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2.5.1 The Cantor-Schröder-Bernstein Theorem . . . . . . . . . . . . . . . . . . . . . . 33

3 Real Numbers and their Properties 35

3.1 Real Numbers as a Complete Ordered Field . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 The Archimedean Property of the Real Numbers . . . . . . . . . . . . . . . . . . 38

3.2 Topology of the Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Sequences of Real Numbers 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Algebra of Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Monotone Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Subsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Cauchy Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.4 Limit Superior and Limit Inferior . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.5 Sequential Characterization of Closed Sets . . . . . . . . . . . . . . . . . . . . . 71

4.2.6 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Limits and Continuity 72

5.1 Limits of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 Algebra of Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Continuous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.2 Continuous Functions and Compact Sets . . . . . . . . . . . . . . . . . . . . . . 88

i



2009 REAL ANALYSIS

6 Riemann Integration 91

6.1 Basic Definitions and Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.1 Properties of the Riemann Integral . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Introduction to Metric Spaces 105

7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Open Sets, Closed Sets, and Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Convergence of Sequences in Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.1 Sequential Characterization of closed sets . . . . . . . . . . . . . . . . . . . . . . 114

7.3.2 Completeness in Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4 Compactness in Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.4.1 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

ii



Chapter 1

Logic and Methods of Proof

1.1 Logic

In this course you will be expected to read, understand and construct proofs. The purpose of these notes is

to teach you the language of Mathematics. Once you have understood the language of Mathematics, you

will be able to communicate your ideas in a clear, coherent and comprehensible manner.

1.1.1 Definition

A proposition (or statement) is a sentence that is either true or false (not both).

1.1.2 Examples

[1] South Africa was beaten by New Zealand in the 2003 cricket world cup.

[2] February 17, 2003 was on a Tuesday.

[3] 3 C 6 D 11.

[4]
p

2 is irrational.

1.1.3 Examples

(Examples of non-propositions).

[1] Jonty is handsome.

[2] What is the date?

[3] This statement is true.

There are two types of propositions: atomic and compound propositions.

� An atomic proposition is a proposition that cannot be divided into smaller propositions.

� A compound proposition is a proposition that has parts that are propositions. Compound propositions

are built by using connectives.

1.1.4 Examples

(Examples of atomic propositions).

[1] John’s leg is broken.
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[2] Our universe is infinite.

[3] 2 is a prime number.

[4] There are infinitely many primes.

1.1.5 Examples

(Examples of compound propositions).

[1] Jim and Anne went to the movies.

[2] 3 � 7.

[3] n2 is odd whenever n is an odd integer.

[4] If a function is differentiable, then it is continuous.

[5] If f 0 > 0, then f is increasing.

[6] If f is increasing and f 0 exists, then f 0 > 0.

Let us look at some of the most commonly used connectives:

Name English name Symbol

Conjunction and ^
Disjunction or _
Implication If . . . then )
Biconditional if and only if ,
Negation not :

One has to be careful when using everyday English words in Mathematics as they may not carry the

same meaning in Mathematics as they do in everyday non-mathematical usage. One such word is or. In

everyday parlance, the word or means that you have a choice of one thing or the other but not both -

exclusive disjunction. In Mathematics, on the other hand, the word or stands for an inclusive disjunction,

i.e., you have a choice of one thing or the other or both.

We shall use the capital letters P; Q; R; : : : to denote atomic propositions.

1.1.6 Examples

(Using symbols to represent compound statements).

[1] If Lucille has credit for MAT 1E1 and MAT1E2, then she cannot get credit for MAT101.

Let P stand for the statement “Lucille has credit for MAT 1E1”, Q stand for the statement
“Lucille has credit for MAT 1E2”, and R stand for the statement “Lucille can get credit for

MAT 101.” Then the above statement can represented symbolically as .P ^ Q/ ) :R.

[2] If Lucille has credit for MAM100W or has credit for MAM105H and MAM106H, then she do

MAM200W.

Let P stand for the statement “Lucille has credit for MAM100W”, Q stand for the state-

ment “Lucille has credit for MAM105H”, R stand for the statement “Lucille has credit for

MAM106H”, and S stand for the statement “Lucille can do MAM200W.” Then the above
statement can represented symbolically as ŒP _ .Q ^ R/� ) S .

[3] Either you pay your rent or I will kick you out of the apartment.

2
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Let P stand for the statement “You pay your rent”, and Q stand for the statement “I will kick
you out of the apartment.” Then the above statement can represented symbolically as P _Q.

[4] Joe will leave home and not come back again.

Let P stand for the statement “Joe will leave home”, and Q stand for the statement “Joe will
come back again.” Then the above statement can represented symbolically as P ^ :Q.

[5] The lights are on if and only if either John or Mary is at home.

Let P stand for the statement “The lights are on”, Q stand for the statement “John is at
home”, and S stand for the statement “Mary is at home.” Then the above statement can

represented symbolically as P , .Q _ S/.

A truth table is a convenient device to specify all of the possible truth values of a given atomic or

compound proposition. We use truth tables to determine the truth or falsity of a compound proposition

based on the truth or falsity of its constituent atomic propositions.

When we evaluate the truth or falsity of a statement, we assign to it one of the labels T for “true” and

F for “false”. We also use 1 for “true” and 0 for “false”.

Let us construct truth tables for the above connectives.

[1] Conjunction: Let P and Q be two propositions. The proposition P ^ Q is called the conjunction of

P and Q. The proposition P ^ Q is true if and only if both atomic propositions P and Q are true.

In other words, if either or both atomic propositions P and Q are false, then the conjunction P ^ Q

is false.
P Q P ^ Q

1 1 1

1 0 0

0 1 0

0 0 0

1.1.7 Examples

P: Cape Town is in the Western Cape and
p

3 is irrational.

Q:
p

5 < 3 and f .x/ D jxj is differentiable at x D 0.

R: Harare is the capital of Botswana and f .x/ D cos x is continuous on R.

S: �2 < �10 and 8 is an odd number.

Only P is true; all the others are false.

[2] Disjunction: Let P and Q be two propositions. The proposition P _ Q is called the disjunction of

P and Q. The proposition P _ Q is true if and only if at least one of the atomic propositions P or Q

is true.

P Q P _ Q

1 1 1

1 0 1

0 1 1

0 0 0

It is clear from this truth table that the proposition P _ Q will be false only when both P and Q are

false.

3
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1.1.8 Examples

(a) � > 2 or � is an irrational number.

(b) � > 2 or � is a rational number.

(c) � < 2 or � is an irrational number.

(d) � < 2 or � is a rational number.

All these propositions, except (d), are true.

[3] Implication: Let P and Q be two propositions. The proposition P ) Q is referred to as a con-

ditional proposition. It simply means that P implies Q. In the statement P ) Q, P is called the

hypothesis (or antecedent or condition) and Q is called the conclusion (or consequent).

There are various ways of stating that P implies Q:

� If P , then Q.

� Q if P .

� P is sufficient for Q.

� Q is necessary for P .

� P only if Q.

� Q whenever P .

P Q P ) Q

1 1 1

1 0 0

0 1 1

0 0 1

It is clear from this truth table that the proposition P ) Q will be false only when P is true and Q

is false.

In order to have some appreciation of why the above truth table is reasonable, consider the following:

If you pass MAM200W exam, I will buy you a cell-phone.

Let P : You pass MAM200W exam.

Let Q: I will buy you a cell-phone.

At the end of MAM200W exam, there are various scenarios that may arise.

(a) You have passed MAM200W exam and then I buy you a cell-phone. You will be happy and feel

that I was telling the truth . Therefore P ) Q is true.

(b) You have passed MAM200W exam but I refuse to buy you a cell-phone. You will feel cheated

and lied to. Therefore P ) Q is false.

(c) You have failed MAM200W, but I still buy you a cell-phone. You are unlikely to question that,

are you? We did not cover this contingency in my conditional statement.

(d) You have failed MAM200W and, consequently I do not buy you a cell-phone. You will not feel

that I have been unfair to you and that I have not kept my promise.

1.1.9 Examples

(a) If � > 2, then � is an irrational number.

4
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(b) If � > 2, then � is a rational number.

(c) If � < 2, then � is an irrational number.

(d) If � < 2, then � is a rational number.

All these propositions, except (b), are true.

1.1.10 Definition

Let P and Q be propositions. The converse of the proposition P ) Q is the proposition Q ) P .

1.1.11 Examples

(Examples of converse statements).

(a) If it is cold, then the lake is frozen.

Converse: If the lake is frozen, then it is cold.

(b) Johny is happy if he is healthy.

Converse: If Johny happy, then he is healthy.

(c) If it rains, Zinzi does not take a walk.

Converse: If Zinzi does not take a walk, then it rains.

The truth table of a proposition and its converse:

P Q P ) Q Q ) P

1 1 1 1

1 0 0 1

0 1 1 0

0 0 1 1

Note that the truth tables of P ) Q and Q ) P are not the same.

Consider the following conditional proposition and its converse:

Proposition: If � > 2, then
p

3 is rational.

Converse: If
p

3 is rational, then � > 2.

In this example the conditional statement is false whereas its converse is true. Hence this conditional

proposition and its converse are not equivalent.

Consider the following conditional proposition and its converse:

Proposition: If � > 2, then
p

3 is irrational.

Converse: If
p

3 is irrational, then � > 2.

Here both that conditional proposition and its converse are true. If, in this example, we let P stand for

the proposition “� > 2” and Q for “
p

3 is irrational”, then we have that both P ) Q and Q ) P

are true.

[4] Biconditional Proposition: Let P and Q be propositions. The proposition P , Q is referred to as

a biconditional proposition. It simply means that P ) Q and Q ) P . It is called a “biconditional

proposition” because it represents two conditional propositions.

There are various ways of stating the proposition P , Q:

� P if and only if Q (also written as P iff Q).

5
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� P implies Q and Q implies P .

� P is necessary and sufficient for Q.

� Q is necessary and sufficient for P .

� P is equivalent to Q.

P Q P , Q

1 1 1

1 0 0

0 1 0

0 0 1

Note that the statement P , Q is true precisely in the cases where P and Q are both true or P and

Q are both false.

[5] Negation: Let P be a proposition. The proposition :P , meaning “not P”, is used to denote the

negation of P . If P is true, then :P is false and vice versa.

P :P

1 0

0 1

Let us construct a few more truth tables.

1.1.12 Examples

[1] Let P and Q be propositions. Construct a truth table for the proposition .P ^ Q/ ) .P _ Q/.

Solution:

P Q P ^ Q P _ Q P ^ Q ) P _ Q

1 1 1 1 1

1 0 0 1 1

0 1 0 1 1

0 0 0 0 1

[2] Let P; Q and R be propositions. Construct the truth table for the proposition :.P ^ Q/ _ R.

Solution:

P Q R P ^ Q :.P ^ Q/ :.P ^ Q/ _ R

1 1 1 1 0 1

1 1 0 1 0 0

1 0 1 0 1 1

0 1 1 0 1 1

1 0 0 0 1 1

0 1 0 0 1 1

0 0 1 0 1 1

0 0 0 0 1 1

6
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1.2 Tautologies, Contradictions and Equivalences

Some compound propositions are always true while others are always false.

1.2.1 Definition

A compound proposition is a tautology if it is always true regardless of the truth values of its atomic propo-

sitions. If, on the other hand, a compound proposition is always false regardless of its atomic propositions,

we say that such a proposition is a contradiction.

1.2.2 Example

The statement P _ :P is always true while the statement P ^ :P is always false.

P :P P _ :P P ^ :P

1 0 1 0

0 1 1 0

1.2.3 Remark

In a truth table, if a proposition is a tautology, then every line in its column will have 1 as its entry;
if a proposition is a contradiction, every line in its column will have 0 as its entry.

1.2.4 Definition

Let P and Q be propositions. The contrapositive of the propositionP ) Q is the proposition:Q ) :P .

1.2.5 Examples

(Examples of contrapositive statements).

[1] If it is cold, then the lake is frozen.

Contrapositive: If the lake is not frozen, then it is not cold.

[2] If Johny is healthy, then he is happy.

Contrapositive: If Johny not happy, then he is not healthy.

[3] If it rains, Zinzi does not take a walk.

Contrapositive: If Zinzi takes a walk, then it does not rain.

DO NOT CONFUSE THE CONTRAPOSITIVE AND THE CONVERSE. Here is the difference:

Converse: The hypothesis of a converse statement is the conclusion of the conditional statement and

the conclusion of the converse statement is the hypothesis of the conditional statement.

Contrapositive: The hypothesis of a contrapositive statement is the negation of conclusion of the

conditional statement and the conclusion of the contrapositive statement is the negation of hypothesis

of the conditional statement.

1.2.6 Examples

[1] If Bronwyne lives in Cape Town, then she lives of South Africa.

Converse: If Bronwyne lives in South Africa, then she lives in Cape Town.

7
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Contrapositive: If Bronwyne does not live in South Africa, then she does not live Cape Town.

[2] If it is morning, then the sun is in the east.

Converse: If the sun is in the east, then it is morning.

Contrapositive: If the sun is not in the east, then it is not morning.

1.2.7 Definition

Two propositions P and Q are said to be logically equivalent, written as P � Q, if P , Q is a tautology.

Logically equivalent statements have the same truth values.

1.2.8 Remark

When we write “P � Q”, we basically say that proposition P means the same as proposition Q.

Here is an important example: P ) Q � :Q ) :P . That is, the conditional and its contrapositive say

the same thing.

P Q P ) Q :P :Q :Q ) :P .P ) Q/ , .:Q ) :P /

1 1 1 0 0 1 1

1 0 0 0 1 0 1

0 1 1 1 0 1 1

0 0 1 1 1 1 1

1.2.9 Theorem

Let P; Q and R be propositions. Then

(a) :.P ^ Q/ � :P _ :Q

(b) :.P _ Q/ � :P ^ :Q

(c) :.P ) Q/ � P ^ :Q

(d) P ) Q � :P _ Q

(e) :.:P / � P

(f) P _ .Q ^ R/ � .P _ Q/ ^ .P _ R/

(g) P ^ .Q _ R/ � .P ^ Q/ _ .P ^ R/

(h) .P _ Q/ _ R � P _ .Q _ R/

(i) .P ^ Q/ ^ R � P ^ .Q ^ R/

Proof. (a) :.P ^ Q/ � :P _ :Q:

P Q P ^ Q :.P ^ Q/ :P :Q :P _ :Q :.P ^ Q/ , .:P _ :Q/

1 1 1 0 0 0 0 1

1 0 0 1 0 1 1 1

0 1 0 1 1 0 1 1

0 0 0 1 1 1 1 1

(c) :.P ) Q/ � P ^ :Q

8
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P Q P ) Q :.P ) Q/ :Q P ^ :Q :.P ) Q/ , .P ^ :Q/

1 1 1 0 0 0 1

1 0 0 1 1 1 1

0 1 1 0 0 0 1

0 0 1 0 1 0 1

Try to convince yourself that all the other statements are valid.

Let us analyze the following argument: If girls are blonde, they are popular with boys. Ugly girls are

unpopular with boys. Intellectual girls are ugly. Therefore blonde girls are not intellectual.

Is this argument valid?

Solution: Let us use letters and connectives to represent the above statement.

P: Girls are blonde.

Q: Girls are popular with boys.

R: Girls are ugly.

S: Girls are intellectual.

We can represent the above argument as follows:

P ) Q; R ) :Q; S ) R:

Since S ) R and R ) :Q, we can conclude that S ) :Q.

Since P ) Q, we have, by contrapositive, that :Q ) :P . Hence, S ) :P .

Again, by contrapositive, P ) :S , which says that “Blonde girls are not intellectual.” Therefore the

argument is valid.

1.3 Open Sentences and Quantifiers

In mathematics, one frequently comes across sentences that involve a variable. For example, x2C2x�3 D 0

is one such. The truth or falsity of this statement depends on the value you assign for the variable x. For

example, if x D 1, then this sentence is true, whereas if x D �1, this sentence is false.

1.3.1 Definition

An open sentence(also called a predicate) is a sentence that contains variables and whose truth or falsity

depends on the values assigned for the variables. We represent an open sentence by a capital letter followed

by the variable(s) in parenthesis, e.g., P .x/; Q.x; y/ etc.

1.3.2 Examples

(Open statements).

[1] x C 4 D �9

[2] x < y.

[3] She is the queen of jazz.

[4] It has four legs.

1.3.3 Definition

The collection of all allowable values for the variable in an open sentence is called the universe of dis-

course.

9
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Let P .x/ be an open sentence containing a free variable x. We want to quantify the number of x for

which P .x/ is true. In particular, we want to say that P .x/ is true for at least one x or for all x in the

universe of discourse.

Universal Quantifier (8): To say that P .x/ is true for all x in the universe of discourse, we write

.8x/P .x/. Think of the symbol 8 as an inverted A (representing all). 8 is called the universal quantifier.

8 means

8

ˆ̂
<

ˆ̂
:

all

for all

for every

for each

Existential Quantifier (9): To say that there is (at least one) x in the universe of discourse for which

P .x/ is true, we write .9x/P .x/. Think of the symbol 9 as the backwards capital E (representing exists). 9
is called the existential quantifier.

9 means

8

<

:

there is

there exists

for some

Symbolic Statement Translation

.8x/P .x/ For all x, P .x/ is true

.8x/.:P .x// For all x, P .x/ is false

(There is no x for which P .x/ is true)

.9x/P .x/ There exists an x for which P .x/ is true

.9x/.:P .x// There is an x for which P .x/ is false

.8x/.8y/P .x; y/ P .x; y/ is true for all pairs .x; y/

.9x/.9y/P .x; y/ There is a pair .x; y/ for which P .x; y/

is true

.8x/.9y/P .x; y/ For each x, there is a y for which P .x; y/

is true

.9x/.8y/P .x; y/ There is an x for which P .x; y/ is true

for every y

1.3.4 Remark

Quantifying an open sentence makes it a proposition.

1.3.5 Examples

Write the following statements using quantifiers.

(a) For each real number x > 0, x2 C x � 6 D 0.

Solution: .8x > 0/.x2 C x � 6 D 0/.

10



2009 REAL ANALYSIS

(b) There is a real number x > 0 such that x2 C x � 6 D 0.

Solution: .9x > 0/.x2 C x � 6 D 0/.

(c) The square of any real number is nonnegative.

Solution: .8x 2 R/.x2 � 0/.

(d) For each integer x there is an integer y such that x C y D �1.

Solution: .8x 2 Z/.9y 2 Z/.x C y D �1/.

(e) There is an integer x such that for each integer y, x C y D �1.

Solution: .9x 2 Z/.8y 2 Z/.x C y D �1/.

Do examples (d) and (e) convey the same message?

The answer is NO. Statement (d) is true: given any integer x, there is an integer, namely, y D �1 � x, such

that x C y D �1. Statement (e) is false.

ORDER DOES MATTERS AFTER ALL!

1.3.6 Remark

In the statement .8x/.9y/P .x; y/, the choice of y is allowed to depend on x - the y that works for

one x need not work for another x. On the other hand, in the statement .9y/.8x/P .x; y/, the y

must work for all x, i.e., y is independent of x.

1.3.7 Examples

Translate the following into English.

(a) .8x 2 R/.9y 2 R/.x D y2/.

Solution: Every real number is a perfect square.

(b) .8x 2 R/.9y 2 R/.x C y D 0/.

Solution: Every real number has an additive inverse.

Negation of Quantifiers

Symbolic Statement Translation

:Œ.8x/P .x/� � .9x/.:P .x// There is an x for which P .x/

is false

:Œ.9x/P .x/� � .8x/.:P .x// P .x/ is false for every x

:Œ.8x/.9y/P .x; y/� � .9x/.8y/.:P .x; y// There is an x for which P .x; y/

is false for every y

:Œ.9y/.8x/P .x; y/� � .8y/.9x/.:P .x; y// For each y there is an x for which

P .x; y/ is false

:Œ.8x/.8y/P .x; y/� � .9x/.9y/.:P .x; y// There is a pair .x; y/ for which

P .x; y/ is false

:Œ.9x/.9y/P .x; y/� � .8x/.8y/.:P .x; y// P .x; y/ is false for every pair .x; y/

11



2009 REAL ANALYSIS

1.3.8 Remark

To negate a statement that involves the quantifiers 8 and 9, change each 8 to 9, change each 9
to 8, and negate the open sentence (predicate).

1.3.9 Examples

[1] All birds can fly.

Negation: There is (at least one) bird that cannot fly.

1.3.10 Exercise

Write the following statements using quantifiers.

(a) A function f has limit L at a point a, denoted by lim
x!a

f .x/ D L, if and only if given any

� > 0, there is a ı > 0 such that for each x in the domain of f , we have that jf .x/ � Lj < �

whenever 0 < jx � aj < ı.

Ans.
�

lim
x!a

f .x/ D L
�

, .8� > 0/.9ı > 0/.8x 2 dom.f //Œ0 < jx � aj < ı ) jf .x/ � Lj < ��.

(b) Write down the negation of (a).

Ans.
�

lim
x!a

f .x/ 6D L
�

, .9� > 0/.8ı > 0/.9x 2 dom.f //Œ.0 < jx�aj < ı/^.jf .x/�Lj � �/�.

(c) A function f is continuous at x D a if and only if given any � > 0, there is a ı > 0 such that

for each x in the domain of f , we have that jf .x/ � f .a/j < � whenever jx � aj < ı.

Ans. .f is continuous at x D a/ , .8� > 0/.9ı > 0/.8x 2 dom.f //Œjx � aj < ı )
jf .x/ � f .a/j < ��.

(d) Write down the negation of (c).

.f is discontinuous at x D a/ , .9� > 0/.8ı > 0/.9x 2 dom.f //Œ.jx � aj < ı/ ^ .jf .x/ �
f .a/j � �/�.

Overgeneralization and Counterexample

Overgeneralization occurs when a pattern searcher discovers a pattern among finitely many cases and

then claim that the pattern holds in general (when in fact it doesn’t).

To disprove a general (universally quantified) statement such as .8x/P .x/, we must exhibit one x for

which P .x/ is false. That is, .9x/:P .x/. This particular x is called a counterexample to the statement

that .8x/P .x/ is true.

1.3.11 Examples

[1] Statement: .8x 2 R/.x < x2/.

The above statement is false. x D 1
2

is a counterexample since 1
2

2 R but
�

1
2

�2

D 1
4

< 1
2
.

[2] For all real numbers x and y, jx C yj D jxj C jyj.

This is false. Counterexample: take x D 1 and y D �1. Then 0 D j0j D j � 1 C 1j ¤
j � 1j C j1j D 2.

12



2009 REAL ANALYSIS

The statement .8x/ŒP .x/ ) Q.x/� occurs frequently in Mathematics. Recall that

:Œ.8x/.P .x/ ) Q.x//� � .9x/ŒP .x/ ^ :Q.x/�:

Therefore, to show that the implication P .x/ ) Q.x/ is false, all that you have to do is produce ONE x

for which P .x/ is true but Q.x/ is false.

1.3.12 Examples

[1] If a function f is continuous, then it is differentiable.

This statement is false since f .x/ D jxj is continuous but not differentiable at x D 0.

[2] For all real numbers a; b; and c, if ac D bc, then a D b.

This statement is false. Take a D 1; b D 7; and c D 0. Then 0 D ac D bc D 0, but

1 D a 6D b D 7.

[3] For all prime numbers p, 2p C 1 is prime.

While this statement is true for p D 2; 3; 5, it is false for p D 7 since 2 � 7 C 1 D 15 which is

not prime. So p D 7 is a counterexample to the given statement.

1.4 Methods of Proof in Mathematics

In Mathematics we make assertions about systems, e.g. number system. The process of establishing the

truth of an assertion is called a proof. That is, a proof in Mathematics is a sequence of logically sound

arguments which establish the truth of a statement in question.

Theorem statements are normally in conditional form (P ) Q) or biconditional form (P , Q).

Suppose that we wish to establish the truth of the assertion P ) Q.

1.4.1 Direct Method

In this method of proof, we assume that P is true and proceed through a sequence of logical steps to arrive

at the conclusion that Q is also true.

1.4.1 Examples

(a) Show that if m is an even integer and n is an odd integer, then n C m is an odd integer.

Solution: Assume that m is an even integer and m is an odd integer. Then m D 2k and
n D 2` C 1 for some integers k and `. Therefore

m C n D 2k C 2` C 1 D 2.k C `/ C 1:

Since k C ` is an integer whenever k and ` are integers, we conclude that m C n is an odd

integer.

(b) Show that if n is an even integer, then n2 is also an even integer.

Solution: Assume that n is an even integer. Then n D 2k for some integer k. Now,

n2 D .2k/2 D 4k2 D 2.2k2/:

Since 2k2 is an integer, it follows that n2 is an even integer.

13
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1.4.2 Contrapositive Method

Associated with the implication P ) Q is the logically equivalent statement :Q ) :P , the contraposi-

tive of the conditional P ) Q. Therefore one way of proving the conditional P ) Q is to give a direct

proof of its contrapositive :Q ) :P . The first step in the proof is to write down the negation of the

conclusion. Then you show by a series of logical steps that this leads to the negation of the hypothesis of

the original conditional statement.

1.4.2 Examples

(a) Show that if n2 is an even integer, then n is an even integer.

Solution: We will show the contrapositive -if n is an odd integer, then n2 is an odd integer. To

that end, assume that n is an odd integer. Then, n D 2` C 1 for some integer `. Now,

n2 D .2` C 1/2 D 4`2 C 4` C 1 D 2.2`2 C 2`/ C 1:

Since 2`2 C 2` is an integer, we conclude that n2 is an odd integer.

(b) Show that if 3n is an odd integer, then n is an odd integer.

Solution: We will show the contrapositive - if n is an even integer, then 3n is an even integer.

To that end, assume that n is an even integer. Then n D 2k for some integer k. Therefore

3n D 3.2k/ D 2.3k/. It follows that 3n is an even integer.

1.4.3 Contradiction Method

Proof by contradiction, also called reductio ad absurdum, is one of the most powerful methods of proof in

Mathematics. It also tends to be harder to understand than the direct or contrapositive methods. Here is

how it works: assume that the P is true and Q is false, i.e. assume that the statement P ^ :Q is true. Then

show, in a series of logical steps, that this leads to a contradiction, impossibility or absurdity e.g., R ^ :R.

This will then mean that the assumption that P ^ :Q must have been fallacious, and therefore its negation

:.P ^ :Q/ must be true. Since :.P ) Q/ � P ^ :Q, it follows that .P ) Q/ � :.P ^ :Q/, and

hence P ) Q must be true.

Before giving some examples, let us define what it means for a number to be rational.

1.4.3 Definition

A real number r is said to be rational if there are integers m and n .n ¤ 0/ such that r D m=n. We denote

the set of all rational numbers by the letter Q. A real number that is not rational is said to be irrational.

1.4.4 Examples

(Proof by Contradiction).

(a) Show that
p

2 is irrational. That is, there do not exist integers p and q such that
p

q
D

p
2.

Solution: Proceeding by contradiction, assume that there are integers p and q such that
p

q
D

p
2. By cancelling any common factors, we may suppose that p and q have no common

factors. Then squaring both sides, we have that

p2

q2
D 2 , p2 D 2q2:

Hence p2 is even. By Example 1.4.2(a), we have that p is even. Hence we can express p

as p D 2k for some integer k. So,

2q2 D p2 D .2k/2 D 4k2 and, consequently, q2 D 2k2:

14



2009 REAL ANALYSIS

This means that q2 is even and so, again by Example 1.4.2(a), we have that q is even.
Hence p and q are both even, contradicting the assumption that p and q have no factors

in common. Therefore
p

2 is not of the form
p

q
for some integers p and q. That is,

p
2 is

irrational.

(b) Show that if 3n is an odd integer, then n is an odd integer.

Solution: We will use contradiction: Assume that 3n is an odd integer and n is an even

integer. Then 3n D 2k C 1 and n D 2` for some integers k and `. Thus

2k C 1 D 3n D 3.2`/ D 2.3`/:

This shows that 3n is both odd and even,which is absurd. Hence n is an odd integer.
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Chapter 2

Sets and Functions

2.1 Introduction

The concept of a set permeates every aspect of Mathematics. Set theory underlies the language and concepts

of modern Mathematics. The term set refers to a well-defined collection of objects that share a certain

property or certain properties. The term “well-defined” here means that the set is described in such a way

that one can decide whether or not a given object belongs in the set. If A is a set, then the objects of the

collection A are called the elements or members of the set A. If x is an element of the set A, we write

x 2 A. If x is NOT an element of the set A, we write x 62 A.

As a convention, we use capital letters to denote the names of sets and lowercase letters for elements of

a set.

There are several ways of describing sets, but two are common:

[1] The Roster method:- listing the elements of a set, separated by commas and enclosed in braces; e.g.,

A D f1; 2; 3; 4; 5; 6; 7; 8g. There are two important facts to bear in mind: (1) the order in which

the elements are listed is irrelevant, (2) each element should be listed only once in the roster.

[2] The rule or description method:- we describe a set in terms of one or more properties that the objects

in the set must satisfy. We use set-builder notation to write such a set, e.g., A D fx j x satisfies some property or propertiesg.

The vertical bar “ j ” is read as “such that”. Other people use “ W ” instead of the bar “ j ”.

If a set A consists of a large (or infinite) number of elements, it is general practice to list a few of its

elements followed with ellipsis (: : :). This method requires recognition of the pattern in the list of elements

of A. This practice tends to introduce some ambiguity as the list may be continued in many different ways.

It is safer practice to define such a set by spelling out the pattern that determines membership of the set.

2.1.1 Examples

(a) The set E D f2; 4; 6; 8; : : :g is best described as

E D fn 2 N W n D 2k for some k 2 Ng:

(b) The set B D f1; 4; 9; 16; : : :g is best described as

B D fn 2 N W n D k2 for some k 2 Ng:

Some sets come up often in Mathematics and they have special names assigned to them.

16
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N0 D f0; 1; 2; 3; : : :g Natural numbers

N D f1; 2; 3; : : :g Positive natural numbers

Z D f: : : ; �2; �1; 0; 1; 2; : : :g Integers

Q D fp=q W p; q 2 Z; q ¤ 0g Rational numbers

QC Positive rational numbers

R Real numbers

RC Positive real numbers

C D fz D a C bi W a; b 2 R and i2 D �1g Complex numbers.

2.1.2 Definition

Let A and B be sets. We say that

(a) B is a subset of A (or is contained in A), denoted by B � A, if every element of B is an element of

A, i.e., .8x/.x 2 B ) x 2 A/.

(b) A D B if .A � B/ ^ .B � A/, i.e., .8x/.x 2 A , x 2 B/.

(c) If B is a subset of A and A ¤ B, then B is a proper subset of A. In this case we write B  A. It is

clear that

B  A , Œ.8x/.x 2 B ) x 2 A/ ^ .B ¤ A/�:

2.1.3 Example

Let

A D f�1; 0; 1; 2; 3; 4g
B D f1; 2; 3g
C D fx 2 R W x3 � 6x2 C 11x � 6 D 0g
D D f�1; 0; 1; 8g
E D fx 2 Z W �2 < x < 5g:

Then

3 2 A; �2 62 B; B � A; D 6� A;

B D C; A D E, f8g � D, f2; 3g � B.

We say that a set is empty if it has no elements. For example,

fx 2 R W x2 C 1 D 0g

is an empty set since the equation x2 C 1 D 0 has no solution in R.

2.1.4 Proposition

(a) If B is an empty set, then B � A for any set A.

(b) All empty sets are equal, i.e., if B and C are empty sets, then B D C .

17
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Proof. (a) We must show that every element of B is an element of A; i.e., .8x/.x 2 B ) x 2 A/.

Using the contrapositive method, it suffices to show that .8x/.x 62 A ) x 62 B/. This is vacuously true

since if x 62 A, then x 62 B (since B contains no elements!)

(b) From (a) we have that .B � C / ^ .C � B/. Hence B D C . �

It follows from Proposition 2.1.4(b) that there is a unique empty set.

Axiom of the empty set: There is a set that contains no elements. This is called the empty set. It is

denoted by ; or f g.

2.1.5 Proposition

(a) For any set A, A � A.

(b) Let A � B and B � C , then A � C .

Russell’s Paradox

We have been very casual and informal in our definition of a set. One has to be careful though if one is

to avoid some unpleasant surprises. Russell’s Paradox is a salutary reminder that one has to exercise care

when defining sets.

Consider the set A D f1; 2; 3; 4g. Then, 3 2 A; A � A, but A 62 A. The set A does not contain itself

as an element.

Let us now consider the set S of all sets; i.e., S D fB W B is a setg: Notice that not only is S � S ,

S 2 S , since S is a set.

There are therefore sets that contain themselves as elements (e.g., S), and there are sets that do not

contain themselves as elements (e.g. A).

Let R be the set of all those sets that do not contain themselves, i.e.,

R D fX j .X is a set/ ^ .X 62 X /g:

The question is “Does R contain itself an element?”

Well, let’s assume R 62 R, i.e., R does not contain itself as an element. So by definition of R, R is a

member of R. So our assumption that R is not an element of R logically leads to the statement that R is a

member of R. This is a contradiction, so our assumption must be wrong.

Let’s assuming that R is an element of R, i.e., R 2 R. But R is the set that has only members that

do not contain themselves, so R cannot be a member of R. So our assumption that R is a member of R

logically leads to the statement that R is not a member of R. This is a contradiction, so our assumption

must be wrong.

In short, we have the situation that R 2 R , R 62 R. �

The main point of Russell’s Paradox is that there are properties that do not define sets, i.e., all objects

with those properties cannot be collected into one set.

As Russell’s Paradox indicates, there are logical difficulties that arise in the foundations of Set Theory

if one is not careful. We can avoid such difficulties by assuming that each discussion in which a number of

sets are involved is taking place within a context of a fixed set. This set is called the universal set.

Some notation...

We use special notation to designate intervals of various kinds on the real line. Let a; b 2 R with

18
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a � b.

Œa; b� D fx 2 R W a � x � bg
Œa; b/ D fx 2 R W a � x < bg
.a; b� D fx 2 R W a < x � bg
.a; b/ D fx 2 R W a < x < bg

Œa; 1/ D fx 2 R W x � ag
.a; 1/ D fx 2 R W x > ag

.�1; b� D fx 2 R W x � bg
.�1; b/ D fx 2 R W x < bg

.�1; 1/ D R:

2.2 Operations on Sets

2.2.1 Definition

Let A be a set. The power set of A, denoted by P.A/, is the set whose elements are all subsets of A. That

is,

P.A/ D fB W B � Ag:

2.2.2 Example

Let A D fx; y; zg. Then

P.;/ D f;g
P.fxg/ D f;; fxgg

P.fx; yg/ D f;; fxg; fyg; fx; ygg
P.A/ D f;; fxg; fyg; fzg; fx; yg; fx; zg; fy; zg; fx; y; zgg:

N
: Note that ; is not the same as f;g.

2.2.3 Definition

Let A and B be subsets of a universal set U .

(a) The union of A and B, denoted by A [ B, is the set of all elements in U that are either in A or in B

(or in both sets). That is,

A [ B D fx 2 U W .x 2 A/ _ .x 2 B/g:

(b) The intersection of A and B, denoted by A \ B, is the set of all elements in U that are in A and B.

That is,

A \ B D fx 2 U W .x 2 A/ ^ .x 2 B/g:

Sets A and B are said to be disjoint if A \ B D ;.

(c) The complement of A in (or relative to) B, denoted by B n A or B � A and read “B minus A”, is

the set of all elements of B that are not in A, i.e.,

B � A D fx 2 U W .x 2 B/ ^ .x 62 A/g:

(d) The complement of A, denoted by A0, is the set of all elements in U that are not in A, i.e.,

A0 D fx 2 U W x 62 Ag:
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(e) The symmetric difference of A and B denoted by A 4 B is the set

A 4 B D .B � A/ [ .A � B/:

2.2.4 Example

Let U D f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g, A D f2; 4; 6; 8; 9; 10g, and B D f3; 5; 7; 9g. Then

A [ B D f 2; 3; 4; 5; 6; 7; 8; 9; 10g.

A \ B D f9g.

B � A D f3; 5; 7g.

A � B D f2; 4; 6; 8; 10g.

A 4 B D f 2; 3; 4; 5; 6; 7; 8; 10g.

A0 D f1; 3; 5; 7g.

2.2.5 Proposition

Let A, B, and C be subsets of a universal set U .

(a) A [ A D A (idempotent law for union)

(b) A \ A D A (idempotent law for intersection)

(c) A [ ; D A

(d) A \ ; D ;

(e) A [ U D U

(f) A \ U D A

(g) A [ B D B [ A (commutative law for union)

(h) A \ B D B \ A (commutative law for intersection)

(i) .A [ B/ [ C D A [ .B [ C / (associative law for union)

(j) .A \ B/ \ C D A \ .B \ C / (associative law for intersection)

(k) A � A [ B and B � A [ B

(l) A \ B � A and A \ B � B

(m) A00 D A

(n) A [ A0 D U

(o) A \ A0 D ;

(p) ;0 D U

(q) U 0 D ;

(r) .A [ B/0 D A0 \ B0 (De Morgan’s law)

(s) .A \ B/0 D A0 [ B0 (De Morgan’s law)

(t) A � B if and only if B0 � A0
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(u) A � B D A \ B0

(v) A \ .B [ C / D .A \ B/ [ .A \ C / (intersection distributes over union)

(w) A [ .B \ C / D .A [ B/ \ .A [ C / (union distributes over intersection)

(x) A 4 B D .A [ B/ � .A \ B/:

Proof. Be sure that you can prove these properties.

(r) In order to show that .A [ B/0 D A0 \ B0, we must show that .A [ B/0 � A0 \ B0 and A0 \ B0 �
.A [ B/0.

.A [ B/0 � A0 \ B0 A0 \ B0 � .A [ B/0

Let x 2 .A [ B/0 Let x 2 A0 \ B0

Then x 62 A [ B Then x 2 A0 and x 2 B0

∴ :Œx 2 A [ B� ∴ .x 62 A/ ^ .x 62 B/

∴ :Œ.x 2 A/ _ .x 2 B/� ∴ :Œ.x 2 A/ _ .x 2 B/�

∴ .x 62 A/ ^ .x 62 B/ ∴ :Œx 2 A [ B�

∴ .x 2 A0/ ^ .x 2 B0/ ∴ x 2 .A [ B/0

∴ x 2 A0 \ B0 ∴ A0 \ B0 � .A [ B/0

∴ .A [ B/0 � A0 \ B0

Proof of (v): Here we use the fact that if P; Q, and R are propositions, then

P ^ .Q _ R/ � .P ^ Q/ _ .P ^ R/.

For each x,

x 2 A \ .B [ C /

, x 2 A and x 2 B [ C

, x 2 A and .x 2 B or x 2 C /

, .x 2 A/ ^ Œ.x 2 B/ _ .x 2 C /�

, Œ.x 2 A/ ^ .x 2 B/� _ Œ.x 2 A/ ^ .x 2 C /�

, x 2 A \ B or x 2 A \ C

, x 2 .A \ B/ [ .A \ C /:
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2.3 Indexed families of sets

In Mathematics we often work with large collections of sets. Instead of naming each of those sets using the

twenty-six letters of the alphabet, we usually index the sets using some convenient indexing set.

Suppose that I is a set and that to each i 2 I , there corresponds one and only one subset Ai of a universal

set U . Then the collection fAi W i 2 I g is called an indexed family of sets (or an indexed collection of

sets). The set I is called an indexing set for the collection fAi W i 2 I g. If I D f1; 2; 3; : : : ; ng, then

the indexed collection of sets fAi W i 2 I g is called a finite sequence of sets. If I D NC, the set of positive

natural numbers, then the indexed collection fAi W i 2 NCg is called an infinite sequence of sets.

We can extend the definition of union and intersection discussed earlier to cover an indexed family of

sets.

2.3.1 Definition

Let fAi W i 2 I g be an indexed family of subsets of the universal set U .

(a) The union of the family fAi W i 2 I g, denoted by
[

i2I

Ai , is the set of all those elements of U which

belong to at least one of the Ai . That is,

[

i2I

Ai D fx 2 U W x 2 Ai for some i 2 I g

D fx 2 U W .9i 2 I /.x 2 Ai/g:

(b) The intersection of the family fAi W i 2 I g, denoted by
\

i2I

Ai , is the set of all those elements of U

which belong to all the Ai . That is,

\

i2I

Ai D fx 2 U W x 2 Ai for each i 2 I g

D fx 2 U W .8i 2 I /.x 2 Ai /g:

2.3.2 Proposition

Let fAi W i 2 I g be an indexed family of subsets of the universal set U and let B be a subset of U . Then

(a) Ak �
[

i2I

Ai for each k 2 I .

(b)
\

i2I

Ai � Ak for each k 2 I .

(c) B \
 
[

i2I

Ai

!

D
[

i2I

.B \ Ai /.

(d) B [
 
\

i2I

Ai

!

D
\

i2I

.B [ Ai /.

(e) B �
 
[

i2I

Ai

!

D
\

i2I

.B � Ai /.

(f) B �
 

\

i2I

Ai

!

D
[

i2I

.B � Ai /.
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(g)

 

[

i2I

Ai

!0

D
\

i2I

A0i (de Morgan’s law).

(h)

 
\

i2I

Ai

!0

D
[

i2I

A0i (de Morgan’s law).

Proof. Be sure that you can prove these statements. We shall prove (c), (e), and (h).

Proof of (c): We should show that B \
 
[

i2I

Ai

!

�
[

i2I

.B \ Ai/ and
[

i2I

.B \ Ai / � B \
 
[

i2I

Ai

!

.

We shall do this in one fell swoop.

x 2 B \
 
[

i2I

Ai

!

, x 2 B and x 2
[

i2I

Ai

, x 2 B and x 2 Ai for some i 2 I

, .9i 2 I /Œ.x 2 B/ ^ .x 2 Ai /�

, x 2
[

i2I

.B \ Ai/ :

Proof of (e): We use the same technique as applied in (c).

x 2 B �
 

[

i2I

Ai

!

, x 2 B and x 62
[

i2I

Ai

, x 2 B and :Œx 2
[

i2I

Ai �

, x 2 B and :Œ.9i 2 I /.x 2 Ai /�

, .x 2 B/ ^ Œ.8i 2 I /.x 62 Ai/�

, .8i 2 I /Œ.x 2 B/ ^ .x 62 Ai /�

, .8i 2 I /.x 2 B � Ai /

, x 2
\

i2I

.B � Ai / :
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Proof of (h):

x 2
 
\

i2I

Ai

!0

, x 62
\

i2I

Ai

, :Œx 2
\

i2I

Ai �

, :Œ.8i 2 I /.x 2 Ai /�

, .9i 2 I /.x 62 Ai /

, .9i 2 I /.x 2 A0i /

, x 2
[

i2I

A0i :

2.4 Functions

2.4.1 Definition

Let X and Y be sets. A function f from X to Y , denoted by f W X ! Y , is a rule that assigns to each

x 2 X a unique element y 2 Y . We write y D f .x/ to denote that f assigns the element x 2 X to the

element y 2 Y .

2.4.2 Definition

Let X and Y be sets. A function f W X ! Y is said to be

(i) injective (or one-to-one) if for for each y 2 Y there is at most one x 2 X such that f .x/ D y.

Equivalently, f is injective if for all x1; x2 2 X , f .x1/ D f .x2/ implies that x1 D x2. Symbolically,

.8x1; x2 2 X /Œ.f .x1/ D f .x2// ) .x1 D x2/�:

(ii) surjective (or onto) if for each y 2 Y there is an x 2 X such that f .x/ D y. Symbolically,we write

.8y 2 Y /.9x 2 X /.f .x/ D y/:

(iii) bijective if f is both injective and surjective.

2.4.3 Definition

Let X; Y; and Z be sets, f W X ! Y and g W Y ! Z be sets. The composition of f and g, denoted by

g ı f , is the function g ı f W X ! Z defined by .g ı f /.x/ D g.f .x//.

A diagrammatic view of the composition is

X Y

Z

f

g
g ı f

2.4.4 Theorem

Let f W X ! Y and g W Y ! Z such that ran.f / � dom.g/. Then

(a) If f and g are onto, then so is the composite function g ı f ;
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(b) If f and g are one-to-one, then so is the composite function g ı f ;

(c) If f and g are bijective, then so is the composite function g ı f ;

(d) If g ı f is one-to-one, then so is f ;

(e) If g ı f is onto, then so is g;

(f) If g ı f is a bijection, then f is one-to-one and g is onto.

Proof.

(a) Let z 2 Z. Since g is onto, there is a y 2 Y such that g.y/ D z. Since f is onto, there is an x 2 X

such that f .x/ D y. Therefore .g ı f /.x/ D g.f .x// D g.y/ D z. Hence, g ı f is onto.

(b) Let x1 and x2 be in X such that .g ı f /.x1/ D .g ı f /.x2/. Then

.g ı f /.x1/ D .g ı f /.x2/

” g.f .x1// D g.f .x2//

” f .x1/ D f .x2/ since g is one-to-one

” x1 D x2 since f is one-to-one.

(c) This follows from (a) and (b).

(d) Let x1 and x2 be elements of X such that f .x1/ D f .x2/. Then .g ı f /.x1/ D g.f .x1// D
g.f .x2// D g.f .x2//. Since g ı f is one-to-one, it follows that x1 D x2. Thus, f is one-to-one.

(e) Let z 2 Z. We must produce a y 2 Y such that g.y/ D z. Since g ı f is onto, there is an x 2 X

such that .g ı f /.x/ D g.f .x// D z. Let y D f .x/ .2 Y /. Then g.y/ D z, which proves that g is

onto.

(f) This follows from (d) and (e). �

2.4.5 Theorem

Let f W X ! Y be a bijection. Then f �1 W Y ! X is a bijection.

Proof. Exercise. �

2.4.6 Theorem

Let f W X ! Y and g W Y ! Z be bijections. Then

.g ı f /�1 D f �1 ı g�1:

X Y

Z

f

g
g ı f

X Y

Z

f �1

g�1

f �1 ı g�1

Proof. Exercise. �

Let X and Y be sets, f W X ! Y , and A � X . We denote by f .A/ the image of A in Y . It is defined

by

f .A/ D ff .x/ j x 2 Ag:
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If B � Y , we denote by f �1.B/ the pre-image (or inverse image) of B in X . It is defined by

f �1.B/ D fx 2 X j f .x/ 2 Bg:

2.4.7 Theorem

Let X and Y be sets, f W X ! Y , and fAi W i 2 I g an indexed family of subsets of X . Then

(a) f .;/ D ;;

(b) f

 
[

i2I

Ai

!

D
[

i2I

f .Ai /;

(c) f

 

\

i2I

Ai

!

�
\

i2I

f .Ai /;

(d) If f is injective, then f

 
\

i2I

Ai

!

D
\

i2I

f .Ai/.

�Exercise. �

2.4.8 Theorem

Let X and Y be sets, f W X ! Y , fBi W i 2 I g an indexed family of subsets of Y and D � Y . Then

(a) f �1.;/ D ;;

(b) f �1

 
[

i2I

Bi

!

D
[

i2I

f �1 .Bi/;

(c) f �1

 
\

i2I

Bi

!

D
\

i2I

f �1 .Bi/;

(d) f �1.Y n D/ D X n f �1.D/.

�Exercise. �

2.4.9 Theorem

Let X and Y be sets and f W X ! Y . If A � X and B � Y , then

(a) A � f �1 .f .A//;

(b) If f is injective, then A D f �1 .f .A//;

(c) f
�

f �1.B/
�

� B;

(d) If f is surjective, then f
�

f �1.B/
�

D B;

(e) f .A \ f �1.B// D f .A/ \ B.

�Exercise. �
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2.5 Cardinality: the size of a set

2.5.1 Definition

Two sets A and B are said to have the same cardinality, denoted by jAj D jBj, if there is a one-to-one

function from A onto B. Sets that have the same cardinality are also said to be equipotent or equinumer-

ous.

2.5.2 Examples

[1] N0 has the same cardinality as N.

Proof. Define f W N0 ! N by f .n/ D n C 1 for each n 2 N0.

Claim: f is one-to-one. Let n; m 2 N0 such that f .n/ D f .m/ Then n C 1 D m C 1, and

consequently n D m.

Claim: f is onto. Let m 2 N. Then m � 1 2 N0 and f .m � 1/ D m � 1 C 1 D m.

[2] Let E D f2n W n 2 Ng � the set of even natural numbers. Then N and E have the same

cardinality.

Proof. Define f W N ! E by f .n/ D 2n for each n 2 N.

Claim: f is one-to-one. Let n1 and n2 be elements of N such that f .n1/ D f .n2/. Then
2n1 D 2n2 and consequently n1 D n2.

Claim: f is onto. Let m 2 E. Then m D 2k for some k 2 N. Hence, f .k/ D 2k D m.

[3] N and Z have the same cardinality.

Proof. Define f W N ! Z by

f .n/ D

8

ˆ
<̂

ˆ̂
:

� n

2
if n is even

n � 1

2
if n is odd.

In tabular form

n 1 2 3 4 5 6 7 � � �

f .n/ 0 �1 1 �2 2 �3 3 � � �

It is clear that dom.f / D N and ran.f / � Z.

Claim: f is one-to-one. For each n 2 N, f .n/ < 0 if n is even and f .n/ � 0 if n is odd. Let

m1; m2 2 N such that f .m1/ D f .m2/. We must show that m1 D m2. If m1 and m2 are both

even, then

f .m1/ D f .m2/ ” �m1

2
D �m2

2

” m1 D m2:

If m1 and m2 are both odd, then

f .m1/ D f .m2/ ” m1 � 1

2
D m2 � 1

2
” m1 D m2:

Hence, f is one-to-one.
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Claim: f is onto. If m 2 Z and is negative, then �2m is in N and is even. Therefore

f .�2m/ D .�1/
.�2m/

2
D m:

If m 2 Z and m � 0, then 2m C 1 is in N and is odd. Therefore

f .2m C 1/ D .2m C 1/ � 1

2
D m:

[4] N and Q have the same cardinality.

Proof. We start by listing nonnegative rational numbers in an infinite matrix as follows:

p

p=q 0 1 2 3 4 5 6 � � �

1
0

1
! 1

1

2

1
! 3

1

4

1
! 5

1

6

1
� � �

. % . % . % .

2
0

2

1

2

2

2

3

2

4

2

5

2

6

2
� � �

# % . % . % . %

3
0

3

1

3

2

3

3

3

4

3

5

3

6

3
� � �

. % . % . % .

q 4
0

4

1

4

2

4

3

4

4

4

5

4

6

4
� � �

# % . % . % . %

5
0

5

1

5

2

5

3

5

4

5

5

5

6

5
� � �

. % . % . % .

6
0

6

1

6

2

6

3

6

4

6

5

6

6

6
� � �

# % . % . % . %
:::

:::
:::

:::
:::

:::
:::

::: � � �

Starting with
0

1
at the top left corner, we follow the arrows, putting a box around a rational

number that occurs for the first time. This assigns a unique natural number to each nonneg-
ative rational number. That is, this defines a function g from N0 to the set of nonnegative

rational numbers QC [ f0g given by the following table:

n 0 1 2 3 4 5 6 � � �

g.n/
0

1

1

1

1

2

2

1

3

1

1

3

1

4
� � �

Define f W N0 ! Q by

f .n/ D

8

ˆ̂

<̂

ˆ
ˆ̂
:

� g
�n

2

�

if n is even

g

�
n C 1

2

�

if n is odd.
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In tabular form

n 0 1 2 3 4 5 6 � � �

f .n/ 0 1 �1
1

2
�1

2
2 �2 � � �

Then f is a bijection between N0 and Q. Since N and N0 have the same cardinality, there is

a bijection h W N ! N0. Therefore f ı h is a bijection from N onto Q.

[5] R and
�

� �
2

; �
2

�

have the same cardinality.

Proof. Define f W R !
�

� �
2

; �
2

�

by f .x/ D arctan x.

Claim: f is one-to-one. Let x1 and x2 be elements of R such that f .x1/ D f .x2/ Then

arctan x1 D arctan x2

) tan.arctan x1/ D tan.arctan x2/

) x1 D x2:

Claim: f is onto. Let y 2
�

� �
2

; �
2

�

. Then, tan y 2 R and, since y 2
�

� �
2

; �
2

�

, we have that

arctan.tan y/ D y. Let x D tan y. Then f .x/ D y.

[6] The intervals .0; 1/ and
�

� �
2

; �
2

�

have the same cardinality.

�Define f W .0; 1/ !
�

� �
2

; �
2

�

by f .x/ D �x � �
2

: It is easy to show that f is a well-defined

bijection from .0; 1/ onto
�

� �
2

; �
2

�

.

We immediately deduce from examples 5 and 6 that .0; 1/ and R have the same cardinality.

2.5.3 Definition

A set S is said to be

(a) finite if S D ; or if there is an n 2 N such that jS j D jf1; 2; 3; : : : ; ngj.

(b) infinite if S is not finite.

(c) countably infinite if jS j D jNj.

(d) countable if S is finite or is countably infinite.

(e) uncountable if S is not countable.

The cardinality of N is called @0 (aleph nought).

We have shown that the sets E; Z and Q are countably infinite.

2.5.4 Theorem

There does not exist a surjection from a set X onto its power set P.X /.

Proof. (By Contradiction). Suppose there were such a surjection f W X ! P.X /. Let A be the subset of

X defined by

A D fx 2 X W x 62 f .x/g:
Then A 2 P.X /. Since f is assumed to be surjective, there exists an a 2 X such that f .a/ D A. Either

a 2 A or a 62 A. If a 2 A, then by definition of A, a 62 f .a/ D A, a contradiction. Therefore, a 62 A.

But now again by definition of A, it follows that a 2 A, a contradiction again. We conclude that there is no

function from X onto P.X /. �
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2.5.5 Corollary

P.N/ is uncountable.

2.5.6 Theorem

The set of real numbers in the interval .0; 1/ is uncountable.

�(By contradiction). Assume that .0; 1/ is countable. Let fx1; x2; x3; : : :g be the enumeration of

elements of .0; 1/; that is, there is a bijection f W N ! .0; 1/ given by f .k/ D xk . Each xn 2 .0; 1/ has a

decimal expansion of the form

x1 D 0:a11a12a13a14a15 � � �
x2 D 0:a21a22a23a24a25 � � �
x3 D 0:a31a32a33a34a35 � � �

:::

xn D 0:an1an2an3an4an5 � � �
:::

:::

where aij 2 f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g. Let b be the real number that has the decimal expansion:

b D 0:b1b2b3b4b5 � � �

where

bn D

8

<

:

2 if ann D 1

1 if ann 6D 1:

Then, clearly, b 2 .0; 1/ and b ¤ xk for all k 2 N since b and xk differ at the k-place after the decimal

point. Hence, the function f W k 7! xk is not surjective. �

2.5.7 Corollary

The set R of real numbers is uncountable.

�This follows immediately from examples 2.5.2 (5 and 6).

In order to establish the next set of important results, we shall need the following result called the Well

Ordering Principle or Least Natural Number Principle:

2.5.8 Theorem

Every nonempty subset A of natural numbers has a least member - a number a0 2 A such that a0 � a for

all a 2 A.

The Least Natural Number Principle is equivalent to the Principle of Mathematical Induction. That

is, assuming one principle you can prove the other. Below we prove that the Principle of Mathematical

Induction implies the Least Natural Number Principle. We leave the proof of the converse of this statement

as an exercise.

2.5.9 Theorem

The Principle of Mathematical Induction implies the Least Natural Number Principle.

Proof. Let T be a subset of N with no least element. We prove that T is an empty set. Let

S D fn 2 N W f1; 2; : : : ; ng \ T D ;g:

Claim 1: 1 2 S . If 1 62 S , then f1g \ T 6D ;. But then 1 2 T and 1 would be the least element of T ,

contradicting the fact that T has no least element. Hence 1 2 S .
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Claim 2: k 2 S ) k C1 2 S . Since k 2 S (by the assumption), it follows that f1; 2; : : : ; kg\T D ;.

This says that no positive natural number less than or equal to k belongs to T . We must show that k C 1

does not belong to T or equivalently, k C 1 2 S . If k C 1 62 S , then f1; 2; : : : ; k; k C 1g \ T 6D ;.

Since f1; 2; : : : ; kg \ T D ;, it follows that k C 1 2 T . But then k C 1 would be the least element of T ,

contradicting the fact that T has no least element. Hence k C 1 2 S .

By the Principle of Mathematical Induction, we have that S D N. This, of course, means that no natural

numbers belongs to T , i.e., T D ;. �

We are now ready to establish some important results.

2.5.10 Theorem

A subset of a countable set is countable.

�Let A be a subset of a countable set B. If A is finite, then it is obviously countable. Assume that A

is infinite. Then B is countably infinite. Let fb1; b2; b3; : : :g be an enumeration of elements of B That is,

there is a bijection f W N ! B given by f .k/ D bk .

Let M D fn 2 N j bn 2 Ag. Then M is a nonempty subset of N. By the Least Natural Number

Principle,M has the least element m1. Similarly,M � fm1g has the least element m2. In general, having

chosen m1; m2; : : : ; mk , let mkC1 be the least element ofM � fm1; m2; : : : ; mkg. Define g W N ! N
by g.n/ D mn. Since A is infinite, g is defined for each n 2 N.

Claim: g is injective. Indeed, if i < j , then mi ¤ mj since mj 62 fm1; m2; : : : ; mig. Thus

g.i/ ¤ g.j /.

We have the diagram:

N
g

�! N
f

�! B:

It now follows that f ı g is injective. Since each element of A appears somewhere in the enumeration

of elements of B, we have that g.N/ includes all the subscripts of elements of A. Thus, f ı g is a bijection

from N onto A. Hence, A is countable. �

Here is another argument thatR is uncountable: Assume thatR is countable. Then, by Theorem 2.5.10,

every subset of R would be countable. In particular, the set or real numbers in the interval .0; 1/ would be

countable. This contradicts Theorem 2.5.6. Hence, R is countable.

2.5.11 Corollary

An intersection of any collection of countable sets is countable.

�Let fA� j � 2 I g be a collection of sets such that A� is countable for each � 2 I . Choose and fix

˛ 2 I . Then \

�2I

A� � A˛ :

Since A˛ is countable, it follows from Theorem 2.5.10 that
\

�2I

A� is countable. �

2.5.12 Theorem

Let A be a nonempty set. The following statements are equivalent:

(a) A is countable;

(b) There is a surjection f W N ! A.

(c) There is an injection f W A ! N.

�(a) ) (b): Assume that A is countable. If A is finite, then there is nothing to prove. Assume that A is

infinite. Then A is countably infinite. Thus, there is a bijection f W N ! A. Therefore, f is a surjection

from N onto A.

(b) ) (c): Assume that there is a surjection f W N ! A. Then the set

f .a/ WD fn 2 N j f .n/ D ag ¤ ;
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for each a 2 A.

Define g W A ! N by

g.a/ D the least element of the set f .a/

for each a 2 A. By the Least Natural Number Principle, we have that g is well-defined. We show that g is

injective. Note first that since g.a/ 2 f .a/, it follows that f .g.a// D a.

Let a; b 2 A such that g.a/ D g.b/. Then

a D f .g.a// D f .g.b// D b:

Thus, g is injective.

(c) ) (a): Assume that there is an injection g W A ! N. Then g is a bijection from A onto g.A/ WD
fn 2 N j g.a/ D n for some a 2 Ag. Since N is countable and g.A/ � N, it follows from Theorem 2.5.10

that g.A/ is countable. Thus A is countable. �

2.5.13 Theorem

N � N is countable.

�Define f W N � N ! N by

f .n; m/ D 2n � 3m:

We show that f is an injection. To that end, let .n; m/ and .k; `/ be elements of N � N such that

f .n; m/ D f .k; `/:

Then

2n � 3m D 2k � 3` ” 2n�k D 3`�m:

Hence, n � k D 0 and ` � m D 0 and, consequently, n D k and m D `. That is, .n; m/ D .k; `/. This

shows that f is injective. By Theorem 2.5.12(c), we conclude that N �N is countable. �

2.5.14 Corollary

If A and B are countable sets, then A � B is also countable.

�Since A and B are countable, there are bijections f W N ! A and g W N ! B. Define h W N � N !
A � B by

h.n; m/ D .f .n/; g.m// for all .n; m/ 2 N � N:

Clearly, h is well-defined.

Claim 1: h is injective. Assume that h.n; m/ D h.k; `/. Then, by definition of h, .f .n/; g.m// D
.f .k/; g.`//. Therefore f .n/ D f .k/ and g.m/ D g.`/. Since f and g are injective, it follows that n D k

and m D ` and, consequently, .n; m/ D .k; `/.

Claim 2: h is surjective. Let .a; b/ 2 A � B. Since f and g are surjective, there are natural numbers i

and j such that f .i/ D a and g.j / D b. Hence, .i; j / 2 N �N and

h.i; j / D .f .i/; g.j // D .a; b/:

Thus, h is surjective. �

We give another proof that the set Q of rational numbers is countable.

2.5.15 Corollary

The set Q of rational numbers is countable.

�Since Z and N are countable, we have, by Corollary 2.5.14, thatZ�N is countable. So there is a surjection

f W N ! Z � N. Define g W Z �N ! Q by

g.p; q/ D p

q
:
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Clearly, g is surjective (by the definition of rational numbers). We have the following diagram:

N
f�! Z �N g�! Q:

Since the function gıf is a surjection fromN ontoQ, it follows from Theorem 2.5.12 thatQ is countable.�

2.5.16 Theorem

A countable union of countable sets is countable.

�Let fAn j n 2 Ng be a collection of sets such that An is countable for each n 2 N and let A D
1
[

nD1

An.

We show that A is countable. Since An is countable for each n 2 N, there is a surjection fn W N ! An for

each n 2 N. Define f W N � N ! A by

f .n; m/ D fn.m/:

We show that f is surjective. Indeed, if a 2 A, then a 2 An for some n 2 N. Since fn is surjective, there

is an m 2 N such that fn.m/ D a. Therefore .n; m/ 2 N � N and f .n; m/ D fn.m/ D a: Thus, f is

surjective. Since N� N is countable, there is a surjection g W N ! N� N: We have the following diagram:

N
g

�! N � N
f

�! A:

Thus, g ı f is a surjection from N onto A. By Theorem 2.5.12, A is countable. �

2.5.17 Exercise

[1] Show that the set of irrational numbers is uncountable.

2.5.1 The Cantor-Schröder-Bernstein Theorem

When we started the section on cardinality, we said that two sets A and B have the same cardinality if there

is a bijection (one-to-one and onto function) between them. It is usually easier to find an injection than a

bijection between two sets. The Cantor-Schröder-Bernstein Theorem asserts that if A and B are sets for

which we can find an injection from A into B and an injection from B into A, then there is a bijection

between A and B.

2.5.18 Lemma

Let A and B be sets such that B � A. If there is an injective function f W A ! B, then there is a bijective

function g W A ! B.

Proof. If A D B, then the identity function iA works. Assume that B $ A. We inductively define a

sequence .Cn/ of sets as follows:

C0 D A n B

C1 D f .C0/ D f .A n B/

C2 D f .C1/ D f 2.A n B/

C3 D f .C2/ D f 3.A n B/

:::
:::

:::

Cn D f .Cn�1/ D f n.A n B/

:::
:::

:::

Let C D
1
[

nD0

Cn D
1
[

nD0

f n.A n B/, where f 0 is the identity map on A. Note that A n B D C0 � C and

1
[

nD1

Cn D
1
[

nD1

f n.A n B/ � B.
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Claim 1: If j ; k 2 N0 and j ¤ k , then Cj \Ck D ;; that is, the sets Cn are pairwise disjoint. To prove

the claim, assume that j < k and that Cj \ Ck 6D ;. Let z 2 Cj \ Ck ; that is, z 2 f j .An B/\ f k .An B/.

Then there are x and y in A n B such that f j .x/ D z D f k .y/. Therefore

f j .x/ D f k .y/ D f k�j
�

f j .y/
�

D f j
�

f k�j .y/
�

:

Since f is injective, so is f j . Hence x D f k�j .y/. But, since x 2 A n B and f k�j .y/ 2 B, the equality

x D f k�j .y/ means that x D f k�j .y/ 2 .An B/\ B D ;. This is a contradiction. Hence, Cj \ Ck D ;.

Claim 2: f .C / � C . Indeed,

f .C / D f

 1
[

nD0

Cn

!

D
1
[

nD0

f .Cn/ D
1
[

nD0

CnC1 � C:

Define g W A ! B by

g.x/ D

8

<

:

f .x/ if x 2 C

x if x 2 A n C:

Claim 3: g is injective. Let x; y 2 A such that g.x/ D g.y/. If x; y 2 C , then f .x/ D f .y/.

Since f is injective, it follows that x D y. If x 62 C and y 62 C , then x D g.x/ D g.y/ D y: That is,

x D y. If x 2 C and y 2 A n C , then x ¤ y and f .x/ 2 f .C / � C . Therefore g.x/ D f .x/ 2 C and

g.y/ D y 2 A n C . Hence g.x/ ¤ g.y/.

Claim 4: g is surjective. Let y 2 B. If y 2 C , then y 2 f n.A n B/ for some n D f1; 2; : : :g. Hence,

there is an z 2 A n B such that y D f n.z/. Let x D f n�1.z/. Then x 2 f n�1.A n B/ � C . Hence, by

definition of g,

g.x/ D f .x/ D f
�

f n�1.z/
�

D f n.z/ D y:

If y 2 A n C , then, by definition of g, g.y/ D y. �

2.5.19 Theorem

(Cantor-Schröder-Bernstein Theorem). Let A and B be sets. If there exist two injections f W A ! B

and g W B ! A, then there is a bijection h W A ! B.

Proof. Since f and g are injective functions, the composite function g ı f is an injection from A into

g.B/. Also, g.B/ � A. By Lemma 2.5.18, there is a bijection k W A ! g.B/. Since g is an injection from

B into A, it is a bijection from B onto g.B/. The inverse function g�1 is a bijection from g.B/ onto B.

We now have the diagram

A
k�! g.B/

g�1

�! B:

The composite function h WD g�1 ı k is a bijection from A onto B. �

2.5.20 Example

We use the Cantor-Schröder-Bernstein Theorem to show that the sets Œ�1; 1� and RC have the
same cardinality. Let f W Œ�1; 1� ! RC and g W RC ! Œ�1; 1� be given by f .x/ D x C 3 and

g.x/ D 1

x C 1
respectively. The function f is clearly injective and maps the interval Œ�1; 1� onto

the interval Œ2; 4�. This function is not onto - for example, for 5, which is in RC, there is no x 2 Œ�1; 1�

such that f .x/ D 5.

The function g is also injective and maps R onto the interval .0; 1/. This function is not onto -

for example, for 0, which is in Œ�1; 1�, there is no x 2 R such that g.x/ D 0.

By the Cantor-Schröder-Bernstein Theorem, there is a bijection between Œ�1; 1� and R. Hence,

these sets have the same cardinality.
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Chapter 3

Real Numbers and their Properties

3.1 Real Numbers as a Complete Ordered Field

FIELD AXIOMS

3.1.1 Definition

A field is a set F together with two binary operations C W F � F ! F (called addition) and � W F � F ! F
(called multiplication) such that for all x; y; z 2 F,

A1. x C y D y C x;

A2. .x C y/ C z D x C .y C z/;

A3. There is an element 0 2 F, called the additive identity, such that x C 0 D x for each x 2 F;

A4. For each x 2 F, there is an element �x 2 F, called the additive inverse of x, such that xC.�x/ D 0;

M1. x � y D y � x;

M2. .x � y/ � z D x � .y � z/;

M3. There is an element 1 2 F, called the multiplicative identity, such that x � 1 D x;

M4. For each x 2 F n f0g, there is an element x�1 2 F, called the multiplicative inverse of x, such that

x � x�1 D 1;

D1. x � .y C z/ D x � y C x � z.

Note that a field is a triple .'; C; �/, where ' is a set, C and � are binary operations satisfying the above

properties. We shall abuse notation by simply writing ' for a field. To simplify notation, we shall write xy

instead of x � y and
x

y
for x � y�1.

3.1.2 Exercise

[1] Let F be a field.

(a) Show that the additive and multiplicative identities are unique.

(b) Let x 2 F and y 2 F n f0g. Show that �x and y�1 are unique.

ORDER AXIOMS

3.1.3 Definition

An ordered field is a field F on which an order relation < is defined such that
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(i) (trichotomy) for every x; y 2 ', exactly one of the following holds:

x < y; x D y; y < xI

(ii) (transitivity) for all x; y and z, x < y ^ y < z ) x < z;

(iii) For all x; y; and z in ', x < y ) x C z < y C z. Furthermore, if z > 0, then xz < yz.

The sets R and Q are examples of ordered fields (under the usual < relation).

3.1.4 Exercise

Show that Z7 D f0; 1; 2; 3; 4; 5; 6g is a field and that Z7 is not an ordered field under the usual

< relation.

COMPLETENESS AXIOM

3.1.5 Definition

Let B be a subset of an ordered field F.

(a) An element u 2 ' is an upper bound for B if x � u for all x 2 B.

(b) An element ` 2 ' is a lower bound for B if ` � x for all x 2 B.

(c) B is said to be bounded if it has both an upper and a lower bound.

(d) An element M 2 ' is the least upper bound for B if

(i) M is an upper bound for B and,

(ii) for all upper bounds ˛ for B, we have M � ˛.

The least upper bound for B is also called the supremum for B and is usually abbreviated as lub.B/

or sup B.

(e) An element m 2 ' is the greatest lower bound for B if

(i) m is a lower bound for B and,

(ii) for all lower bounds ˇ for B, we have ˇ � m.

The greatest lower bound for B is also called the infimum for B and is usually abbreviated as glb.B/

or inf B.

3.1.6 Proposition

A nonempty subset S of an ordered field ' can have at most one least upper bound.

Proof. Assume that � and � are both least upper bounds for S . Then, by definition of the least upper bound,

� � � � �. Hence, � D �.

3.1.7 Definition

An ordered field ' is said to be complete if every nonempty subset S of ' which is bounded above has the

least upper bound.

3.1.8 Exercise

Show that in a complete field ', every nonempty subset S of ' which is bounded below has the

greatest lower bound.

3.1.9 Theorem

(Characterization of supremum) Let S be a nonempty subset of an ordered field ', and M 2 '. Then

M D sup S if and only if

36



2009 REAL ANALYSIS

(i) M is an upper bound for S , and

(ii) for any � 2 ' with � > 0, there is an element s 2 S such that M � � < s

Proof. Assume that M is the supremum for S , i.e., M D sup S . Then, by definition, M is an upper bound

for S . If there is an �0 2 ' with �0 > 0 for which M � �0 � s for all s 2 S , then M � �0 is an upper bound

for S which is smaller than M , a contradiction.

For the converse, assume that (i) and (ii) hold. Since S is bounded above, it has a supremum, A (say).

Since M is an upper bound for S , we must have that A � M . If A < M , then with � D M � A, there is

an element s in S such that

M � .M � A/ < s � A; i.e., A < A;

which is absurd. Therefore A D M , i.e., M is the supremum of S . �

3.1.10 Definition

Let .'; </ and .G; </ be ordered fields. An order isomorphism between ' andG is a bijection � W ' ! G
such that for all x; y 2 ',

(i) �.x C y/ D �.x/ C �.y/;

(ii) �.xy/ D �.x/�.y/;

(iii) if x < y, then �.x/ < �.y/.

˘ A complete ordered field exists. We denote it by R and call it the field of real numbers.

˘ There is an order isomorphism between any two complete ordered field.

˘ It follows from the above two statements that there is essentially one complete ordered field, viz. R.

“Essentially” here means that there is an order isomorphism between any complete ordered field and

the field R of real numbers.

3.1.11 Theorem

Let A and B be nonempty subsets of R which are bounded above. Then the set

S D fa C b W a 2 A; b 2 B g

is bounded above and sup S D sup A C sup B.

Proof. Let c 2 S . Then c D a C b for some a 2 A and b 2 B. Thus, c D a C b � sup A C sup B.

Therefore sup A C sup B is an upper bound for S . Since sup S is the least upper bound for S , we have that

sup S � sup A C sup B.

It now remains to show that sup AC sup B � sup S . To that end, let � > 0 be given. By Theorem 3.1.9,

there exist elements x� 2 A and y� 2 B such that

sup A � �

2
< x�; and

sup B � �

2
< y� :

Thus, sup AC sup B �� < x� Cy� � sup S . Since this is true for any � > 0, we have that sup AC sup B �
sup S , whence sup A C sup B D sup S . �

3.1.12 Exercise

[1] Let S � R be bounded above and let x 2 R. Show that if x < sup S , then there exists an

s 2 S such that x < s.
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[2] Let S be a subset of R which is bounded below. Show that the set

L D f` 2 R W ` is a lower bound for S g

is bounded above and sup L D inf S .

[3] Show that if a set S of real numbers is bounded below, then inf S exists.

[4] Let S � T � R, where S 6D ;.

(i) Show that if T is bounded above, then so is S and sup S � sup T .

(ii) Show that if T is bounded below, then so is S and inf T � inf S .

[5] For a subset S of R, let �S D f�s W s 2 Sg. Show that if S is bounded below, then �S is

bounded above and sup.�S/ D � inf S .

[6] Formulate and prove the characterization of infimum analogous to Theorem 3.1.9.

[7] Let A and B be non-empty bounded subsets of R.

(i) Show that the set S D faCb W a 2 A; b 2 Bg is bounded below and inf S D inf ACinf B:

(ii) Show that the set D D fa � b W a 2 A; b 2 Bg is bounded above and sup D D
sup A � inf B:

(iii) Show that the set D D fa�b W a 2 A; b 2 Bg is bounded below and inf D D inf A�sup B:

(iv) Show that the set A [ B is bounded above and sup.A [ B/ D maxfsup A; sup Bg.

[8] Let A and B be non-empty bounded subsets of RC, the set of positive real numbers. Show

that the set P D fab W a 2 A; b 2 Bg is bounded and sup P D sup A � sup B; inf P D
inf A � inf B.

3.1.1 The Archimedean Property of the Real Numbers

The following property of real numbers is one of the major consequences of the Completeness Axiom.

3.1.13 Theorem

(Archimedean Property). The set N of natural numbers is not bounded above.

Proof. Assume that N is bounded above. By the Completeness Axiom, supN exists. Let m D supN.

Then, by Theorem 3.1.9, with � D 1, there is an element k 2 N such that m � 1 < k . This implies that

m < k C 1 � m, which is absurd. �

There are several equivalent formulations of the Archimedean Property. We shall mention just a few of

them as corollaries of Theorem 3.1.13.

3.1.14 Corollary

For every real number b there exists an integer m such that m < b.

Proof. For every real number b there is a natural number n such that n > �b. Hence, m D �n < b. �

3.1.15 Corollary

Given any real number x, there exists an integer k such that x � 1 � k < x.

�Let x 2 R. By Corollary 3.1.14, there is an integer m such that m < x. By the Archimedean Property,

there is a natural number n such that x < n. Hence, m < x < n. Choose the largest integer k from the

finite collection m; m C 1; : : : ; n such that k < x. Then k C 1 � x, and consequently, x � 1 � k < x. �

3.1.16 Corollary

If x and y are two positive real numbers, then there exists a natural number n such that nx > y.
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�Assume that nx � y for all n 2 N. Then n � y

x
for all n 2 N. This means that N is bounded above

(by
y

x
), contradicting Theorem 3.1.13. �

3.1.17 Corollary

If � > 0 then there exists an n 2 N such that
1

n
< �.

Proof. Take x D � and y D 1 in Corollary 3.1.16. �

Since R is a field in which order and completeness axioms and the Archimedean Property hold, R is

called a complete ordered Archimedean field.

The following theorem asserts that we can approximate any real number as closely as we wish by a

rational number. A similar statement also holds for irrational numbers.

3.1.18 Theorem

(Density of Rationals in Reals). If x and y are real numbers such that x < y, then there exists a rational

number r such that x < r < y. That is, between any two distinct real numbers there is a rational number.

Proof. By Corollary 3.1.17, there is a natural number n such that
1

n
< y � x. That is,

x < y � 1

n
: (3.1)

Also, by Corollary 3.1.15, there is an integer k such that

ny � 1 � k < ny; i.e. y �
1

n
�

k

n
< y: (3.2)

Combining (3.1) and (3.2), we have that

x < y �
1

n
�

k

n
< y: �

3.1.19 Corollary

(Density of Irrationals in Reals). If x and y are real numbers such that x < y, then there exists an

irrational number z such that x < z < y. That is, between any two distinct real numbers there is an

irrational number.

Proof. By Theorem 3.1.18, there are rational numbers r1 and r2 such that

x < r1 < r2 < y:

Then z D r1 C r2�r1p
2

is an irrational number such that x < z < y. �

3.1.20 Corollary

Let b be any real number and let S D fq 2 Q W q < b g. Then b D sup S . That is, every real number is a

supremum of a set of rational numbers.

Proof. Of course, b is an upper bound for the set S . By the Completeness Axiom, S has a supremum,

c D sup S say. By definition of supremum, c � b. If c < b, then by Theorem 3.1.18, there exists an q 2 Q
such that c < q < b. But then q < b implies that q 2 S , and c < q contradicts the fact that c is the

supremum of S . Therefore c D b. �

It is now easy to see why the completeness axiom fails in Q. Indeed, if � is an irrational number and

S D fq 2 Q W 0 � q < � g, then S is bounded, with sup S D �. However � does not belong to the set Q.
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3.2 Topology of the Real Numbers

In this section we briefly discuss some elementary topological properties of the set R of real numbers.

The Absolute Value Function

3.2.1 Definition

Let x 2 R. The absolute value of x is defined by

jxj D

8

<

:

x if x � 0

�x if x < 0:

It is clear from the definition that the absolute value of any real number is always nonnegative.

3.2.2 Theorem

(Properties of the Absolute Value Function). Let x; y 2 R. Then,

[1] jxj � x and jxj � �x.

[2] jxj D j � xj.

[3] jxyj D jxjjyj.

[4]

ˇ
ˇ
ˇ
ˇ

x

y

ˇ
ˇ
ˇ
ˇ

D jxj
jyj

for y 6D 0.

[5] jx C yj � jxj C jyj. (Triangle Inequality.)

�Exercise.

If we think of the real numbers as points on the real line, then jx � yj is just the distance between the

real numbers x and y.

3.2.3 Exercise

Let x; y; z 2 R. Show that

[1] jx � yj C jy � zj � jx � zj.

[2] jxj C jyj � jx � yj.

[3] jxj � jyj � jx � yj.

[4] jxj D maxf�x; xg.

[5] jx � yj < � for all � > 0 if and only if x D y if and only if jx � yj D 0.

Open Sets and Closed Sets

3.2.4 Definition

Let a 2 R and � > 0.

[1] An ��neighbourhood of a is the set

N.a; �/ D fx 2 R W jx � aj < �g:
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[2] A deleted ��neighbourhood of a is the set

N �.a; �/ D fx 2 R W 0 < jx � aj < �g:

It is clear that

N.a; �/ D .a � �; a C �/ and N �.a; �/ D .a � �; a/ [ .a; a C �/:

3.2.5 Definition

A subset U of R is said to be open if for each s 2 U there is an � > 0 such that .s � �; s C �/ � U .

3.2.6 Examples

[1] For any a; b 2 R with a < b, the set .a; b/ is open. Indeed, if s 2 .a; b/, then a < s < b.

Take � D minfs � a; b � sg. We claim that .s � �; s C �/ � .a; b/. To prove the claim, let

t 2 .s � �; s C �/. Then,

s � � < t < s C � ) s � .s � a/ � s � � < t < s C � � s C .b � s/;

whence a < t < b, which proves the claim.

[2] The sets .�1; 0/ [ .3; 7/ and .�1; 4/ [ .6; 9/ [ .12; 20/ are open.

[3] The sets R; ; are open.

[4] The set Q of rational numbers is not open in R. Indeed, if r 2 Q, then for any � > 0 the

interval .r � �; r C �/ contains an irrational number. Thus, Q is not open.

[5] The set RnQ of irrational numbers is not open. The reasoning is the same as in the previous

example.

3.2.7 Theorem

(1) A union of an arbitrary collection of open sets in R is an open set.

(2) An intersection of a finite collection of open sets in R is an open set.

�(1) Let fUi j i 2 I g be a collection of open sets in R. We want to show that the set
[

i2I

Ui is open.

Let x 2
[

i2I

Ui . Then x 2 Uk for some k 2 I . Since Uk is open, we can find an � > 0 such that

.x � �; x C �/ � Uk . Since Uk �
[

i2I

Ui , we have that .x � �; x C �/ �
[

i2I

Ui , which proves the desired

result.

(2) Let U1; U2; : : : Un be open sets inR. We want to show that the set

n
\

kD1

Uk is open. Let x 2
n
\

kD1

Uk .

Then x 2 Uk for all k D 1; 2; : : : ; n. Since Uk is open for each k D 1; 2; : : : ; n, we can find an �k > 0

such that .x � �k ; x C �k / � Uk for each k D 1; 2; : : : ; n. Let � D minf�1; �2; : : : ; �ng. Then

.x � �; x C �/ � Uk for each k D 1; 2; : : : ; n, and consequently, .x � �; x C �/ �
n
\

kD1

Uk . That is, the set

n
\

kD1

Uk is open. �

An arbitrary intersection of open sets need not be open. For example, if Ik D
�

�1

k
;

1

k

�

, then
T1

kD1 Ik D f0g,

which is not open.

The following theorem completely characterises open subsets of R.
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3.2.8 Theorem

A subset of R is open if and only if it is a countable union of disjoint open intervals in R.

�Let G be an open subset of R and x 2 G. Denote by Ix the union of all open intervals in G that contain

x. Note that since G is open, there is an � > 0 such that .x � �; x C �/ � G. There is therefore at least one

open interval that contains x and is contained in G. Clearly Ix � G. Let

˛x D inffa 2 R j .a; x� � Gg and ˇx D supfb 2 R j Œx; b/ � Gg:

Claim 1: Ix D .˛x ; ˇx/.

Ix � .˛x ; ˇx/ : Let y 2 Ix . Then there is an open interval .a; b/ � G with x 2 .a; b/ such that

y 2 .a; b/. Since .a; b/ � G and x 2 .a; b/, it follows that .a; x� � G and Œx; b/ � G. Thus, ˛x � a and

b � ˇx . Therefore

˛x � a < y < b � ˇx

and consequently y 2 .˛x; ˇx/.

.˛x ; ˇx/ � Ix : It is clear that .˛x ; ˇx/ is an open interval and x 2 .˛x ; ˇx/. It remains to show that

.˛x ; ˇx/ � G. To that end, let y 2 .˛x; ˇx/. The either y � x or x � y. Without loss of generality, we

assume that y � x. By characterization of ˛x (as the infimum), given any � > 0, there is an a� 2 R such

that .a�; x� � G and a� < ˛x C �. In particular, taking � D y�˛x

2
, we have that

a� < ˛x C y � ˛x

2
D ˛x C y

2
:

Since ˛x < y, it follows that

a� <
˛x C y

2
<

y C y

2
D y � x:

Therefore y 2 .a� ; x� � G, and so y 2 G.

If x � y, then we can similarly show that y 2 G.

Claim 2: If x; y 2 G, then either Ix D Iy or Ix \ Iy D ;. Assume that z 2 Ix \ Iy . Then z 2 Ix and

z 2 Iy . Therefore, Ix is an open interval in G which contains z, and so Ix � Iz . Since x 2 Ix � Iz , Iz is

an open interval in G which contains x. Hence Iz � Ix. It now follows that Ix D Iz . Similarly, Iz D Iy ,

whence Ix D Iy . This shows that fIx j x 2 Gg is a collection of disjoint open intervals.

Claim 3: G D
[

x2G

Ix. Since Ix � G for each x 2 G, it follows that
[

x2G

Ix � G. On the other hand,

if x 2 G, then, since G is open, there is an open interval .a; b/ � G such that x 2 .a; b/ Since .a; b/ � Ix,

it follows that x 2 Ix, whence G �
[

x2G

Ix.

Claim 4: We can replace the intervals Ix by a countable collection of disjoint intervals. For each

x 2 G, ˛x < x < ˇx. Since rationals are dense in reals, there are rational numbers rx and sx such that

˛x < rx < x < sx < ˇx for each x 2 G. Thus,

x 2 .rx ; sx/ � .˛x ; ˇx/ D Ix for each x 2 G:

It now follows that

G �
[

x2G

.rx ; sx/ �
[

x2G

Ix D G:

That is, G D
[

x2G

.rx ; sx/. The intervals f.rx ; sx/ j x 2 Gg are clearly disjoint.

Conversely, assume that G is a countable union of disjoint open intervals. Since an open interval is an

open set and an arbitrary union of open sets is open, it follows that G is also open. �

3.2.9 Definition

Let S be a subset of R, and x 2 R. Then
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(a) x 2 S is called an interior point of S if there is an � > 0 such that .x � �; x C �/ � S . The set of

all interior points of a set S is denoted by Sı or int.S/.

(b) x is called a boundary point of S if for every � > 0 the interval .x � �; x C �/ contains points of S

as well as points of R n S . The set of boundary points of S is denoted by @S or bd.S/.

(c) x 2 S is called an isolated point of S if there exists an � > 0 such that .x � �; x C �/ \ S D fxg.

It is clear from the definition that each point of an open set S is an interior point of S . Also, every

isolated point of a set S is a boundary point of S .

3.2.10 Examples

[1] Let S D fx 2 R W 0 � x < 1 g. Then So D fx 2 R W 0 < x < 1 g, @S D f0; 1g. S does not

have isolated points.

[2] Let S D
�

1

n
W n 2 N

�

. Then each point of S is an isolated point of S . Therefore S � @S .

[3] Let S D
�

1;
1

2
;
1

3
; : : : ; 0

�

. Then @S D S .

[4] The set N of natural numbers consists of isolated points only. Therefore, every point of N is

a boundary point. Clearly, Nı D ;.

[5] Zı D ;, and Rı D R.

[6] Each set with only finitely many elements consists entirely of isolated points.

The following Theorem asserts that elements of a set S � R can be divided into two groups: those that

are interior to the set and those that are on the boundary of the set S .

3.2.11 Theorem

Let S � R. Then each point of S is either an interior point of S or is a boundary point of S .

�Let s 2 S . If s is not an interior point of S , then for each � > 0 the interval .s � �; s C �/ contains a

point inRnS . Since .s ��; s C�/ already contains a point s of the set S , we have that this interval contains

a point in S as well as a point in R n S . Hence s is a boundary point of S . �

3.2.12 Definition

A subset S of R is said to be closed if its complement R n S is open.

3.2.13 Examples

[1] The interval Œa; b� is closed since its complement .�1; a/ [ .b; 1/ is open.

[2] The sets R and ; are closed.

[3] The set Q of rational numbers is not closed.

[4] The set R nQ of irrational numbers is not closed.

[5] The set f1; 3; 4; 7 g is closed since its complement .�1; 1/ [ .1; 3/ [ .3; 4/ [ .4; 7/ [ .7; 1/

is open.
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[6] The set S D
�

1

n
W n 2 N

�

[ f0g is closed since its complement

.�1; 0/ [
" 1
[

kD1

�
1

k C 1
;

1

k

�
#

[ .1; 1/

is open.

3.2.14 Definition

Let S be a subset of R.

(1) A point x 2 R is an accumulation point of S if for every � > 0 there exists an element s 2 S such

that 0 < jx � sj < �; i.e., Œ .x � �; x/ [ .x; x C �/ � \ S 6D ;. In other words, x is an accumulation

point of S if every deleted �-neighbourhood N �.x; �/ of x contains a point of S .

The set of all accumulation points of S is called the derived set of S and is denoted by S 0.

(2) S is said to be dense in itself if S � S 0.

(3) S is called perfect if S D S 0.

(4) The closure of S is the set S D S [ S 0.

3.2.15 Remarks

(1) An accumulation point of a set S need not be an element of S .

(2) A real number x is an accumulation point of a set S � R if for each � > 0 the interval

.x � �; x C �/ contains infinitely many elements of S . Indeed, if x is an accumulation point

of S then, for any � > 0, there exists an element s1 2 S with s1 6D x, such that 0 <

jx � s1j < �. Taking �1 D jx � s1j, there exists an element s2 2 S with s2 6D x, such that

0 < jx � s2j < �1 < �. Taking �2 D jx � s2j, there exists s3 2 S with s3 6D x such that
0 < jx � s3j < �2 < �. Continuing in this way we obtain a sequence .sn/ with the property

that sn 6D x and jsn � xj < � for all n.

[1] Elements of a set S � R can be divided into two groups: isolated points = those points that

can be separated from the rest of the set with an open interval, and accumulation points =

those points that cannot be separated from the rest of the set with an open interval.

3.2.16 Examples

[1] Let S D fx 2 R W 0 < x � 1 g. Then S 0 D fx 2 R W 0 � x � 1 g. Therefore S D S [S 0 D S 0.

[2] If S D fx 2 R W a � x � b g, then S 0 D S . Therefore S D S .

[3] If S D
�

1

n
W n 2 N

�

, then S 0 D f0g. Indeed, if � > 0, then there is an m 2 N such that

0 < 1
m

< �. Therefore �� < 1
m

< �; i.e., 1
m

2 .��; �/. Since 1
m

2 S , it follows that for each

� > 0, N �.0; �/ \ S 6D ;. Also S D S [ S 0 D
n

1
n

W n 2 N
o

[ f0g. Note that 0 62 S .

[4] Every real number is an accumulation point of the setQ of rational numbers; that is, Q0 D R.
Indeed, if x 2 R and � > 0, then the interval .x � �; x C �/ contains infinitely many rational

numbers. It now follows that Q D Q [Q0 D Q[R D R.

[5] If Z is the set of integers, then Z0 D ;. Indeed, for any x 2 R we can find an � > 0 small

enough such that .x � �; x C �/ contains no integer, except possibly when x is itself an

integer. It thus follows that Z D Z [ Z0 D Z [ ; D Z.

44



2009 REAL ANALYSIS

[6] A finite set has no accumulation points. Indeed, if S D f s1; s2; : : : ; sn g, and x 2 R, then
taking � D minf jsj � xj; j D 1; 2; : : : ; n g, we have that � > 0 and

Œ .x � �; x/ [ .x; x C �/ � \ S D ;:

Thus S 0 D ;, and so S D S .

Another way of seeing that a finite set S has no accumulation points is simply that no �-

neighbourhood can contain infinitely many points of S since S is finite!

3.2.17 Theorem

Let S � R. Then S is closed if and only if S contains all its accumulation points.

�Suppose that S is closed and let x 2 S 0. We want to show that x 2 S . If x 62 S , then x 2 R n S .

Since S is closed, R n S is open. Therefore there exists an � > 0 such that .x � �; x C �/ � R n S . This

then implies that .x � �; x C �/ \ S D ;. But this contradicts the fact that x 2 S 0. Thus S 0 � S .

To prove the converse, assume that S 0 � S . We want to show that S is closed, or equivalently, that

R n S is open. To this end, let x 2 R n S . Then x 62 S 0, and so there is an � > 0 such that

Œ .x � �; x/ [ .x; x C �/ � \ S D ;:

Since x 62 S , we have that .x � �; x C �/ \ S D ;. Thus .x � �; x C �/ � R n S , whence R n S is open. �

3.2.18 Corollary

Let S � R. Then S is closed if and only if S D S .

�Assume that S is closed. Then, by Theorem 3.2.17, S 0 � S . Therefore S D S [ S 0 � S [ S D S .

But S � S [ S 0 D S . Thus S D S .

Conversely, assume that S D S . Then S 0 � S [ S 0 D S D S . Thus S contains all its accumulation

points and, consequently, S is closed. �

It follows from Theorem 3.2.17 that the sets Œa; b�; Z; S D
�

1;
1

2
;

1

3
;
1

4
; : : : ; 0

�

are all closed, as is

any finite set.

3.2.19 Theorem

If S � R is closed and bounded, then sup S and inf S belong to S .

�Let s D sup S . (sup S exists because S is bounded above.) Then, for any � > 0, there is an x
�

2 S

such that s � � < x
�

� s < s C �. If x
�

D s, then s 2 S and we are done. If x
�

< s, then 0 < js � x
�
j < �.

That is, for every � > 0, there is an x
�

2 S such that 0 < js � x
�
j < �. Thus s 2 S 0. Since S is closed,

s 2 S .

A similar argument shows that inf S 2 S . �

3.2.20 Exercise

[1] Let S D
�

n C
1

m
; n; m 2 Z; m > 0

�

. Find S 0.

[2] Let S and T be subsets of R.

(a) Show that if S � T , then S 0 � T 0.

(b) Show that if S � T , then S � T .

(c) Show that S is a closed subset of R.

(d) Show that if F is a closed subset of R and S � F , then S � F .

(e) Show that S D
T

fF � R j F is closed and S � Fg: Deduce that S is the smallest

closed set containing S .
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(f) Show that S D S .

(g) Show that .S [ T /0 D S 0 [ T 0. Deduce that S [ T D S [ T .

(h) Show that S \ T � S \ T .

(i) Is it true that S \ T D S \ T ?

[3] (a) Show that a union of a finite collection of closed sets in R is a closed set.

(b) Show that an intersection of an arbitrary collection of closed sets in R is a set.

[4] Let S be a subset of R.

(a) Show that S 0 is closed.

(b) Show that if S is bounded, then so is S 0.

(c) Show that if S is bounded, then so is S .

[5] Let S and T be subsets of R.

(a) Show that if S � T , then Sı � T ı.

(b) Show that T ı is an open subset of R.

(c) Show that T is open if and only if T D T ı.

(d) Show that if G is an open subset of R and G � T , then G � T ı.

(e) Show that T ı D
S

fG � R j G is open and G � T g: Deduce that T ı is the largest

open set contained in T .

(f) Show that T ıı D T ı.

(g) Show that .S \ T /ı D Sı \ T ı.

(h) Show that Sı [ T ı � .S [ T /ı.

(i) Is it true that .S [ T /ı D Sı [ T ı?

3.3 Compactness

3.3.1 Definition

An open cover of a set S � R is a collection G D fG˛ j ˛ 2 ƒg of open sets such that

S �
[

˛2ƒ

G˛ :

If G0 � G and G0 is also an open cover for S , then G0 is called a subcover for S . If, in addition, G0 has a

finite number of elements, then G0 is called a finite subcover of S .

3.3.2 Examples

[1] Let S D Œ0; 1/ and, for each n 2 N, let Gn D .�1; n/. Then G D fGn j n 2 Ng is an open
cover for S .

[2] Let S D Œ0; 1� and for each n 2 N, let An D .� 1
n
; 1 C 1

n
/. Then A D fAn j n 2 Ng is an open

cover for S .

[3] Let S D .0; 1/ and U D f.1
n
; 2/ j n 2 Ng. Then U is an open cover for S . Indeed, let x 2 .0; 1/.

Then, by the Archimedean Property, there is a natural number m such that 0 < 1
m

< x.

Therefore x 2 . 1
m

; 2/, whence, .0; 1/ �
[

n2N

.
1

n
; 2/.
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3.3.3 Definition

A subset S of R is said to be compact if every open cover for S has a finite subcover.

3.3.4 Examples

[1] A finite subset of R is compact. Indeed, let S D fx1; x2; : : : ; xng and let G D fG˛ j ˛ 2 ƒg be

an open cover for S . Then each xi belongs to some G˛i
in G. The set G0 D fG˛i

j 1 � i � ng
is a finite subcover for S .

[2] The set R of real numbers is not compact since the open cover C D f.�n; n/ j n 2 Ng of R
does not have a finite subcover.

3.3.5 Theorem

Let S be a compact subset of R. If F is a closed subset of S , then F is compact.

�Let U D fU˛ j ˛ 2 ƒg be an open cover for F . Then G D U [ fF cg is an open cover for S . Since S

is compact, the cover G is reducible to a finite subcover. That is, there are indices ˛1; ˛2; : : : ; ˛n such that

S �
n
[

iD1

U˛i
[ F c :

Since F � S and F \ F c D ;, it follows that F �
n
[

iD1

U˛i
. Hence F is compact. �

3.3.6 Theorem

Let a and b be real numbers such that �1 < a < b < 1. Then the interval Œa; b� is compact.

�Let U D fUi j i 2 I g be an open cover for the interval Œa; b� and let

A D fx 2 Œa; b� j Œa; x� has a finite subcover in Ug:

Clearly A 6D ; since a 2 A. Also, A is bounded above as x � b for all x 2 A. By the Completeness

Axiom, sup A exists. Let c D sup A. Then a � c � b.

Claim 1: The element c belongs to A.

Proof of Claim 1: Since U is an open cover for the interval Œa; b�, there is an index i0 such that c 2 Ui0 .

Then, since Ui0 is open, there is an � > 0 such that .c � �; c C �/ � Ui0 . In particular, .c � �; c� � Ui0 .

By characterization of the supremum, there is an element x� 2 A such that c � � < x� � c. Therefore

a � x� � c and so the interval Œa; c� D Œa; x�� [ Œx�; c� has a finite subcover in U . [The interval Œa; x�� is

finitely covered in U since x� 2 A. The interval Œx�; c� is covered by the set Ui0 .] It now follows that c 2 A.

Claim 2: c D b.

Proof of Claim 2: If c < b, then, since U is an open cover for Œa; b�, there is a Ui0 in U such that c 2 U .

Since U is open, there is a ı > 0 such that .c � ı; c C ı/ � Ui0 . Choose ı > ı0 > 0 small enough such

that Œc; c C ı0� � Ui0 and c C ı0 < b. Then c C ı0 2 Œa; b� and Œa; c C ı0� D Œa; c� [ Œc; c C ı0� has a finite

subcover in U . [The interval Œa; c� is finitely covered in U since c 2 A and the interval Œc; c C ı0� is covered

by the open set Ui0 2 U .] This shows that c C ı0 is in A. But this contradicts the fact that c is the supremum

of A. Hence, c D b.

By definition of the set A, we conclude that Œa; b� can be covered by finitely many elements of U . That

is, Œa; b� is compact. �

3.3.7 Theorem

(Heine-Borel Theorem). A subset K of R is compact if and only if K is closed and bounded.

Assume that K is compact. We show that K is closed and bounded.

Closedness of K: It suffices to show that the complement, R n K, of K is open. To that end, let

x0 2 R n K and for each k 2 N, let

Uk D fx 2 R j jx � x0j >
1

k
g D .�1; x0 � 1

k
/ [ .x0 C 1

k
; 1/:
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Then

1
[

kD1

Uk D R n fx0g and U D fUk j k 2 Ng is an open cover for K. Since K is compact, this cover of

K is reducible to a finite subcover. That is, there are indices k1; k2; : : : ; kn such that K �
n
[

jD1

Ukj
. Let

k
max

D maxfk1; k2; : : : ; kng. Then

K �
n[

jD1

Ukj
D .�1; x0 � 1

k
max

/ [ .x0 C 1

k
max

; 1/ D fx 2 R j jx � x0j >
1

k
max

g:

Hence,

fx 2 R j jx � x0j <
1

k
max

g � fx 2 R j jx � x0j � 1

k
max

g � R n K;

whence R n K is open and so K is closed.

Boundedness of K: Let U D f.�k; k/ j k 2 Ng. Then U is an open cover for K. Indeed,

K � R D
[

k2N

.�k; k/:

Since K is compact, there are natural numbers k1; k2; : : : ; kn such that K �
n
[

jD1

.�kj ; kj /. Let kmax D

maxfk1; k2; : : : ; kng. Then

K �
n
[

jD1

.�kj ; kj/ D .�k
max

; k
max

/:

It now follows that K is bounded since it is contained in the bounded interval .�kmax ; kmax/:

Conversely, assume that K is a closed and bounded subset of R. Then there are real numbers a and b

such that K � Œa; b�. It now follows from Theorem 3.3.6 and Theorem 3.3.5 that K is compact. �

We now apply the Heine-Borel Theorem to prove another important result: the Bolzano-Weierstrass

Theorem (for sets).

3.3.8 Theorem

(Bolzano-Weierstrass Theorem for sets). Every bounded infinite set of real numbers has at least one

accumulation point.

�Let S be a bounded infinite set of real numbers. Suppose that S has no accumulation points. That is,

the derived set of S , S 0, is empty. Therefore S D S [ S 0 D S , and so S is closed. Thus S is a closed

and bounded subset of R. By the Heine-Borel Theorem (Theorem 3.3.7), S is compact. Since S has no

accumulation points, given any x 2 S , there is an � > 0 such that S \ N.x; �/ D fxg. Therefore, the

collection fN.x; �/ j x 2 S; � > 0g is an open cover for S . Since S is compact, there exist x1; x2; : : : ; xn

in S and positive numbers �1; �2; : : : ; �n such that S �
n
[

kD1

N.xk ; �k/. But then

S D S \
n
[

kD1

N.xk ; �k / D
n
[

kD1

.S \ N.xk ; �k// D
n
[

kD1

fxkg D fx1; x2; : : : ; xng:

That is, S D fx1; x2; : : : ; xng, a finite set. This is a contradiction since S has infinitely many points. �

3.3.9 Exercise

[1] We showed in Theorem 3.3.5 that a closed subset F of a compact set K is compact. Supply

another proof to this statement by using the Heine-Borel Theorem.
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[2] Show that the interval .0; 1/ is not compact by

(a) showing that U D f.1
n
; 2/ j n 2 Ng is an open cover for .0; 1/ with no finite subcover.

(b) using the Heine-Borel Theorem.

[3] Show that the interval Œ0; 1/ is not compact by

(a) showing that G D f.�1; n/ j n 2 Ng is an open cover for Œ0; 1/ with no finite subcover.

(b) using the Heine-Borel Theorem.

[4] Show that the set N is not compact by

(a) finding an open cover for N that has no finite subcover.

(b) using the Heine-Borel Theorem.

[5] Show that if F is closed and K compact, then F \ K is compact by

(a) using the definition of compactness.

(b) applying the Heine-Borel Theorem.

[6] Show that an arbitrary intersection of compact subsets of R is compact.

[7] Show that if A and B are compact subsets of R then so is A [ B by

(a) using the definition of compactness.

(b) applying the Heine-Borel Theorem.

[8] Find an infinite collection fKn j n 2 Ng of compact sets in R such that
[

n2N

Kn is not compact.

This shows that an arbitrary union of compact sets is not compact.

[9] Show that a subset K of R is compact if and only of every infinite subset of K has an

accumulation point in K.
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Chapter 4

Sequences of Real Numbers

4.1 Introduction

In this chapter we study convergence of sequences of real numbers. We prove, among others, the Mono-

tone Convergence Theorem, the Bolzano-Weierstrass Theorem for sequences, and the Cauchy Criterion for

sequences of real numbers.

4.1.1 Definition

A sequence is a function whose domain is the set N of natural numbers. If f is such a sequence, let

f .n/ D xn denote the value of the function f at n 2 N. In this case, we denote the sequence f by .xn/1nD1

(or simply by .xn/).

4.1.2 Examples

[1]

�
n

n C 1

�

is the sequence .1
2
; 2

3
; 3

4
; : : :/.

[2] . .�1/n / is the sequence .�1; 1; �1; : : :/.

[3] . 2n / is the sequence .2; 4; 8; : : :/.

Sequences are also frequently specified by giving a recursion formula. For example, if xnC2 D xn C xnC1

3
,

where x1 D 0 and x2 D 1, then the terms of the sequence .xn/ are: .0; 1; 1
3
; 4

9
; 7

27
; : : :/.

4.1.3 Remarks

[1] The order of the terms of a sequence is an important part in the definition of a sequence.

For example, the sequence .1; 5; 7; : : :/ is not the same as the sequence .1; 7; 5; : : :/.

[2] There is a distinction between the terms of a sequence and the values of a sequence. A
sequence has infinitely many terms while its values may or may not be finite.

[3] It is not necessary for the terms of a sequence to be different. For example, .1; 2; 2; 2; : : : /

is a perfectly good sequence.

4.1.4 Exercise

Write down the first five terms of each of the following sequences.

(i)

�
n2 C 2n

3n

�

(ii)
�cos n�

n2

�

(iii)

�
1p
n

�

(iv)
�

sin
n�

2

�

:

4.1.5 Definition

A sequence .xn/ is said to be

[1] bounded above if there is a real number K such that xn � K for all n 2 N;
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[2] bounded below if there is a real number k such that k � xn for all n 2 N;

[3] bounded if it is bounded above and bounded below; otherwise it is unbounded.

It is easy to see that a sequence .xn/n is bounded if and only if there is a positive real number M such

that jxnj � M for all n 2 N.

4.1.6 Examples

[1] The sequence

�
1

n

�

is bounded since 0 <
1

n
� 1 for all n 2 N.

[2] The sequence

�

n C 1

n

�

is bounded below by 2 but is not bounded above.

[3] The sequence ..�1/nn/ is not bounded above and it is not bounded below.

4.1.7 Definition

[1] A sequence .xn/ is said to converge to a real number ` if, given � > 0, there exists a natural number

N (which depends on �) such that

jxn � ` j < � for all n � N:

Symbolically,

.8� > 0/.9N 2 N/Œ.8n � N / ) jxn � `j < ��:

If .xn/ converges to `, then we say that ` is the limit of the sequence .xn/ as n increases without

bound, and we write

lim
n!1

xn D ` or xn ! ` as n ! 1:

[2] If the sequence .xn/ does not converge to a real number, we say that it diverges.

[3] A sequence .xn/ is said to diverge to 1, denoted by xn ! 1 as n ! 1, if for any positive real

number M , there is an N 2 N such that

xn > M for all n � N:

Similarly, .xn/ diverges to �1, denoted by xn ! �1 as n ! 1, if for any negative real number

K, there is an N 2 N such that

xn < K for all n � N:

It is clear from the definition that convergence or divergence of a sequence is about the behaviour of

the ‘tail-end’ of a sequence. Therefore, altering a finite number of terms of a sequence does not affect its

convergence or divergence.

4.1.8 Examples

[1] Show that a sequence .xn/ converges to zero if and only if the sequence .jxnj/ converges

to zero.

Solution: Assume that the sequence .xn/ converges to zero. Then, given � > 0, there exists

a natural number N (which depends on �) such that

jxn � 0 j D jxnj < � for all n � N:

Now, for all n � N , we have
jjxnj � 0j D jxnj < �:

That is, the sequence .jxnj/ converges to zero.
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For the converse, assume that the sequence .jxnj/ converges to zero. That is, given � > 0,
there exists a natural number N (which depends on �) such that

jjxnj � 0 j D jxnj < � for all n � N:

It now follows that the sequence .xn/ converges to zero.

[2] Show that lim
n!1

1

n
D 0.

Solution: Let � > 0 be given. We must find an N 2 N such that

ˇ
ˇ
ˇ
ˇ

1

n
� 0

ˇ
ˇ
ˇ
ˇ

< � for all n � N:

By the Archimedean Property, there is an N 2 N such that 0 < 1
N

< �. Thus, if n � N , then

we have that ˇ
ˇ
ˇ
ˇ

1

n
� 0

ˇ
ˇ
ˇ
ˇ

D 1

n
� 1

N
< �:

That is, lim
n!1

1

n
D 0.

[3] Show that lim
n!1

�

1 � 1

2n

�

D 1.

Solution: Let � > 0 be given. We need to find an N 2 N such that

ˇ
ˇ
ˇ
ˇ

�

1 � 1

2n

�

� 1

ˇ
ˇ
ˇ
ˇ

< � for all n � N:

Noting that
ˇ
ˇ
ˇ
ˇ

�

1 � 1

2n

�

� 1

ˇ
ˇ
ˇ
ˇ

D 1

2n
D 1

.1 C 1/n
; and

.1 C 1/n D
n
X

kD0

�
n

k

�

D
�

n

0

�

C
�

n

1

�

C
�

n

2

�

C � � � C
�

n

n

�

�
�

n

0

�

C
�

n

1

�

D 1 C n;

we have that
1

2n
D 1

.1 C 1/n
� 1

n C 1
<

1

n
:

Now, by the Archimedean Property, there is an N 2 N such that 0 < 1
N

< �. Therefore, for

all n � N we have ˇ
ˇ
ˇ
ˇ

�

1 � 1

2n

�

� 1

ˇ
ˇ
ˇ
ˇ

D 1

2n
<

1

n
� 1

N
< �:

Thus, lim
n!1

�

1 � 1

2n

�

D 1.

[4] Find lim
n!1

n

n2 � 2
.

Solution: By trying a few values of n, we conjecture that lim
n!1

n

n2 � 2
D 0. Let us prove this

conjecture. Let � > 0 be given. We need to find an N 2 N such that

ˇ
ˇ
ˇ

n

n2 � 2
� 0

ˇ
ˇ
ˇ < � for all n � N:
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We first note that ˇ
ˇ
ˇ

n

n2 � 2

ˇ
ˇ
ˇ D n

jn2 � 2j
:

If we take N � 2, then for all n � N , we have that

n

jn2 � 2j D
n

n2 � 2
D

1

n � 2
n

<
1

n � 1
�

1

N � 1
:

If we can choose N so that N � 2 and 1
N�1

< �, then we are done. That is, we need to

choose N so that N � 2 and N > 1 C 1

�
. Choose N > max

�

2; 1 C 1

�

�

. Then, by working

backwards, we have that ˇ
ˇ
ˇ

n

n2 � 2
� 0

ˇ
ˇ
ˇ < � for all n � N:

[5] Show that the sequence ..�1/n / diverges.

Solution: Assume that this sequence converges to some real number `. Then, with � D 1

2
,

there is an N 2 N such that

j.�1/n � ` j <
1

2
for all n � N:

In particular,

j.�1/nC1 � ` j <
1

2
:

Therefore, for all n � N ,

2 D j.�1/n � .�1/nC1 j � j.�1/n � ` j C j` � .�1/nC1 j <
1

2
C 1

2
D 1;

which is absurd.

[6] Show that the sequence .1 C .�1/n / diverges.

Solution: Assume that this sequence converges to some real number `. Then, with � D 1,
there exists a number N 2 N such that

j.1 C .�1/n/ � ` j < 1 for all n � N:

Now, if n � N is odd, then we have

j.1 C .�1/n/ � ` j D j`j < 1; whence � 1 < ` < 1;

and if n � N is even, we have that

j.1 C .�1/n/ � ` j D j2 � `j < 1; whence 1 < ` < 3:

But this is impossible.

[7] Show that if x 2 R and jxj < 1, then lim
n!1

xn D 0.

Solution: If x D 0, then there is nothing to prove. Assume that x 6D 0. Since jxj < 1, we

have that
1

jxj > 1. Thus, there is a positive real number a such that

1

jxj D 1 C a:
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Let � > 0 be given. We want to find an N 2 N such that

jxn � 0j < � for all n � N:

Now,
1

jxj D 1 C a ) jxnj D jxjn D 1

.1 C a/n
:

Using the binomial theorem, we have that

.1 C a/n D
n
X

kD0

�
n

k

�

ak D 1 C na C n.n � 1/a2

2
C � � � C an > na;

and consequently,

jxnj D 1

.1 C a/n
<

1

na
:

If we can find an N 2 N such that
1

na
< � for all n � N , then we are done. Since a� > 0, we

have, by the Archimedean Property, that there is an N 2 N such that
1

N
< a�. Hence, for all

n � N , we have that
1

n
� 1

N
) 1

na
� 1

Na
< �;

and so jxnj < �:

[8] Suppose that .xn/ is a sequence such that xn > 0 for all n 2 N. Show that xn ! 1 as

n ! 1 if and only if lim
n!1

1

xn

D 0.

Solution: By definition, xn ! 1 as n ! 1, if and only if for any � > 0 there is an N 2 N
such that

xn >
1

�
for all n � N:

This is equivalent to the statement that

1

xn

< � for all n � N; which, in turn, is equivalent to lim
n!1

1

xn

D 0:

4.1.9 Theorem

Let .sn/ and .tn/ be sequences of real numbers and let s 2 R. If for some positive real number k and some

N1 2 N, we have

jsn � sj � kjtnj for all n � N1

and if lim
n!1

tn D 0, then lim
n!1

sn D s.

�Let � > 0 be given. Since tn ! 0 as n ! 1, there exists an N2 2 N such that

jtnj <
�

k
for all n � N2:

Let N D maxfN1; N2g. Then for all n � N we have

jsn � sj � kjtnj <
�

k
� k D �:

That is, lim
n!1

sn D s. �
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4.1.10 Example

Show that lim
n!1

n
p

n D 1.

Solution: Since n
p

n � 1 for each n 2 N, there is a nonnegative real number an such that

n
p

n D 1 C an:

Thus, by the binomial theorem, we have

n D .1 C an/n D
n
X

kD0

�
n

k

�

ak
n D 1 C nan C n.n � 1/a2

n

2
C � � � C an

n � 1 C n.n � 1/a2
n

2
:

Therefore,

n � 1 � n.n � 1/a2
n

2
; whence a2

n � 2

n
; or an �

r

2

n
for all n � 2:

Now, since
ˇ
ˇ n
p

n � 1
ˇ
ˇ D janj D an �

r

2

n

and lim
n!1

r

2

n
D 0, we have, by Theorem 4.1.9, that lim

n!1
n
p

n D 1. �

The next theorem says that a convergent sequence has only one limit. It is therefore unambiguous to

talk of the limit of a convergent sequence.

4.1.11 Theorem

Let .sn/ be a sequence of real numbers. If lim
n!1

sn D `1 and lim
n!1

sn D `2, then `1 D `2.

�Let � > 0 be given. Then there exist natural numbers N1 and N2 such that

jsn � `1j <
�

2
for all n � N1; and

jsn � `2j <
�

2
for all n � N2:

Let N D maxfN1; N2g. Then for all n � N we have that

j`1 � `2j D j.sn � `2/ C .`1 � sn/j � jsn � `2j C jsn � `1j <
�

2
C �

2
D �:

Since � > 0 is arbitrary, we have that `1 D `2. �

4.1.12 Proposition

A sequence .xn/ converges to ` 2 R if and only if for each � > 0, the set fn j xn 62 .` � �; ` C �/g is finite.

�Assume that the sequence .xn/ converges to `. Then, given � > 0, there is a natural number N such

that, for all n � N ,

jxn � `j < � ” fxn j n � N g � .` � �; ` C �/:

It now follows that fn 2 N j xn 62 .` � �; ` C �/g � f1; 2; : : : ; N � 1g; a finite set.

Conversely, let � > 0 be given and assume that the set fn 2 N j xn 62 .` � �; ` C �/g is finite. Let

N D maxfn 2 N j xn 62 .` � �; ` C �/g C 1. If n � N , then

xn 2 .` � �; ` C �/ ” jxn � `j < �;

and so xn ! ` as n ! 1. �
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4.1.13 Theorem

Every convergent sequence of real numbers is bounded.

�Let .sn/ be a sequence of real numbers which converges to s, say. Then, with � D 1, there exists an

N 2 N such that

jsn � sj < 1 for all n � N:

By the triangle inequality, we have that

jsnj � jsn � sj C jsj < 1 C jsj for all n � N:

Let M D maxfjs1j; js2j; : : : ; jsN j; jsj C 1 g. Then jsnj � M for all n 2 N. That is, the sequence .sn/ is

bounded. �

The converse of Theorem 4.1.13 is not necessarily true. That is, there are sequences which are bounded

but do not converge. One such example is the sequence ..�1/n/. We shall however see later that every

bounded sequence which is monotone will always converge.

4.1.14 Exercise

[1] Show that if sn ! s, then jsnj ! jsj. Does the converse hold?

[2] Show that if .sn/ and .tn/ are sequences with lim
n!1

sn D s and lim
n!1

tn D t and if sn � tn for all

n 2 N, then s � t .

[3] Let .sn/ and .tn/ be sequences such that .sn/ is bounded and lim
n!1

tn D 0. Show that

lim
n!1

sntn D 0.

[4] Which of the following sequences are bounded?

(i)

�
n

n C 4

�

(ii)

�
n2 C n � 4

n C 5

�

(iii)

�

1 �
1

2n

�

(iv) .1 C .�1/n/

(v)
�

n
p

n
�

(vi)

�
1 C .�1/n

n

�

(vii)

�
1 C 2n

2n

�

:

4.1.15 Theorem

(Squeeze Theorem). Suppose that .sn/ ; .tn/ and .un/ are sequences such that sn � tn � un for all

n 2 N. If lim
n!1

sn D ` D lim
n!1

un, then lim
n!1

tn D `.

�Let � > 0 be given. Then there exist N1 and N2 in N such that

jsn � `j < � for all n � N1 and

jun � ` j < � for all n � N2:

That is,

` � � < sn < ` C � for all n � N1 and

` � � < un < ` C � for all n � N2:

Let N D maxfN1; N2g. Then for all n � N , we have

` � � < sn � tn � un < ` C �;

and consequently,

jtn � `j < � for all n � N:

That is, lim
n!1

tn D `. �
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4.1.16 Examples

[1] Show that lim
n!1

cos n�
2

n2
D 0.

Solution: Since

0 �
ˇ
ˇ
ˇ
ˇ

cos n�
2

n2
� 0

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

cos n�
2

n2

ˇ
ˇ
ˇ
ˇ

� 1 � 1

n2
; and lim

n!1

1

n2
D 0;

it follows that lim
n!1

cos n�
2

n2
D 0. �

[2] Show that for any x, with jxj < 1, lim
n!1

nxn D 0.

Solution: Without loss of generality, we assume that x 6D 0 and n > 1. Since jxj < 1, there

there is a positive real number a such that

1

jxj
D 1 C a:

Then
1

jxnj D .1 C a/n D
n
X

rD0

�
n

r

�

ar �
n.n � 1/

2
a2

for some a > 0. Thus,

jxnj � 2

n.n � 1/a2

) jnxnj �
2

.n � 1/a2

) �2

.n � 1/a2
� nxn � 2

.n � 1/a2
:

Since

lim
n!1

�2

.n � 1/a2
D 0 D lim

n!1

2

.n � 1/a2
;

we have, by the Squeeze Theorem, that

lim
n!1

nxn D 0:

[3] Show that for any x 2 R, lim
n!1

xn

n!
D 0.

Solution: Let N be the first integer greater than jxj. Then, if n � N ,

ˇ
ˇ
ˇ
ˇ

xn

n!

ˇ
ˇ
ˇ
ˇ

D jxjn
n!

D jxjN�1jxjn�NC1

.N � 1/!N.N C 1/ � � � n D jxjN�1

.N � 1/!
� jxjn�NC1

N.N C 1/ � � � n :

Let K D jxjN�1

.N � 1/!
. Then K is a constant which is independent of n. Thus,

ˇ
ˇ
ˇ
ˇ

xn

n!

ˇ
ˇ
ˇ
ˇ

D K � jxjn�NC1

N.N C 1/ � � � n
< K � jxjn�NC1

N � N � N � � � N
D K �

� jxj
N

�n�NC1

;

whence

�K

� jxj
N

�n�NC1

<
xn

n!
< K

� jxj
N

�n�NC1

:
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Since
jxj
N

< 1 and n � N C 1 ! 1 as n ! 1, it follows that

lim
n!1

� jxj
N

�n�NC1

D 0;

and consequently,

lim
n!1

xn

n!
D 0: �

4.1.17 Exercise

[1] Show that lim
n!1

n

2n
D 0.

[2] Show that lim
n!1

1

n!
D 0.

4.1.18 Theorem

Let S be a subset of R which is bounded above. Then there exists a sequence .sn/ in S such that

lim
n!1

sn D sup S:

�Let c D sup S . By the characterisation of supremum (Theorem 3.1.9), for each n 2 N there exists

sn 2 S such that

c �
1

n
< sn � c:

Since lim
n!1

�

c � 1

n

�

D c D lim
n!1

c, we have, by the Squeeze Theorem, that

lim
n!1

sn D c D sup S: �

4.2 Algebra of Limits

The following lemma asserts that if the sequence .tn/ converges to t 6D 0, then the sequence .tn/ is “bounded

away from zero”.

4.2.1 Lemma

If the sequence .tn/ converges to t 6D 0, then there is an N 2 N such that jtnj >
jt j
2

for all n � N .

�Since t 6D 0; jt j > 0. Let � D jt j
2

. Then there exists an N 2 N such that

jtn � t j < � for all n � N:

Thus,

jtnj D jt � .t � tn/j � jt j � jt � tnj > jt j � jt j
2

D jt j
2

for all n � N:

4.2.2 Theorem

Let .sn/ and .tn/ be sequences of real numbers which converge to s and t respectively. Then
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(i) lim
n!1

.sn C tn/ D s C t .

(ii) lim
n!1

sntn D st .

(iii) lim
n!1

sn

tn
D s

t
if tn 6D 0 for all n 2 N and t 6D 0.

�

(i) Let � > 0 be given. Then there exist N1 and N2 in N such that

jsn � sj <
�

2
for all n � N1 and

jtn � t j <
�

2
for all n � N2:

Let N D maxfN1; N2g. Then for all n � N , we have

j.sn C tn/ � .s C t/j D j.sn � s/ C .tn � t/j
� jsn � sj C jtn � t j <

�

2
C �

2
D � :

Hence, lim
n!1

.sn C tn/ D s C t .

(ii) Let � > 0 be given. Now,

jsntn � st j D jsntn � stn C stn � st j D j.sn � s/tn C .tn � t/sj
� jsn � sjjtnj C jtn � t jjsj :

Since .tn/ is convergent, it is bounded. Therefore there is a positive real number K such that

jtnj � K for all n 2 N:

Thus,

jsntn � st j � jsn � sjjtnj C jtn � t jjsj � jsn � sjK C jtn � t jjsj :

Let M D maxfK; jsjg. Then

jsntn � st j � M.jsn � sj C jtn � t j/:

Since sn ! s and tn ! t as n ! 1, there exist N1 and N2 in N such that

jsn � sj <
�

2.M C 1/
for all n � N1 and

jtn � t j <
�

2.M C 1/
for all n � N2:

Let N D maxfN1; N2g. Then for all n � N , we have

jsntn � st j � M.jsn � sj C jtn � t j/ < .M C 1/

�
�

2.M C 1/
C �

2.M C 1/

�

D � :

Hence, lim
n!1

sntn D st .
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(iii) It suffices to show that lim
n!1

1

tn
D 1

t
if tn 6D 0 for all n 2 N and t 6D 0. Once this has been shown we

can then apply (ii). By Lemma 4.2.1, there is an N1 2 N such that

jtnj >
jt j
2

for all n � N1:

Again, there exists an N2 2 N such that

jtn � t j <
�jt j2

2
for all n � N2:

Let N D maxfN1; N2g. Then for all n � N , we have

ˇ
ˇ
ˇ
ˇ

1

tn
� 1

t

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

t � tn

t tn

ˇ
ˇ
ˇ
ˇ

D jt � tnj
jt jjtnj <

2jt � tnj
jt j2

<
2

jt j2
� �jt j2

2
D �:

Hence, lim
n!1

1

tn
D 1

t
. �

4.2.3 Exercise

[1] Let .sn/ and .tn/ be sequences of real numbers. Prove or disprove the following statements.

(i) If .sn/ converges and .tn/ diverges, then the sequence .sn C tn/ diverges.

(ii) If both .sn/ and .tn/ diverge, then the sequence .sn C tn/ also diverges.

(iii) If both .sn/ and .tn/ diverge, then the sequence .sntn/ also diverges.

(iv) If both .sn/ and .tn/ diverge and tn 6D 0 for all n 2 N, then the sequence

�
sn

tn

�

diverges.

(v) If both .sn/ and .sntn/ converge, then the sequence .tn/ converges.

(vi) If both .sn/ and .sntn/ diverge, then the sequence .tn/ diverges.

[2] (a) Show that if the sequence .sn/ converges to s, then the sequence fs2
ng converges to s2.

(b) Use (a) and the fact that for all x; y 2 R, xy D 1

4
Œ.x C y/2 � .x � y/2� to give an alter-

native proof of Theorem 4.2.2(ii).

4.2.1 Monotone Sequences

4.2.4 Definition

Let .sn/ be a sequence of real numbers. We say that .sn/ is

(a) increasing if for each n 2 N, sn � snC1.

(b) strictly increasing if or each n 2 N, sn < snC1.

(c) decreasing if or each n 2 N, snC1 � sn.

(d) strictly decreasing if or each n 2 N, snC1 < sn.

(e) monotone if .sn/ is increasing or decreasing.

(f) strictly monotone if .sn/ is strictly increasing or strictly decreasing.
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4.2.5 Remark

An increasing sequence .sn/ is bounded below by s1; a decreasing sequence .tn/ is bounded

above by t1. It therefore follows that an increasing sequence is bounded if and only if it is bounded

above. Similarly, a decreasing sequence is bounded if and only if it is bounded below.

4.2.6 Examples

[1] The sequence .1; 1; 2; 3; 5; : : :/ is increasing.

[2] The sequence .3; 1; 0; 0; �3; �7; : : :/ is decreasing.

[3] The sequence
�

n2
�

is strictly increasing.

[4] The sequence .�n/ is strictly decreasing.

The regular behaviour of monotone sequences makes it easier to determine its convergence or diver-

gence.

4.2.7 Theorem

(Monotone Convergence Theorem). A monotone sequence converges if and only if it is bounded.

�We have already proved in Theorem 4.1.13 that if a sequence converges then it is bounded.

To prove the converse, let .sn/ be a bounded increasing sequence and let S D fsn j n 2 Ng. Since S is

bounded above, it has a supremum, sup S D s, say. We claim that lim
n!1

sn D s. Let � > 0 be given. By the

characterisation of supremum (Theorem 3.1.9), there exists sN 2 S such that

s � � < sN � sn � s < s C � for all n � N:

Thus, jsn � sj < � for all n � N .

The proof for the case when the sequence .sn/ is decreasing is similar. �

4.2.8 Examples

[1] Show that

�
n C 1

n

�

is a convergent sequence.

Solution: We show that the sequence

�
n C 1

n

�

is (1) monotone, and (2) bounded. Its

convergence will then follow from the Monotone Convergence Theorem (Theorem 4.2.7).

Monotonicity: Let sn D
n C 1

n
. Then

snC1

sn

D n C 2

n C 1
� n C 1

n
D n C 2

n C 1
� n

n C 1
D n2 C 2n

.n C 1/2

<
n2 C 2n C 1

.n C 1/2
D .n C 1/2

.n C 1/2
D 1:

Thus,

sn D n C 1

n
>

n C 2

n C 1
D snC1 for all n 2 N:

Therefore, the sequence

�
n C 1

n

�

is monotone decreasing.

Another proof of monotonicity: Consider f .x/ D x C 1

x
for all x 2 Œ1; 1/. Then,

f 0.x/ D x � .x C 1/

x2
D �1

x2
< 0 for all x 2 Œ1; 1/:
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Thus, f is decreasing on Œ1; 1/. Therefore

f .n/ > f .n C 1/ i.e.,
n C 1

n
>

n C 2

n C 1
for all n 2 N:

Boundedness:
n C 1

n
D 1 C 1

n
> 1 for all n 2 N:

Thus, the sequence

�
n C 1

n

�

is bounded below by 1. �

[2] Show that

��

1 C 1

n

�n �

is a convergent sequence.

Solution: We need an easy preliminary result:

r ! � 2r�1 for r � 2:

This follows from the fact that

r ! D 1 � 2 � 3 � 4 � 5 � � � r � 1 � 2 � 2 � 2 � 2 � � � 2 D 2r�1 for r � 2:

We establish the existence of the limit by showing that

(a)

�

1 C 1

n

�n

< 3 for each n 2 N (boundedness),

(b)

�

1 C 1

n

�n

<

�

1 C 1

n C 1

�nC1

for each n > 2 (monotonicity).

Now, by the binomial theorem,

�

1 C 1

n

�n

D
n
X

rD0

�
n

r

�
1

nr
D

n
X

rD0

n.n � 1/.n � 2/ � � � .n � r C 1/

r !

1

nr

D 1 C n

n
C

n
X

rD2

1

r !

�

1 � 1

n

��

1 � 2

n

�

� � �
�

1 � r � 1

n

�

I (*)

the first two terms correspond to r D 0 and r D 1, respectively. Then we obtain (a) from (*)

by noting that
�

1 C
1

n

�n

< 2 C
n
X

rD2

1

r !
< 2 C

n
X

rD2

1

2r�1

and so
�

1 C 1

n

�n

< 2 C
1
2
.1 � 1

2n�1 /

1 � 1
2

< 3:

We obtain (b) from (*) by noting that if we replace n by n C 1, each of the brackets in (*)

becomes bigger, so that each of the terms under the
P

sign becomes bigger; and there is

also one more positive term in the series. That’s all we want! �

(The limit that the sequence

��

1 C 1

n

�n�

converges to is denoted by the letter e.)
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4.2.9 Theorem

(Nested Intervals Theorem). For each n 2 N, let In D Œan; bn�, where �1 < an < bn < 1. If

InC1 � In for each n 2 N and lim
n!1

.bn � an/ D 0, then

1\

nD1

In consists of exactly one point.

�Since InC1 � In, we have that an � anC1 � bnC1 � bn for all n 2 N. Thus, .an/ is an increasing

sequence of real numbers. Let A be the set of all endpoints an, i.e., A D fan W n 2 Ng.

Claim: ak � b` for all k; ` 2 N. Indeed, if k � `, then ak � a` � b`. On the other hand, if ` � k , then

ak � bk � b`.

It now follows that A is a nonempty set which is bounded above (by every bn). By the Completeness

Axiom, A has a supremum, a D sup A (say). Clearly, an � a � bn for all n 2 N. Hence a 2 In

for each n 2 N, and consequently, a 2
1\

nD1

In. We showed in the Monotone Convergence Theorem

(Theorem 4.2.7) that lim
n!1

an D a. Assume that b 2
T1

nD1 In. Then an � b � bn for all n 2 N, and

so 0 � b � an � bn � an for all n 2 N. Since lim
n!1

0 D 0 D lim
n!1

.bn � an/, we have, by the Squeeze

Theorem, that lim
n!1

.b � an/ D 0, whence lim
n!1

an D b. Thus, a D b. �

4.2.10 Remark

The Nested Intervals Theorem (Theorem 4.2.9) may fail for a decreasing sequence of open or half-

open intervals. For example, if In D
�

0;
1

n C 1

�

or In D Œn; 1/ for each n 2 N, then
T1

nD1 In D ;.

4.2.2 Subsequences

4.2.11 Definition

Let .sn/ be a sequence of real numbers and let .nk/k2N be a sequence of natural numbers such that n1 <

n2 < n3 < � � � . Then the sequence
�

snk

�

is called a subsequence of .sn/. That is, a subsequence
�

snk

�

of

the sequence .sn/ is a strictly increasing function � W k 7! snk
.

4.2.12 Example

Let .sn/ be the sequence
�

1; 2; 1
2
; 3; 1

3
; : : :

�

. Then
�

1; 1
2
; 1

3
; : : :

�

and
�

1; 2; 1
3
; : : :

�

are subsequences

of .sn/.

4.2.13 Theorem

Let .sn/ be a sequence which converges to s. Then any subsequence of .sn/ converges to s.

�Let
�

snk

�

be a subsequence of .sn/ and let � > 0 be given. Then there exists an N 2 N such that

jsn � s j < � for each n � N:

Thus, when k � N we have that nk � k � N and so

jsnk
� s j < � for all k � N:

That is, lim
k!1

snk
D s. �

Now we state and prove the version of the Bolzano-Weierstrass Theorem that applies to sequences.

Compare this with Theorem 3.3.8 (Bolzano-Weierstrass Theorem for sets).
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4.2.14 Theorem

(Bolzano-Weierstrass Theorem for sequences). Every bounded infinite sequence .sn/ of real numbers

has a convergent subsequence.

�Since .sn/ is bounded, there exists M > 0 such that jsnj < M for all n 2 N, i.e., �M < sn < M for

all n 2 N. If .sn/ has a finite range S D fsn W n 2 Ng, then there is (at least) one term of the sequence .sn/

which occurs infinitely many times in .sn/. Call this term x, and let

sn1
D sn2

D sn3
D � � � D x:

Therefore, there exists a strictly increasing sequence .nk/k of natural numbers such that snk
D x for all

k 2 N. Thus, fsnk
g is a subsequence of .sn/ which converges to x.

Now, suppose that S is infinite. Then either Œ�M; 0� or Œ0; M � contains sn for infinitely many n 2 N.

Call such an interval I1 D Œa1; b1�. Note that jI1j D jb1 � a1j D M . Now, bisect I1. One of the two

subintervals of I1 contains sn for infinitely many n 2 N. Call that subinterval I2 D Œa2; b2�. Clearly,

I1 � I2 and jI2j D jb2 � a2j D M
2

. Bisect I2. One of the two subintervals of I2 contains sn for infinitely

many n 2 N. Call that subinterval I3 D Œa3; b3�. Clearly, I1 � I2 � I3 and jI3j D jb3 � a3j D M

22 .

Continue in this manner to obtain a sequence of intervals I1; I2; I3; : : : with I1 � I2 � I3 � � � � and

jInj D jbn � anj D M

2n�1
! 0 as n ! 1:

By the Nested Intervals Theorem (Theorem 4.2.9), we have that
T1

nD1 In consists of exactly one point,

` say. We obtain a convergent subsequence as follows: choose sn1
2 I1. Next, choose sn2

2 I2 with

n2 > n1. Next, choose sn3
2 I3 with n3 > n2. Continue in this manner. (Such a selection is possible since

In contains infinitely many terms of the sequence .sn/.) Then
�

snk

�

is a subsequence of .sn/ with snk
2 Ik

for all k 2 N. Since ` is also in Ik , we have that

jsnk
� `j <

M

2k�1
! 0 as k ! 1:

That is, lim
k!1

snk
D `. �

4.2.3 Cauchy Sequences

4.2.15 Definition

A sequence .sn/ is called a Cauchy sequence if, given any � > 0, there exists an N 2 N such that

jsn � smj < � for all n; m � N:

Symbolically,

.8� > 0/.9N 2 N/.8n; m 2 N/Œ.n � N / ^ .m � N / ) .jxn � xmj < �/�:

Equivalently, .sn/ is a Cauchy sequence if lim
n;m!1

jsn � smj D 0.

4.2.16 Examples

[1] Show that the sequence .sn/, where sn D n C 1

n
, is a Cauchy sequence.

Solution: For all n; m 2 N,

jsn � smj D
ˇ
ˇ
ˇ
ˇ

�
n C 1

n

�

�
�

m C 1

m

�ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

mn C m � nm � n

nm

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
m � n

nm

ˇ
ˇ
ˇ � m C n

nm
:
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Therefore, if m � n, then

jsn � smj � m C n

nm
� 2m

nm
D 2

n
:

Let � > 0 be given. Then there is an N 2 N such that
1

N
<

�

2
. Thus, for all n � N , we have

jsn � smj D
ˇ
ˇ
ˇ
ˇ

�
n C 1

n

�

�
�

m C 1

m

�ˇ
ˇ
ˇ
ˇ

<
2

n
� 2

N
< �:

Hence .sn/ is a Cauchy sequence. �

[2] Show that the sequence .sn/, where sn D 1 � 1

2!
C � � � C .�1/nC1

n!
, is a Cauchy sequence.

Solution: For n; m 2 N with m � n, we have that

jsn � smj D
ˇ
ˇ
ˇ
ˇ

�

1 � 1

2!
C � � � C .�1/nC1

n!

�

�
�

1 � 1

2!
C � � � C .�1/mC1

m!

�ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

.�1/nC2

.n C 1/!
C .�1/nC3

.n C 2/!
C � � � C .�1/mC1

m!

ˇ
ˇ
ˇ
ˇ

� 1

.n C 1/!
C 1

.n C 2/!
C � � � C 1

m!

� 1

2n
C 1

2nC1
C � � � C 1

2m�1
D 1

2n

�

1 C 1

2
C � � � C 1

2m�n�1

�

D 2

2n

�

1 �
�

1

2

�m�n�

<
2

2n
D 1

2n�1
:

Since
1

2n�1
! 0 as n ! 1, given any � > 0 there is an N 2 N such that

1

2n�1
D
ˇ
ˇ
ˇ
ˇ

1

2n�1
� 0

ˇ
ˇ
ˇ
ˇ

< � for all n � N:

Thus,

jsn � smj D
ˇ
ˇ
ˇ
ˇ

�

1 � 1

2!
C � � � C .�1/nC1

n!

�

�
�

1 � 1

2!
C � � � C .�1/mC1

m!

�ˇ
ˇ
ˇ
ˇ

<
1

2n�1
< �

for all m � n � N . That is, .sn/ is a Cauchy sequence. �

4.2.17 Theorem

Every convergent sequence .sn/ is a Cauchy sequence.

�Assume that .sn/ converges to s. Then, given any � > 0, there exists an N 2 N such that

jsn � sj <
�

2
for all n � N:

Now, for all n; m � N , we have that

jsn � smj D j.sn � s/ C .s � sm/j � jsn � sj C js � smj <
�

2
C �

2
D �:

That is, .sn/ is a Cauchy sequence. �
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4.2.18 Theorem

Every Cauchy sequence .sn/ is bounded.

�Let � D 1. Then there exists an N 2 N such that

jsn � smj < 1 for all n; m � N:

Choose a k � N and observe that

jsnj D jsn � sk C sk j � jsn � sk j C jsk j < 1 C jsk j for all n � N:

Let M D maxfjs1j; js2j; : : : ; jsN j; jsk j C 1 g. Then jsnj � M for all n 2 N, and therefore .sn/ is

bounded. �

4.2.19 Theorem

Every Cauchy sequence .sn/ of real numbers converges.

�By Theorem 4.2.18, .sn/ is bounded, and therefore, by the Bolzano-Weierstrass Theorem (Theo-

rem 4.2.14), .sn/ has a subsequence fsnk
g which converges to some real number `. We claim that the

sequence .sn/ converges to `. Let � > 0 be given. Then there exist natural numbers N1 and N2 such that

jsn � smj <
�

2
for all n; m � N1 and

jsnk
� `j <

�

2
for all k � N2 :

Let N D maxfN1; N2g. Then for all n � N , we have

jsn � `j � jsn � snk
j C jsnk

� `j <
�

2
C �

2
D �:

Therefore, lim
n!1

sn D `. �

Combining Theorem 4.2.17 and Theorem 4.2.19, we get:

Cauchy’s Convergence Criterion for sequence: A sequence .sn/ of real numbers converges if and only if

it is a Cauchy sequence.

4.2.20 Examples

[1] Use Cauchy’s Criterion to show that the sequence

�
.�1/n

n

�

converges.

Solution: We must show that the sequence

�
.�1/n

n

�

is Cauchy. To that end, let � > 0 and

sn D .�1/n

n
. Then, for all n; m 2 N with m � n,

jsn � smj D
ˇ
ˇ
ˇ
ˇ

.�1/n

n
� .�1/m

m

ˇ
ˇ
ˇ
ˇ

� 1

n
C 1

m
� 1

n
C 1

n
D 2

n
:

Now, there is an N 2 N such that
2

N
< �. Thus, for all n � N , we have

jsn � smj D
ˇ
ˇ
ˇ
ˇ

.�1/n

n
� .�1/m

m

ˇ
ˇ
ˇ
ˇ

� 2

n
� 2

N
< �:

Thus,

�
.�1/n

n

�

is a Cauchy sequence. �
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[2] Show that the sequence .sn/, where sn D 1 C 1

2
C 1

3
C � � � C 1

n
, diverges.

Solution: It suffices to show that .sn/ is not a Cauchy sequence. Now, for n; m 2 N with

n > m, we have

jsn � smj D
ˇ
ˇ
ˇ
ˇ

�

1 C 1

2
C 1

3
C � � � C 1

n

�

�
�

1 C 1

2
C 1

3
C � � � C 1

m

�ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

1

m C 1
C 1

m C 2
C � � � C 1

n

ˇ
ˇ
ˇ
ˇ

D 1

m C 1
C 1

m C 2
C � � � C 1

n

>
1

n
C 1

n
C � � � C 1

n
„ ƒ‚ …

n�m terms

D n � m

n
:

In particular, if we take n D 2m, we get

jsn � smj D
ˇ
ˇ
ˇ
ˇ

�

1 C
1

2
C

1

3
C � � � C

1

n

�

�
�

1 C
1

2
C

1

3
C � � � C

1

m

�ˇ
ˇ
ˇ
ˇ

>
n � m

n
D

1

2
:

Thus, .sn/ is not Cauchy. �

4.2.21 Exercise

[1] Show that if a .xn/ contains two subsequences that converge to different limits, then .xn/

diverges.

[2] Show that every subsequence of a bounded sequence is bounded.

[3] Show that if .xn/ is a Cauchy sequence, then so is fjxnjg.

4.2.4 Limit Superior and Limit Inferior

Let .xn/ be a bounded sequence of real numbers and for each n 2 N, let

En D fxn; xnC1; : : :g D fxk j k � ng:

Then En is a bounded subset of R. Set

sn D inf En and Sn D sup En:

Clearly, Ej � Ei for all i; j 2 N such that i < j . In particular, EkC1 � Ek for each k 2 N. Therefore

sk � skC1 � SkC1 � Sk :

These inequalities show that .sn/ is a monotone increasing sequence of real numbers and .Sn/ is a monotone

decreasing sequence of real numbers. Note further that, for each k 2 N,

s1 � sk � skC1 � SkC1 � Sk � S1:

Therefore, the increasing sequence .sn/ is bounded above by S1 and the decreasing sequence .Sn/ is

bounded below by s1. In fact, for each n 2 N, Sn is a upper bound for the sequence .sn/ and for each

n 2 N, sn is a lower bound for the sequence .Sn/. Therefore, by the Monotone Convergence Theorem
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(Theorem 4.2.7), the sequence .sn/ converges to the supremum s D sup
n

sn and the sequence .Sn/ con-

verges to the infimum S D inf
n

Sn. That is,

s D lim
n!1

sn D lim
n!1

inf
k�n

xk D sup
n

sn and S D lim
n!1

Sn D lim
n!1

sup
k�n

xk D inf
n

Sn:

The number s is called the limit inferior of the sequence .xn/ and the number S is called the limit superior

of the sequence .xn/. We write

s D lim inf
n!1

xn and S D lim sup
n!1

xn:

We also use the notation lim
n!1

xn for the limit inferior and lim
n!1

xn for the limit superior.

4.2.22 Definition

Let .xn/ be a bounded sequence of real numbers. The limit inferior of the sequence .xn/, denoted by

lim inf
n!1

xn, is defined by

lim inf
n!1

xn D lim
n!1

�

inf
k�n

xk

�

D sup
n�1

�

inf
k�n

xk

�

:

Similarly, we define the limit superior of the sequence .xn/, denoted by lim sup
n!1

xn, as

lim sup
n!1

xn D lim
n!1

 

sup
k�n

xk

!

D inf
n�1

 

sup
k�n

xk

!

:

4.2.23 Examples

[1] Consider the sequence .xn/, where, for each n 2 N, xn D .�1/n. Then

inf
k�n

xk D inf
k�n

.�1/k D �1 and sup
k�n

xk D sup
k�n

.�1/k D 1:

Therefore

lim inf
n!1

xn D lim
n!1

�

inf
k�n

xk

�

D �1 and

lim sup
n!1

xn D lim
n!1

 

sup
k�n

xk

!

D 1:

[2] Consider the sequence .xn/, where, for each n 2 N, xn D .�1/n C 1
n
. Then

lim inf
n!1

xn D lim
n!1

�

inf
k�n

xk

�

D �1 and

lim sup
n!1

xn D lim
n!1

 

sup
k�n

xk

!

D 1:
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[3] Consider the sequence .xn/, where, for each n 2 N, xn D 1
n
. Then

E1 D f1;
1

2
;

1

3
;

1

4
; : : :g

E2 D f1

2
;

1

3
;

1

4
; : : :g

E3 D f1

3
;

1

4
; : : :g

:::
:::

En D f
1

n
;

1

n C 1
; : : :g

:::
:::

Therefore

sup
k�n

xk D sup En D 1

n
and inf

k�n
xk D inf En D 0:

It now follows that

lim sup
n!1

xn D lim
n!1

 

sup
k�n

xk

!

D lim
n!1

�
1

n

�

D 0 and

lim inf
n!1

xn D lim
n!1

�

inf
k�n

xk

�

D lim
n!1

.0/ D 0:

4.2.24 Lemma

Let .xn/ be a bounded sequence of real numbers, ˛ D lim inf
n!1

xn, and ˇ D lim sup
n!1

xn. Then there is a

subsequence of .xn/ which converges to ˛ and a subsequence of .xn/ which converges to ˇ.

�Let Ek D fxk ; xkC1; : : :g D fxn j n � kg, sk D inf Ek and Sk D sup Ek : Then

lim sup
n!1

xn D ˇ D lim
k!1

Sk : (4.1)

Since Sk is the supremum of the set Ek , given � > 0, there is an index nk � k such that

Sk � �

2
< xnk

� Sk < Sk C �

2
”

ˇ
ˇSk � xnk

ˇ
ˇ <

�

2
: (4.2)

Also, since lim
k!1

Sk D ˇ, there is a natural number N such that, for all k � N ,

jSk � ˇj <
�

2
: (4.3)

From (4.2) and (4.3), we have that for all nk � k � N ,

ˇ
ˇxnk

� ˇ
ˇ
ˇ �

ˇ
ˇxnk

� Sk

ˇ
ˇC jSk � ˇj <

�

2
C

�

2
D �:

Thus,
�

xnk

�

is a subsequence of .xn/ which converges to ˇ.

The proof of the second part is similar. �

69



2009 REAL ANALYSIS

4.2.25 Theorem

Let .xn/ be a bounded sequence of real numbers. Then

(i) lim inf
n!1

xn � lim sup
n!1

xn.

(ii) lim sup
n!1

xn D � lim inf
n!1

.�xn/.

(iii) The sequence .xn/ converges if and only lim inf
n!1

xn D lim sup
n!1

xn. In this case,

lim
n!1

xn D lim inf
n!1

xn D lim sup
n!1

xn:

�

(i) For each n 2 N, inf
k�n

xk � sup
k�n

xk . Therefore

lim inf
n!1

xn D lim
n!1

�

inf
k�n

xk

�

� lim
n!1

 

sup
k�n

xk

!

D lim sup
n!1

xn:

(ii) For each n 2 N, inf
k�n

.�xk/ D � sup
k�n

xk . Therefore

lim inf
n!1

.�xn/ D lim
n!1

�

inf
k�n

.�xk/

�

D lim
n!1

 

� sup
k�n

xk

!

D � lim sup
n!1

xn:

(iii) Assume that the sequence .xn/ converges to x. By Lemma 4.2.24, there are subsequences
�

xnk

�

and
�

yn`

�

of .xn/ which converge to lim inf
n!1

xn and lim sup
n!1

xn respectively. Since every subsequence of a

convergent sequence converges to the same limit as the sequence itself, it follows that

lim inf
n!1

xn D lim
k!1

xnk
D x D lim

`!1
yn`

D lim sup
n!1

xn:

Conversely, assume that lim inf
n!1

xn D lim sup
n!1

xn. Then for each n 2 N,

sn D inffxn; xnC1; : : :g � xn � Sn D supfxn; xnC1; : : :g:

Since

lim
n!1

sn D lim inf
n!1

xn D lim sup
n!1

xn D lim
n!1

Sn;

it follows, by the Squeeze Theorem, that the sequence .xn/ converges and lim
n!1

xn D lim inf
n!1

xn D
lim sup

n!1
xn: �

4.2.26 Exercise

[1] For each of the following, find the limit superior, limit inferior and the limit of the sequence.

(a) .xn/, where xn D .�1/n

n C 1
.

(b) .xn/, where xn D .�1/n C .�1/nC2.

(c) .xn/, where xn D 2.�1/n C n

n C 1
.
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4.2.5 Sequential Characterization of Closed Sets

4.2.27 Theorem

Let K be a nonempty subset of R and x 2 R. Then

(a) x 2 K if and only if there is a sequence .xn/ � K such that xn ! x as n ! 1.

(b) K is closed if and only if K contains the limit of every convergent sequence in K.

�

(a) Assume that x 2 K. Then either x 2 K or x 2 K0. If x 2 K, then the constant sequence

.x; x; x; : : :/ in K converges to x. If x 2 K0, then, for each n 2 N, the interval .x � 1
n
; x C 1

n
/

contains a point xn 2 K distinct from x. It now follows that jxn � xj < 1
n

. Clearly, .xn/ � K and

xn ! x as n ! 1.

Conversely, assume that there is a sequence .xn/ � K such that xn ! x as n ! 1. Then, either

x 2 K or every �-neighbourhood of x contains a point xn 6D x, in which case x 2 K0 Thus x 2 K.

(b) By Corollary 3.2.18, K is closed if and only if K D K. Hence, (b) follows from (a). �

4.2.6 Sequential Compactness

4.2.28 Definition

A subset K ofR is said to be sequentially compact if every sequence in K has a subsequence that converges

to a point in K.

The following theorem asserts that for subsets of R compactness and sequential compactness are equiv-

alent. In fact, this is true in any “metric space”. We shall discuss metric spaces later.

4.2.29 Theorem

A subset K of R is compact if and only it is sequentially compact.

�Assume that K is compact and let .xn/ be a sequence in K. Then, by the Heine-Borel Theorem (The-

orem 3.3.7), K is closed and bounded. Therefore the sequence .xn/ is bounded. By Bolzano-Weierstrass

Theorem (Theorem 4.2.14) .xn/ has a subsequence
�

xnk

�

which converges to some x 2 R. Since K is

closed, we have by Theorem 7.3.6, that x 2 K. Hence, K is sequentially compact.

Conversely, assume that K is not compact. Then, by the Heine-Borel Theorem (Theorem 3.3.7), either

K is not closed or K is not bounded. If K is not closed, then there is a sequence .xn/ in K that converges

to a point outside of K. But then every convergent subsequence of .xn/ will converge to a point outside of

K. Therefore K is not sequentially compact. If K is not bounded, then there is a sequence .xn/ in K such

that jxnj > n for each n 2 N. Thus, every subsequence of .xn/ is unbounded, and so, by Theorem 4.1.13,

no subsequence of .xn/ converges (to a point in K). Hence K is not sequentially compact. �

4.2.30 Exercise

[1] Let a sequence .xn/ of real numbers be defined recursively by

x1 D 0; xnC1 D 3xn C 1

xn C 3
for all n � 1:

(a) Show, by induction, that 0 � xn � 1 for all n 2 N.

(b) Show that the sequence .xn/ is monotonically increasing.

(c) Does the sequence .xn/ converge? If so, find its limit.

(d) Does supfxn j n 2 Ng exist? If so, find it.
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Chapter 5

Limits and Continuity

5.1 Limits of Functions

5.1.1 Definition

Suppose that a and ` are real numbers and let f be a real-valued function whose domain D includes all

points in some open interval about a (except possibly the point a itself). Then ` is called the limit of the

function f at a if, given any � > 0, there exists a ı > 0 (depending on a and �) such that

jf .x/ � `j < � for all x 2 D satisfying 0 < jx � aj < ı:

In this case, we write lim
x!a

f .x/ D ` or f .x/ ! ` as x ! a.

Note that the existence of the limit of f .x/ as x tends to a does not depend on f .a/. Indeed, f .a/ may

or may not be defined since a is not necessarily in the domain of f . If f .a/ and lim
x!a

f .x/ both exist, they

may or may not be equal. We are only interested in the behaviour of f as x gets closer to a. It is implicit

in the definition of the limit that a is an accumulation point of the domain D of f .

We can reformulate the above definition in the �-neighbourhood language as follows: lim
x!a

f .x/ D `,

if for each �-neighbourhood N.`; �/ of ` there exists a deleted ı-neighbourhood N �.a; ı/ of a such that

f .x/ 2 N.`; �/ whenever x 2 N �.a; ı/ \ D.

5.1.2 Definition

(1) Suppose that f is defined for all real numbers x > k , where k 2 R. Then ` 2 R is the limit of f as

x tends to 1 if, given � > 0, there exists a real number K such that

jf .x/ � `j < � whenever x > K:

In this case we write lim
x! 1

f .x/ D `.

(2) Suppose that f is defined for all real numbers x < k , where k 2 R. Then ` 2 R is the limit of f as

x tends to �1, denoted by lim
x! �1

f .x/ D `, if, given � > 0, there exists a real number k such that

jf .x/ � `j < � whenever x < k:

5.1.3 Examples

[1] Show that lim
x ! 2

x2 D 4.

Solution: Let � > 0 be given. We need to produce a ı > 0 such that

jx2 � 4j < � whenever 0 < jx � 2j < ı:
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Now,
jx2 � 4j D j.x � 2/.x C 2/j D jx � 2jjx C 2j:

Consider all x which satisfy the inequality jx�2j < 1. Then, for all such x, we have 1 < x < 3.

Thus,

jx C 2j � jxj C 2 < 3 C 2 D 5;

and so

jx2 � 4j D jx � 2jjx C 2j < 5jx � 2j:

Choose ı D min
n

1;
�

5

o

. Then, whenever 0 < jx � 2j < ı, we have that

jx2 � 4j < � : �

[2] Show that lim
x ! 3

.x2 C 2x/ D 15.

Solution: Let � > 0 be given. We need to find a ı > 0 such that

j.x2 C 2x/ � 15j < � for all x satisfying 0 < jx � 3j < ı:

Note that

j.x2 C 2x/ � 15j D j.x C 5/.x � 3/j D jx C 5jjx � 3j:
Since we are interested in the values of x near 3, we may consider those values of x which
satisfy the inequality jx �3j < 1, i.e., 2 < x < 4. For all these values we have that jx C5j < 9.

Therefore, if jx � 3j < 1, we have that

j.x2 C 2x/ � 15j < 9jx � 3j:

Choose ı D min
n

1;
�

9

o

. Then, working backwards, we have that

j.x2 C 2x/ � 15j < � for all x satisfying 0 < jx � 3j < ı: �

[3] Show that lim
x ! �1

2x C 3

x C 2
D 1.

Solution: Let � > 0 be given. We need to find a ı > 0 such that

ˇ
ˇ
ˇ
ˇ

2x C 3

x C 2
� 1

ˇ
ˇ
ˇ
ˇ

< � for all x satisfying 0 < jx � .�1/j D jx C 1j < ı:

By elementary algebraic manipulation, we have that

ˇ
ˇ
ˇ
ˇ

2x C 3

x C 2
� 1

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

.2x C 3/ � .x C 2/

x C 2

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

x C 1

x C 2

ˇ
ˇ
ˇ
ˇ

D jx C 1j
jx C 2j

:

Since we are interested in the values of x near �1, we may consider those values of x which

satisfy the inequality jx C 1j < 1
2
, i.e.,

�3

2
< x <

�1

2
. Recognising jx C 2j D jx � .�2/j as

the distance of x from �2, we have that

jx C 2j D jx � .�2/j >

ˇ
ˇ
ˇ
ˇ

�3

2
� .�2/

ˇ
ˇ
ˇ
ˇ

D 1

2
:

Therefore ˇ
ˇ
ˇ
ˇ

2x C 3

x C 2
� 1

ˇ
ˇ
ˇ
ˇ

D jx C 1j
jx C 2j < 2jx C 1j:
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Choose ı D min

�
1

2
;

�

2

�

. Then whenever 0 < jx C 1j < ı, we have that

ˇ
ˇ
ˇ
ˇ

2x C 3

x C 2
� 1

ˇ
ˇ
ˇ
ˇ

< � : �

[4] Show that lim
x ! 0

f .x/, where f .x/ D jxj
x

D

8

<

:

1 if x > 0

�1 if x < 0;

does not exist.

Solution: Assume that the limit exists and lim
x ! 0

f .x/ D `. Then, with � D 1, there is a ı > 0

such that

jf .x/ � `j < 1 for all x satisfying 0 < jxj < ı:

Taking x D �ı

2
, we have that jxj D ı

2
< ı, and so

1 > jf .x/ � `j D j � 1 � `j D j1 C `j:

Thus, �2 < ` < 0.

On the hand, if x D ı

2
, we have that jxj D ı

2
< ı, and so

1 > jf .x/ � `j D j1 � `j:

Therefore, 0 < ` < 2. But there is no real number that can simultaneously satisfy the
inequalities �2 < ` < 0 and 0 < ` < 2. Therefore lim

x ! 0
f .x/ does not exist. �

[5] Show that lim
x ! 0

x sin
1

x
D 0.

Solution: Let � > 0 be given. We need to find a ı > 0 such that

ˇ
ˇ
ˇ
ˇ
x sin

1

x
� 0

ˇ
ˇ
ˇ
ˇ

< � for all x satisfying 0 < jx � 0j < ı:

Now, ˇ
ˇ
ˇ
ˇ
x sin

1

x
� 0

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
x sin

1

x

ˇ
ˇ
ˇ
ˇ

D jxj
ˇ
ˇ
ˇ
ˇ
sin

1

x

ˇ
ˇ
ˇ
ˇ

� jxj:

Choose 0 < ı � �. Then, whenever 0 < jx � 0j D jxj < ı, we have that

ˇ
ˇ
ˇ
ˇ
x sin

1

x
� 0

ˇ
ˇ
ˇ
ˇ

� jxj < �;

which proves that lim
x ! 0

x sin
1

x
D 0. �

[6] Consider the function f W R ! f0; 1g given by

f .x/ D

8

<

:

1 if x 2 Q

0 if x 2 R nQ :

Show that if a 2 R, then lim
x!a

f .x/ does not exist.
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Solution: Assume that there is an ` 2 R such that lim
x!a

f .x/ D `. Then, with � D 1

4
, there

exists ı > 0 such that

jf .x/ � `j <
1

4
for all x satisfying 0 < jx � aj < ı:

If x 2 Q, then

j1 � `j <
1

4
whenever 0 < jx � aj < ı; and

if x 2 R nQ, then

j`j <
1

4
whenever 0 < jx � aj < ı:

Since the set fx 2 R W 0 < jx � aj < ı g contains both rationals and irrationals, we have that

1 D j1 � 0j D j1 � ` C `j � j1 � `j C j`j <
1

4
C 1

4
D 1

2
;

which is absurd. �

The following theorem highlights the relationship between convergence of sequences and limits of

functions.

5.1.4 Theorem

Let f be a function which is defined in some open interval I containing a 2 R, except possibly at a.

Then lim
x!a

f .x/ D ` if and only if for every sequence .an/ � I n fag such that lim
n!1

an D a, we have that

lim
n!1

f .an/ D `.

�Assume that lim
x!a

f .x/ D ` and let .an/ � I n fag be a sequence such that lim
n!1

an D a. Then, given

� > 0, there is a ı > 0 and an N 2 N such that

jf .x/ � `j < � for all x 2 I satisfying 0 < jx � aj < ı and jan � aj < ı for all n � N:

Now, 0 < jan � aj < ı since an 6D a for all n � N . Therefore

jf .an/ � `j < � for all n � N:

That is, lim
n!1

f .an/ D `.

For the converse, assume that for every sequence .an/ � I n fag such that lim
n!1

an D a, we have that

lim
n!1

f .an/ D `.

Claim: lim
x!a

f .x/ D `. If the claim were false, then there would exist an �0 > 0 such that for every ı > 0

with 0 < jx � aj < ı, we have

jf .x/ � `j � �0:

Let n 2 N and take ı D 1

n
. Then we can find an 2 I n fag such that 0 < jan � aj <

1

n
and

jf .an/ � `j � �0:

Clearly, .an/ is a sequence in I n fag with the property that lim
n!1

an D a and

jf .an/ � `j � �0 for all n 2 N:

That is, lim
n!1

f .an/ 6D `, a contradiction. �

75



2009 REAL ANALYSIS

The condition that an 6D a for all n 2 N in Theorem 5.1.4 is essential. Consider the function f defined

on R by

f .x/ D

8

<

:

1 for x 6D 0

1
2

for x D 0:

Let .an/ be the sequence where an D 0 for all n 2 N. Then an 2 R.D domain of f ) for all n 2 N, and

lim
n!1

an D 0. Since f .an/ D f .0/ D 1

2
for all n 2 N, and lim

x!0
f .x/ D 1, it follows that

lim
n!1

f .an/ D lim
n!1

1

2
D 1

2
6D 1 D lim

x!0
f .x/:

5.1.5 Theorem

(Uniqueness of Limits). Let f be a function which is defined on some open interval I containing a,

except possibly at a. If lim
x!a

f .x/ D `1 and lim
x!a

f .x/ D `2, then `1 D `2.

�If `1 6D `2, let � D j`1 � `2j
3

. Then, there exist ı1 > 0 and ı2 > 0 such that

jf .x/ � `1j <
�

2
whenever x 2 I and 0 < jx � aj < ı1; and

jf .x/ � `2j <
�

2
whenever x 2 I and 0 < jx � aj < ı2:

Let ı D minfı1; ı2g. Then, whenever 0 < jx � aj < ı, we have

0 < j`1 � `2j � jf .x/ � `1j C jf .x/ � `2j <
j`1 � `2j

3
;

which is impossible. �

5.1.1 Algebra of Limits

5.1.6 Theorem

Let `1; `2; a 2 R. Suppose that f and g are real-valued functions defined on some open interval I contain-

ing a, except possibly at a itself, and that lim
x!a

f .x/ D `1 and lim
x!a

g.x/ D `2. Then,

(1) lim
x!a

Œf .x/ ˙ g.x/� D `1 ˙ `2.

(2) lim
x!a

Œf .x/g.x/� D `1`2.

(3) lim
x!a

f .x/

g.x/
D `1

`2

provided g.x/ 6D 0 for all x 2 I and `2 6D 0.

�

(1) Let � > 0 be given. Then there exist ı1 > 0 and ı2 > 0 such that

jf .x/ � `1j <
�

2
whenever x 2 I and 0 < jx � aj < ı1; and

jg.x/ � `2j <
�

2
whenever x 2 I and 0 < jx � aj < ı2:
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Let ı D minfı1; ı2g. Then, whenever x 2 I and 0 < jx � aj < ı, we have

j Œf .x/Cg.x/�� Œ`1 C`2� j D j Œf .x/�`1�C Œg.x/�`2� j � jf .x/�`1jCjg.x/�`2j <
�

2
C �

2
D �:

That is, f .x/ C g.x/ ! `1 C `2 as x ! a.

A similar argument shows that f .x/ � g.x/ ! `1 � `2 as x ! a.

(2) With � D 1, there exists a ı1 > 0 such that

jf .x/ � `1j < 1 whenever x 2 I and 0 < jx � aj < ı1:

This implies that

jf .x/j � jf .x/ � `1j C j`1j < 1 C j`1j whenever x 2 I and 0 < jx � aj < ı1:

Now, for all x 2 I with 0 < jx � aj < ı1, we have

jf .x/g.x/ � `1`2j D jf .x/g.x/ � f .x/`2 C f .x/`2 � `1`2j
� jf .x/jjg.x/ � `2j C j`2jjf .x/ � `1j
< .1 C j`1j/jg.x/ � `2j C j`2jjf .x/ � `1j :

Given � > 0, there exist ı2 > 0 and ı3 > 0 such that

jf .x/ � `1j <
�

2.1 C j`2j/
whenever x 2 I and 0 < jx � aj < ı2; and

jg.x/ � `2j <
�

2.1 C j`1j/ whenever x 2 I and 0 < jx � aj < ı3:

Let ı D minfı1; ı2; ı3g. Then, whenever x 2 I and 0 < jx � aj < ı, we have

jf .x/g.x/ � `1`2j < .1 C j`1j/
�

�

2.1 C j`1j/

�

C j`2j
�

�

2.1 C j`2j/

�

D �

2
C �j`2j

2.1 C j`2j/ <
�

2
C �

2
D � :

That is, f .x/g.x/ ! `1`2 as x ! a.

(3) It is enough to show that lim
x!a

1

g.x/
D 1

`2

provided g.x/ 6D 0 for all x 2 I and `2 6D 0. Since

`2 6D 0, � D j`2j
2

> 0. Therefore there exists a ı1 > 0 such that

jg.x/ � `2j <
j`2j
2

whenever x 2 I and 0 < jx � aj < ı1:

Now, for all x 2 I satisfying 0 < jx � aj < ı1, we have

j`2j � j`2 � g.x/j C jg.x/j <
j`2j
2

C jg.x/j:

That is,
j`2j
2

< jg.x/j for all x 2 I satisfying 0 < jx � aj < ı1. It now follows that for all x 2 I

satisfying 0 < jx � aj < ı1,

ˇ
ˇ
ˇ
ˇ

1

g.x/
�

1

`2

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

`2 � g.x/

g.x/`2

ˇ
ˇ
ˇ
ˇ

D
j`2 � g.x/j

jg.x/`2 j <
2j`2 � g.x/j

j`2jj`2j D
2j`2 � g.x/j

`2
2

:
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Given � > 0 there exist ı2 > 0 such that

jg.x/ � `2j <
�`2

2

2
whenever x 2 I and 0 < jx � aj < ı2:

Let ı D minfı1; ı2g. Then, whenever x 2 I and 0 < jx � aj < ı, we have

ˇ
ˇ
ˇ
ˇ

1

g.x/
� 1

`2

ˇ
ˇ
ˇ
ˇ

<
2j`2 � g.x/j

`2
2

<
2

`2
2

�
�`2

2

2
D �:

That is, lim
x!a

1

g.x/
D 1

`2

provided `2 6D 0. �

5.1.7 Theorem

Let `1; `2; a 2 R. Suppose that f and g are real-valued functions defined on some open interval I contain-

ing a, except possibly at a itself, and that f .x/ � g.x/ for all x 2 I . If lim
x!a

f .x/ D `1 and lim
x!a

g.x/ D `2,

then `1 � `2.

�If `2 < `1, let � D `1 � `2

2
. Now, there exist ı1 > 0 and ı2 > 0 such that

jf .x/ � `1j < � whenever x 2 I and 0 < jx � aj < ı1; and

jg.x/ � `2j < � whenever x 2 I and 0 < jx � aj < ı2:

That is,

`1 � � < f .x/ < `1 C � whenever x 2 I and 0 < jx � aj < ı1; and

`2 � � < g.x/ < `2 C � whenever x 2 I and 0 < jx � aj < ı2:

That is,

`1 C `2

2
< f .x/ whenever x 2 I and 0 < jx � aj < ı1; and

g.x/ <
`1 C `2

2
whenever x 2 I and 0 < jx � aj < ı2:

Let ı D minfı1; ı2g. Then, whenever x 2 I and 0 < jx � aj < ı, we have

g.x/ <
`1 C `2

2
< f .x/;

and so g.x/ < f .x/, a contradiction. �

5.1.8 Theorem

(Squeeze Theorem). Suppose that f; g and h are real-valued functions defined on some open interval I

containing a, except possibly at a itself, and that f .x/ � g.x/ � h.x/ for all x 2 I . If lim
x!a

f .x/ D ` and

lim
x!a

h.x/ D `, then lim
x!a

g.x/ D `.

�Let � > 0 be given. Then there exist ı1 > 0 and ı2 > 0 such that

jf .x/ � `j < � whenever 0 < jx � aj < ı1; and

jh.x/ � `j < � whenever 0 < jx � aj < ı2:
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That is,

` � � < f .x/ < ` C � whenever 0 < jx � aj < ı1; and

` � � < h.x/ < ` C � whenever 0 < jx � aj < ı2:

Let ı D minfı1; ı2g. Then, whenever 0 < jx � aj < ı, we have

` � � < f .x/ � g.x/ � h.x/ < ` C �:

Thus,

jg.x/ � `j < � for all x satisfying 0 < jx � aj < ı:

That is, lim
x!a

g.x/ D `. �

5.1.9 Exercise

[1] Show that f .x/ ! 0 as x ! a if and only if jf .x/j ! 0 as x ! a.

[2] Let a; ` 2 R; D � R and f W D ! R. Show that if f .x/ ! ` as x ! a, then jf .x/j ! j`j as

x ! a. Does the converse hold? Justify your answer.

[3] Let a; ` 2 R; D � R; f W D ! R and ` > 0. Show that if lim
x!a

f .x/ D `, then there exists a

deleted �-neighbourhood N �.a; �/ of a such that f .x/ > 0 for all x 2 N �.a; �/ \ D.

[4] Let a; ` 2 R; D � R; f W D ! R and lim
x!a

f .x/ D `. Show that there exists a deleted

�-neighbourhood N �.a; �/ and a positive real number M such that jf .x/j � M for all x 2
N �.a; �/ \ D.

5.2 Continuous Functions

When discussing the limit lim
x!a

f .x/, we made no reference to f .a/, the value of the function f at a. In

fact, we emphasized that f .a/ was unimportant in the analysis of lim
x!a

f .x/. In this section we want to

bring f .a/ into the picture; we want to relate the limit lim
x!a

f .x/ to the value of f at a.

5.2.1 Definition

Let D � R and f W D ! R. The function f is said to be continuous at a 2 D if, given any � > 0, there

exists a ı > 0 (which generally depends on � and a) such that

jf .x/ � f .a/j < � whenever x 2 D and jx � aj < ı:

The function f is continuous on D if it is continuous at each point of D. If f is not continuous at a, we

say that f is discontinuous there.

Let us reformulate this definition in the language of neighbourhoods:

5.2.2 Definition

Let D � R and f W D ! R. The function f is said to be continuous at a 2 D if, for each �-

neighbourhood N.f .a/; �/ of f .a/, there is a ı-neighbourhood N.a; ı/ of a such that

f .x/ 2 N.f .a/; �/ whenever x 2 N.a; ı/ \ D:
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Note that, in contrast to the deleted ı-neighbourhoods used in the definition of lim
x!a

f .x/ D `, for

continuity we use ı-neighbourhoods.

5.2.3 Examples

[1] Show that the function f .x/ D x2 is continuous on R.

Solution: Let � > 0 be given and a 2 R. We need to produce a ı > 0 such that

jf .x/ � f .a/j < � whenever jx � aj < ı:

Now,

jf .x/ � f .a/j D jx2 � a2j D j.x � a/.x C a/j:

Since we are interested in the behaviour of f near a, we may restrict our attention to those

real numbers x that satisfy the inequality jx � aj < 1. These real numbers satisfy the

inequalities a � 1 < x < a C 1. Therefore, for all these real numbers, we have

jx C aj � jxj C jaj < ja C 1j C jaj � 1 C 2jaj:

Now, take ı D min

�

1;
�

1 C 2jaj

�

. Then, jx � aj < ı implies that

jf .x/ � f .a/j D jx2 � a2j < �:

That is, f is continuous at a. Since a was arbitrarily chosen in R, it follows that f is contin-

uous on R. �

[2] Show that the function f .x/ D

8

<

:

x sin 1
x

if x 6D 0

0 if x D 0:

is continuous at 0.

Solution: Let � > 0 be given. We need to produce a ı > 0 such that

jf .x/ � f .0/j < � whenever jx � 0j < ı:

Now

jf .x/ � f .0/j D
ˇ
ˇ
ˇ
ˇ
x sin

1

x
� 0

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
x sin

1

x

ˇ
ˇ
ˇ
ˇ

D jxj
ˇ
ˇ
ˇ
ˇ
sin

1

x

ˇ
ˇ
ˇ
ˇ

� jxj:

Choose 0 < ı � �. Then, jx � 0j < ı implies that

jf .x/ � f .0/j D
ˇ
ˇ
ˇ
ˇ
x sin

1

x
� 0

ˇ
ˇ
ˇ
ˇ

� jxj < ı � �:

That is, f is continuous at 0. �

[3] Show that the function f W R ! f�1; 1g given by

f .x/ D

8

<

:

1 if x 2 Q

�1 if x 2 R n Q

is discontinuous at every real number.
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Solution: Assume that f is continuous at some a 2 R. Then, given � D 1, there exists a
ı > 0 such that

jf .x/ � f .a/j < � whenever jx � aj < ı:

Since rationals and irrationals are dense in R, the interval jx � aj < ı contains both rationals

and irrationals. If x 2 Q and jx � aj < ı, then

j1 � f .a/j < 1; whence 0 < f .a/ < 2:

On the other hand, if x 2 R nQ and jx � aj < ı, then

j � 1 � f .a/j < 1; whence � 2 < f .a/ < 0:

But there is no real number that can simultaneously satisfy both the inequalities

0 < f .a/ < 2 and �2 < f .a/ < 0. Therefore f is discontinuous at every a 2 R. �

[4] Show that the function f .x/ D 1

x
is continuous at 1.

Solution: Let � > 0 be given. We need to find a ı > 0 such that

jf .x/ � f .1/j < � whenever jx � 1j < ı:

Since we are interested in the values of x near 1, we may consider those x for which

jx � 1j <
1

2
. These x satisfy the inequalities

1

2
< x <

3

2
:

Now, for all the x which satisfy jx � 1j <
1

2
, we have

jf .x/ � f .1/j D
ˇ
ˇ
ˇ
ˇ

1

x
� 1

ˇ
ˇ
ˇ
ˇ

D jx � 1j
x

< 2jx � 1j:

Choose ı D min

�
1

2
;

�

2

�

. Then, whenever jx � 1j < ı, we have that

ˇ
ˇ
ˇ
ˇ

1

x
� 1

ˇ
ˇ
ˇ
ˇ

< �:

That is, f is continuous at x D 1. �

[5] Show that if a is an isolated point in the domain D of f , then f is continuous at a.

Solution: Since a 2 D, f is defined at a. Let � > 0 be given. Since a is an isolated point of

D, there is a ı-neighbourhood N.a; ı/ of a such that N.a; ı/ \ D D fag. Assume that x 2 D

and jx � aj < ı; i.e., x 2 N.a; ı/. Then x D a since N.a; ı/ \ D D fag. Hence

jf .x/ � f .a/j D jf .a/ � f .a/j D 0 < �:

Therefore f is continuous at a. �

[6] We can deduce from Example 5 that if f W Z ! R, then f is continuous at every point of Z.

�
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The following theorem gives a criterion for continuity at a point in terms of sequences. On some

occasions it is easier to apply this formulation than the � � ı definition. In particular, this formulation

comes handy when one wants to use contradiction to prove discontinuity of a function.

5.2.4 Theorem

Let D � R and f W D ! R. Then f is continuous at a 2 D if and only if for every sequence .an/ � D

such that lim
n!1

an D a, we have that lim
n!1

f .an/ D f .a/.

�Suppose that f is continuous at a 2 D and that .an/ is a sequence in D such that lim
n!1

an D a. Given

� > 0, there is a ı > 0 and an N 2 N such that

jf .x/ � f .a/j < � whenever jx � aj < ı and jan � aj < ı for all n � N:

Therefore

jf .an/ � f .a/j < � for all n � N:

That is, lim
n!1

f .an/ D f .a/.

For the converse, assume that for every sequence .an/ � D such that lim
n!1

an D a, we have that

lim
n!1

f .an/ D f .a/ and that f is not continuous at a. Then there exists an �0 > 0 such that for every

ı > 0 with 0 < jx � aj < ı, we have

jf .x/ � f .a/j � �0:

For n 2 N, let ı D 1

n
. Then we can find an 2 D such that 0 < jan � aj <

1

n
and

jf .an/ � f .a/j � �0:

Clearly, .an/ is a sequence in D with the property that lim
n!1

an D a and

jf .an/ � f .a/j � �0 for all n 2 N:

That is, lim
n!1

f .an/ 6D f .a/, a contradiction. �

5.2.5 Examples

[1] Find the limit of the sequence

�

`n

�
n C 1

n

��

, if it exists.

Solution: Since

lim
n!1

n C 1

n
D 1

and the function f .x/ D `n x is continuous on .0; 1/, it follows from Theorem 5.2.4 that

lim
n!1

`n

�
n C 1

n

�

D `n 1 D 0:

That is, the sequence

�

`n

�
n C 1

n

��

converges to 0. �

[2] Show that the function f .x/ D

8

<

:

x if x 2 Q

�x if x 2 R nQ
is continuous only at x D 0.
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Solution: Let us first show that f is continuous at x D 0. Let � > 0 be given. We need to
find a ı > 0 such that

jf .x/ � f .0/j < � whenever jx � 0j < ı:

Now, since 0 2 Q, we have that

jf .x/ � f .0/j D jf .x/ � 0j D jf .x/j:

If x 2 Q, then jf .x/j D jxj, and if x 2 R nQ, then jf .x/j D j � xj D jxj. Choose ı D �. Then
whenever jxj < ı, we have that jf .x/ � f .0/j < �, i.e., f is continuous at x D 0.

Next, we show that f is discontinuous on a 2 R n f0g. Assume that f is continuous at some

a 2 R n f0g. If a 2 Q, then for each n 2 N there is an an 2 R n Q such that

jan � aj <
1

n
:

That is, the sequence .an/ converges to a. Since an 2 R n Q for each n 2 N, f .an/ D �an,
and since a 2 Q, f .a/ D a. Therefore

lim
n !1

f .an/ D lim
n !1

.�an/ D � lim
n !1

an D �a 6D a D f .a/:

Similarly, if a 2 R nQ, then for each n 2 N there is an an 2 Q such that

jan � aj <
1

n
:

Again, the sequence .an/ converges to a. Since an 2 Q for each n 2 N, f .an/ D an, and

since a 2 R nQ, f .a/ D �a. Therefore

lim
n !1

f .an/ D lim
n !1

an D a 6D �a D f .a/:

Thus f is discontinuous at a. �

5.2.6 Exercise

[1] Show that the function f .x/ D

8

<

:

x if x 2 Q

0 if x 2 R nQ
is continuous only at x D 0.

[2] Show that the function f .x/ D

8

<

:

1 if x 2 Q

0 if x 2 R nQ
is discontinuous at every point of R.

The following theorem asserts that continuity is preserved by the standard algebraic operations on func-

tions.

5.2.7 Theorem

Let f and g be functions with common domain D � R, and let a 2 D. If f and g are continuous at a,

then so are the functions

(i) f ˙ g,

(ii) cf for each c 2 R,

(iii) jf j,
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(iv) fg,

(v)
f

g
, provided g.a/ 6D 0.

�Exercise. �

5.2.8 Theorem

Let f be a function which is continuous at a 2 R. Suppose that g is a function which is continuous at the

point f .a/. Then the composite function g ı f is continuous at a.

�Let � > 0 be given. Then there exist � > 0 and ı > 0 such that

jg.y/ � g.f .a//j < � whenever jy � f .a/j < �; and

jf .x/ � f .a/j < � whenever jx � aj < ı:

(Now ı depends on �, which in turn, depends on �. Therefore ı depends on �.) Hence, for all x 2 R with

jx � aj < ı, we have that

jg.f .x// � g.f .a//j < �:

That is, g ı f is continuous at a. �

The next theorem, called the Intermediate Value Theorem, asserts that if the domain of a continuous

function is an interval, then so is its range.

5.2.9 Theorem

(Intermediate Value Theorem). If f is continuous on a closed interval Œa; b� and f .a/ 6D f .b/, then for

each number k between f .a/ and f .b/ there is a point c 2 Œa; b� such that f .c/ D k .

�For definiteness, assume that f .a/ < f .b/. Let S D fx 2 Œa; b� j f .x/ � kg. Then S 6D ; since

a 2 S . Thus, c D sup S exists as a real number in Œa; b�. By Theorem 4.1.18, there exists a sequence .xn/

in S such that lim
n!1

xn D c. Since a � xn � b for each n 2 N, we have that a � c � b, and so f is

continuous at c. This then implies that lim
n ! 1

f .xn/ D f .c/. As f .xn/ � k for each n 2 N, we deduce

that f .c/ � k , and so c 2 S . It now remains to show that f .c/ � k . To this end, we first observe that since

c 2 S and c D sup S; c C 1
n

62 S for each n 2 N. Also, since k < f .b/, we have that c < b. Therefore,

by Corollary 3.1.17, there exists an N 2 N such that 0 < 1
N

< b � c. Hence, for each n � N , we have that

1

n
< b � c; i.e., c C 1

n
< b:

This implies that for all n � N; c C 1
n

2 Œa; b� and c C 1
n

62 S . Thus, f .c C 1

n
/ > k for all n � N . By

continuity of f , we have that f .c/ � k , whence f .c/ D k . �

One of the many interesting consequences of the Intermediate Value Theorem is the following fixed-

point theorem.

5.2.10 Theorem

(Fixed-point Theorem). If f is continuous on a closed interval Œa; b� and f .x/ 2 Œa; b� for each x 2 Œa; b�,

then f has a fixed point; i.e., there exists a point c 2 Œa; b� such that f .c/ D c.

�If f .a/ D a or f .b/ D b, then we are done. We therefore assume that a < f .a/ and f .b/ < b. Let

g.x/ D f .x/ � x for every x 2 Œa; b�. Clearly, g is a continuous function on Œa; b�; g.a/ D f .a/ � a > 0

and g.b/ D f .b/ � b < 0. That is, 0 is an intermediate value for g on Œa; b�. Hence, by the Intermediate

Value Theorem (Theorem 5.2.9), there exists a c 2 Œa; b� such that g.c/ D 0. This, of course, implies that

f .c/ D c. �
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5.2.1 Uniform Continuity

Before giving the formal definition of uniform continuity we need to look closely at the definition of con-

tinuity given earlier. We said that a function f , with domain D � R, is continuous at a 2 D if, given any

� > 0 there exists a ı > 0 (which depends on � and a) such that

jf .x/ � f .a/j < � whenever x 2 D and jx � aj < ı:

For continuity at another point b 2 D, for the same �, a ı0 > 0 would exist such that

jf .x/ � f .b/j < � whenever x 2 D and jx � bj < ı0:

The ı and ı0 may not be the same. Therefore, ı depends on � as well as the point a. For this reason,

continuity is a local concept – it describes what happens to a function in a neighbourhood of a point.

We now define uniform continuity.

5.2.11 Definition

Let D � R and f W D ! R. The function f is said to be uniformly continuous on D if, given any

� > 0, there exists a ı > 0 such that

jf .x/ � f .y/j < � whenever x; y 2 D and jx � yj < ı:

The most important point to note here is that ı does not depend on any particular point of the domain

D – the same ı works for all points of D. Therefore uniform continuity is a global concept.

5.2.12 Examples

[1] Show that the function f .x/ D x is uniformly continuous on R.

Solution: Let � > 0 be given. We must produce a ı > 0 such that

jf .x/ � f .y/j < � whenever x; y 2 R and jx � yj < ı:

Since jf .x/ � f .y/j D jx � yj, we may choose 0 < ı � �. Then, for all x; y 2 R with

jx � yj < ı, we have that

jf .x/ � f .y/j D jx � yj < ı � �:

That is, f is uniformly continuous on R. �

[2] Show that the function f .x/ D x2 is not uniformly continuous on R.

Solution: Let � > 0 be given. We must show that for every ı > 0 there exist x; y 2 R such

that jx � yj < ı and
jf .x/ � f .y/j D jx2 � y2j � �:

Choose x; y 2 R with x � y D ı

2
and x C y D 2�

ı
. Then jx � yj < ı and

jx2 � y2j D jx C yjjx � yj � 2�

ı
� ı

2
D �:

Thus, f is not uniformly continuous on R. �

[3] Show that the function f .x/ D x2 is uniformly continuous on Œ�1; 1�.
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Solution: Let � > 0 be given. Then for all x; y 2 Œ�1; 1� we have

jf .x/ � f .y/j D jx2 � y2j D jx C yjjx � yj � 2jx � yj:

Choose ı D �

2
. Then, for all x; y 2 Œ�1; 1� with jx � yj < ı, we have

jf .x/ � f .y/j D jx2 � y2j D jx C yjjx � yj � 2jx � yj < 2
�

2
D �:

Hence f is uniformly continuous on Œ�1; 1�. �

[4] Show that the function f .x/ D 1

x
is not uniformly continuous on .0; 1�.

Solution: Let � D 1
2

and ı > 0. Then there exists an n 2 N such that
1

n
< ı. Take

x D 1

n
; and y D 1

n C 1
. Then

jx � yj D
ˇ
ˇ
ˇ
ˇ

1

n
� 1

n C 1

ˇ
ˇ
ˇ
ˇ

D 1

n.n C 1/
<

1

n
< ı and jf .x/ � f .y/j D jn � .n C 1/j D 1 >

1

2
:

Hence f is not uniformly continuous on .0; 1�. �

[5] Show that the function f .x/ D 1

x
is uniformly continuous on Œa; 1/, where a > 0.

Solution: Let � > 0 be given. We must find a ı > 0 such that

jf .x/ � f .y/j < � whenever x; y 2 Œa; 1/ and jx � yj < ı:

Now, for all x; y 2 Œa; 1/,

ˇ
ˇ
ˇ
ˇ

1

x
� 1

y

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

y � x

xy

ˇ
ˇ
ˇ
ˇ

D jx � yj
xy

� jx � yj
a2

:

Take ı D a2�. Then, for all x; y 2 Œa; 1/ with jx � yj < ı, we have

jf .x/ � f .y/j D
ˇ
ˇ
ˇ
ˇ

1

x
� 1

y

ˇ
ˇ
ˇ
ˇ

� jx � yj
a2

< �:

That is, f is uniformly continuous on Œa; 1/. �

5.2.13 Theorem

If f W D ! R is uniformly continuous on D, then it is continuous there.

�Let � > 0 be given. Then there exists a ı > 0 such that

jf .x/ � f .y/j < � whenever x; y 2 D and jx � yj < ı:

Let y D a 2 D. Then

jf .x/ � f .a/j < � for all x; y 2 D such that jx � yj < ı:

Thus, f is continuous at a 2 D. Since a 2 D was arbitrarily chosen, f is continuous

on D. �
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5.2.14 Definition

A function f W R ! R is said to satisfy a Lipschitz condition on an interval I � R if there is a positive

real number M such that

jf .x/ � f .y/j � M jx � yj for all x; y 2 I:

If M < 1, then f is called a contraction map.

5.2.15 Examples

[1] Show that the function f .x/ D x2 satisfies a Lipschitz condition on Œ0; 2�.

Solution: For all x; y 2 Œ0; 2�, we have

jf .x/ � f .y/j D jx2 � y2j D jx C yjjx � yj � 4jx � yj: �

[2] Show that the function f .x/ D jxj satisfies a Lipschitz condition on R.

Solution: For all x; y 2 R, we have

jf .x/ � f .y/j D jjxj � jyjj � jx � yj: �

[3] Show that the function f .x/ D sin x satisfies a Lipschitz condition on R.

Solution: Let x; y 2 R. Then

jf .x/ � f .y/j D j sin x � sin yj D
ˇ
ˇ
ˇ
ˇ
sin

�
x C y

2
C x � y

2

�

� sin

�
x C y

2
� x � y

2

�ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
2 cos

�
x C y

2

�

sin
�x � y

2

�
ˇ
ˇ
ˇ
ˇ

� 2
ˇ
ˇ
ˇsin

�x � y

2

�ˇ
ˇ
ˇ

� jx � yj;

where we have used the two facts:
ˇ
ˇ
ˇ
ˇ
cos

�
x C y

2

�ˇ
ˇ
ˇ
ˇ

� 1 and
ˇ
ˇ
ˇsin

�x � y

2

�ˇ
ˇ
ˇ �

jx � yj
2

: �

5.2.16 Theorem

If a function f W R ! R satisfies a Lipschitz condition on an interval I � R, then f is uniformly

continuous there.

�Since f satisfies a Lipschitz condition on I , there exists a positive real number M such that

jf .x/ � f .y/j � M jx � yj for all x; y 2 I:

Let � > 0 be given and take ı D �

M
. Then, whenever x; y 2 I and jx � yj < ı, we have that

jf .x/ � f .y/j � M jx � yj < M
�

M
D �:

That is, f is uniformly continuous on I . �
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5.2.17 Theorem

If f is contraction map on a closed interval Œa; b� such that f .x/ 2 Œa; b� for each x 2 Œa; b�, then f has a

unique fixed point; i.e., there exists exactly one point c 2 Œa; b� such that f .c/ D c.

�Since f is a contraction map, it is (uniformly) continuous on Œa; b�. Furthermore, f satisfies the

hypotheses of the fixed-point theorem. Therefore there exists a point c 2 Œa; b� such that f .c/ D c.

To prove uniqueness, assume that there is a d 2 Œa; b� such that f .d/ D d . Since f is a contraction

map, there exists an M 2 R such that 0 < M < 1 and

jc � d j D jf .c/ � f .d/j � M jc � d j < jc � d j;

which is impossible. Thus c D d . �

5.2.2 Continuous Functions and Compact Sets

5.2.18 Theorem

A continuous image of a compact set is compact, i.e., if K is a compact subset of R and f W K ! R is

continuous on K, then the set

f .K/ WD fy 2 R j f .x/ D y for some x 2 Kg

is compact.

�Let .yn/ be a sequence in f .K/. Then, for each n 2 N, there is an xn 2 K such that yn D f .xn/.

Since K is compact, the sequence .xn/ has a subsequence
�

xnk

�

which converges to some x 2 K. Using

continuity of f , we have, by Theorem 5.2.4, that f
�

xnk

� k!1�! f .x/ 2 f .K/. Hence, the subsequence
�

ynk

�

D
�

f
�

xnk

��

of .yn/ converges to y D f .x/ 2 f .K/. �

5.2.19 Definition

A real-valued function f with domain D is said to be bounded on D if there exists a positive real number

M such that

jf .x/j � M for all x 2 D:

A continuous function may not be bounded even when its domain is a bounded set. One such example

is the function f .x/ D 1

x
defined on .0; 1/. As x approaches 0 from the right, f grows without bound.

The next theorem asserts that a continuous real-valued function defined on a compact set is always

bounded there.

5.2.20 Corollary

If K is a compact subset of R and f W K ! R is continuous on K, then f is bounded on K. That is,

M D supff .x/ j x 2 Kg and m D infff .x/ j x 2 Kg

are finite. Moreover, there are points x1 and x2 in K such that f .x1/ D M and

f .x2/ D m.

�Since K is compact and f is continuous, it follows from Theorem 5.2.18 that f .K/ is a compact. By the

Heine-Borel Theorem (Theorem 3.3.7), we have that f .K/ is closed and bounded. Therefore M and m are

finite. Since f .K/ is closed, M and m belong to f .K/. Therefore there are points x1 and x2 such that

M D f .x1/ and m D f .x2/. �

While the Intermediate Value Theorem (Theorem 5.2.9) assures us that a continuous function takes an

interval into an interval, the following theorem tells us that, in fact, a continuous function takes a closed and

bounded interval into a closed and bounded one! Its proof is contained in Corollary 5.2.20.
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5.2.21 Theorem

(Extreme Value Theorem). If f is continuous on a closed interval Œa; b�, then there exist points u and v

in Œa; b� such that

f .u/ � f .x/ � f .v/ for all x 2 Œa; b�; i.e.; x 2 Œa; b� ) f .x/ 2 Œf .u/; f .v/�:

The following result asserts that a continuous function on a compact set is uniformly continuous on K.

5.2.22 Theorem

If K is a compact subset of R and f W K ! R is continuous on K, then f is uniformly continuous.

�Assume that f is continuous on K but not uniformly continuous there. Then, there is an � > 0 such that,

for each ı > 0, there are points x; y 2 K such that jx � yj < ı but jf .x/ � f .y/j � �. In particular,

for each n 2 N, there are points xn; yn 2 K such that jxn � ynj < 1
n

but jf .xn/ � f .yn/j � �. Since K

is compact, the sequence .xn/ has a subsequence
�

xnk

�

which converges to some x 2 K. Similarly, the

sequence .yn/ has a subsequence
�

ynk

�

which converges to some y 2 K. Since

0 � jx � yj �
ˇ
ˇx � xnk

ˇ
ˇC

ˇ
ˇxnk

� ynk

ˇ
ˇC

ˇ
ˇynk

� y
ˇ
ˇ ! 0 as k ! 1;

it follows that x D y. Since f is continuous on K, we have that f
�

xnk

� k!1�! f .x/ and f
�

ynk

� k!1�!
f .y/. Hence, there are natural numbers N1 and N2 such that

ˇ
ˇf .xnk

/ � f .x/
ˇ
ˇ <

�

2
for all k � N1; and

ˇ
ˇf .ynk

/ � f .x/
ˇ
ˇ <

�

2
for all k � N2:

Let N D maxfN1; N2g. Then for all k � N we have

0 < � �
ˇ
ˇf .xnk

/ � f .ynk
/
ˇ
ˇ �

ˇ
ˇf .xnk

/ � f .x/
ˇ
ˇC

ˇ
ˇf .ynk

/ � f .x/
ˇ
ˇ <

�

2
C �

2
D �;

which is absurd. �

5.2.23 Exercise

[1] Let f W R ! R be a continuous function. Show that if f .q/ D 0 for all q 2 Q, then f .x/ D 0

for all x 2 R. More generally, show that if f W R ! R is a continuous function that vanishes

on a dense set, then f is identically zero.

[2] Let f W R ! R. We say that f is linear if f .x C y/ D f .x/ C f .y/ for all x; y 2 R. Show
that the function f .x/ D cx, where c 2 R, is a continuous linear function. Show that, in fact,

every continuous linear function f is of this form.

[3] Let S � R. The inverse image of S under f , denoted by f �1.S/, is the set

f �1.S/ D fx 2 R W f .x/ 2 Sg:

Show that a function f W R ! R is continuous if and only if the inverse image f �1.V / of

every open set V is open.

[4] Show that the function f W Œ0; 1/ ! Œ0; 1/ defined by f .x/ D
p

x is uniformly continuous.

[5] Show that the function f W RC ! R defined by f .x/ D sin
1

x
is continuous but not uniformly

continuous on RC.
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[6] Let S � R and, for x 2 R, define

f .x/ D inffjx � sj W s 2 Sg:

Show that if x 62 S , then f .x/ > 0. Also, show that

jf .x/ � f .y/j � jx � yj for all x; y 2 R:

This says that f satisfies a Lipschitz condition on R.
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Chapter 6

Riemann Integration

6.1 Basic Definitions and Theorems

In this section we briefly discuss the construction of Riemann integral. We also point out some of the

shortcomings of the Riemann integral.

6.1.1 Definition

Let Œa; b� be a closed interval in R. A partition of Œa; b� is a set

P D fx0; x1; x2; : : : ; xng of points in R such that

a D x0 < x1 < x2 < � � � < xn D b:

Let f be a real-valued function which is bounded on Œa; b� and let P D fx0; x1; x2; : : : ; xng be a

partition of Œa; b�. Denote by

M D sup
a�x�b

f .x/ and m D inf
a�x�b

f .x/:

Since f is bounded on Œa; b�, it is bounded on each subinterval Œxi�1; xi� for each i D 1; 2; : : : ; n. Let

Mi D supff .x/ W xi�1 � x � xig and mi D infff .x/ W xi�1 � x � xig

for each i D 1; 2; : : : ; n. Clearly,

m � mi � Mi � M for each i D 1; 2; : : : ; n:

We now form the sums

U.f; P / D
n
X

iD1

Mi.xi � xi�1/ and L.f; P / D
n
X

iD1

mi.xi � xi�1/:

6.1.2 Definition

The sums U.f; P / and L.f; P / are called, respectively, the upper and the lower sum of f relative to the

partition P .

It is important to note that U.f; P / and L.f; P / depend on the partition P . If f is nonnegative on Œa; b�,

then the upper sum U.f; P / is the sum of the areas of rectangles whose heights are Mi and whose bases are

Œxi�1; xi�. Similarly, L.f; P / is the sum of the areas of rectangles whose heights are mi and whose bases

are Œxi�1; xi�.

It is clear that L.f; P / � U.f; P /.
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6.1.3 Theorem

Let f be a real-valued function which is bounded on Œa; b� and let P D fx0; x1; x2; : : : ; xng be a partition

of Œa; b�. Then

m.b � a/ � L.f; P / � U.f; P / � M.b � a/:

�Since Mi � M for each i D 1; 2; : : : ; n, it follows that

U.f; P / D
n
X

iD1

Mi.xi � xi�1/ �
n
X

iD1

M.xi � xi�1/ D M

n
X

iD1

.xi � xi�1/ D M.b � a/:

Similarly, since m � mi for each i D 1; 2; : : : ; n, it follows that

L.f; P / D
n
X

iD1

mi.xi � xi�1/ �
n
X

iD1

m.xi � xi�1/ D m

n
X

iD1

.xi � xi�1/ D m.b � a/:

This theorem says that the set A D fU.f; P / W P is a partition of Œa; b�g is bounded below by m.b�a/.

Hence, A has an infimum, †.f /, say. That is,

†.f / D inf
P

U.f; P /;

where the infimum is taken over all possible partitions P of Œa; b�. This theorem also shows that the set

B D fL.f; P / W P is a partition of Œa; b�g is bounded above by M.b � a/ and hence B has an supremum,

�.f /, say. That is,

�.f / D sup
P

L.f; P /;

where the supremum is taken over all possible partitions P of Œa; b�. It is clear that

m.b � a/ � †.f / � M.b � a/; and

m.b � a/ � �.f / � M.b � a/:

6.1.4 Definition

Let f be a real-valued function which is bounded on Œa; b�. The upper integral of f on Œa; b� is defined by

bZ

a

f .x/ dx D inf
P

U.f; P /;

and the lower integral of f on Œa; b� is defined by

bZ

a

f .x/ dx D sup
P

L.f; P /;

where, of course, the infimum and the supremum are taken over all possible partitions P of Œa; b�.

It is intuitively clear that

bZ

a

f .x/ dx �
bZ

a

f .x/ dx. We shall prove this fact shortly.

6.1.5 Definition

Let P D fx0; x1; x2; : : : ; xng be a partition of Œa; b�. A partition P� of Œa; b� is called a refinement of

P , denoted by P � P�, if xi 2 P� for each i D 0; 1; 2; : : : ; n. A partition P� is called a common

refinement of the partitions P1 and P2 of Œa; b� if P� is a refinement of both P1 and P2.
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The following theorem says that refining a partition decreases the upper sum and increases the lower

sum.

6.1.6 Theorem

Let f be a real-valued function which is bounded on Œa; b�. If P� is a refinement of a partition P D
fx0; x1; x2; : : : ; xng of Œa; b�, then

L.f; P / � L.f; P�/ and U.f; P�/ � U.f; P /:

�Suppose that P� has one more point than P , say a point x� which lies in the subinterval Œxr�1; xr �.

Let

L1 D supff .x/ W xr�1 � x � x�g; L2 D supff .x/ W x� � x � xr g and

`1 D infff .x/ W xr�1 � x � x�g; `2 D infff .x/ W x� � x � xr g:

Recalling that

Mr D supff .x/ W xr�1 � x � xrg; and mr D infff .x/ W xr�1 � x � xrg;

we observe that

mr � `1; mr � `2; L1 � Mr ; and L2 � Mr :

It now follows that

mr .xr � xr�1/ D mr .xr � x�/ C mr .x� � xr�1/ � `2.xr � x�/ C `1.x� � xr�1/:

Hence,

L.f; P�/ D
r�1
X

jD1

mj .xj � xj�1/ C `1.x� � xr�1/ C `2.xr � x�/ C
n
X

jDrC1

mj .xj � xj�1/

�
r�1
X

jD1

mj .xj � xj�1/ C mr .xr � xr�1/ C
n
X

jDrC1

mj .xj � xj�1/

D
n
X

jD1

mj .xj � xj�1/ D L.f; P /:

Similarly,

Mr .xr � xr�1/ D Mr .xr � x�/ C Mr .x� � xr�1/ � L2.xr � x�/ C L1.x� � xr�1/;

and so

U.f; P�/ D
r�1X

jD1

Mj .xj � xj�1/ C L1.x� � xr�1/ C L2.xr � x�/ C
nX

jDrC1

Mj .xj � xj�1/

�
r�1
X

jD1

Mj .xj � xj�1/ C Mr .xr � xr�1/ C
n
X

jDrC1

Mj .xj � xj�1/

D
n
X

jD1

Mj .xj � xj�1/ D U.f; P /:

The case where P� contains k � 2 more points than P can be proved by repeating the above argument k

times. �
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6.1.7 Theorem

Let f be a real-valued function which is bounded on Œa; b�. Then

bZ

a

f .x/ dx �
bZ

a

f .x/ dx:

�Let P1 and P2 be any two partitions of Œa; b� and let P� be their common refinement. Then, by

Theorem 6.1.6,

L.f; P1/ � L.f; P�/ � U.f; P�/ � U.f; P2/:

Since P1 is any partition of Œa; b�, it follows that

sup
P

L.f; P / � U.f; P2/;

and since P2 is any partition of Œa; b�, we have that

sup
P

L.f; P / � inf
P

U.f; P /;

where the infimum and the supremum are taken over all possible partitions P of Œa; b�. Thus,

bZ

a

f .x/ dx �
bZ

a

f .x/ dx.�

6.1.8 Remark

Implicit in the proof of Theorem 6.1.7 is the fact that no lower sum can exceed an upper sum. That

is, every lower sum is less than or equal to every upper sum.

6.1.9 Definition

Let f be a real-valued function on Œa; b�. We say that f is Riemann-integrable on Œa; b� if f is bounded

on Œa; b� and

bZ

a

f .x/ dx D
bZ

a

f .x/ dx:

If f is Riemann-integrable on Œa; b�, we define the integral of f on Œa; b� to be the common value of the

upper and the lower integrals; i.e.,

bZ

a

f .x/ dx D
bZ

a

f .x/ dx D
bZ

a

f .x/ dx:

We shall denote by RŒa; b� the set of all functions that are Riemann-integrable on Œa; b�.

6.1.10 Remark

In the definition of the integral of f on Œa; b�, we have tacitly assumed that a < b. If a D b, then
bZ

a

f .x/ dx D
aZ

a

f .x/ dx D 0. Also, if b < a, then we define

aZ

b

f .x/ dx D �
bZ

a

f .x/ dx.
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6.1.11 Examples

[1] Show that if f is a constant function on Œa; b�, then f 2 RŒa; b� and find its integral.

Soln: Let f .x/ D k for all x 2 Œa; b� and let P D fx0; x1; x2; : : : ; xng be any partition of Œa; b�.
Then,

Mi D supff .x/ W xi�1 � x � xig D k and mi D infff .x/ W xi�1 � x � xig D k

for each i D 1; 2; : : : ; n. Thus,

U.f; P / D
n
X

iD1

Mi .xi � xi�1/ D k

n
X

iD1

.xi � xi�1/ D k.b � a/ and

L.f; P / D
n
X

iD1

mi .xi � xi�1/ D k

n
X

iD1

.xi � xi�1/ D k.b � a/:

Since P is any partition of Œa; b�, it follows that U.f; P / D L.f; P / D k.b � a/ for all partitions

P of Œa; b�. Therefore
bZ

a

f .x/ dx D k.b � a/ D
bZ

a

f .x/ dx:

That is, f is integrable on Œa; b� and

bZ

a

f .x/dx D k.b � a/: �

[2] Let f be a function defined by

f .x/ D

8

<

:

1 if x 2 Q\ Œa; b�

�1 if x 2 .R n Q/ \ Œa; b� :

Show that f is not Riemann-integrable on Œa; b�.

Soln: We first observe that f is bounded on Œa; b�. Let P D fx0; x1; x2; : : : ; xng be any

partition of Œa; b�. Since for each i D 1; 2; : : : ; n the subinterval Œxi�1; xi� contains both

rational and irrational numbers, we have that

Mi D supff .x/ W xi�1 � x � xig D supf�1; 1g D 1; and

mi D infff .x/ W xi�1 � x � xig D inff�1; 1g D �1

for each i D 1; 2; : : : ; n. Therefore,

U.f; P / D
n
X

iD1

Mi.xi � xi�1/ D
n
X

iD1

.xi � xi�1/ D b � a and

L.f; P / D
n
X

iD1

mi.xi � xi�1/ D .�1/

n
X

iD1

.xi � xi�1/ D �1.b � a/:

Since P is any partition of Œa; b�, it follows that U.f; P / D b � a and L.f; P / D �.b � a/ for all

partitions P of Œa; b�. Therefore

bZ

a

f .x/ dx D b � a and

bZ

a

f .x/ dx D �.b � a/;

and so f is not Riemann-integrable on Œa; b�. �
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6.1.12 Theorem

(Darboux’s Integrability Condition). Let f be a real-valued function which is bounded on Œa; b�. Then f

is integrable on Œa; b� if and only if, for any � > 0, there exists a partition P� of Œa; b� such that

U.f; P�/ � L.f; P�/ < �:

�Assume that f is integrable on Œa; b� and let � > 0. Since

bZ

a

f .x/ dx D
bZ

a

f .x/ dx D sup
P

L.f; P /;

there is a partition P1 of Œa; b� such that

bZ

a

f .x/ dx � �

2
< L.f; P1/:

Again, since

bZ

a

f .x/ dx D
bZ

a

f .x/ dx D inf
P

U.f; P /;

there is a partition P2 of Œa; b� such that

U.f; P2/ <

bZ

a

f .x/ dx C �

2
:

Let P� be a common refinement of P1 and P2. Then

bZ

a

f .x/ dx � �

2
< L.f; P1/ � L.f; P�/ � U.f; P�/ � U.f; P2/ <

bZ

a

f .x/ dx C �

2
:

It now follows that

U.f; P�/ � L.f; P�/ < �:

For the converse, assume that given any � > 0, there is a partition P� of Œa; b� such that

U.f; P�/ � L.f; P�/ < �:

Now,

bZ

a

f .x/ dx D inf
P

U.f; P / � U.f; P�/; and

bZ

a

f .x/ dx D sup
P

L.f; P / � L.f; P�/:

Thus,

0 �
bZ

a

f .x/ dx �
bZ

a

f .x/ dx � U.f; P�/ � L.f; P�/ < �:

Since � > 0 is arbitrary, we have that

bZ

a

f .x/ dx D
bZ

a

f .x/ dx:
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That is, f 2 RŒa; b�. �

Let us highlight the following important fact which is contained in the first part of the proof of Darboux’s

Integrability Condition:

6.1.13 Theorem

If f is integrable on Œa; b�, then for each � > 0, there exists a partition P of Œa; b� such that

bZ

a

f .x/ dx � � < L.f; P / � U.f; P / <

bZ

a

f .x/ dx C �:

6.1.14 Theorem

If f is continuous on Œa; b�, then it is integrable there.

�Since f is continuous on Œa; b�, we have that f is bounded on Œa; b�. Moreover, f is uniformly

continuous on Œa; b�. Hence, given � > 0 there is a ı > 0 such that

jf .x/ � f .y/j <
�

b � a
whenever x; y 2 Œa; b� and jx � yj < ı:

Let P D fx0; x1; x2; : : : ; xng be any partition of Œa; b� such that xi � xi�1 < ı for each i D 1; 2; : : : ; n.

By the Extreme-Value Theorem (applied to f on Œxi�1; xi� for each i D 1; 2; : : : ; n), there exist points ti
and si in Œxi�1; xi� for each i D 1; 2; : : : ; n such that

f .ti / D supff .x/ W xi�1 � x � xig D Mi and f .si/ D infff .x/ W xi�1 � x � xig D mi :

Since xi � xi�1 < ı, it follows that jti � si j < ı, and so

Mi � mi D f .ti / � f .si / D jf .ti / � f .si/j <
�

b � a
for all i D 1; 2; : : : ; n:

Hence,

U.f; P / � L.f; P / D
n
X

iD1

Mi.xi � xi�1/ �
n
X

iD1

mi.xi � xi�1/ D
n
X

iD1

.Mi � mi/.xi � xi�1/

�
n
X

iD1

jf .ti / � f .si/j.xi � xi�1/ <

n
X

iD1

� �

b � a

�

.xi � xi�1/

D �

b � a
.b � a/ D �:

It now follows from Theorem 6.1.12 that f is integrable on Œa; b�. �

6.1.15 Theorem

If f is monotone on Œa; b�, then f is integrable there.

�Assume that f is monotone increasing on Œa; b� and f .a/ < f .b/. Since f .a/ � f .x/ � f .b/ for

all x 2 Œa; b�, f is clearly bounded on Œa; b�. We want to show that, given any � > 0, there is a partition P

of Œa; b� such that U.f; P / � L.f; P / < �. Let � > 0 be given and let P D fx0; x1; x2; : : : ; xng be any

partition of Œa; b� such that xi � xi�1 <
�

f .b/ � f .a/
for each i D 1; 2; : : : ; n. Since f is increasing on

Œa; b�, we have that

Mi D supff .x/ W xi�1 � x � xig D f .xi/ and mi D infff .x/ W xi�1 � x � xig D f .xi�1/
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for each i D 1; 2; : : : ; n. Hence,

U.f; P / � L.f; P / D
n
X

iD1

Mi.xi � xi�1/ �
n
X

iD1

mi.xi � xi�1/ D
n
X

iD1

.Mi � mi/.xi � xi�1/

n
X

iD1

Œf .xi/ � f .xi�1/�.xi � xi�1/ <
�

f .b/ � f .a/

n
X

iD1

Œf .xi/ � f .xi�1/�

D �

f .b/ � f .a/
Œf .b/ � f .a/� D �:

It now follows from Theorem 6.1.12 that f is Riemann-integrable on Œa; b�. The case where f is

monotone decreasing can be proved in exactly the same way. �

6.1.1 Properties of the Riemann Integral

6.1.16 Theorem

If f is integrable on Œa; b� and a � c < d � b, then f is integrable on Œc; d �.

�Since f is integrable on Œa; b�, it is bounded there. Hence f is bounded on Œc; d �. Furthermore, given

any � > 0, there is a partition P of Œa; b� such that

U.f; P / � L.f; P / < �:

Let P� D P [ fc; dg. Then P� is a refinement of P , and hence

U.f; P�/ � L.f; P�/ � U.f; P / � L.f; P / < �:

Let Q1 D P� \ Œa; c�; Q2 D P� \ Œc; d �; Q3 D P� \ Œd; b�. Then P� D Q1 [ Q2 [ Q3, and so

U.f; P�/ D U.f; Q1/ C U.f; Q2/ C U.f; Q3/; and

L.f; P�/ D L.f; Q1/ C L.f; Q2/ C L.f; Q3/:

Hence,

ŒU.f; Q1/ � L.f; Q1/� C ŒU.f; Q2/ � L.f; Q2/� C ŒU.f; Q3/ � L.f; Q3/� D U.f; P�/ � L.f; P�/ < �:

Note that all terms on the left are nonnegative. Therefore Q2 is a partition of Œc; d � with the property that

U.f; Q2/ � L.f; Q2/ < �:

This implies that f is integrable on Œc; d �. �

6.1.17 Corollary

If f is integrable on Œa; b� and a < c < b, then f is integrable on both Œa; c� and Œc; b�.

The following theorem says that the converse of Corollary 6.1.17 also holds.

6.1.18 Theorem

If a < c < b and f is integrable on both Œa; c� and Œc; b�, then f is integrable on Œa; b� and

bZ

a

f .x/ dx D
cZ

a

f .x/ dx C
bZ

c

f .x/ dx:
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�Let � > 0 be given. Since f is integrable on Œa; c� and on Œc; b�, there are partitions P1 and P2 of Œa; c�

and Œc; b� respectively, such that

U.f; P1/ � L.f; P1/ <
�

2
; and

U.f; P2/ � L.f; P2/ <
�

2
:

Let P D P1 [ P2. Then P is a partition of Œa; b� and

U.f; P / � L.f; P / D U.f; P1/ C U.f; P2/ � L.f; P1/ � L.f; P2/

D U.f; P1/ � L.f; P1/ C U.f; P2/ � L.f; P2/ <
�

2
C �

2
D �:

Thus f is integrable on Œa; b�. Furthermore,

bZ

a

f .x/ dx � U.f; P / D U.f; P1/ C U.f; P2/

<
h

L.f; P1/ C �

2

i

C
h

L.f; P1/ C �

2

i

D L.f; P1/ C L.f; P2/ C �

�
cZ

a

f .x/ dx C
bZ

c

f .x/ dx C �:

Since � is arbitrary, it follows that

bZ

a

f .x/ dx �
cZ

a

f .x/ dx C
bZ

c

f .x/ dx: (6.1)

Also,

bZ

a

f .x/ dx � L.f; P / D L.f; P1/ C L.f; P2/

>
h

U.f; P1/ � �

2

i

C
h

U.f; P2/ � �

2

i

D U.f; P1/ C U.f; P2/ � �

�
cZ

a

f .x/ dx C
bZ

c

f .x/ dx � �:

Since � is arbitrary, it follows that

bZ

a

f .x/ dx �
cZ

a

f .x/ dx C
bZ

c

f .x/ dx: (6.2)

Combining (6.1) and (6.2), we have that

bZ

a

f .x/ dx D
cZ

a

f .x/ dx C
bZ

c

f .x/ dx. �
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6.1.19 Corollary

Let f be defined on Œa; b� and suppose that a D c0 < c1 < : : : < cn�1 < cn D b. Then f is integrable on

Œa; b� if and only if f is integrable on Œck�1; ck � for each k D 1; 2; : : : ; n. In this case,

bZ

a

f .x/ dx D
n
X

kD1

ckZ

ck�1

f .x/ dx:

6.1.20 Corollary

If f is continuous at all but a finite set of points in Œa; b�, then f is Riemann integrable on Œa; b�.

6.1.21 Theorem

Let f and g be integrable functions on Œa; b� and k 2 R. Then

(1) f C g 2 RŒa; b� and

bZ

a

Œf .x/ C g.x/� dx D
bZ

a

f .x/ dx C
bZ

a

g.x/ dx;

(2) kf 2 RŒa; b� and

bZ

a

kf .x/ dx D k

bZ

a

f .x/ dx;

(3) if f .x/ � g.x/ for all x 2 Œa; b�, then

bZ

a

f .x/ dx �
bZ

a

g.x/ dx;

(4) jf j 2 RŒa; b� and

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

bZ

a

f .x/ dx

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�
bZ

a

jf .x/j dx;

(5) f 2 2 RŒa; b�;

(6) fg 2 RŒa; b�.

�(1) Let � > 0 be given. Since f; g 2 RŒa; b�, there are partitions P1 and P2 of Œa; b� such that

U.f; P1/ � L.f; P1/ <
�

2
; and

U.g; P2/ � L.g; P2/ <
�

2
:

Let P be a common refinement of P1 and P2. Then P is a partition of Œa; b� and

U.f C g; P / � L.f C g; P / � U.f; P / C U.g; P / � L.f; P / � L.g; P / <
�

2
C

�

2
D �:

Thus f C g is integrable on Œa; b�. That is,

bZ

a

Œf .x/ C g.x/� dx D
bZ

a

Œf .x/ C g.x/� dx D
bZ

a

Œf .x/ C g.x/� dx:
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Next, we show that

bZ

a

Œf .x/ C g.x/� dx D
bZ

a

f .x/ dx C
bZ

a

g.x/ dx. Since f; g 2 RŒa; b�,

bZ

a

f .x/ dx D sup
P

L.f; P / D inf
P

U.f; P /; and

bZ

a

g.x/ dx D sup
P

L.g; P / D inf
P

U.g; P /;

where the supremum and infimum are taken over all possible partitions of Œa; b�. By Theorem 6.1.13, there

are partitions Q and R of Œa; b� such that

bZ

a

f .x/ dx � �

2
< L.f; Q/ � U.f; Q/ <

bZ

a

f .x/ dx C �

2
; and

bZ

a

g.x/ dx � �

2
< L.g; R/ � U.g; R/ <

bZ

a

g.x/ dx C �

2
:

Let P� be a common refinement of Q and R. Then

bZ

a

f .x/ dx � �

2
< L.f; Q/ � L.f; P�/; and

bZ

a

g.x/ dx � �

2
< L.g; R/ � L.g; P�/:

Hence,

bZ

a

f .x/ dx C
bZ

a

g.x/ dx � � < L.f; P�/ C L.g; P�/ � L.f C g; P�/ �
bZ

a

Œf .x/ C g.x/� dx:

Since � > 0 is arbitrary, we have that

bZ

a

f .x/ dx C
bZ

a

g.x/ dx �
bZ

a

Œf .x/ C g.x/� dx: (6.3)

Also,

U.f; P�/ � U.f; Q/ <

bZ

a

f .x/ dx C �

2
; and

U.g; P�/ � U.g; R/ <

bZ

a

g.x/ dx C
�

2
:
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Thus,

bZ

a

Œf .x/ C g.x/� dx � U.f C g; P�/ � U.f; P�/ C U.g; P�/ <

bZ

a

f .x/ dx C
bZ

a

g.x/ dx C �:

Since � > 0 is arbitrary, we have that

bZ

a

f .x/ dx C
bZ

a

g.x/ dx �
bZ

a

Œf .x/ C g.x/� dx: (6.4)

Combining 6.3 and 6.4, we get that

bZ

a

Œf .x/ C g.x/� dx D
bZ

a

f .x/ dx C
bZ

a

g.x/ dx.

(2) Exercise.

(3) Exercise.

(4) Let � > 0 be given. Then, there is a partition P D fx0; x1; x2; : : : ; xng of Œa; b� such that

U.f; P / � L.f; P / < �:

For i D 1; 2; : : : ; n, let

Mi D supff .x/ j xi�1 � x � xig; mi D infff .x/ j xi�1 � x � xig
Li D supfjf j.x/ D jf .x/j j xi�1 � x � xig; `i D inffjf j.x/ D jf .x/j j xi�1 � x � xig:

Now, since for all x; y 2 Œxi�1; xi� we have

jjf j.x/ � jf j.y/j D jjf .x/j � jf .y/jj � jf .x/ � f .y/j � Mi � mi ;

it follows that

Li � `i � Mi � mi

for each i D 1; 2; : : : ; n. This then implies that

n
X

iD1

.Li � `i /.xi � xi�1/ �
n
X

iD1

.Mi � mi/.xi � xi�1/

)
n
X

iD1

Li.xi � xi�1/ �
n
X

iD1

`i .xi � xi�1/ �
n
X

iD1

Mi.xi � xi�1/ �
n
X

iD1

mi .xi � xi�1/

) U.jf j; P / � L.jf j; P / � U.f; P / � L.f; P / < �:

Thus jf j is integrable on Œa; b�.

Since �jf .x/j � f .x/ � jf .x/j for each x 2 Œa; b�, we have by (3), that

�
bZ

a

jf .x/jdx �
bZ

a

f .x/ dx �
bZ

a

jf .x/jdx;

and consequently
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

bZ

a

f .x/ dx

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�
bZ

a

jf .x/jdx:

102



2009 REAL ANALYSIS

(5) Since f is integrable on Œa; b�, it is bounded there. Therefore, there exists K > 0 such that jf .x/j �
K for all x 2 Œa; b�. Note that for each x 2 Œa; b�; jf 2.x/j D jf .x/j2 � K2, so that f 2 is bounded

on Œa; b�. Also, by (4), jf j is integrable on Œa; b�, and therefore, given � > 0 there is a partition P D
fx0; x1; x2; : : : ; xng of Œa; b� such that

U.jf j; P / � L.jf j; P / <
�

2K
:

For i D 1; 2; : : : ; n, let

Mi D supff 2.x/ j xi�1 � x � xig; mi D infff 2.x/ j xi�1 � x � xig
Li D supfjf j.x/ D jf .x/j j xi�1 � x � xig; `i D inffjf j.x/ D jf .x/j j xi�1 � x � xig:

Then L2
i D Mi and `2

i D mi for each i D 1; 2; : : : ; n, and so

U.f 2; P / � L.f 2; P / D
n
X

iD1

.Mi � mi/.xi � xi�1/

D
n
X

iD1

.L2
i � `2

i /.xi � xi�1/

D
n
X

iD1

.Li C `i/.Li � `i /.xi � xi�1/

� 2K

n
X

iD1

.Li � `i/.xi � xi�1/

D 2K

"
nX

iD1

Li.xi � xi�1/ �
nX

iD1

`i .xi � xi�1/

#

D 2KŒU.jf j; P / � L.jf j; P /� < 2K
� �

2K

�

D �:

Thus, f 2 is integrable on Œa; b�.

(6) This follows from (1),(2) and (5) and from the observation that

fg D .f C g/2 � .f � g/2

4
:

�

6.1.22 Exercise

[1] Let f be the function on Œ0; 1� given by

f .x/ D

8

<

:

x if x is rational

0 if x is irrational:

Show that f is not Riemann integrable on Œ0; 1�.

[2] Let f be the function on Œ0; 1� given by

f .x/ D

8

<

:

1 if 0 � x < 1
2

x � 1
2

if 1
2

� x < 1:
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(a) Show, from first principles, that f is Riemann integrable on Œ0; 1�.

(b) Quote a result that assures us that f is Riemann integrable.

(c) Find

1Z

0

f .x/dx.

(d) Let fr1; r2; r3; : : :g be an enumeration of rational in the interval Œ0; 1�. For each n 2 N,
define

fn.x/ D

8

<

:

1 if x 2 fr1; r2; r3; : : : ; rng

0 otherwise.

Show that .fn/ is a nondecreasing sequence of functions that are Riemann-integrable

on Œ0; 1�. Show also that the sequence .fn/ converges pointwise to the function

f .x/ D

8

<

:

1 if x 2 Q \ Œ0; 1�

0 otherwise

and that f is not Riemann-integrable.
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Chapter 7

Introduction to Metric Spaces

7.1

7.1.1 Definition

Let X be a nonempty set. A metric on X is a function

d W X � X ! R such that for every x; y; z 2 X ,

M1. d.x; y/ � 0;

M2. d.x; y/ D 0 if and only if x D y;

M3. d.x; y/ D d.y; x/;

M4. d.x; z/ � d.x; y/ C d.y; z/, (triangle inequality).

A metric space is a pair .X; d/, where X is a nonempty set and d a metric on X .

The elements of a metric space .X; d/ are usually referred to as points. If x; y 2 X , then d.x; y/ is called

the distance between x and y. A set can have more than one metric defined on it.

If condition M2 is replaced by the condition

M20. d.x; x/ D 0 for all x 2 X ,

then d is a pseudo-metric on X and .X; d/ is a pseudo-metric space.

7.1.2 Examples

[1] Let X D R and for x; y 2 X , define d W X � X ! R by d.x; y/ D jx � yj. Then .R; d/ is a

metric space. This metric is called the usual metric on R.

[2] Let X D C, the set of complex numbers. For x; y 2 X , define d W X � X ! R by d.x; y/ D
jx � yj. Then .C; d/ is a metric space. This is metric called the usual metric on C.

[3] Let X D Rn, where n is a natural number. The elements of X are ordered n-tuples
x D .x1; x2; : : : ; xn/ of real numbers. For x D .x1; x2; : : : ; xn/ and y D .y1; y2; : : : ; yn/

in X , define
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d
1
.x; y/ D

n
X

iD1

jxi � yi j;

d
2
.x; y/ D

"
n
X

iD1

.xi � yi /
2

#1=2

;

d
1

.x; y/ D max
1�i�n

jxi � yi j:

Then each of d
1
; d

2
and d

1
defines a metric on Rn.

These metrics have special names attached to them:

d
1

is called the taxicab metric. The reason for this name is that it measures the distance that

a taxicab would have to travel from one point to another if the streets of the city were laid

out in a grid-like pattern. This metric is also called the 1-metric.

d
2

is called the Euclidean metric or the usual (standard) metric on Rn.

d
1

is called the maximum, supremum, or infinity metric.

(i) We leave it as an easy exercise to show that .Rn; d
1
/ is a metric space.

(ii) We show that .Rn; d
2
/ is a metric space. Checking that d

2
satisfies properties M1, M2

and M3 is straightforward. We establish property M4. To that end, let x D .x1; x2; : : : ; xn/; y D
.y1; y2; : : : ; yn/ and z D .z1; z2; : : : ; zn/ be elements of Rn. We want to show that

d
2
.x; z/ � d

2
.x; y/ C d

2
.y; z/. This is equivalent to showing that

 
n
X

iD1

.xi � zi/
2

!1=2

�
 

n
X

iD1

.xi � yi/
2

!1=2

C
 

n
X

iD1

.yi � zi/
2

!1=2

: (7.1)

For each i D 1; 2; : : : ; n, let ai D xi � yi and bi D yi � zi . Then equation (7.1) can be

rewritten as
 

n
X

iD1

.ai C bi/
2

!1=2

�
 

n
X

iD1

a2
i

!1=2

C
 

n
X

iD1

b2
i

!1=2

:

Since both sides of the inequality are nonnegative, it suffices to show that the inequality

holds for the squares of the left and right hand sides of the inequality. That is, we have

to show that

n
X

iD1

.ai C bi/
2 �

n
X

iD1

a2
i C 2

 
n
X

iD1

a2
i

!1=2  n
X

iD1

b2
i

!1=2

C
n
X

iD1

b2
i : (7.2)

The left hand side of (7.2) can be expanded as

n
X

iD1

.ai C bi/
2 D

n
X

iD1

a2
i C 2

n
X

iD1

aibi C
n
X

iD1

b2
i :

It now follows that inequality (7.2) is equivalent to the inequality

n
X

iD1

aibi �
 

n
X

iD1

a2
i

!1=2  n
X

iD1

b2
i

!1=2

(7.3)

Equation (7.3) is called the Cauchy-Schwarz Inequality. We now prove the Cauchy-
Schwarz Inequality.
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Cauchy-Schwarz Inequality: If .a1; a2; : : : ; an/ 2 Rn and .b1; b2; : : : ; bn/ 2 Rn, then

n
X

iD1

aibi �
 

n
X

iD1

a2
i

!1=2  n
X

iD1

b2
i

!1=2

:

Proof. If ai D 0 for all i D 1; 2; : : : ; n or bi D 0 for all i D 1; 2; : : : ; n, then the

inequality obviously holds. Assume that there is an i 2 f1; 2; : : : ; ng such that ai ¤ 0

and a j 2 f1; 2; : : : ; ng such that bj ¤ 0: For each i D 1; 2; : : : ; n, let

˛i D ai
�Pn

iD1 a2
i

�1=2
and ˇi D bi

�Pn
iD1 b2

i

�1=2
:

Recall that if a; b 2 R, then 2ab � a2 C b2. Therefore

2˛iˇi � ˛2
i C ˇ2

i ” 2aibi
�Pn

iD1 a2
i

�1=2 �Pn
iD1 b2

i

�1=2
�

a2
i

Pn
iD1 a2

i

C
b2

i
Pn

iD1 b2
i

H) 2
Pn

iD1 aibi
�Pn

iD1 a2
i

�1=2 �Pn
iD1 b2

i

�1=2
�
Pn

iD1 a2
i

Pn
iD1 a2

i

C
Pn

iD1 b2
i

Pn
iD1 b2

i

D 2

H)
Pn

iD1 aibi
�Pn

iD1 a2
i

�1=2 �Pn
iD1 b2

i

�1=2
� 1

H)
n
X

iD1

aibi �
 

n
X

iD1

a2
i

!1=2 n
X

iD1

b2
i

!1=2

;

which proves the Cauchy-Schwarz Inequality. �

(iii) We show that .Rn; d
1

/ is a metric space. Let x D .x1; x2; : : : ; xn/,
y D .y1; y2; : : : ; yn/ and z D .z1; z2; : : : ; zn/ be elements of Rn.

M1. Since for each i D 1; 2; : : : ; n, jxi � yi j � 0, it follows that

d
1

.x; y/ D max
1�i�n

jxi � yi j � 0:

M2.

d
1

.x; y/ D 0 ” max
1�i�n

jxi � yi j D 0

” jxi � yi j � 0 for each i D 1; 2; : : : ; n

” jxi � yi j D 0 for each i D 1; 2; : : : ; n

” xi D yi for each i D 1; 2; : : : ; n

” x D y:

M3. d
1

.x; y/ D max
1�i�n

jxi � yi j D max
1�i�n

jyi � xi j D d
1

.y; x/.

M4. Since, for each j D 1; 2; : : : ; n, jxj � zj j � jxj � yj j C jyj � zj j, it follows that

jxj � zj j � max
1�i�n

jxi � yi j C max
1�i�n

jyi � zi j D d
1

.x; y/ C d
1

.y; z/:
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Hence,
d

1
.x; z/ D max

1�j�n
jxj � zj j � d

1
.x; y/ C d

1
.y; z/:

[4] For 1 � p < 1, let X D
p̀

be a set of sequences .xi/
1
iD1 of real or complex numbers such

that

1
X

iD1

jxi jp < 1. That is,

p̀
D
(

x D .xi/
1
iD1 j

1
X

iD1

jxi jp < 1
)

:

For x D .xi/
1
iD1 and y D .yi/

1
iD1 in p̀ , define dp W X � X ! R by

d
p
.x; y/ D

 1X

iD1

jxi � yi jp
!1=p

:

Then . p̀ ; dp / is a metric space.

Properties M1, M2 and M3 are easy to prove. Property M4 requires Minkowski’s Inequality:

If p > 1 and .ai/
1
iD1 and .bi/

1
iD1 are in p̀ , then

 1
X

iD1

jai C bi jp
! 1

p

�
 1
X

iD1

jai jp
! 1

p

C
 1
X

iD1

jbijp
! 1

p

:

We now establish M4. Let x D .xi/
1
iD1, y D .yi /

1
iD1 and z D .zi /

1
iD1 be elements of

p̀
. For

each i 2 N, let ai D xi � yi and bi D yi � zi . Then, by Minkowski’s Inequality, we have that

dp .x; z/ D
 1
X

iD1

jxi � zi jp
!1=p

D
 1
X

iD1

jai C bijp
! 1

p

�
 1
X

iD1

jai jp
! 1

p

C
 1
X

iD1

jbijp
! 1

p

D
 1
X

iD1

jxi � yi jp
! 1

p

C
 1
X

iD1

jyi � zi jp
! 1

p

D d
p
.x; y/ C d

p
.y; z/:

[5] Let X D `
1

be a set of bounded sequences of real or complex numbers. For x D .xi/
1
iD1

and y D .yi/
1
iD1 in `

1
, define d

1
W X � X ! R by

d
1

.x; y/ D sup
i2N

jxi � yi j:

Then .`
1

; d
1

/ is a metric space.

[6] Let X be a set of sequences of real or complex numbers. For x D .xi/
1
iD1 and y D .yi/

1
iD1

in X , define d W X � X ! R by

d.x; y/ D
1
X

iD1

jxi � yi j
2i .1 C jxi � yi j/

:

Then .X; d/ is a metric space.
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[7] Let X D C Œa; b� be a set of continuous real-valued functions on the interval Œa; b� and p 2
Œ1; 1/. For f; g 2 C Œa; b�, define d

p
W X � X ! R and d

1
W X � X ! R respectively by

dp .f; g/ D

0

@

bZ

a

jf .t/ � g.t/jp dt

1

A

1=p

and

d
1

.f; g/ D sup
t2Œa;b�

jf .t/ � g.t/j:

Then .X; d
p
/ and .X; d

1
/ are metric metric space.

[8] Let X be a set. For x; y 2 X , define d W X � X ! R by

d.x; y/ D

8

<

:

0 if x D y

1 if x 6D y:

Then .X; d/ is a metric space. This metric d is called the discrete metric on X .

7.1.3 Proposition

Let .X; d/ be a metric space. Then for all x; y; z 2 X ,

jd.x; z/ � d.y; z/j � d.x; y/:

�By the triangle inequality we have that

d.x; z/ � d.x; y/ C d.y; z/ ” d.x; z/ � d.y; z/ � d.x; y/: .7:1:3:1/

Interchanging the roles of x and y in (7.1.3.1),

d.y; z/ � d.x; z/ � d.x; y/: .7:1:3:2/

It now follows from equations (7.1.3.1) and (7.1.3.2) that

jd.x; z/ � d.y; z/j � d.x; y/: �

7.2 Open Sets, Closed Sets, and Bounded Sets

7.2.1 Definition

Let .X; d/ be a metric space, x 2 X and r > 0. The set

B.x; r / WD fy 2 X j d.x; y/ < r g

is called the open ball with centre x and radius r .

The set

B.x; r / WD fy 2 X j d.x; y/ � r g
is called the closed ball with centre x and radius r .
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7.2.2 Lemma

Let x and y be distinct points in a metric space .X; d/. Then there is an � > 0 such that B.x; �/\B.y; �/ D
;.

�Since x ¤ y, it follows that d.x; y/ > 0. Choose � such that 0 < � < d.x;y/
2

. Then B.x; �/ \ B.y; �/ D
;. Indeed, if z 2 B.x; �/ \ B.y; �/, then

d.x; z/ < � and d.y; z/ < �:

Therefore

0 < d.x; y/ � d.x; z/ C d.y; z/ < � C � <
d.x; y/

2
C d.x; y/

2
D d.x; y/:

That is, d.x; y/ < d.x; y/, which is absurd. �

7.2.3 Definition

Let .X; d/ be a metric space. A subset G of X is said to be open if for each x 2 G, there is an � > 0 such

that B.x; �/ � G.

7.2.4 Definition

Let .X; d/ be a metric space. A subset A of X is called a neighbourhood of x 2 X if there is an open set

V � X such that x 2 V � A.

It is clear that a subset G of a metric space .X; d/ is open if G is a neighbourhood of each of its points.

7.2.5 Examples

[1] An open ball in a metric space .X; d/ is an open set. Indeed, let B.x; r / be an open ball

with centre x and radius r and let y 2 B.x; r /. Then d.x; y/ < r . Let � D r � d.x; y/. We

now show that B.y; �/ � B.x; r /. Let z 2 B.y; �/. Then d.y; z/ < �. Hence, by the triangle
inequality,

d.x; z/ � d.x; y/ C d.y; z/ < d.x; y/ C � D d.x; y/ C r � d.x; y/ D r:

That is, z 2 B.x; r /, and so B.y; �/ � B.x; r /.

[2] Let .X; d/ be a discrete metric space. Then every subset of X is open. To see this, let G be

a subset of X and x 2 G. Then, with 0 < � < 1, B.x; �/ D fxg � G.

7.2.6 Theorem

Let .X; d/ be a metric space.

(1) X and ; are open.

(2) A union of an arbitrary collection of open sets in X is open.

(3) An intersection of a finite collection of open sets in X is open.

�Exercise.

7.2.7 Proposition

Let .X; d/ be a metric space. Then a set A in X is open if and only if it is a union of open balls in X .

�Assume that A is a union of open balls in X ; i.e., A D
[

x2A

B.x; rx/: Since each open ball is an open

set and a union of an arbitrary collection of open sets is open, it follows that A is an open set.

110



2009 REAL ANALYSIS

Conversely, assume that A is open in X . Then, for each x 2 A, there is an �x > 0 such that B.x; �x/ �
A. Obviously A D

[

x2A

B.x; �x/: �

7.2.8 Definition

A subset F of a metric space .X; d/is said to be closed if its complement X n F is open.

7.2.9 Example

[1] A closed ball in a metric space .X; d/ is a closed set. Indeed, let B.x; r / be a closed ball

with centre x and radius r and let y 2 X n B.x; r /. Then d.x; y/ > r . Let � D d.x; y/ � r .

We now show that B.y; �/ � X n B.x; r /. Let z 2 B.y; �/. Then d.y; z/ < �. Hence, by the

triangle inequality,

d.y; z/ < � D d.x; y/ � r ” r < d.x; y/ � d.y; z/ � d.x; z/:

Hence z 62 B.x; r / and so z 2 X n B.x; r /.

[2] Let .X; d/ be a discrete metric space. Then every subset of X is closed. To see this, let A

be a subset of X . Since every subset of X is open, X n A is open. Hence A D X n .X n A/

is closed.

7.2.10 Theorem

Let .X; d/ be a metric space.

(1) X and ; are closed.

(2) An intersection of an arbitrary collection of closed sets in X is closed.

(3) A union of a finite collection of closed sets in X is closed.

�Exercise. �

7.2.11 Proposition

Every singleton set in a metric space .X; d/ is closed.

�Let x 2 X . We show that the set fxg is closed. It suffices to show that the complement X nfxg is open. To

that end, let y 2 X nfxg. Then x ¤ y. By Lemma 7.2.2, there is an � > 0 such that B.x; �/\B.y; �/ D ;.

Hence B.y; �/ � X n fxg, and so X n fxg is open. �

7.2.12 Definition

Let S be a subset of a metric space .X; d/, and x 2 X . Then

(a) x 2 S is called an interior point of S if there is an � > 0 such that B.x; �/ � S . The set of all

interior points of a set S is denoted by Sı or int.S/.

(b) x 2 X is called a boundary point of S if for every � > 0 the open B.x; �/ contains points of S as

well as points of X n S . The set of boundary points of S is denoted by @S or bd.S/.

(c) x 2 S is called an isolated point of S if there exists an � > 0 such that B.x; �/ \ S D fxg.

(d) A point x 2 X is called an accumulation point (or limit point) of S if for every � > 0, the �-ball,

B.x; �/, contains a point of S distinct from x. The set of all accumulation points of S is called the

derived set of S and is denoted by S 0. That is, S 0 D fx 2 X j .B.x; �/nfxg/\S ¤ ; for all � > 0g.

(e) The closure of the set S , denoted by S , is the set S D S [ S 0.
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7.2.13 Examples

[1] Let X D R2 and S D f.x1; x2/ 2 X j x2
1

C x2
2

< 1g.

7.2.14 Theorem

(Properties of Interior). Let A and B be subsets of a metric space .X; d/. Then

(a) Aı � A;

(b) Aıı D Aı;

(c) If A � B, then Aı � Bı;

(d) .A \ B/ı D Aı \ Bı;

(e)
[

i2I

Aıi �
 
[

i2I

Ai

!ı

;

(f)

 

\

i2I

Ai

!ı

�
\

i2I

Aıi .

�

7.2.15 Theorem

(Properties of Closure). Let A and B be subsets of a metric space .X; d/. Then

(a) A � A;

(b) A D A;

(c) If A � B, then A � B;

(d) A [ B D A [ B;

(e)
\

i2I

Ai �
\

i2I

Ai ;

(f)
[

i2I

Ai �
[

i2I

Ai .

�
7.2.16 Theorem

A subset C of a metric space .X; d/ is closed if and only if it contains all its accumulation points.

�Assume that C is closed and let x 2 C 0. We want to show that x 2 C . If x 62 C , then x 2 X n C .

Since C is closed, X n C is open. Therefore there exists an � > 0 such that B.x; �/ � X n C . This then

implies that B.x; �/ \ C D ;, which contradicts the fact that x 2 C 0. Thus C 0 � C .

To prove the converse, assume that C 0 � C . We want to show that C is closed, or equivalently, that

X n C is open. To this end, let x 2 X n C . Then x 62 C 0, and so there is an � > 0 such that

.B.x; �/ n fxg/ \ C D ;:

Since x 62 C , we have that B.x; �/ \ C D ;. Thus B.x; �/ � X n C , whence X n C is open. �
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7.2.17 Corollary

Let C be a subset of a metric .X; d/. Then C is closed if and only if C D C .

�Assume that C is closed. Then, by Theorem 7.2.16, C 0 � C . Therefore

C D C [ C 0 � C [ C D C . But C � C [ C 0 D C . Thus C D C .

Conversely, assume that C D C . Then C 0 � C [ C 0 D C D C . Thus C contains all its accumulation

points and, consequently, C is closed. �

7.2.18 Definition

A subset A of a metric space .X; d/ is said to be bounded if A � B.x; r / for some x 2 X and some r > 0.

7.2.19 Proposition

A subset A of a metric space .X; d/ is bounded if and only if there is a real number M � 0 such that

d.x; y/ � M for all x; y 2 A.

�Exercise.

7.2.20 Definition

The diameter of a subset A of a metric space .X; d/ is defined as

diam.A/ WD supfd.x; y/ j x; y 2 Ag:

Note that a subset A of a metric space .X; d/ is bounded if and only if diam.A/ < 1.

7.2.21 Proposition

Any subset of a discrete metric space .X; d/ is bounded.

�Let A be a subset of X . Clearly, by definition of the discrete metric, d.x; y/ � 1 for all x; y 2 A. Hence,

A is bounded. �

7.2.22 Proposition

A finite union of bounded subsets of a metric space .X; d/ is bounded.

�Let U1; U2; : : : ; Un be open subsets of X . Then, for each i D 1; 2; : : : ; n, there is an ri such that

d.x; y/ � ri for all x; y 2 Ui . Let r D maxfr1; r2; : : : ; rng and U D
n
[

iD1

Ui . For each i D 1; 2; : : : ; n,

choose xi 2 Ui . Let s D maxfd.xi ; xj/ for all i; j D 1; 2; : : : ; ng: Let x; y 2 U . Then x 2 Ui and

y 2 Uj for some i; j D 1; 2; : : : ; n. Therefore

d.x; y/ � d.x; xi/ C d.xi ; xj/ C d.xj ; y/ � r C s C r D 2r C s:

That is, for all x; y 2 U , d.x; y/ � M , where M D 2r C s and so U is bounded. �

7.3 Convergence of Sequences in Metric Spaces

7.3.1 Definition

A sequence .xn/ in a metric space .X; d/ is said to converge to a point x 2 X if, given any � > 0, there is

a natural number N (which depends on �, in general) such that d.xn; x/ < � for all n � N . In this case the

point x is called the limit of the sequence .xn/ and we write lim
n!1

xn D x.

Equivalently, .xn/ converges to x if, given any � > 0, there is an N 2 N such that xn 2 B.x; �/ for all

n � N .
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7.3.2 Theorem

(Limits of convergent sequences are unique). Let .xn/ be a sequence in a metric space .X; d/. If

lim
n!1

xn D x and lim
n!1

xn D y, then x D y.

�Assume that x ¤ y and let 0 < � <
d.x; y/

2
. Then there are natural numbers N1 and N2 such that

d.xn; x/ < � for all n � N1 and

d.xn; y/ < � for all n � N2:

Let N D maxfN1; N2g. Then, for all n � N ,

d.x; y/ � d.x; xn/ C d.xn; y/ < 2� < d.x; y/;

which is absurd. Hence x D y. �

7.3.3 Proposition

A sequence .xn/ converges to x if and only if for each � > 0, the set fn j xn 62 B.x; �/g is finite.

7.3.4 Proposition

Every convergent sequence is bounded.

�

7.3.5 Proposition

If a sequence .xn/ converges to x, then every subsequence of .xn/ also converges to x.

�

7.3.1 Sequential Characterization of closed sets

7.3.6 Theorem

Let K be a nonempty subset of a metric space .X; d/ and x 2 X . Then

(a) x 2 K if and only if there is a sequence .xn/ � K such that xn ! x as n ! 1.

(b) K is closed if and only if K contains the limit of every convergent sequence in K.

�

(a) Assume that x 2 K. Then either x 2 K or x 2 K0. If x 2 K, then the constant sequence

.x; x; x; : : :/ in K converges to x. If x 2 K0, then, for each n 2 N, the open ball B.x; 1
n
/ contains

a point xn 2 K distinct from x. It now follows that d.xn; x/ < 1
n

. Clearly, .xn/ � K and xn ! x as

n ! 1.

Conversely, assume that there is a sequence .xn/ � K such that xn ! x as n ! 1. Then, either

x 2 K or every �-ball centred at x contains a point xn 6D x, in which case x 2 K0 Thus x 2 K.

(b) By Corollary 7.2.17, K is closed if and only if K D K. Hence, (b) follows from (a). �

7.3.2 Completeness in Metric Spaces

7.3.7 Definition

A sequence .xn/ in a metric space .X; d/ is said to Cauchy if, given any � > 0, there is a natural number

N (which depends on �, in general) such that d.xn; xm/ < � for all n; m � N .
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7.3.8 Proposition

A convergent sequence in a metric space .X; d/ is Cauchy.

�Let .xn/ be a sequence in X which converges to x 2 X and let � > 0. Then there is a natural number N

such that d.xn; x/ < �
2

for all n � N . For all n; m � N ,

d.xn; xm/ � d.xn; x/ C d.x; xm/ <
�

2
C �

2
D �:

Thus, .xn/ is a Cauchy sequence in X . �

7.3.9 Proposition

A Cauchy sequence in a metric space .X; d/ is bounded.

�Let .xn/ be a Cauchy sequence in X . Choose N 2 N such that

d.xn; xm/ < 1 for all n; m � N:

Let r D maxfd.x1; xN /; d.x2; xN /; : : : ; d.xN�1; xN /; 1g. Clearly d.xn; xN / � r for all

n D 1; 2; : : : ; N � 1. If n � N , then d.xn; xN / < 1 � r . Thus, d.xn; XN / � r for all n 2 N and so .xn/

is bounded. �

7.3.10 Proposition

Let .X; d/ be a metric space. A Cauchy sequence in X which has a convergent subsequence is convergent.

�Let .xn/ be a Cauchy sequence in X and .xnk
/ its subsequence which converges to x 2 X . Then, for any

� > 0, there are positive integers N1 and N2 such that

d.xn; xm/ <
�

2
for all n; m � N1

and

d.xnk
; x/ <

�

2
for all k � N2:

Let N D maxfN1; N2g. If k � N , then since nk � k ,

d.xk ; x/ � d.xk ; xnk
/ C d.xnk

; x/ <
�

2
C �

2
D �:

Hence xn ! x as n ! 1. �

7.3.11 Definition

A metric space .X; d/ is said to be complete if every Cauchy sequence in X converges (to a point in X ).

7.3.12 Example

We have shown (see Theorem 4.2.19) that every Cauchy sequence of real numbers converges.

It now follows that R, with its usual metric, is a complete metric space.

7.3.13 Proposition

A closed subset F of a complete metric space.X; d/ is complete.

�Let .xn/ be a Cauchy sequence in F . Then .xn/ is a Cauchy sequence in X . Since X is complete, this

sequence converges to some x in X . Since F is closed, x 2 F . Hence F is complete. �
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7.4 Compactness in Metric Spaces

7.4.1 Definition

Let K be a subset of a metric space .X; d/. An open cover for K is a nonempty collectionU D f Ui j i 2 I g
of open subsets of X such that

K �
[

i2I

Ui :

Such an open cover is said to be reducible to a finite subcover for K if there are n 2 N indices i1; i2; : : : ; in
in I such that

K �
n
[

kD1

Uik :

A set K � X is said to be compact if every open cover for K is reducible to a finite subcover.

7.4.2 Theorem

A closed subset F of a compact metric space .X; d/ is compact.

�Let U D fUi j i 2 I g be an open cover for F . Then G D fUi [ .X n F/ j i 2 I g is an open cover for S .

Since S is compact, the cover G is reducible to a finite subcover. That is, there are indices i1; i2; : : : ; in
such that

S �
n[

kD1

Uik [ .X n F/:

Since F � S and F \ .X n F/ D ;, it follows that F �
n
[

kD1

Uik . Hence F is compact. �

7.4.3 Proposition

A nonempty subset K of a discrete metric space .X; d/ is compact if and only if K is finite.

�Assume that K is compact. Since each singleton set in a discrete metric space is open, the collection

C D ffxg j x 2 Kg is an open cover for K. Since K is compact, there are elements x1; x2; : : : ; xn in K

such that K �
n
[

iD1

fxig. Hence

K D K \
 

n
[

iD1

fxig
!

D fx1; x2; : : : ; xng;

a finite set.

Conversely, assume that K is finite. Then K is clearly compact as any finite set is compact. �

7.4.4 Theorem

Every compact subset K of a metric space .X; d/ is closed and bounded.

�Closedness: It suffices to show that X n K is open. To that end, let x 2 X n K. By Lemma 7.2.2, for each

y 2 K, there is an �y > 0 such that B.x; �y/ \ B.y; �y / D ;. The collection fB.y; �y/ j y 2 Kg of open

balls is an open cover for K. Since K is compact, there are elements y1; y2; : : : ; yn in K such that

K �
n
[

iD1

B
�

yi ; �yi

�

:
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Let U D
n
\

iD1

B
�

x; �yi

�

. Then x 2 U and, by Theorem 7.2.6(3), U is an open set. Hence there is a ı > 0

such that B.x; ı/ � U . Since B.x; �yi
/ \ B.yi ; �yi

/ D ; for each i D 1; 2; : : : ; n, it follows that

U � X n K and so x 2 B.x; ı/ � X n K and X n K is open.

Boundedness: The collection G D fB.x; 1/ j x 2 Kg is an open cover for K. Since K is compact, there

are elements x1; x2; : : : ; xn in K such that the sub-collection fB.xj ; 1/ j j D 1; 2; : : : ; ng of G covers

K; i.e.,

K �
n[

jD1

B.xj ; 1/:

Since a finite union of bounded sets is bounded (Proposition 7.2.22), it follows that the set

n
[

jD1

B.xj ; 1/ is

bounded. Hence K is bounded. �

We saw earlier (Heine-Borel Theorem) that a subset of R is compact if and only if it is closed and

bounded. That is, the converse of Theorem 7.4.4 holds if X D R. This converse does not hold in general.

Here is a counterexample: Let K be an infinite subset of a discrete metric space .X; d/. The K is closed

and bounded but not compact (see Proposition 7.4.3).

7.4.5 Proposition

Let .X; d/ be a compact metric space. Then any infinite subset of X has an accumulation point in X .

�Let K be an infinite subset of X with no accumulation point and let x 2 X . Since x is not an accumulation

point of K, there is an �x > 0 such that B.x; �x/ \ K � fxg. The collection C D fB.x; �x/ j x 2 X g
is an open cover for X . Since X is compact, there are elements x1; x2; : : : ; xn in X such that the finite

sub-collection fB.xj ; �xj
/ j j D 1; 2; : : : ; ng of C covers X ; i.e.,

X �
n
[

jD1

B.xj ; �xj
/:

It follows that

K D K \ X � K \

0

@

n
[

jD1

B.xj ; �xj
/

1

A D
n
[

jD1

�

K \ B.xj ; �xj
/
�

�
n
[

jD1

fxjg D fx1; x2; : : : ; xng;

a finite set. This is a contradiction. Hence K has an accumulation point in K. �

7.4.1 Sequential Compactness

7.4.6 Definition

A subset K of a metric space .X; d/ is said to be sequentially compact if every sequence in K has a

subsequence that converges to a point in K.

7.4.7 Exercise

[1] Let K be a bounded subset of a metric space .X; d/. Show that

diam.K/ D inffM j d.x; y/ � M 8 x; y 2 Kg:

[2] Let K be a compact subset of a metric space .X; d/. Show that the derived set K0 of K is
compact.

117


