, # x, in which case x € K’ Thus x € K.

(b) By Corollary 3.2.18, K is closed if and only if K = K. Hence, (b) follows from (a). [ |

4.2.6 Sequential Compactness

Definition
A subset K of R is said to be sequentially compact if every sequence in K has a subsequence that converges
to a pointin K.

The following theorem asserts that for subsets of R compactness and sequential compactness are equiv-
alent. In fact, this is true in any “metric space”. We shall discuss metric spaces later.

Theorem
A subset K of R is compact if and only it is sequentially compact.

<Assume that K is compact and let (x,) be a sequence in K. Then, by the Heine-Borel Theorem (The-
orem 3.3.7), K is closed and bounded. Therefore the sequence (x,) is bounded. By Bolzano-Weierstrass
Theorem (Theorem 4.2.14) (x,) has a subsequence (x,,k) which converges to some x € R. Since K is
closed, we have by Theorem 7.3.6, that x € K. Hence, K is sequentially compact.

Conversely, assume that K is not compact. Then, by the Heine-Borel Theorem (Theorem 3.3.7), either
K is not closed or K is not bounded. If K is not closed, then there is a sequence (x,) in K that converges
to a point outside of K. But then every convergent subsequence of (x,) will converge to a point outside of
K. Therefore K is not sequentially compact. If K is not bounded, then there is a sequence (x,) in K such
that |x,| > n for each n € N. Thus, every subsequence of (x,) is unbounded, and so, by Theorem 4.1.13,
no subsequence of (x,) converges (to a point in K). Hence K is not sequentially compact. |

Exercise
[1] Let a sequence (x,) of real numbers be defined recursively by

x1 =0, Xp+1 = forall n > 1.

a
b
c
d

Show, by induction, that 0 < x,, < 1 foralln € N.
Show that the sequence (x,) is monotonically increasing.
Does the sequence (x,) converge? If so, find its limit.

_~ o~ S~
—_ - = O

Does sup{x, | n € N} exist? If so, find it.
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Chapter 5

Limits and Continuity

5.1 Limits of Functions

Definition

Suppose that a and { are real numbers and let f be a real-valued function whose domain D includes all
points in some open interval about a (except possibly the point a itself). Then £ is called the limit of the
function [ at a if, given any € > 0, there exists a § > 0 (depending on a and €) such that

| f(x) —{| <€ forall x € D satisfying 0 < |x —a| < 6.
In this case, we write lim f(x) =L or f(x) —> fLasx — a.
X—>a

Note that the existence of the limit of f(x) as x tends to @ does not depend on f'(a). Indeed, f(a) may
or may not be defined since « is not necessarily in the domain of f. If f(a) and lim f(x) both exist, they
X—>a

may or may not be equal. We are only interested in the behaviour of f as x gets closer to a. It is implicit
in the definition of the limit that ¢ is an accumulation point of the domain D of f.
We can reformulate the above definition in the e-neighbourhood language as follows: lim f(x) = ¢,
xX—>a

if for each e-neighbourhood N (¢, €) of £ there exists a deleted §-neighbourhood N *(a, §) of a such that
f(x) € N({, e) whenever x € N *(a,8) N D.

5.1.2 Definition

(1) Suppose that f is defined for all real numbers x > k, where k € R. Then £ € R is the limit of / as
x tends to oo if, given € > 0, there exists a real number K such that

| f(x) — €| < € whenever x > K.
In this case we write lim f(x) = £.
X—> 00

(2) Suppose that f is defined for all real numbers x < k, where k € R. Then £ € R is the limit of f as
x tends to —oo, denoted by lim f(x) = £, if, given € > 0, there exists a real number k such that
X—> —00

| f(x) — €| < € whenever x < k.

5.1.3 Examples

[1] Show that lim x? = 4.
x — 2
Solution: Let € > 0 be given. We need to produce a § > 0 such that

|x? — 4] < e whenever 0 < |x —2| < 6.
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Now,
IX? —4] = |(x =2 (x +2)| =[x —2||x + 2.

Consider all x which satisfy the inequality [x—2| < 1. Then, for all such x, we have 1 < x < 3.
Thus,
|x+2| <|x|+2<3+4+2=5,

and so
|x2 — 4] = |x = 2||x + 2| < 5|x —2|.

Choose § = min {l, %} Then, whenever 0 < |x — 2| < §, we have that
|x?2 —4| <e€. O
[2] Show that xli_r>n3(x2 +2x) = 15.
Solution: Let € > 0 be given. We need to find a § > 0 such that
|(x? 4+ 2x) — 15| < € for all x satisfying 0 < |x — 3| < §.

Note that
|(x? 4 2x) — 15| = |(x + 5)(x = 3)| = |x + 5||x = 3].

Since we are interested in the values of x near 3, we may consider those values of x which
satisfy the inequality |x—3| < 1,i.e., 2 < x < 4. For all these values we have that |x + 5| < 9.
Therefore, if |x — 3| < 1, we have that

|(x? 4 2x) — 15] < 9|x — 3|.

Choose § = min {1, g} Then, working backwards, we have that

|(x? + 2x) — 15| < € for all x satisfying 0 < |x — 3| < 6. O
2x +3
[3] Show that lim —> — |
x—>—-1 x+2

Solution: Let € > 0 be given. We need to find a § > 0 such that

2x +3
x+2

—1

< € for all x satisfying 0 < |x — (=1)| = |x + 1] <.

By elementary algebraic manipulation, we have that

2x +3
x+2

|Cx+3)—(x+2)|
N x+2

1\

x+ 1 |x+1]

Tx 42| x+2°

Since we are interested in the values of x near —1, we may consider those values of x which
1

: : . . =3 -1 .
satisfy the inequality [x + 1] < 3, i.e., 5 <x< R Recognising |x + 2| = |x — (-2)| as

the distance of x from —2, we have that
42 == ()] > | 2 - (-2)] =
X =|x—(= — —(2)| ==
2 2

Therefore

<2lx +1].

2x + 3 - |x + 1]
X +2 T x + 2

73



2009 REAL ANALYSIS

1
Choose § = min {5, %} Then whenever 0 < |x + 1] < §, we have that

2
Y3 <. O
x+2
x| 1 ifx>0
[4] Show that lim f(x), where f(x)=— = does not exist.
x>0 . -1 if x <0,

Solution: Assume that the limit exists and limo f(x) =4L. Then, withe = 1, thereisaé > 0
X —

such that
| f(x) —£| < 1forall x satisfying 0 < |x| < §.

— 1)
Taking x = 78 we have that |x| = 3 < 6, and so
I>|f(x)=4L=|—-1—L=]1+1.
Thus, =2 < £ < 0.
On the hand, if x = g we have that |x| = % < 6, and so
I>[f(x)—£ =[1-4]

Therefore, 0 < £ < 2. But there is no real number that can simultaneously satisfy the
inequalities —2 < £ < 0 and 0 < £ < 2. Therefore limo f(x) does not exist. O
X —

1
[5] Show that lim xsin— = 0.
X

x —>0

Solution: Let € > 0 be given. We need to find a § > 0 such that

o1
xsin——20
X

< € for all x satisfying 0 < |x — 0| < é.

Now,

!
sin —| < |x|.
X X

1 ‘
xsin——0| =

1
xsin—| = |x]|
X

Choose 0 < § < e. Then, whenever 0 < |x — 0] = |x| < §, we have that

1
xsin— — 0| < |x]| <,
X

1
which proves that limox sin— = 0. O
X — X
[6] Consider the function f : R — {0, 1} given by

1 ifxe@Q
Sx) =
0 ifxeR\Q.

Show that if a € R, then ;1_% f(x) does not exist.
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1
Solution: Assume that there is an £ € R such that lim f(x) = £. Then, with ¢ = 7 there
xX—>a
exists § > 0 such that

1
| f(x)—¢| < 1 for all x satisfying 0 < |x —a| < §.

If x € Q, then
[1—4£| < % whenever 0 < |x —a| < §, and
if x e R\ Q, then
|4 < % whenever 0 < |x —a| < 4.
Sincetheset {x e R : 0 < |x —a]| < § } contains both rationals and irrationals, we have that

1 1 1
1=1—=0=[1-f40 <[1—f|+f|]<=-—4-=-—

which is absurd. O

The following theorem highlights the relationship between convergence of sequences and limits of
functions.

5.1.4 Theorem
Let f be a function which is defined in some open interval I containing a € R, except possibly at a.
Then lim f(x) = { if and only if for every sequence (a,) C I \ {a} such that lim a, = a, we have that
xX—a n—o0o

lim f(a,) = <.
n—0o0
<Assume that lim f(x) = £ and let (a,) C I \ {a} be a sequence such that lim @, = a. Then, given
xX—>a n—0o0
€ > 0, thereisad > 0 and an N € N such that
| f(x) —{| < eforall x € I satisfying 0 < |x —a| <8 and |a, —a| <§ forall n > N.
Now, 0 < |a, — a| < § since a, # a forall n > N. Therefore
| f(an) — €| <eforallm > N.
That is, lim f(a,) = L.
n—0o0
For the converse, assume that for every sequence (a,) C I \ {a} such that lim a, = a, we have that
n—0o0
lim f(a,) = L.
n—0o0
Claim: lim f(x) = £. If the claim were false, then there would exist an €y > 0 such that for every § > 0
X—>a

with 0 < |x —a| < §, we have

|/ (x) = £] = €o.
1 1
Let n € N and take § = —. Then we can find a,, € I \ {a} such that0 < |@, —a| < — and
n n
|/ (an) — €] = €o.

Clearly, (an) is a sequence in I \ {a} with the property that lim a, = a and
n—0o0

| f(an) —£| > € foralln € N.

That is, lim f(a,) # €, a contradiction. |
n—0o0
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The condition that @, # a for all n € N in Theorem 5.1.4 is essential. Consider the function f defined

on R by
1 forx#0

Slx) = 1
5 forx =0.
Let (a,) be the sequence where a, = 0 for all # € N. Then a, € R(= domain of f) for all n € N, and
1
lim a, = 0. Since f(a,) = f(0) = 3 foralln € N, and lim f(x) = 1, it follows that
n—00 x—0
. .11 .
lim f(ay) = lim - = - # 1 = lim f(x).
n—00 n—oo 2 2 x—0

5.1.5 Theorem
(Uniqueness of Limits). Let f be a function which is defined on some open interval I containing a,
except possibly at a. If lim f(x) = £y and lim f(x) = {,, then{; = {5.
x—a x—a

|1 — L]

<If €y # £y, lete = . Then, there exist §; > 0 and 8, > 0 such that

| f(x) =4 < % whenever x € [/ and 0 < |x —a| < §;, and

| f(x) =4 < % whenever x € [ and 0 < |x —al < 65.

Let § = min{§y, §,}. Then, whenever 0 < |x — a| < &, we have

|41 — €|

0 <y —bo| = [fx) = bl + /() —bof < —5—

which is impossible. |

5.1.1 Algebra of Limits
5.1.6 Theorem
Let£1,4>,a € R. Suppose that f and g are real-valued functions defined on some open interval I contain-
ing a, except possibly at a itself, and that lim f(x) = {; and lim g(x) = {,. Then,
x—a x—a
(D im[f(x) £ g(x)] = &1 £ Lo,
@ lim[f()g()] = L1t

(3) lim & = 6—1 provided g(x) # 0 forall x € I and £, # 0.

x—a g(x) 62

<

(1) Let € > 0 be given. Then there exist §; > 0 and §; > 0 such that

| f(x) =4 < %Wheneverxeland0<|x—a|<81, and

€
lg(x) —€2] < 3 whenever x € I and 0 < |x —al < §;.
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Let § = min{é;, §2}. Then, whenever x € [ and 0 < |x — a| < §, we have

) +8@N—[ +6]| = [[F )=l +[g00) =] | < 1/ =] +1g(x)—ta] < S+5 = €.

Thatis, f(x) + g(x) — €1 + £ as x — a.

A similar argument shows that f(x) — g(x) — £; —¥{sas x — a.
(2) With € = 1, there exists a §; > 0 such that
| f(x) —¢1] <1 whenever x € [ and 0 < |x —a| < §;.
This implies that
| f)] <1f(x)—4L1]+ [£1] <14 |€1]| whenever x € [ and 0 < |x —a| < §;.
Now, forall x € I with0 < |x —a| < &1, we have

|/ (x)g(x) — £1£2] |/ (x)g(x) = f(x)l2 + f(x)E2 — £1£s]
|/l (x) — £a] + [£2]] f(x) — 4]
(I + [€DIg(x) — L2 + |21/ (x) — 4] .

Given € > 0, there exist § > 0 and 83 > 0 such that

A TA

€
x)—4{;] < ———— wheneverx € [ and0 < |x —a| < 8, and
R TRl x—d
€
x)—4¢ < ——— wheneverx € I and 0 < |x —a| < 63.
lg(x) — L2 A+ 16] | | <83

Let § = min{éy, 82, 83}. Then, whenever x € I and 0 < |x — a| < 8, we have

[F()g(x) —Lilz] < (1+|L4)) [m} + [£2] [m}

€|l
N [€2] -

€ €y
2 20+ 6] 2

<.
;=€
Thatis, f(x)g(x) — £i1frasx — a.

1 1
(3) It is enough to show that lim —— = — provided g(x) # 0 forall x € [/ and £, # 0. Since
Sagn) G
_ 6]

£ #0,e = BN > 0. Therefore there exists a §; > 0 such that

€]

lg(x) — 42| < - whenever x € [ and 0 < |x —al < §;.

Now, for all x € [ satisfying 0 < |x — a| < §;, we have

L
11 = 162 — 2] + )] < 12 1100,

L
That is, |2—2| < |g(x)] for all x € I satisfying 0 < |x —a| < ;. It now follows that for all x € I

satisfying 0 < |x — a| < 81,

€ —g(x)

_ =g _2[6—g()] _ 2/ —g()|
g(x)tz ’

<
lg(x)€2] [€2]]£2] e

‘L 1
gx) L4
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Given € > 0 there exist §; > 0 such that

2
€
lg(x) —€2] < 72 whenever x € I and 0 < |x — al| < §;.

Let § = min{d;, §2}. Then, whenever x € [ and 0 < |x — a| < §, we have

L] 2@l 2 €
™ G 2 272 "
A 1 1 .
That is, lim —— = — provided ¢, # 0. ]
x—a g(x) £y

5.1.7 Theorem
Let£1,42,a € R. Suppose that f and g are real-valued functions defined on some open interval I contain-
inga, except possibly at a itself, and that f(x) < g(x) forallx € I. If lim f(x) = £; and lim g(x) = {5,
x—a x—a
then {1 < {,.

{4
<Ifly, < £y, lete = ! 2

. Now, there exist §; > 0 and §, > 0 such that

| f(x)—4€1] < € wheneverx € [ and0 < |x —a| < §;, and
lg(x) —€2] < € wheneverx € I and 0 < |x —a| < 8.

That is,
{1 —e< f(x) < 4£;+¢€ wheneverx € [ and0 < |x —a| < §;, and
Uy —e<g(x) < {€y+ewheneverx € [ and0 < |x —a| < §,.
That is,
4 +4L
! 7 2 f(x) whenever x € [ and 0 < |x —a| < §1, and
b +4L
g(x) ! ; 2 whenever x € T and 0 < |x —al| < 6.

Let § = min{§;, §2}. Then, whenever x € [ and 0 < |x — a| < §, we have

b+ 4
2

glx) < < J (),

and so g(x) < f(x), a contradiction. |
5.1.8 Theorem

(Squeeze Theorem). Suppose that f, g and h are real-valued functions defined on some open interval I
containing a, except possibly at a itself, and that f(x) < g(x) < h(x) forall x € I. If lim f(x) = { and
X—>a

lim i(x) = £, then lim g(x) = £.
x—a x—a
<Let € > 0 be given. Then there exist §; > 0 and 8, > 0 such that

| f(x)—£| < € whenever0 < |x —a| < §;, and
|h(x) —€¢] < € whenever 0 < |x —a| < .
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That is,

{—€e< f(x) < L€+ € whenever0 < |x —a| < §;, and
{—e <h(x) < £+ €whenever0 < |x —al| < és.

Let § = min{§;, §2}. Then, whenever 0 < |x — a| < &, we have
{—e< f(x)<gx)<h(x)<l+e.

Thus,
|g(x) — €] < € forall x satisfying 0 < |x — a| < 4.

That is, lim g(x) = £. ]
xX—>a

Exercise
[1] Show that f(x) — 0 as x — aif and only if | f(x)] — 0 as x — a.

[2] Leta,f e R, D c Rand f : D — R. Show thatif f(x) - £ as x — a, then | f(x)| — |{| as
x — a. Does the converse hold? Justify your answer.

[38] Leta,£ e R, DCR, f:D— Rand{ > 0. Show that if li_r>n f(x) = ¢, then there exists a
deleted e-neighbourhood N *(«, €) of a such that f(x) > 0 forall x € N*(a,€) N D.

[4] Leta, e R, D CR, f: D — R and li_r>n f(x) =£. Show that there exists a deleted
e-neighbourhood N *(a, €) and a positive real number M such that | f(x)| < M for all x €

N*(a,e) N D.
5.2 Continuous Functions

When discussing the limit lim f(x), we made no reference to f(a), the value of the function f at a. In
X—>a
fact, we emphasized that f(a¢) was unimportant in the analysis of lim f(x). In this section we want to
X—>a

bring f(a) into the picture; we want to relate the limit lim f(x) to the value of f at a.
X—>a

Definition
Let D C Rand f : D — R. The function f is said to be continuous at ¢ € D if, given any € > 0, there
exists a8 > 0 (which generally depends on € and a) such that

| f(x) — f(a)| < € whenever x € D and |x —a| < 4.

The function f is continuous on D if it is continuous at each point of D. If f is not continuous at a, we
say that f is discontinuous there.

Let us reformulate this definition in the language of neighbourhoods:

Definition
Let D C Rand f : D — R. The function f is said to be continuous at ¢ € D if, for each e-
neighbourhood N ( f'(a), €) of f(a), there is a §-neighbourhood N (a, §) of a such that

f(x) € N(f(a),e) whenever x € N(a,8) N D.
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Note that, in contrast to the deleted §-neighbourhoods used in the definition of lim f(x) = ¢, for
X—>a

continuity we use §-neighbourhoods.
5.2.3 Examples
[1] Show that the function f(x) = x? is continuous on R.
Solution: Let € > 0 be given and a € R. We need to produce a § > 0 such that
| f(x) — f(a)|] < e whenever |x —a| < 4.
Now,
/() = f@] = x> —a®| = |(x —a)(x + a).

Since we are interested in the behaviour of f near a, we may restrict our attention to those
real numbers x that satisfy the inequality |x — «| < 1. These real numbers satisfy the
inequalities « — 1 < x < a + 1. Therefore, for all these real numbers, we have

|x +al <|x|+|a| <|a+ 1|+ |a] <1+ 2|al.

Now, take § = min {1 } Then, |x —a| < § implies that

€
"1+ 2|al

|f(x) = fl@)] = x> —a’| <e.
That is, f is continuous at a. Since a was arbitrarily chosen in R, it follows that 1" is contin-
uous on R. 0
X sin% if x#0
[2] Show that the function f(x) = is continuous at 0.
0 if x =0.
Solution: Let € > 0 be given. We need to produce a § > 0 such that

| f(x) — f(0)] <€ whenever |x — 0| < 4.

Now : . .
| f(x)— f(0)] = xsin——O‘ = xsin—‘ = |x]||sin —| < |x].
X X X
Choose 0 < § <e. Then, |x — 0] < § implies that
o1
| f(x)— f(0)] = xsm;—O <l|x|<é<e.
Thatis, f is continuous at 0. O

[3] Show that the function f : R — {—1, 1} given by
1 fxe@
Sx) =
-1 if xeR\Q

is discontinuous at every real number.
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Solution: Assume that f is continuous at some ¢ € R. Then, given ¢ = 1, there exists a
8 > 0 such that
| f(x) — f(a)|] < e whenever |x —a| < 4.

Since rationals and irrationals are dense in R, the interval |x —a| < § contains both rationals
and irrationals. If x € Q and |x — a| < é, then

|1 — f(a)| <1, whence 0 < f(a) <2.
On the other hand, if x e R\ Q and |x —a]| < §, then
| —1— f(a)| <1, whence —2 < f(a) <0.

But there is no real number that can simultaneously satisfy both the inequalities
0 < f(a) <2and =2 < f(a) < 0. Therefore f is discontinuous at every a € R. (|

1
[4] Show that the function f(x) = — is continuous at 1.
X

Solution: Let € > 0 be given. We need to find a § > 0 such that
| f(x) — f(1)] <€ whenever |[x — 1| < 6.

Since we are interested in the values of x near 1, we may consider those x for which
1 . . "
x—1| < 7 These x satisfy the inequalities

- <x <z
2

1
Now, for all the x which satisfy |x — 1| < 3 we have

|x — 1

If(X)—f(l)|=‘%—l‘= <ar—1].

1
Choose § = min {5, %} Then, whenever |x — 1| < §, we have that

1
——1
X

< €.

Thatis, f is continuous at x = 1. O
[5] Show that if  is an isolated point in the domain D of f, then f is continuous at a.

Solution: Since a € D, f is defined at a. Let € > 0 be given. Since « is an isolated point of
D, there is a §-neighbourhood N (a, §) of a such that N(a,§) N D = {a}. Assume that x € D
and |[x —a| < §;i.e., x € N(a,§). Then x = a since N(a,§) N D = {a}. Hence

|/(x) = f@] = /(@) - fla) =0 <e.
Therefore f is continuous at a. O

[6] We can deduce from Example 5 that if /' : Z — R, then f is continuous at every point of Z.
O
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The following theorem gives a criterion for continuity at a point in terms of sequences. On some
occasions it is easier to apply this formulation than the € — § definition. In particular, this formulation
comes handy when one wants to use contradiction to prove discontinuity of a function.

5.2.4 Theorem
Let D CRand f: D — R. Then f is continuous at a € D if and only if for every sequence (a,) C D
such that lim a, = a, we have that lim f(a,) = f(a).
n—00 n—o00
<Suppose that f is continuous at ¢ € D and that (a,) is a sequence in D such that lim a, = a. Given
n—0o0
€ > 0, thereisad > 0 and an N € N such that
| f(x) — f(a)| < € whenever |x —a| < § and |a, —a| < § forall n > N.

Therefore
| f(an) — f(a)| < eforallm > N.

That is, lim f(a,) = f(a).
n—>00
For the converse, assume that for every sequence (a,) C D such that lim a, = a, we have that
n—>00
lim f(a,) = f(a) and that f is not continuous at a. Then there exists an €g > 0 such that for every
n—>00

8 > 0 with0 < |x —a| < §, we have

|f(x) = f(@)] = €o.

1 1
Forn € N, let § = —. Then we can find a,, € D such that 0 < |a, —a| < — and
n n

|/ (an) — f(@)| = €.

Clearly, (ay) is a sequence in D with the property that lim a, = a and
n—0o0

| flan) — f(a)] = € foralln € N,

That is, lim f(an) # f(a), a contradiction. |
n—0o0

5.2.5 Examples na 1
ind the limit of the sequence {¢n [ —— ) ¢, if it exists.
[1] Find the limit of th q {6 ( p )} if it exist

Solution: Since

.o on+1
lim

n—oo n

=1

and the function f(x) = £n x is continuous on (0, co), it follows from Theorem 5.2.4 that

limﬁn(n+l):€n1:0.

n—o00 n

1
That is, the sequence {En (%)} converges to 0. O

x ifxeQ
[2] Show that the function f(x) = is continuous only at x = 0.
—x if xeR\Q
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Solution: Let us first show that f is continuous at x = 0. Let € > 0 be given. We need to
find a § > 0 such that
| f(x) — f(0)] <€ whenever |[x —0| <é.

Now, since 0 € Q, we have that

/() = FOf =[f(x) = 0] = [/ (x)].

If x € Q, then | f(x)| = |x],and if x e R\ Q, then | f(x)| = | — x| = |x|]. Choose § = €. Then
whenever |x| < §, we have that | f(x) — f(0)| <€, i.e., f is continuous at x = 0.

Next, we show that f is discontinuous on « € R\ {0}. Assume that f is continuous at some
a € R\ {0}. Ifa € Q, then for each n € N there is an a, € R \ Q such that

1
|an —al < —.
n

That is, the sequence (a,) converges to a. Since a, € R\ Q foreachn € N, f(a,) = —ay,
and since a € Q, f(a) = a. Therefore

lim f(an) = lim (—a,) =— lim a, = —a # a = f(a).
Similarly, if a € R\ Q, then for each n € N there is an a,, € Q such that

1
|an —al < —.
n

Again, the sequence (a,) converges to a. Since a, € Q foreach n € N, f(a,) = a,, and
sincea e R\ Q, f(a) = —a. Therefore

nli_r)noo flan) = nli_r)noo an =a # —a = f(a).

Thus f is discontinuous at a. O
5.2.6 Exercise x ifxeQ
[1] Show that the function f(x) = is continuous only at x = 0.
0 ifxeR\Q
1 ifxe@Q
[2] Show that the function f(x) = is discontinuous at every point of R.
0 ifxeR\Q

The following theorem asserts that continuity is preserved by the standard algebraic operations on func-
tions.

5.2.7 Theorem
Let f and g be functions with common domain D C R, and leta € D. If f and g are continuous at a,
then so are the functions

A f+g.
(ii) ¢f foreach c € R,

(i) | f1,
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(v) fg.
/ :
v) E’ provided g(a) # 0.
<Exercise. |

5.2.8 Theorem
Let f be a function which is continuous at a € R. Suppose that g is a function which is continuous at the
point f(a). Then the composite function g o f is continuous at a.

<Let € > 0 be given. Then there exist n > 0 and § > 0 such that

lg(y) —g(f(a))] < € whenever |y — f(a)| <7, and
| f(x)— f(a)] < n whenever |x —al <38.

(Now § depends on 5, which in turn, depends on €. Therefore § depends on €.) Hence, for all x € R with
|x —a| < &, we have that

lg(f(x)) —g(f@)] <e.

That is, g o f is continuous at . ]

The next theorem, called the Intermediate Value Theorem, asserts that if the domain of a continuous
function is an interval, then so is its range.

5.2.9 Theorem
(Intermediate Value Theorem). If f is continuous on a closed interval [a, b] and f(a) # f(b), then for
each number k between f(a) and f(b) there is a point ¢ € [a, b] such that f(c) = k.

<For definiteness, assume that f(a) < f(b). Let S = {x € [a,b]| f(x) < k}. Then S # @ since

a € S. Thus, ¢ = sup S exists as a real number in [a, b]. By Theorem 4.1.18, there exists a sequence (xy)

in S such that lim x, = ¢. Since a < x, < b foreach n € N, we have thata < ¢ < b, and so [ is
n—0o0

continuous at ¢. This then implies that lim f(x,) = f(c). As f(xn) < k for each n € N, we deduce
n — oo

that f(c) < k,and so ¢ € S. It now remains to show that f(c¢) > k. To this end, we first observe that since
ceSandc =supsS, c+ % ¢ S for each n € N. Also, since k < f(b), we have that ¢ < b. Therefore,

by Corollary 3.1.17, there exists an N € N such that 0 < % < b —c. Hence, for each n > N, we have that

1 1
—<b—c, ie, c+—<b.
n n

1

This implies that for alln > N, ¢ + % € [a,b] and ¢ + % ¢ S. Thus, f(c + —) > k forall n > N. By
n

continuity of f, we have that f(¢) > k, whence f(c) = k. [ ]

One of the many interesting consequences of the Intermediate Value Theorem is the following fixed-
point theorem.

5.2.10 Theorem
(Fixed-point Theorem). If f is continuous on a closed interval [a, b] and f(x) € [a, b] for each x € [a, b],
then f has a fixed point; i.e., there exists a point ¢ € [a, b] such that f(c) = c.

<If f(a) = aor f(b) = b, then we are done. We therefore assume that a < f(a) and f(b) < b. Let
g(x) = f(x) —x forevery x € [a, b]. Clearly, g is a continuous function on [a, b], g(a) = f(a) —a >0
and g(b) = f(b) — b < 0. That is, 0 is an intermediate value for g on [a, b]. Hence, by the Intermediate
Value Theorem (Theorem 5.2.9), there exists a ¢ € [a, b] such that g(c) = 0. This, of course, implies that

f(c) =c. m
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5.2.1 Uniform Continuity

Before giving the formal definition of uniform continuity we need to look closely at the definition of con-
tinuity given earlier. We said that a function f, with domain D C R, is continuous at a € D if, given any
€ > 0 there exists a § > 0 (which depends on € and a) such that

| f(x) — f(a)| < € whenever x € D and |x — a| < §.
For continuity at another point b € D, for the same €, a §’ > 0 would exist such that
| f(x)— f(b)| < e whenever x € D and |x — b| < §'.

The é and 6’ may not be the same. Therefore, § depends on € as well as the point a. For this reason,
continuity is a local concept — it describes what happens to a function in a neighbourhood of a point.
We now define uniform continuity.

Definition
Let D C Rand f : D — R. The function f is said to be uniformly continuous on D if, given any
€ > 0, there exists a § > 0 such that

| f(x) — f(»)| < e whenever x,y € D and |x — y| <.

The most important point to note here is that § does not depend on any particular point of the domain
D — the same § works for all points of D. Therefore uniform continuity is a global concept.

Examples
[1] Show that the function f(x) = x is uniformly continuous on R.

Solution: Let € > 0 be given. We must produce a § > 0 such that
| f(x) — f(»)| <ewheneverx,y e Rand |x — y| <§é.

Since | f(x) — f(»)| = |x — y|, we may choose 0 < § < e. Then, for all x,y € R with
|x — y| < §, we have that

/(X)) =D =Ix—yl <6 =<e.

That is, f is uniformly continuous on R. d
[2] Show that the function f(x) = x? is not uniformly continuous on R.

Solution: Let € > 0 be given. We must show that for every § > 0 there exist x, y € R such
that |x — y| < 6 and

1f) = fW)] = 1x* = y*| = €.

: ) 2
Choosex,yeanhx—y:Eandx+y=§.Then |x —y| <éand

2e
2 — 2 = —_ > — .. — =€,
=yl =yl =yl z 2o =e
Thus, f is not uniformly continuous on R. O

[3] Show that the function f(x) = x? is uniformly continuous on [—1, 1].
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Solution: Let € > 0 be given. Then for all x, y € [-1, 1] we have
1S = fO)] = x? = »*| = |x + pllx =yl < 2|x = .

Choose § = % Then, for all x, y € [-1, 1] with |x — y| < §, we have

)= )] = 15> =2 =[x+ yllx =yl <20x = y] <25 =
Hence f is uniformly continuous on [—1, 1]. O
[4] Show that the function f(x) = % is not uniformly continuous on (0, 1].
1

1
Solution: Let ¢ = 5> and § > 0. Then there exists an n € N such that - < 6. Take

1 1
x=—, and y=——. Then
n n+1

1 1 1 1 1
—yl === = - <4 and - =|n— Dl=1> .
—yl= | n+l‘ D < S S =S =l =@+ D =1>
Hence f is not uniformly continuous on (0, 1]. O

[5] Show that the function f(x) = % is uniformly continuous on [a, c0), where a > 0.
Solution: Let € > 0 be given. We must find a § > 0 such that
| f(x) — f(»)| < ewhenever x,y €[a,00) and |x — y| < 4.
Now, for all x, y € [a, 00),

_ b=yl =l
xy = a2

Xy

1 l‘ ‘y—x

Xy

Take § = a’e. Then, for all x, y € [a, 00) with |x — y| < §, we have

1

)~ fO)] = ‘%——‘ <l

a?

<e€
y

That is, f is uniformly continuous on [a, c0). O

5.2.13 Theorem
If f: D — R is uniformly continuous on D, then it is continuous there.

<Let € > 0 be given. Then there exists a § > 0 such that
| f(x) — f(»)| < e whenever x,y € D and |x — y| <.
Let y =a € D. Then
| f(x) — f(a)] < eforall x,y € D suchthat |[x — y| <§.

Thus, f is continuous at @ € D. Since a € D was arbitrarily chosen, f is continuous
on D. ]
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5.2.14 Definition
A function f : R — R is said to satisfy a Lipschitz condition on an interval I C R if there is a positive
real number M such that

| f(x)— f(»)| < M|x—y| forall x,yel.

If M < 1, then f is called a contraction map.

5.2.15 Examples
[1] Show that the function f(x) = x? satisfies a Lipschitz condition on [0, 2].

Solution: For all x, y € [0, 2], we have
|S(x) = S = x? = y?| =[x + pllx =y < 4|x =yl O

[2] Show that the function f(x) = |x| satisfies a Lipschitz condition on R.

Solution: For all x, y € R, we have
/G =S = llxl =yl < [x = »l. 0

[3] Show that the function f(x) = sin x satisfies a Lipschitz condition on R.

. (x+y Xx—Yy . [(x+y Xx-—y
sin + —sm| —— —

2 2 2 2
2 cos Xty sin(x_y)

2 2
. (X =)
2‘sm( 7 )‘

|X—y|,

Solution: Let x, y € R. Then

|f(x) = JO)] = |sinx —siny| =

IA

IA

where we have used the two facts:

(x + y)
cosS

2
5.2.16 Theorem

If a function f : R — R satisfies a Lipschitz condition on an interval I C R, then f is uniformly
continuous there.

x—y)‘< [x =l

<1 and ‘ (
< sin 3 < 3

<Since f satisfies a Lipschitz condition on 7, there exists a positive real number M such that
|/ () = S| = M|x — y| forall x,ye€l.

Let € > 0 be given and take § = % Then, whenever x, y € I and |x — y| < §, we have that

/() — f)] < M|x—y| < M% —e

That is, f is uniformly continuous on /. |
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Theorem
If f is contraction map on a closed interval [a, b] such that f(x) € [a, b] for each x € [a, D], then f has a
unique fixed point; i.e., there exists exactly one point ¢ € [a, b] such that f(c) = c.

<Since f is a contraction map, it is (uniformly) continuous on [a, b]. Furthermore, f satisfies the
hypotheses of the fixed-point theorem. Therefore there exists a point ¢ € [a, b] such that f(c) = c.

To prove uniqueness, assume that there is a d € [a, b] such that f(d) = d. Since f is a contraction
map, there exists an M € R suchthat0 < M < 1 and

le—d|=1f(c)— f(d)] = Mlc—d| < |c—d|.

which is impossible. Thus ¢ = d. ]

5.2.2 Continuous Functions and Compact Sets

Theorem
A continuous image of a compact set is compact, i.e., if K is a compact subset of R and f : K — R is
continuous on K, then the set

f(K):={y eR| f(x) =y forsome x € K}
is compact.

<Let (y,) be a sequence in f(K). Then, for each n € N, there is an x,, € K such that y, = f(x,).
Since K is compact, the sequence (x,) has a subsequence (x,,k) which converges to some x € K. Using

k—
continuity of f, we have, by Theorem 5.2.4, that f (xnk) - f(x) € f(K). Hence, the subsequence
(ynk) = (f (xnk)) of (y,) converges to y = f(x) € f(K). [ ]

Definition
A real-valued function f* with domain D is said to be bounded on D if there exists a positive real number
M such that

| f(x)| < M forall x € D.

A continuous function may not be bounded even when its domain is a bounded set. One such example

1
is the function f(x) = — defined on (0, 1). As x approaches 0 from the right, f* grows without bound.
x

The next theorem asserts that a continuous real-valued function defined on a compact set is always
bounded there.

Corollary
If K is a compact subset of R and f : K — R is continuous on K, then f is bounded on K. That is,

M =sup{f(x)|x € K} and m = inf{ f(x) | x € K}

are finite. Moreover, there are points x1 and x, in K such that f(x;) = M and

S(x2) =m.

<Since K is compact and f is continuous, it follows from Theorem 5.2.18 that f(K) is a compact. By the
Heine-Borel Theorem (Theorem 3.3.7), we have that f(K) is closed and bounded. Therefore M and m are
finite. Since f(K) is closed, M and m belong to f(K). Therefore there are points x; and x» such that
M = f(x;)and m = f(x2). ]

While the Intermediate Value Theorem (Theorem 5.2.9) assures us that a continuous function takes an
interval into an interval, the following theorem tells us that, in fact, a continuous function takes a closed and
bounded interval into a closed and bounded one! Its proof is contained in Corollary 5.2.20.
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Theorem
(Extreme Value Theorem). If f is continuous on a closed interval [a, b], then there exist points u and v
in [a, b] such that

fw) < f(x) < f(v) forall x €a,b], ie, x €la,b] = [f(x)e[f(u), ().
The following result asserts that a continuous function on a compact set is uniformly continuous on K.

Theorem
If K is a compact subset of R and f : K — R is continuous on K, then f is uniformly continuous.

<Assume that f is continuous on K but not uniformly continuous there. Then, there is an € > 0 such that,
for each § > 0, there are points x, y € K such that [x — y| < § but | f(x) — f(»)] > €. In particular,
for each n € N, there are points x,, y, € K such that |x, — y,| < % but | f(xn) — f(¥n)| > €. Since K

is compact, the sequence (x,) has a subsequence (x,,k) which converges to some x € K. Similarly, the
sequence (),) has a subsequence ( ynk) which converges to some y € K. Since

0§|X—y|f|X—Xnk|+|Xnk—ynk|+|ynk—y| — 0 as kK — oo,

k— k—
it follows that x = y. Since f is continuous on K, we have that f (x,,k) = f(x)and f (ynk) =

f(»). Hence, there are natural numbers N; and N, such that

|f(xnk)—f(x)| < % forall k > Ny, and

| fOm) — f0)] < % forall k > Nj,.

Let N = max{Ny, N;}. Then forall kK > N we have

€
2
which is absurd. [ |

:6’

0 <€ = |fCm) = FOm)| = /G = FO + [ S m) = S| < 5 +

Exercise
[1] Let /' : R — R be a continuous function. Show that if f(¢g) = 0 for all ¢ € Q, then f(x) =0
for all x € R. More generally, show that if /' : R — R is a continuous function that vanishes
on a dense set, then f is identically zero.

[2] Let f : R — R. We say that f is linear if f(x + y) = f(x) + f(y) for all x,y € R. Show
that the function f(x) = cx, where ¢ € R, is a continuous linear function. Show that, in fact,
every continuous linear function f is of this form.

[3] Let S C R. The inverse image of S under f, denoted by /~1(S), is the set
fHS) ={xeR: f(x) e S}

Show that a function f : R — R is continuous if and only if the inverse image f~'(V) of
every open set V is open.

[4] Show that the function f : [0, 00) — [0, oo) defined by f(x) = 4/x is uniformly continuous.

1
[5] Show that the function f : RT — R defined by f(x) = sin o~ is continuous but not uniformly
continuous on R+,
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[6] Let S C R and, for x € R, define
f(x) =inf{|]x —s|: s € S}.
Show thatif x ¢ S, then f(x) > 0. Also, show that

| f(x)— f(] <|x—y| forall x,yeR.

This says that f satisfies a Lipschitz condition on R.
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6.1.1

6.1.2

Chapter 6

Riemann Integration

6.1 Basic Definitions and Theorems

In this section we briefly discuss the construction of Riemann integral. We also point out some of the
shortcomings of the Riemann integral.

Definition
Let [a, b] be a closed interval in R. A partition of [a, b] is a set
P = {xg, x1, X2,..., Xp} of points in R such that

Aa=X9< X1 <Xp<---<xp,=>.

Let f be a real-valued function which is bounded on [a, b] and let P = {x¢, X1, X2,..., Xp} be a
partition of [a, b]. Denote by

M = sup f(x) and m = inf f(x).
a<x<b

a<x<b
Since f is bounded on [a, b], it is bounded on each subinterval [x;_;, x;] foreachi =1, 2, ..., n. Let
M; =sup{f(x):xi—1 <x <x;} and m; =inf{f(x): xj—; < x < Xx;}
foreachi =1, 2, ..., n. Clearly,
m<m; <M; <M foreach i =1, 2, ..., n.

We now form the sums

n n

U(f, P) = ZM,‘()C,‘ —)C,'_l) and L(f, P) = Zm,-(x,- —)C,'_l).
i=1 i=1

Definition
The sums U(f, P) and L(f, P) are called, respectively, the upper and the lower sum of f relative to the
partition P.

It is important to note that U( f, P) and L( f, P) depend on the partition P. If f is nonnegative on [a, b],
then the upper sum U( f, P) is the sum of the areas of rectangles whose heights are M; and whose bases are
[xi—1, x;]. Similarly, L(f, P) is the sum of the areas of rectangles whose heights are m; and whose bases
are [x;_1, Xi].

It is clear that L( f, P) < U(f, P).
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Theorem
Let f be a real-valued function which is bounded on [a, b] and let P = {x¢, X1, X2,..., X} be a partition
of [a, b]. Then

m(b—a) < L(f,P) <U(f,P) < M(b—a).

<Since M; < M foreachi =1, 2, ..., n,it follows that
n n n
U(f.P) = Mi(xi —xi-1) £ Y M(xi—xi—1) = M Y _(xi — Xi—1) = M(b —a).
i=1 i=1 i=1
Similarly, since m < m; foreachi =1, 2, ..., n, it follows that
n n n
L(f,P)= Zm,-(x,- —Xi—1) = Zm(x,- —Xi—1) =m Z(x,- —Xxi—1) =m(b —a).

i=1 i=1 i=1
This theorem says that the set A = {U(f, P) : P is a partition of [a, b]} is bounded below by m (b —a).
Hence, A4 has an infimum, X ( /'), say. That is,
=(f) = infU(. P).

where the infimum is taken over all possible partitions P of [a, b]. This theorem also shows that the set
B ={L(f, P): P isapartitionof [a, b]}is bounded above by M (b — a) and hence B has an supremum,
o(f), say. That is,

a(f) = sgpL(f, P).

where the supremum is taken over all possible partitions P of [a, b]. It is clear that

m(b —a) < Z(f)
m(b—a) <o(f)

M —a), and
Mb —a).

=
=

Definition
Let f be a real-valued function which is bounded on [a, b]. The upper integral of f on [a, b] is defined by

b
/ f(x) dx = infU(f, P),

and the lower integral of f on [a, b] is defined by

b
/ f) dx =S L/, P),

where, of course, the infimum and the supremum are taken over all possible partitions P of [a, b].

b b
It is intuitively clear that / f(x)dx < / f(x) dx. We shall prove this fact shortly.
a a

Definition
Let P = {x¢, X1, X2,..., Xn} be a partition of [a, b]. A partition P* of [a, b] is called a refinement of
P, denoted by P C P*,if x; € P* foreachi = 0, 1, 2, ..., n. A partition P* is called a common

refinement of the partitions P; and P, of [a, b] if P* is a refinement of both Py and P;.
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The following theorem says that refining a partition decreases the upper sum and increases the lower
sum.

Theorem
Let f be a real-valued function which is bounded on [a, b]. If P* is a refinement of a partition P =

{x0, X1, X2,..., Xu} of[a, b], then
L(f,P)<L(f.P") and U(f.P*) =U(/, P).

<Suppose that P* has one more point than P, say a point x* which lies in the subinterval [x,_1, x,].
Let

Ly =sup{f(x):x,—1 <x <x*}, Ly =sup{f(x):x* <x <x,} and

Ly =inf{ f(x) : x,—1 < x <x¥}, LLr =inf{f(x): x* <x < x,}.
Recalling that
M, =sup{f(x):x,—1 <x <xy}, and m, =inf{ f(x) : x,—1 < x < Xx,},

we observe that
my <&y, my <4y, L1 <M,, and Ly < M,.

It now follows that

mp(xXp —Xp—1) = mp(xp —xX*) +mp(x* —x,21) < lo(xp —x*) + L1 (x" — xp—1).

Hence,
r—1 n
L(f.P*) = ij(xj —Xj—) + b (xF = xpm1) + ba(x, —xF) + Z mj(xj — Xj—1)
j=l1 j=r+1
r—1 n
£ ij(xj_xj—1)+mr(xr_xr—1)+ Z mj(x; —xj—1)
j=1 j=r+1
n
= > mj(xj—xj-1) = L(f. P).
j=1
Similarly,
M, (xp = Xp—1) = My (xp = x%) + My (X™ = 2xp—1) = La(x, —x%) + L1 (x™ = x,-1),
and so
r—1 n
U P*) = Y M —xj—1) + Lix™ —xp—) + La(xy = x*) + ) Mj(xj — xj-1)
j=1 j=r+1
r—1 n
= ZMj(xj_xj—1)+Mr(xr_xr—1)+ Z Mj(xj —xj—1)
Jj=1 j=r+1

= Y Mi(xj—xj-1) = U(/, P).

j=1

The case where P* contains k > 2 more points than P can be proved by repeating the above argument k
times. ]
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Theorem
Let f be a real-valued function which is bounded on [a, b]. Then

b b
[reax < [ e ax

<Let P; and P, be any two partitions of [a, b] and let P* be their common refinement. Then, by
Theorem 6.1.6,

L(f, P1) = L(/. P*) =U(/. P*) = U(/. P2).

Since P; is any partition of [a, b], it follows that
sup L(f, P) = U(f. P2),
P

and since P, is any partition of [a, b], we have that

sup L(f. P) < infU(/. P).
P P

b b
where the infimum and the supremum are taken over all possible partitions P of [a, b]. Thus, / f(x)dx < / f(x)dxm
a a

Remark
Implicit in the proof of Theorem 6.1.7 is the fact that no lower sum can exceed an upper sum. That
is, every lower sum is less than or equal to every upper sum.

Definition
Let f be a real-valued function on [a, b]. We say that f is Riemann-integrable on [a, b] if f is bounded
on[a, b] and

b b
/f(x)dx:/f(x)dx.

If f is Riemann-integrable on [a, b], we define the integral of f on [a, b] to be the common value of the
upper and the lower integrals; i.e.,

b b b
/f(x) dx = /f(x) dx = /f(x) dx.
a a_ a
We shall denote by R]a, b] the set of all functions that are Riemann-integrable on [a, b].

Remark
In the definition of the integral of f on [a, b], we have tacitly assumed that a < b. If a = b, then

b a a b
/f(x) dx = /f(x) dx = 0. Also, if b < a, then we define / f(x)dx = —/ f(x) dx.
a a b a
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6.1.11 Examples
[1] Show thatif f is a constant function on [a, b], then f € R[a, b] and find its integral.

Soln: Let f(x) = k forall x € [¢,b]and let P = {x¢, x1, X2,..., Xn} be any partition of [a, b].
Then,

M; =sup{f(x) :xi-1 <x<x;}=k and m; =inf{f(x):x;-1 <x <x;} =k

foreachi =1, 2, ..., n. Thus,

U(s. p)

ZMi(xi —Xi-1) =k Z(Xi —Xj-1) = k(b —a) and
i=1 i=1

L(f.P) = > mi(xi—xim) =k Y (xi —xi-1) = k(b —a).
i=1 i=1

Since P is any partition of [, b], it follows that U( f, P) = L(f, P) = k(b — a) for all partitions
P of [a, b]. Therefore

b b
/ F6) dx = k(b —a) = / F0) dx.

Thatis, f is integrable on [a77] and

b
/f(x)dx = k(b —a). O

[2] Let f be a function defined by

1 if xeQnNla,b]
|
-1 if xe®\Q)Na,b].

Show that f is not Riemann-integrable on [a, b].

Soln: We first observe that f is bounded on [a,b]. Let P = {xo, x1, x2,..., X,} be any
partition of [¢,b]. Since for eachi = 1, 2, ..., n the subinterval [x;_1, x;] contains both
rational and irrational numbers, we have that
M; = sup{f(x):xi-1 <x <x;}=sup{—1,1} =1, and
m; = inf{f(x):xi—;1 <x <Xx;} =inf{—1,1} = —1
foreachi =1, 2, ..., n. Therefore,
Ui/, pP) = ZMi(xi —Xi—1) = Z(xi —Xi—1) =b—a and
i=1 i=1
L(f.P) = > mi(xi—xim) = (=) _(xi —xi—1) = —1(b —a).

i=1 i=1
Since P is any partition of [, b], it follows that U(f, P) = b—a and L(f, P) = —(b —a) for all
partitions P of [a, b]. Therefore

b b
/f(x)dx:b—a and /f(x)dx:—(b—a),
and so f is not Riemann-integrable on [a, b]. O
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6.1.12 Theorem
(Darboux’s Integrability Condition). Let f* be a real-valued function which is bounded on [a, b]. Then f
is integrable on [a, b] if and only if, for any € > 0, there exists a partition P* of [a, b] such that

U(f, P*) — L(f, P*) <e.

<Assume that [ is integrable on [a, b] and let € > 0. Since

b b
[ rerax = [ s ax=swprisp),
P
there is a partition Py of [a, b] such that

b
/f(x) dx—% < L(f, P).

Again, since

b b
/ F(x) dx = / f() dx = infU(f, P),

there is a partition P of [, b] such that

b
U(f, P,) </f(x) dx + %

Let P* be a common refinement of P; and P,. Then

b b
/f(x) dx— 5 < L(f.Py) < LU/ P*) < U/ P*) U Po) < /f(x) dx + 5.

It now follows that
U(f, P*)— L(f, P*) <e.
For the converse, assume that given any € > 0, there is a partition P* of [a, b] such that

U(f, P*) — L(f, P*) <e.

Now,

b b
/f(x) dxzirllfU(f, P) <U(f,P*), and /f(x) dx =sup L(f, P) > L(f, P").
P

Thus,

b b
0< /f(x) dx — /f(x) dx < U(f. P*) — L(f, P*) < e.

Since € > 0 is arbitrary, we have that

b b
/f(x)dxz/f(x)dx.
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That is, ' € Rla, b]. ]

Let us highlight the following important fact which is contained in the first part of the proof of Darboux’s
Integrability Condition:

Theorem
If f is integrable on [a, b], then for each € > 0, there exists a partition P of [a, b] such that

b b
/f(x)dx—e<L(f,P)§U(f,P)</f(x)dx+e.

Theorem
If f is continuous on [a, b], then it is integrable there.

<Since f is continuous on [a, b], we have that f is bounded on [a,b]. Moreover, f is uniformly
continuous on [a, b]. Hence, given € > 0 there is a § > 0 such that

| f(x)— f()| < bL whenever x, y € [a, b] and |x — y| < 8.
—a

Let P = {xo, X1, X2,..., X} be any partition of [a, b] such that x; — x;_; < § foreachi =1, 2, ..., n.
By the Extreme-Value Theorem (applied to f on [x;_1, x;] foreach i = 1, 2, ..., n), there exist points ¢;
and s; in [x;_1, x;] foreachi = 1, 2, ..., n such that

f@) =sup{f(x) :xi—1 <x <x;} =M; and [f(s;) =inf{f(x):xj—1 < x < Xx;} = m;.
Since x; — x;—1 < 4, it follows that |f; — s;| < 8, and so
€ .
M;i—m; = f(t;)— f(si)=1f)— f(si)] < b—a forall i =1, 2, ..., n.

Hence,

Uf,P)—L(f.P) = ZMi(xi —Xi_1) — Zmi(xi —Xi—1) = Z(Mi —m;)(xi — Xi—1)
im1 i=1 i=1

< D) = Sl —xim) < Y (befa) (xi — xi-1)
i=1 i=1

€
= b_a(b—a)—e.

It now follows from Theorem 6.1.12 that f is integrable on [a, b]. ]

Theorem
If f is monotone on [a, b], then f is integrable there.

<Assume that f is monotone increasing on [¢, b] and f(a) < f(b). Since f(a) < f(x) < f(b) for

all x € [a, b], f is clearly bounded on [a, b]. We want to show that, given any € > 0, there is a partition P

of [a, b] such that U(f, P) — L(f, P) < €. Let e > 0 be given and let P = {xo, X1, X2,..., X} be any
€

partition of [, b] such that x; — x;—; < ———— foreachi =1, 2, ..., n. Since f is increasing on
o S®) = f(a)

la, b], we have that

M; =sup{f(x): xi—1 <x <Xx;j} = f(x;) and m; =inf{f(x):x;—; <x <x;} = f(xi—1)
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foreachi =1, 2, ..., n. Hence,

US,P)=L(f,P) = Y Mi(xi—xim1) — Y mi(xi = xi-1) = Y_(Mi = mi)(x; — xi—1)
i=1 i=1 i=1

n € n
xi) = f(xi—)](xi —xi—1) < xi) = f(xi-1)
l;[f( It )< =T @ ;m S i)
€
- ) -S@l=e
J®) = f(a)
It now follows from Theorem 6.1.12 that f is Riemann-integrable on [a, b]. The case where f is
monotone decreasing can be proved in exactly the same way. |

6.1.1 Properties of the Riemann Integral

6.1.16 Theorem
If f is integrable on [a,b] anda < ¢ < d < b, then f is integrable on [c, d].

<Since f is integrable on [a, b], it is bounded there. Hence f is bounded on [c, d]. Furthermore, given
any € > 0, there is a partition P of [@, b] such that

U(f,P)—L(f,P)<e.
Let P* = P U {c,d}. Then P* is arefinement of P, and hence
U(f. P*) = L(f. P*) =U(f.P) = L(f. P) <e.
Let Oy = P*Na,c], Q2 = P*NJc,d], Q3 = P*N|d,b]. Then P* = Q; U Q, U O3, and so

U(f. P%) U(f. Q1)+ U(/. Q2) + U(/. Q3). and
L(f,P*) = L(/.Q1)+L(/. Q2)+ L(/., 03).

Hence,

[U(f. Q1) = L(J. QDI+ [U(f. Q2) = L(f. @)1 +[U(f. Q3) = L(/. Q3)] = U(/. P*) = L(f. P*) <.

Note that all terms on the left are nonnegative. Therefore Q5 is a partition of [c, d] with the property that

U(f.02) —L(f. 02) <e.
This implies that f is integrable on [c, d]. -

6.1.17 Corollary
If f is integrable on [a,b] and a < ¢ < b, then [ is integrable on both [a, c] and [c, b].

The following theorem says that the converse of Corollary 6.1.17 also holds.

6.1.18 Theorem
Ifa < ¢ < b and f is integrable on both [a, c] and [c, D], then f is integrable on [a, b] and

/bf(x)dx=/cf(X)dx+/bf(x)dx.
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<Let € > 0 be given. Since f is integrable on [a, c] and on [c, b], there are partitions P; and P; of [a, c]
and [c, b] respectively, such that

U(f,P)—-L(f.P) < and

N

U(f. P)— L(f. Py) <

N ™

Let P = P; U P». Then P is a partition of [a, b] and

U(f. P) = L(/. P)

U(f. P1) + U(f. Py) — L(f. P1) — L(f. Py)
= U(f.P\)— L(f. P\) + U(f. P) — L(f. P2) < g +

€

=e.
2

Thus f is integrable on [@, b]. Furthermore,
b
[ rewrax<uvipy = vipy + Ul R
< [trPy+ 5]+ LU P) 5] = LU PY+ LU P + €
c b
< /f(x) dx+/f(x) dx + €.

Since € is arbitrary, it follows that

/bf(x) dxf/cf(x) dx+/bf(x) dx. 6.1)

Also,

b
/f(x) dx> L(f.P) = L(f.P)+L(f. Py

\Y%

(UG Py =]+ U Py = 5] = UG P) + UG P — €

A%

/Cf(x)dx+/bf(x)dx—e.

Since € is arbitrary, it follows that

b c b
/f(x) dx > / f(x)dx + / f(x)dx. (6.2)
b c b
Combining (6.1) and (6.2), we have that / f(x)dx = / f(x) dx + / f(x) dx. [ ]
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6.1.19 Corollary
Let f be defined on [a, b] and suppose thata = ¢y < ¢y < ... < ¢p—1 < ¢y = b. Then f is integrable on
la, b if and only if f is integrable on [cx—1, cx] foreachk =1, 2,..., n. In this case,

/bf(x)dxzzn: 7f(x)dx.

k=1€k—1

6.1.20 Corollary
If f is continuous at all but a finite set of points in [a, b], then f is Riemann integrable on [a, b].

6.1.21 Theorem
Let f and g be integrable functions on [a, b] and k € R. Then

b b b

() f+ g € Rla,b] and / /@) + g(x)] dx = / Sx) dx + / g(x) dox;

a a

b b
2) kfeR[a,b]and/kf(x) dxzk/f(x) dx;

b b

3) if f(x) < g(x) forall x € [a, b], then / f(x)dx < /g(x) dx;

b b
@ |f| € Rla.b] and / £ dx| < / ()] dox:

(5) [* €Rla,b;
6) fg € Rla,b].

<(1) Let € > 0 be given. Since f, g € Rla, b], there are partitions P; and P, of [a, b] such that

U(f,P)=L(f, P1) < , and

N M

U(g, P)—L(g, P2) < 3

Let P be a common refinement of P; and P,. Then P is a partition of [a, b] and

U(f+g’P)—L(f+gaP)SU(f,P)+U(g,P)—L(f,P)—L(g,P)<%4—%:6,

Thus f + g is integrable on [a, b]. That is,

b b

b
/ /() + g()] dx = / /() + g(x)] dx = / /() + g ()] dx.

a a

100



2009 REAL ANALYSIS

b b b
Next, we show that /[f(x) + g(x)]dx = /f(x) dx + /g(x) dx. Since f, g € Rla, b],

a

b
/f(x)dx = supL(f,P):ing(f,P), and
P

b
/g(x) dx = supL(g,P)= ing(g, P),
P

a

where the supremum and infimum are taken over all possible partitions of [@, b]. By Theorem 6.1.13, there
are partitions Q and R of [, b] such that

b b
/f(x) dx -5 < L(£0) < U 0) < /f(x) dx+ 5. and

b b

/g(x) dx —% <L(g,R)<U(g,R) < /g(x) dx + %

a a

Let P* be a common refinement of Q and R. Then

b
[ rerdx =5 <10 = L7 P and

b
/ g0 dx =& < Lig, R) < L(g. P,

a

Hence,
b b b
/ F(x) dx + / g dx —e < L(f. P*) + L(g. P*) < L(f + . P*) < / () + g(0)] d.

Since € > 0 is arbitrary, we have that

b

b b
/ £ dx + / g(x) dx < / () + g()] dx. ©63)

a

Also,

b
U, P*) < U(f. Q) < / S dx+ 5. and

b

U(g, P*) < U(g, R) < /g(x) dx + %

a
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Thus,

b b b

/ [f() + g dx < U(f + g P*) < U(f. P*) + U(g. P*) < / £x) dx + / g(x) dx + e,

a a
Since € > 0 is arbitrary, we have that

b b

b
/ £x) dx + / g(x) dx > / /() + g(x)] dx. 64)

b b b
Combining 6.3 and 6.4, we get that /[f(x) + g(x)]dx = / f(x)dx+ /g(x) dx.

a
(2) Exercise.

(3) Exercise.

(4) Let € > 0 be given. Then, there is a partition P = {xo, X1, X2,..., X5} of [a, b] such that
U(f,P)—L(f,P)<e.
Fori =1, 2, ..., n,let

M; =sup{ f(x) | xi—1 <x < Xxi}, m; = inf{ f(x) | xi—1 < x < x;}
L; = sup{| f|(x) = [ /(O] | xi—1 = x = xi}, ¢ =inf{] f](x) = [ /(O] | xi-1 < x < x5}

Now, since for all x, y € [x;—1, x;] we have

A1) = A1 = 1S = 1S DI = [/ ) = S| = Mi —m,

it follows that
Li—4; <M —m;

foreachi =1, 2, ..., n. This then implies that

Z(Li -4 —xi—1) < Z(Mi —m;)(xi — Xi—1)
i=1 i=1

= D LiCxi—xic) = Y Lilxi—xim1) < Y Mi(xi —xim1) — ) mi(Xi = xi1)
i=1 i=1 i=1 i=1
= U(fI.P)—=L(f.P)<=U(f. P)— L(f. P) <e.

Thus | /] is integrable on [a, b].
Since —| f(x)| < f(x) < |f(x)]| for each x € [a, b], we have by (3), that

b b b
- [1reax = [ s dx < [ 1lax.
and consequently

/bf(x) dx 5/b|f(x)|dx.
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(5) Since £ is integrable on [a, b], it is bounded there. Therefore, there exists K > 0 such that | f(x)| <
K forall x € [a,b]. Note that for each x € [a,b], | f2(x)| = | f(x)|*> < K?, so that f? is bounded
on [a,b]. Also, by (4), | f| is integrable on [a, b], and therefore, given € > 0 there is a partition P =
{x0, X1, X2,..., Xu} of [a, b] such that

€
(s Py = LAS1 P) < -

Fori =1, 2, ..., n,let
M; =sup{ f2(x) | xi1 <x < x;}, m; = inf{ f2(x) | xi-1 < x < x;}
L; = sup{| f|(x) = | /()] | xi-1 < x < xi}, G =inf{| f|(x) = | /()] | xi-1 < x < X3}
Then Li2 = M; andﬁi2 =m; foreachi =1, 2, ..., n,and so

U(f2.P)—L(f*.P) = Y (Mi—m)(xi—xi_1)

i=1

= D (Li—t)(xi —xi-1)

i=1

= z}h+&XM—&XM—M4)

i=1

2K (Li — 6)(xi — xi-1)

i=1

= 2K |:Z Li(xj —xi—1) — Zei(xi _xi—l)]
i=1 i=1

IA

Thus, /2 is integrable on [a, b].
(6) This follows from (1),(2) and (5) and from the observation that

_(f+gV—(f—@f

fg = 2
[ ]
6.1.22 Exercise
[1] Let f be the function on [0, 1] given by
b if x is rational
S(x) =
0 if x is irrational.

Show that /" is not Riemann integrable on [0, 1].
[2] Let f be the function on [0, 1] given by

1 if 0<x<3%
fx) =

if%§x<l.

=
|
=
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(a) Show, from first principles, that /" is Riemann integrable on [0, 1].
(b) Quote a result that assures us that f is Riemann integrable.

1
(c) Find / f(x)dx.
0
(d) Let {ry, 2, r3, ...} be an enumeration of rational in the interval [0, 1]. For each n € N,

define
1 if xe{r, ra, ra, ....r)
Ju(x) =

0 otherwise.

Show that (/) is a nondecreasing sequence of functions that are Riemann-integrable
on [0, 1]. Show also that the sequence ( f;;) converges pointwise to the function

1 if xeQno,1]
9 = {

0 otherwise

and that f is not Riemann-integrable.
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Chapter 7

Introduction to Metric Spaces

7.1

7.1.1 Definition
Let X be a nonempty set. A metric on X is a function
d : X x X — R such that for every x, y, z € X,

MI. d(x,y) > 0;
M2. d(x,y) = 0ifandonly ifx = y;
M3. d(x,y) =d(y,x);
M4. d(x,z) <d(x,y)+ d(y, z), (triangle inequality).
A metric space is a pair (X, d), where X is a nonempty set and d a metric on X .

The elements of a metric space (X, d) are usually referred to as points. If x, y € X, then d(x, y) is called
the distance between x and y. A set can have more than one metric defined on it.

If condition M2 is replaced by the condition

M2'. d(x,x) =0forall x € X,

then d is a pseudo-metric on X and (X, d) is a pseudo-metric space.

7.1.2 Examples

[1] Let X =R andforx,y € X,defined : X x X - Rbyd(x,y) =|x—y|. Then R,d) is a
metric space. This metric is called the usual metric on R.

[2] Let X = C, the set of complex numbers. For x,y € X, defined : X x X - Rby d(x,y) =
|x — y|. Then (C, d) is a metric space. This is metric called the usual metric on C.

[3] Let X = R", where n is a natural number. The elements of X are ordered r-tuples
x = (x1, X2, ..., xp) Of real numbers. For x = (xy, x2, ..., xp)and y = (y1, ¥2, --+, Vn)
in X, define
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n
d[(xvy) = Z|xi—yi|v
i=1

" 1/2
dy(x,y) = |:Z(xi_yi)2] :
i=1

doo(x,y) = max |x; = yil.

Then each of d,, d, and d_, defines a metric on R”.
These metrics have special names attached to them:

d, is called the taxicab metric. The reason for this name is that it measures the distance that
a taxicab would have to travel from one point to another if the streets of the city were laid
out in a grid-like pattern. This metric is also called the 1-metric.

d, is called the Euclidean metric or the usual (standard) metric on R”.
d_, is called the maximum, supremum, or infinity metric.
(i) We leave it as an easy exercise to show that (R”, d,) is a metric space.

(i) We show that (R”, d,) is a metric space. Checking that d, satisfies properties M1, M2
and M3 is straightforward. We establish property M4. To thatend, let x = (x1, x2, ..., xp), ¥y =
»1s y2, ..., yn) and z = (zy1, z3, ..., zp) be elements of R”. We want to show that
d,(x,z) <d,(x,y) +d,(y, z). This is equivalent to showing that

n 1/2 n 1/2 n 1/2
(Z(x,- - z,-)z) < (Z(x,- - y,-)z) + (Z(y,- - z,-)z) . (7.1)
i=1

i=1 i=1

Foreachi =1, 2, ..., n,leta; = x; — y; and b; = y; — z;. Then equation (7.1) can be

rewritten as
n 1/2 n 1/2 n 1/2
(z<a,-+b,->2) S(Za?) +(zb,-2) .
i=1 i=1

i=1
Since both sides of the inequality are nonnegative, it suffices to show that the inequality
holds for the squares of the left and right hand sides of the inequality. That is, we have
to show that

n n n 1/2 n 1/2 n
D (@i +b)* <D af +2 (Z a,?) (Z b,?) + Y b} (7.2)
1 i=1 i=1 i=1 i=1

i=

The left hand side of (7.2) can be expanded as
Z(a,- + bi)z = Za,z + ZZaibi + szz
i=1 i=1 i=1 i=1
It now follows that inequality (7.2) is equivalent to the inequality
n n 1/2 n 1/2
> aibi < (Z af) (Z b,?) (7.3)
i=1 i=1 i=1

Equation (7.3) is called the Cauchy-Schwarz Inequality. We now prove the Cauchy-
Schwarz Inequality.

106



2009 REAL ANALYSIS

Cauchy-Schwarz Inequality: If (a1, az, ..., ay) € R" and (b1, ba, ..., by) € R", then

n n 1/2 n 1/2
i=1 i=1 i=1

Proof. Ifa; = Oforalli =1, 2, ..., norb; =0forali =1, 2, ..., n, then the
inequality obviously holds. Assume that thereisani € {1, 2, ..., n} such thata; # 0
andaje{l, 2, ..., nysuchthatb; # 0. Foreachi =1, 2, ..., n,let
ai b.
o = ! d ,Bi = ! 1/2°

n n1/2 an n 2
(Zi:l ai) (Zi=1 bi)
Recall that if ¢, b € R, then 2ab < a? + b2. Therefore
Za,-b,- Cll-z blz

< =+
> az)l/2 > b-z)l/2 Yimiap Y- b}

i=1%i i=17j

deifi <of + B =

23" aib; " a? " b?
= 21;2—1 = l/zfz;‘l ’2+Z;;1 P =2
(XCiia?) T (i b}) 2= 2= b
Y i—1 4ibi -
- n 2\ 1/2 n n1/2 —
(Zi:l ai) (Zi=1 bi)
n n 1/2 n 1/2
— Za,-b,- < (Z a,z) (Z blz) s
i=1 i=1 i=1
which proves the Cauchy-Schwarz Inequality. |
(iii) We show that (R", d_,) is a metric space. Let x = (x1, x2, ..., Xn),
y=0U1, Y2, ..., yn)and z = (zy, z3, ..., zy) be elements of R”.
M1. Sinceforeach i =1, 2, ..., n, |x; — yi| = 0, it follows that
d.(x,y) = max |x; —y;| > 0.
1<i<n
M2.
d (x,y)=0 <= max |[x;—yi|=0
1<i<n
< |xj—yi|<0foreachi=1,2,...,n
< |xi—yi|l=0foreach i=1,2,...,n
<— x;=y foreachi=1,2,...,n
= x=y.
M3. d_(x,y) = max |x; — yi| = max |y; —x;| = d_(y,x).
1<i<n 1<i<n
M4. Since, foreach j =1, 2, ..., n, |x; —z;| < |x; — y;j| + |y; — z;|, it follows that

|xj —zj| < max |x; — yi| + max |y; —zi| = d_(x,y) +d(y,2).
1<i<n 1<i<n
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Hence,
d(x,z) = max |x; —zj| <d_(x,y)+d_(y z2).
1<j=<n

9]
i=1

[4] For1 < p < oo, let X = ¢, be a set of sequences (x;);=, of real or complex numbers such

that Z |xi|? < oo. That is,

i=1

Kp = {x = (X,‘)?il | Z|X,‘|p < OO} .
i=1

For x = (x;);2, and y = (yi)j2, in{,, defined, : X x X — R by

) 1/p
d,(x.y) = (Z |xi_yi|p) :

i=1
Then (£,,d,) is a metric space.

Properties M1, M2 and M3 are easy to prove. Property M4 requires Minkowski’s Inequality:
If p > 1 and (a;);2, and (b;);2, are in {p, then

(imi +b,-|1’)% < (i |a,-|1’)% - (i |b,-|")%.

i=1 i=1 i=1

We now establish M4. Let x = (x;);2, y = (yi)j=; and z = (z;);2, be elements of £,. For
eachi e N, let a; = x; — y; and b; = y; — z;. Then, by Minkowski’s Inequality, we have that

o) 1/p o) %
d,(x,z) = (Z|xi_zi|p) = (Z|ai+bi|p)
i=1 i=1

1
(Z |a,-|P) + (Z |b,-|")
i=1 i=1
o0 3 o0 3
(Z|xi_yi|p) +(Z|yi_zi|p)
i=1 i=1

= d,(x,y)+d,(y,2).

IA
S =

[5] Let X = £_ be a set of bounded sequences of real or complex numbers. For x = (x;);2,
and y = (yi)j2, in{_,defined : X x X - Rby

d (x,y) = sup|x; — yil.
I1eN

Then (¢, d_,) is a metric space.
[6] Let X be a set of sequences of real or complex numbers. For x = (x;)72; and y = (yi)72,
in X, defined : X x X - Rby

o0

N il
d(x,y) = Zzi (I + |xi —yil)

i=1

Then (X, d) is a metric space.
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[7] Let X = CJa, b] be a set of continuous real-valued functions on the interval [¢,b] and p €
[1,00). For f.g € Cla,b],defined, : X x X — Rand d_, : X x X — R respectively by

1/p

b
d,(f.g) = /If(l)—g(t)lpdt

and

d(f.g) = sup [f()—g()l

t€la,b]

Then (X, d,) and (X, d_,) are metric metric space.

[8] Let X be aset. For x,y € X,defined : X x X — Rby

0 fx=y
d(x,y) =
1 if x #y.

Then (X, d) is a metric space. This metric d is called the discrete metric on X.

7.1.3 Proposition
Let (X, d) be a metric space. Then for all x, y, z € X,

|d(x,2) —=d(y.2)| = d(x,)).
<By the triangle inequality we have that
dx,z) <dx,y)+d(y,z) < d(x,z)—d(,z) <d(x,). (7.1.3.1)
Interchanging the roles of x and y in (7.1.3.1),
d(y,z)—d(x,z) <d(x,y). (7.1.3.2)
It now follows from equations (7.1.3.1) and (7.1.3.2) that

|d(x,z)—d(y,z)| Sd(xvy) [ |

7.2 Open Sets, Closed Sets, and Bounded Sets

7.2.1 Definition
Let (X, d) be a metric space, x € X andr > 0. The set

Bx,r):={ye X |d(x,y)<r}

is called the open ball with centre x and radius r.
The set .
B(x,r):={yeX|d(x,y) =r}

is called the closed ball with centre x and radius r.
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7.2.2 Lemma

Let x and y be distinct points in a metric space (X, d). Then there is an € > 0 such that B(x, )N B(y,€) =
a.

<Since x # y, it follows that d(x, y) > 0. Choose € such that 0 < € < @. Then B(x,€) N B(y,€) =
@. Indeed, if z € B(x,€) N B(y, €), then

d(x,z) <e and d(y,z) <e.
Therefore dy)  dix.y)
X,y X,y
3 + 7 = d(x,y).
That is, d(x, y) < d(x, y), which is absurd. |

0<d(x,y)<dx,z)+d(y,z) <e+e<

7.2.3 Definition

Let (X, d) be a metric space. A subset G of X is said to be open if for each x € G, there is an € > 0 such
that B(x,e) C G.

7.2.4 Definition

Let (X, d) be a metric space. A subset A of X is called a neighbourhood of x € X if there is an open set
V C X such thatx € V C A.

It is clear that a subset G of a metric space (X, d) is open if G is a neighbourhood of each of its points.

7.2.5 Examples

[1] An open ball in a metric space (X, d) is an open set. Indeed, let B(x,r) be an open ball
with centre x and radius r and let y € B(x,r). Then d(x,y) <r. Lete = r —d(x,y). We
now show that B(y,e) C B(x,r). Let z € B(y,¢€). Then d(y,z) < €. Hence, by the triangle
inequality,

dx,z) <d(x,y) +d(y,z) <d(x,y) +te=d(x,y) +r—d(x,y)=r.
Thatis, z € B(x,r), and so B(y,€) C B(x,r).

[2] Let (X, d) be a discrete metric space. Then every subset of X is open. To see this, let G be
asubset of X and x € G. Then,with0 < e < 1, B(x,¢) = {x} C G.

7.2.6 Theorem
Let (X, d) be a metric space.

(1) X and @ are open.

(2) A union of an arbitrary collection of open sets in X is open.

(3) An intersection of a finite collection of open sets in X is open.
<Exercise.

7.2.7 Proposition
Let (X, d) be a metric space. Then a set A in X is open if and only if it is a union of open balls in X .

<Assume that A4 is a union of open balls in X;ie., A = U B(x, rx). Since each open ball is an open

x€A
set and a union of an arbitrary collection of open sets is open, it follows that 4 is an open set.
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Conversely, assume that A is open in X . Then, for each x € A, thereis an €, > 0 such that B(x, €x) C
A. Obviously 4 = U B(x, €x). ]

x€A

Definition
A subset F of a metric space (X, d)is said to be closed if its complement X \ F is open.

Example

[1] A closed ball in a metric space (X, d) is a closed set. Indeed, let B(x,r) be a closed ball
with centre x and radius r and let y € X' \ B(x,r). Then d(x,y) > r. Lete = d(x,y) —r.
We now show that B(y,e) C X \ B(x,r). Letz € B(y,¢). Then d(y, z) < €. Hence, by the
triangle inequality,

d(y,z) <e=d(x,y)—r <= r<dx,y)—d,z) <d(x,z2).
Hence z ¢ B(x,r)andsoz € X \ B(x,r).

[2] Let (X, d) be a discrete metric space. Then every subset of X is closed. To see this, let 4
be a subset of X. Since every subset of X is open, X \ 4 is open. Hence 4 = X \ (X \ 4)
is closed.

Theorem

Let (X, d) be a metric space.
(1) X and @ are closed.
(2) An intersection of an arbitrary collection of closed sets in X is closed.
(3) A union of a finite collection of closed sets in X is closed.

<Exercise. |

Proposition
Every singleton set in a metric space (X, d) is closed.

<Let x € X. We show that the set {x} is closed. It suffices to show that the complement X \ {x} is open. To
thatend, let y € X'\ {x}. Then x # y. By Lemma 7.2.2, there is an € > 0 such that B(x,€) N B(y,¢€) = @.
Hence B(y,€) € X \ {x},and so X \ {x} is open. ]

Definition
Let S be a subset of a metric space (X, d), and x € X. Then

(a) x € § is called an interior point of S if there is an € > 0 such that B(x,e) C S. The set of all
interior points of a set S is denoted by S° or int(S).

(b) x € X is called a boundary point of S if for every € > 0 the open B(x, €) contains points of S as
well as points of X \ S. The set of boundary points of S is denoted by 9.5 or bd(S).

(c) x € S is called an isolated point of S if there exists an € > 0 such that B(x,e) N S = {x}.

(d) A pointx € X is called an accamulation point (or limit point) of S if for every € > 0, the e-ball,
B(x, €), contains a point of S distinct from x. The set of all accumulation points of S is called the
derived set of S and is denoted by S’. Thatis, S’ = {x € X | (B(x,e)\{x})NS # @ forall ¢ > 0}.

(e) The closure of the set S, denoted by S, is the set S = S U S’.
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7.2.13 Examples
[1] Let X =R?and S = {(x1,x2) € X | x? +x? < 1}.

7.2.14 Theorem
(Properties of Interior). Let A and B be subsets of a metric space (X, d). Then

(a) A° € A4;

(b) A% = A%

(¢) If A C B, then A° C B°;
(d) (AN B)° = A°N B°;

@ 47 < (U A,-)o;

iel iel

® (ﬂA,-)o < ()45

iel iel

7.2.15 Theorem
(Properties of Closure). Let A and B be subsets of a metric space (X, d). Then

(a) A C A4;

(b) 4 =14;

N

(c) IfA C B, then A C B;

(d AU B =AU B;

@ (4 <4

iel iel
o | J4 <4
iel iel

<

7.2.16 Theorem
A subset C of a metric space (X, d) is closed if and only if it contains all its accumulation points.

<Assume that C is closed and let x € C’. We want to show that x € C. If x ¢ C, thenx € X \ C.
Since C is closed, X \ C is open. Therefore there exists an € > 0 such that B(x,€) C X \ C. This then
implies that B(x, €) N C = @, which contradicts the fact that x € C’. Thus C’ C C.

To prove the converse, assume that C’ C C. We want to show that C is closed, or equivalently, that

X \ C is open. To thisend, let x € X \ C. Then x ¢ C’, and so there is an € > 0 such that
(Bx.e)\{x)NC = 0.

Since x ¢ C, we have that B(x,e) N C = @. Thus B(x,¢) C X \ C, whence X \ C is open. |
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Corollary B
Let C be a subset of a metric (X, d). Then C is closed if and only if C = C.

<Assume that C is closed. Then, by Theorem 7.2.16, C’ C C. Therefore
C=CUC'cCUC=C.ButCcCUC'=C.ThusC =C.

Conversely, assume that C = C. Then C' C C UC’ = C = C. Thus C contains all its accumulation
points and, consequently, C is closed. ]

Definition
A subset A of a metric space (X, d) is said to be bounded if A € B(x,r) for some x € X and some r > 0.

Proposition
A subset A of a metric space (X, d) is bounded if and only if there is a real number M > 0 such that
d(x,y) < M forall x,y € A.

<Exercise.

Definition
The diameter of a subset A of a metric space (X, d) is defined as

diam(A) := sup{d(x, y) | x,y € A}.

Note that a subset A of a metric space (X, d) is bounded if and only if diam(4) < oo.
Proposition
Any subset of a discrete metric space (X, d) is bounded.

<Let A be a subset of X. Clearly, by definition of the discrete metric, d(x, y) < 1 forall x, y € 4. Hence,
A is bounded. [ |

Proposition
A finite union of bounded subsets of a metric space (X, d) is bounded.

<Let Uy, U,, ..., U, be open subsets of X. Then, foreachi = 1, 2, ..., n, there is an r; such that
n

d(x,y) <riforall x,y € U;. Letr = max{ry, ra, ..., rpyand U = U U;. Foreachi =1, 2, ..., n,
i=1

choose x; € U;. Let s = max{d(x;,x;) forall i,j =1,2, ..., n}.Letx,y € U. Then x € U; and

yeU;jforsomei,j=1,2,..., n Therefore

dx,y) <d(x,x;) +d(xi,x;) +d(xj,p) <r+s+r=2r+s.

That is, forall x, y € U, d(x, y) < M, where M = 2r + s and so U is bounded. |

7.3 Convergence of Sequences in Metric Spaces

Definition

A sequence (x,) in a metric space (X, d) is said to converge to a point x € X if, given any € > 0, there is
a natural number N (which depends on €, in general) such that d(x,, x) < € foralln > N. In this case the
point x is called the limit of the sequence (x,) and we write nlgIolo Xp = X.

Equivalently, (x,) converges to x if, given any € > 0, there is an N € N such that x, € B(x,¢€) for all
n>N.
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7.3.2 Theorem
(Limits of convergent sequences are unique). Let (x,) be a sequence in a metric space (X, d). If

lim x, = x and lim x, = y, thenx = y.
n—0o0 n—0o0

<Assume that x # yandlet 0 < € < . Then there are natural numbers N; and N, such that

d(x,y)
2

d(xy,x) <€ forall n > N; and
d(xy,y) <€ forall n > N;.

Let N = max{N;, N,}. Then, foralln > N,
d(x’ y) f d(xvxn) + d(xnv J’) < 26 < d(x’ y)a

which is absurd. Hence x = y. ]

7.3.3 Proposition
A sequence (x,) converges to x if and only if for each € > 0, the set {n | x, & B(x, €)} is finite.

7.3.4 Proposition
Every convergent sequence is bounded.

<

7.3.5 Proposition
If a sequence (x,) converges to x, then every subsequence of (x,) also converges to x.

<

7.3.1 Sequential Characterization of closed sets
7.3.6 Theorem
Let K be a nonempty subset of a metric space (X, d) and x € X. Then

(a) x € K if and only if there is a sequence (x,) C K such that x,, — x as n — oo.
(b) K is closed if and only if K contains the limit of every convergent sequence in K.
<

(a) Assume that x € K. Then either x € K or x € K'. If x € K, then the constant sequence
(x, x, x, ...)in K converges to x. If x € K’, then, for each n € N, the open ball B(x, %) contains

apoint x, € K distinct from x. It now follows that d (x,, x) < % Clearly, (x,) C K and x,, — x as
n— oo.

Conversely, assume that there is a sequence (x,) C K such that x, — x as n — oco. Then, either
x € K orevery e-ball centred at x contains a point x, # x, in which case x € K’ Thus x € K.

(b) By Corollary 7.2.17, K is closed if and only if K = K. Hence, (b) follows from (a). [ |

7.3.2 Completeness in Metric Spaces

7.3.7 Definition
A sequence (x,) in a metric space (X, d) is said to Cauchy if, given any € > 0, there is a natural number
N (which depends on €, in general) such that d(x,, X,,) < € foralln,m > N.
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Proposition
A convergent sequence in a metric space (X, d) is Cauchy.

<Let (x,) be a sequence in X which converges to x € X and let € > 0. Then there is a natural number N
such that d(x,, x) < 5 foralln > N. Foralln,m > N,

€ €
d(Xn, xXm) < d(xp,x) +d(x,xpm) < B + B = €.
Thus, (x,) is a Cauchy sequence in X . |
Proposition
A Cauchy sequence in a metric space (X, d) is bounded.
<Let (x,) be a Cauchy sequence in X. Choose N € N such that
d(xp, xm) <1 forall n,m> N.
Let r = max{d(xy,xn), d(x2,xn), ..., d(xny—1,xn), 1}. Clearly d(x,, xny) < r for all
n=12,..., N—1.Ifn> N,thend(x,, xy) <1 <r. Thus, d(x,, Xn) < r foralln € Nand so (x,)
is bounded. |

Proposition
Let (X, d) be a metric space. A Cauchy sequence in X which has a convergent subsequence is convergent.

<Let (x5) be a Cauchy sequence in X and (x, ) its subsequence which converges to x € X. Then, for any
€ > (0, there are positive integers N1 and N, such that

d(Xp, xm) < % foralln,m > N;

and ¢
d(xp, ., x) < 3 forallk > N,.

Let N = max{N;, N,}. If k > N, then since n; > k,

d(xkvx) f d(xk’xnk) + d(xnkax) < % + % = €.

Hence x, — x asn — o0. |

Definition
A metric space (X, d) is said to be complete if every Cauchy sequence in X converges (to a pointin X).

Example
We have shown (see Theorem 4.2.19) that every Cauchy sequence of real numbers converges.
It now follows that R, with its usual metric, is a complete metric space.

Proposition
A closed subset F of a complete metric space(X, d) is complete.

<Let (x,) be a Cauchy sequence in F. Then (x,) is a Cauchy sequence in X. Since X is complete, this
sequence converges to some x in X . Since F is closed, x € F. Hence F is complete. ]
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7.4 Compactness in Metric Spaces

Definition
Let K be a subset of a metric space (X, d). An open cover for K is a nonempty collectionUd = {U; |i € I }
of open subsets of X such that

K C U U;.

iel
Such an open cover is said to be reducible to a finite subcover for K if there aren € N indicesiy, iz, ..., iy
in I such that
n
K C U Uik .
k=1

A set K C X is said to be compact if every open cover for K is reducible to a finite subcover.

Theorem
A closed subset F of a compact metric space (X, d) is compact.

<LetUd = {U; |i € I} be an open cover for F. Then G = {U; U (X \ F) | i € I} is an open cover for S.
Since S is compact, the cover G is reducible to a finite subcover. That is, there are indices iy, i, ..., iy
such that

sclJu,ux\F.
k=1

n
Since F C S and F N (X \ F) = 9, it follows that F C U Ui, . Hence F is compact. |
k=1

Proposition
A nonempty subset K of a discrete metric space (X, d) is compact if and only if K is finite.

<Assume that K is compact. Since each singleton set in a discrete metric space is open, the collection
C = {{x} | x € K} is an open cover for K. Since K is compact, there are elements x, Xz, ..., X, in K
n

such that K C U{x,-}. Hence
i=1

K=Kn (O{x,}) = {x1, X2, ..., Xn},

i=1

a finite set.
Conversely, assume that K is finite. Then K is clearly compact as any finite set is compact. |

Theorem
Every compact subset K of a metric space (X, d) is closed and bounded.

<Closedness: It suffices to show that X \ K is open. To that end, let x € X \ K. By Lemma 7.2.2, for each
y € K, there is an €, > 0 such that B(x,€,) N B(y, €,) = @. The collection {B(y,€,) | y € K} of open
balls is an open cover for K. Since K is compact, there are elements y, V2, ..., V, in K such that

n
K c UB(yivEyi)‘
i=1
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n
Let U = m B (x, E)’i)‘ Then x € U and, by Theorem 7.2.6(3), U is an open set. Hence there isa § > 0

i=1
such that B(x,8) € U. Since B(x,€y,) N B(yi,€y,) = @ foreachi = 1, 2, ..., n, it follows that
UcCX\Kandsox e B(x,§) C X\ Kand X \ K is open.
Boundedness: The collection G = {B(x, 1) | x € K} is an open cover for K. Since K is compact, there
are elements X, X, ..., X, in K such that the sub-collection {B(x;,1) | j =1, 2, ..., n} of G covers
K;ie.,

n
K< |JBx;. .
j=1

n
Since a finite union of bounded sets is bounded (Proposition 7.2.22), it follows that the set U B(xj,1)1is
j=1
bounded. Hence K is bounded. ]

We saw earlier (Heine-Borel Theorem) that a subset of R is compact if and only if it is closed and
bounded. That is, the converse of Theorem 7.4.4 holds if X = R. This converse does not hold in general.
Here is a counterexample: Let K be an infinite subset of a discrete metric space (X, d). The K is closed
and bounded but not compact (see Proposition 7.4.3).

Proposition
Let (X, d) be a compact metric space. Then any infinite subset of X has an accumulation point in X .

<Let K be an infinite subset of X with no accumulation pointand let x € X . Since x is not an accumulation
point of K, there is an €, > 0 such that B(x,ex) N K € {x}. The collection C = {B(x,ex) | x € X}
is an open cover for X. Since X is compact, there are elements X1, x3, ..., X, in X such that the finite
sub-collection { B(x;j,€x;) | j =1, 2, ..., n} of C covers X i.e.,

n
X g U B(xjvex]')‘

j=1
It follows that
n n n
K=KNXCKn U B(xj,ex;) | = U (KﬂB(xj,exj)) C U{xj} ={Xx1, X2, ..., Xn},
j=1 j=1 j=1
a finite set. This is a contradiction. Hence K has an accumulation point in K. |

7.4.1 Sequential Compactness

Definition
A subset K of a metric space (X, d) is said to be sequentially compact if every sequence in K has a
subsequence that converges to a point in K.

Exercise

[1] Let K be a bounded subset of a metric space (X, d). Show that
diam(K) = inf{M | d(x,y) <M V x,y e K}.

[2] Let K be a compact subset of a metric space (X, d). Show that the derived set K’ of K is
compact.
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